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Abstract An opportunity to perform targeted genetic
manipulations in mice has provided another dimension for
modern pharmacological research. Genetically modified
mice have become important tools to investigate functions
of previously unexplored proteins, define mechanism of
action of new and known pharmacological drugs, and
validate novel targets for treatment of human disorders.
One of the best examples of such use of genetic models in
experimental pharmacology represents investigations in-
volving mice deficient in the gene encoding the dopamine
transporter (DAT). The dopamine transporter tightly regu-
lates the extracellular dynamics of dopamine by recapturing
released neurotransmitter into the presynaptic terminals,
and genetic deletion of this protein results in profound
alterations in both the presynaptic homeostasis and the
extracellular dynamics of dopamine. By using this model of
severe dopaminergic dysregulation, significant progress has
been made in defining the major target of psychotropic
drugs, understanding the mechanisms of their action,
unraveling novel signaling events relevant for dopaminer-
gic transmission, and mapping neuronal pathways involved
in dopamine-related behaviors. Furthermore, DAT mutant
mice provided an opportunity to model in vivo conditions
of extreme dopaminergic dysfunction that could be relevant
for human disorders such as ADHD, schizophrenia, and
Parkinson’s disease and, thus, could serve as test systems
for developing novel treatments for these and related
disorders.
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Introduction

The basal ganglia form a forebrain system that is involved
in various aspects of motor activity, emotions, reward, and
affect. Disorders related to basal ganglia dysfunction
comprise a spectrum of abnormalities that range from the
movement disorders such as Parkinson’s disease (PD) and
Huntington’s disease to major mental disorders including
schizophrenia, bipolar disorder, attention deficit hyper-
activity disorder (ADHD), and Tourette syndrome. Major
monoaminergic neurotransmitter in the basal ganglia, dopa-
mine (DA), exerts an important modulatory influence over
the fast neurotransmission mediated by glutamate and
GABAergic neurons and may play a critical pathophysio-
logical role in these disorders (Hornykiewicz 1998; Carlsson
et al. 2001).

Efficacy of dopaminergic transmission is controlled not
only by processes governing DA release but also by regu-
lation of extracellular DA concentrations via rapid reuptake
by the plasma membrane dopamine transporter (DAT)
(Kuhar et al. 1990; Amara and Sonders 1998; Torres et al.
2003). DAT is a member of family of the Na+/Cl−-
dependent transporters that also includes transporters for
serotonin (SERT), norepinephrine (NET), GABA, glycine,
creatine, betaine, taurine, and proline (Giros and Caron
1993; Amara and Sonders 1998; Torres et al. 2003). DAT
protein contains 12 transmembrane domains with both
amino- and carboxy-termini located in the cytoplasm. DAT-
mediated transport of DA involves sequential binding and
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cotransport of two Na+ ions and one Cl− ion with one
molecule of DA (Amara and Sonders 1998; Torres et al.
2003; Chen et al. 2004). DAT is expressed exclusively in
the dopaminergic cell bodies and terminals and can serve as
a selective marker of these neurons (Ciliax et al. 1995;
Hoffman et al. 1998). In the brain, DAT has highest
expression in the striatum and nucleus accumbens followed
by the olfactory tubercle, hypothalamic nuclei, and pre-
frontal cortex (Ciliax et al. 1995; Hoffman et al. 1998). In
the periphery, DAT is expressed in the retina, gastrointes-
tinal tract, lung, kidney, pancreas, and lymphocytes
(Amenta et al. 2001; Gordon and Barnes 2003; Sotnikova
et al. 2006a). Ultrastructural analysis has revealed that DAT
is mostly localized perisynaptically rather than in the
synaptic compartments (Nirenberg et al. 1997; Sesack et al.
1998), supporting earlier estimations that reuptake of
dopamine occurs at a distance from release sites (Garris
and Wightman 1994).

It is believed that DAT-mediated removal of DA from the
extracellular space provides the most important regulatory
control of the extracellular lifetime of the monoamine. Due
to this major role of the DAT, compounds interacting
with the DAT are proven to be very powerful tools to
affect dopamine-related functions. Among them, the best
known are psychostimulants amphetamine and cocaine,
that potently elevate extracellular DA concentrations and,
thereby, induce psychomotor and rewarding effects (Kuhar
et al. 1990; Wise 1994). DAT is also a well-recognized tar-
get and gateway for dopaminergic neurotoxins, such as 1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and
6-hydroxydopamine that can induce death of midbrain
dopaminergic neurons (Langston et al. 1984; Uhl 1998;
Miller et al. 1999).

Development of mice with abnormal DAT function
provided a novel test system to unravel mechanisms of
action of psychotropic drugs (Giros et al. 1996; Gainetdinov
and Caron 2003). In particular, these mutants have proven
to be extremely valuable in experimental protocols aimed at
understanding the specificity and the mechanism of a
psychostimulant drug action (Gainetdinov et al. 2002). In
addition, effects of pharmacological compounds potentially
active in counteracting consequences of dopaminergic
dysfunction can be directly investigated in these mice.
Finally, these mice provided an opportunity to model
major endophenotypes of human disorders, such as
ADHD, where responses to pharmacological treatments
can be investigated experimentally. In this review, the
recent advances in understanding mechanisms of action
of pharmacological agents by using DAT mutant mice
are summarized. While most of these studies employed
DAT knockout (DAT-KO) and heterozygous mice (Giros
et al. 1996), investigations involving mice with severely
reduced DAT levels (DAT knockdown, DAT-KD; Zhuang

et al. 2001) and mice with the moderately increased DAT
levels (DAT overexpressing mice; Donovan et al. 1999)
were also very informative.

