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Abstract. For each strongly connected finite-dimensional (pure) simplicial
complexA we construct a finite group/ (A), the group of projectivities

of A, which is a combinatorial but not a topological invariant4f This
group is studied for combinatorial manifolds and, in particular, for poly-
topal simplicial spheres. The results are applied to a coloring problem for
simplicial (or, dually, simple) polytopes which arises in the area of toric
manifolds.

1 Introduction

In [6] Davis and Januszkiewicz introduce én+ d)-dimensional smooth
manifold Zp built from a d-dimensional simple convex polytopge with

n facets. These manifolds play a significant role in the study of (quasi-)toric
manifolds. We briefly sketch the construction. Ifebe a simplei-polytope
with n facets. Fix an ordering of the facefs = (Fi,..., F,,) and letT

be then-dimensional complex algebraic tor(6 \ {0})7. On the product
P x T define an equivalence relatien, where(p, s) ~ (g, t) if and only

if p = ¢ and thei-th component of the quotient ! in the groupT is
trivial for all facetsF; not containing the point = ¢. We obtain a manifold
Zp as the quotient spade”® x T')/ ~. For a survey on the subject see
Buchstaber and Panov [4], where the construction of the maniglds
discussed in Section 3.1. The obvious action of the t@iruwn Zp is free

* Supported by Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 288 “Dif-
ferentialgeometrie und Quantenphysik”. An extended abstract of this paper appeared in Russ.
Math. Surv.56 (2001), 584-585.
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over the interior ofP. Points which are contained in the relative interior of a
k-dimensional face have(d— k)-dimensional isotropy group. In particular,

the isotropy group of each vertex has dimensioBuchstaber suggested to
study quotients oEp by freely acting subgroups @f, see [4, Section 4.4].

In this context he defineg P) as the maximal dimension of a subgrougof
which acts freely oi£p. Izmestiev [15] defines the chromatic numb¢P)

of P as the minimal number of colors required to color the facet® of
such that any two facets sharing a vertex have distinct colors. He shows that
s(P) > n — v(P), see [4, 4.4.5], whereas it is clear th&aP’) < n — d,

see [4,4.4.2].

From our main result (Theorem 8), which is a statement on combina-
torial manifolds, we infer a combinatorial characterization for the simple
d-polytopes withy(P) = d. The aforementioned results imply that for such
polytopes we have(P) = n — d. This gives a partial answer to Prob-
lem 4.4.1 in [4]. The case(P) = n — d seems to be the most interesting
one in this context. The result for sim@epolytopes is classical. The result
for the special case of simple zonotopes is implicit in [7, Lemma 4.2.6] of
Davis, Januszkiewicz, and Scott. Moreover, since the original submission
of this paper | learned that Edwards [8] had announced a solution to the
coloring problem already in 1977. However, to the best of my knowledge,
no proof was published.

The paper is organized as follows. We start by associating a finite group
to each facet of a finite-dimensional simplicial complex, gineup of pro-
jectivities For strongly connected complexes the isomorphism class of the
group does not depend on the facet chosen. In the next section we investigate
the groups of projectivities of combinatorial manifolds. It turns out that, in
order to determine the group of projectivities, it suffices to have combinato-
rial information about the fundamental group plus local combinatorial data.
This result is then specialized to the case of simplicial spheres which arise
as boundaries of convex polytopes. A polytope is simple if and only if the
boundary of its dual is a simplicial sphere. Hence we can apply our results
on combinatorial manifolds to any simple polytope This way we obtain
the desired resulty(P) = d if and only if each2-face of P has an even
number of vertices. We conclude the paper with a few remarks and a short
appendix on how our results are related to known results in graph theory.

| am indebted to Ivan Izmestiev and FriederikérKer for stimulating
discussions on the subject. Thanks to Carsten Lange, Julian Pfeifle, and
Gunter M. Ziegler for giving helpful comments on a previous version of this
paper. Moreover, | am grateful to the anonymous referee for bringing to my
attention the paper of Davis, Januszkiewicz, and Scott [7].
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2 Simplicial complexes

An (abstract) simplicial complegn the vertex set’ is a non-empty collec-
tion A of finite subsets of’, which is closed with respect to forming subsets.
If 0 € Awith #0 = k+ 1, we say that theimplexo hasdimensiork, and
we writedim o = k. Definedim A = sup {dimo | o € A}. Throughout
the rest of the paper we always assume #hiat A < co. A simplex of A
which is maximal with respect to inclusion is calledeaet If a simplexo

is contained in another simplex theno is afaceof . The complexA is
calledpureif all its facets have the same dimension. The maximal proper
faces of the facets are thielges For a given face € A, the(closed) star

st o is the subcomplex generated by the facets contaisinghereas the
link 1k o is the subcomplex aft o of faces not containing.

