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Abstract. Recently, V. Ginzburg proved that Calogero phase space is a
coadjoint orbit for some infinite dimensional Lie algebra coming from non-
commutative symplectic geometry, [12]. In this note we generalize his argu-
ment to specific quotient varieties of representations of (deformed) prepro-
jective algebras. This result was also obtained independently by V.Ginzburg
[13]. Using results of W. Crawley-Boevey and M. Holland [10], [8] and [9]
we give a combinatorial description of all the relevant couples(α, λ) which
are coadjoint orbits. We give a conjectural explanation for this coadjoint
orbit result and relate it to different noncommutative notions of smoothness.

1 Introduction

In [18,§ 9]M. Kontsevich gave a somewhat cryptic outline of possible appli-
cations of noncommutative (symplectic) geometry to representation theory.
If A is a formally smooth algebra (such as free algebras or path algebras
of quivers), then J. Cuntz and D. Quillen [11] have shown that the coho-
mology of the noncommutative deRham complex gives cyclic homology of
algebras. Motivated by this, M. Kontsevich proposed to associate toA com-
mutative affine schemesrepn A, then-dimensional representations ofA.
ForA formally smooth it follows that these schemes are smooth varieties. In
this situation one assumes that noncommutative functions, noncommutative
differential or symplectic forms onA induce ordinaryGLn-invariant func-
tions, differential and symplectic forms on the varietiesrepn A and hence
on the corresponding quotient varietiesissn A. If A is equipped with a

� Research Director of the FWO (Belgium)



142 R. Bocklandt, L. Le Bruyn

noncommutative symplectic form, the noncommutative functions acquire
a Lie algebra structure and one might expect that in ideal situations some
subvarieties of theissn A will be coadjoint orbits for this Lie structure. In
the paper [18] M. Kontsevich proved an acyclicity result for the noncommu-
tative deRham cohomology forA a free associative algebra and computed
the Lie structure on the functions when there is an even number of free
generators.

As mentioned before, the path algebraCQ of a finite quiverQ is a
formally smooth algebra. The representation varieties forCQ decompose
as

repn CQ =
⊔
α

GLn ×GL(α) repα CQ

whereα = (n1, . . . , nk) runs over all dimension vectorswith
∑
ni = n and

whereGL(α) = GLn1 × . . .×GLnk
is the basechange group of the vertex

spaces. For this reason it is customary to consider thequiver representation
spacesrepα CQ rather than alln-dimensional representations. In order to
applyKontsevich’s idea to the representation theoryof quiversweneednot to
consider the usual deRhamcomplex but rather therelativedeRhamcomplex
with respect to the subalgebraV generated by the vertex-idempotents. In
Sect. 3 we redo Kontsevich’s computation of the cohomology groups of free
algebras for these relative cohomology groups ofCQ and prove

Theorem 1.1. The noncommutative relative deRham cohomology groups
of CQ are {

H0
dR CQ � V

Hn
dR CQ � 0 ∀n ≥ 1

Next, webring in the symplectic structure.Weconsider the double quiver
Q ofQ obtained by adjoining to every arrowa inQ an arrow in the opposite
directiona∗. On the space of noncommutative functions

NQ =
CQ

[CQ,CQ]

which is spanned by the necklace words inQ (that is, the oriented cycles in
the quiverQ considered upto cyclic permutation of the arrows)we candefine
a Lie algebra structure see Fig. 1, which we call thenecklace Lie algebra
NQ. Using our results on deRham cohomology we are able in Sect. 4 to
prove the existence of a central extension result

Theorem 1.2. If V is equipped with the (trivial) commutator bracket, then
there is a central extension of Lie algebras

0 ✲ V ✲ NQ ✲ Derω CQ ✲ 0
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Fig. 1.Lie bracket[w1, w2] in NQ

where the last term is the Lie algebra of symplectic derivations correspond-
ing to the symplectic structureω =

∑
a∈Qa

da∗da.

The Lie algebra of symplectic derivations corresponds to the group of
V -algebra automorphisms ofCQ which preserve themoment elementm =∑
a∈Qa

[a, a∗] ∈ CQ. For this reason it is natural to expect that coadjointness
results for the necklace Lie algebraNQ come from representation schemes
of (deformed) preprojective algebras as introduced by W. Crawley-Boevey
and M. Holland in [10]

Πλ =
CQ

(m− λ)

whereλ = (λ1, . . . , λk) ∈ Ck. However, as we will prove in Sect. 6 these
deformed preprojective algebras areneverformally smooth so usually their
representation schemesrepαΠλ will be highly singular as are their quotient
schemesissα Πλ. Still, extending the original approach of V. Ginzburg on
the coadjointness of Calogero-Moser particles to this situation we are able
in Sect. 5 to prove the following result.

Theorem 1.3. If α is a dimension vector of a simpleΠλ-representation
which is minimal, that is cannot be decomposed as a sum of two smaller
dimension vectors of simples, then

issα Πλ

is a coadjoint orbit for the necklace Lie algebraNQ.

For this result to be applicable we need a description of the set of di-
mension vectors of simple representations ofΠλ. Fortunately this (hard)
problem was solved by W. Crawley-Boevey [8].
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In the final section we try to give a conjectural explanation underly-
ing these coadjoint orbit results. Consider the algebraAQ = C[NQ] ⊗
CQ with trace, mapping an oriented cycle to the corresponding necklace
word and consider the groupAutQ of trace preservingV -algebra auto-
morphisms ofAQ preserving the moment element. Then, we conjecture
that this group acts transitively on each stratum of the quotient variety
issα Πλ = repα Πλ/GL(α) determined by a representation type of
semisimple representations. The coadjoint orbit result would then be a con-
sequence of the conjecture that for deformed preprojective algebras the
noncommutativeα-smooth locus (the subvariety ofissα Πλ such that the
inverse image of the quotient map is a smooth subscheme ofrepα Πλ) co-
incides with the Azumaya algebra (the subvariety ofissα Πλ where the
quotient map is a principalPGL(α)-fibration in theétale topology) of the
α-dimensional approximationΠλ@αof thedeformedpreprojective algebra.
For more details and for the relation with relative notions of noncommuta-
tive smoothness we refer to Sect. 6. Using the computation of the dimension
of ext-groups of the preprojective algebraΠ0 byW. Crawley-Boevey [9] we
are able to prove:

Theorem 1.4. For α a dimension vector of a simple representation ofΠ0,
theα-smooth locus of the preprojective algebraΠ0 coincides with the Azu-
maya locus.

We expect that the conjecture holds for arbitrary deformed preprojective
algebras by a hyper-K̈ahler type argument and prove some partial results in
this direction.

2 Necklace Lie algebras

In this section we introduce themain object of this note in a purely combina-
torial way. Recall that aquiverQ is a finite directed graph on a set of vertices
Qv = {v1, . . . , vk}, having a finite setQa = {a1, . . . , al} of arrows, where
we allow loops aswell asmultiple arrows between vertices. An arrowawith
starting vertexs(a) = vi and terminating vertext(a) = vj will be depicted

as ��������i��������j a�� . The quiver information is encoded in theEuler formwhich
is the bilinear form onZk determined by the matrixχQ ∈ Mk(Z) with

χij = δij − # { a ∈ Qa | ��������i��������j a�� }
The symmetrizationTQ = χQ+χtrQ of this matrix determines theTits form
of the quiverQ. An oriented cyclec = aiu . . . ai1 of lengthu ≥ 1 is a con-
catenation of arrows inQ such thatt(aij ) = s(aij+1) andt(aiu) = s(ai1).
In addition to these there arek oriented cyclesei of length0 corresponding
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to the vertices ofQ. All oriented cyclesc′ obtained fromc by cyclically
permuting the arrow components are said to be equivalent toc. A necklace
wordw for Q is an equivalence class of oriented cycles in the quiverQ.

