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Abstract GPR120 and GPR40 are G-protein-coupled
receptors whose endogenous ligands are medium- and
long-chain free fatty acids, and they are thought to play
an important physiological role in insulin release. Despite
recent progress in understanding their roles, much still
remains unclear about their pharmacology, and few specific
ligands for GPR120 and GPR40 besides medium- to long-
chain fatty acids have been reported so far. To identify new
selective ligands for these receptors, more than 80 natural
compounds were screened, together with a reference
compound MEDICA16, which is known to activate
GPR40, by monitoring the extracellular regulated kinase
(ERK) and [Ca2+]i responses in inducible and stable
expression cell lines for GPR40 and GPR120, respectively.
MEDICA16 selectively activated [Ca2+]i response in
GPR40-expressing cells but not in GPR120-expressing
cells. Among the natural compounds tested, grifolin

derivatives, grifolic acid and grifolic acid methyl ether,
promoted ERK and [Ca2+]i responses in GPR120-
expressing cells, but not in GPR40-expressing cells, and
inhibited the α-linolenic acid (LA)-induced ERK and
[Ca2+]i responses in GPR120-expressing cells. Interestingly,
in accordance with the pharmacological profiles of these
compounds, similar profiles of glucagon-like peptide-1
secretion were seen for mouse enteroendocrine cell line,
STC-1 cells, which express GPR120 endogenously. Taken
together, these studies identified a selective GPR40 agonist
and several GPR120 partial agonists. These compounds
would be useful probes to further investigate the physio-
logical and pharmacological functions of GPR40 and
GPR120.
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Introduction

Free fatty acids (FFAs) are not only essential nutritional
components, but they also function as signaling molecules.
Recently, a G-protein-coupled receptor de-orphanizing
strategy successfully identified multiple receptors for FFAs,
which function on the cell surface and play significant roles
in nutritional regulation. One of these receptors, GPR40, is
activated by medium- to long-chain fatty acids (Briscoe et
al. 2003; Itoh et al. 2003; Kotarsky et al. 2003; Hara et al.
2009) and is coupled to Gq, which results in activation of
phospholipase C (Hardy et al. 2005) and subsequent
increases in the intracellular calcium concentration ([Ca2+]i)
(Itoh et al. 2003). In addition, GPR40 has been reported to
promote the phosphorylation of extracellular regulated
kinase (ERK)-1/2 (Yonezawa et al. 2004). A number of in
vitro and in vivo studies have demonstrated that FFAs
promote glucose-stimulated insulin secretion in pancreatic β
cells via GPR40 (Briscoe et al. 2003; Itoh et al. 2003;
Poitout 2003; Steneberg et al. 2005; Feng et al. 2006).
GPR120, which is expressed in the intestinal tract and in
adipocytes, is activated by medium- to long-chain fatty acids
(Hirasawa et al. 2005; Gotoh et al. 2007; Miyauchi et al.
2009). In addition, activation of GPR120, which is expressed
endogenously in murine enteroendocrine (STC-1) cells,
promotes glucagon-like peptide-1 (GLP-1) and cholecysto-
kinin secretion (Tanaka et al. 2008a, b). GLP-1 secretion via
GPR120 signaling increases insulin secretion in vivo
(Hirasawa et al. 2005). Furthermore, activation of GPR120
inhibited serum deprivation-induced apoptosis in STC-1
cells (Katsuma et al. 2005). Therefore, research into
GPR40 and GPR120 as potential drug targets for diabetes
has received considerable attention (Suzuki et al. 2008;
Swaminath 2008), and the development of selective ligands
for these receptors would be valuable tools with which to
investigate the pharmacological and physiological functions
of fatty acid receptors.

Although a number of GPR40 ligands have been
identified and evaluated (Briscoe et al. 2003; Tikhonova
et al. 2007; Bharate et al. 2008; Davi and Lebel 2008; Hara
et al. 2009; Hirasawa et al. 2008a; Suzuki et al. 2008), these
compounds have activated not only GPR40 but also
GPR120. Moreover, there are a few reports on GPR120
synthetic ligands that were identified in our study (Suzuki
et al. 2008). Hence, the pharmacology of GPR40 and
GPR120 is not yet fully understood because of lack of
selective ligands for these receptors. In order to discover
selective pharmacological probes for these receptors, more
than 80 natural compounds were screened, together with a
reference compound, with the goal of finding selective,
potent agonists or antagonists by monitoring intracellular
signaling using inducible and stable cell lines expressing
GPR40 and GPR120, respectively.

