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Abstract. We use a variational approach to prove that any nilpotent Lie
algebra having a codimension-one abelian ideal, and anyone of dimension
≤ 5, admits a rank-one solvable extension which can be endowed with an
Einstein left-invariant riemannian metric. A curve of 8-dimensional Einstein
solvmanifolds is also given.
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1 Introduction

A solvmanifold is a solvable Lie group S endowed with a left invariant rie-
mannian metric; S is called standard if a = n⊥ is abelian, where s is the Lie
algebra of S and n = [s, s]. Up to now, all known examples of noncompact
homogeneous Einstein spaces are standard Einstein solvmanifolds. These
spaces have been deeply investigated by Jens Heber in [H], who obtained
very nice structure and uniqueness results. If S is Einstein, then for some
distinguished element H ∈ a, the eigenvalues of adH|n are all positive
integers without common divisors, say k1 < · · · < kr. If d1, . . . , dr denote
the corresponding multiplicities, then the tuple

(k; d) = (k1 < · · · < kr; d1, . . . , dr)
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is called the eigenvalue type of S. In every dimension, only finitely many ei-
genvalue types occur. Let M be the moduli space of all the isometry classes
of N -dimensional Einstein solvmanifolds with scalar curvature equal to −1.
The subspace Mst of those which are standard is open in M (C∞-topology).
Each eigenvalue type (k; d) determines a compact subset M(k;d) of Mst,
homeomorphic to a real semialgebraic set.

Most of the known examples of Einstein solvmanifolds are of eigenvalue
type (1 < 2; d1, d2), where necessarily the nilradical n is two-step nilpotent
(see [GK] and the references therein). It is difficult to find in the literature
non-symmetric explicit examples, not only of other eigenvalue types, but
also with nilradical of step of nilpotency greater than 2. Besides certain
modifications of the non-compact symmetric spaces of rank ≥ 2 given in
[GK], we only found just a few of such explicit examples falling into the fol-
lowing two special classes: bounded homogeneous domains endowed with
the Bergman metric (or equivalently, non-compact homogeneous Kähler-
Einstein spaces), which can be modeled on solvable normal j-algebras (see
[PS]), and homogeneous quaternionic Kähler spaces, where the nilradical n
of the non-symmetric families is always 5-step or 7-step nilpotent (see [C]).

The aim of this paper is to approach the construction of new families of
explicit examples of Einstein solvmanifolds of several different eigenvalue
types, by using the variational method given in [L]: the (n+1)-dimensional
rank-one (dim a = 1) Einstein solvmanifolds are critical points of certain
polynomial of degree 4 restricted to the sphere of a vector space which
contains the set of all n-dimensional nilpotent Lie algebras as a real algebraic
subset.

We prove in Sect. 4 that any nilpotent Lie algebra having a codimension-
one abelian ideal admits a rank-one solvable extension which can be en-
dowed with an Einstein left-invariant metric. This family provides rather
exotic eigenvalue types, as well as examples of any step of nilpotency for
the nilradical of an Einstein solvmanifold. In Sect. 5, we show that also any
nilpotent Lie algebra of dimension≤ 5 is the nilradical of a rank-one Einstein
solvmanifold, and compute their eigenvalue types. Finally, we find in Sect. 6
a curve of pairwise non-isometric 8-dimensional Einstein solvmanifolds,
which is the lowest possible dimension for the existence of such a curve.
They are all of eigenvalue type (1 < 2 < 3 < 4 < 5 < 6 < 7; 1, . . . , 1),
and so 8 is the first dimension for which there is a space M(k;d) which is
different from a point.

2 Rank one Einstein solvmanifolds as critical points

In this section, we overview some results given in [L], which characterize
the rank-one Einstein solvmanifolds as the critical points of certain natural
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functional. We fix an inner product vector space

(s = RH ⊕ n, 〈·, ·〉), with 〈H, n〉 = 0, 〈H, H〉 = 1,

where n is a real vector space of dimension n. The metric Lie algebra of
any (n+1)-dimensional rank-one solvmanifold S, can be modeled on (s =
RH ⊕n, 〈·, ·〉) for some nilpotent Lie algebra µ on n and some D ∈ Der(µ).
Indeed, these data define a solvable Lie bracket [·, ·] on s by

(1) [H, X] = DX, [X, Y ] = µ(X, Y ), X, Y ∈ n,

and S is then the corresponding simply connected Lie group with Lie algebra
(s, [·, ·]) endowed with the left invariant riemannian metric determined by
〈·, ·〉. If D is symmetric, then S is Einstein if and only if

(2) cµI + tr(D)D = Ricµ,

where Ricµ is the Ricci operator of Nµ, the simply connected nilpotent Lie
group with Lie algebra (n, µ) endowed with the left invariant riemannian
metric determined by 〈·, ·〉|n×n, and cµ = tr Ric2

µ/ tr Ricµ (see [L, Lemma
2]). Let pµ = Der(n, µ) ∩ sym(n) be the vector space of symmetric deriva-
tions. Since

(3) Ricµ ⊥ pµ,

relative to the usual inner product trAB on sym(n) (see [L, (2)]), it follows
from (2) that if S is Einstein then necessarily

(4) cµI + tr(D)D ⊥ pµ.