The double quiverQ of Q is the quiver obtained by adjoining to ev-

ery arrow (or loop) ��������i��������j a�� in Q an arrow in the opposite direction
��������i��������j a∗
�� . That is,χQ = TQ − ��

k.
The necklace Lie algebraNQ for the quiverQ has as basis the set of

all necklace wordsw for the doublequiverQ and where the Lie bracket
[w1, w2] is determined as in Fig. 1. That is, for every arrowa ∈ Qa we look
for an occurrence ofa inw1 and ofa∗ inw2. We then open up the necklaces
by removing these factors and regluing the open ends together to form a new
necklace word. We repeat this operation forall occurrences ofa (inw1) and
a∗ (in w2). We then replace the roles ofa∗ anda and redo this operation
with a minus sign. Finally, we add up all these obtained necklace words for
all arrowsa ∈ Qa. Using this graphical description the Jacobi identity for
NQ follows from Fig. 2.

3 An acyclicity result

The path algebraCQ of a quiverQ has as basis the set of all oriented
pathsp = aiu . . . ai1 of lengthu ≥ 1 in the quiver, that iss(aij+1) = t(aij )
together with the vertex-idempotentsei of length zero.Multiplication inCQ
is induced by (left) concatenation of paths.More precisely,1 = e1+. . .+ek
is a decomposition of1 into mutually orthogonal idempotents and further
we define

– ej .a is always zero unless��������j ��������a�� in which case it is the patha,

– a.ei is always zero unless ��������i�������� a�� in which case it is the patha,

– ai.aj is always zero unless ���������������� ��������ai�� aj�� in which case it is
the pathaiaj .

Path algebras of quivers are the archetypical examples offormally smooth
algebrasas introduced and studied in [11].

In this section we will generalize Kontsevich’s acyclicity result for the
noncommutative deRham cohomology of the free algebra [18] to that of
the path algebraCQ. The crucial idea is to consider therelativedifferential
forms (as defined in [11]) ofCQ with respect to the semisimple subalgebra
V = C×. . .×C generated by the vertex idempotents. The idea being that in
considering quiver representations one works in the category ofV -algebras
rather thanC-algebras.

For a subalgebraB of A, letAB denote the cokernel of the inclusion as
B-bimodule. The space of relative differential forms of degreen of A with
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Fig. 2. Jacobi identity for the necklace Lie algebraNQ. Term1a vanishes against2c, term
1b against3d, 1c against3a, 1d against2b, 2a against3c and2d against3b
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respect toB is

ΩnB A = A⊗B AB ⊗B . . .⊗B AB︸ ︷︷ ︸
n

The spaceΩ•
B A is given a differential graded algebra structure by taking

the multiplication

(a0, . . . , an)(an+1, . . . , am)

=
n∑
i=0

(−1)n−i(a0, . . . , ai−1, aiai+1, ai+2, . . . , am)

and thedifferentiald(a0, . . . , an) = (1, a0, . . . , an), see [11].Here,(a0, . . . ,
an) is a representant of the classa0da1 . . . dan ∈ ΩnB A and we recall that
Ω•
B A s generated by thea andda for all a ∈ A. Therelative cohomology

Hn
B A is defined as the cohomology of the complexΩ•

B A.
For θ ∈ DerB A, the Lie algebra ofB-derivations ofA (that isθ is a

derivation ofA andθ(B) = 0), we define a degree preserving derivationLθ
and a degree−1 super-derivationiθ onΩ•

B A (that is, for allω ∈ ΩiB A we
have thatiθ(ωω′) = iθ(ω)ω′ + (−1)iωiθ(ω′))

Ωn−1
B A ΩnB A Ωn+1

B A

Lθ

��

Lθ

��

Lθ

��

d

		

iθ





d
		

iθ





by the rules {
Lθ(a) = θ(a) Lθ(da) = d θ(a)
iθ(a) = 0 iθ(da) = θ(a)

for all a ∈ A. We have the Cartan homotopy formulaLθ = iθ ◦ d+ d ◦ iθ
as both sides are degree preserving derivations onΩ•

B A and they agree on
all the generatorsa andda for a ∈ A.
Lemma 3.1. Let θ, γ ∈ DerB A, then we have onΩ•

B A the identities of
operators{

Lθ ◦ iγ − iγ ◦ Lθ = [Lθ, iγ ] = i[θ,γ] = iθ◦γ−γ◦θ
Lθ ◦ Lγ − Lγ ◦ Lθ = [Lθ, Lγ ] = L[θ,γ] = Lθ◦γ−γ◦θ

Proof. Consider the first identity. By definition both sides are degree−1
super-derivations onΩ•

B A so it suffices to check that they agree on gener-
ators. Clearly, both sides give0 when evaluated ona ∈ A and forda we
have

(Lθ ◦ iγ − iγ ◦ Lθ)da=Lθ γ(a) − iγ d θ(a)=θ γ(a) − γθ(a)= i[θ,γ](da)
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A similar argument proves the second identity. 
�
Specialize to the quiver-case withA = CQ the path algebra andB =

V = Ck the vertex algebra.

Lemma 3.2. LetQ be a quiver onk vertices, then a basis forΩnV CQ is
given by the elements

p0dp1 . . . dpn

wherepi is an oriented path in the quiver such thatlength p0 ≥ 0 and
length pi ≥ 1 for 1 ≤ i ≤ n and such that the starting point ofpi is the
endpoint ofpi+1 for all 1 ≤ i ≤ n− 1.

Proof. Clearly l(pi) ≥ 1 wheni ≥ 1 or pi would be a vertex-idempotent
whence inV . Let v be the starting point ofpi andw the end point ofpi+1
and assume thatv �= w, then

pi ⊗V pi+1 = piv ⊗V wpi+1 = pivw ⊗V pi+1 = 0

from which the assertion follows. 
�
Proposition 3.3. LetQ be a quiver onk vertices, then the relative differen-
tial form-complex have the following cohomology{

H0
V CQ � C × . . .× C (k factors)

Hn
V CQ � 0 ∀n ≥ 1

Proof. Define theEuler derivationE onCQ by the rules that

E(ei) = 0 ∀ 1 ≤ i ≤ k and E(a) = a ∀a ∈ Qa
By induction on the lengthl(p) of an oriented pathp in the quiverQ one
easily verifies thatE(p) = l(p)p. By induction one can also proof that
LE(p0dp1 . . . dpn) = (l(p0) + · · · + l(pn))p0dp1 . . . dpn. This implies that
LE is a bijection on eachΩiV CQ, wherei > 1 and onΩ0

V CQ, LE has V
as its kernel. By applying the Cartan homotopy formula forLE , we obtain
that the complex is acyclic. 
�

The complexΩ•
V CQ induces therelative Karoubi complex

dR0
V CQ

d✲ dR1
V CQ

d✲ dR2
V CQ

d✲ . . .

with

dRnV CQ =
ΩnV CQ∑n

i=0[ Ω
i
V CQ,Ωn−i

V CQ ]
In this expression the brackets denote supercommutators with respect to the
grading onΩ•

V CQ. In the commutative case,dR0 are the functions on the
manifold anddR1 the1-forms.



