Necklace Lie algebras and noncommutative symplectic geometry

Raf Bocklandt, Lieven Le Bruyn

Universiteit Antwerpen (UIA), B-2610 Antwerp, Belgium (e-mail: rbockl@wins.uia.ac.be; http://win-www.uia.ac.be/u/rbockl/; lebruyn@wins.uia.ac.be; http://win-www.uia.ac.be/u/lebruyn/)

Received: 19 October 2000; in final form: 9 May 2001 / Published online: 28 February $2002 - (c)$ Springer-Verlag 2002

Abstract. Recently, V. Ginzburg proved that Calogero phase space is a coadjoint orbit for some infinite dimensional Lie algebra coming from noncommutative symplectic geometry, [12]. In this note we generalize his argument to specific quotient varieties of representations of (deformed) preprojective algebras. This result was also obtained independently by V. Ginzburg [13]. Using results of W. Crawley-Boevey and M. Holland [10], [8] and [9] we give a combinatorial description of all the relevant couples (α, λ) which are coadjoint orbits. We give a conjectural explanation for this coadjoint orbit result and relate it to different noncommutative notions of smoothness.

1 Introduction

In [18, § 9] M. Kontsevich gave a somewhat cryptic outline of possible applications of noncommutative (symplectic) geometry to representation theory. If A is a formally smooth algebra (such as free algebras or path algebras of quivers), then J. Cuntz and D. Quillen [11] have shown that the cohomology of the noncommutative deRham complex gives cyclic homology of algebras. Motivated by this, M. Kontsevich proposed to associate to A commutative affine schemes rep_n A, the *n*-dimensional representations of A. For A formally smooth it follows that these schemes are smooth varieties. In this situation one assumes that noncommutative functions, noncommutative differential or symplectic forms on A induce ordinary GL_n -invariant functions, differential and symplectic forms on the varieties $\operatorname{rep}_n A$ and hence on the corresponding quotient varieties iss_n A. If A is equipped with a

Research Director of the FWO (Belgium)

noncommutative symplectic form, the noncommutative functions acquire a Lie algebra structure and one might expect that in ideal situations some subvarieties of the iss_n A will be coadjoint orbits for this Lie structure. In the paper [18] M. Kontsevich proved an acyclicity result for the noncommutative deRham cohomology for A a free associative algebra and computed the Lie structure on the functions when there is an even number of free generators.

As mentioned before, the path algebra $\mathbb{C}Q$ of a finite quiver Q is a formally smooth algebra. The representation varieties for $\mathbb{C}Q$ decompose as

$$
\mathtt{rep}_n\,\mathbb{C} Q=\bigsqcup_\alpha\, GL_n\rtimes^{GL(\alpha)}\mathtt{rep}_\alpha\,\mathbb{C} Q
$$

where $\alpha = (n_1, \ldots, n_k)$ runs over all dimension vectors with $\sum n_i = n$ and where $GL(\alpha) = GL_{n_1} \times ... \times GL_{n_k}$ is the basechange group of the vertex spaces. For this reason it is customary to consider the *quiver representation spaces* rep_{α} $\mathbb{C}Q$ rather than all *n*-dimensional representations. In order to apply Kontsevich's idea to the representation theory of quivers we need not to consider the usual deRham complex but rather the *relative* deRham complex with respect to the subalgebra V generated by the vertex-idempotents. In Sect. 3 we redo Kontsevich's computation of the cohomology groups of free algebras for these relative cohomology groups of CQ and prove

Theorem 1.1. *The noncommutative relative deRham cohomology groups of* CQ *are*

$$
\begin{cases}\nH_{dR}^0 \mathbb{C}Q & \simeq V \\
H_{dR}^n \mathbb{C}Q & \simeq 0 \qquad \forall n \ge 1\n\end{cases}
$$

Next, we bring in the symplectic structure. We consider the double quiver $\mathbb Q$ of Q obtained by adjoining to every arrow a in Q an arrow in the opposite direction a^* . On the space of noncommutative functions

$$
\mathbb{N}_Q = \frac{\mathbb{CQ}}{[\mathbb{CQ}, \mathbb{CQ}]}
$$

which is spanned by the necklace words in $\mathbb Q$ (that is, the oriented cycles in the quiver $\mathbb Q$ considered upto cyclic permutation of the arrows) we can define a Lie algebra structure see Fig. 1, which we call the *necklace Lie algebra* \mathbb{N}_{Ω} . Using our results on deRham cohomology we are able in Sect. 4 to prove the existence of a central extension result

Theorem 1.2. *If* V *is equipped with the (trivial) commutator bracket, then there is a central extension of Lie algebras*

$$
0 \longrightarrow V \longrightarrow \mathbb{N}_Q \longrightarrow Der_{\omega} \mathbb{C}Q \longrightarrow 0
$$

Fig. 1. Lie bracket $[w_1, w_2]$ in \mathbb{N}_Q

*where the last term is the Lie algebra of symplectic derivations correspond*ing to the symplectic structure $\omega = \sum_{a \in Q_a} da^* da$.

The Lie algebra of symplectic derivations corresponds to the group of $\sum_{a\in Q_a}[a, a^*]\in \mathbb{C}\mathbb{Q}$. For this reason it is natural to expect that coadjointness V-algebra automorphisms of $\mathbb{C}Q$ which preserve the *moment element* $m =$ results for the necklace Lie algebra \mathbb{N}_Q come from representation schemes of (deformed) preprojective algebras as introduced by W. Crawley-Boevey and M. Holland in [10]

$$
\varPi_\lambda=\frac{\mathbb{C}\mathbb{Q}}{(m-\lambda)}
$$

where $\lambda = (\lambda_1, \dots, \lambda_k) \in \mathbb{C}^k$. However, as we will prove in Sect. 6 these deformed preprojective algebras are *never* formally smooth so usually their representation schemes $\text{rep}_{\alpha} \Pi_{\lambda}$ will be highly singular as are their quotient schemes iss_α Π_{λ} . Still, extending the original approach of V. Ginzburg on the coadjointness of Calogero-Moser particles to this situation we are able in Sect. 5 to prove the following result.

Theorem 1.3. *If* α *is a dimension vector of a simple* Π_{λ} *-representation which is minimal, that is cannot be decomposed as a sum of two smaller dimension vectors of simples, then*

$$
\mathtt{iss}_\alpha\,\varPi_\lambda
$$

is a coadjoint orbit for the necklace Lie algebra \mathbb{N}_Q *.*

For this result to be applicable we need a description of the set of dimension vectors of simple representations of Π_{λ} . Fortunately this (hard) problem was solved by W. Crawley-Boevey [8].

In the final section we try to give a conjectural explanation underlying these coadjoint orbit results. Consider the algebra $A_{\mathcal{O}} = \mathbb{C}[\mathbb{N}_{\mathcal{O}}] \otimes$ CQ with trace, mapping an oriented cycle to the corresponding necklace word and consider the group Aut_O of trace preserving V-algebra automorphisms of $A_{\mathcal{O}}$ preserving the moment element. Then, we conjecture that this group acts transitively on each stratum of the quotient variety iss_α Π_{λ} = rep_α $\Pi_{\lambda}/GL(\alpha)$ determined by a representation type of semisimple representations. The coadjoint orbit result would then be a consequence of the conjecture that for deformed preprojective algebras the noncommutative α -smooth locus (the subvariety of iss_{α} Π_{λ} such that the inverse image of the quotient map is a smooth subscheme of $\text{rep}_{\alpha} \Pi_{\lambda}$) coincides with the Azumaya algebra (the subvariety of iss_{α} Π_{λ} where the quotient map is a principal $PGL(\alpha)$ -fibration in the étale topology) of the α -dimensional approximation $\Pi_{\lambda} @ \alpha$ of the deformed preprojective algebra. For more details and for the relation with relative notions of noncommutative smoothness we refer to Sect. 6. Using the computation of the dimension of ext-groups of the preprojective algebra Π_0 by W. Crawley-Boevey [9] we are able to prove:

Theorem 1.4. *For* α *a* dimension vector of a simple representation of Π_0 , *the* α -smooth locus of the preprojective algebra Π_0 coincides with the Azu*maya locus.*

We expect that the conjecture holds for arbitrary deformed preprojective algebras by a hyper-Kähler type argument and prove some partial results in this direction.

2Necklace Lie algebras

In this section we introduce the main object of this note in a purely combinatorial way. Recall that a *quiver* Q is a finite directed graph on a set of vertices $Q_v = \{v_1, \ldots, v_k\}$, having a finite set $Q_a = \{a_1, \ldots, a_l\}$ of arrows, where we allow loops as well as multiple arrows between vertices. An arrow a with starting vertex $s(a) = v_i$ and terminating vertex $t(a) = v_i$ will be depicted as $\bigcirc \leftarrow a$ \bigcirc . The quiver information is encoded in the *Euler form* which is the bilinear form on \mathbb{Z}^k determined by the matrix $\chi_O \in M_k(\mathbb{Z})$ with

$$
\chi_{ij} = \delta_{ij} - # \{ a \in Q_a \mid \bigcirc \leq a \quad \odot \}
$$

The symmetrization $T_Q = \chi_Q + \chi_{Q}^{tr}$ of this matrix determines the *Tits form* of the quiver Q. An oriented cycle $c = a_{i_1} \dots a_{i_1}$ of length $u \ge 1$ is a concatenation of arrows in Q such that $t(a_{i_j}) = s(a_{i_{j+1}})$ and $t(a_{i_u}) = s(a_{i_1})$. In addition to these there are k oriented cycles e_i of length 0 corresponding to the vertices of Q . All oriented cycles c' obtained from c by cyclically permuting the arrow components are said to be equivalent to c. A *necklace word* w for Q is an equivalence class of oriented cycles in the quiver Q.

