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Abstract. For each strongly connected finite-dimensional (pure) simplicial
complex∆ we construct a finite groupΠ(∆), thegroup of projectivities
of ∆, which is a combinatorial but not a topological invariant of∆. This
group is studied for combinatorial manifolds and, in particular, for poly-
topal simplicial spheres. The results are applied to a coloring problem for
simplicial (or, dually, simple) polytopes which arises in the area of toric
manifolds.

1 Introduction

In [6] Davis and Januszkiewicz introduce an(n + d)-dimensional smooth
manifoldZP built from a d-dimensional simple convex polytopeP with
n facets. These manifolds play a significant role in the study of (quasi-)toric
manifolds. We briefly sketch the construction. LetP be a simpled-polytope
with n facets. Fix an ordering of the facetsF = (F1, . . . , Fn) and letT
be then-dimensional complex algebraic torus(C \ {0})F . On the product
P × T define an equivalence relation∼, where(p, s) ∼ (q, t) if and only
if p = q and thei-th component of the quotientst−1 in the groupT is
trivial for all facetsFi not containing the pointp = q. We obtain a manifold
ZP as the quotient space(P × T )/ ∼. For a survey on the subject see
Buchstaber and Panov [4], where the construction of the manifoldZP is
discussed in Section 3.1. The obvious action of the torusT onZP is free
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over the interior ofP . Points which are contained in the relative interior of a
k-dimensional face have a(d−k)-dimensional isotropy group. In particular,
the isotropy group of each vertex has dimensiond. Buchstaber suggested to
study quotients ofZP by freely acting subgroups ofT , see [4, Section 4.4].
In this context he definess(P ) as themaximal dimension of a subgroup ofT
which acts freely onZP . Izmestiev [15] defines the chromatic numberγ(P )
of P as the minimal number of colors required to color the facets ofP
such that any two facets sharing a vertex have distinct colors. He shows that
s(P ) ≥ n − γ(P ), see [4, 4.4.5], whereas it is clear thats(P ) ≤ n − d,
see [4, 4.4.2].

From our main result (Theorem 8), which is a statement on combina-
torial manifolds, we infer a combinatorial characterization for the simple
d-polytopes withγ(P ) = d. The aforementioned results imply that for such
polytopes we haves(P ) = n − d. This gives a partial answer to Prob-
lem 4.4.1 in [4]. The cases(P ) = n − d seems to be the most interesting
one in this context. The result for simple3-polytopes is classical. The result
for the special case of simple zonotopes is implicit in [7, Lemma 4.2.6] of
Davis, Januszkiewicz, and Scott. Moreover, since the original submission
of this paper I learned that Edwards [8] had announced a solution to the
coloring problem already in 1977. However, to the best of my knowledge,
no proof was published.

The paper is organized as follows. We start by associating a finite group
to each facet of a finite-dimensional simplicial complex, thegroup of pro-
jectivities. For strongly connected complexes the isomorphism class of the
group does not depend on the facet chosen. In the next sectionwe investigate
the groups of projectivities of combinatorial manifolds. It turns out that, in
order to determine the group of projectivities, it suffices to have combinato-
rial information about the fundamental group plus local combinatorial data.
This result is then specialized to the case of simplicial spheres which arise
as boundaries of convex polytopes. A polytope is simple if and only if the
boundary of its dual is a simplicial sphere. Hence we can apply our results
on combinatorial manifolds to any simple polytopeP . This way we obtain
the desired result:γ(P ) = d if and only if each2-face ofP has an even
number of vertices. We conclude the paper with a few remarks and a short
appendix on how our results are related to known results in graph theory.

I am indebted to Ivan Izmestiev and Friederike Körner for stimulating
discussions on the subject. Thanks to Carsten Lange, Julian Pfeifle, and
Günter M. Ziegler for giving helpful comments on a previous version of this
paper. Moreover, I am grateful to the anonymous referee for bringing to my
attention the paper of Davis, Januszkiewicz, and Scott [7].



Projectivities in simplicial complexes 245

2 Simplicial complexes

An (abstract) simplicial complexon the vertex setV is a non-empty collec-
tion∆ of finite subsets ofV , which is closedwith respect to forming subsets.
If σ ∈ ∆ with #σ = k+ 1, we say that thesimplexσ hasdimensionk, and
we writedimσ = k. Definedim∆ = sup {dimσ | σ ∈ ∆}. Throughout
the rest of the paper we always assume thatdim∆ < ∞. A simplex of∆
which is maximal with respect to inclusion is called afacet. If a simplexσ
is contained in another simplexτ , thenσ is a faceof τ . The complex∆ is
calledpure if all its facets have the same dimension. The maximal proper
faces of the facets are theridges. For a given faceσ ∈ ∆, the(closed) star
stσ is the subcomplex generated by the facets containingσ, whereas the
link lkσ is the subcomplex ofstσ of faces not containingσ.