Necklace Lie algebras and noncommutative symplectic geometry 149

Lemma 3.4. A C-basis for the noncommutative functions

dR0
V CQ � CQ

[ CQ,CQ ]

are the necklace words in the quiverQ.

Proof. Let W be theC-space spanned by all necklace wordsw in Q and
define a linear map

CQ
n✲✲ W

{
p �→ wp if p is a cycle

p �→ 0 if p is not

for all oriented pathsp in the quiverQ, wherewp is the necklace word in
Q determined by the oriented cyclep. Becausewp1p2 = wp2p1 it follows
that the commutator subspace[CQ,CQ] belongs to the kernel of this map.
Conversely, let

x = x0 + x1 + . . .+ xm

be in the kernel wherex0 is a linear combination of non-cyclic paths andxi
for 1 ≤ i ≤ m is a linear combination of cyclic paths mapping to the same
necklace wordwi, thenn(xi) = 0 for all i ≥ 0. Clearly,x0 ∈ [CQ,CQ] as
we can write every noncyclic pathp = a.p′ = a.p′ − p′.a as a commutator.
If xi = a1p1 + a2p2 + . . . + alpl with n(pi) = wi, thenp1 = q.q′ and
p2 = q′.q for some pathsq, q′ whencep1 − p2 is a commutator. But then,
xi = a1(p1 −p2)+(a2 −a1)p2 + . . .+alpl is a sum of a commutator and a
linear combination of strictly fewer elements. By induction, this shows that
xi ∈ [CQ,CQ]. 
�
Lemma 3.5. dR1

V CQ is isomorphic asC-space to

⊕
j	
��
��� i	
��
���a��

ei.CQ.ej da =
⊕

j	
��
��� i	
��
���a��

i	
��
��� j	
��
���
��

d j	
��
��� i	
��
���a��

Proof. If p.q is not a cycle, thenpdq = [p, dq] and so vanishes indR1
V CQ

so we only have to consider termspdq with p.q an oriented cycle inQ. For
any three pathsp, q andr in Q we have the equality

[p.qdr] = pqdr − qd(rp) + qrdp

whence indR1
V CQ we have relations allowing to reduce the length of the

differential part
qd(rp) = pqdr + qrdp
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sodR1
V CQ is spanned by terms of the formpda with a ∈ Qa andp.a an

oriented cycle inQ. Therefore, we have a surjection

Ω1
V CQ ✲✲

⊕
j	
��
��� i	
��
���a��

ei.CQ.ej da

By construction, it is clear that[Ω0
V CQ,Ω1

V CQ] lies in the kernel of this
map and using an argument as in the lemma above one shows also the
converse inclusion. 
�

Using the above descriptions ofdRiV CQ for i = 0, 1 and the differen-

tial dR0
V CQ

d✲ dR1
V CQ we can definepartial differential operators

associated to any arrowj	
��
��� i	
��
���a�� in Q.

∂

∂a
: dR0

V CQ ✲ eiCQej by df =
∑
a∈Qa

∂f

∂a
da

To take the partial derivative of a necklace wordw with respect to an arrow
a, we run throughw and each time we encountera we open the necklace
by removing that occurrence ofa and then take the sum of all the paths
obtained.

Defining therelative deRham cohomologyHn
dR CQ to be the cohomol-

ogy of the Karoubi complex and observing that the operatorsLθ andiθ on
Ω•
V CQ induce operators on the Karoubi complex, we have theacyclicity

result

Theorem 3.6. The relative Karoubi complex has the following cohomology{
H0
dR CQ � V

Hn
dR CQ � 0 ∀n ≥ 1

Proof. DefineK = ⊕m,n[ΩnV CQ,ΩmV CQ] then one verifies for the Euler
derivation that

LE(K) ⊂ K iE(K) ⊂ K LE = iE ◦ d+ d ◦ iE

The length of a path induces a graded algebra structure onΩV CQ and
clearlyK andd−1K arespannedbyhomogeneouselements.Thedifferential
of a homogeneous element is either zero or an element of the same length.
Writing x =

∑
i xi ∈ d−1K in homogeneous components we havedx =∑

i dxi is a homogeneous decomposition. Hence, alldxi ∈ K whence
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xi ∈ d−1K. Assume thatω is a homogeneous element of lengthl > 1 in
d−1K, then

ω +K =
1
l
LE(ω) +K

=
1
l
(iE(dω) + d(iE(ω))) +K

= d(iE(ω)) +K

From these facts the result follows bymimicking the proof for the cohomol-
ogy of the relative differential form complex above. 
�

4 Symplectic interpretation

In this section we use the acyclicity result to give a Poisson interpretation to
the Lie bracket inNQ. This generalizes theKontsevich bracket[18] in the
free case to path algebras of doubles of quivers. IfQ is a quiver with double
quiverQ, then we can define a canonicalsymplectic structureon the path
algebra of the doubleCQ determined by the element

ω =
∑
a∈Qa

da∗da ∈ dR2
V CQ

As in the commutative case,ω defines a bijection between the noncom-
mutative1-formsdR1

V CQ and thenoncommutative vectorfieldswhich are
defined to be theV -derivations ofCQ. This correspondence is

DerV CQ
τ✲ dR1

V CQ given by τ(θ) = iθ(ω)

In analogy with the commutative case we define a derivationθ ∈ DerV CQ

to besymplecticif and only if Lθω = 0 ∈ dR2
V CQ and denote the sub-

space of symplectic derivations byDerω CQ. It follows from the homotopy
formula and the fact thatω is a closed form, thatθ ∈ Derω CQ implies
Lθω = diθω = dτ(θ) = 0. That is,τ(θ) is a closed form which by the
acyclicity of the Karoubi complex shows that it must be an exact form. That
is we have an isomorphism of exact sequences ofC-vectorspaces

0 ✲ V ✲ dR0
V CQ

d✲ (dR1
V CQ)exact ✲ 0

0 ✲ V

=

❄
✲ CQ

[CQ,CQ]

�
❄

✲ Derω CQ

τ−1

❄
✲ 0

Thesymplectic structureω definesaPoissonbracket on thenoncommutative
functions.
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Definition 4.1. LetQ be a quiver andQ its double. TheKontsevich bracket
on the necklace words inQ, dR0

V CQ is defined to be

{w1, w2}K =
∑
a∈Qa

(
∂w1

∂a

∂w2

∂a∗ − ∂w1

∂a∗
∂w2

∂a

)
mod [CQ,CQ]

By thedescription of thepartial differential operators it is clear thatdR0
V CQ

with this bracket is isomorphic to the necklace Lie algebraNQ.

Thesymplectic derivationsDerω CQhaveanatural Lie algebra structure
by commutators of derivations. We will show thatτ−1 ◦ d is a Lie algebra
morphism.