The *double quiver* $\mathbb Q$ of Q is the quiver obtained by adjoining to every arrow (or loop) \circledcirc \leftarrow \circledcirc in Q an arrow in the opposite direction - $\circled{)}\xrightarrow{a^*} \circledast$. That is, $\chi_{\mathbb{Q}} = T_Q - \mathbb{I}_k$.

The *necklace Lie algebra* \mathbb{N}_Q for the quiver Q has as basis the set of all necklace words w for the *double* quiver Q and where the Lie bracket $[w_1, w_2]$ is determined as in Fig. 1. That is, for every arrow $a \in Q_a$ we look for an occurrence of a in w_1 and of a^* in w_2 . We then open up the necklaces by removing these factors and regluing the open ends together to form a new necklace word. We repeat this operation for *all* occurrences of a (in w_1) and a^* (in w_2). We then replace the roles of a^* and a and redo this operation with a minus sign. Finally, we add up all these obtained necklace words for all arrows $a \in Q_a$. Using this graphical description the Jacobi identity for \mathbb{N}_{Ω} follows from Fig. 2.

3 An acyclicity result

The *path algebra* CQ of a quiver Q has as basis the set of all oriented paths $p = a_{i_1} \ldots a_{i_1}$ of length $u \ge 1$ in the quiver, that is $s(a_{i_{i+1}}) = t(a_{i_i})$ together with the vertex-idempotents e_i of length zero. Multiplication in $\mathbb{C}Q$ is induced by (left) concatenation of paths. More precisely, $1 = e_1 + \ldots + e_k$ is a decomposition of 1 into mutually orthogonal idempotents and further we define

- $e_j.a$ is always zero unless $\bigcirc \leftarrow a$ \bigcirc in which case it is the path a,
- $a.e_i$ is always zero unless $\bigcirc \leftarrow a$ o in which case it is the path a,
- $a_i a_j$ is always zero unless $\bigcirc \leftarrow a_i$ $\bigcirc \leftarrow a_j$ in which case it is the path $a_i a_j$.

Path algebras of quivers are the archetypical examples of *formally smooth algebras* as introduced and studied in [11].

In this section we will generalize Kontsevich's acyclicity result for the noncommutative deRham cohomology of the free algebra [18] to that of the path algebra CQ. The crucial idea is to consider the *relative* differential forms (as defined in [11]) of $\mathbb{C}Q$ with respect to the semisimple subalgebra $V = \mathbb{C} \times \ldots \times \mathbb{C}$ generated by the vertex idempotents. The idea being that in considering quiver representations one works in the category of V -algebras rather than C-algebras.

For a subalgebra B of A, let \overline{A}_B denote the cokernel of the inclusion as B-bimodule. The space of relative differential forms of degree n of A with

Fig. 2. Jacobi identity for the necklace Lie algebra \mathbb{N}_Q . Term 1a vanishes against 2c, term 1b against 3d, 1c against 3a, 1d against 2b, 2a against 3c and 2d against 3b

respect to B is

$$
\Omega_B^n A = A \otimes_B \underbrace{\overline{A}_B \otimes_B \ldots \otimes_B \overline{A}_B}_{n}
$$

The space Ω_B^{\bullet} A is given a differential graded algebra structure by taking the multiplication

$$
(a_0, \ldots, a_n)(a_{n+1}, \ldots, a_m)
$$

=
$$
\sum_{i=0}^n (-1)^{n-i} (a_0, \ldots, a_{i-1}, a_i a_{i+1}, a_{i+2}, \ldots, a_m)
$$

and the differential $d(a_0,\ldots,a_n) = (1,a_0,\ldots,a_n)$, see [11]. Here, (a_0,\ldots,a_n) a_n) is a representant of the class $a_0da_1 \dots da_n \in \Omega_B^n$ A and we recall that Ω_B^{\bullet} A s generated by the a and da for all $a \in A$. The *relative cohomology* H_B^n A is defined as the cohomology of the complex Ω_B^{\bullet} A.

For $\theta \in Der_B A$, the Lie algebra of B-derivations of A (that is θ is a derivation of A and $\theta(B)=0$), we define a degree preserving derivation L_{θ} and a degree -1 super-derivation i_{θ} on Ω_B^{\bullet} A (that is, for all $\omega \in \Omega_B^i$ A we have that $i_{\theta}(\omega \omega') = i_{\theta}(\omega) \omega' + (-1)^i \omega i_{\theta}(\omega')$

by the rules

$$
\begin{cases}\nL_{\theta}(a) = \theta(a) & L_{\theta}(da) = d \theta(a) \\
i_{\theta}(a) = 0 & i_{\theta}(da) = \theta(a)\n\end{cases}
$$

for all $a \in A$. We have the Cartan homotopy formula $L_{\theta} = i_{\theta} \circ d + d \circ i_{\theta}$ as both sides are degree preserving derivations on Ω_B^{\bullet} A and they agree on all the generators a and da for $a \in A$.

Lemma 3.1. *Let* $\theta, \gamma \in Der_B A$, then we have on Ω_B^{\bullet} A the identities of *operators*

$$
\begin{cases}\nL_{\theta} \circ i_{\gamma} - i_{\gamma} \circ L_{\theta} = [L_{\theta}, i_{\gamma}] & = i_{[\theta, \gamma]} = i_{\theta \circ \gamma - \gamma \circ \theta} \\
L_{\theta} \circ L_{\gamma} - L_{\gamma} \circ L_{\theta} = [L_{\theta}, L_{\gamma}] & = L_{[\theta, \gamma]} = L_{\theta \circ \gamma - \gamma \circ \theta}\n\end{cases}
$$

Proof. Consider the first identity. By definition both sides are degree −1 super-derivations on Ω_B^{\bullet} A so it suffices to check that they agree on generators. Clearly, both sides give 0 when evaluated on $a \in A$ and for da we have

$$
(L_{\theta} \circ i_{\gamma} - i_{\gamma} \circ L_{\theta})da = L_{\theta} \gamma(a) - i_{\gamma} d \theta(a) = \theta \gamma(a) - \gamma \theta(a) = i_{\theta, \gamma}(da)
$$

A similar argument proves the second identity.

Specialize to the quiver-case with $A = \mathbb{C}Q$ the path algebra and $B =$ $V = \mathbb{C}^k$ the vertex algebra.

Lemma 3.2. Let Q be a quiver on k vertices, then a basis for Ω_V^n $\mathbb{C}Q$ is *given by the elements*

$$
p_0dp_1\ldots dp_n
$$

where p_i *is an oriented path in the quiver such that length* $p_0 \geq 0$ *and* length $p_i > 1$ for $1 \leq i \leq n$ and such that the starting point of p_i is the *endpoint of* p_{i+1} *for all* $1 \leq i \leq n-1$ *.*

Proof. Clearly $l(p_i) > 1$ when $i > 1$ or p_i would be a vertex-idempotent whence in V. Let v be the starting point of p_i and w the end point of p_{i+1} and assume that $v \neq w$, then

$$
p_i \otimes_V p_{i+1} = p_i v \otimes_V wp_{i+1} = p_i vw \otimes_V p_{i+1} = 0
$$

from which the assertion follows.

Proposition 3.3. *Let* Q *be a quiver on* k *vertices, then the relative differential form-complex have the following cohomology*

$$
\begin{cases}\nH_V^0 \mathbb{C}Q & \simeq \mathbb{C} \times \ldots \times \mathbb{C} \ (k \text{ factors}) \\
H_V^n \mathbb{C}Q & \simeq 0 \qquad \forall n \ge 1\n\end{cases}
$$

Proof. Define the *Euler derivation* E on CQ by the rules that

 $E(e_i)=0 \forall 1 \leq i \leq k$ and $E(a)=a \forall a \in Q_a$

By induction on the length $l(p)$ of an oriented path p in the quiver Q one easily verifies that $E(p) = l(p)p$. By induction one can also proof that $L_E(p_0dp_1 \ldots dp_n)=(l(p_0) + \cdots + l(p_n))p_0dp_1 \ldots dp_n$. This implies that L_E is a bijection on each $\Omega_V^i \mathbb{C} Q$, where $i > 1$ and on $\Omega_V^0 \mathbb{C} Q$, L_E has V as its kernel. By applying the Cartan homotopy formula for L_E , we obtain that the complex is acyclic.

The complex Ω_V^{\bullet} CQ induces the *relative Karoubi complex*

 $\mathrm{dR}_V^0\ \mathbb{C} Q \stackrel{d}{\longrightarrow}\mathrm{dR}_V^1\ \mathbb{C} Q \stackrel{d}{\longrightarrow}\mathrm{dR}_V^2\ \mathbb{C} Q \stackrel{d}{\longrightarrow}\ \ldots$

with

$$
\mathrm{dR}_{V}^{n}\ \mathbb{C} Q=\frac{\varOmega_{V}^{n}\ \mathbb{C} Q}{\sum_{i=0}^{n}[\ \varOmega_{V}^{i}\ \mathbb{C} Q, \varOmega_{V}^{n-i}\ \mathbb{C} Q]}
$$

In this expression the brackets denote supercommutators with respect to the grading on Ω^{\bullet}_V CQ. In the commutative case, dR^0 are the functions on the manifold and dR^1 the 1-forms.