But a remarkable fact is that there exists a unique Dµ ∈ pµ satisfying (4)
(think in the inner product space RI ⊕ pµ), thus we can associate to each
nilpotent Lie algebra µ on n a distinguished rank-one solvmanifold Sµ,
defined by the data µ, Dµ (see (1)), which is the only one with possibilities
of being Einstein among all those having nilradical µ.

Note that conversely, any (n + 1)-dimensional rank-one Einstein solv-
manifold is isometric to Sµ for some nilpotent µ. In fact, it follows from
[H, 4.10] that we can assume, without any loss of generality, that adH is
symmetric. Thus the set Nn of all nilpotent Lie brackets on n parametrizes
a space of (n + 1)-dimensional rank-one solvmanifolds

{Sµ : µ ∈ Nn},

containing all those which are Einstein. Nn is an algebraic subset of V =
Λ2n∗ ⊗ n, the vector space of all bilinear skew-symmetric maps from n × n
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to n, since the Jacobi and nilpotency conditions are both polynomial. There
is a natural action of GL(n) on V given by

ϕ.µ(X, Y ) = ϕµ(ϕ−1X, ϕ−1Y ), X, Y ∈ n, ϕ ∈ GL(n), µ ∈ V,

and thus isomorphic Lie algebra structures lie in the same GL(n)-orbit.
Note that Nn is GL(n)-invariant. It is easy to prove that two solvmanifolds
Sµ and Sλ with µ, λ ∈ Nn are isometric if and only if there exists ϕ ∈ O(n)
such that ϕ.µ = λ (see [L, Prop. 4]).

The Ricci operator Ricµ : n −→ n of Nµ is given by

(5)

〈Ricµ X, Y 〉 = −1
2

∑

ij

〈µ(X, Xi), Xj〉〈µ(Y, Xi), Xj〉

+1
4

∑

ij

〈µ(Xi, Xj), X〉〈µ(Xi, Xj), Y 〉,

for all X, Y ∈ n, where {X1, . . . , Xn} is any orthonormal basis of n. The
inner product 〈·, ·〉|n×n determines naturally an inner product on V , denoted
also by 〈·, ·〉 and given by

(6) 〈µ, λ〉 =
∑

ijk

〈µ(Xi, Xj), Xk〉〈λ(Xi, Xj), Xk〉.

Notice that for any µ ∈ Nn, the scalar curvature tr Ricµ of Nµ equals
−1

4 ||µ||2 (see (5)). Hence the natural algebraic normalization given by the
sphere of V ,

(7) S = {µ ∈ V : ||µ|| = 1},

coincides on Nn with the following kind of geometric normalization,

(8) S ∩ Nn =
{

µ ∈ Nn : sc(Nµ) = −1
4

}
.

We lose nothing by restricting ourselves to S ∩ Nn, since it is evident that
for any µ ∈ Nn, Sµ is Einstein if and only if Stµ is Einstein for any nonzero
t ∈ R. Consider the functional

Fn : V −→ R, Fn(µ) = tr Ric2
µ.

Recall that Ricµ can be formally defined as in (5) for every µ ∈ V .

Theorem 2.1. [L] For µ ∈ Nn∩S, the following statements are equivalent:

(i) Sµ is Einstein.
(ii) µ is a critical point of Fn : S −→ R.

(iii) µ is a critical point of Fn : GL(n).µ ∩ S −→ R.
(iv) Ricµ ∈ RI ⊕ Der(µ).
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Condition (iv) is rather computable, and so it will be very useful throughout
the paper to check if a certain candidate obtained by a variational approach
is actually Einstein.

If Sµ is Einstein then for some c > 0, the eigenvalues of c adH|n = cDµ

are all positive integers without common divisors, say k1 < · · · < kr with
multiplicities d1, . . . , dr. We say that Sµ and the critical point µ/||µ|| are of
eigenvalue type (k1 < · · · < kr; d1, . . . , dr) (see Sect. 1).