Neurochemical and behavioral characteristics
of DAT-KO mice

DAT-KO mice display remarkable alterations in both the
intraneuronal and extracellular DA dynamics (Giros et al.
1996; Gainetdinov and Caron 2003). These alterations,
highlighting a critical role of the DAT in proper mainte-
nance of extracellular DA and its presynaptic homeostasis,
have been described in detail in several review articles
(Gainetdinov and Caron 2003; Torres et al. 2003) and will
be covered just briefly in this essay. Disrupted clearance of
released DA in these mice resulted in about a 300-fold
increase in the lifetime of DA in the extracellular space, as
evidenced by cyclic voltammetry measurements, and at
least fivefold elevation in the basal extracellular DA levels,
as detected by in vivo microdialysis (Gainetdinov et al.
1998; Jones et al. 1998a; Shen et al. 2004). Even more
strikingly, a profound depletion of intraneuronal dopa-
mine stores (20-fold) and decreased amplitude of evoked
dopamine release (4-fold) was found in DAT-KO mice
(Gainetdinov et al. 1998; Jones et al. 1998a). Without
dopamine-uptake-mediated recycling, dopamine levels in
the striatum of these mice are totally dependent on the rate
of its ongoing synthesis. Inhibition of the rate-limiting
enzyme in DA synthesis, tyrosine hydroxylase (TH),
essentially eliminates dopamine in the striatum of mutant
mice (Jones et al. 1998a; Sotnikova et al. 2005). Thus, DA
levels in DAT- KO mice represent primarily a newly
synthesized pool (Gainetdinov et al. 1998; Jones et al.
1998a; Benoit-Marand et al. 2000; Sotnikova et al. 2005).
These observations strongly suggest that in normal
situation, major DA storage pools in presynaptic striatal
terminals must be controlled by the DAT-mediated DA
recycling (Jones et al. 1998a; Gainetdinov and Caron
2003).

DA receptors undergo significant regulation in response
to persistently increased dopaminergic tone. A loss of
autoreceptor function was found in DAT-KO mice as
evidenced by a marked desensitization of the major
autoreceptor functions: regulation of neuronal firing rate
and DA release and synthesis (Jones et al. 1999). At the
same time, D1 and D2 DA receptors are down-regulated by
approximately 50% in the striatum of DAT-KO mice (Giros
et al. 1996), but paradoxically, some populations of
postsynaptic DA receptors appear to be supersensitive
(Gainetdinov et al. 1999a; Fauchey et al. 2000; Seeman
et al. 2007). Importantly also, the level of the scaffolding
protein postsynaptic density-95 (PSD-95) is significantly
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reduced in the striatum and nucleus accumbens of DAT-KO
mice. In addition, an enhanced long-term potentiation
(LTP) of the cortico-accumbal (Yao et al. 2004) and
hippocampal (Morice et al. 2007) glutamatergic synapses
and markedly reduced long-term depression (LTD) in the
hippocampus (Morice et al. 2007) were found in these
mutants, indicating a role of DA in modulating synaptic
plasticity in these brain areas. Intriguingly also, levels
of brain-derived neurotrophic factor (BDNF) gene
expression are reduced in the frontal cortex of intact
DAT-KO mice (Fumagalli et al. 2003). Many of these
neurochemical abnormalities have a clear gene-dose
effect, and mice heterozygous for DAT deletion show inter-
mediate alterations with, for example, extracellular DA
levels elevated twofold (Jones et al. 1998a, 1999). Further-
more, in mice expressing only about 10% of DAT (DAT
knockdown, DAT-KD) mice (Zhuang et al. 2001), these
changes were generally more pronounced in comparison
to DAT heterozygous mice, but nevertheless markedly
less than that observed in DAT-KO mice (Jones et al.
1998a).

Apart from its function in the regulation of efficacy of
DA transmission, DAT is also critical for the neurotoxic
reactions induced by large doses of amphetamine deriva-
tives and dopaminergic neurotoxins (Langston et al. 1984;
Uhl 1998; Miller et al. 1999; Sotnikova et al. 2006a). Toxic
lesions of dopaminergic neurons by using MPTP is a well-
established approach in the modeling PD in experimental
animals (Snyder and D’Amato 1986; Kopin 1992; Tipton
and Singer 1993). MPTP-induced death of dopaminergic
neurons is mediated by its reactive metabolite 1-methyl-4-
phenylpyridium (MPP+) that is transported into dopaminer-
gic terminals via the DAT (Heikkila et al. 1984). As
expected, a lack of MPTP neurotoxicity was found in DAT-
KO mice (Gainetdinov et al. 1997; Bezard et al. 1999).
Significantly reduced dopaminergic neurodegeneration and
lethality was observed in these mutant also after neurotoxic
regimen of methamphetamine administration, indicating
that DAT is essential for the neurotoxic actions of
amphetamine-related compounds (Fumagalli et al. 1998;
Numachi et al. 2007). Thus, DAT is clearly important for
the degeneration of presynaptic DA neurons primarily by
allowing the entry of toxic compounds into the DA
terminals. At the same time, the persistently elevated
extracellular DA levels can exert deleterious effect on the
DA-responsive postsynaptic medium spiny GABA neurons
(Cyr et al. 2003; Fernagut et al. 2003). It has been observed
that up to 30% of DAT-KO mice sporadically develop
progressive neurodegenerative phenotype characterized by
a reduction of their typical hyperactivity and the appearance
of dyskinetic movements that eventually leads to death of
affected animals (Cyr et al. 2003). In symptomatic DAT-KO
mice, loss of approximately 30% of GABAergic medium

spiny neurons, accompanied by an accumulation of hyper-
phosphorylated microtubule-associated protein tau, was
observed (Cyr et al. 2003). Furthermore, up-regulation of
cyclin-dependent kinase 5 (CDK5) and ΔFosB accumula-
tion was found in the striatal neurons of affected mice, thus,
suggesting a role of sustained DA receptor signaling
mechanism in the development of this phenotype (Cyr
et al. 2003; Sotnikova et al. 2006a). Notably, a similar type
of damage to postsynaptic GABAergic neurons was
recently described after administration of amphetamine-
related compounds to normal animals (Krasnova et al.
2005). In addition, DAT-KO mice were found to be
hypersensitive to 3-nitropropionic acid-induced injury to
striatal GABA neurons (Fernagut et al. 2002). Loss of
medium spiny GABAergic neurons is a hallmark of
Huntington disease, known to be resulting from an
expansion in the CAG repeat of the IT15 (huntingtin) gene.
To investigate if excessive DA stimulation can increase
vulnerability to this mutation, a double mutant mouse strain
was developed by crossing DAT-KO mice to a knock-in
mouse model of HD containing 92 CAG repeats. In these
double mutant mice, a significant age-dependent motor
abnormalities and increased huntingtin protein aggregates
were found, suggesting that the excessive DA contributes to
the deleterious effects of mutated huntingtin on striatal
function and may be an important factor in the pathogenesis
of Huntington disease (Cyr et al. 2006).

