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Abstract. Recently, V. Ginzburg proved that Calogero phase space is a
coadjoint orbit for some infinite dimensional Lie algebra coming from non-
commutative symplectic geometry, [12]. In this note we generalize his argu-
ment to specific quotient varieties of representations of (deformed) prepro-
jective algebras. This result was also obtained independently by V. Ginzburg
[13]. Using results of W. Crawley-Boevey and M. Holland [10], [8] and [9]
we give a combinatorial description of all the relevant couptes\) which

are coadjoint orbits. We give a conjectural explanation for this coadjoint
orbit result and relate it to different noncommutative notions of smoothness.

1 Introduction

In[18,§ 9] M. Kontsevich gave a somewhat cryptic outline of possible appli-
cations of noncommutative (symplectic) geometry to representation theory.
If Ais aformally smooth algebra (such as free algebras or path algebras
of quivers), then J. Cuntz and D. Quillen [11] have shown that the coho-
mology of the noncommutative deRham complex gives cyclic homology of
algebras. Motivated by this, M. Kontsevich proposed to associatetim-
mutative affine schemesep, A, then-dimensional representations af

For A formally smooth it follows that these schemes are smooth varieties. In
this situation one assumes that noncommutative functions, noncommutative
differential or symplectic forms od induce ordinary L,,-invariant func-
tions, differential and symplectic forms on the varietiep,, A and hence

on the corresponding quotient varietiess,, A. If A is equipped with a
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noncommutative symplectic form, the noncommutative functions acquire
a Lie algebra structure and one might expect that in ideal situations some
subvarieties of thess,, A will be coadjoint orbits for this Lie structure. In
the paper [18] M. Kontsevich proved an acyclicity result for the noncommu-
tative deRham cohomology fot a free associative algebra and computed
the Lie structure on the functions when there is an even number of free
generators.

As mentioned before, the path algelftd) of a finite quiverQ is a
formally smooth algebra. The representation varietiestiQr decompose
as

rep, CQ = |_| GL, xCH) rep, CQ

wherea = (ny, ..., nk) runs over all dimension vectors wifh n; = n and
whereGL(a) = GLy, % ... x GLy, isthe basechange group of the vertex
spaces. For this reason it is customary to consideqtieer representation
spacesrep, CQ rather than alh-dimensional representations. In order to
apply Kontsevich’sideato the representation theory of quivers we need not to
consider the usual deRham complex but ratherdfativedeRham complex

with respect to the subalgebia generated by the vertex-idempotents. In
Sect. 3 we redo Kontsevich’s computation of the cohomology groups of free
algebras for these relative conomology group&€6f and prove

Theorem 1.1. The noncommutative relative deRham cohomology groups
of CQ are

12

\%
0 Vn>1

12

H%, CQ
H7, CQ

Next, we bring in the symplectic structure. We consider the double quiver
Q of ) obtained by adjoining to every arrawin () an arrow in the opposite
directiona*. On the space of noncommutative functions

cQ
[CQ,CQ]

which is spanned by the necklace wordgjirithat is, the oriented cycles in
the quiverQ considered upto cyclic permutation of the arrows) we can define
a Lie algebra structure see Fig. 1, which we call tieeklace Lie algebra
Ng. Using our results on deRham cohomology we are able in Sect. 4 to
prove the existence of a central extension result

Ng =

Theorem 1.2. If V' is equipped with the (trivial) commutator bracket, then
there is a central extension of Lie algebras

00—V —+ Ny —> Der, CQ — 0



Necklace Lie algebras and noncommutative symplectic geometry 143

e AN e AN
° ° ° °
S fN
° w1 ° ° W °
\ \
. a ° ° a °
Z \.//_:./ _ \.//_:./
a€Qq " O\ VA N
° a* L] ° a* L]
\
° W ° ° w1 .
\ / \
° ° ° °
AN e AN e
e — 0 o — o

Fig. 1. Lie bracketfw, w2] in Ng

where the last term is the Lie algebra of symplectic derivations correspond-
ing to the symplectic structute = ZaeQa da*da.

The Lie algebra of symplectic derivations corresponds to the group of
V-algebra automorphisms @f¢) which preserve thmoment element =
>acq, la:a’] € CQ. Forthisreasonitis natural to expectthat coadjointness
results for the necklace Lie algeldfg) come from representation schemes
of (deformed) preprojective algebras as introduced by W. Crawley-Boevey
and M. Holland in [10]

CQ
Iy = ——=
P (m =)
where) = (\q,...,\x) € CF. However, as we will prove in Sect. 6 these

deformed preprojective algebras aeverformally smooth so usually their
representation schemesp,, 17, will be highly singular as are their quotient
schemesdss,, I1,. Still, extending the original approach of V. Ginzburg on
the coadjointness of Calogero-Moser particles to this situation we are able
in Sect. 5 to prove the following result.

Theorem 1.3. If « is a dimension vector of a simpld,-representation
which is minimal, that is cannot be decomposed as a sum of two smaller
dimension vectors of simples, then

issq Iy
is a coadjoint orbit for the necklace Lie algebk,.