We note that given µ ∈ Nn, the existence of µ0 ∈ GL(n).µ satisfying
that Sµ0 is Einstein is equivalent to the existence of a left invariant metric
〈·, ·〉0 on Nµ such that there is a rank-one solvable extension S of Nµ for
which the metric 〈·, ·〉0 is Einstein.

3 Critical values and abelian factors

In order to understand better the critical point behavior of Fn, we calculate
in the following proposition their critical values.

Proposition 3.1. Let µ ∈ S be a critical point of Fn : S −→ R of eigenvalue
type (k1 < · · · < kr; d1, . . . , dr). Then,

Fn(µ) =
1
16

(
n − (k1d1 + · · · + krdr)2

k2
1d1 + · · · + k2

rdr

)−1

.

Proof. Assume that Ricµ = cµI +Dµ for some cµ ∈ R and Dµ ∈ Der(µ).
Using that tr Ricµ Dµ = 0 (see (3)) and tr Ricµ = −1

4 ||µ||2 = −1
4 we

obtain that

(9) Fn(µ) = tr Ric2
µ = −1

4
cµ =

1
4

trD2
µ

trDµ
=

1
4

trD2

c trD
,

where cDµ = D is the derivation of µ with eigenvalues ki, having multi-
plicities di. Multiplying equation Ricµ = cµI + Dµ by the identity map I
and D and then taking trace we also get that

−1
4

= cµn +
trD

c
, 0 = cµ trD +

trD2

c
.

We can easily deduce from these equations that c = 4
(
n tr D2

tr D − trD
)

, and

by replacing in (9) we obtain that

Fn(µ) =
1
16

(
n

trD2

trD
− trD

)−1 trD2

trD
=

1
16

(
n − (trD)2

trD2

)−1

,

concluding the proof. ��
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We obtain from the above proof the following

Corollary 3.2. Let µ ∈ Nn be a Lie bracket such that µ/||µ|| is a critical
point of F : S −→ R of eigenvalue type (k1 < · · · < kr; d1, . . . , dr). Then
the derivation Dµ which is used to define the Einstein solvmanifold Sµ by
setting adH|n = Dµ is given by

Dµ =
||µ||2

4

(
n

k2
1d1 + · · · + k2

rdr

k1d1 + · · · + krdr
− k1d1 + · · · + krdr

)−1

D,

where D is the derivation of µ with eigenvalues ki of multiplicities di and
||µ||2 is defined in (6).

We now describe what happens if we add to a critical point µ of Fn an
abelian factor.

Proposition 3.3. Let λ be the central extension of µ to ñ = n⊕R
m, that is,

λ|n×n = µ and λ(Rm, ñ) ≡ 0. Then Fn(µ) = Fn+m(λ) and λ is a critical
point of the functional Fn+m of eigenvalue type

(
αk1 < · · · <

k2
1d1 + · · · + k2

rdr

d
< · · · < αkr; d1, . . . , m, . . . , dr

)
,

where d= mcd(k1d1+· · ·+krdr, k
2
1d1+· · ·+k2

rdr) and α= k1d1+···+krdr
d .

In case that k2
1d1+···+k2

rdr

d = αki for some i, then the multiplicity is m + di.

Proof. It is easy to check that the corresponding Ricλ : R
n+m −→ R

n+m

is given by Ricλ |Rn = Ricµ, Ricλ |Rm ≡ 0. Thus Ricλ = cµI +Dλ, where
Dλ ∈ Der(λ) is defined by Dλ|n = Dµ, Dλ|Rm = −cµI . This implies that
the eigenvalues of cDλ are the ki’s along with

−cµ =
trD2

trD
=

k2
1d1 + · · · + k2

rdr

k1d1 + · · · + krdr
,

and so to get natural numbers with no common divisors, we have to multiply
by α, obtaining in this way the type described in the proposition. We now
use Proposition 3.1 to prove that Fn+m(λ) = Fn(µ) by the following direct
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computation:

Fn+m(λ) =

=
1
16

(
n+m− (αk1d1 + · · · + k2

1d1+···+k2
rdr

d m + · · · + αkrdr)2

α2k2
1d1 + · · · + (k2

1d1+···+k2
rdr

d )2m + · · · + α2k2
rdr

)−1

=
1
16



n + m − (αk1d1 + · · · + krdr + k2
1d1+···+k2

rdr

k1d1+···+krdr
m)2

k2
1d1 + · · · + k2

rdr + (k2
1d1+···+k2

rdr

k1d1+···+krdr
)2




−1

=
1
16

(
n+m− (k1d1 + · · · + krdr)2

k2
1d1 + · · · + k2

rdr

(
1 +

k2
1d1 + · · · + k2

rdr

(k1d1 + · · · + krdr)2
m

))−1

=
1
16

(
n + m − (k1d1 + · · · + krdr)2

k2
1d1 + · · · + k2

rdr
− m)

)−1

= Fn(µ).