Lemma 3.4. *A* C*-basis for the noncommutative functions*

$$
\mathrm{dR}_V^0 \ \mathbb{C} Q \simeq \frac{\mathbb{C} Q}{\left[\ \mathbb{C} Q,\mathbb{C} Q\ \right]}
$$

are the necklace words in the quiver Q*.*

Proof. Let W be the C-space spanned by all necklace words w in Q and define a linear map

$$
\mathbb{C}Q \xrightarrow{n} \mathbb{W} \qquad \begin{cases} p \mapsto w_p & \text{if } p \text{ is a cycle} \\ p \mapsto 0 & \text{if } p \text{ is not} \end{cases}
$$

for all oriented paths p in the quiver Q , where w_p is the necklace word in Q determined by the oriented cycle p. Because $w_{p_1p_2} = w_{p_2p_1}$ it follows that the commutator subspace $[{\mathbb C} Q, {\mathbb C} Q]$ belongs to the kernel of this map. Conversely, let

$$
x = x_0 + x_1 + \ldots + x_m
$$

be in the kernel where x_0 is a linear combination of non-cyclic paths and x_i for $1 \leq i \leq m$ is a linear combination of cyclic paths mapping to the same necklace word w_i , then $n(x_i)=0$ for all $i \geq 0$. Clearly, $x_0 \in [CQ, CQ]$ as we can write every noncyclic path $p = a.p' = a.p' - p'.a$ as a commutator. If $x_i = a_1p_1 + a_2p_2 + ... + a_lp_l$ with $n(p_i) = w_i$, then $p_1 = q.q'$ and $p_2 = q'.q$ for some paths q, q' whence $p_1 - p_2$ is a commutator. But then, $x_i = a_1(p_1 - p_2) + (a_2 - a_1)p_2 + ... + a_l p_l$ is a sum of a commutator and a linear combination of strictly fewer elements. By induction, this shows that $x_i \in [CQ, CQ].$

Lemma 3.5. dR_V^1 $\mathbb{C}Q$ is isomorphic as \mathbb{C} -space to

Proof. If p.q is not a cycle, then $p dq = [p, dq]$ and so vanishes in $dR_V^1 \mathbb{C}Q$ so we only have to consider terms pdq with $p.q$ an oriented cycle in Q . For any three paths p, q and r in Q we have the equality

$$
[p.qdr] = pqdr - qd(rp) + qrdp
$$

whence in dR_V^1 $\mathbb{C}Q$ we have relations allowing to reduce the length of the differential part

$$
qd(rp) = pqdr + qrdp
$$

so dR_V^1 $\mathbb{C}Q$ is spanned by terms of the form pda with $a \in Q_a$ and $p.a$ and oriented cycle in Q. Therefore, we have a surjection

$$
\Omega^1_V \mathbb{C}Q \longrightarrow \bigoplus_{(j)\stackrel{a}{\longleftarrow} (j)} e_i.\mathbb{C}Q.e_j da
$$

By construction, it is clear that $[\Omega_V^0 \mathbb{C} Q, \Omega_V^1 \mathbb{C} Q]$ lies in the kernel of this map and using an argument as in the lemma above one shows also the converse inclusion.

Using the above descriptions of dR_V^i CQ for $i = 0, 1$ and the differential dR_V $\mathbb{C}Q \stackrel{d}{\longrightarrow}$ dR_V $\mathbb{C}Q$ we can define *partial differential operators* associated to any arrow $\left(\frac{1}{2}\right) \left(\frac{a}{2}\right)$ in Q .

$$
\frac{\partial}{\partial a} : \, \mathrm{dR}_V^0 \mathbb{C}Q \longrightarrow e_i \mathbb{C}Qe_j \qquad \text{by} \qquad df = \sum_{a \in Q_a} \frac{\partial f}{\partial a} da
$$

To take the partial derivative of a necklace word w with respect to an arrow a, we run through w and each time we encounter a we open the necklace by removing that occurrence of a and then take the sum of all the paths obtained.

Defining the *relative deRham cohomology* H_{dR}^n $\mathbb{C}Q$ to be the cohomology of the Karoubi complex and observing that the operators L_{θ} and i_{θ} on Ω_V^{\bullet} CQ induce operators on the Karoubi complex, we have the *acyclicity result*

Theorem 3.6. *The relative Karoubi complex has the following cohomology*

$$
\begin{cases}\nH_{dR}^0 \mathbb{C}Q & \simeq V \\
H_{dR}^n \mathbb{C}Q & \simeq 0 \qquad \forall n \ge 1\n\end{cases}
$$

Proof. Define $K = \bigoplus_{m,n} [\Omega_V^n \mathbb{C}Q, \Omega_V^m \mathbb{C}Q]$ then one verifies for the Euler derivation that

$$
L_E(K) \subset K \quad i_E(K) \subset K \quad L_E = i_E \circ d + d \circ i_E
$$

The length of a path induces a graded algebra structure on Ω_V CQ and clearly K and $d^{-1}K$ are spanned by homogeneous elements. The differential of a homogeneous element is either zero or an element of the same length. Writing $x = \sum_i x_i \in d^{-1}K$ in homogeneous components we have $dx =$ $\sum_i dx_i$ is a homogeneous decomposition. Hence, all $dx_i \in K$ whence

 $x_i \in d^{-1}K$. Assume that ω is a homogeneous element of length $l > 1$ in $d^{-1}K$, then

$$
\omega + K = \frac{1}{l} L_E(\omega) + K
$$

=
$$
\frac{1}{l} (i_E(d\omega) + d(i_E(\omega))) + K
$$

=
$$
d(i_E(\omega)) + K
$$

From these facts the result follows by mimicking the proof for the cohomology of the relative differential form complex above.

4 Symplectic interpretation

In this section we use the acyclicity result to give a Poisson interpretation to the Lie bracket in \mathbb{N}_Q . This generalizes the *Kontsevich bracket* [18] in the free case to path algebras of doubles of quivers. If Q is a quiver with double quiver Q, then we can define a canonical *symplectic structure* on the path algebra of the double CQ determined by the element

$$
\omega = \sum_{a \in Q_a} da^* da \in \mathrm{dR}_V^2 \mathbb{C} \mathbb{Q}
$$

As in the commutative case, ω defines a bijection between the noncommutative 1-forms $dR_V^1 \mathbb{C} \mathbb{Q}$ and the *noncommutative vectorfields* which are defined to be the V -derivations of CO . This correspondence is

$$
Der_V \mathbb{CQ} \xrightarrow{\tau} dR_V^1 \mathbb{CQ} \qquad \text{given by} \qquad \tau(\theta) = i_{\theta}(\omega)
$$

In analogy with the commutative case we define a derivation $\theta \in Der_V \mathbb{C} \mathbb{Q}$ to be *symplectic* if and only if $L_{\theta}\omega = 0 \in dR_V^2$ CQ and denote the subspace of symplectic derivations by $Der_{\omega} \mathbb{C} \mathbb{Q}$. It follows from the homotopy formula and the fact that ω is a closed form, that $\theta \in Der_{\omega} \mathbb{C} \mathbb{Q}$ implies $L_{\theta}\omega = di_{\theta}\omega = d\tau(\theta) = 0$. That is, $\tau(\theta)$ is a closed form which by the acyclicity of the Karoubi complex shows that it must be an exact form. That is we have an isomorphism of exact sequences of C-vectorspaces

The symplectic structure ω defines a Poisson bracket on the noncommutative functions.

Definition 4.1. *Let* Q *be a quiver and* Q *its double. The* Kontsevich bracket *on the necklace words in* $\mathbb Q$, dR $_V^0$ $\mathbb C\mathbb Q$ *is defined to be*

$$
\{w_1, w_2\}_K = \sum_{a \in Q_a} \left(\frac{\partial w_1}{\partial a} \frac{\partial w_2}{\partial a^*} - \frac{\partial w_1}{\partial a^*} \frac{\partial w_2}{\partial a} \right) \bmod [\mathbb{C}\mathbb{Q}, \mathbb{C}\mathbb{Q}]
$$

By the description of the partial differential operators it is clear that \texttt{dR}^0_V CQ *with this bracket is isomorphic to the necklace Lie algebra* \mathbb{N}_Q *.*

The symplectic derivations $Der_{\omega} \mathbb{C} \mathbb{Q}$ have a natural Lie algebra structure by commutators of derivations. We will show that $\tau^{-1} \circ d$ is a Lie algebra morphism.

For every necklace word w we have a symplectic derivation $\theta_w = \tau^{-1} dw$ defined by

$$
\begin{cases} \theta_w(a) &= -\frac{\partial w}{\partial a^*} \\ \theta_w(a^*) &= \frac{\partial w}{\partial a} \end{cases}
$$

With this notation we get the following interpretations of the Kontsevich bracket

$$
\{w_1,w_2\}_K=i_{\theta_{w_1}}(i_{\theta_{w_2}}\omega)=L_{\theta_{w_1}}(w_2)=-L_{\theta_{w_2}}(w_1)
$$

where the next to last equality follows because $i_{\theta_{w_0}}\omega = dw_2$ and the fact that $i_{\theta_w}(dw) = L_{\theta_w}(w)$ for any w. More generally, for any V-derivation θ and any necklace word w we have the equation

$$
i_{\theta}(i_{\theta_w}\omega) = L_{\theta}(w).
$$

When we look at the image of the Kontsevich bracket under $\tau^{-1}d$, we obtain the following

$$
\tau^{-1}d\{w_1, w_2\}_K = \tau^{-1}dL_{\theta_{w_1}}w_2
$$

\n
$$
= \tau^{-1}L_{\theta_{w_1}}dw_2
$$

\n
$$
= \tau^{-1}L_{\theta_{w_1}}i_{\theta_{w_2}}\omega
$$

\n
$$
= \tau^{-1}([L_{\theta_{w_1}}, i_{\theta_{w_2}}] + i_{\theta_{w_2}}L_{\theta_{w_1}})\omega
$$

\n
$$
= \tau^{-1}i_{[\theta_{w_1}, \theta_{w_2}]} \omega
$$

\n
$$
= [\theta_{w_1}, \theta_{w_2}]
$$

Above we made use of the fact that L_{θ} commutes with d, and the defining equation $dw_2 = i_{\theta_{\text{max}}} \omega$. In the fourth line we omitted the last term because θ_{w_1} is a symplectic derivation. Finally Lemma 3.1 enabled us to transform the commutator in i and L to of commutator of the derivations θ_{w_1} and θ_{w_2} . This calculation concluded the proof of:

Theorem 4.2. With notations as before, dR_V^0 $\mathbb{C}\mathbb{Q}$ with the Kontsevich *bracket is isomorphic to the necklace Lie algebra* \mathbb{N}_O *, and the sequence*

$$
0 \longrightarrow V \longrightarrow \mathbb{N}_Q \xrightarrow{\tau^{-1}d} Der_{\omega} \mathbb{C}\mathbb{Q} \longrightarrow 0
$$

is an exact sequence (hence a central extension) of Lie algebras.