By introducing barycentric coordinates on the simplices and extending
according to the concept of weak topology, every finite-dimensional simpli-
cial complex∆ defines a locally compact and metrizable Hausdorff space
||∆||, which is compact if and only if∆ is finite; see any topology text-
book, e.g. Munkres [16], for the details. We frequently apply notions from
topology to∆ which, if no confusion can arise, are meant to refer to||∆||.

The dual graphΓ (∆) of ∆ is an abstract graph whose nodes are the
facets of∆, andwhere an edge between two facets corresponds to a common
ridge. We call∆ strongly connectedif the graphΓ (∆) is connected. Strong
connectedness clearly implies connectedness in the topological sense.More-
over, if∆ is strongly connected, then∆ is pure. However, our definition of
the dual graph also makes sense for non-pure complexes. In the non-pure
case each connected component of the dual graph consists of facets of the
same dimension.

For each ridgeρ contained in two facetsσ, τ , there is a unique ver-
texv(σ, τ) which is contained inσ but not inτ . We define theperspectivity
〈σ, τ〉 : σ → τ by setting

w �→
{
v(τ, σ) if w = v(σ, τ),
w otherwise.

Let g = (σ0, σ1, . . . , σn) be afacet pathin Γ (∆), that is, for each eachi
the facetsσi andσi+1 share a common ridge. Theprojectivity〈g〉 from σ1
to σn alongg is the concatenation

〈g〉 = 〈σ0, σ1, . . . , σn〉 = 〈σ0, σ1〉〈σ1, σ2〉 · · · 〈σn−1, σn〉
of perspectivities. The map〈g〉 is a bijection fromσ0 to σn. The facet
pathg is closedif σ0 = σn. A closed facet path fromσ0 to σ0 is called
a facet loopbased atσ0. We denote the concatenation of two facet paths
g = (σ0, σ1, . . . , σn) andh = (σn, σn+1, . . . , σm) by g ∗ h. Clearly,〈g ∗
h〉 = 〈g〉〈h〉.
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For a given facetσ0 the set of projectivities along facet loops based atσ0
forms a groupΠ(∆,σ0), thegroup of projectivitiesof∆ atσ0. The group of
projectivities is a (permutation) subgroup of the symmetric groupSymσ0,
the group of all bijections on the set of vertices ofσ0. The inverse of the
facet pathg is denoted byg−.

Lemma 1 Let g be a facet path from the facetσ0 to the facetσ1. Then
Π(∆,σ0) = 〈g〉Π(∆,σ1) 〈g−〉.

This implies that for strongly connected∆ the isomorphism class ofΠ
(∆,σ) does not depend on the choice of thebase facetσ0. We writeΠ(∆)
and call it thegroup of projectivitiesof∆. In this case the group of projec-
tivities is a combinatorial invariant of∆.

Let ∆ and∆′ be finite-dimensional simplicial complexes and letf :
∆ → ∆′ asimplicial map, that is,f is a map between the vertex sets which
preserves the inclusion among the faces. A simplicial map is callednon-
degenerateif it preserves dimension. Consider a non-degenerate simplicial
map between simplicial complexes of the same dimension. In this case facet
loops are mapped to facet loops and we obtain an induced map

f# = Π(f) : Π(∆,σ0) → Π(∆′, f(σ0)).

Consider the categoryCd of pairs(∆,σ0), where∆ is a simplicial com-
plex of fixed dimensiond andσ0 is a facet of∆. As morphisms take the
non-degenerate simplicial maps which map base facets to base facets.

Proposition 2 Π(·) is a covariant functor from the categoryCd into the
category of finite groups.

Proposition 3 Let∆ and∆′ bed-dimensional simplicial complexes, and
let σ0 be a facet of∆. If f : (∆,σ0) → (∆, f(σ0)) is a non-degenerate
simplicial map which is injective if restricted to the set of facets, then the
induced mapf# is a group monomorphism. In particular, the group of
projectivities of a full-dimensional subcomplex of∆ which containsσ0 is a
subgroup ofΠ(∆,σ0).