For every necklacewordwwehaveasymplectic derivationθw = τ−1dw
defined by {

θw(a) = − ∂w
∂a∗

θw(a∗) = ∂w
∂a

With this notation we get the following interpretations of the Kontsevich
bracket

{w1, w2}K = iθw1
(iθw2

ω) = Lθw1
(w2) = −Lθw2

(w1)

where the next to last equality follows becauseiθw2
ω = dw2 and the fact

thatiθw1
(dw) = Lθw1

(w) for anyw. More generally, for anyV -derivation
θ and any necklace wordw we have the equation

iθ(iθwω) = Lθ(w).

When we look at the image of the Kontsevich bracket underτ−1d, we
obtain the following

τ−1d{w1, w2}K = τ−1dLθw1
w2

= τ−1Lθw1
dw2

= τ−1Lθw1
iθw2

ω

= τ−1([Lθw1
, iθw2

] + iθw2
Lθw1

)ω

= τ−1i[θw1 ,θw2 ]ω

= [θw1 , θw2 ]

Above we made use of the fact thatLθ commutes withd, and the defining
equationdw2 = iθw2

ω. In the fourth line we omitted the last term because
θw1 is a symplectic derivation. Finally Lemma 3.1 enabled us to transform
the commutator ini andL to of commutator of the derivationsθw1 andθw2 .
This calculation concluded the proof of:
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Theorem 4.2.With notations as before,dR0
V CQ with the Kontsevich

bracket is isomorphic to the necklace Lie algebraNQ, and the sequence

0 ✲ V ✲ NQ
τ−1d✲ Derω CQ ✲ 0

is an exact sequence (hence a central extension) of Lie algebras.

5 Coadjoint orbits

Consider a dimension vectorα = (n1, . . . , nk), that is, ak-tuple of natural
numbers, then the space ofα-dimensional representations of the double
quiverQ, repα Q can be identified via the trace pairing with the cotangent
bundleT ∗ repα Q of the space ofα-dimensional representations of the
quiverQ, see for example [8], and as such acquires a natural symplectic
structure. The natural action of the basechange groupGL(α) = GLn1 ×
. . . × GLnk

on repα Q is symplectic and induces a Poisson structure on
the coordinate ring as well as on the ring of polynomial quiver invariants,
which are generated by traces along oriented cycles by [21].

The symplectic derivationsDerω CQ correspond to theV -automor-
phisms of the path algebra of the doubleCQ preserving themoment element

m =
∑
a∈Qa

[a, a∗] ∈ CQ

For this reason it is natural to consider thecomplex moment map

repα Q
µC✲ M0

α(C) V �→
∑
a∈Qa

[Va, Va∗ ]

whereM0
α(C) is the subspace ofk-tuples(m1, . . . ,mk) ∈ Mn1(C)⊕ . . .⊕

Mnk
(C) such that

∑
i tr(mi) = 0, that isM0

α(C) = Lie PGL(α) where
PGL(α) = GL(α)/C∗(��

n1 , . . . ,
��
nk

).
For λ = (λ1, . . . , λk) ∈ Ck such that

∑
i niλi = 0 we consider the

elementλ = (λ1
��
n1 , . . . , λk

��
nk

) inM0
α(C). The inverse imageµ−1

C (λ) is a
GL(α)-closed affine subvariety ofrepα Q.

In [13] V. Ginzburg proved the following coadjointness result using the
results of the preceding sections.

Theorem 5.1 (Ginzburg).Assume thatµ−1
C (λ) is smooth and irreducible

and thatPGL(α) acts freely onµ−1
C (λ), then the quotient variety (the orbit

space)
µ−1

C (λ)/GL(α)

is a coadjoint orbit for the necklace Lie algebraNQ.
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Using results of W. Crawley-Boevey [8] we will identify the situations
(α, λ) satisfying the conditions of the theorem. Forλ ∈ Ck as above, W.
Crawley-Boevey and M. Holland introduced and studied thedeformed pre-
projective algebra

Πλ =
CQ

(m− λ)

whereλ = λ1e1 + . . . + λkek ∈ CQ. From [10] we recall thatµ−1
C (λ)

is the scheme ofα-dimensional representationsrepα Πλ of the deformed
preprojective algebraΠλ.

We recall the characterization due toV.Kac [14] of the dimension vectors
of indecomposable representations of the quiverQ. To a vertexvi in which

Q has no loop, we define areflectionZk
ri✲ Zk by

ri(α) = α− TQ(α, εi)εi

whereεi = (δ1i, . . . , δki). TheWeyl group of the quiverQ WeylQ is the
subgroup ofGLk(Z) generated by all reflectionsri.

A root of the quiverQ is a dimension vectorα ∈ Nk such thatrepα Q
contains indecomposable representations. All roots have connected support.
A root is said to be{

real if χQ(α, α) = 1
imaginary if χQ(α, α) ≤ 0

For a fixed quiverQ we will denote the set of all roots, real roots and
imaginary roots respectively by∆,∆re and∆im. WithΠ we denote the set
{εi | vi has no loops}. The fundamental set of rootsis defined to be the
following set of dimension vectors

FQ = {α ∈ Nk − 0 | TQ(α, εi) ≤ 0 andsupp(α) is connected}
Kac’s result asserts that{

∆re = WeylQ.Π ∩ Nk

∆im = WeylQ.FQ ∩ Nk

Example 5.2.The quiverQ and double quiverQ appearing in the study
of Calogero phase space (see [26] and [12]) which stimulated the above
generalizations are

	
��
��� 	
��
��� b��
a �� and 	
��
��� 	
��
���

b





b∗

��

a

��

a∗

��
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The Euler- and Tits form of the quiverQ are determined by the matrices

χQ =
[
1 −1
0 0

]
and TQ =

[
2 −1

−1 0

]
The root-system forQ is easy to work out. We have

���������������������������������� •

FQ ∆
+
im

m

n

∆+
re


FQ = {(m,n) | n ≥ 2m}
∆+
im = {(m,n) | n ≥ m}

Π = ∆+
re = {(1, 0)}

Fixλ ∈ Ck anddenote∆+
λ to be the set of positive rootsβ = (b1, . . . , bk)

for Q such thatλ.β =
∑
i λibi = 0. With Sλ (resp.Σλ) we denote the

subsets of dimension vectorsα which are roots forQ such that

1 − χQ(α, α) ≥ (resp.>) r − χQ(β1, β1) − . . .− χQ(βr, βr)

for all decompositionsα = β1 + . . . + βr with theβi ∈ ∆+
λ . The main

results of [8] can be summarized into:

Theorem 5.3 (W. Crawley-Boevey).

(1) α ∈ S0 if and only ifµC is a flat morphism. In this case,µC is also
surjective.

(2) α ∈ Σλ if and only ifΠλ has a simpleα-dimensional representation.
In this case,µ−1

C (λ) is a reduced and irreducible complete intersection
of dimension1 + α.α− 2χQ(α, α).

Using the results of [21] one verifies that the set of dimension vectors
of simple representations ofQ coincides with the fundamental setFQ. As
any simpleΠλ-representation is a simpleQ-representations it follows that
Σλ ⊂ ✲ FQ.

Example 5.4.For the Calogero-example above, we have
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(1) The setS0 consisting of all(m,n) such that the complex moment map
µC is surjective and flat is the set of roots

S0 = {(m,n) | n ≥ 2m− 1} � {(1, 0)}
(2) The setΣ0 of dimension vectors(m,n) of simple representations of the

preprojective algebraΠ0 is the set of roots

Σ0 = {(m,n) | n ≥ 2m} � {(1, 0)}
which isFQ � {(1, 0)}.