5 Coadjoint orbits

Consider a dimension vector $\alpha = (n_1, \ldots, n_k)$, that is, a k-tuple of natural numbers, then the space of α -dimensional representations of the double quiver \mathbb{Q} , rep_{α} \mathbb{Q} can be identified via the trace pairing with the cotangent bundle T^* rep_{α} Q of the space of α -dimensional representations of the quiver Q , see for example [8], and as such acquires a natural symplectic structure. The natural action of the basechange group $GL(\alpha) = GL_{n_1} \times$ $\ldots \times GL_{n_k}$ on rep_{α} Q is symplectic and induces a Poisson structure on the coordinate ring as well as on the ring of polynomial quiver invariants, which are generated by traces along oriented cycles by [21].

The symplectic derivations $Der_{\omega} \mathbb{C} \mathbb{Q}$ correspond to the V-automorphisms of the path algebra of the double CQ preserving the *moment element*

$$
m = \sum_{a \in Q_a} [a, a^*] \in \mathbb{C} \mathbb{Q}
$$

For this reason it is natural to consider the *complex moment map*

$$
\operatorname{rep}_\alpha \mathbb{Q} \xrightarrow{\mu_\mathbb{C}} M^0_\alpha(\mathbb{C}) \qquad V \mapsto \sum_{a \in Q_a} [V_a, V_{a^*}]
$$

where $M^0_\alpha(\mathbb{C})$ is the subspace of k -tuples $(m_1,\ldots,m_k)\in M_{n_1}(\mathbb{C})\oplus \ldots \oplus$ $M_{n_k}(\mathbb{C})$ such that $\sum_i tr(m_i)=0$, that is $M^0_\alpha(\mathbb{C})=Lie\,PGL(\alpha)$ where $PGL(\alpha) = GL(\alpha)/\mathbb{C}^*(1\mathbb{Q}_{n_1}, \ldots, 1\mathbb{Q}_{n_k}).$

For $\lambda = (\lambda_1, ..., \lambda_k) \in \mathbb{C}^k$ such that $\sum_i n_i \lambda_i = 0$ we consider the element $\underline{\lambda} = (\lambda_1 \mathbb{1}_{n_1}, \dots, \lambda_k \mathbb{1}_{n_k})$ in $M^0_\alpha(\mathbb{C})$. The inverse image $\mu^{-1}_\mathbb{C}(\underline{\lambda})$ is a $GL(\alpha)$ -closed affine subvariety of rep_{α} Q.

In [13] V. Ginzburg proved the following coadjointness result using the results of the preceding sections.

Theorem 5.1 (Ginzburg). Assume that $\mu_{\mathbb{C}}^{-1}(\underline{\lambda})$ is smooth and irreducible and that $PGL(\alpha)$ acts freely on $\mu_{\mathbb{C}}^{-1}(\underline{\lambda}),$ then the quotient variety (the orbit *space)*

$$
\mu_{\mathbb{C}}^{-1}(\underline{\lambda})/GL(\alpha)
$$

is a coadjoint orbit for the necklace Lie algebra \mathbb{N}_Q *.*

Using results of W. Crawley-Boevey [8] we will identify the situations (α, λ) satisfying the conditions of the theorem. For $\lambda \in \mathbb{C}^k$ as above, W. Crawley-Boevey and M. Holland introduced and studied the *deformed preprojective algebra*

$$
\varPi_{\lambda} = \frac{\mathbb{C}\mathbb{Q}}{(m-\lambda)}
$$

where $\lambda = \lambda_1 e_1 + \ldots + \lambda_k e_k \in \mathbb{C}\mathbb{Q}$. From [10] we recall that $\mu_{\mathbb{C}}^{-1}(\underline{\lambda})$ is the scheme of α -dimensional representations rep_{α} Π_{λ} of the deformed preprojective algebra Π_{λ} .

We recall the characterization due to V. Kac [14] of the dimension vectors of indecomposable representations of the quiver Q . To a vertex v_i in which Q has no loop, we define a *reflection* $\mathbb{Z}^k \longrightarrow \mathbb{Z}^k$ by

$$
r_i(\alpha) = \alpha - T_Q(\alpha, \epsilon_i)\epsilon_i
$$

where $\epsilon_i = (\delta_{1i}, \ldots, \delta_{ki})$. The *Weyl group of the quiver* Q $Weyl_Q$ is the subgroup of $GL_k(\mathbb{Z})$ generated by all reflections r_i .

A *root* of the quiver Q is a dimension vector $\alpha \in \mathbb{N}^k$ such that rep_{α} Q contains indecomposable representations. All roots have connected support. A root is said to be

$$
\begin{cases}\n\text{real} & \text{if } \chi_Q(\alpha, \alpha) = 1 \\
\text{imaginary} & \text{if } \chi_Q(\alpha, \alpha) \le 0\n\end{cases}
$$

For a fixed quiver Q we will denote the set of all roots, real roots and imaginary roots respectively by Δ , Δ_{re} and Δ_{im} . With Π we denote the set $\{\epsilon_i \mid v_i \text{ has no loops } \}$. The *fundamental set of roots* is defined to be the following set of dimension vectors

$$
F_Q = \{ \alpha \in \mathbb{N}^k - \underline{0} \mid T_Q(\alpha, \epsilon_i) \le 0 \text{ and } supp(\alpha) \text{ is connected } \}
$$

Kac's result asserts that

$$
\begin{cases} \varDelta_{re} &= Weyl_Q . \Pi \cap \mathbb{N}^k \\ \varDelta_{im} &= Weyl_Q . F_Q \cap \mathbb{N}^k \end{cases}
$$

Example 5.2. The quiver Q and double quiver \mathbb{Q} appearing in the study of Calogero phase space (see [26] and [12]) which stimulated the above generalizations are

The Euler- and Tits form of the quiver Q are determined by the matrices

$$
\chi_Q = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad T_Q = \begin{bmatrix} 2 & -1 \\ -1 & 0 \end{bmatrix}
$$

The root-system for Q is easy to work out. We have

Fix $\lambda \in \mathbb{C}^k$ and denote Δ_λ^+ to be the set of positive roots $\beta = (b_1, \dots, b_k)$ for Q such that $\lambda.\beta = \sum_i \lambda_i b_i = 0$. With S_λ (resp. Σ_λ) we denote the subsets of dimension vectors α which are roots for Q such that

$$
1 - \chi_Q(\alpha, \alpha) \geq (\text{resp.} >) \quad r - \chi_Q(\beta_1, \beta_1) - \ldots - \chi_Q(\beta_r, \beta_r)
$$

for all decompositions $\alpha = \beta_1 + \ldots + \beta_r$ with the $\beta_i \in \Delta_{\lambda}^+$. The main results of [8] can be summarized into:

Theorem 5.3 (W. Crawley-Boevey).

- *(1)* $\alpha \in S_0$ *if and only if* $\mu_{\mathbb{C}}$ *is a flat morphism. In this case,* $\mu_{\mathbb{C}}$ *is also surjective.*
- *(2)* $\alpha \in \Sigma_{\lambda}$ *if and only if* Π_{λ} *has a simple* α *-dimensional representation.* In this case, $\mu_{\mathbb{C}}^{-1}(\underline{\lambda})$ is a reduced and irreducible complete intersection *of dimension* $1 + \alpha \cdot \alpha - 2\chi_O(\alpha, \alpha)$.

Using the results of [21] one verifies that the set of dimension vectors of simple representations of $\mathbb Q$ coincides with the fundamental set F_Q . As any simple Π_{λ} -representation is a simple $\mathbb Q$ -representations it follows that $\Sigma_{\lambda} \longrightarrow F_{Q}.$

Example 5.4. For the Calogero-example above, we have

(1) The set S_0 consisting of all (m, n) such that the complex moment map $\mu_{\mathbb{C}}$ is surjective and flat is the set of roots

$$
S_0 = \{(m, n) \mid n \ge 2m - 1\} \sqcup \{(1, 0)\}
$$

(2) The set Σ_0 of dimension vectors (m, n) of simple representations of the preprojective algebra Π_0 is the set of roots

$$
\Sigma_0 = \{(m, n) \mid n \ge 2m\} \sqcup \{(1, 0)\}
$$

which is $F_Q \sqcup \{(1, 0)\}.$

(3) For $\lambda = (-n, m)$ with $gcd(m, n) = 1$, the set Σ_{λ} of dimension vectors of simple representations of the deformed preprojective algebra is the set of roots

 $\Sigma_{\lambda} = \{k.(m, n) \mid k \in \mathbb{N}_{+}\}\$

with unique minimal element (m, n) .