In response to permanently enhanced DA tone, DAT-KO
mice display a very characteristic behavioral phenotype.
Most notably, DAT-KO mice show perseverative locomotor
hyperactivity and stereotypy in a novel environment, have
growth deficit and multiple behavioral abnormalities related
to cognitive inflexibility. Particularly, deficits were detected
in eight-arm maze and Morris water maze learning and
memory tests, pre-pulse inhibition sensorimotor gating test
and measures of behavioral lateralization. Furthermore,
sleep dysregulation and specific alterations in social
interaction related to behavioral inflexibility have been also
reported (Giros et al. 1996; Bosse et al. 1997; Sora et al.
1998; Gainetdinov et al. 1999b; Spielewoy et al. 2000b;
Ralph et al. 2001; Wisor et al. 2001; Gainetdinov and
Caron 2003; Morice et al. 2005, 2007; Rodriguiz et al.
2004; Pogorelov et al. 2005). In tests assessing the
rewarding values of tastants or food, DAT-KO mice
develop a more positive bias towards a hedonically positive
tastant (Costa et al. 2007) and enhanced resistance to ex-
tinction from food-reinforced operant behavior (Hironaka
et al. 2004), thus, reflecting the role of dopamine in up-
dating rewarding values and habit learning and memory.
In the periphery, lack of DAT resulted in skeletal abnor-
malities (Bliziotes et al. 2000), alterations in gut motility
(Walker et al. 2000) and respiratory control (Vincent et al.
2007).

Naunyn-Schmiedeberg’s Arch Pharmacol (2008) 377:301–313 303



DAT-KO mice as a tool to define targets
and mechanisms of action of psychotropic drugs

Modulation of DA levels via an interaction or blockade of
DAT has proven to be a very effective approach to affect
critical functions mediated by DA in a variety of patholog-
ical conditions (Kuhar et al. 1990). Many psychostimulants
(such as cocaine and amphetamine) and several antidepres-
sants (such as bupropion) exert their actions, at least in part,
via interference with DAT function. Availability of mice
with altered DAT function provided in vivo test model to
define the major target and/or unmask the secondary targets
of psychostimulants and other drugs (Table 1).

In the striatum of DAT-KO mice, psychostimulants
cocaine, methylphenidate, amphetamine, and methamphet-
amine did not affect DA clearance or extracellular levels
(Fumagalli et al. 1998; Jones et al. 1998a, b; Gainetdinov
et al. 1999b) clearly indicating the critical role of DAT in
the effects of psychostimulants on dopamine dynamics in
this brain area. While cocaine and methylphenidate are
classical DA reuptake blockers, amphetamine derivatives
have a more complex mechanism of action, involving
interaction not only with the DAT but also with the
vesicular storage (Sulzer et al. 1995). Amphetamine can
enter the DA neuron both through the DAT and transmem-
brane diffusion (Seiden et al. 1993). Inside the nerve
terminal amphetamine penetrates the vesicles, at least
partially, via the vesicular monoamine transporter 2
(VMAT2) and as “a weak base” disrupts the pH gradient
in vesicles (Sulzer et al. 1995). It is believed that this
process causes the redistribution of DA from vesicles into
the cytoplasm that, in turn, triggers efflux of DA from the
cytoplasm into the extracellular space via outward DAT-
mediated transport. It should be noted also that amphetamine
derivatives can directly inhibit monoamine oxidase (MAO),
thus, potentially affecting intraneuronal metabolism of DA
(Seiden et al. 1993). Accordingly, in mice lacking the DAT,
no effect of amphetamine on the extracellular DA dynamics
in the striatum was found, but intraneuronal actions of
amphetamine were still observed (Jones et al. 1998b).

Importantly, while DAT seems to be critical for effects of
cocaine and amphetamine on DA levels in the striatum,
both cocaine and amphetamine were still able to elevate
extracellular DA in the nucleus accumbens of DAT-KO
mice (Carboni et al. 2001; Budygin et al. 2004; Sotnikova
et al. 2006a). These observations could provide an
explanation for the fact that DAT-KO mice are able to
self-administer cocaine (Rocha et al. 1998) and display
conditioned place preference (CPP) for cocaine (Sora et al.
1998; Hall et al. 2002; Mateo et al. 2004; Medvedev et al.
2005) and amphetamine (Budygin et al. 2004). These
results indicate that the DAT is not the sole mediator of
rewarding properties of psychostimulants, and other targets

of these drugs should be also considered. There is some
evidence that these unexpected effects could be related to
the effects of psychostimulants on the NET that may
contribute to the clearance of extracellular DA in the
nucleus accumbens and frontal cortex (Carboni et al. 2001;
Moron et al. 2002). At the same time, several lines of
evidence suggest a more important role of indirect mod-
ulation of dopaminergic neurons via 5-HT system at the
level of cell bodies (Budygin et al. 2002, 2004; Mateo
et al. 2004). This hypothesis received a strong support
from studies employing double mutant mice lacking both
the DAT and the SERT that were found to have dis-
rupted preference for cocaine in CPP test (Sora et al.
2001), thus, directly demonstrating that the interaction
with the SERT is sufficient to induce cocaine reward in
hyperdopaminergic mice (Hall et al. 2002; Mateo et al.
2004).

