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Abstract Anticonvulsant, analgesic, and anxiolytic effects
have been observed both in preclinical and clinical studies
with gabapentin (GBP) and pregabalin (PGB). These drugs
appear to act by binding to the α2δ subunit of voltage-
sensitive Ca2+ channels (VSCC), resulting in the inhibition
of neurotransmitter release. In this study, we examined the
effects of GBP and PGB (mostly 100 μM, corresponding to
relatively high preclinical/clinical plasma levels) on the
release of neurotransmitters in human neocortical slices.
These slices were prelabeled with 3H-dopamine (3H-DA),
3H-choline (to release 3H-acetylcholine (3H-ACh)), 3H-
noradrenaline (3H-NA), and 3H-serotonin (3H-5-HT), and
stimulated twice in superfusion experiments by elevation of
extracellular K+ in the presence and absence of GBP and
PGB. The α2δ ligands produced significant inhibitions of

K+-evoked 3H-ACh, 3H-NA, and 3H-5-HT release between
22% and 56% without affecting 3H-DA release. Neither
drug reduced 3H-NA release in the presence of L-isoleucine,
a putative α2δ antagonist. Interestingly, this antagonism did
not occur using the enantiomer, D-isoleucine. These results
suggest that GBP and PGB are not general inhibitors of
VSCC and neurotransmitter release. Such α2δ ligands
appear to be selective modulators of the release of certain,
but not all, neurotransmitters. This differential modulation
of neurotransmission presumably contributes to their
clinical profile.
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Introduction

Gabapentin (GBP) and pregabalin (PGB) have clinical effi-
cacy corresponding to their anticonvulsant, analgesic, and
anxiolytic effects observed in several preclinical models
(Taylor et al. 1998, 2007). Both drugs are derivatives of the
inhibitory neurotransmitter gamma-aminobutyric acid
(GABA), and GBP was originally designed as a GABA-
mimetic agent that can cross the blood–brain barrier
(Satzinger 1994). The precise mechanism by which GBP
and PGB exert their clinical efficacy is still not completely
understood. There is, however, a high-affinity binding site
for these drugs: the α2δ subunit of voltage-sensitive Ca2+

channels (VSCC; Belliotti et al. 2005; Bian et al. 2006). The
VSCC mediate Ca2+ entry into cells in response to
membrane depolarization. Presynaptically, Ca2+ entry then
initiates exocytotic release of neurotransmitters with vesicu-
lar storage, as investigated in the present study, i.e.,
dopamine (DA), acetylcholine (ACh), noradrenaline (NA),
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and serotonin (5-HT). High voltage-activated Ca2+ channels
are complexes of a pore-forming α1 subunit; a transmem-
brane, disulfide-linked complex of α2 and δ subunits; an
intracellular β subunit; and, in some cases, a transmembrane
γ subunit (Catterall 2000). GBP was the first ligand
described to interact with the α2δ subunit of VSCC (Gee
et al. 1996).

An interaction with the α2δ subunit of VSCC is consi-
dered to underlie the pharmacological effects of GBP, PGB,
and related drugs; this interaction appears to diminish the
amount of Ca2+ entering the presynaptic terminal following
depolarization, leading to a decrease in neurotransmitter
release (Dooley et al. 2007). There are four different
subtypes of α2δ protein (α2δ-1, -2, -3, and -4), yet only
α2δ-1 and -2 bind PGB and GBP with high affinity (Taylor
et al. 2007; Dooley et al. 2007). Moreover, a mutation in the
gene of mice encoding the α2δ-1 protein substantially
reduced specific 3H-PGB (and 3H-GBP) binding in central
nervous system (CNS) regions known to preferentially
express the α2δ-1 subtype (e.g., neocortex, hippocampus,
basolateral amygdala, dorsal horn of spinal cord), suggesting
that α2δ-1 is the major binding site for PGB (Bian et al.
2006). Additionally, this reduction of 3H-PGB binding in
R217A mice led to a loss of the analgesic activity of PGB in
different preclinical pain models (Field et al. 2006).