In this study, we identify and characterize a selective agonist
for GPR40 as well as selective partial agonists for GPR120.
Furthermore, we demonstrate that these compounds can be
useful pharmacological probes to investigate the physiological
functions of GPR120 by measuring GLP-1 secretion from
STC-1 cells, which expresses GPR120 endogenously.

Materials and methods

Compounds

Plant materials Fruiting bodies of Albatrellus ovinu were
collected in Musashimurayama, Japan, in October 2000 and
identified by Mr. Yasuhiko Gotoh. A voucher specimen was
deposited at the Institute of Food Culture, Kurashiki
Sakuyo University. Fruit bodies of Albatrellus dispansus
were collected in October 2002 in Okutama, Tokyo, Japan,
and identified by Mr. Yasuhiko Gotoh. A voucher specimen
was deposited at the Faculty of Pharmaceutical Sciences,
Tokushima Bunri University. Fruiting bodies of Albatrellus
confluens were collected in October 2004 in Nakatsugawa,
Gifu, Japan, and identified by Mrs. Makiko Nukata. A
voucher specimen was deposited at the Faculty of Pharma-
ceutical Sciences, Tokushima Bunri University. Grifolin,
neogrifolin, and 3-hydroxyneogrifolin were isolated from
A. ovinu according to a previously reported procedure
(Nukata et al. 2002). Grifolic acid, grifolic acid methyl
ether, and grifolin monomethyl ether were isolated from A.
dispansus according to a previously reported procedure
(Hashimoto et al. 2005; Ishii et al. 1988). Grifolin dimethyl
ether was synthesized from grifolin according to a
previously reported procedure (Vrkoc et al. 1997). These
compounds were dissolved in dimethyl sulfoxide (DMSO)
at a stock concentration of 10 mM and stored at −20°C. The
structures of these compounds are shown in Table 1.

Chemicals MEDICA16 was purchased from Sigma (St.
Louis, MO, USA). All other materials were from standard
sources and of highest purity that is available commercially.

Plasmids

The FLAG-human GPR40 (hGPR40)/pcDNA5/FRT/TO
plasmid was prepared as described previously (Hirasawa
et al. 2005). Briefly, hGPR40 complementary DNA
(cDNA) was obtained by polymerase chain reaction
(PCR) using genomic DNA as a template and ligated
into the multicloning site of the mammalian expression
vector pcDNA5/FRT/TO (Invitrogen, Carlsbad, CA,
USA) together with an N-terminal FLAG-tag. To
construct the human GPR120 (hGPR120)-Gα16/
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pcDNA5/FRT plasmid, hGPR120 cDNA and Gα16 were
obtained by PCR using genomic DNA as a template, and
Gα16 cDNA was amplified and ligated into the multi-
cloning site of the mammalian expression vector pcDNA5/
FRT (Invitrogen). hGPR120 cDNA was then ligated into
the multicloning site of Gα16/pcDNA5/FRT.

Cell lines

Flp-In™ T-REx™-293 (T-REx 293) cells and Flp-In™-
293 (Flp-in 293) cells (Invitrogen) were used to develop

inducible and stable cell lines T-REx GPR40 and Flp-in
GPR120, respectively. T-REx 293 cells were transfected
with FLAG-GPR40/pcDNA5/FRT/TO using Lipofect-
amine™ Reagent (Invitrogen) and selected with Dul-
becco’s modified Eagle’s medium (DMEM) (Sigma),
which had been supplemented with 10% fetal bovine
serum (FBS), 10 μg/ml blasticidin S (Funakoshi, Tokyo,
Japan), and 100 μg/ml hygromycin B (Gibco BRL,
Grand Island, NY, USA). GPR40 protein expression was
induced by adding 10 μg/ml of doxycycline hydrate
(Dox) (Sigma) for over 24 h. T-REx 293 cells were

Table 1 The chemical structure of compounds investigated in this study
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routinely cultured in DMEM supplemented with 10%
FBS, 100 μg/ml zeocin (Invitrogen), and 10 μg/ml
blasticidin S. Flp-in 293 cells were routinely cultured in
DMEM supplemented with 10% FBS and 100 μg/ml
zeocin. Flp-in 293 cells were transfected with
hGPR120-Gα16/pcDNA5/FRT using Lipofectamine™
Reagent and selected with DMEM that had been supple-
mented with 10% FBS and 100 μg/ml zeocin. STC-1 cells
were cultured in DMEM containing 15% horse serum and
2.5% FBS. All cells were grown at 37°C in a humidified
atmosphere of 5% CO2/95% air.