It is easy to check that everything is the same if k2
1d1+···+k2

rdr

d = αki for
some i. ��

4 Nilradical with a codimension-one abelian ideal

In this section we shall consider solvmanifolds Sµ such that the Lie algebra µ
has a codimension-one abelian ideal. In this case we will be able to carry out
the calculations of critical points explicitely. Such a µ is determined by the
map adµ X for a single X ∈ n. We can fix a decomposition n = RX ⊕ m,
and assume, up to isomorphism, that m is the required abelian ideal for
any µ. It is easy to see that µ is isomorphic to λ if and only if adµ X
and adλ X are GL(m)-conjugate. Therefore the isomorphism classes of n-
dimensional nilpotent Lie algebras having a codimension-one abelian ideal
are in a one-to-one correspondence with the finitely many conjugacy classes
of (n − 1)-dimensional nilpotent matrices.

The objective of this section is to show, by using Theorem 2.1, that
each isomorphism class (or GL(n)-orbit) of a nilpotent Lie algebra having
a codimension-one abelian ideal contains an element µ for which Sµ is
Einstein. We first prove a technical lemma.

Lemma 4.1. The function f : R
k −→ R, k = n1 + · · · + nr, defined by

f({xij}) =
r∑

i=1

x2
i1 + (xi1 − xi2)2 + · · · + (xi(ni−1) − xini)

2 + x2
ini

has only one critical point restricted to the leaf
∑

ij

xij ≡ b, xij > 0,
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which is given by

xij = xi(ni+1−j) = c(jni − j(j − 1)), i = 1, . . . , r, j = 1, . . . , ni,

for some c > 0.

Proof. The Lagrange multiplier method says that if {xij} is a critical point of
f restricted to that leaf, then there exists d ∈ R such that for any i = 1, . . . , r

∂f

∂xij
= 4xij − 2xi(j−1) − 2xi(j+1) = d,

j = 1, . . . , ni, xi0 = xi(ni+1) := 0.

Thus each subset {xij}j=0,...,ni+1 satisfies the following recurrence formula

xi(j+1) = 2xij − xi(j−1) − d

2
,

for which xij = d
4(jni − j(j − 1)) is the unique solution. ��

Theorem 4.2. Let µ∈Nn be an n-dimensional nilpotent Lie algebra which
has a codimension-one abelian ideal m, and assume that n = RX ⊕ m. Let
{Xij : 1 ≤ i ≤ r, 1 ≤ j ≤ ni + 1} denote a Jordan basis for adµ X|m,
that is, n1 ≥ · · · ≥ nr, (n1 + 1) + · · · + (nr + 1) = n − 1, and

µ(X, Xij) = Xi(j+1), Xi(ni+2) := 0.

Then GL(n).µ∩S contains a critical point µ0/||µ0|| of Fn : S −→ R given
by

µ0(X, Xij) = (jni − j(j − 1))Xi(j+1).

Proof. For any choice of positive numbers {aij}, consider the Lie algebras
µ = µ({aij}), for which adµ X|m in terms of the basis {Xij} is given by

adµ X|m = J =




Jn1

. . .
Jnr



 , Jni =





0

ai1
. . .
. . . . . .

aini 0





with n1 ≥ · · · ≥ nr, (n1 + 1) + · · · + (nr + 1) = n − 1. Recall that the
Lie algebra µ in the theorem correspond to put all the aij equal to 1, and
the µ({aij}) are all isomorphic to each other. We are looking for a critical
point of Fn|GL(n).µ∩S. Our plan will be to find first a critical point of Fn

restricted to the subset given by {µ({aij}) : aij > 0}∩S, and then consider
condition (iv) in Theorem 2.1.
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We now denote the basis {Xij} by {X1, . . . , Xn−1}, just for notational
convenience. If we assume that X ⊥ m and ||X|| = 1, then it follows from
(5) that

〈Ricµ X, X〉 = −1
2

∑

ij

〈µ(X, Xi), Xj〉2 = −1
2

∑

ij

〈JXi, Xj〉2

= −1
2

trJJ∗.