For the first two parts the essential calculation is to verify the conditions on the decomposition $(m, n) = (m - 1, n) + (1, 0).$

We obtain the following combinatorial description of the couples (α, λ) for which Ginzburg's criterium applies.

Theorem 5.5. $\mu_{\mathbb{C}}^{-1}(\underline{\lambda})$ *is smooth and irreducible with a free action of* $PGL(\alpha)$ (and hence $\mu_{\mathbb{C}}^{-1}(\underline{\lambda})/GL(\alpha)$ is a coadjoint orbit for \mathbb{N}_Q) if and *only if* α *is a minimal non-zero element of* Σ_{λ} *.*

Proof. We know that $\mu_{\mathbb{C}}^{-1}(\underline{\lambda}) = \text{rep}_{\alpha} \Pi_{\lambda}$. By a result of M. Artin [1] one knows that the geometric points of the quotient scheme rep_{α} $\Pi_{\lambda}/GL(\alpha)$ are the isomorphism classes of α -dimensional semi-simple representations of Π_{λ} . Moreover, the $PGL(\alpha)$ -stabilizer of a point in rep_{α} Π_{λ} is trivial if and only if it determines a simple α -dimensional representation of Π_{λ} . The result follows from this and the results recalled above. The fact that $\mu_{\mathbb{C}}^{-1}(\underline{\lambda})$ is smooth if α is a minimal non-zero element of Σ_{λ} follows from computing the differential of the complex moment map, see also [8, Lemma 5.5]. \square

Example 5.6. Consider the special case when $\lambda = (-n, 1)$ and $\alpha = (1, n)$ the unique minimal element in Σ_{λ} , then it follows from [26] that we have canonical identifications of the quotient varieties

$$
\text{iss}_\alpha\mathrel{\varPi}_\lambda\simeq \mathit{Calo}_n
$$

where $Calo_n$ is the phase space of n Calogero particles. In particular, $Calo_n$ is a coadjoint orbit. Wilson [26] has shown that

$$
Gr^{ad} = \bigsqcup_{n} Calo_n
$$

where Gr^{ad} is the adelic Grassmannian which can be thought of as the space parametrizing isomorphism classes of right ideals in the first Weyl algebra $A_1(\mathbb{C}) = \mathbb{C}\langle x, y \rangle / (xy - yx - 1)$ by [7]. In [3] it is shown that there is a non-differentiable action of the automorphism group of $A_1(\mathbb{C})$ on Gr^{ad} having a transitive action on each of the $Calo_n$. It was then conjectured by Y. Berest and G. Wilson that $Calo_n$ might be a coadjoint orbit for a central extension of the automorphism group. (Added may 2001: for more information on these connections as well as to related papers [7], [19] and [15] we refer to the recent preprints of Yu. Berest and G. Wilson [3] and [4].)

Example 5.7. M. Holland and W. Crawley-Boevey have a conjectural extension of the foregoing example. Let Q' be an extended Dynkin quiver on k vertices $\{v_1, \ldots, v_k\}$ with minimal imaginary root $\delta = (d_1, \ldots, d_k)$. A vertex v_i is said to be an extending vertex provided $d_i = 1$. Consider the quiver Q on $k+1$ vertices $\{v_0, v_1, \ldots, v_k\}$ which is Q' on the last k vertices and there is one extra arrow from v_o to an extending vertex v_i . For a generic $\lambda' = (\lambda_1, \dots, \lambda_k)$ they defined a noncommutative algebra $\mathcal{O}^{\lambda'}$ extending the role of the Weyl algebra in the previous example. They conjecture that there is a bijection between the isomorphism classes of stably free right ideals in \mathcal{O}^{λ} and points in

$$
\sqcup_n \mu_{\mathbb{C}}^{-1}(\lambda_n)/GL(\alpha_n)
$$

where $\alpha_n = (1, n\delta)$ and $\lambda_n = (-n\lambda'.\delta, \lambda')$. This remains to be seen but from our theorem we deduce that each of the quotient varieties $\mu_{\mathbb{C}}^{-1}(\lambda_n)/$ $GL(\alpha_n)$ is a coadjoint orbit for the necklace Lie algebra \mathbb{N}_Q . (Note added may 2001: recently the Crawley-Boevey and Holland conjecture was proved by V. Baranovsky, V. Ginzburg and A. Kuznetsov see [2].)

If $\alpha \in \Sigma_{\lambda}$ but not minimal, there are several *representation types* $\tau =$ $(m_1, \beta_1; \ldots, m_v, \beta_v)$ of semi-simple α -dimensional representations of Π_{λ} with the $\beta_i \in \Sigma_\lambda$ and $\sum m_i \beta_i = \alpha$ and the m_i determine the multiplicities of the simple components. With $iss_{\alpha}(\tau)$ we denote the subvariety of the quotient variety iss $\alpha \Pi_{\lambda} = \text{rep}_{\alpha} \Pi_{\lambda}/GL(\alpha)$ consisting of all semi-simple representations of type τ .

Consider the algebra $A_O = \mathbb{C}[\mathbb{N}_Q] \otimes_{\mathbb{C}} \mathbb{C} \mathbb{Q}$ which has a natural *trace map* $tr: A_{\mathcal{O}} \longrightarrow \mathbb{C}[\mathbb{N}_{\mathcal{O}}]$ mapping an oriented cycle in $\mathbb Q$ to the corresponding necklace word and all open paths to zero. With Aut_Q we denote the automorphism group of trace preserving $\mathbb C$ -algebra automorphisms of A_Q which preserve the moment element $m = \sum_{a \in Q_a} [a, a^*]$. A natural extension of the above coadjoint orbit result would be a positive solution to the following problem.

Conjecture 5.8. Aut_Q acts transitively on every stratum iss_{$\alpha(\tau)$}.

6 Smoothness and deformed preprojective algebras

In this section we will relate the coadjoint orbit result to different notions of smoothness in noncommutative geometry.

The path algebra $\mathbb{C} \mathbb{Q}$ of the double quiver \mathbb{Q} is formally smooth in the sense of [11], that is, it has the lifting property with respect to nilpotent ideals. Hence, $\mathbb{C} \mathbb{Q}$ is the coordinate ring of a noncommutative affine manifold and has a good theory of differential forms (acyclicity).

On the other hand, we will see that the deformed preprojective algebras Π_{λ} are *never* formally smooth. For this reason, the differential forms of $\mathbb{C} \mathbb{Q}$ when restricted to Π_{λ} may have rather unpredictable behavior.

Still, it may be possible that certain representation spaces $\text{rep}_{\alpha} \Pi_{\lambda}$ are smooth and we need a notion of noncommutative (formal) smoothness relative to the dimension vector α . Recall that if α is a minimal dimension vector in Σ_{λ} , then rep_{α} $\Pi_{\lambda} = \mu_{\mathbb{C}}^{-1}(\lambda)$ is smooth. We will now investigate whether there are other examples of smooth fibers $\mu_{\mathbb{C}}^{-1}(\underline{\lambda})$ using the relative notion of smoothness introduced by C. Procesi in [24] and studied in detail in [20]. First, we will recall its ringtheoretical characterization.

Let $\alpha = (n_1, \ldots, n_k)$ and set $n = \sum_i n_i$. With alg@ α we denote the category of all V -algebras A which are equipped with a trace map, that is a linear map $tr : A \longrightarrow A$ such that for all $a, b \in A$ we have $tr(a)b = br(a), tr(ab) = tr(ba)$ and $tr(tr(a)b) = tr(a)tr(b)$ satisfying the following properties. First, we must have that $tr(1) = n$, the trace map must satisfy the formal Cayley-Hamilton identity of degree n , see [24] and finally the trace values of the vertex-idempotents are given by $tr(e_i) = n_i$, the components of the dimension vector α .

Morphisms in the category alg@ α are trace preserving V-algebra morphisms. An algebra A in in alg $\mathcal{Q} \alpha$ is said to be α -*smooth* if it satisfies the lifting property with respect to nilpotent ideals in alg@α. That is, every diagram

with $B, \frac{B}{I}$ in alg@ α , I a nilpotent ideal and π and ϕ trace preserving maps, can be completed with a trace preserving algebra map $\tilde{\phi}$.

Observe that if $n = 1$ and $\alpha = (1)$ we have that $\text{alg@}\alpha = \text{command } \{\alpha\}$ category of commutative C-algebras and by Grothendieck's characterization of regular algebras one has in this case that an algebra is α -smooth if and only if it is regular.

In general, a geometric characterization of this lifting property is that an algebra A is α -smooth if and only if the scheme of α -dimensional trace preserving representations of A is a smooth $GL(\alpha)$ -variety, see [24] or [20].

There is a partial functor $\text{alg} \longrightarrow \text{alg} @\alpha$ which assigns to an affine V-algebra B the algebra of $GL(\alpha)$ -equivariant maps

$$
\mathtt{rep}_\alpha\: A \longrightarrow \: M_n(\mathbb{C})
$$

(where $GL(\alpha)$ acts on $M_n(\mathbb{C})$ by conjugation via the obvious embedding along the diagonal $GL(\alpha) \longrightarrow GL_n$) which is an object in alg@ α . We will denote this algebra of equivariant maps by $B@\alpha$. Clearly, the scheme rep_{α} B of α -dimensional representations of B coincides with the scheme of α -dimensional trace preserving representations of $B@\alpha$.