Intracellular [Ca2+]i measurement

Cells were seeded at a density of 2×105 cells/well on
collagen-coated 96-well plates, incubated at 37°C for 21 h,
and then incubated in Hanks’ balanced salt solution
(HBSS, pH 7.4) containing Calcium Assay Kit Compo-
nent A (Molecular Devices, Sunnyvale, CA, USA) for 1 h
at room temperature. Compounds used in the fluorometric
imaging plate reader (FLIPR, Molecular Devices) assay
were dissolved in HBSS (1% DMSO) and prepared in
another set of 96-well plates. These plates were set on the
FLIPR, and mobilization of [Ca2+]i evoked by agonists

was monitored. Antagonists were added 10 min before the
addition of α-LA. Data analysis was performed using Igor
Pro (WaveMetrics, Lake Oswego, OR, USA).

The pA2 values for the partial agonists were calculated
as described by Arunlakshana and Schild (1959). Briefly,
the concentration of agonist are denoted [A0] in the
absence of antagonist and [AX] in the presence of
concentration of antagonist B [BX]. Applying the law of
mass action leads to

BX½ �=KB ¼ AX½ �= A0½ �ð Þ � 1 ð1Þ

where [AX]/[A0] is the agonist dose ratio for each
concentration [BX], and KB is the dissociation constant
of the antagonist. Equation 1 is equivalent to

log AX½ �= A0½ � � 1ð Þ ¼ log BX½ � � logKB ð2Þ

Under equilibrium conditions, the pA2 is equal to −logKB.

ERK phosphorylation

ERK phosphorylation induced by the indicated compounds
was measured as described previously (Hirasawa et al.
2005). Briefly, cells were serum-starved for 2 h and treated
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with each compound that was being tested at a concentra-
tion of 100 μM. After 10 min of incubation with each
compound, total cell extracts were prepared and subjected
to Western blotting using anti-phospho- and anti-total-
kinase antibodies.

GLP-1 secretion

GLP-1 secretion from STC-1 cells was measured as
described previously (Hirasawa et al. 2005). Briefly, STC-
1 cells were seeded at a density of 4×105 cells/well on 24-
well plates, incubated for 48 h at 37°C in the medium, and
stimulated with compounds in HBSS for 1 h at 37°C. After
incubation, supernatants were collected, and the concentra-
tion of GLP-1 was determined by enzyme immunoassay
with Rat GLP-1 ELISA Kit Wako (Wako, Osaka, Japan).

Statistical analysis

The level of significance for the difference between sets of
data was assessed using an unpaired Student’s t test. Data
were expressed as means±SE. p<0.05 was considered as
statistically significant.

Results

Analysis of cell lines expressing GPR40 and GPR120

In order to identify novel ligands for GPR40 and GPR120,
a Dox-inducible cell line expressing hGPR40 (T-REx
GPR40) and a stable cell line expressing hGPR120 (Flp-
in GPR120) were developed as described in “Materials and
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methods”. To determine whether these two receptors
possess the agonist responsiveness, ERK and [Ca2+]i
responses were measured after stimulation of these cell
lines with LA, which is known to activate GPR40 and
GPR120 (Briscoe et al. 2003; Itoh et al. 2003; Hirasawa et
al. 2005). LA increased ERK and [Ca2+]i responses in a
dose-dependent manner in T-REx GPR40 cells incubated
with Dox [Induction (+); Fig. 1a, (a) and b, (a)] and in Flp-
in GPR120 cells [Fig. 1a, (b) and b, (b)]; however, T-REx
293 cells, T-REx GPR40 cells incubated without Dox
[induction (−)], and Flp-in 293 cells showed only a basal
level of activation after addition of LA. These results
indicated that the activation of ERK and [Ca2+]i responses
induced by LA in these cell lines was mediated by these
receptors and was not a nonspecific effect.