Persistent hyperdopaminergia and related behavioral
manifestations in DAT-KO mice have provided a valuable
model to test effects of drugs that could be effective in
disorders that may involve dopaminergic hyperfunction
(Carlsson and Carlsson 1990; Gainetdinov et al. 2001b;
Arguello and Gogos 2006; Swanson et al. 2007). Pro-
nounced locomotor hyperactivity in a novel environment of
DAT-KO mice provides a very sensitive and simple test
system in which the actions of pharmacological agents in
regulating DA-related function can be easily assessed
(Gainetdinov et al. 1999b, 2001b Spielewoy et al. 2000b).
Hyperactivity of DAT-KO mice is very sensitive to
manipulations with DA transmission such as inhibition of
DA synthesis or blockade of DA receptors with haloperi-
dol, clozapine, raclopride, and SCH23390 (Gainetdinov
et al. 1999b; Ralph et al. 2001). However, this dopamine-
dependent hyperactivity can be also effectively modulated
via other neurotransmitter systems. For example, amphet-
amine, methylphenidate, cocaine, 3,4-methylenedioxyme-
thamphetamine (MDMA) (Gainetdinov et al. 1999b;
Spielewoy et al. 2001; Morice et al. 2004a; Powell et al.
2004) and an “endogenous amphetamine” trace amine β-
phenylethylamine (Sotnikova et al. 2004) demonstrate
potent stimulatory effects in normal animals, but paradox-
ically inhibit hyperactivity in DAT-KO mice. An inhibition
of hyperactivity by amphetamine was found also in DAT-
KD mice (Zhuang et al. 2001) and, at certain doses,
observed in Dat heterozygous mice (Spielewoy et al.
2001). Similarly, reduced locomotor responses and attenu-
ated sensitization to methamphetamine was observed in
heterozygous DAT mutant mice (Fukushima et al. 2007).
We hypothesized that the well-known SERT-mediated
effects of psychostimulants on serotonin neurotransmission
could be involved in their inhibitory action on DA-
dependent hyperactivity (Gainetdinov et al. 1999b). In fact,
various serotonergic drugs, such as the SERT inhibitor
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Table 1 Major pharmacological compounds investigated in DAT-KO mice

Compounds tested Effects found

Cocaine Had no effect on clearance and extracellular DA in the striatum
(Giros et al. 1996; Jones et al. 1998a; Rocha et al. 1998)

Lack of effect on DA clearance (Budygin et al. 2002) and uptake
(Moron et al. 2002), but elevated extracellular DA in the nucleus accumbens
(Carboni et al. 2001; Sotnikova et al. 2006a)

Induced self-administration (Rocha et al. 1998) and reward in CPP test
(Sora et al. 1998; Hall et al. 2002; Mateo et al. 2004; Medvedev et al. 2005)
Induced inhibition of locomotion (Gainetdinov et al. 1999b;
Morice et al. 2004)

Amphetamine Lack of effect on clearance and extracellular levels of DA in the striatum
(Giros et al. 1996; Jones et al. 1998a; Gainetdinov et al. 1999b) but induced
elevation of extracellular DA in the nucleus accumbens (Carboni et al. 2001;
Budygin et al. 2004)

Induced rewarding effects in CPP test (Budygin et al. 2004)
Induced inhibition of locomotion (Gainetdinov et al. 1999b;
Spielewoy et al. 2001; Beaulieu et al. 2006)

Methamphetamine Lack of effect on extracellular DA in the striatum (Fumagalli et al. 1998)
Reduced dopaminergic neurotoxicity and lethality (Fumagalli et al. 1998;
Numachi et al. 2007)

Methylphenidate Had no effect on extracellular levels of DA in the striatum
(Gainetdinov et al. 1999b)

Induced reward in CPP test (Sora et al. 1998)
Induced inhibition of locomotion (Gainetdinov et al. 1999b)

MDMA Inhibition of hyperactivity (Powell et al. 2004)
GBR12909 Lack of effect on extracellular DA in the nucleus accumbens

(Carboni et al. 2001)
MPTP Lack of dopaminergic neurotoxicity (Gainetdinov et al. 1997;

Bezard et al. 1999)
Modafinil Disrupted wake-promoting action (Wisor et al. 2001)
Fluoxetine Induced inhibition of locomotion (Gainetdinov et al. 1999b;

Spielewoy et al. 2001; Beaulieu et al. 2006)
Induced rewarding effects in CPP test (Hall et al. 2004)
Reversed deficit in PPI test (Yamashita et al. 2006)

Citalopram No effect in PPI test (Yamashita et al. 2006)
Nisoxetine Induced inhibition of DA uptake in the frontal cortex and nucleus

accumbens (Moron et al. 2002)
Had no effect on hyperactivity (Gainetdinov et al. 1999b)
Induced rewarding effect in CPP test (Hall et al. 2004)
Reversed deficits in PPI test (Yamashita et al. 2006)

Reboxetine Induced increase in DA levels in the nucleus accumbens
(Carboni et al. 2001)

Haloperidol Inhibited locomotion (Gainetdinov et al. 1999b; Spielewoy et al. 2000b)
Clozapine Inhibited locomotion (Spielewoy et al. 2000b)
Raclopride Corrected PPI deficits, inhibited locomotion (Ralph et al. 2001)
SCH23390 Normalized perseverative pattern of locomotion, inhibited locomotion,

but had no effect on PPI deficits (Ralph et al. 2001)
α methyl-p-tyrosine Induced elimination of striatal DA (Jones et al. 1998a; Sotnikova et al. 2005)

Induced rigidity and akinesia (Sotnikova et al. 2005)
5-HT precursors l-tryptophan
and 5-hydroxytryptophan

Inhibited locomotor hyperactivity (Gainetdinov et al. 1999b)