For this reason, the fiber $\mu_{\mathbb{C}}^{-1}(\underline{\lambda})$ is a smooth affine variety if and only if the algebra $\Pi_{\lambda} @ \alpha$ is α -smooth. As we have seen before $\Pi_{\lambda} @ \alpha$ is α -smooth if (λ, α) is such that $\lambda \alpha = 0$ and α is a minimal non-zero vector in Σ_{λ} . In this case, $\Pi_{\lambda} @ \alpha$ is even an Azumaya algebra over the coadjoint orbit, that is, the quotient map

$$
\operatorname{rep}_{\alpha} \varPi_{\lambda} = \mu_{\mathbb{C}}^{-1}(\underline{\lambda}) \longrightarrow \mu_{\mathbb{C}}^{-1}(\underline{\lambda})/GL(\alpha)
$$

is a principal $PGL(\alpha)$ -fibration in the étale topology. For more details on Azumaya algebras and their relation to étale cohomology we refer to the book by J.S. Milne [23].

Noncommutative geometry, as propagated by M. Kontsevich in [18] is based on the fact that noncommutative functions and noncommutative (relative) differential forms associated to a formally smooth C-algebra A (resp. a formally smooth V -algebra A) induce ordinary functions and differential forms on the smooth representations schemes rep_n A (resp. rep_{α} A) of ndimensional (resp. α -dimensional) representations and their corresponding quotient varieties iss_n A resp. iss_{α} A. For this reason one expects that the closed subscheme is s_{α} Π_{λ} behaves well with respect to noncommutative symplectic forms (in particular, is a coadjoint orbit for the necklace algebra $\mathbb{N}_{\mathcal{Q}}$) if and only if $\Pi_{\lambda} @ \alpha$ is α -smooth.

On the other hand, if the coadjoint orbit result follows from the conjectural transitive action of the group Aut_O as stated in Conjecture 5.8, this can only happen if there is just one stratum. That is, if and only if $\Pi_{\lambda} @ \alpha$ is an Azumaya algebra, or equivalently, that α is a minimal element of Σ_{λ} .

These conjectural equivalences of (1) $\mu_{\mathbb{C}}^{-1}(\underline{\lambda})/GL(\alpha)$ coadjoint orbit, (2) $\Pi_{\lambda} @ \alpha$ an α -smooth algebra and (3) α a minimal element of Σ_{λ} follow from a stronger conjecture on deformed preprojective algebras formulated below.

Consider the algebraic quotient map

$$
\operatorname{rep}_\alpha \varPi_\lambda \stackrel{\pi_\alpha}{\longrightarrow} \operatorname{iss}_\alpha \varPi_\lambda = \operatorname{rep}_\alpha \varPi_\lambda / GL(\alpha)
$$

By Artin's result [1], a $\mathbb C$ -point ξ of iss_{α} Π_{λ} corresponds to an isomorphism class of an α -dimensional semisimple representation

$$
M_{\xi} = S_1^{\oplus e_1} \oplus \ldots \oplus S_z^{\oplus e_z}
$$

of Π_{λ} . Here, S_i is an α_i -dimensional simple representation of Π_{λ} occurring with multiplicity e_i in M_{ξ} . In particular we have that

for all
$$
i : \alpha_i \in \Sigma_\lambda
$$
 and $\sum_i e_i \alpha_i = \alpha$

Fix a point M_{ξ} of the closed $GL(\alpha)$ -orbit $\mathcal{O}(M_{\xi})$ in rep_{α} Π_{λ} . We will say that $\xi \in \text{iss}_{\alpha} \Pi_{\lambda}$ belongs to the *noncommutative smooth locus* $Sm_{\alpha} \Pi_{\lambda}$ of Π_{λ} (or of $\Pi_{\lambda} @ \alpha$) if rep_{α} Π_{λ} is smooth in M_{ξ} . Because the singular locus is a closed subvariety of rep_{α} Π_{λ} is a closed subvariety we have that $\Pi_{\lambda} @ \alpha$ is α -smooth iff $Sm_\alpha \Pi_\lambda = \mathbf{iss}_\alpha \Pi_\lambda$.

Now we restrict to $\alpha \in \Sigma_{\lambda}$ and consider the Zariski open subscheme $Az \Pi_{\lambda} @ \alpha$ of points $\xi \in \text{iss}_{\alpha} \Pi_{\lambda}$ such that M_{ξ} is a simple representation of Π_{λ} , then the restriction of the quotient map π_{α} to $\pi_{\alpha}^{-1}(Az \Pi_{\lambda} @ \alpha)$ is a principal $PGL(\alpha)$ -fibration in the étale topology. We call $Az \Pi_{\lambda} @ \alpha$ the *Azumaya locus* of $\Pi_{\lambda} @ \alpha$. The above conjectural equivalences follow from an affirmative answer to the following conjecture.

Conjecture 6.1. For $\alpha \in \Sigma_{\lambda}$ we have

$$
Sm_{\alpha} \Pi_{\lambda} = Az \Pi_{\lambda} @ \alpha
$$

We will give an affirmative solution to this conjecture in the special case of the preprojective algebra Π_0 . By a result of W. Crawley-Boevey [9], we can control the Ext^1 -spaces of representations of Π_0 . Let V and W be representations of Π_0 of dimension vectors α and β , then we have

$$
dim_{\mathbb{C}} Ext_{\Pi_0}^1(V, W) = dim_{\mathbb{C}} Hom_{\Pi_0}(V, W) + dim_{\mathbb{C}} Hom_{\Pi_0}(W, V)
$$

$$
-T_Q(\alpha, \beta)
$$

For $\xi \in \text{iss}_{\alpha}$ Π_0 to belong to the smooth locus $\xi \in \text{Sm}_{\alpha}$ Π_0 it is necessary and sufficient that rep_{α} Π_0 is smooth along the orbit $\mathcal{O}(M_{\xi})$ where M_{ξ} is the semi-simple α -dimensional representation of Π_0 corresponding to ξ .

Assume that ξ is of type $\tau = (e_1, \alpha_1; \ldots; e_z, \alpha_z)$, that is,

$$
M_{\xi} = S_1^{\oplus e_1} \oplus \ldots \oplus S_z^{\oplus e_z}
$$

with S_i a simple Π_0 -representation of dimension vector α_i . Then, the normal space to the orbit $\mathcal{O}(M_{\xi})$ is determined by $Ext^1_{H_o}(M_{\xi}, M_{\xi})$ and can be depicted by a local quiver setting (Q_{ξ}, α_{ξ}) where Q_{ξ} is a quiver on z vertices having as many arrows from vertex i to vertex j as the dimension of $Ext_{\Pi_0}^1(S_i, S_j)$ and where $\alpha_{\xi} = \alpha_{\tau} = (e_1, \ldots, e_z)$.

As rep_{α} Π_0 is assumed to be smooth in M_{ξ} we can apply the strong form of the Luna slice theorem, see [22] or [25] which asserts that the action morphism and corresponding quotient maps

where N_{ξ} is the normal space to the orbit in M_{ξ} , are étale in M_{ξ} (resp. in ξ) and that the upper map is $GL(α)$ -equivariant. With the above quivertheoretic interpretation of the normal space N_{ξ} we deduce

Lemma 6.2. *With notations as above,* $\xi \in Sm_{\alpha} \Pi_0$ *if and only if*

$$
\dim GL(\alpha) \times^{GL(\alpha_{\xi})} Ext_{\Pi_{0}}^{1}(M_{\xi}, M_{\xi}) = \dim_{M_{\xi}} \text{rep}_{\alpha} \Pi_{0}
$$

As we have enough information to compute both sides, we can prove:

Theorem 6.3. *If* $\xi \in \text{iss}_{\alpha}$ *II*₀ *with* $\alpha = (a_1, \ldots, a_k) \in S_0$, then $\xi \in$ $Sm_\alpha \Pi_0$ *if and only if* M_ξ *is a simple n-dimensional representation of* Π_0 *. That is, the smooth locus of* Π_0 *coincides with the Azumaya locus.*

Proof. Assume that ξ is a point of semi-simple representation type τ = $(e_1, \alpha_1; \ldots; e_z, \alpha_z)$, that is,

$$
M_{\xi} = S_1^{\oplus e_1} \oplus \ldots \oplus S_z^{\oplus e_z} \quad \text{with} \quad \dim(S_i) = \alpha_i
$$

and S_i a simple Π_0 -representation. We have

$$
\begin{cases} \dim_{\mathbb{C}} \operatorname{Ext}_{\Pi_0}^1(S_i, S_j) &= -T_Q(\alpha_i, \alpha_j) & i \neq j \\ \dim_{\mathbb{C}} \operatorname{Ext}_{\Pi_0}^1(S_i, S_i) &= 2 - T_Q(\alpha_i, \alpha_i) \end{cases}
$$

But then, the dimension of $Ext^1_{H_0}(M_{\xi}, M_{\xi})$ is equal to

$$
\sum_{i=1}^{z} (2 - T_Q(\alpha_i, \alpha_i))e_i^2 + \sum_{i \neq j} e_i e_j(-T_Q(\alpha_i, \alpha_j)) = 2\sum_{i=1}^{z} e_i^2 - T_Q(\alpha, \alpha)
$$

from which it follows immediately that

$$
dim GL(\alpha) \times^{GL(\alpha_{\xi})} Ext_{H_0}^1(M_{\xi}, M_{\xi}) = \alpha \cdot \alpha + \sum_{i=1}^z e_i^2 - T_Q(\alpha, \alpha)
$$

On the other hand, as $\alpha \in S_0$ we know that

$$
dim \operatorname{rep}_{\alpha} \Pi_0 = \alpha \cdot \alpha - 1 + 2p_Q(\alpha)
$$

= $\alpha \cdot \alpha - 1 + 2 - 2\chi_Q(\alpha, \alpha) = \alpha \cdot \alpha + 1 - T_Q(\alpha, \alpha)$

But then, equality occurs if and only if $\sum_i e_i^2 = 1$, that is, $\tau = (1, \alpha)$ or M_{ξ} is a simple *n*-dimensional representation of Π_0 .