Screening for the GPR40 and GRP120 ligands

Using the cell lines described herein, in order to
identify selective ligands for GPR40 and GPR120, 80

natural compounds were screened, together with the
reference compound MEDICA16, which is known to
activate GPR40, by monitoring ERK activity in T-REx
GPR40 cells and in Flp-in GPR120 cells. Among the 80
natural compounds, a series of grifolin derivatives
isolated from plant materials (Table 1) was identified,
which possess the ability to activate GPR120. As shown in
Fig. 2a, none of the grifolin derivatives tested activated
ERK in T-REx GPR40 cells incubated with Dox. As
shown in Fig. 2b, the grifolin derivatives, grifolic acid and
grifolic acid methyl ether, activated ERK in Flp-in
GPR120 cells, although the potencies of these two
compounds were much lower than that of LA.
MEDICA16 increased the ERK activity both in T-REx
GPR40 cells incubated with Dox and in Flp-in GPR120
cells; however, the effect of this compound on ERK
activity was more potent in the T-REx GPR40 cells
(Fig. 2a) compared to the Flp-in GPR120 cells (Fig. 2b).
Thus, the screens identified specific ligands for GPR40
and GPR120.

Pharmacological effects of the ligands on GPR40
and GPR120

The effects of MEDICA16, grifolic acid, and grifolic acid
methyl ether on activation of GPR40 and GPR120 were
next examined in greater detail. In accordance with the
result of the ERK assay, MEDICA16 potently increased
[Ca2+]i in a dose-dependent manner in T-REx GPR40 cells
incubated with Dox, compared to the response in Flp-in
GPR120 cells (Fig. 3a, b), indicating that MEDICA16
could be a selective agonist for GPR40.

As shown in Fig. 2b, some grifolin derivatives activated
GPR120, but their potency was far less than that of LA.
Thus, we speculated that they might act as partial agonists
for GPR120, so we next examined whether grifolic acid and
grifolic acid methyl ether could act as antagonists for
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GPR120. As shown in Fig. 4, these two compounds
inhibited LA-induced ERK phosphorylation in a dose-
dependent manner in Flp-in GPR120 cells. In addition,
these compounds together with grifolin inhibited LA-
induced [Ca2+]i in a dose-dependent manner. On the other
hand, grifolic acid and grifolic acid methyl ether inhibited
LA-induced [Ca2+]i in T-REx GPR40 cells incubated with
Dox, but their inhibitory effects were less than that seen in
Flp-in GPR120 cells (Fig. 5a, b). In addition, the pA2 values
of these two compounds for GPR120 were calculated as
described in “Materials and methods”. The relative affinity
of grifolic acid methyl ether and that of grifolic acid was
compared by dividing the apparent KB of grifolic acid
methyl ether by that of grifolic acid (Table 2). This result
revealed that the antagonistic effects of these two com-
pounds were not significantly different. Other grifolin
derivatives, specifically neogrifolin, grifolin dimethyl ether,
grifolin monomethyl ether, and 3-hydroxyneogrifolin, did
not inhibit ERK or [Ca2+]i responses in the two cell lines
(data not shown). These results indicated that some grifolin
derivatives could be selective partial agonists for GPR120.

The biological effects of grifolic acid and grifolic acid
methyl ether on GPR120 were next examined by measuring
GLP-1 secretion from STC-1 cells. Stimulation of GPR120
has been shown to promote secretion of GLP-1 from STC-1
cells (Hirasawa et al. 2005). Therefore, the effects of these
compounds on GLP-1 secretion from STC-1 cells were
examined. As shown in Fig. 6, LA, grifolic acid, and
grifolic acid methyl ether stimulated GLP-1 secretion in a
dose-dependent manner. On the other hand, MEDICA16
stimulation did not increase GLP-1 secretion significantly.
Thus, the effects of these compounds on GPR120 activation
in Flp-in GPR120 cells correlated well with their ability to
induce GLP-1 secretion from STC-1 cells via GPR120.

Discussion

This report identifies and characterizes selective ligands for
GPR40 and GPR120 that were isolated from natural
compounds. The compounds, together with the reference
compound MEDICA16, were identified by measuring

intracellular signals ([Ca2+]i and ERK responses) in
inducible and stable expression cell lines. These cell lines
were established previously, and the expression and
function of these receptors were examined (Hirasawa et
al. 2005, 2008b; Hara et al. 2009), leading to the
development of assays that could discriminate whether
signals induced by various ligands were mediated by
specific receptors. This led to identification of the selective
GPR40 ligand MEDICA16 and the selective GPR120
ligands grifolic acid and grifolic acid methyl ether.