Several previous studies have examined the modulation
of neurotransmitter release by GBP and PGB. GBP
inhibited electrically evoked 3H-NA and 3H-5-HT release
from rat neocortical slices in a concentration-dependent
manner (Schlicker et al. 1985). It also reduced electrically
evoked 3H-DA release from rabbit caudate nucleus slices
(Reimann 1983), but it did not alter 3H-ACh release from
these slices (Schlicker et al. 1985). Both GBP and PGB (1–
100 μM) inhibited electrically and K+-evoked 3H-NA
release, but not that induced by veratridine, from rat
neocortical slices (Dooley et al. 2000). The electrically
evoked 3H-NA release was inhibited to a smaller extent,
leading the authors to conclude that GBP and PGB are
more effective to modulate neurotransmitter release requir-
ing only partial or intermittent Na+ channel activation. GBP
also decreased K+-evoked 3H-NA release from human
neocortical and rat hippocampal slices in a concentration-
dependent manner (Freiman et al. 2001). This inhibitory
effect was antagonized by the KATP-channel antagonist
glibenclamide, implicating that opening of KATP channels
may be involved in the inhibitory action of GBP.

Thurlow et al. (1993) showed that some large neutral L-
amino acids (e.g., L-leucine, L-isoleucine, L-methionine) are
potent, stereospecific displacers of 3H-GBP binding to mouse
and pig brain membranes, whereas the corresponding D-
enantiomers were all much less active. This observation
proved also the case for rat brain membranes (Thurlow et al.
1996a). These findings point to a modulatory role of

endogenous amino acids in neurotransmission (Dooley
et al. 2007).

In the present investigation, we tested a relatively high
concentration of GBP and PGB (100 μM) on the release of
several neurotransmitters from human neocortical tissue
under similar experimental conditions (with the exception
of 3H-5-HT release experiments, where PGB was tested in a
concentration of 1, 10, and 100 μM). This concentration is
pharmacologically relevant, as it is still within the therapeu-
tic range in plasma and/or brain tissue of 1 to 100 μM
(Dooley et al. 2000). We chose this concentration because it
was a saturating inhibitory concentration in previous experi-
ments addressing the effects of both drugs on 3H-NA release
in rat brain slices (Dooley et al. 2000). The results of these in
vitro experiments provide further information on the
pharmacological effects of α2δ ligands in the target species,
potentially relevant to their clinical profile.

Materials and methods

Tissue source

Fresh human neocortical tissue was obtained during
surgical removal of deep-seated brain tumors or epileptic
foci. The tissue, derived from 19 patients of either sex (age
range 11–73 years), was removed in a gentle, atraumatic
manner and immediately placed in ice-cold saline to ensure
viability. Each patient was informed of the experimental
protocol and signed a declaration of consent in accordance
with the Declaration of Helsinki, as requested by the local
ethics committee. After premedication with midazolam,
patients were anesthetized with propofol plus fentanyl.
Cisatracurium was given for muscle relaxation. Patients
received cefuroxim as intraoperative one-time antibiotic
prophylaxis. Tissue macroscopically infiltrated with tumor
was excluded, and only that tissue appearing unaffected by
the underlying disease process was used in subsequent in
vitro experiments. The human neocortical tissue included
frontal, parietal, temporal, and occipital areas. The white
matter was separated (and discarded) from the gray matter,
containing all six neocortical layers (i.e., I–VI).

Superfusion model of neurotransmitter release

Tissue slices (350 μm) were prepared using a McIllwain
Tissue Chopper (Bachofer; Reutlingen, Germany) and
immersed in ice-cold buffer. The buffer used for tissue
preparation, incubation and superfusion contained was (in
mM) NaCl 121, KCl 1.8, CaCl2 1.3, KH2PO4 1.2, MgSO4

1.2, NaHCO3 25, glucose 10, and ascorbic acid 0.06.
Before use, the buffer was saturated with 95% O2/5% CO2

and the pH adjusted to 7.4.
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The neocortical slices were incubated at 37°C in buffer
gassed with 95%O2/5% CO2 and containing 0.1 μM

3H-NA,
3H-choline (as precursor to neuronally releasable 3H-ACh),
or 3H-DA for 45 min or 3H-HT for 60 min. For 3H-DA, the
5-HT uptake inhibitor fluvoxamine (1 μM) and the NA
uptake inhibitor (+)-oxaprotiline (1 μM) were present during
incubation (and during superfusion; see below) to prevent
false labeling of noradrenergic and serotonergic terminals
(Löffler et al. 2006).