By introducing barycentric coordinates on the simplices and extending
according to the concept of weak topology, every finite-dimensional simpli-
cial complexA defines a locally compact and metrizable Hausdorff space
|A|, which is compact if and only ifA is finite; see any topology text-
book, e.g. Munkres [16], for the details. We frequently apply notions from
topology toA which, if no confusion can arise, are meant to refefAq.

The dual graphI’(A) of A is an abstract graph whose nodes are the
facets ofA, and where an edge between two facets corresponds to acommon
ridge. We callA strongly connected the graphl”(A) is connected. Strong
connectedness clearly implies connectedness in the topological sense. More-
over, if A is strongly connected, thed is pure. However, our definition of
the dual graph also makes sense for non-pure complexes. In the non-pure
case each connected component of the dual graph consists of facets of the
same dimension.

For each ridgep contained in two facets, 7, there is a unique ver-
texv(o, ) which is contained i but not in7. We define thg@erspectivity
(o,7) : 0 — T by setting

v(r,0) if w=wv(o,7),
w — .
w  otherwise.

Letg = (09,01,...,0,) be afacet pathin I'(A), thatis, for each each
the facetsr; ando;,, share a common ridge. Theojectivity (g) from o,
to o,, alongg is the concatenation

<9> = <O'07017 cee 7Un> = <00701><01702> T <0'n—170n>

of perspectivities. The mafy) is a bijection fromoy to o,,. The facet
pathg is closedif o9 = o,. A closed facet path from to o is called

a facet loopbased at(. We denote the concatenation of two facet paths
g = (00,01,...,0,) @ndh = (o, 0n+1,...,0m) by g x h. Clearly, (g *

h) = (g)(h).
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For a given facet the set of projectivities along facet loops basegat
forms agroupgI (A, oy), thegroup of projectivitie®f A atoy. The group of
projectivities is a (permutation) subgroup of the symmetric greum o,
the group of all bijections on the set of verticesogf The inverse of the
facet patty is denoted by, .

Lemmal Let g be a facet path from the facet to the facetr;. Then
1I(A, 00) = (g) II(A,01) {g7)-

This implies that for strongly connectefl the isomorphism class df
(A, o) does not depend on the choice of these facety. We write I1(A)
and call it thegroup of projectivitieof A. In this case the group of projec-
tivities is a combinatorial invariant of\.

Let A and A’ be finite-dimensional simplicial complexes and fet
A — A’ asimplicial map that is, f is a map between the vertex sets which
preserves the inclusion among the faces. A simplicial map is catbed
degeneratédf it preserves dimension. Consider a non-degenerate simplicial
map between simplicial complexes of the same dimension. In this case facet
loops are mapped to facet loops and we obtain an induced map

fu=1TI(f): II(A,00) = (4, f(00)).

Consider the categoy; of pairs(A4, o), whereA is a simplicial com-
plex of fixed dimensionl ando is a facet ofA. As morphisms take the
non-degenerate simplicial maps which map base facets to base facets.

Proposition 2 I1(-) is a covariant functor from the categogy; into the
category of finite groups.

Proposition 3 Let A and A’ be d-dimensional simplicial complexes, and
let op be a facet ofA. If f : (A,00) — (A4, f(00)) is a non-degenerate
simplicial map which is injective if restricted to the set of facets, then the
induced mapfy is a group monomorphism. In particular, the group of
projectivities of a full-dimensional subcomplex#fwvhich containsr is a
subgroup ofl7( A, oy).