We want to determine the groups of projectivities for simplicial com-
plexes∆ of dimension at most1. Up to an isomorphism there is a unique
simplicial complex of dimension−1, namely{∅}. It has a unique facet and
no ridges, so its dual graph consists of a single node. Its group of projectiv-
itiesΠ({∅}, ∅) is trivial. Similarly, if dim∆ = 0 the facets correspond to
the vertices, andΠ(∆, {v}) is trivial for any vertexv. The1-dimensional
simplicial complexes are precisely the graphs. The edges are the facets (ex-
cept for possibly existing isolated nodes). Each edge has two nodes, so the
group of projectivities is of order at most2.
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Proposition 4 Let ∆ be a graph and letσ0 = {v, w} be an edge. If the
connected component ofσ0 in ∆ contains an odd cycle, thenΠ(∆,σ0) is
generated by the transposition(v w). Otherwise, the connected component
of σ0 is bipartite andΠ(∆,σ0) is trivial.

There are many ways to build new complexes from given ones. We will
explore one construction and its impact on the group of projectivities.

Let∆ and∆′ be finite dimensional simplicial complexes over the vertex
setsV andV ′, respectively, whereV is disjoint fromV ′. The join of ∆
and∆′ is defined to be

∆ ∗∆′ =
{
σ ∪ σ′ ∣∣ σ ∈ ∆, σ ∈ ∆′} .

Clearly,dim∆∗∆′ = dim∆+dim∆′ +1. The facets of∆∗∆′ are unions
of facets of∆ and∆′; the ridges are unions of a facet of one complex with a
ridge of the other. Forming the join of two complexes is, in fact, a topological
operation:||∆∗∆′|| is homeomorphic to the double mapping cylinder of the
projections||∆×∆′|| → ||∆||, ||∆′||.
Proposition 5 Let ∆ and ∆′ both be finite-dimensional simplicial com-
plexes with facetsσ0 and σ′

0, respectively. ThenΠ(∆ ∗ ∆′, σ0 ∪ σ′
0) =

Π(∆,σ0) ×Π(∆′, σ′
0).

Proof. We claim equality instead of the mere existence of an isomorphism
because the direct product can be interpreted as an inner direct product as
follows. The mapsf : ∆ → ∆ ∗ ∆′ : σ �→ σ ∪ σ′

0 and f ′ : ∆′ →
∆ ∗∆′ : σ′ �→ σ0 ∪ σ′ both are non-degenerate and injective, which yields
monomorphismsΠ(f) andΠ(f ′), respectively, by Proposition 3.

We have to prove that each projectivity in the join can be written as a
product of a projectivity in∆ with a projectivity in∆′.

The simplices of∆ ∗ ∆′ are written asσ ∪ σ′, implying thatσ ∈ ∆
andσ′ ∈ ∆′. Note that the distinct facetsσ ∪ σ′ andτ ∪ τ ′ are adjacent if
and only ifσ = τ andσ′ adjacent toτ ′ in ∆′, or σ adjacent toτ in ∆ and
σ′ = τ ′.

Moreover, any two facetsσ ∪ σ′ andτ ∪ τ ′ with σ adjacent toτ andσ′
adjacent toτ ′ are contained in the star of the codimension-2-face(σ ∩ τ) ∪
(σ′ ∩ τ ′). There are precisely two more facets contained in this star, namely
σ∪τ ′ andτ ∪σ′. Applying the Propositions 3 and 4 tost((σ∩τ)∪(σ′∩τ ′))
yields

〈σ ∪ σ′, σ ∪ τ ′, τ ∪ τ ′, τ ∪ σ′, σ ∪ σ′〉 = 1

and thus

〈σ ∪ σ′, σ ∪ τ ′, τ ∪ τ ′〉 = 〈σ ∪ σ′, τ ∪ σ′, τ ∪ τ ′〉. (1)
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Invoking the identity (1) several times, allows to “sort” a projectivity:
Each projectivityπ from σ0 ∪ σ′

0 onto itself can be written as the product

π = 〈σ0 ∪ σ′
0, σ1 ∪ σ′

0, . . . , (σm = σ0) ∪ σ′
0)〉

〈σ0 ∪ σ′
0, σ0 ∪ σ′

1, . . . , σ0 ∪ (σ′
n = σ′

0)〉.
Izmestiev [14] has proved a partial converse of the previous proposition.
Thed-dimensional simplicial complex∆ on the vertex setV is called

balancedif there is a mapc : V → {0, . . . , d} such that whenever{v, w}
is an edge in∆ thenc(v) �= c(w). The mapc is called aproperd-coloring
of∆. Clearly, a properd-coloring of∆ is the same as a simplicial projection
from∆ onto the standardd-simplex which is injective on each simplex. Oc-
casionally, this is calledafolding mapof∆. Important examples for balanced
simplicial complexes are provided byCoxeter complexes and Tits buildings,
see Stanley [20, pp 104ff]. For properties of proper colorings or folding
maps in the context of toric manifolds see Davis and Januszkiewicz [6,
Lemma 1.14 and Example 1.15].