(3) Forλ = (−n,m)with gcd(m,n) = 1, the setΣλ of dimension vectors
of simple representations of the deformed preprojective algebra is the
set of roots

Σλ = {k.(m,n) | k ∈ N+}
with unique minimal element(m,n).

For the first two parts the essential calculation is to verify the conditions on
the decomposition(m,n) = (m− 1, n) + (1, 0).

We obtain the following combinatorial description of the couples(α, λ)
for which Ginzburg’s criterium applies.

Theorem 5.5. µ−1
C (λ) is smooth and irreducible with a free action of

PGL(α) (and henceµ−1
C (λ)/GL(α) is a coadjoint orbit forNQ) if and

only if α is a minimal non-zero element ofΣλ.

Proof. We know thatµ−1
C (λ) = repα Πλ. By a result of M. Artin [1] one

knows that the geometric points of the quotient schemerepα Πλ/GL(α)
are the isomorphism classes ofα-dimensional semi-simple representations
ofΠλ. Moreover, thePGL(α)-stabilizer of a point inrepα Πλ is trivial if
and only if it determines a simpleα-dimensional representation ofΠλ. The
result follows from this and the results recalled above. The fact thatµ−1

C (λ)
is smooth ifα is a minimal non-zero element ofΣλ follows from computing
the differential of the complex moment map, see also [8, Lemma 5.5].
�
Example 5.6.Consider the special case whenλ = (−n, 1) andα = (1, n)
the unique minimal element inΣλ, then it follows from [26] that we have
canonical identifications of the quotient varieties

issα Πλ � Calon

whereCalon is the phase space ofnCalogero particles. In particular,Calon
is a coadjoint orbit. Wilson [26] has shown that

Grad =
⊔
n

Calon
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whereGrad is the adelic Grassmannianwhich can be thought of as the space
parametrizing isomorphism classes of right ideals in the first Weyl algebra
A1(C) = C〈x, y〉/(xy − yx − 1) by [7]. In [3] it is shown that there is
a non-differentiable action of the automorphism group ofA1(C) onGrad

having a transitive action on each of theCalon. It was then conjectured
by Y. Berest and G. Wilson thatCalon might be a coadjoint orbit for a
central extension of the automorphism group. (Added may 2001: for more
information on these connections as well as to related papers [7], [19] and
[15] we refer to the recent preprints of Yu. Berest and G. Wilson [3] and
[4].)

Example 5.7.M. Holland and W. Crawley-Boevey have a conjectural ex-
tension of the foregoing example. LetQ′ be an extended Dynkin quiver on
k vertices{v1, . . . , vk} with minimal imaginary rootδ = (d1, . . . , dk). A
vertexvi is said to be an extending vertex provideddi = 1. Consider the
quiverQ onk+1 vertices{v0, v1, . . . , vk}which isQ′ on the lastk vertices
and there is one extra arrow fromvo to an extending vertexvi. For a generic
λ′ = (λ1, . . . , λk) they defined a noncommutative algebraOλ′

extending
the role of the Weyl algebra in the previous example. They conjecture that
there is a bijection between the isomorphism classes of stably free right
ideals inOλ and points in

�n µ−1
C (λn)/GL(αn)

whereαn = (1, nδ) andλn = (−nλ′.δ, λ′). This remains to be seen but
from our theorem we deduce that each of the quotient varietiesµ−1

C (λn)/
GL(αn) is a coadjoint orbit for the necklace Lie algebraNQ. (Note added
may 2001: recently theCrawley-Boevey andHolland conjecturewas proved
by V. Baranovsky, V. Ginzburg and A. Kuznetsov see [2].)

If α ∈ Σλ but not minimal, there are severalrepresentation typesτ =
(m1, β1; . . . ,mv, βv) of semi-simpleα-dimensional representations ofΠλ
with theβi ∈ Σλ and

∑
miβi = α and themi determine the multiplicities

of the simple components. Withissα(τ) we denote the subvariety of the
quotient varietyissαΠλ = repαΠλ/GL(α) consisting of all semi-simple
representations of typeτ .

Consider the algebraAQ = C[NQ]⊗CCQwhich has a naturaltrace map
tr : AQ ✲ C[NQ] mapping an oriented cycle inQ to the corresponding
necklace word and all open paths to zero. WithAutQ we denote the auto-
morphism group of trace preservingC-algebra automorphisms ofAQ which
preserve the moment elementm =

∑
a∈Qa

[a, a∗]. A natural extension of
the above coadjoint orbit result would be a positive solution to the following
problem.

Conjecture 5.8. AutQ acts transitively on every stratumissα(τ).
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6 Smoothness and deformed preprojective algebras

In this section we will relate the coadjoint orbit result to different notions of
smoothness in noncommutative geometry.

The path algebraCQ of the double quiverQ is formally smooth in the
senseof [11], that is, it has the liftingpropertywith respect tonilpotent ideals.
Hence,CQ is the coordinate ring of a noncommutative affine manifold and
has a good theory of differential forms (acyclicity).

On the other hand, we will see that the deformed preprojective algebras
Πλ areneverformally smooth. For this reason, the differential forms ofCQ

when restricted toΠλ may have rather unpredictable behavior.
Still, it may be possible that certain representation spacesrepα Πλ are

smooth and we need a notion of noncommutative (formal) smoothness rel-
ative to the dimension vectorα. Recall that ifα is a minimal dimension
vector inΣλ, thenrepα Πλ = µ−1

C (λ) is smooth. We will now investigate
whether there are other examples of smooth fibersµ−1

C (λ) using the relative
notion of smoothness introduced by C. Procesi in [24] and studied in detail
in [20]. First, we will recall its ringtheoretical characterization.

Let α = (n1, . . . , nk) and setn =
∑
i ni. With alg@α we denote

the category of allV -algebrasA which are equipped with a trace map,
that is a linear maptr : A ✲ A such that for alla, b ∈ A we have
tr(a)b = btr(a), tr(ab) = tr(ba) andtr(tr(a)b) = tr(a)tr(b) satisfying
the following properties. First, we must have thattr(1) = n, the trace map
must satisfy the formal Cayley-Hamilton identity of degreen, see [24] and
finally the trace values of the vertex-idempotents are given bytr(ei) = ni,
the components of the dimension vectorα.

Morphisms in the categoryalg@α are trace preservingV -algebra mor-
phisms. An algebraA in in alg@α is said to beα-smoothif it satisfies the
lifting property with respect to nilpotent ideals inalg@α. That is, every
diagram

B
π ✲✲ B

I
�
..............

∃φ̃

A

φ

✻

withB, BI in alg@α, I a nilpotent ideal andπ andφ trace preserving maps,
can be completed with a trace preserving algebra mapφ̃.

Observe that ifn = 1 andα = (1) we have thatalg@α = commalg the
category of commutativeC-algebrasandbyGrothendieck’s characterization
of regular algebras one has in this case that an algebra isα-smooth if and
only if it is regular.
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In general, a geometric characterization of this lifting property is that
an algebraA is α-smooth if and only if the scheme ofα-dimensional trace
preserving representations ofA is a smoothGL(α)-variety, see [24] or [20].