We want to determine the groups of projectivities for simplicial com-
plexesA of dimension at most. Up to an isomorphism there is a unique
simplicial complex of dimensior-1, namely{0}. It has a unique facet and
no ridges, so its dual graph consists of a single node. Its group of projectiv-
ities I7({0}, 0) is trivial. Similarly, if dim A = 0 the facets correspond to
the vertices, andi (A, {v}) is trivial for any vertexv. The 1-dimensional
simplicial complexes are precisely the graphs. The edges are the facets (ex-
cept for possibly existing isolated nodes). Each edge has two nodes, so the
group of projectivities is of order at mo2t
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Proposition 4 Let A be a graph and lety = {v,w} be an edge. If the
connected component @f in A contains an odd cycle, theli (A, o) is
generated by the transpositign w). Otherwise, the connected component
of oy is bipartite andII (A, oy) is trivial.

There are many ways to build new complexes from given ones. We will
explore one construction and its impact on the group of projectivities.

Let A andA’ be finite dimensional simplicial complexes over the vertex
setsV andV’, respectively, wheré” is disjoint fromV”’. Thejoin of A
and A’ is defined to be

Ax AN ={ocUd'|oeA oecA}.

Clearly,dim Ax A’ = dim A+dim A’ + 1. The facets ofA x A’ are unions

of facets ofA and A’; the ridges are unions of a facet of one complex with a
ridge of the other. Forming the join of two complexes is, in fact, a topological
operationj A x A’| is homeomorphic to the double mapping cylinder of the

projections| A x A'| — |A4], |4’|.

Proposition 5 Let A and A’ both be finite-dimensional simplicial com-
plexes with facets( and o, respectively. Thedl (A x A’ o U of)) =
II(A,00) x (A o).

Proof. We claim equality instead of the mere existence of an isomorphism
because the direct product can be interpreted as an inner direct product as
follows. The mapsf : A — A« A" : 0 — ocUojandf : A" —
Ax A’ o' — oy Uo’ both are non-degenerate and injective, which yields
monomorphismgI(f) andII(f’), respectively, by Proposition 3.

We have to prove that each projectivity in the join can be written as a
product of a projectivity inA with a projectivity in A”.

The simplices ofA x A" are written asr U ¢/, implying thate € A
ando’ € A’. Note that the distinct facetsU ¢’ andr U 7’ are adjacent if
and only ifc = 7 ando’ adjacent tar’ in 4, or o adjacent tor in A and
o =71

Moreover, any two facets U ¢/ andr U 7/ with ¢ adjacent tar ando’
adjacent ta”’ are contained in the star of the codimensiface(o N 7) U
(¢’ N 7'). There are precisely two more facets contained in this star, namely
oU7t"andrUo’. Applying the Propositions 3 and 440((c N7)U (o' N7’))
yields

(cud,our , TUT,TUd o Ud) =1

and thus

(cUd ,cur ,TUT)y=(cUd,TU , TUT). (1)
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Invoking the identity (1) several times, allows to “sort” a projectivity:
Each projectivityr from o U o{, onto itself can be written as the product

= (oo Ual,a1Uday,...,(om=0p)Uay))
(ogUay,o0Uay,...,o0U (0], =a))).

Izmestiev [14] has proved a partial converse of the previous proposition.

The d-dimensional simplicial complex\ on the vertex seV is called
balancedif thereisamap: : V' — {0,...,d} such that whenevem, w}
is an edge imA thenc(v) # c¢(w). The mapc is called gproper d-coloring
of A. Clearly, a proped-coloring of A is the same as a simplicial projection
from A onto the standard-simplex which is injective on each simplex. Oc-
casionally, thisis calledfalding mapof A. Important examples for balanced
simplicial complexes are provided by Coxeter complexes and Tits buildings,
see Stanley [20, pp 104ff]. For properties of proper colorings or folding
maps in the context of toric manifolds see Davis and Januszkiewicz [6,
Lemma 1.14 and Example 1.15].

We call a simplicial complejocally strongly connectetf it is strongly
connected and, additionally, the star of each vertex is also strongly con-
nected. There are strongly connected complexes whichis notlocally strongly
connected. For instance, consideg-alimensional complex whose dual
graph is a path such that the two triangles corresponding to the end points
of the path share a unique vertexThe star ofv is not strongly connected.