5-HT agonists quipazine and 5-CT Inhibited locomotor hyperactivity (Gainetdinov et al. 1999b;
Beaulieu et al. 2006)

5-HT2A antagonist M100907 Inhibited locomotor hyperactivity, and reversed perseverative pattern of
locomotion and PPI deficits (Barr et al. 2004)

(+)-MK-801 Markedly enhanced hyperactivity without effect on striatal DA release
(Gainetdinov et al. 2001b)
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fluoxetine, nonselective 5-HT agonists quipazine and
5-carboxamidotryptamine (5-CT), and 5-HT precursors
tryptophan and 5-hydroxytryptophan were found to be
effective in inhibiting hyperactivity of DAT-KO mice
(Gainetdinov et al. 1999b; Beaulieu et al. 2006). It should
be noted here that the concept of reciprocal roles of 5-HT
and DA in psychostimulant-induced behavioral activation
has been known for more than 30 years (Breese et al.
1975). Role of serotonergic tone in the hyperactivity
phenotype of DAT-KO mice was indicated also by the
differences in the level of hyperactivity and responses to
cocaine in DAT-KO mice on C57BL/6J and DBA/2J inbred
backgrounds (Morice et al. 2004) that are known to be
significantly different in brain 5-HT synthesis due to a
functional single nucleotide polymorphism of the neuronal
5-HT synthesis enzyme tryptophan hydroxylase 2 (TPH2)
(Zhang et al. 2004).

While the inhibitory role of serotonin on dopamine-
dependent hyperactivity strongly supported by several lines
of evidence, it is still unclear which of the 14 known
serotonin receptor subtypes could mediate this effect. Both
“stimulatory” and “inhibitory” roles of 5-HT receptors as
regard to behavioral activation have been described (Martin
et al. 1998; Gainetdinov et al. 1999b; Rocha et al. 2002;
Barr et al. 2004). The primary candidates for the “stimu-
latory” action are 5-HT1B and 5-HT2A receptors, while
5-HT1A and 5HT2C receptors are likely “inhibitory”
receptors (Martin et al. 1998). One intriguing hypothesis
suggests that that a balance between the action of 5-HT on
these “stimulatory” and “inhibitory” serotonin receptors
may be important for the behavioral activation (Martin et al.
1998), and thus, DA-related hyperactivity could be
inhibited either by agonists of “inhibitory” receptors or
antagonists of “stimulatory” 5-HT receptors. In fact, hyper-
activity and other aberrant behaviors of DAT-KO mice
can be potently suppressed either by direct and indirect
5-HT agonists (Gainetdinov et al. 1999b; Spielewoy et al.
2001; Morice et al. 2004; Powell et al. 2004; Beaulieu

et al. 2006) or by an antagonist of “stimulatory” 5-HT2A
receptors (Barr et al. 2004). To add to the complexity of the
situation, a potential contribution of NE system in these
effects cannot be excluded also.

Inhibitory effect of psychostimulants and serotonergic
drugs in DAT-KO mice does not involve a direct modula-
tion of dopaminergic activity, but rather depends on intact
fronto-striatal glutamatergic transmission (Martin et al.
1998; Mohn et al. 1999; Gainetdinov et al. 2001a). Both
DAT-KO and heterozygous mice are more sensitive to the
locomotor-stimulating effect of the NMDA antagonist (+)-
MK-801 with the dose–response curves shifted leftward in
magnitude that is proportional to the differences in the basal
levels of extracellular DA (fivefold in DAT-KO mice;
twofold in DAT heterozygous mice) (Gainetdinov et al.
2001a). Furthermore, compounds that can enhance efficacy
of glutamatergic transmission either via positive modulation
of AMPA glutamate receptors, such as AMPAkines
(Gainetdinov et al. 2001a) or via increase in glycine
concentration, such as glycine transporter type 1 (Glyt1)
inhibitors (unpublished observations), effectively suppress
hyperactivity in DAT-KO mice. Finally, (+)-MK-801
pretreatment abolished inhibitory action of psychostimu-
lants and serotonergic drugs in DAT-KO mice (Gainetdinov
et al. 2001a). Thus, in DAT-KO mice, dopamine-related
striatal responses are dependent on the intensity of fronto-
striatal glutamatergic signaling, which, in turn, can be
potently regulated by changes in 5-HT tone. The fact that
facilitation of glutamatergic transmission can effectively
counteract hyperdopaminergia-related behaviors indicates
that drugs enhancing glutamate transmission may have
therapeutic potential in disorders believed to be related to
DA hyperfunction, such as schizophrenia and ADHD
(Carlsson and Carlsson 1990; Johnson et al. 1999; Carlsson
et al. 2001; Gainetdinov et al. 2001a; Arguello and Gogos
2006; Swanson et al. 2007).

It has been reported that stimulation of the “inhibitory”
5-HT2C receptors in the frontal cortex can suppress

Table 1 (continued)

Compounds tested Effects found

Ampakines Induced inhibition of hyperactivity without effect on striatal DA release
(Gainetdinov et al. 2001b)

Morphine Enhanced DA release in the nucleus accumbens and reward in CPP test,
but disrupted hyperlocomotor responses (Spielewoy et al. 2000a)

Endocannabinoids Inhibited locomotor hyperactivity (Tzavara et al. 2006)
Nicotine Inhibited locomotor hyperactivity, improved spatial learning

(Weiss et al. 2007a)
Ethanol Sex-dependent differences in preference and consumption

(Savelieva et al. 2002; Hall et al. 2003)
Antimanic drugs lithium and valproate Inhibited locomotor hyperactivity (Beaulieu et al. 2004)
GSK3 inhibitors Inhibited locomotor hyperactivity (Beaulieu et al. 2004)
ERK inhibitor SL327 Inhibited locomotor hyperactivity (Beaulieu et al. 2006)

306 Naunyn-Schmiedeberg’s Arch Pharmacol (2008) 377:301–313



DA-related hyperactivity (Rocha et al. 2002; Filip and
Cunningham 2003), suggesting that the psychostimulant-
induced elevation of extracellular 5-HT in the frontal
cortex may be primarily responsible for the inhibitory
effect of psychostimulants in DAT-KO mice. In fact,
methylphenidate, amphetamine, and cocaine are known to
affect frontal cortex neurons in DAT-KO mice as
evidenced by an increase in c-fos expression and changes
in 5-HT levels (Rocha et al. 1998; Gainetdinov et al.
2001a; Trinh et al. 2003).