On the other hand, it is easy to see that 〈Ricµ X, Xi〉 = 0 for all i =
1, . . . , n − 1, and for Z, Y ∈ m we have that

〈Ricµ Z, Y 〉 = −1
2

∑

i

〈µ(Z, X), Xi〉〈µ(Y, X), Xi〉

+1
2

∑

i

〈µ(X, Xi), Z〉〈µ(X, Xi), Y 〉
= −1

2〈µ(Z, X), µ(Y, X)〉 + 1
2〈(adµ X)∗Z, (adµ X)∗Y 〉

= −1
2〈JX, JY 〉 + 1

2〈J∗Z, J∗Y 〉
= 1

2〈(JJ∗ − J∗J)Z, Y 〉.
We therefore obtain that

(10) Ricµ =





−1
2 trJJ∗ 0 · · · 0

0
... 1

2 [J, J∗]
0



 ,

thus Fn(µ) = 1
4(trJJ∗)2+ 1

4 tr [J, J∗]2 and ||µ||2 =−4 tr Ricµ =2 trJJ∗.
By a straightforward calculation we obtain for each i = 1, . . . , r that,

JniJ
∗
ni

=





0 0 · · · 0
0 a2

i1
...

. . .
0 a2

ini



 ,

and

(11) [Jni , J
∗
ni

] =





−a2
i1

a2
i1 − a2

i2
. . .

a2
i(ni−1) − a2

ini

a2
ini




.
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This implies that
1 = ||µ||2 = 2

∑

ij

a2
ij

and so

(12)
Fn(µ) =

1
16

+
1
4

∑

i

(a2
i1)

2 + (a2
i1 − a2

i2)
2 + . . .

+(a2
i(ni−1) − a2

ini
)2 + (a2

ini
)2.

By Lemma 4.1, we know that there is a critical point {b2
ij} of Fn(µ) =

f({a2
ij}) restricted to the leaf

∑
a2

ij = 1
2 , and it is given by

(13) b2
ij = c(jni − j(j − 1)), i = 1, . . . , r, j = 1, . . . , ni,

for a suitable c > 0. We now consider the corresponding µ0 = µ({bij}),
and we will show that such a µ0 satisfies Ricµ0 ∈ RI ⊕ Der(µ0). It follows
from (13) that for any i, j,

(14) b2
ij − b2

i(j+1) = c(2j − ni),

and then by (10) and (11) we get that

(15) (Ricµ0 +(c +
1
4
)I)X = cX

and Ricµ0 +(c + 1
4)I|m is the direct sum of r blocks of the form

(16) c





( c+ 1
4

c − ni
2 )

( c+ 1
4

c − ni
2 ) + 1

. . .

( c+ 1
4

c − ni
2 ) + ni




.

Using that µ0(X, RXij) ⊂ RXi(j+1) for all i, j, it is evident that Ricµ0 +
(c + 1

4)I is a derivation of µ0, and thus µ0/||µ0|| is a critical point of
Fn : S −→ R (see Theorem 2.1). ��

It follows from Theorem 2.1 that for each µ0 obtained in Theorem 4.2,
the solvmanifold Sµ0 is Einstein. We then obtain that, by taking different
decompositions n − 1 = (n1 + 1) + · · · + (nr + 1), any step of nilpotency
is possible for the nilradical of an Einstein solvmanifold since µ0 is (n1 +
1)-step nilpotent. The spaces Sµ are modeled on completely solvable Lie
groups, therefore if µ is not isomorphic to λ, then Sµ and Sλ can never be
isometric (see [A] or [H, 2.7]). Thus in each dimension n+1, we have found
as many explicit examples of Einstein solvmanifolds as (n − 1) × (n − 1)
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nilpotent Lie matrices up to conjugation (see the first paragraph of this
section), or equivalently, as many as the number P (n−1) of decompositions
n−1 = (n1 +1)+ · · ·+(nr +1) with integers n1 ≥ · · · ≥ nr. The number
P (k) of decompositions of k into integer summands without regard to order
is asymptotic to

e
π
√

2
3

√
k

4k
√

3
,

and one can find in [Gp] the value of P (k) for every k ≤ 500. For instance,
this family provides 11 8-dimensional Einstein solvmanifolds and 385 of
dimension 20.

In what follows, we will calculate the eigenvalue type of the Einstein
solvmanifolds Sµ0 obtained in Theorem 4.2. The derivation Dµ0 is described
in (15) and (16), thus we should first analyze in which cases we have that
1 + 1

4c − nj

2 ∈ N for every j = 1, . . . , r. The number c can be calculated
from the proof of Theorem 4.2 by using that

∑

ij

b2
ij = trJJ∗ =

1
2
||µ0||2 =

1
2
,

obtaining that

c =
3

n1(n1 + 1)(n1 + 2) + · · · + nr(nr + 1)(nr + 2)
.