We call a simplicial complexlocally strongly connectedif it is strongly
connected and, additionally, the star of each vertex is also strongly con-
nected.Therearestrongly connectedcomplexeswhich is not locally strongly
connected. For instance, consider a2-dimensional complex whose dual
graph is a path such that the two triangles corresponding to the end points
of the path share a unique vertexv. The star ofv is not strongly connected.

Proposition 6 Let ∆ be a locally strongly connected simplicial complex.
Then∆ is balanced if and only ifΠ(∆) is trivial.

Proof. Fix an arbitrary facetσ0 of∆ and an arbitrary coloring of the vertices
of σ0. For each facet pathg fromσ0 to some other facetσ the projectivity〈g〉
induces a coloring of the vertices ofσ. Two such colorings induced by
facet pathsg andg′, respectively, coincide if and only if the projectivity
〈g′ ∗ g−〉 = 〈g′〉〈g〉−1, which is induced by the facet loopg′ ∗ g− based at
σ0, is the identity. Observe that, in general, the color of a vertexv ∈ σ does
depend on the choice of the facetσ. Since, however, the star ofv in ∆ is
also strongly connected, this color is the same for all facets containingv.

It is worthmentioning that the property of being balanced is by nomeans
a topological invariant. To the contrary, for arbitrary∆ the barycentric sub-
division sd∆ is always balanced.

3 Combinatorial manifolds

We now impose severe topological restrictions on the simplicial complexes
studied. A finited-dimensional simplicial complex∆ is a combinatorial
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manifold if the link of eachk-face is a simplicial sphere of dimension
d− k − 1. In particular, the link of each codimension-2-face is a1-sphere,
that is, the boundary of a polygon on the combinatorial level. Note that our
(combinatorial) manifolds are always compact and without boundary. How-
ever, the results below can suitably be extended to combinatorial manifolds
with boundary.

If ∆ is a combinatorial manifold, then||∆|| is a PL-manifold. Conversely,
a PL-manifoldM always admits a triangulation∆ (compatible with the
PL-structure), such that∆ is a combinatorial manifold. For a general intro-
duction to combinatorial and PL-manifolds see Hudson [12], Glaser [10],
or [13, 65 (IX.17)].

Throughout the following let∆ be a combinatorial manifold. This im-
plies that the dual graphΓ (∆) is strongly connected, so the isomorphism
class of the group of projectivities does not depend on the facet chosen.

Consider the joint geometric realization||∆|| of ∆ and its dual block
complex∆∗ within a realization of the first barycentric subdivisionsd∆,
see Munkres [16,§64] and also Glaser [10, pp. 83ff]. This way each facet
path canonically yields an edge path in the1-skeleton of the dual block
complex∆∗ and vice versa. Often we will not distinguish between a facet
pathand its correspondingedgepath in∆∗. As∆ is a combinatorialmanifold
the blocks in∆∗ are, in fact, cells. In particular, the blocks are simply
connected.

It is known that any path in||∆|| = ||∆∗|| is homotopic to a path in the
1-skeleton of∆∗ which is the same as the dual graph of∆. In Seifert and
Threlfall [19,§44] this is proved for simplicial complexes, but the arguments
given can directly be extended to arbitrary cell complexes. In particular,
the fundamental groupπ1(∆,x0) for x0 ∈ ||∆|| is generated by facet loops
based atσ0 whereσ0 is some facet withx0 ∈ ||σ0||. Usually, in the geometric
realization we choosex0 to be the barycenter of the facetσ0, and we write
π1(∆,σ0). Note that, as∆ is assumed to be finite, the groupπ1(∆,σ0) is
finitely generated.

Define thereduced group of projectivitiesΠ0(∆,σ0) to be the subgroup
ofΠ(∆,σ0) generated by facet loops based atσ0 which are null-homotopic.
Similar to what is expressed in Lemma 1 the reduced group of projectivities
is a combinatorial invariant of the connected component ofσ0 in∆.

Proposition 7 Letp1, . . . , pm be a set of facet loops based atσ0 generating
the fundamental groupπ(∆,σ0). ThenΠ(∆,σ0) is generated byΠ0(∆,σ0)
together with〈p1〉, . . . , 〈pm〉.

In particular, ifπ1(∆,σ0) is trivial thenΠ0(∆,σ0) = Π(∆,σ0). The
converse does not hold.