MEDICA16 is known to activate GPR40 (Kotarsky et al.
2003), and it is an experimental anti-obesity compound
(Bar-Tana et al. 1985). However, the selectivity of
MEDICA16 between GPR40 and GPR120 has not yet
been elucidated in the literature. In this study, the effect of
MEDICA16 on GPR40 activation was found to be more
potent than its effect on GPR120. Hence, MEDICA16 may
act as a selective agonist that could be used as a selective
pharmacological probe for GPR40. Moreover, the results of
screening 80 natural compounds demonstrated that two
grifolin derivatives, grifolic acid and grifolic acid methyl
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Table 2 Comparison of apparent pA2 and relative affinity for grifolic acid and grifolic methyl ether

Antagonist Number of experiments Apparent pA2 (×10
−6M) Relative affinity

Grifolic acid 3 4.95±0.1 1.00a

Grifolic acid methyl ether 3 5.01±0.1 0.79 NS

Apparent KB values were converted to apparent pA2 values as described in “Materials and methods”. Results are means±SE of three independent
experiments

NS not significant
a Grifolic acid, arbitrary set at 1
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ether, which were isolated from the fresh fruiting bodies of
the mushroom A. confluens or were synthesized with
chemical modification of these compounds, possessed
pharmacological activity by acting through GPR120. This
study confirms that grifolic acid and grifolic acid methyl
ether not only activated ERK and [Ca2+]i responses through
GPR120 signaling, but they also inhibited responses
induced by LA in GPR120-expressing cells. Therefore,
these two compounds may act as novel partial agonists for
GPR120. In addition, they may also act as antagonists for
GPR40, but their potencies as antagonists were much less
pronounced. These two compounds showed both agonistic
and antagonistic activities when used to stimulate GPR120-
expressing cells. However, additional grifolin derivatives
(neogrifolin, grifolin dimethyl ether, grifolin monomethyl
ether, and 3-hydroxyneogrifolin) did not induce any responses
in either receptor. In accordance with previous reports (Itoh
et al. 2003; Hirasawa et al. 2005), these results also
indicated that the carboxyl group of grifolin derivatives
was indispensable for the activation of GPR120. In
addition, although further investigations of GPR120 ligand
selectivity for GPR120 are needed, these results provide
useful information on structure–activity relationships between
GPR120 and its ligands.

The biological properties of these compounds on GLP-1
secretion via GPR120 were further investigated using STC-
1 cells, which express GPR120 endogenously. Their effects
on GLP-1 cells correlated well with their effect on [Ca2+]i
and ERK responses in Flp-in GPR120 cells. In contrast,
MEDICA16, which selectively activated ERK and [Ca2+]i
response in T-REx GPR40 cells, did not induce GLP-1
secretion from STC-1 cells. These results indicated that
grifolic acid and grifolic acid methyl ether could be useful
probes with which to discriminate between the pharmaco-
logical effects of GPR40 and GPR120.

Grifolin derivatives have been shown to possess a broad
spectrum of biological effects, such as inhibiting growth
and inducting significant apoptosis in some cancer cell lines
(Ishii et al. 1988; Zechlin et al. 1981; Sugiyama et al.
1992). They also showed hypocholesterolemic action in rats
fed a high-cholesterol diet (Sugiyama et al. 1992).
However, the relationship between GPR120 and grifolin
derivatives has not been reported. Hence, the effect of these
compounds on GLP-1 secretion via GPR120 represents a
novel biological property of grifolin derivatives.

Recently, the synthetic 4-(benzylamino)dihydrocinnamic acid
derivative (GW9508) and the 4-phenethynyldihydrocinnamic
acid derivative (TUG-424) were shown to possess agonistic
activity towards GPR40 (Briscoe et al. 2006; Christiansen et
al. 2008). GW9508 showed agonistic activity towards
GPR120 and GPR40. On the other hand, only the effect
on GPR40 has been examined for TUG-424. In addition, 4-
{4-[2-(phenyl-2-pyridinylamino)ethoxy]phenyl}butyric acid

(compound 12) have been identified as selective ligands
for GPR120, but their selectivity between GPR40 and
GPR120 was evaluated only using an overexpression
system (Suzuki et al. 2008). Thus, the selectivity of
various ligands between GPR40 and GPR120 remains to
be fully elucidated. At present, the pharmacology of
FFARs, including GPR40 and GPR120, is not fully
understood despite intensive research efforts, mainly
because there are few specific and selective ligands for
GPR120. Thus, the compounds identified in this study
could be used as novel selective probes capable of
distinguishing pharmacological and physiological effects
related to signaling through GPR40 and GPR120.
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