After incubation, the slices were washed, transferred into
superfusion chambers, and superfused with prewarmed
buffer at a rate of 0.4 ml/min. The buffer routinely
contained uptake inhibitors and autoreceptor blockers
corresponding to the neurotransmitter under investigation.
These substances prevent neuronal uptake of released
neurotransmitters and autoinhibition, respectively: 3H-NA,
(+)-oxaprotiline (1 μM) and idazoxan (1 μM); 3H-ACh,
hemicholinium-3 (10 μM) and atropine (1 μM); 3H-DA,
nomifensine (1 μM) and sulpiride (10 μM) (in addition to
fluvoxamine (1 μM) and (+)-oxaprotiline (1 μM)); and 3H-
5-HT, fluvoxamine (1 μM) and methiotepin (1 μM).
Collection of 5-min fractional samples began after 60 min
of superfusion. The slices were stimulated twice (S1, S2) by
elevating the K+ concentration from 3 mM to 15, 25, or
30 mM and maintaining osmolarity by reducing buffer Na+

accordingly. The S1 was applied after 75 min of superfusion
for 2 min and followed by S2 after 115 min of superfusion
for 2 min. GBP and PGB (100 μM) were present in the
superfusion buffer 20 min before S2. In the case of
experiments addressing the effect of PGB on 3H-5-HT
release, lower concentrations were also tested (10 and
1 μM). In other experiments, addressing an interaction of
GBP and PGB (100 μM) with putative endogenous α2δ
ligands, D- and L-isoleucine (D-/L-ILe; 100 μM) were
present throughout superfusion to determine if these amino
acids share a common site of action with GBP and PGB.
Additional experiments evaluated L-ILe and D-ILe
(100 μM) per se for direct effects on 3H-NA release by
addition to the buffer 20 min before S2. Solvent-treated
slices were routinely run in parallel to drug-treated slices.
At the end of experiments, slices were solubilized with
0.5 ml Soluene (Packard Instruments; Frankfurt, Germany),
and radioactivity of fractional samples and slices were
determined by scintillation spectrometry.

Calculations and statistics

The K+-evoked tritium overflow, expressed as the fractional
rate of the total radioactivity in the slice, was calculated as
the difference between total tritium outflow (from the start
of stimulation and the following 20 min onwards) and basal
tritium outflow (during this 20-min period). Basal 3H-efflux
was defined as 3H-outflow as percentage of the total

radioactivity in the slice during the 5-min period before
the second stimulation. The evoked tritium overflow was
assumed to represent the release of the 3H-neurotransmitter
under investigation. The effects of GBP and PGB on 3H-
DA, 3H-NA, 3H-5-HT, and 3H-ACh release were evaluated
by calculating the S2/S1 ratio of the evoked tritium
overflow during the first and second stimulations and
normalizing to control values. The effects of L-ILe and D-
ILe on 3H-NA release were assessed in a similar manner.

Results are given as arithmetic means with 95%
confidence intervals (CI95) to indicate statistical probability.
The number of experiments, n, is indicated in brackets in
the figures or given in the text. Significant differences
between two means were tested using the Student’s t test
after analysis of variance. The minimal level of significance
was p<0.05 (two-tail criterion).

Materials

Substances from commercial sources included idazoxan
hydrochloride, hemicholinium-3, atropine sulfate, sulpiride,
nomifensine maleate, fluvoxamine maleate, D-isoleucine, L-
isoleucine (Sigma, Taufkirchen, Germany), methiothepin
maleate, and tetrodotoxin (TTX; Tocris, Cologne, Ger-
many). GBP and PGB were kindly donated by Pfizer (Ann
Arbor, MI, USA); (+)-oxaprotiline hydrochloride was a gift
from Novartis (Basel, Switzerland). Tritiated neurotrans-
mitters were purchased from Perkin Elmer (Boston, MA,
USA). 3H-choline was purchased from Amersham (Buck-
inghamshire, UK).

Results

GBP and PGB (100 μM) did not change the basal 3H-efflux
in all the experiments on 3H-ACh, 3H-DA, 3H-5-HT, and
3H-NA release (data not shown).