Thus the question is whether

(17) 1 +
1
4c

− nj

2
= 1 +

∑
i ni(ni + 1)(ni + 2)

12
− nj

2
∈ N,

for every j = 1, . . . , r. It is easy to see that (17) holds only in the following
two cases:

(i) ni is even for every i = 1, . . . , r.
(ii) ni is odd for every i = 1, . . . , r and �{i : ni ≡ 1 mod (4)} is odd.

It follows from (15) and (16) that in both cases the eigenvalues are {1, θ −
ni
2 , θ − ni

2 + 1, . . . , θ + ni
2 : i = 1, . . . , r}, where

θ = 1 +
1
4c

.

Thus the eigenvalues are actually {1, θ − n1
2 , θ − n1

2 + 1, . . . , θ + n1
2 } and

the corresponding multiplicities can be easily computed. We obtain that the
eigenvalue type of Sµ0 is

(i)
(
1 < θ − n1

2 < · · · < θ − 1 < θ < θ + 1 < · · · < θ + n1
2 ;

1, d1, . . . , dn1
2

, dn1+1
2

, dn1
2

, . . . , d1
)
,
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(ii)
(
1 < θ − n1

2 < · · · < θ − 1
2 < θ + 1

2 < · · · < θ + n1
2 ;

1, d1, . . . , dn1+1
2

, dn1+1
2

, . . . , d1
)
,

where dk = �{i : n1 ≤ ni + 2(k − 1)}.
Otherwise, if

(iii) θ − nj

2 /∈ N for some j ∈ {1, . . . , r},

then the eigenvalues are {2, 2θ − ne, 2θ − ne + 2, . . . , 2θ − 2, 2θ, θ +
2, . . . , 2θ+ne−2, 2θ+ne, 2θ−no, 2θ−no+2, . . . , 2θ−1, 2θ+1, . . . , 2θ+
no − 2, 2θ + no}, where ne and no are the greatest even and odd numbers
among the n′

is respectively. The corresponding multiplicities are easy to
obtain, but somewhat difficult to write.

In particular, for r = 1 we have that the eigenvalue type of Sµ0 is given
by





(1 < θ − n1
2 < · · · < θ < · · · < θ + n1

2 ; 1, 1, . . . , 1) n1 even;

(1 < θ − n1
2 < · · · < θ − 1

2 < θ + 1
2 < · · · < θ + n1

2 ; 1, 1, . . . , 1)
n1 ≡ 1 (4);

(2 < 2θ − n1 < · · · < 2θ − 1 < 2θ + 1 < · · · < 2θ + n1; 1, 1, . . . , 1)
n1 ≡ 3 (4);

where θ = 1 + n1(n1+1)(n1+2)
12 . The only exception is when n1 = 1 (3-

dimensional Heisenberg Lie algebra), since this is the only case where 1 =
θ − n1

2 , and so the eigenvalue type is (1 < 2; 2, 1).
Finally, it is easy to prove using Proposition 3.1, (12) and (14), that the

critical value of the critical point µ0/||µ0|| given in Theorem 4.2 is

(18)
Fn(µ0/||µ0||) =

1
16

+
3/4

n1(n1 + 1)(n1 + 2) + · · · + nr(nr + 1)(nr + 2)
.

5 Low dimensional Einstein solvmanifolds

The goal of this section is, by applying our variational method and some
previous results, to understand the low dimensional rank-one Einstein solv-
manifolds. We shall obtain a complete picture for dimension ≤ 6.

Cases n = 3, 4 are covered by the results obtained in Sect. 4. Indeed,
the variety N3 consists of only one non-abelian GL(3)-orbit, corresponding
to the Heisenberg Lie algebra µH(x1, x2) = x3, which by Theorem 4.2 is
a critical point of F3 : S −→ R of eigenvalue type (1 < 2; 2, 1). N4 is
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the union of two non-abelian orbits GL(4).λ1 and GL(4).λ2, where λ1 =
µH ⊕ R (i.e. R = Rx4 is an abelian factor), and the only nonzero brackets
of λ2 are

λ2(x1, x2) = x3, λ2(x1, x3) = x4.

It follows from Proposition 3.3 and Theorem 4.2 that λ1/||λ1|| and λ2/||λ2||
themselves are critical points of F4 of type (2 < 3 < 4; 2, 1, 1) and (1 <
2 < 3 < 4; 1, 1, 1, 1), respectively.

Therefore, we will concentrate on the case n = 5. The variety N5 consists
of 8 non-abelian orbits (see [M]), represented by Table 1.