Recently, we performed investigation of cellular signal-
ing mechanisms that could be involved in the paradoxical
inhibitory effects of psychostimulants in hyperactive mice
(Beaulieu et al. 2006). Three major striatal signaling
pathways, including protein kinase A (PKA)-mediated,
Akt/glycogen synthase kinase 3 (GSK-3)-mediated, and
ERK-mediated, that are known to be involved in the regu-
lation of locomotor activity by dopamine, were investigated
in DAT-KO mice after treatment with psychostimulants and
various 5-HT agonists. These studies revealed that inhibi-
tion of ERK signaling is a common determinant for the
ability of all drugs tested to antagonize hyperactivity. In
contrast, in normal animals, psychostimulants increased
phosphorylation of ERK. Direct inhibition of the ERK
signaling cascade in vivo using the MEK inhibitor SL327
potently suppressed activity level in DAT-KO mice and
blocked the locomotor-enhancing effect of amphetamine in
normal mice. Thus, it has been concluded that the inhib-
itory action of psychostimulants on dopamine-dependent
hyperactivity may involve serotonin-mediated regulation of
striatal ERK signaling (Beaulieu et al. 2006).

Polymorphism in the DAT gene is one of the most
commonly replicated findings in genetic ADHD research
(Cook et al. 1995; Swanson et al. 2007). Psychostimulants,
such as methylphenidate and amphetamine isomers remain
the most effective class of drugs to manage hyperactivity,
impulsivity, and inattention symptoms of ADHD. As dis-
cussed above, DAT-KO mice have pronounced hyperac-
tivity and significant behavioral deficits related to cognitive
inflexibility. Importantly, both the analysis of the pattern of
locomotor activity and cognitive tests indicated that mutant
animals display perseverative pattern of activation and
cognitive errors, suggesting that these mice may have
impaired behavioral inhibition (Gainetdinov et al. 1999b;
Barr et al. 2004). Furthermore, extreme hyperactivity in
DAT-KO mice can be inhibited by psychostimulants that
are used in the treatment of ADHD (Gainetdinov et al.
1999b), and this effect is mediated, at least in part, via the
enhancement of 5-HT tone. It is well established that 5-HT
plays a critical role in impulse regulation and inhibitory
control on external stimuli-induced behavioral activation
(Lucki 1998; Winstanley et al. 2005), and thus, it might be
expected that modulation of 5-HT system could affect

multiple other behavioral abnormalities in DAT-KO mice.
At the same time, it is clear that certain behavioral deficits
in these mutants may be more sensitive to modulation of
NE transmission. For example, it has been shown that the
NET inhibitor nisoxetine, but not the SERT inhibitor
citalopram, is effective in reversing the PPI deficits re-
lated to deficient sensorimotor gating in DAT-KO mice
(Yamashita et al. 2006). Overall, the DAT-KO mice dis-
play several endophenotypes of ADHD, including hy-
peractivity, cognitive deficits, and paradoxical inhibitory
responses to psychostimulants (Gainetdinov et al. 1999b;
Gainetdinov and Caron 2000, 2001). Thus, DAT-KO mice
can be used as an animal model that could be instrumental
to understand the mechanism of action of psychostimulants
in ADHD (Russell 2007; van der Kooij and Glennon 2007).

At the same time, DAT-KO mice could provide an
opportunity to investigate effects of drugs on hyper-
dopaminergia-related endophenotypes of other disorders.
Dopaminergic theory of schizophrenia suggests that
elevated dopaminergic tone is the major cause of positive
symptoms of schizophrenia (Carlsson and Carlsson 1990;
Martin et al. 1998; Gainetdinov et al. 2001b; Arguello and
Gogos 2006). Manic states of bipolar disorder also may be
related to dopaminergic hyperfunction (Ralph-Williams
et al. 2003). In fact, amphetamines and dopamine
precursor L-DOPA are known to provoke psychotic
reactions, while essentially all clinically effective antipsy-
chotic drugs share ability to block dopamine D2 receptors
at least partially (Martin et al. 1998). Thus, DAT-KO mice
may be particularly useful to investigate dopamine-related
effects of antipsychotic and antimanic drugs (Gainetdinov
et al. 2001b; Ralph-Williams et al. 2003). One such
investigation resulted in an identification of a novel
signaling pathway critical for dopamine actions. In a pilot
study, it has been observed that antimanic drugs lithium and
valproate are effective in suppressing hyperactivity in DAT-
KO mice (Beaulieu et al. 2004). Similarly, valproate
attenuated hyperactive and perseverative behaviors in
DAT-KD mice (Ralph-Williams et al. 2003). Combina-
tion of behavioral and biochemical approaches in geneti-
cally altered mice revealed that in addition to classical
PKA-mediated signaling pathway, DA receptors can also
engage lithium-sensitive signaling cascade involving Akt
and glycogen synthase kinase 3 (GSK3). Akt and GSK3
are serine/threonine kinases are best known for their roles
in the regulation of glycogenesis, cell survival, and de-
velopment (Frame and Cohen 2001; Scheid and Woodgett
2001). Analysis of Akt and GSK3 activity in the striatum
of DAT-KO mice revealed a marked inactivation of Akt
and a concomitant activation of GSK3. In normal mice,
similar changes in the activity of Akt and GSK3 were
induced by amphetamine (Beaulieu et al. 2004). These
changes in Akt and GSK3 activity were antagonized by D2
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class receptor blockade (Beaulieu et al. 2004) and were
absent in mice lacking D2 dopamine receptors (Beaulieu
et al. 2007b), thus, directly validating the role of D2-class
receptors in the regulation of the Akt/GSK3 signaling
pathway. Inhibition of this pathway either genetically or
pharmacologically resulted in significant attenuation of
dopamine-related behaviors, and for example, several
GSK3 inhibitors, in addition to lithium, were active in
suppression of DA-related hyperactivity in DAT-KO mice
(Beaulieu et al. 2004) and in amphetamine-treated normal
animals (Gould et al. 2004). Further investigation of this
phenomenon revealed that this novel signaling mode
involves recruitment of multifunctional scaffolding protein
β-arrestin 2 to activated dopamine D2 receptor that forms
a signaling complex consisting of β-arrestin 2, AKT, and