For this result to be applicable we need a description of the set of di-
mension vectors of simple representationgff. Fortunately this (hard)
problem was solved by W. Crawley-Boevey [8].
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In the final section we try to give a conjectural explanation underly-
ing these coadjoint orbit results. Consider the algebfa = C[Ng] ®
CQ with trace, mapping an oriented cycle to the corresponding necklace
word and consider the grouputg of trace preserving/-algebra auto-
morphisms ofAq preserving the moment element. Then, we conjecture
that this group acts transitively on each stratum of the quotient variety
iss, IIy = rep, II\/GL(«) determined by a representation type of
semisimple representations. The coadjoint orbit result would then be a con-
sequence of the conjecture that for deformed preprojective algebras the
noncommutativex-smooth locus (the subvariety os,, IT, such that the
inverse image of the quotient map is a smooth subschemepqf I7,) co-
incides with the Azumaya algebra (the subvarietyisg, 17, where the
quotient map is a principaG L(«)-fibration in theétale topology) of the
a-dimensional approximatioll, @« of the deformed preprojective algebra.
For more details and for the relation with relative notions of noncommuta-
tive smoothness we refer to Sect. 6. Using the computation of the dimension
of ext-groups of the preprojective algeliiig by W. Crawley-Boevey [9] we
are able to prove:

Theorem 1.4. For « a dimension vector of a simple representation &
thea-smooth locus of the preprojective algehiig coincides with the Azu-
maya locus.

We expect that the conjecture holds for arbitrary deformed preprojective
algebras by a hyper#hler type argument and prove some partial results in
this direction.

2 Necklace Lie algebras

In this section we introduce the main object of this note in a purely combina-
torial way. Recall that guiver( is a finite directed graph on a set of vertices
Q, = {v1,...,v}, having a finite se®), = {ai, ..., a;} of arrows, where

we allow loops as well as multiple arrows between vertices. An adirath
starting vertexs(a) = v; and terminating vertexa) = v; will be depicted
as®O<———@. The quiver information is encoded in tEler formwhich

is the bilinear form orZ* determined by the matrixy € My(Z) with

Xij =0ij —#{a€Qu | =0}

The symmetrizatiolg = x¢ + Xg of this matrix determines thEts form
of the quiverQ. An oriented cycle: = a;, . .. a;, of lengthu > 1is a con-
catenation of arrows i) such that(a;;) = s(a;,,,) andt(a;,) = s(a;, ).
In addition to these there akeoriented cycleg; of lengthO corresponding
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to the vertices of). All oriented cyclesc’ obtained frome by cyclically

permuting the arrow components are said to be equivalentAmecklace

word w for @ is an equivalence class of oriented cycles in the quiyer
The double quiverQ of @ is the quiver obtained by adjoining to ev-

ery arrow (or loopXD<—=>—@ in @ an arrow in the opposite direction

O—%—0. Thatis,xg = Tg — T

The necklace Lie algebrag for the quiverQ has as basis the set of
all necklace wordsv for the doublequiver @ and where the Lie bracket
[wy, ws] is determined as in Fig. 1. That is, for every arrow @), we look
for an occurrence af in wy and ofa* in wo. We then open up the necklaces
by removing these factors and regluing the open ends together to form a new
necklace word. We repeat this operationdfiroccurrences of (in w;) and
a* (in w2). We then replace the roles af anda and redo this operation
with a minus sign. Finally, we add up all these obtained necklace words for
all arrowsa € @, . Using this graphical description the Jacobi identity for
N, follows from Fig. 2.

3 An acyclicity result

The path algebraC@ of a quiver@ has as basis the set of all oriented
pathsp = a;, . ..a;, oflengthu > 1in the quiver, thatis(a;, ,) = t(a;;)
together with the vertex-idempotemtof length zero. Multiplication i@

is induced by (left) concatenation of paths. More precidely,e; +. . .+

is a decomposition of into mutually orthogonal idempotents and further
we define

— ej.a is always zero unlessp<—-—0O in which case it is the patf,
— a.e; is always zero unlessO<—-—® in which case it is the pati,

— a;.a; is always zero unIessO<—Q<—Q in which case it is
the patha;a;.

Path algebras of quivers are the archetypical examplésrioially smooth
algebrasas introduced and studied in [11].

In this section we will generalize Kontsevich’s acyclicity result for the
noncommutative deRham cohomology of the free algebra [18] to that of
the path algebr&@. The crucial idea is to consider thedative differential
forms (as defined in [11]) oEQ with respect to the semisimple subalgebra
V = Cx...xCgenerated by the vertexidempotents. The idea being that in
considering quiver representations one works in the categdryalfjebras
rather tharC-algebras.