There is a partial functoralg ✲ alg@α which assigns to an affine
V -algebraB the algebra ofGL(α)-equivariant maps

repα A
✲ Mn(C)

(whereGL(α) acts onMn(C) by conjugation via the obvious embedding
along the diagonalGL(α) ⊂ ✲ GLn) which is an object inalg@α. We
will denote this algebra of equivariant maps byB@α. Clearly, the scheme
repα B of α-dimensional representations ofB coincides with the scheme
of α-dimensional trace preserving representations ofB@α.

For this reason, the fiberµ−1
C (λ) is a smooth affine variety if and only if

the algebraΠλ@α isα-smooth. As we have seen beforeΠλ@α isα-smooth
if (λ, α) is such thatλ.α = 0 andα is a minimal non-zero vector inΣλ. In
this case,Πλ@α is even an Azumaya algebra over the coadjoint orbit, that
is, the quotient map

repα Πλ = µ−1
C (λ) ✲✲ µ−1

C (λ)/GL(α)

is a principalPGL(α)-fibration in theétale topology. For more details on
Azumaya algebras and their relation toétale cohomology we refer to the
book by J.S. Milne [23].

Noncommutative geometry, as propagated by M. Kontsevich in [18] is
based on the fact that noncommutative functions and noncommutative (rel-
ative) differential forms associated to a formally smoothC-algebraA (resp.
a formally smoothV -algebraA) induce ordinary functions and differential
forms on the smooth representations schemesrepn A (resp.repα A) of n-
dimensional (resp.α-dimensional) representations and their corresponding
quotient varietiesissn A resp.issα A. For this reason one expects that the
closed subschemeissα Πλ behaves well with respect to noncommutative
symplectic forms (in particular, is a coadjoint orbit for the necklace algebra
NQ) if and only ifΠλ@α is α-smooth.

On the other hand, if the coadjoint orbit result follows from the conjec-
tural transitive action of the groupAutQ as stated in Conjecture 5.8, this
can only happen if there is just one stratum. That is, if and only ifΠλ@α is
an Azumaya algebra, or equivalently, thatα is a minimal element ofΣλ.

These conjectural equivalences of (1)µ−1
C (λ)/GL(α) coadjoint orbit,

(2)Πλ@α anα-smooth algebra and (3)α a minimal element ofΣλ follow
from a stronger conjecture on deformed preprojective algebras formulated
below.

Consider the algebraic quotient map

repα Πλ
πα✲✲ issα Πλ = repα Πλ/GL(α)
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ByArtin’s result [1], aC-pointξ of issαΠλ corresponds to an isomorphism
class of anα-dimensional semisimple representation

Mξ = S⊕e1
1 ⊕ . . .⊕ S⊕ez

z

ofΠλ. Here,Si is anαi-dimensional simple representation ofΠλ occurring
with multiplicity ei inMξ. In particular we have that

for all i : αi ∈ Σλ and
∑
i

eiαi = α

Fix a pointMξ of the closedGL(α)-orbitO(Mξ) in repα Πλ. We will say
thatξ ∈ issαΠλ belongs to thenoncommutative smooth locusSmαΠλ of
Πλ (or ofΠλ@α) if repα Πλ is smooth inMξ. Because the singular locus
is a closed subvariety ofrepαΠλ is a closed subvariety we have thatΠλ@α
is α-smooth iffSmα Πλ = issα Πλ.

Now we restrict toα ∈ Σλ and consider the Zariski open subscheme
Az Πλ@α of pointsξ ∈ issα Πλ such thatMξ is a simple representation
of Πλ, then the restriction of the quotient mapπα to π−1

α (Az Πλ@α) is a
principalPGL(α)-fibration in theétale topology. We callAz Πλ@α the
Azumaya locusofΠλ@α. The above conjectural equivalences follow from
an affirmative answer to the following conjecture.

Conjecture 6.1. Forα ∈ Σλ we have
Smα Πλ = Az Πλ@α

Wewill give an affirmative solution to this conjecture in the special case
of the preprojective algebraΠ0. By a result of W. Crawley-Boevey [9], we
can control theExt1-spaces of representations ofΠ0. Let V andW be
representations ofΠ0 of dimension vectorsα andβ, then we have

dimC Ext
1
Π0

(V,W ) = dimC HomΠ0(V,W ) + dimC HomΠ0(W,V )
−TQ(α, β)

Forξ ∈ issα Π0 to belong to the smooth locusξ ∈ Smα Π0 it is necessary
and sufficient thatrepα Π0 is smooth along the orbitO(Mξ) whereMξ is
the semi-simpleα-dimensional representation ofΠ0 corresponding toξ.

Assume thatξ is of typeτ = (e1, α1; . . . ; ez, αz), that is,

Mξ = S⊕e1
1 ⊕ . . .⊕ S⊕ez

z

with Si a simpleΠ0-representation of dimension vectorαi. Then, the nor-
mal space to the orbitO(Mξ) is determined byExt1Πo

(Mξ,Mξ) and can
be depicted by a local quiver setting(Qξ, αξ) whereQξ is a quiver onz
vertices having as many arrows from vertexi to vertexj as the dimension
of Ext1Π0

(Si, Sj) and whereαξ = ατ = (e1, . . . , ez).
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As repα Π0 is assumed to be smooth inMξ we can apply the strong
form of the Luna slice theorem, see [22] or [25] which asserts that the action
morphism and corresponding quotient maps

GL(α) ×GL(αξ) Nξ ✲ repα Π0

Nξ/GL(αξ)
❄❄

✲ issα Π0

❄❄

whereNξ is the normal space to the orbit inMξ, areétale inMξ (resp. in
ξ) and that the upper map isGL(α)-equivariant. With the above quiver-
theoretic interpretation of the normal spaceNξ we deduce

Lemma 6.2. With notations as above,ξ ∈ Smα Π0 if and only if

dim GL(α) ×GL(αξ) Ext1Π0
(Mξ,Mξ) = dimMξ

repα Π0

As we have enough information to compute both sides, we can prove:

Theorem 6.3. If ξ ∈ issα Π0 with α = (a1, . . . , ak) ∈ S0, thenξ ∈
Smα Π0 if and only ifMξ is a simplen-dimensional representation ofΠ0.
That is, the smooth locus ofΠ0 coincides with the Azumaya locus.

Proof. Assume thatξ is a point of semi-simple representation typeτ =
(e1, α1; . . . ; ez, αz), that is,

Mξ = S⊕e1
1 ⊕ . . .⊕ S⊕ez

z with dim(Si) = αi

andSi a simpleΠ0-representation. We have{
dimC Ext

1
Π0

(Si, Sj) = −TQ(αi, αj) i �= j

dimC Ext
1
Π0

(Si, Si) = 2 − TQ(αi, αi)

But then, the dimension ofExt1Π0
(Mξ,Mξ) is equal to

z∑
i=1

(2 − TQ(αi, αi))e2i +
∑
i
=j

eiej(−TQ(αi, αj)) = 2
z∑
i=1

e2i − TQ(α, α)

from which it follows immediately that

dim GL(α) ×GL(αξ) Ext1Π0
(Mξ,Mξ) = α.α+

z∑
i=1

e2i − TQ(α, α)
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On the other hand, asα ∈ S0 we know that

dim repα Π0 = α.α− 1 + 2pQ(α)
= α.α− 1 + 2 − 2χQ(α, α) = α.α+ 1 − TQ(α, α)

But then, equality occurs if and only if
∑
i e

2
i = 1, that is,τ = (1, α) orMξ

is a simplen-dimensional representation ofΠ0. 
�
In particular it follows that the preprojective algebraΠ0 isneverformally

smooth as this implies that all the representation varieties must be smooth.
Further, asEvi = (0, . . . , 1, 0, . . . , 0) are dimension vectors of simple repre-
sentations ofΠ0 it follows thatΠ0 is α-smooth if and only ifα = Evi for
somei.