protein phosphatase 2A (Beaulieu et al. 2005). Critical role
of β-arrestin 2 in this novel GPCR signaling mode
(Beaulieu et al. 2007a) has been validated by the obser-
vation that double knockout mice lacking both the DAT and
β-arrestin 2 display reduced level of locomotor activity and
lack of regulation of AKT/GSK3 pathway by hyper-
dopaminergic tone (Beaulieu et al. 2005). Taken together,
these studies not only uncovered a novel mode of dopa-
mine receptor signaling, but also provided a Biochemical
explanation on how antimanic drugs can exert their effects
in psychotic manifestations that can also be treated with
dopaminergic antagonists (Beaulieu et al. 2007a).

In addition to hyperactivity, several other behavioral
manifestations of DAT-KO mice were used as testing
paradigms for pharmacological compounds. Thus, PPI
deficit in DAT-KO mice can be corrected by the treatment
with the D2 DA receptor antagonist raclopride, but not D1
antagonist SCH23390 (Ralph et al. 2001). Interestingly, the
perseverative patterns of locomotion of DAT-KO mice was
attenuated by D1, but not D2 DA receptor antagonist
(Ralph et al. 2001). 5-HT2A receptor antagonist M100907
exerted potent effect on both the PPI deficit and the
perseverative pattern of locomotion in DAT-KO mice (Barr
et al. 2004). Investigation of morphine effects in DAT-KO
mice revealed that morphine is able to further elevate the
extracellular DA levels and induce an enhanced reward in
CPP test without additional increase in locomotor activity.
Furthermore, naloxone-induced withdrawal manifestations
were blunted in DAT mutants, but morphine analgesia was
not altered (Spielewoy et al. 2000a). Significant sex-
dependent changes in ethanol preference and consumption
in DAT-KO mice were also noted (Savelieva et al. 2002;
Hall et al. 2003) that likely reflect altered hedonic
mechanisms in these mutants rather than direct role of
DAT in effects of alcohol (Mathews et al. 2006). One
important observation suggests that cannabinoid drugs,
such as selective anandamide reuptake inhibitors AM404
and VDM11 and the fatty acid amidohydrolase inhibitor

AA5HT, can normalize behavioral deficits of DAT-KO
mice. Intriguingly, these effects were attenuated by the
transient receptor potential vanilloid 1 (TRPV1) antagonist
capsazepine but not by the selective cannabinoid type 1
(CB1) receptor antagonist AM251 (Tzavara et al. 2006).
Significant functional alterations in the status of nicotinic
neurotransmission was found in DAT-KO mice, and
nicotine was effective in normalizing behavioral ab-
normalities in DAT-KO mice, such as hyperactivity and
cognitive deficits without tolerance and anxiogenic effects
(Weiss et al. 2007a, b). These studies strongly suggest that
both cannabinoids and nicotinic drugs may have therapeutic
potential in conditions associated with hyperdopaminergia,
such as ADHD and schizophrenia.

Finally, DAT-KO mice were instrumental in the devel-
opment of a novel acute mouse model of Parkinson’s
disease (dopamine-deficient DAT-KO mice, DDD mice)
(Sotnikova et al. 2005). Absence of DAT-mediated recy-
cling in these mice creates a situation when intraneuronal
DA storage pools are depleted and the remaining DA
concentrations become entirely dependent on its de novo
synthesis. Thus, acute treatment of DAT-KO mice with the
irreversible tyrosine hydroxylase inhibitor α-methyl-para-
tyrosine induces transient (up to 16 h) elimination of DA
(Sotnikova et al. 2005). DDD mice display a striking
behavioral phenotype manifested as severe akinesia and
rigidity that is totally reversible by the nonselective DA
agonists and L-DOPA. Thus, DDD mice represent a simple
acute model of severe DA deficiency that could be used to
identify compounds with potential therapeutic use for the
treatment of PD. This model is particularly promising as a
tool for identification of compounds that may affect
movement control independently of DA (Sotnikova et al.
2005, 2006b). More than 80 compounds were tested, to
date, in this model, and it has been observed that several
amphetamine derivatives at high doses can reverse behav-
ioral manifestations of DDD mice. The most effective
compound was MDMA that at high doses was able to
induce forward locomotion in DDD mice, and at lower
doses, markedly enhance the effects of subthreshold doses
of L-DOPA (Sotnikova et al. 2005). As the lack of DAT and
DA in DDD mice precludes effects of amphetamines on
DA transmission, targets other than dopamine should be
involved. Activation of a newly identified target of amphet-
amines, trace amine receptor 1 (Borowsky et al. 2001;
Bunzow et al. 2001; Wolinsky et al. 2006), represent an
attractive potential mechanism for the observed effects, and
this hypothesis is currently being investigated in detail by
using mice lacking the trace amine receptor 1 (Wolinsky
et al. 2006).