In particular it follows that the preprojective algebra Π_0 is *never* formally smooth as this implies that all the representation varieties must be smooth. Further, as $\vec{v}_i = (0, \ldots, 1, 0, \ldots, 0)$ are dimension vectors of simple representations of Π_0 it follows that Π_0 is α -smooth if and only if $\alpha = \vec{v}_i$ for some i.

Example 6.4. Let Q be an extended Dynkin diagram and δ the minimal imaginary root, then $\delta \in S_0$. The dimension of the quotient variety

$$
dim \ \mathtt{iss}_{\delta} \ \Pi_0 = dim \ \mathtt{rep}_{\delta} \ \Pi_0 - \delta \delta + 1
$$

$$
= 2
$$

so it is a surface. The only other semi-simple δ -dimensional representation of Π_0 is the trivial representation. By the theorem, this must be an isolated singular point of iss_δ Q. In fact, one can show that iss_δ Π_0 is the Kleinian singularity corresponding to the extended Dynkin diagram Q.

The proof of Theorem 6.3 can be repeated verbatim for the deformed preprojective algebras Π_{λ} provided we would have an analogue of Crawley-Boevey's formula for the dimension of the extension groups $Ext^1_{\Pi_\lambda}(M,N)$. Unfortunately, no such formula is known at present. Observe that an affirmative answer to Conjecture 6.1 follows from

Conjecture 6.5. Let S and T be (isomorphism classes of) simple Π_{λ} representations of dimension vector α resp. β , then

$$
dim_{\mathbb{C}} Ext^1_{\Pi_{\lambda}}(S,T) = 2\delta_{ST} - T_Q(\alpha,\beta)
$$

In particular, the extension form on semisimple Π_{λ} -representations is symmetric.

Before we can prove some partial results for deformed preprojective algebras we need to recall that $\text{rep}_{\alpha} \mathbb{Q}$ admits a hyper-Kähler structure (that is, an action of the quaternion algebra $\mathbb{H} = \mathbb{R} \cdot \mathbb{R} \oplus \mathbb{R} \cdot \mathbb{R} \oplus \mathbb{R} \cdot \mathbb{R} \oplus \mathbb{R} \cdot \mathbb{R}$) defined for all arrows $a \in Q_a$ and all arrows $b \in \mathbb{Q}_a$ by the formulae, see for example [9]

$$
(i.V)_b = iV_b
$$

\n
$$
(j.V)_a = -V_{a^*}^{\dagger} \quad (j.V)_{a^*} = V_a^{\dagger}
$$

\n
$$
(k.V)_a = -iV_{a^*}^{\dagger} \quad (k.V)_{a^*} = iV_a^{\dagger}
$$

where this time we denote the Hermitian adjoint of a matrix M by M^{\dagger} to distinguish it from the star-operation on the arrows of the double quiver Q. Let $U(\alpha)$ be the product of unitary groups $U_{n_1} \times \ldots \times U_{n_k}$ and consider the *real moment map*

$$
\mathbf{rep}_\alpha\:\mathbb{Q}\xrightarrow{\ \mu_\mathbb{R}\ } \text{Lie}\ U(\alpha) \qquad \quad V\mapsto \sum_{\substack{\bullet\\ b\in \mathbb{Q}_a}}\frac{i}{2}[V_b,V_b^\dagger]
$$

For $\lambda \in \mathbb{R}^k$, multiplication by the quaternion-element $h = \frac{i+k}{\sqrt{2}}$ gives a homeomorphism between the real varieties

$$
\mu_{\mathbb{C}}^{-1}(\underline{\lambda}) \cap \mu_{\mathbb{R}}^{-1}(\underline{0}) \xrightarrow{h_{\mathbb{C}}} \mu_{\mathbb{C}}^{-1}(\underline{0}) \cap \mu_{\mathbb{R}}^{-1}(i\underline{\lambda})
$$

Moreover, the hyper-Kähler structure commutes with the base-change action of $U(\alpha)$, whence we have a natural one-to-one correspondence between the quotient spaces

$$
(\mu_{\mathbb{C}}^{-1}(\underline{\lambda}) \cap \mu_{\mathbb{R}}^{-1}(\underline{0}))/U(\alpha) \xrightarrow{h_{\mathbb{C}}} (\mu_{\mathbb{C}}^{-1}(\underline{0}) \cap \mu_{\mathbb{R}}^{-1}(i\underline{\lambda}))/U(\alpha)
$$

see [9] for more details. By results of Kempf and Ness [16] we can identify the left hand side as the quotient variety iss_{α} Π_{λ} and by results of A. King [17] we can identify the right hand side as the moduli space $M^{ss}_{\alpha}(H_0, \lambda)$ of λ -semistable α -dimensional representations of the preprojective algebra Π_0 , at least if λ has rational components.

Recall that a representation $V \in \text{rep}_{\alpha} \mathbb{Q}$ is said to be λ -(semi)stable if and only if for every proper subrepresentation W of V say with dimension vector β we have $\lambda.\beta > 0$ (resp. $\lambda.\beta \geq 0$). The scheme $\text{rep}^{ss}_{\alpha}(H_0, \lambda)$ of λ -semistable α -dimensional representations of Π_0 is the intersection of $\mu_{\mathbb{C}}^{-1}(\underline{0})$ with the subvariety of λ -semistable representations in $\texttt{rep}_\alpha \mathbb{Q}$. The corresponding moduli space $M^{ss}_{\alpha}(H_0,\lambda)$ classifies isomorphism classes of direct sums of λ -stable representations of Π_0 of total dimension α .

If $V \in \text{rep}_{\alpha} \Pi_{\lambda}$ belongs to $\mu_{\mathbb{R}}^{-1}(\underline{0})$ we have that V is a semisimple Π_{λ} -representation

$$
V = S_1^{\oplus e_1} \oplus \ldots \oplus S_r^{\oplus e_r}
$$

with the S_i a simple Π_{λ} -representation of dimension vector β_i . If $W \in$ $\mathtt{rep}_\alpha\varPi_0$ belongs to $\mu_\mathbb{R}^{-1}(\underline{\lambda}),$ then W is the direct sum of λ -stable representations of Π_0

$$
W = T_1^{\oplus f_1} \oplus \ldots \oplus T_s^{\oplus f_s}
$$

with T_i a λ -stable Π_0 -representation of dimension vector γ_i . Because the hyper-Kähler correspondence preserves blockdecomposition of matrices we deduce from $W = h \cdot V$ that $r = s$, $e_i = f_i$, $\beta_i = \gamma_i$ and $T_i \simeq h \cdot S_i$.

Proposition 6.6. *The deformed preprojective algebra* Π_{λ} *has semisimple representations of representation type* $\tau = (e_1, \beta_1; \ldots; e_r, \beta_r)$ *if and only if the preprojective algebra* Π_0 *has* λ -stable representations of dimension *vector* β_i *for all* $1 \leq i \leq r$ *.*

In particular, Π_{λ} *has a simple representation of dimension vector* α *if and only if* Π_0 *has a* λ -stable representation of dimension vector α *.*

With Φ_{λ} we denote the set of dimension vectors $\alpha \in \Sigma_{\lambda}$ such that $\Pi_{\lambda} @ \alpha$ is α -smooth (that is, rep_{α} Π_{λ} is smooth) and moreover the quotient variety iss_α Π_{λ} is smooth. Our conjecture is that Φ_{λ} is the set of minimal elements of Σ_{λ} . The following result provides some partial support for this.

Proposition 6.7. *(1) If* $\alpha \in \Sigma_{\lambda}$ *such that* $2\alpha \in \Sigma_{\lambda}$ *, then* $2\alpha \notin \Phi_{\lambda}$ *. (2)* Let $\alpha, \beta, \alpha + \beta \in \Sigma_{\lambda}$ *such that* $T_Q(\alpha, \beta) < -2$ *, then* $\alpha + \beta \notin \Phi_{\lambda}$ *.*

Proof. (1): As $\alpha \in \Sigma_{\lambda}$ we know that the local quiver Q_{ξ} in a simple representation S corresponding to ξ is a one vertex quiver having $2 - T_Q(\alpha, \alpha)$ loops (because $\text{rep}_{\alpha} \Pi_{\lambda}$ is smooth in S by [8, Lemma 5.5]). That is,

$$
dim Ext^1_{\Pi_{\lambda}}(S, S) = 2 - T_Q(\alpha, \alpha)
$$

But then, for $\xi \in \text{iss}_{2\alpha}$ Π_{λ} a point corresponding to $S \oplus S$, the local quiver is still Q_{ξ} but this time the local dimension vector $\alpha_{\xi} = 2$. If ξ lies in the smooth locus, then by the Luna slice theorem we must have

$$
dim\ GL(2\alpha) \times^{GL_2} {\tt rep}_{\alpha_\xi} \ Q_\xi = dim\ {\tt rep}_{2\alpha} \ \varPi_\lambda
$$

The left hand side is $4\alpha \cdot \alpha + 4 - 4T_Q(\alpha, \alpha)$ whereas the right hand side is equal to (because $2\alpha \in \Sigma_{\lambda}$) $4\alpha \cdot \alpha + 1 - 4T_Q(\alpha, \alpha)$, a contradiction.