Proposition 6 Let A be a locally strongly connected simplicial complex.
ThenA is balanced if and only if7(A) is trivial.

Proof. Fix an arbitrary facet of A and an arbitrary coloring of the vertices
of 0. For each facet paiifrom o) to some other facet the projectivity(g)
induces a coloring of the vertices ef Two such colorings induced by
facet pathsy and ¢/, respectively, coincide if and only if the projectivity
(¢'* g7) = (¢"){g)~t, which is induced by the facet logp * g~ based at
00, is the identity. Observe that, in general, the color of a vertexs does
depend on the choice of the facetSince, however, the star ofin A is
also strongly connected, this color is the same for all facets containing

Itis worth mentioning that the property of being balanced is by no means
a topological invariant. To the contrary, for arbitrafiythe barycentric sub-
divisionsd A is always balanced.

3 Combinatorial manifolds

We now impose severe topological restrictions on the simplicial complexes
studied. A finited-dimensional simplicial complex\ is a combinatorial
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manifold if the link of eachk-face is a simplicial sphere of dimension

d — k — 1. In particular, the link of each codimensi@dface is al-sphere,

that is, the boundary of a polygon on the combinatorial level. Note that our

(combinatorial) manifolds are always compact and without boundary. How-

ever, the results below can suitably be extended to combinatorial manifolds
with boundary.

If Aisacombinatorial manifold, thejx\| is a PL-manifold. Conversely,

a PL-manifold M always admits a triangulatiod (compatible with the
PL-structure), such that is a combinatorial manifold. For a general intro-
duction to combinatorial and PL-manifolds see Hudson [12], Glaser [10],
or [13, 65 (IX.17)].

Throughout the following letA be a combinatorial manifold. This im-
plies that the dual graph'(A) is strongly connected, so the isomorphism
class of the group of projectivities does not depend on the facet chosen.

Consider the joint geometric realizatiga| of A and its dual block
complexA* within a realization of the first barycentric subdivisigh A,
see Munkres [16;64] and also Glaser [10, pp. 83ff]. This way each facet
path canonically yields an edge path in thekeleton of the dual block
complexA* and vice versa. Often we will not distinguish between a facet
path and its corresponding edge pathiin As A is a combinatorial manifold
the blocks inA* are, in fact, cells. In particular, the blocks are simply
connected.

It is known that any path ifA| = |A*|| is homotopic to a path in the
1-skeleton ofA* which is the same as the dual graphfin Seifert and
Threlfall [19,844] this is proved for simplicial complexes, but the arguments
given can directly be extended to arbitrary cell complexes. In particular,
the fundamental group; (A, o) for xg € |A| is generated by facet loops
based ato whereo, is some facet withyy € |og]|. Usually, in the geometric
realization we chooseg, to be the barycenter of the facgf, and we write
m1(4, 0p). Note that, asA is assumed to be finite, the group(A, oy) is
finitely generated.

Define thereduced group of projectivitieH (A, o) to be the subgroup
of IT(A, o) generated by facet loops based@tvhich are null-homotopic.
Similar to what is expressed in Lemma 1 the reduced group of projectivities
is a combinatorial invariant of the connected component,ah A.

Proposition 7 Letpy, ..., p, be aset of facet loops basedgtgenerating
the fundamental group( A, og). ThenlI (A, o0y) is generated byly( A, og)
together with(p1), ..., (pm).

In particular, ifT1 (A, 09) is trivial thenIIy(A, o¢) = II1(A, 0p). The
converse does not hold.

The link of each codimensio2-facex is ann-gon for some: > 3; see
Fig. 1. Due to the obvious bijection between the facetk miand the facets
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Fig. 1. Pentagonal link of an edge in3amanifold.

in st x we see that (st k) is also anrn-gon. Theparity of «, that is, the
property of beingevenor odd, is the parity ofn.

Let x be a codimensio-facek, o a facet containing:, andg a path
from oy to 0. As st k is simply connected we infer that the path [ x g~
is null-homotopic for any facet loopin st x based atr. Thus we have
(gxlxg™) € Io(A,o00).