Table 1.

µ1(x1, x2) = x3, µ1(x1, x3) = x4, µ1(x1, x4) = x5 (4−step);

µ2(x1, x2) = x3, µ2(x1, x3) = x4, µ2(x1, x4) = x5,
µ2(x2, x3) = x5 (4−step);

µ3(x1, x2) = x4, µ3(x2, x3) = x5, µ3(x1, x4) = x5 (3−step);

µ4(x1, x2) = x5, µ4(x3, x4) = x5 (2−step);

µ5(x1, x2) = x3, µ5(x1, x3) = x4, µ5(x2, x3) = x5 (3−step);

µ6(x1, x2) = x4, µ6(x1, x3) = x5 (2−step);

µ7 = µH ⊕ R
2, (2−step);

µ8 = λ2 ⊕ R, (3−step).

We will find explicitly a critical point of F5 : S −→ R in each of the
8 orbits, and will calculate their eigenvalue types and critical values. For
µ1 and µ6 we can apply Theorem 4.2, and cases µ7 and µ8 follow from
Proposition 3.3. µ4 is the 5-dimensional Heisenberg Lie algebra and so Sµ4

is the complex hyperbolic space, which is well-known to be Einstein. The
variational approach will be applied to the remaining cases. We will consider
in detail only case µ2, being the most difficult one. The proof in the cases
µ3 and µ5 is completely analogous.

In order to show that GL(5).µ2 contains a critical point of F5 : S −→ R,
we consider for each positive numbers a, b, c, d ∈ R the Lie bracket µ =
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µ(a, b, c, d) isomorphic to µ2 defined by

µ(x1, x2) = ax3, µ(x1, x3) = bx4, µ(x1, x4) = cx5, µ(x2, x3) = dx5.

As in the proof of Theorem 4.2, our plan is to find first a critical point of F5
restricted to the set {µ(a, b, c, d) : a, b, c, d ∈ R>0} ∩ S, and after that, to
show using the characterization given in Theorem 2.1 (iv) that such a point
is really a critical point of F5. Using (5), we can see by simple computations
that Ricµ equals the diagonal matrix

Ricµ =
1
2





−a2 − b2 − c2

−a2 − d2

a2 − b2 − d2

b2 − c2

c2 + d2




.

We then obtain that ||µ||2 = −4 tr Ricµ = 2(a2 + b2 + c2 + d2) and

F5(µ) = tr Ric2
µ

= f(a, b, c, d)
= 1

4

(
(a2 + b2 + c2)2 + (a2 + d2)2 + (a2 − b2 − d2)2

+(b2 − c2)2 + (c2 + d2)2
)
.

By standard methods, it is easy to see that a2 = b2 = 3, c2 = d2 = 2,
define a critical point of f restricted to the leaf a2 + b2 + c2 + d2 = 10. The
corresponding µ0 = µ(3

1
2 , 3

1
2 , 2

1
2 , 2

1
2 ) then satisfies

Ricµ0 =
1
2





−8
−5

−2
1

4




= −11

2
I +

1
2





3
6

9
12

15




.

We then obtain that Ricµ0 ∈ RI ⊕ Der(µ0), which implies that Sµ0 is
Einstein (see Theorem 2.1). Moreover, it is evident that the eigenvalue type
of Sµ0 equals (1 < 2 < 3 < 4 < 5; 1, . . . , 1).

We now summarize the results obtained in this section in the following



Finding Einstein solvmanifolds by a variational method 97

Theorem 5.1. For any i = 1, . . . , 8 there exists µ′
i ∈ GL(5).µi such that

µ′
i/||µ′

i|| is a critical point of F5 : S −→ R. Their eigenvalue types and
critical values are as follows:

critical point eigenvalue type F5

µ′
1(x1, x2) = 3x3, µ′

1(x1, x3) = 4x4, (2 < 9 < 11 < 13 < 15; 1, . . . , 1) 1
16 . 65

µ′
1(x1, x4) = 3x5,

µ′
2(x1, x2) = 3

1
2 x3, µ′

2(x1, x3) = 3
1
2 x4, (1 < 2 < 3 < 4 < 5; 1, . . . , 1) 1

16 . 1110
µ′

2(x1, x4) = 2
1
2 x5, µ′

2(x2, x3) = 2
1
2 x5,

µ′
3(x1, x2) = x4, µ′

3(x2, x3) = 2
1
2 x5, (3 < 4 < 6 < 7 < 10; 1, . . . , 1) 1

16 . 75
µ′

3(x1, x4) = 2
1
2 x5

µ′
4 = µ4 (1 < 2; 4, 1) 1

16 .2

µ′
5(x1, x2) = 4x3, µ′

5(x1, x3) = 3x4, (1 < 2 < 3; 2, 1, 2) 1
16 . 65

µ′
5(x2, x3) = 3x5.