K+-evoked 3H-ACh release

The mean S1 value of 25 mM K+ as stimulus was 1.08%
(CI95=[0.77, 1.38]). Basal 3H-efflux was 0.18% (CI95=
[0.15, 0.21]). GBP (100 μM) decreased K+-evoked 3H-ACh
release by 22% (CI95=[12, 32]), while that of PGB
(100 μM) was by 22% (CI95=[6, 38]). The mean S2/S1
ratios of GBP- and PGB-treated slices were significantly
different from control-treated slices (Fig. 1).

The mean S1 value using 30 mM K+ was 1.88% (CI95=
[1.32, 2.44]). Basal 3H-efflux was 0.17% (CI95=0.15,
0.20]). GBP and PGB (100 μM) reduced 3H-ACh release
by 24% (CI95=[8, 39]) and 18% (CI95=[−29, 47]),
respectively. This reduction was significant for GBP but
not for PGB (Fig. 1).
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K+-evoked 3H-DA release

GBP and PGB (100 μM) did not alter K+ (25 mM)-evoked
3H-DA release compared to control-treated slices. As the
mean S1 value was relatively high using 25 mM K+

(10.21%, CI95=[8.66, 11.92]), the stimulus was decreased
to 15 mM K+. The mean S1 value for this latter condition
was 2.81% (CI95=[2.17, 3.44]), and, again, GBP and PGB
(100 μM) did not alter 3H-DA release (Fig. 2). Basal 3H-
efflux was 0.32% (CI95=[0.30, 0.33]) in the experiments
with 15 mM K+ and 0.33% (CI95=[0.32, 0.34]) in the
experiments with 25 mM K+.

K+-evoked 3H-5-HT release

The mean S1 value of K+ (25 mM)-evoked 3H-5-HT release
was 2.24% (CI95=[2.02, 2.45]). Basal

3H-efflux was 0.40%
(CI95=[0.37, 0.43]). GBP (100 μM) significantly decreased
3H-5-HT release by 36% (CI95=[23, 48]), and PGB
(100 μM) caused a more pronounced inhibition of 56%
(CI95=[46, 66]) (Fig. 3). Also, lower PGB concentrations
still inhibited the evoked 3H-5-HT release: At 10 μM, release
was reduced by 34% (CI95=[24, 43], n=8; p<0.0001) and at
1 μM by 16% (CI95=[−4, 36], n=10; p<0.05).

The inhibition of 3H-5-HT release by 100 μM PGB was
also tested in the presence of TTX (0.32 μM) throughout
superfusion: The inhibition of 53% (CI95=[39; 66], n=9)
was similar to that in the absence of TTX (see discussion).
By itself, TTX reduced the mean S1 value by about 31%,
just at the level of the p=0.05 significance (data not shown).

K+-evoked 3H-NA release

The mean S1 value of K+ (15 mM)-evoked 3H-NA release
was 6.95% (CI95=[5.76, 8.15]). Basal

3H-efflux was 0.41%
(CI95=[0.38, 0.44]). GBP and PGB (100 μM) decreased
3H-NA release by 24% (CI95=[20, 32]) and 19% (CI95=[3,
26]), respectively. In contrast, neither L-ILe nor D-ILe
(100 μM) affected 3H-NA release. When L-ILe (100 μM)
was present throughout superfusion, however, the inhibito-
ry effects of GBP and PGB (100 μM) were abolished. The
presence of the stereoisomer D-ILe (100 μM) throughout
superfusion did not attenuate the GBP- and PGB-mediated
reductions of 3H-NA release (i.e., 21% (CI95=[17, 41]) and
17% (CI95=[6, 27]), respectively; Fig. 4).

Fig. 1 Effects of GBP (100 μM) and PGB (100 μM) on K+ (25 mM
or 30 mM)-evoked 3H-ACh release from human neocortical slices.
Both drugs were present in the buffer 20 min before S2. Values in
brackets represent the number of observations. The S2/S1 ratios are
given as mean values normalized to control values ±CI95. A
significant difference from the respective control value is indicated
by asterisks (single asterisks, p<0.05; double asterisks, p<0.01)

Fig. 2 Effects of GBP (100 μM) and PGB (100 μM) on K+ (15 mM
or 25 mM)-evoked 3H-DA release from human neocortical slices.
Both drugs were present in the buffer 20 min before S2. Values in
brackets represent the number of observations. The S2/S1 ratios are
given as mean values normalized to controls ±CI95. There were no
significant differences from the respective control value (i.e., p>0.05)