If xis odd, in view of Proposition 4, the group(st , o) is of order2,
generated by some facet lobpased at. Then(g{*g~) is a transposition
on the sety.

Theorem 8 The reduced group of projectivitids, (A, o) is generated by
the set of all projectivitiegg [« g~ ) whereg is a facet path frona, to some
faceto which contains an odd codimensi@rface and! is a facet loop
based at generatinglI (st x, o). In particular, IIo(A, 0¢) is generated by
transpositions.

Proof. Letr be an arbitrary facet loop basedgtwhich is null-homotopic.
Without loss of generality lety be the vertex ofA* corresponding to the
barycenter ofy. It is known that can be contracted to the constant map
atxo within the 2-skeleton ofA*. Discretizing a suitable homotopy from
to ¢, yields asequencs, . . ., r, of closed paths in the-skeleton fromeg
to x( in the 1-skeleton ofA* such that; = r, r, = ¢,, andr; coincides
with ;1 outside some-face F; of A*; see Fig. 2. The dual af; in Aisa
codimensior2-facex;.

Because the facet pathsandr; are the same outside « we have that
the projectivity (r1)(r2)~! coincides with some projectivityg * [ * g~),
whereg is the common initial segment of andrs up to some facet € st x
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Fig. 2. Combinatorial homotopy between paths in the dual graph within the star of the
codimensiorg2-facex.

and/ is a facet loop inst x based at. In particular, by Proposition 4,
(r1)(ro)~1 is either a transposition or trivial, depending on the parity of
An induction onn establishes the theorem.

Corollary 9 The reduced group of projectivitied, of a combinatorial
manifold is isomorphic to a direct product of symmetric groups.

The same result does not hold for the whole group of projectiviifes
For an example see Fig. 3.

Corollary 10 The reduced group of projectivitié®, (A, o) is trivial if and
only if each codimensioR-face ofA is even.

Corollary 11 Suppose thatA is simply connected. Thef is balanced if
and only if each codimensiaiface ofA is even.

Corollary 11 seems to be known: It is announced, without a proof, in
Edwards [8]: “The above theorem [on a reformulation of the Four Color
Problem] developed from a lunch table conversation at I.H.E.S., Bures-sur-
Yvette, France, in which P. Deligne-R. MacPherson-J. Morgan observed
that a closed]-connected, PL triangulatedmanifold is(n + 1)-colorable
<= each(n — 2)-simplex has even order.”

The group of projectivities is an interesting invariant of a combinato-
rial manifold. Consider, for example, two different triangulations of the
2-torusS! x S! as depicted in Fig. 3. The first triangulati@h(to the left)
is standard. The second triangulatidns produced froni" by flipping the
diagonal edges in the three squares of the middle column; in order to give it
some name, call &nti-torus Several combinatorial invariants fand A
coincide: e.g., theg'-vector, the vector of vertex-degrees in the graph, the
Altshuler determinant. But the groups of projectivities differ.
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» ¢

P P

Fig. 3. Left Standard toru§” with facet loopsp and ¢ which correspond to a generating
system of the fundamental grouRight “anti-torus” A with similar facet loopp andq’.

This can be seen as follows. Fix the faegt= {1, 2,4} in both triangu-
lations. The codimensioR-faces are the vertices. In both triangulations, the
link of each vertex is the boundary of a hexagon. Therefore, by Corollary 10,
the only potentially non-trivial contributions td (7', o) andII (A, o¢) can
come from the fundamental group which is known to be isomorptifctd..

The facet loops

p=({1,2,4},{2,4,5},{4,5,7},{5,7,8},{1,7,8},{1,2,8},{1,2,4})
and
q= ({1,2,4}, {2,4,5},{2,3,5}, {3,5,6}, {1,3,6}, {1,4,6},{1,2,4})

generate the group; (T, 0¢). Verify that both(p) and(q) are equal to the
identity. Nowp and

¢ = ({1,2,4},{2,4,5},{2,5,6},{2,3,6},{1,3,6},{1,4,6},{1,2,4})

generater; (A, 0p). Again(p) = id, but(¢’) isthe3-cycle(14 2). Therefore,
II(A,00) 2 Z/3.