(2): Let V resp. W be a λ -stable representation of Π_0 of dimension vector α resp. β . The normal space to the orbit of $V \oplus W$ in $\mathtt{rep}^{ss}_{\alpha+\beta}$ Π_0 is the representation space of dimension vector $(1, 1)$ for the quiver Γ on two vertices having $2 - T_Q(\alpha, \alpha)$ loops in the first, $2 - T_Q(\beta, \beta)$ loops in the second and $-T_Q(\alpha, \beta)$ arrows in both directions between the vertices. By Knop's generalization of the Luna slice result, see [25], and a computation of dimensions we see that the image of the slice map in the principal fibration

$$
GL(\alpha+\beta)\times^{\mathbb{C}^*\times\mathbb{C}^*}\operatorname{rep}_{(1,1)}I
$$

is of codimension one. Because $-T_Q(\alpha, \beta) \geq 3$ every codimension one subvariety of the quotient contains a singularity in the trivial representation. Therefore, the moduli space $M^{ss}_{\alpha+\beta}(H_0,\lambda)$ is singular in the point corresponding to $V \oplus W$. But then, by the hyper-Kähler correspondence, the quotient variety iss $\alpha+\beta$ Π_{λ} is singular in a point of representation type $(1, \alpha; 1, \beta)$, whence $\alpha + \beta \notin \Phi_{\lambda}$.

Observe that W. Crawley-Boevey has proved that $T_O(\alpha, \beta) \le -2$ for α , β , $\alpha + \beta \in \Sigma_{\lambda}$ see [8, Thm 4.6]. (Added may 2001: the first author has recently given a complete classification of quiver settings with a smooth quotient variety, see [5] and [6]. We believe that a combination of this result and the method of proof of the previous proposition will provide a characterization of Φ_{λ} . We hope to come back to this problem in a future publication.)

We end this paper by proving that α -smoothness of a closely related sheaf of algebras is equivalent to α being a minimal element of Σ_{λ} .

Taking locally the algebras of $GL(\alpha)$ -equivariant maps from $\mathtt{rep}^{ss}_{\alpha}(H_0)$, λ) to $M_n(\mathbb{C})$ defines a sheaf of algebras in algo α , $\mathcal{A}_{\lambda,\alpha}$ on the moduli space $M^{ss}_{\alpha}(H_0,\lambda).$

Theorem 6.8. *With notations as above, for* $\alpha \in \Sigma_{\lambda}$ *the following are equivalent:*

- *(1)* ${\cal A}_{\lambda,\alpha}$ is a sheaf of α -smooth algebras on the moduli space $M_\alpha^{ss}(\varPi_0,\lambda).$
- *(2)* α *is a minimal non-zero vector in* Σ_{λ} *(and hence the quotient variety)* iss_α Π_{λ} *is a coadjoint orbit for the necklace Lie algebra* \mathbb{N}_{Q} *).*

Proof. As $\alpha \in \Sigma_{\lambda}$ we know that iss_{α} Π_{λ} has dimension $1 + \alpha \alpha$ – $2\chi_O(\alpha, \alpha) - \dim PGL(\alpha)$ which is equal to $2 - T_O(\alpha, \alpha)$. By the hyper-Kähler correspondence so is the dimension of $M^{ss}_{\alpha}(II_0,\lambda)$, whence the open subset of $\mu_{\mathbb{C}}^{-1}(\underline{0})$ consisting of λ -semistable representations has dimension

$$
1 + \alpha \cdot \alpha - 2\chi_Q(\alpha, \alpha)
$$

as there are λ -stable representations in it (again via the hyper-Kähler correspondence). Take a $GL(\alpha)$ -closed orbit $\mathcal{O}(V)$ in this open set. That is, V is the direct sum of λ -stable subrepresentations

$$
V = S_1^{\oplus e_1} \oplus \ldots \oplus S_r^{\oplus e_r}
$$

with S_i a λ -stable representation of Π_0 of dimension vector β_i occurring in V with multiplicity e_i whence $\alpha = \sum_i e_i \beta_i$.

Again, the normal space in V to $\mathcal{O}(V)$ can be identified with $Ext^1_{H_0}(V)$, V). As all S_i are Π_0 -representations we can determine this space by the knowledge of all $Ext^1_{H_0}(S_i, S_j)$.

$$
Ext^1_{H_0}(S_i, S_j) = 2\delta_{ij} - T_Q(\beta_i, \beta_j)
$$

But then the dimension of the normal space to the orbit is

$$
dim Ext_{H_0}^1(V, V) = 2\sum_{i=1}^r e_i - T_Q(\alpha, \alpha)
$$

By the Luna slice theorem [22], the étale local structure in the smooth point V is of the form $GL(\alpha) \times^{GL(\tau)} Ext^1(V, V)$ where $\tau = (e_1, \ldots, e_r)$ and is therefore of dimension

$$
\alpha.\alpha + \sum_{i=1}^{2} e_i^2 - T_Q(\alpha, \alpha)
$$

This number must be equal to the dimension of the subvariety of λ -semistable representations of Π_0 which has dimension $1+\alpha \cdot \alpha - T_Q(\alpha, \alpha)$ if and only if $r = 1$ and $e_1 = 1$, that is if and only if V is λ -stable. Hence, if $\mathtt{rep}^{ss}_{\alpha}(H_0,\lambda)$ is smooth, then α must be a minimal non-zero vector in the set of dimension vectors of λ -stable representations of Π_0 and hence by the hyper-Kähler correspondence, α is a minimal non-zero vector in Σ_{λ} .

Conversely, if α is a minimal vector in Σ_{λ} , then iss_{α} Π_{λ} is a coadjoint orbit, whence smooth and hence so is $M^{ss}_{\alpha}(H_0, \lambda)$ by the correspondence. Moreover, all α -dimensional λ -semistable representations must be λ -stable by the minimality assumption and so $\mathtt{rep}^{ss}_{\alpha}(H_0,\lambda)$ is a principal $PGL(\alpha)$ fibration over $M^{ss}_{\alpha}(H_0, \lambda)$ whence smooth. Therefore, $\mathcal{A}_{\lambda, \alpha}$ is a sheaf of α -Cayley smooth algebras.

References

- 1. M. Artin: On Azumaya algebras and finite dimensional representations of rings. J.Alg. **11**, 523–563 (1969)
- 2. V. Baranovsky, V. Ginzburg, A. Kuznetsov: Quiver varieties and a noncommutative \mathbb{P}^2 . math.AG/0103068 (2001)
- 3. Yu. Berest, G. Wilson: Automorphisms and ideals of the Weyl algebra, preprint, London (1999) see also math.QA/0102190 (2001)
- 4. Yu. Berest, G. Wilson: Ideal classes of the Weyl algebra and noncommutative projective geometry. math.AG/0104248 (2001)
- 5. R. Bocklandt: Symmetric quiver settings with a regular ring of invariants, preprint UIA (2000), to appear in Lin. Mult. Alg.
- 6. R. Bocklandt: Quiver settings with a regular ring of invariants, preprint UIA (2001)
- 7. R. Cannings, M. Holland: Right ideals of rings of differential operators. J.Alg. **167**, 116–141 (1994)
- 8. W. Crawley-Boevey: Geometry of the moment map for representations of quivers. Compositio Math. **126**, 257–293 (2001)
- 9. W. Crawley-Boevey: On the exceptional fibers of Kleinian singularities. Amer. J. Math. **122**, 1027–1037 (2000)
- 10. W. Crawley-Boevey, M. Holland: Noncommutative deformations of Kleinian singularities. Duke Math. J., 605–635 (1998)
- 11. J. Cuntz, D. Quillen: Algebra extensions and nonsingularity. Journal AMS **8**, 251–289 (1995)
- 12. V. Ginzburg: Non-commutative symplectic geometry and Calogero-Moser space, preprint Chicago, preliminary version (1999)
- 13. V. Ginzburg: Non-commutative symplectic geometry, quiver varieties and operads, preprint Chicago (2000) math.QA/0005165 (2000)
- 14. V. Kac: Infinite root systems, representations of graphs and invariant theory. Invent. Math. **56**, 57–92 (1980)
- 15. A. Kapustin, A. Kuznetson, D. Orlov: Noncommutative instantons and twistor transform. hep-th/0002193 (2000)
- 16. G.Kempf, L. Ness: The length of a vector in representation space, LNM **732**, 233–244 (1979)
- 17. A. King: Moduli of representations of finite dimensional algebras. Quat. J. Math. Oxford **45**, 515–530 (1994)
- 18. M. Kontsevich: Formal non-commutative symplectic geometry. Gelfand seminar 1990– 1992, Birkhauser (1993) 173–187
- 19. L. Le Bruyn: Moduli spaces for right ideals of the Weyl algebra. J. Alg. **172**, 32–48 (1995)
- 20. L. Le Bruyn, noncommutative geometry@n, monograph (to appear)
- 21. L. Le Bruyn, C. Procesi: Semisimple representations of quivers. Trans. AMS **317**, 585–598 (1990)
- 22. D. Luna: Slices etales. Bull.Soc.Math. France Mem **33**, 81–105 (1973)
- 23. J.S. Milne: Etale cohomology, Princeton Mathematical Series, vol. 33, Princeton University Press, Princeton, New Jersey (1980)
- 24. C. Procesi: A formal inverse to the Cayley-Hamilton theorem. J.Alg. **107**, 63–74(1987)
- 25. P. Slodowy: Der Scheibensatz fur Algebraische Transformationsgruppen, in Algebraic ¨ Transformation Groups and Invariant Theory, DMV-Seminat, vol. 13, Birkhäuser, Basel Boston Berlin (1989) 89–114
- 26. G. Wilson: Collisions of Calogero-Moser particles and an adelic Grassmannian. Invent. Math. **133**, 1–41 (1998)