The link of each codimension-2-faceκ is ann-gon for somen ≥ 3; see
Fig. 1. Due to the obvious bijection between the facets inlkκ and the facets
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Fig. 1.Pentagonal link of an edge in a3-manifold.

in stκ we see thatΓ (stκ) is also ann-gon. Theparity of κ, that is, the
property of beingevenor odd, is the parity ofn.

Let κ be a codimension-2-faceκ, σ a facet containingκ, andg a path
from σ0 to σ. As stκ is simply connected we infer that the pathg ∗ l ∗ g−
is null-homotopic for any facet loopl in stκ based atσ. Thus we have
〈g ∗ l ∗ g−〉 ∈ Π0(∆,σ0).

If κ is odd, in view of Proposition 4, the groupΠ(stκ, σ) is of order2,
generated by some facet loopl based atσ. Then〈g∗ l∗g−〉 is a transposition
on the setσ0.

Theorem 8 The reduced group of projectivitiesΠ0(∆,σ0) is generated by
the set of all projectivities〈g∗ l∗g−〉 whereg is a facet path fromσ0 to some
facetσ which contains an odd codimension-2-faceκ and l is a facet loop
based atσ generatingΠ(stκ, σ). In particular,Π0(∆,σ0) is generated by
transpositions.

Proof. Let r be an arbitrary facet loop based atσ0 which is null-homotopic.
Without loss of generality letx0 be the vertex of∆∗ corresponding to the
barycenter ofσ0. It is known thatr can be contracted to the constantmapcx0

atx0 within the2-skeleton of∆∗. Discretizing a suitable homotopy fromr
to cx0 yields a sequencer1, . . . , rn of closed paths in the1-skeleton fromx0
to x0 in the1-skeleton of∆∗ such thatr1 = r, rn = cx0 , andri coincides
with ri+1 outside some2-faceFi of∆∗; see Fig. 2. The dual ofFi in∆ is a
codimension-2-faceκi.

Because the facet pathsr1 andr2 are the same outsidestκ we have that
the projectivity〈r1〉〈r2〉−1 coincides with some projectivity〈g ∗ l ∗ g−〉,
whereg is the common initial segment ofr1 andr2 up to some facetσ ∈ stκ
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κ κ

Fig. 2. Combinatorial homotopy between paths in the dual graph within the star of the
codimension-2-faceκ.

and l is a facet loop instκ based atσ. In particular, by Proposition 4,
〈r1〉〈r2〉−1 is either a transposition or trivial, depending on the parity ofκ.

An induction onn establishes the theorem.

Corollary 9 The reduced group of projectivitiesΠ0 of a combinatorial
manifold is isomorphic to a direct product of symmetric groups.

The same result does not hold for the whole group of projectivitiesΠ.
For an example see Fig. 3.

Corollary 10 The reduced group of projectivitiesΠ0(∆,σ0) is trivial if and
only if each codimension-2-face of∆ is even.

Corollary 11 Suppose that∆ is simply connected. Then∆ is balanced if
and only if each codimension-2-face of∆ is even.

Corollary 11 seems to be known: It is announced, without a proof, in
Edwards [8]: “The above theorem [on a reformulation of the Four Color
Problem] developed from a lunch table conversation at I.H.E.S., Bures-sur-
Yvette, France, in which P. Deligne-R. MacPherson-J. Morgan observed
that a closed,1-connected, PL triangulatedn-manifold is(n+ 1)-colorable
⇐⇒ each(n− 2)-simplex has even order.”

The group of projectivities is an interesting invariant of a combinato-
rial manifold. Consider, for example, two different triangulations of the
2-torusS

1 × S
1 as depicted in Fig. 3. The first triangulationT (to the left)

is standard. The second triangulationA is produced fromT by flipping the
diagonal edges in the three squares of the middle column; in order to give it
some name, call itanti-torus. Several combinatorial invariants ofT andA
coincide: e.g., thef -vector, the vector of vertex-degrees in the graph, the
Altshuler determinant. But the groups of projectivities differ.
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Fig. 3. Left: Standard torusT with facet loopsp andq which correspond to a generating
system of the fundamental group.Right: “anti-torus”A with similar facet loopsp andq′.