Fig. 3 Effects of GBP (100 μM) and PGB (100 μM) on K+ (25 mM)-
evoked 3H-5-HT release from human neocortical slices. Both drugs
were present in the buffer 20 min before S2. Values in brackets
represent the number of observations. The S2/S1 ratios are given as
mean values normalized to control values ±CI95. A significant
difference from the control value is indicated by asterisks (double
asterisks, p<0.01; triple asterisks, p<0.001)
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Discussion

An increase of buffer K+ leads to the depolarization of
neurons, followed by exocytosis of vesicles preloaded with
3H-neurotransmitters. The uptake of 3H-neurotransmitters
occurs by transporters generally corresponding to the
transmitters under investigation. Previous studies have
demonstrated that an elevated K+ concentration evokes a
Ca2+-dependent, quasiphysiological release of 3H-DA, 3H-
NA, 3H-5-HT, and 3H-ACh in mammalian brain slices
(Taube et al. 1977; Verbeuren et al. 1984; Johnson et al.
1993). In our experiments, we used autoreceptor antago-
nists and uptake inhibitors throughout the experiments to
bias the system to be free of both uptake and negative
feedback and to enhance the magnitude of release to a
given K+ stimulus; thus, we tried to meet the concern that
the magnitude of release of a particular transmitter in some
brain regions may be relatively small. To be consistent with
our procedures across transmitters and brain regions,
autoreceptor antagonists and uptake inhibitors were applied
in all experimental approaches.

Except for some experiments on 3H-5-HT release to
evaluate a concentration dependence of the inhibition by
PGB, we decided to use GBP and PGB at the quite high
concentration of 100 μM, because 100 μM has been shown
to be a saturating inhibitory concentration in previous
experiments addressing the effects of both drugs on 3H-NA
release in rat brain slices (Dooley et al. 2000). Because it is
known that the clinically effective plasma concentration of
GBP in epilepsy can be up to 100 μM, this rather high
concentration is still clinically relevant, especially because
GBP (and PGB) readily crosses the blood–brain barrier and
concentrates in brain tissue via the system-L active
transport process (see, for instance, Luer et al. 1999).

Although the VSCC α2δ subunit is generally thought to
be the primary target of GBP and PGB action, there
remains a poor understanding of the mechanistic aspects by
which these drugs modulate synaptic transmission, espe-
cially considering the different inhibitory effects across
various neurotransmitter systems. Both drugs caused
modest yet significant decreases of 3H-ACh, 3H-NA, and
3H-5-HT release evoked by various K+ concentrations.
These drugs did not, however, alter K+-evoked 3H-DA
release. It has been shown before by our group that a
modulation of K+ (30 mM)-evoked 3H-DA release in
human neocortical slices is possible, e.g., by the D2

receptor agonist (−)-quinpirole (Löffler et al. 2006). So,
most probably, we did not overlook an effect of GBP and
PGB (100 μM) in our experimental setup, which was
similar to the conditions of our own above-mentioned
study. In the case of 3H-NA, the reduction of release was
antagonized by L-ILe, an α-amino acid that binds with high
affinity to the VSCC α2δ subunit. This antagomism was not