4 Polytopes

A polytope issimpleif each of its vertex figures is a simplex, or, equivalently,
forany givenvertex thereis a 1-1 correspondence betweenthe sets of edges
throughv and the faces containing For an introduction to the theory

of convex polytopes, see Ziegler [23]. Here we restrict our attention to
polytopes which are convex.
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There is another way to characterize simple polytopes, which suits our
needs: A polytope® is simple if and only if its dualP* is simplicial, that
is, each proper face is a simplex. In particular, the boundary complex of a
simple polytope is the dual cell complex of a polytopal sphere. Therefore,
we can dualize our definition of perspectivity. The results of the previous
section apply.

Let v be a vertex in the simplé-polytope P. Denote the set of facets
throughv by F(v). If w is a vertex adjacent tothen there is a unique facet
F(v,w) contained inF(v) \ F(w). Theperspectivityfrom v to w is defined
as
F(w,v) if F = F(v,w),

(v, w) : F(v) = F(w) : F { F  otherwise.

Againprojectivitiesare concatenations of perspectivities. As the boundary of
a polytope is connected the isomorphism class of the group of projectivities
does not depend on the vertex chosen.

Note that eacl2-face of P corresponds to (the link of) a codimension-
2-face of the dual. Therefore the following corollary follows from our The-
orem 8.

Corollary 12 For any vertexv the group of projectivitied (P, v) is gen-
erated by projectivities with respect to paths around Phiaces with an
odd number of vertices. In particular, if ea@Hface has an even number of
vertices, then the group of projectivities vanishes.

Proof. The boundary complex of a polytope is homeomorphic to a sphere,
and thus the fundamental group is trivial, provided that the dimension of the
polytope is at leasi. The group of projectivities coincides with the reduced
group of projectivities. FoR-dimensional polytopes the onf¢face is the
polytope itself and the result follows from Proposition 41Alimensional
polytope does not have aryface, its dual graph consists of two isolated
points, and hence the group of projectivities is trivial.

This directly allows to compute the group of projectivities of many known
polytopes, including all regular simple polytopes.

Corollary 13 The group of projectivities of thd-simplex is isomorphic
to .S,.
The group of projectivities of the dodecahedron is isomorphigs;to
The group of projectivities of the regulae0-cell is isomorphic taSy.
The group of projectivities of thécube is trivial.

Proof. Each2-face of a simplex is a triangle. Ea@iface of the dodec-
ahedron and thé20-cell is a pentagon. Eachface of thed-cube is a
guadrangle.
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In Proposition 5 we discussed the effect of forming joins of simplicial
complexes on the group of projectivities. This can be translated into a result
about simple polytopes.

Corollary 14 Let P and (@ be simple polytopes with respective vertices
andw. ThenII(P x Q, (v,w)) = II(P,v) x II(Q,w).

Proof. The productP x (Q is again a simple polytope. Its boundary complex
is dual to the join of the duals of the boundary complexe® @ind@.

The example of products of simplices shows that for pastition of d,
thatis, a sequendé;, . . ., di) of natural numbers witd; > 1 and) d; =
d, there is a simpl@-polytope whose group of projectivities is isomorphic
t0 Sq, x --- x Sg,. From Corollary 9 we infer that, in fact, this is the only
class of groups which occurs as groups of projectivities of simple polytopes.
We obtain a combinatorial invariant of a simple polytope.

Corollary 15 Let P be a simpled-polytope. Then there is a unique par-
tition (dy,...,dg) of d with d; < dy < --- < dj such thatlI(P) =
Sdl X XSdk-

The Corollary 12 characterizes those simple polytopes wBdsees
have an even number of vertices. We call such simple polyteypes Note
that each simple zonotope is an even simple polytope. But, an easy con-
struction shows that the even simple polytopes form a (much) wider class.
For an example see Fig. 4.

Let P be an arbitraryl-polytope. Define a graph(P) whose nodes are
the facets of?; two facets are joined by an edgeliti P) if their intersection
is not empty. Aproper (node) coloringof a graph is an assignment of a
color to each node such that any two adjacent nodes have different colors.
The chromatic numberof a graph is the minimal number of colors in a
proper coloring. Following Izmestiev [15], thehromatic numbery(P) of
the polytopeP is now defined as the chromatic number of the grapR).