Example 6.4.Let Q be an extended Dynkin diagram andδ the minimal
imaginary root, thenδ ∈ S0. The dimension of the quotient variety

dim issδ Π0 = dim repδ Π0 − δ.δ + 1
= 2

so it is a surface. The only other semi-simpleδ-dimensional representation
of Π0 is the trivial representation. By the theorem, this must be an isolated
singular point ofissδ Q. In fact, one can show thatissδ Π0 is the Kleinian
singularity corresponding to the extended Dynkin diagramQ.

The proof of Theorem 6.3 can be repeated verbatim for the deformed
preprojective algebrasΠλ providedwewould have an analogue of Crawley-
Boevey’s formula for the dimension of the extension groupsExt1Πλ

(M,N).
Unfortunately, no such formula is known at present. Observe that an affir-
mative answer to Conjecture 6.1 follows from

Conjecture 6.5. Let S andT be (isomorphism classes of) simpleΠλ rep-
resentations of dimension vectorα resp.β, then

dimC Ext
1
Πλ

(S, T ) = 2δST − TQ(α, β)

In particular, the extension form on semisimpleΠλ-representations is sym-
metric.

Before we can prove some partial results for deformed preprojective
algebras we need to recall thatrepα Q admits a hyper-K̈ahler structure
(that is, an action of the quaternion algebraH = R.1 ⊕ R.i ⊕ R.j ⊕ R.k)
defined for all arrowsa ∈ Qa and all arrowsb ∈ Qa by the formulae, see
for example [9]

(i.V )b = iVb

(j.V )a = −V †
a∗ (j.V )a∗ = V †

a

(k.V )a = −iV †
a∗ (k.V )a∗ = iV †

a
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where this time we denote the Hermitian adjoint of a matrixM byM † to
distinguish it from the star-operation on the arrows of the double quiverQ.
Let U(α) be the product of unitary groupsUn1 × . . . × Unk

and consider
thereal moment map

repα Q
µR✲ Lie U(α) V �→

∑
���������������� b��

b∈Qa

i

2
[Vb, V

†
b ]

For λ ∈ Rk, multiplication by the quaternion-elementh = i+k√
2
gives a

homeomorphism between the real varieties

µ−1
C (λ) ∩ µ−1

R (0)
h.✲ µ−1

C (0) ∩ µ−1
R (iλ)

Moreover, thehyper-K̈ahler structure commuteswith thebase-changeaction
of U(α), whence we have a natural one-to-one correspondence between the
quotient spaces

(µ−1
C (λ) ∩ µ−1

R (0))/U(α)
h.✲ (µ−1

C (0) ∩ µ−1
R (iλ))/U(α)

see [9] for more details. By results of Kempf and Ness [16] we can identify
the left hand side as the quotient varietyissα Πλ and by results of A. King
[17] we can identify the right hand side as the moduli spaceM ss

α (Π0, λ)
of λ-semistableα-dimensional representations of the preprojective algebra
Π0, at least ifλ has rational components.

Recall that a representationV ∈ repα Q is said to beλ-(semi)stable if
and only if for every proper subrepresentationW of V say with dimension
vectorβ we haveλ.β > 0 (resp.λ.β ≥ 0). The schemerepssα (Π0, λ)
of λ-semistableα-dimensional representations ofΠ0 is the intersection of
µ−1

C (0) with the subvariety ofλ-semistable representations inrepα Q. The
corresponding moduli spaceM ss

α (Π0, λ) classifies isomorphism classes of
direct sums ofλ-stable representations ofΠ0 of total dimensionα.

If V ∈ repα Πλ belongs toµ−1
R (0) we have thatV is a semisimple

Πλ-representation
V = S⊕e1

1 ⊕ . . .⊕ S⊕er
r

with the Si a simpleΠλ-representation of dimension vectorβi. If W ∈
repα Π0 belongs toµ

−1
R (λ), thenW is the direct sum ofλ-stable represen-

tations ofΠ0

W = T⊕f1
1 ⊕ . . .⊕ T⊕fs

s

with Ti a λ-stableΠ0-representation of dimension vectorγi. Because the
hyper-K̈ahler correspondence preserves blockdecomposition ofmatriceswe
deduce fromW = h.V thatr = s, ei = fi, βi = γi andTi � h.Si.
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Proposition 6.6. The deformed preprojective algebraΠλ has semisimple
representations of representation typeτ = (e1, β1; . . . ; er, βr) if and only
if the preprojective algebraΠ0 hasλ-stable representations of dimension
vectorβi for all 1 ≤ i ≤ r.

In particular,Πλ has a simple representation of dimension vectorα if
and only ifΠ0 has aλ-stable representation of dimension vectorα.

WithΦλ wedenote the set of dimension vectorsα ∈ Σλ such thatΠλ@α
isα-smooth (that is,repα Πλ is smooth) and moreover the quotient variety
issαΠλ is smooth. Our conjecture is thatΦλ is the set of minimal elements
of Σλ. The following result provides some partial support for this.

Proposition 6.7. (1) If α ∈ Σλ such that2α ∈ Σλ, then2α /∈ Φλ.
(2) Letα, β, α+ β ∈ Σλ such thatTQ(α, β) < −2, thenα+ β /∈ Φλ.
Proof. (1): Asα ∈ Σλ we know that the local quiverQξ in a simple repre-
sentationS corresponding toξ is a one vertex quiver having2 − TQ(α, α)
loops (becauserepα Πλ is smooth inS by [8, Lemma 5.5]). That is,

dim Ext1Πλ
(S, S) = 2 − TQ(α, α)

But then, forξ ∈ iss2αΠλ a point corresponding toS⊕S, the local quiver
is still Qξ but this time the local dimension vectorαξ = 2. If ξ lies in the
smooth locus, then by the Luna slice theorem we must have

dim GL(2α) ×GL2 repαξ
Qξ = dim rep2α Πλ

The left hand side is4α.α+ 4 − 4TQ(α, α) whereas the right hand side is
equal to (because2α ∈ Σλ) 4α.α+ 1 − 4TQ(α, α), a contradiction.

(2): Let V resp.W be aλ-stable representation ofΠ0 of dimension
vectorα resp.β. The normal space to the orbit ofV ⊕W in repssα+β Π0 is
the representation space of dimension vector(1, 1) for the quiverΓ on two
vertices having2 − TQ(α, α) loops in the first,2 − TQ(β, β) loops in the
second and−TQ(α, β) arrows in both directions between the vertices. By
Knop’s generalization of the Luna slice result, see [25], and a computation of
dimensions we see that the image of the slice map in the principal fibration

GL(α+ β) ×C∗×C∗
rep(1,1) Γ

is of codimension one. Because−TQ(α, β) ≥ 3 every codimension one
subvariety of the quotient contains a singularity in the trivial representation.
Therefore, the moduli spaceM ss

α+β(Π0, λ) is singular in the point corre-
sponding toV ⊕ W . But then, by the hyper-K̈ahler correspondence, the
quotient varietyissα+β Πλ is singular in a point of representation type
(1, α; 1, β), whenceα+ β /∈ Φλ. 
�
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Observe that W. Crawley-Boevey has proved thatTQ(α, β) ≤ −2 for
α, β, α + β ∈ Σλ see [8, Thm 4.6]. (Added may 2001: the first author has
recently given a complete classification of quiver settings with a smooth
quotient variety, see [5] and [6]. We believe that a combination of this re-
sult and the method of proof of the previous proposition will provide a
characterization ofΦλ. We hope to come back to this problem in a future
publication.)