This can be seen as follows. Fix the facetσ0 = {1, 2, 4} in both triangu-
lations. The codimension-2-faces are the vertices. In both triangulations, the
link of each vertex is the boundary of a hexagon. Therefore, byCorollary 10,
the only potentially non-trivial contributions toΠ(T, σ0) andΠ(A, σ0) can
come from the fundamental groupwhich is known to be isomorphic toZ×Z.
The facet loops

p = ({1, 2, 4}, {2, 4, 5}, {4, 5, 7}, {5, 7, 8}, {1, 7, 8}, {1, 2, 8}, {1, 2, 4})

and

q = ({1, 2, 4}, {2, 4, 5}, {2, 3, 5}, {3, 5, 6}, {1, 3, 6}, {1, 4, 6}, {1, 2, 4})

generate the groupπ1(T, σ0). Verify that both〈p〉 and〈q〉 are equal to the
identity. Nowp and

q′ = ({1, 2, 4}, {2, 4, 5}, {2, 5, 6}, {2, 3, 6}, {1, 3, 6}, {1, 4, 6}, {1, 2, 4})

generateπ1(A, σ0). Again〈p〉 = id, but〈q′〉 is the3-cycle(1 4 2). Therefore,
Π(A, σ0) ∼= Z/3.

4 Polytopes

Apolytope issimpleif each of its vertex figures is a simplex, or, equivalently,
for anygivenvertexv there isa1–1correspondencebetween thesetsof edges
throughv and the faces containingv. For an introduction to the theory
of convex polytopes, see Ziegler [23]. Here we restrict our attention to
polytopes which are convex.
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There is another way to characterize simple polytopes, which suits our
needs: A polytopeP is simple if and only if its dualP ∗ is simplicial, that
is, each proper face is a simplex. In particular, the boundary complex of a
simple polytope is the dual cell complex of a polytopal sphere. Therefore,
we can dualize our definition of perspectivity. The results of the previous
section apply.

Let v be a vertex in the simpled-polytopeP . Denote the set of facets
throughv byF(v). If w is a vertex adjacent tov then there is a unique facet
F (v, w) contained inF(v)\F(w). Theperspectivityfromv tow is defined
as

〈v, w〉 : F(v) → F(w) : F �→
{
F (w, v) if F = F (v, w),

F otherwise.

Againprojectivitiesareconcatenationsof perspectivities.As theboundaryof
a polytope is connected the isomorphism class of the group of projectivities
does not depend on the vertex chosen.

Note that each2-face ofP corresponds to (the link of) a codimension-
2-face of the dual. Therefore the following corollary follows from our The-
orem 8.

Corollary 12 For any vertexv the group of projectivitiesΠ(P, v) is gen-
erated by projectivities with respect to paths around the2-faces with an
odd number of vertices. In particular, if each2-face has an even number of
vertices, then the group of projectivities vanishes.

Proof. The boundary complex of a polytope is homeomorphic to a sphere,
and thus the fundamental group is trivial, provided that the dimension of the
polytope is at least3. The group of projectivities coincides with the reduced
group of projectivities. For2-dimensional polytopes the only2-face is the
polytope itself and the result follows from Proposition 4. A1-dimensional
polytope does not have any2-face, its dual graph consists of two isolated
points, and hence the group of projectivities is trivial.

Thisdirectlyallows tocompute thegroupofprojectivitiesofmanyknown
polytopes, including all regular simple polytopes.

Corollary 13 The group of projectivities of thed-simplex is isomorphic
to Sd.

The group of projectivities of the dodecahedron is isomorphic toS3.
The group of projectivities of the regular120-cell is isomorphic toS4.
The group of projectivities of thed-cube is trivial.

Proof. Each2-face of a simplex is a triangle. Each2-face of the dodec-
ahedron and the120-cell is a pentagon. Each2-face of thed-cube is a
quadrangle.
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In Proposition 5 we discussed the effect of forming joins of simplicial
complexes on the group of projectivities. This can be translated into a result
about simple polytopes.

Corollary 14 LetP andQ be simple polytopes with respective verticesv
andw. ThenΠ(P ×Q, (v, w)) = Π(P, v) ×Π(Q,w).

Proof. The productP ×Q is again a simple polytope. Its boundary complex
is dual to the join of the duals of the boundary complexes ofP andQ.

The example of products of simplices shows that for anypartition of d,
that is, a sequence(d1, . . . , dk) of natural numbers withdi ≥ 1 and

∑
di =

d, there is a simpled-polytope whose group of projectivities is isomorphic
to Sd1 × · · · × Sdk

. From Corollary 9 we infer that, in fact, this is the only
class of groups which occurs as groups of projectivities of simple polytopes.
We obtain a combinatorial invariant of a simple polytope.

Corollary 15 Let P be a simpled-polytope. Then there is a unique par-
tition (d1, . . . , dk) of d with d1 ≤ d2 ≤ · · · ≤ dk such thatΠ(P ) ∼=
Sd1 × · · · × Sdk

.