As every vertex o is contained in at leagtfacets, itis clear that it requires
at leastd colors to colorl’(P) properly. Moreover, ify(P) = d thenP is
simple.

Thel-skeleton of a polytope also forms an abstract graph, which is more
commonly studied in polytope theory. In order to avoid confusion we call
this graph therertex-edge-grapbf P.

For simple polytopes the gragh P) coincides with its dual graph, that
is, the vertex-edge-graph of the dual (simplicial) polytope: This follows from
the fact that each vertex figure of a simple polytope is a simplex. Hence any
two facets which share a vertex already have a common ridge.
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Fig. 4. Even simple3-polytopeM which is not combinatorially equivalent to any zonotope.

The polytopeM is constructed as thiblendingof two cubes. This operation on simple
polytopes has been introduced by Barnette [ljpasing; it is calledconnected surim [5].

The f-vector of M equals(14, 21,9). This is not thef-vector of any zonotope, because
zonotopes, being centrally symmetric, have an even number of facets. One can show that
among all even simpl&-polytopes which are not combinatorially equivalent to any zonotope,

P has the minimal number of vertices as well as the minimal number of facets. We indicate
the bipartition of the vertex set according to Theorem 16. The picture has been produced
with polymake [9] andJavaView [18].

Theorem 16 Let P be a simplei-polytope. Then the following properties
are equivalent.

1. The polytopeP is even.

2. The vertex-edge-graph &fis bipartite.

3. The boundary complexP* of the dual is balanced.
4, v(P) = d.

Proof. Let P be an even simplé-polytope. Due to Corollary 12 we know
that this is characterized by the property that the group of projectivities
vanishes. A proper coloring of the facets Bfclearly corresponds to a
proper coloring of the vertices of the du&f. The existence of such a
coloring now follows from Proposition 6. This proves the equivalence of
the first, the third and the fourth statement. The equivalence of the first and
the second statement is known. We indicate a short proof in the Appendix.

The same result foB-dimensional polytopes is classical, see Ore [17,
13.1.1] and also Izmestiev [15] for a more recent proof. The proofs employ
techniques, for which it seems to be unclear how they can be generalized
to higher dimensions. The result férdimensional polytopes follows from
work of Goodman and Onishi [11]. Davis, Januszkiewicz, and Scott proved
in [7, Lemma 4.2.6] that the boundary complex of the dual of a simple
zonotope is balanced.
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Recall the definition of the manifol&p = (P x T')/ ~ from the in-
troduction. The numbes(P) is defined as the maximal dimension of a
subgroup of the algebraic torswhich acts freely or£p.

Corollary 17 If P is an even simplé-polytope, thers(P) = n — d.

Proof. The dimensions(P) of a freely acting subgroup is bounded from
above byn — d according to Buchstaber and Panov [4, 4.4.2]. The same
number is bounded from below by— ~(P) by a result of Izmestiev [15],
see [4, 4.4.5]. But the Theorem 16 enfore€®) = d.

From the fact that the coloring defined in the proof of Proposition 6 is
indeed a proper coloring we immediately obtain the following corollary.

Corollary 18 Let P be an even simplé-polytope. Suppose thatand w
are adjacent vertices aP. Then the two facets'(v, w) and F'(w,v) are
disjoint.

5 Concluding remarks

The termsperspectivityand projectivity are borrowed from incidence ge-
ometry, in particular from the theory of projective planes and generalized
polygons, see Van Maldeghem [21, Section 1.5]. These notions in turn are
inspired by concepts from projective geometry. Moreover, some properties
of our groups of projectivities suggest that they can also be seen as some
combinatorial analogue of holonomy groups.

It is natural to ask what kind of finite groups can arise as the groups of
projectivities of interesting simplicial complexes. From Theorem 8 we know
that the group of projectivities of any simply connected combinatorial man-
ifold is necessarily isomorphic to a, possibly trivial, product of symmetric
groups. Izmestiev [14] shows that for each conjugacy class of a subgroup of
the symmetric group,; of degreel + 1 there is a combinatorial manifold
such that the given group arises as the group of projectivities.