We end this paper by proving thatα-smoothness of a closely related
sheaf of algebras is equivalent toα being a minimal element ofΣλ.

Taking locally the algebras ofGL(α)-equivariant maps fromrepssα (Π0,
λ) toMn(C) defines a sheaf of algebras inalg@α,Aλ,α on themoduli space
M ss
α (Π0, λ).

Theorem 6.8.With notations as above, forα ∈ Σλ the following are equiv-
alent:

(1) Aλ,α is a sheaf ofα- smooth algebras on the moduli spaceM ss
α (Π0, λ).

(2) α is a minimal non-zero vector inΣλ (and hence the quotient variety
issα Πλ is a coadjoint orbit for the necklace Lie algebraNQ).

Proof. As α ∈ Σλ we know thatissα Πλ has dimension1 + α.α −
2χQ(α, α) − dim PGL(α) which is equal to2 − TQ(α, α). By the hyper-
Kähler correspondence so is the dimension ofM ss

α (Π0, λ), whence the open
subset ofµ−1

C (0) consisting ofλ-semistable representations has dimension

1 + α.α− 2χQ(α, α)

as there areλ-stable representations in it (again via the hyper-Kähler corre-
spondence). Take aGL(α)-closed orbitO(V ) in this open set. That is,V is
the direct sum ofλ-stable subrepresentations

V = S⊕e1
1 ⊕ . . .⊕ S⊕er

r

with Si aλ-stable representation ofΠ0 of dimension vectorβi occurring in
V with multiplicity ei whenceα =

∑
i eiβi.

Again, the normal space inV toO(V ) can be identified withExt1Π0
(V,

V ). As all Si areΠ0-representations we can determine this space by the
knowledge of allExt1Π0

(Si, Sj).

Ext1Π0
(Si, Sj) = 2δij − TQ(βi, βj)

But then the dimension of the normal space to the orbit is

dim Ext1Π0
(V, V ) = 2

r∑
i=1

ei − TQ(α, α)



166 R. Bocklandt, L. Le Bruyn

By the Luna slice theorem [22], theétale local structure in the smooth point
V is of the formGL(α) ×GL(τ) Ext1(V, V ) whereτ = (e1, . . . , er) and is
therefore of dimension

α.α+
2∑
i=1

e2i − TQ(α, α)

Thisnumbermustbeequal to thedimensionof thesubvarietyofλ-semistable
representations ofΠ0 which has dimension1+α.α−TQ(α, α) if and only if
r = 1 ande1 = 1, that is if and only ifV isλ-stable. Hence, ifrepssα (Π0, λ)
is smooth, thenαmust be aminimal non-zero vector in the set of dimension
vectors ofλ-stable representations ofΠ0 and hence by the hyper-Kähler
correspondence,α is a minimal non-zero vector inΣλ.

Conversely, ifα is a minimal vector inΣλ, thenissα Πλ is a coadjoint
orbit, whence smooth and hence so isM ss

α (Π0, λ) by the correspondence.
Moreover, allα-dimensionalλ-semistable representations must beλ-stable
by the minimality assumption and sorepssα (Π0, λ) is a principalPGL(α)-
fibration overM ss

α (Π0, λ) whence smooth. Therefore,Aλ,α is a sheaf of
α-Cayley smooth algebras. 
�

References

1. M. Artin: On Azumaya algebras and finite dimensional representations of rings. J.Alg.
11, 523–563 (1969)

2. V. Baranovsky, V. Ginzburg, A. Kuznetsov: Quiver varieties and a noncommutativeP
2.

math.AG/0103068 (2001)
3. Yu.Berest,G.Wilson:Automorphismsand ideals of theWeyl algebra, preprint, London

(1999) see also math.QA/0102190 (2001)
4. Yu. Berest, G.Wilson: Ideal classes of theWeyl algebra and noncommutative projective

geometry. math.AG/0104248 (2001)
5. R. Bocklandt: Symmetric quiver settings with a regular ring of invariants, preprint UIA

(2000), to appear in Lin. Mult. Alg.
6. R. Bocklandt: Quiver settings with a regular ring of invariants, preprint UIA (2001)
7. R. Cannings, M. Holland: Right ideals of rings of differential operators. J.Alg.167,

116–141 (1994)
8. W. Crawley-Boevey: Geometry of the moment map for representations of quivers.

Compositio Math.126, 257–293 (2001)
9. W. Crawley-Boevey: On the exceptional fibers of Kleinian singularities. Amer. J. Math.

122, 1027–1037 (2000)
10. W. Crawley-Boevey, M. Holland: Noncommutative deformations of Kleinian singular-

ities. Duke Math. J., 605–635 (1998)
11. J. Cuntz, D. Quillen: Algebra extensions and nonsingularity. Journal AMS8, 251–289

(1995)
12. V. Ginzburg: Non-commutative symplectic geometry and Calogero-Moser space,

preprint Chicago, preliminary version (1999)
13. V. Ginzburg: Non-commutative symplectic geometry, quiver varieties and operads,

preprint Chicago (2000) math.QA/0005165 (2000)



Necklace Lie algebras and noncommutative symplectic geometry 167

14. V. Kac: Infinite root systems, representations of graphs and invariant theory. Invent.
Math.56, 57–92 (1980)

15. A. Kapustin, A. Kuznetson, D. Orlov: Noncommutative instantons and twistor trans-
form. hep-th/0002193 (2000)

16. G.Kempf, L. Ness: The length of a vector in representation space, LNM732, 233–244
(1979)

17. A.King:Moduli of representationsof finitedimensional algebras.Quat. J.Math.Oxford
45, 515–530 (1994)

18. M.Kontsevich:Formal non-commutative symplectic geometry.Gelfandseminar 1990–
1992, Birkhauser (1993) 173–187

19. L. Le Bruyn: Moduli spaces for right ideals of the Weyl algebra. J. Alg.172, 32–48
(1995)

20. L. Le Bruyn, noncommutative geometry@n, monograph (to appear)
21. L. Le Bruyn, C. Procesi: Semisimple representations of quivers. Trans. AMS317,

585–598 (1990)
22. D. Luna: Slices etales. Bull.Soc.Math. France Mem33, 81–105 (1973)
23. J.S. Milne: Etale cohomology, Princeton Mathematical Series, vol. 33, Princeton Uni-

versity Press, Princeton, New Jersey (1980)
24. C. Procesi: A formal inverse to theCayley-Hamilton theorem. J.Alg.107, 63–74 (1987)
25. P. Slodowy: Der Scheibensatz für Algebraische Transformationsgruppen, in Algebraic

TransformationGroupsand Invariant Theory,DMV-Seminat, vol. 13,Birkhäuser,Basel
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