The Corollary 12 characterizes those simple polytopes whose2-faces
have an even number of vertices. We call such simple polytopeseven. Note
that each simple zonotope is an even simple polytope. But, an easy con-
struction shows that the even simple polytopes form a (much) wider class.
For an example see Fig. 4.

LetP be an arbitraryd-polytope. Define a graphΓ (P ) whose nodes are
the facets ofP ; two facets are joined by an edge inΓ (P ) if their intersection
is not empty. Aproper (node) coloringof a graph is an assignment of a
color to each node such that any two adjacent nodes have different colors.
The chromatic numberof a graph is the minimal number of colors in a
proper coloring. Following Izmestiev [15], thechromatic numberγ(P ) of
the polytopeP is now defined as the chromatic number of the graphΓ (P ).
As every vertex ofP is contained in at leastd facets, it is clear that it requires
at leastd colors to colorΓ (P ) properly. Moreover, ifγ(P ) = d thenP is
simple.

The1-skeleton of a polytope also forms an abstract graph, which is more
commonly studied in polytope theory. In order to avoid confusion we call
this graph thevertex-edge-graphof P .

For simple polytopes the graphΓ (P ) coincides with its dual graph, that
is, the vertex-edge-graphof thedual (simplicial) polytope: This follows from
the fact that each vertex figure of a simple polytope is a simplex. Hence any
two facets which share a vertex already have a common ridge.
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Fig. 4.Even simple3-polytopeM which is not combinatorially equivalent to any zonotope.
The polytopeM is constructed as theblendingof two cubes. This operation on simple
polytopes has been introduced by Barnette [1] asjoining; it is calledconnected sumin [5].
The f -vector ofM equals(14, 21, 9). This is not thef -vector of any zonotope, because
zonotopes, being centrally symmetric, have an even number of facets. One can show that
amongall evensimple3-polytopeswhicharenot combinatorially equivalent to any zonotope,
P has the minimal number of vertices as well as the minimal number of facets. We indicate
the bipartition of the vertex set according to Theorem 16. The picture has been produced
with polymake [9] andJavaView [18].

Theorem 16 LetP be a simpled-polytope. Then the following properties
are equivalent.

1. The polytopeP is even.
2. The vertex-edge-graph ofP is bipartite.
3. The boundary complex∂P ∗ of the dual is balanced.
4. γ(P ) = d.

Proof. Let P be an even simpled-polytope. Due to Corollary 12 we know
that this is characterized by the property that the group of projectivities
vanishes. A proper coloring of the facets ofP clearly corresponds to a
proper coloring of the vertices of the dualP ∗. The existence of such a
coloring now follows from Proposition 6. This proves the equivalence of
the first, the third and the fourth statement. The equivalence of the first and
the second statement is known. We indicate a short proof in the Appendix.

The same result for3-dimensional polytopes is classical, see Ore [17,
13.1.1] and also Izmestiev [15] for a more recent proof. The proofs employ
techniques, for which it seems to be unclear how they can be generalized
to higher dimensions. The result for4-dimensional polytopes follows from
work of Goodman and Onishi [11]. Davis, Januszkiewicz, and Scott proved
in [7, Lemma 4.2.6] that the boundary complex of the dual of a simple
zonotope is balanced.
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Recall the definition of the manifoldZP = (P × T )/ ∼ from the in-
troduction. The numbers(P ) is defined as the maximal dimension of a
subgroup of the algebraic torusT which acts freely onZP .

Corollary 17 If P is an even simpled-polytope, thens(P ) = n− d.

Proof. The dimensions(P ) of a freely acting subgroup is bounded from
above byn − d according to Buchstaber and Panov [4, 4.4.2]. The same
number is bounded from below byn − γ(P ) by a result of Izmestiev [15],
see [4, 4.4.5]. But the Theorem 16 enforcesγ(P ) = d.

From the fact that the coloring defined in the proof of Proposition 6 is
indeed a proper coloring we immediately obtain the following corollary.

Corollary 18 LetP be an even simpled-polytope. Suppose thatv andw
are adjacent vertices ofP . Then the two facetsF (v, w) andF (w, v) are
disjoint.

5 Concluding remarks

The termsperspectivityandprojectivity are borrowed from incidence ge-
ometry, in particular from the theory of projective planes and generalized
polygons, see Van Maldeghem [21, Section 1.5]. These notions in turn are
inspired by concepts from projective geometry. Moreover, some properties
of our groups of projectivities suggest that they can also be seen as some
combinatorial analogue of holonomy groups.