The opportunity to perform extreme manipulations with
the efficacy of dopaminergic transmission in vivo in the
same animal (from fivefold increase in intact DAT-KO mice
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to essentially complete elimination in about 15 min after
treatment with α-methyl-para-tyrosine that, in turn, can be
reversed by L-DOPA treatment) provided effective para-
digm to investigate multiple dopamine-related processes in
live animal. Thus, DAT-KO and DDD mice were used to
validate the role of AKT/GSK3 signaling cascade in the
actions of dopamine (Beaulieu et al. 2004). Transition from
extreme hyperdopaminergia to severe dopamine deficiency
was instrumental to uncover the role of dopamine in the
regulation of sleep–wake states that may have relevance for
psychotic conditions and sleep disturbances experienced by
PD patients (Dzirasa et al. 2006). By using this inducible
and reversible pharmacogenetic approach, an investigation
of the simultaneous activity of neuronal ensembles in the
dorsolateral striatum and primary motor cortex during hyper-
dopaminergia and severe hypodopaminergia in the same
animal was also performed (Costa et al. 2006). These
experiments indicated that dysfunctional activity coordina-
tion in corticostriatal circuits, rather than changes in the
overall levels of cortical and striatal activity, is critical for the
dopamine-related motor dysfunctions.

Other DAT mutant mice available

DAT knock-down (DAT-KD) mice that have about 90%
reduction in DAT levels display similar, but less severe,
phenotype in comparison to DAT-KO mice (Zhuang et al.
2001). These mutants have about twofold increased extra-
cellular DA levels and show a relatively mild spontaneous
hyperactivity in a novel environment. DAT-KD mice
display enhanced motivation, but not learning, to rewarding
stimuli (Pecina et al. 2003; Cagniard et al. 2006), impaired
response habituation and paradoxical hypolocomotor re-
sponse to amphetamine (Zhuang et al. 2001), but not
cocaine (Tilley et al. 2007). Importantly, DAT-KD mice
have altered regulation of corticostriatal glutamatergic
neurotransmission (Wu et al. 2007) that could contribute to
the abnormal striatal information processing critical for
behavioral deficits in these mutants.

Another in vivo model of DAT dysfunction involved
generation of a knock-in mouse line carrying a partially
functional DAT that is insensitive to cocaine (Chen et al.
2006). Like in DAT-KO mice, acute cocaine induced
hypolocomotor effect in these mutants. At the same time,
it has been reported that cocaine was not inducing reward in
these mice as measured by CPP test (Chen et al. 2006). It
should be noted, however, that only a few doses of cocaine
were investigated, and a more careful investigation of the
effects of cocaine involving doses that induce robust CPP
in DAT-KO mice (Sora et al. 1998; Medvedev et al. 2005)
is necessary to support this conclusion. Furthermore, this
mutant form of DAT had also significant deficiency with

regard to reuptake of endogenous DA, thus, resulting in an
elevated basal DA tone and enhanced locomotor activity.
Thus, these mutants, like DAT-KO and DAT-KD mice,
must undergo significant homeostatic dysregulation and
developmental compensations in addition to “insensitivity”
to cocaine.

Recently, by using local injections of small interfering
RNA (siRNA) against DAT into the ventral tegmental/
substantia nigra of adult mice, an alternative approach to
induce DAT deficiency has been demonstrated (Salahpour
et al. 2007). siRNA-treated mice displayed about 40%
reduction of DAT in the striatum, but had little changes in
novelty-induced locomotor activity. At the same time,
responses of DAT siRNA-treated animals to amphetamine
were blunted, similarly to effects observed in DAT
heterozygote animals (Salahpour et al. 2007). These studies
validated effectiveness of siRNA approach to modulate
expression of proteins in adult brain in vivo that permits
development of animal models bearing partial deficiency in
the function of targeted proteins. In the case of such critical
proteins as monoamine transporters, a partial loss-of-
function is sufficient to cause significant functional alter-
ations and may have, in fact, more relevance to the genetics
of human disorders, which rarely have complete loss-of-
function mutations (Kalueff et al. 2007).

Mice that have modestly increased DAT expression
(approximately 30% up-regulation) have been also de-
veloped, and in contrast to DAT-deficient mice, DAT-
overexpressing mice show spontaneous hypoactivity in a
novel environment and increased sensitivity to MPTP
(Donovan et al. 1999). Recently, a transgenic mouse line
expressing the Cre recombinase under the control of the
regulatory elements of the DAT gene has been also gen-
erated (Turiault et al. 2007). These mice could be instru-
mental for future investigations of the functions of genes
specifically expressed in DA neurons and/or for labeling
dopaminergic cells in vivo by crossing these mice with
transgenic Cre lines having particular genetic manipulations
or producing fluorescent proteins.

Conclusions

Mice with genetically altered DAT function provided a
powerful approach to investigate in vivo effects of phar-
macological compounds in conditions of severe dopami-
nergic dysfunction. Numerous advances in understanding
the mechanism of action of psychotropic drugs that can
affect DA system either directly or indirectly at cellular
and/or system levels have been made over the last decade
by using this experimental model. One perspective appli-
cation of DAT mutant mice is to use them as a background
strain to introduce additional mutation of genes of interest
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to investigate role of these genes under conditions of severe
dopaminergic dysfunction. To date, DAT-KO mice were
crossed with SERT-KO (Sora et al. 2001), NET-KO (Hall
et al. 2004), VMAT2-KO (Fukushima et al. 2007), β-
arrestin 2-KO (Beaulieu et al. 2005) mice, and knock-in
mouse model of Huntington disease containing 92 CAG
repeats in huntingtin gene (Cyr et al. 2006). This approach
is particularly valuable for the investigation of function of
proteins that do not have currently pharmacological means
to affect their expression or activity.

In conclusion, these studies illustrate how mutant mice
could be used to address many important questions in
experimental neuropharmacology. DAT mutant mice pro-
vided unique opportunity to directly evaluate drug selec-
tivity and specificity, investigate mechanism of their action
in vivo, and assess drug efficacy in pathological models of
enhanced or decreased dopaminergic transmission that may
eventually bring novel treatments for several neurological
and psychiatric disorders.
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