Fig. 4 Comparative effects of GBP (100 μM), PGB (100 μM), D-ILe
(100 μM), and L-ILe (100 μM) on K+ (15 mM)-evoked 3H-NA
release from human neocortical slices. The slices in these experiments
were exposed to a normal conditions (drugs present in the buffer
20 min before S2, b L-ILe (100 μM) present throughout superfusion,
and c D-ILe (100 μM) present throughout superfusion. Values in
brackets represent the number of observations. The S2/S1 ratios are
given as mean values normalized to control ±CI95. A significant
difference from the respective control value is indicated by asterisks
(single asterisks, p<0.05; double asterisks, p<0.01; triple asterisks, p
<0.001)
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observed with the stereoisomer D-ILe, confirming the
highly stereoselective nature of the binding site demon-
strated previously in radioligand binding assays (Thurlow
et al. 1996a, b; Dooley et al. 2002). These findings provide
indirect support for the hypothesis that GBP and PGB
reduce presynaptic Ca2+ influx by binding to the VSCC
α2δ subunit, consequently resulting in decreased neuro-
transmitter release. A presynaptic location of α2δ subunits
is supported by our finding of an unchanged amount of
inhibition by PGB of 3H-5-HT release in the presence of
TTX, which functionally isolates the nerve endings from
action potentials. The inhibition via α2δ subunits is
consistent with previous investigations into the molecular
actions of GBP and PGB, namely, an arginine-to-alanine
mutation of the α2δ-1 protein (transgenic R217A mice)
dramatically reduced in vitro 3H-PGB binding to this
protein in several CNS regions, as measured audiographi-
cally (Bian et al. 2006). These data provide strong evidence
that the α2δ-1 subunit of VSCC is the major binding
protein for PGB (and GBP). At the in vivo level, this view
is corroborated by the attenuated analgesic efficacy of PGB
in R217A mice (Field et al. 2006).

As GBP and PGB bind only to the α2δ-1 and -2
subtypes of the three homologous proteins found in the
CNS (α2δ-1, -2, and -3), one could speculate that varying
ratios of these three subtypes exist on presynaptic terminals
of different neurotransmitter systems. This hypothesis may
underlie the current observation that GBP and PGB lack
effect on 3H-DA release.

In situ hybridization studies have shown that the three
α2δ subtypes exhibit differential patterns of expression in
rat brain; α2δ-1 and -2 mRNA patterns are largely
complementary, whereas α2δ-3 mRNA is expressed in
regions that also expressed α2δ-1 or -2 mRNA (Cole et al.
2005). Although GBP and PGB also bind to the α2δ-2
subtype, their affinity for α2δ-1 is higher (Cole et al. 2005).
If the density of α2δ-1-containing VSCC in dopaminergic
neurons (presynaptic terminals) of human neocortex is low
relative to that of α2δ-2 and α2δ-3, then this could
conceivably explain the inactivity of GBP and PGB on
3H-DA release. Our findings could be further clarified by
assessing the densities of α2δ-subtypes on presynaptic
terminals of different neurotransmitter systems using
immunohistochemical methods for colocalizing transmitter
and α2δ subtype(s). Such colocalization experiments would
determine the existence of distinct ratios of α2δ-subtypes in
different neurotransmitter systems, potentially substantiat-
ing our functional results.

The effects of GBP and PGB could also reflect the
activity state of VSCC. GBP modulated Ca2+ currents in a
concentration- and voltage-dependent manner, but its effect
was dependent on the culture conditions of F-11 cells and
cultured dorsal ganglion neurons (Martin et al. 2002).

GBP failed to modulate P/Q-type VSCC-mediated
glutamatergic neurotransmission in the rat hippocampus
(Brown and Randall 2005), yet depressed glutamatergic
transmission in the mouse spinal cord (Bayer et al. 2004).
Brown and Randall concluded that GBP is not a general
inhibitor of presynaptic P/Q-type VSCC and that the
hippocampal and spinal cord VSCC may have different
features that affect sensitivity to GBP (and other α2δ
ligands).

Our results show, in accordance with the study of Brown
and Randall (2005), that the α2δ ligand drug class cannot
simply be categorized as general inhibitors of VSCC and
neurotransmitter release. The α2δ ligands, like GBP and
PGB, differ in their effects across distinct neurotransmitter
systems. The reason for these differences remains elusive,
but they may correlate with subunit composition or activity
state of presynaptic VSCC. These differences may also
explain why, in earlier studies, the electrically evoked 3H-
DA release from rabbit caudate nucleus slices was reduced
(Reimann 1983) but 3H-ACh release from these slices was
not (Schlicker et al. 1985), in contrast to the effects seen
with these neurotransmitters in human neocortex slices
(present paper).

This is the first study that investigated the effects of PGB
on superfused brain slices of humans. The results of a
marked inhibition by this drug of 3H-5-HT release seems
clinically interesting: An increase in serotonergic transmis-
sion in the CNS induces anxiety (see, for instance,
Feuerstein 2008). Hence, the therapeutic effect of PGB as
a highly effective anxiolytic drug (Bandelow et al. 2007)
may be explained, at least in part, by reduction of 5-HT
release in cortical areas.
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