It is natural to ask what kind of finite groups can arise as the groups of
projectivities of interesting simplicial complexes. FromTheorem8we know
that the group of projectivities of any simply connected combinatorial man-
ifold is necessarily isomorphic to a, possibly trivial, product of symmetric
groups. Izmestiev [14] shows that for each conjugacy class of a subgroup of
the symmetric groupSd+1 of degreed+1 there is a combinatorial manifold
such that the given group arises as the group of projectivities.

A lot is known about thef -vectors of balanced simplicial complexes.
This is particularly true for balanced Cohen-Macaulay complexes which
include the boundary complexes of simplicial polytopes. See Stanley [20,
Section III.4] as well as Billera and Björner [2, 15.1.3, 15.2.4].

There is an intriguing question on planar graphs which is open for quite
some time now. It might be worthwhile to explore whether the methods
developed in this paper can contribute towards a solution.

Conjecture 19 (Barnette 1970)The vertex-edge-graph of an even simple
3-polytope contains a Hamiltonian cycle.



Projectivities in simplicial complexes 257

For one fairly large class of even simple polytopes one can see immedi-
ately that this conjecture holds. Start from an arbitrary simple polytopeP .
Successively truncate all the faces with increasing dimension to obtainP ′.
Truncation is dual to stellar subdivision. So the boundary of the polytopeP ′
is dual to the barycentric subdivision of the boundary ofP ∗. In particular,P ′
is even. Now, each spanning tree in the dual graph ofP yields a Hamiltonian
cycle in the vertex-edge-graph ofP ′.

6 Appendix

Let Γ be a finite graph with node setV and edge setE. Consider theF2-
vector spaceFE

2 of mappings ofE into F2. Each subset ofE corresponds
to such a map via the characteristic function. Thecycle spaceof Γ is the
subspaceC(Γ ) of F

E
2 generated by all cycles ofΓ .

A pure polytopal complexis a finite collectionP1, . . . , Pk ⊂ R
n of

convexd-polytopes such that the intersection of any two polytopes is a face
in both. The boundary complex of any polytope is a polytopal complex, for
instance. We want to recursively define theconstructibilityof a polytopal
complex: A polytope is constructible. A pure polytopal complex∆ which
is the union of pure constructible subcomplexesA andB is constructible
if the intersectionA ∩ B is a pure constructible complex. The notion of
constructibility generalizes the concept ofshellability, see Ziegler [23,§8].
From a theorem of Bruggesser and Mani [3] it is known that the boundary
complexes of polytopes are shellable and thus constructible.

The1-skeleton of a polytopal complex forms an abstract graphΓ (∆).
For∆ being the boundary of a convex polytope we calledΓ (∆) thevertex-
edge-graphof the polytope above. The following result is known. A proof
follows from a double induction on the dimension of the complex∆ and the
number of the polytopes comprising∆.

Proposition 20 Let∆ be a constructible polytopal complex. Then the cycle
spaceC(Γ (∆)) is generated by the cycles corresponding to the2-faces
of∆.

A finite graph is bipartite if and only if all the cycles in a cycle basis have
even length. In particular, a simple polytope is even if and only if its graph
is bipartite. This proves the equivalence of the first and the third statement
in Theorem 16.

The vertex-edge-graph of any simpled-polytope isd-regular. A bipartite
regular graph has an even number of vertices because, by double counting,
both color classes are of the same size.

Corollary 21 An even simple polytope has an even number of vertices.
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We want to explore the relationship between proper facet colorings of
a simple polytope and proper edge colorings of its vertex-edge-graph. An
edge coloring of a graph isproper if any two edges which share a vertex
have distinct colors.

Proposition 22 LetP be a simpled-polytope, and letc be a proper coloring
ofΓ (P ) with d colors. Thenc induces a proper edge coloring of the vertex-
edge-graphΓ (P ) with d colors.

Proof. Let e = {v, w} be an edge ofP . If Γ (P ) is properlyd-colored,
then the two facetsF (v, w) andF (w, v) have the same color. Assign this
color to the edgee. Evidently, this procedure requires exactlyd colors.
Assume that this edge coloring is not proper, that is, there are verticesu, v,
w such that{u, v} and{v, w} are edges of the same color. Then we have
c(F (v, u)) = c(F (v, w)), but the facetsF (v, u) andF (v, w) both contain
the vertexv. This contradicts the assumption thatc is a proper coloring of
the facets.

As already mentioned, the graphΓ (P ) of P is d-regular. By a result of
Vizing and Gupta, see West [22, 6.1.7], the edges ofΓ (P ) can be properly
colored with at mostd + 1 colors. K̈onig proved that a bipartited-regular
graph is edged-colorable, see West [22, 6.1.5]. Therefore, in view of The-
orem 16, Proposition 22 can be interpreted as a very special instance of a
classical result from graph theory.
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