µ′
6 = µ6 (2 < 3 < 5; 1, 2, 2) 1

16 .2

µ′
7 = µ7 (2 < 3 < 4; 2, 2, 1) 1

16 .3

µ′
8 = µ8 (1 < 2 < 3 < 4; 1, 1, 2, 1) 1

16 . 32

We recall that, in order to construct the Einstein solvmanifold Sµ from the
knowledge of the critical point µ/||µ|| and its eigenvalue type, one has to
use Corollary 3.2. It should be noticed that, independently from how the
critical points µ′

i was found, one can show by a very simple computation
that the solvmanifolds Sµ′

i
are Einstein spaces, by using for instance [H,

Lemma 4.4].

Remark. In dimension 7 appear the first examples of characteristically nil-
potent Lie algebras (i.e. Der(µ) nilpotent), which can never be critical points
of Fn : S −→ R since they do not admit non-zero semisimple derivations.
On the other hand, we do not know if each of the 34 nilpotent Lie algebras
of dimension 6 has a critical point of F6 : S −→ R in its orbit.
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6 A curve of 8-dimensional Einstein solvmanifolds

We have seen in Sect. 5 that each eigenvalue type M(k,d) for n = 5 consists
of only one point. In order to get a curve of (n + 1)-dimensional rank-one
Einstein solvmanifolds of the same eigenvalue type, it is necessary to have
a curve of pairwise non-isomorphic n-dimensional nilpotent Lie algebras
(see [A], [H, 2.7] or [L, Prop. 4]). The lowest dimension where there is such
a curve is n = 7 (see [M,S]). We will show now, as another application of
our variational method, that one of such curve in dimension 7, give rise to a
curve of 8-dimensional rank-one Einstein solvmanifolds of eigenvalue type
(1 < 2 < 3 < 4 < 5 < 6 < 7; 1, . . . , 1).

Consider for each set of real numbers {aij}, the bilinear form µ =
µ({aij})∈Λ2n∗ ⊗n defined by µ(Xi, Xj)=aijXi+j , where {X1, . . . , X7}
is a basis of n. We calculate Ricµ, obtaining that ||µ||2 = 2

∑
a2

ij . Then, by
applying the Lagrange multiplier theorem and solving a 9×9 linear system,
it is not hard to prove that the critical points of F7(µ) = tr Ric2

µ restricted to
{µ({aij}) :

∑
a2

ij ≡ const} depend on three parameters µt1,t2,t3 . Setting
two of the parameters equal to 1 we obtain the following curve:

µt(X1, X2) = (1 − t)
1
2 X3, µt(X2, X3) = X5,

µt(X1, X3) = X4, µt(X2, X4) = X6,

µt(X1, X4) = t
1
2 X5, µt(X2, X5) = t

1
2 X7,

µt(X1, X5) = X6, µt(X3, X4) = (1 − t)
1
2 X7.

µt(X1, X6) = X7,

It is easy to check using (5) that for any 0 < t < 1 we have that

Ricµt = −1
2





4
3

2
1

0
−1

−2





= −5
2
I +

1
2





1
2

3
4

5
6

7





.

Thus Ricµt ∈ RI ⊕ Der(µt), that is, µt/||µt|| is a critical point of F7 :
S −→ R of eigenvalue type (1 < 2 < 3 < 4 < 5 < 6 < 7; 1, . . . , 1), and
so Sµt is Einstein for all 0 < t < 1 (see Theorem 2.1). Each Lie algebra µt is
isomorphic to the Lie algebra λt, denoted by 1, 2, 3, 4, 5, 7I : t in [S, pp.494]
(see also the curve g̃(0, t, 1, 0, 1, 0, 0, 0) in [M, 5.2.3]). The isomorphism is
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given by λt = ϕtµ(ϕ−1
t ·, ϕ−1

t ·), where

ϕ−1
t =





1
t

1
2

t
1
2 (1 − t)

1
2

t
1
2 (1 − t)

1
2

t(1 − t)
1
2

t(1 − t)
1
2

t(1 − t)
1
2





.

This proves that µt is really a curve of pairwise non-isomorphic Lie algebras,
and consequently Sµt is a curve of pairwise non-isometric Einstein solvman-
ifolds. It follows from Proposition 3.1 that the critical value is F7(µt) = 1

16
5
7

for all 0 < t < 1.
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