A lot is known about thef-vectors of balanced simplicial complexes.
This is particularly true for balanced Cohen-Macaulay complexes which
include the boundary complexes of simplicial polytopes. See Stanley [20,
Section 111.4] as well as Billera and Byner [2, 15.1.3, 15.2.4].

There is an intriguing question on planar graphs which is open for quite
some time now. It might be worthwhile to explore whether the methods
developed in this paper can contribute towards a solution.

Conjecture 19 (Barnette 1970 he vertex-edge-graph of an even simple
3-polytope contains a Hamiltonian cycle.
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For one fairly large class of even simple polytopes one can see immedi-
ately that this conjecture holds. Start from an arbitrary simple polyfépe
Successively truncate all the faces with increasing dimension to oBtain
Truncation is dual to stellar subdivision. So the boundary of the polyfdpe
is dual to the barycentric subdivision of the boundaryéf In particular,P’
is even. Now, each spanning tree in the dual graph gields a Hamiltonian
cycle in the vertex-edge-graph &¥.

6 Appendix

Let I" be a finite graph with node sét and edge sek. Consider théfs-
vector spac&’ of mappings ofE into F,. Each subset o corresponds
to such a map via the characteristic function. Tiele spacef I" is the
subspace€’ (') of F¥’ generated by all cycles df.

A pure polytopal compleks a finite collectionPy,..., P, € R" of
convexd-polytopes such that the intersection of any two polytopes is a face
in both. The boundary complex of any polytope is a polytopal complex, for
instance. We want to recursively define #tmnstructibility of a polytopal
complex: A polytope is constructible. A pure polytopal compi&xvhich
is the union of pure constructible subcomplexesnd B is constructible
if the intersectionA N B is a pure constructible complex. The notion of
constructibility generalizes the conceptstifellability, see Ziegler [2338].
From a theorem of Bruggesser and Mani [3] it is known that the boundary
complexes of polytopes are shellable and thus constructible.

The 1-skeleton of a polytopal complex forms an abstract graph).
For A being the boundary of a convex polytope we callgd\) thevertex-
edge-grapthof the polytope above. The following result is known. A proof
follows from a double induction on the dimension of the compfeand the
number of the polytopes comprisin)

Proposition 20 Let A be a constructible polytopal complex. Then the cycle
spaceC(I'(A)) is generated by the cycles corresponding to 2Haces
of A.

A finite graph is bipatrtite if and only if all the cycles in a cycle basis have
even length. In particular, a simple polytope is even if and only if its graph
is bipartite. This proves the equivalence of the first and the third statement
in Theorem 16.

The vertex-edge-graph of any simplgolytope isd-regular. A bipartite
regular graph has an even number of vertices because, by double counting,
both color classes are of the same size.

Corollary 21 An even simple polytope has an even number of vertices.
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We want to explore the relationship between proper facet colorings of
a simple polytope and proper edge colorings of its vertex-edge-graph. An
edge coloring of a graph igroper if any two edges which share a vertex
have distinct colors.

Proposition 22 Let P be a simplel-polytope, and let be a proper coloring
of I'(P) with d colors. Therr induces a proper edge coloring of the vertex-
edge-graph"( P) with d colors.

Proof. Lete = {v,w} be an edge of°. If I'(P) is properlyd-colored,
then the two facet$’(v, w) and F'(w, v) have the same color. Assign this
color to the edge:. Evidently, this procedure requires exactlycolors.
Assume that this edge coloring is not proper, that is, there are vettices

w such that{u, v} and{v,w} are edges of the same color. Then we have
c(F(v,u)) = c¢(F(v,w)), but the facetd'(v,u) and F' (v, w) both contain
the vertexv. This contradicts the assumption that a proper coloring of
the facets.

As already mentioned, the graph{ P) of P is d-regular. By a result of
Vizing and Gupta, see West [22, 6.1.7], the edgeE @P) can be properly
colored with at mostl + 1 colors. Konig proved that a bipartité-regular
graph is edge-colorable, see West [22, 6.1.5]. Therefore, in view of The-
orem 16, Proposition 22 can be interpreted as a very special instance of a
classical result from graph theory.
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