For a subalgebr® of A, let Az denote the cokernel of the inclusion as
B-bimodule. The space of relative differential forms of degted A with
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Fig. 2. Jacobi identity for the necklace Lie algeli¥g . Term1la vanishes againc, term
1b against3d, 1¢ againsB3a, 1d against2b, 2a againsBBc and2d against3b
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respect taB is

N A=A®pAp®p...Qp Ap

The space?y, A is given a differential graded algebra structure by taking
the multiplication

(agy .- yan)(@nt1y---yam)
n
= Z(—l)n_l(am e @1, 0415 G2, - - - G
i=0

andthedifferential(ao, . .., a,) = (1, a0, ..., ay,), see[11]. Hereao, . . .,
a,) is a representant of the claggda; . .. da,, € 2}, A and we recall that
123 A s generated by the andda for all a € A. Therelative cohomology
H} Ais defined as the cohomology of the complek A.

For6 € Derp A, the Lie algebra oB-derivations ofA (that isf is a
derivation ofA andd(B) = 0), we define a degree preserving derivatign
and a degree-1 super-derivatiory on 2% A (thatis, for allw € 2% A we
have thatig(ww') = ig(w)w’ + (—1)'wig(w'))

NN

by the rules
Ly(a) = 6(a) Ly(da) = d 6(a)
ig(a) =0 ig(da) = 0(a)
for all a € A. We have the Cartan homotopy formula = ig o d + d o iy

as both sides are degree preserving derivation@p»m and they agree on
all the generatorg andda for a € A.

Lemma 3.1. Letd,y € Derp A, then we have o}, A the identities of
operators

Lgoiy—iyoLg=[Lg,in] =i = igoy—rob
Lyo Ly —LyoLy=[Lo,Ly] =Lig = Looy—no

Proof. Consider the first identity. By definition both sides are degrée
super-derivations o3, A so it suffices to check that they agree on gener-
ators. Clearly, both sides giviewhen evaluated on € A and forda we
have

(Lg 0y —iyo Lg)da=Lgy(a) =iy dO(a)=0(a) —v0(a) =i (da)
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A similar argument proves the second identity. O

Specialize to the quiver-case with = C(Q the path algebra ang =
V = C* the vertex algebra.

Lemma 3.2. Let () be a quiver ork vertices, then a basis fary, CQ is
given by the elements

podp1 - .. dpp
wherep; is an oriented path in the quiver such thiatgth po > 0 and
length p; > 1 for 1 < i < n and such that the starting point of is the
endpointofp;q forall 1 <i <n — 1.

Proof. Clearlyi(p;) > 1 wheni > 1 or p; would be a vertex-idempotent
whence inV. Let v be the starting point gf; andw the end point op;11
and assume that=# w, then

Di @V Pit1 = Piv Qv wpir1 = pivw Qy pi1 =0
from which the assertion follows. O

Proposition 3.3. Let( be a quiver ork vertices, then the relative differen-
tial form-complex have the following cohomology

H),CQ ~C x...xC(kfactors)
H; CQ ~0 Vn > 1

Proof. Define theEuler derivationE on CQ by the rules that
E(ei))=0V1<i<k and  E(a) =aVa € Q,

By induction on the lengtli(p) of an oriented path in the quiver@ one
easily verifies thatZ'(p) = [(p)p. By induction one can also proof that
L (podpi ... dpn) = (I(po) + - - - + 1(pn))podp1 - . . dpy,. This implies that
Ly is a bijection on eacli, CQ, wherei > 1 and onf2), CQ, L has V
as its kernel. By applying the Cartan homotopy formulaZer, we obtain
that the complex is acyclic. O

The complex(2y, CQ induces theelative Karoubi complex
0 d 1 d 2 d

with on ¢

v CQ
Z?:O[ ‘Q%/ (CQ, ‘Q\T/L'_Z CQ }
In this expression the brackets denote supercommutators with respect to the
grading onf2y, CQ. In the commutative caséR’ are the functions on the
manifold anddr! the 1-forms.

R}, CQ =
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Lemma 3.4. A C-basis for the noncommutative functions

_cQ
[CQ.CQ]

are the necklace words in the quiv@r

dry, CQ =~

Proof. Let W be theC-space spanned by all necklace wotdsn @@ and
define a linear map

CQ W {p'—mup ifp?sacycle

p—0 if pis not
for all oriented pathg in the quiverQ, wherew, is the necklace word in
@ determined by the oriented cycte Becausav,,,, = wp,, it follows
that the commutator subspald&?), CQ] belongs to the kernel of this map.
Conversely, let

r=x9+x1+...+Ty,

be in the kernel wherg is a linear combination of non-cyclic paths and

for 1 < i < m s alinear combination of cyclic paths mapping to the same
necklace wordv;, thenn(z;) = 0 for all : > 0. Clearly,zy € [CQ,CQ] as

we can write every noncyclic path= a.p’ = a.p’ — p’.a as a commutator.

If 2; = a1p1 + azp2 + ... + a;p; with n(p;) = w;, thenp; = ¢.¢' and

po = ¢ .q for some pathg, ¢ whencep; — py is a commutator. But then,

x; = a1(p1 —p2) + (a2 —a1)p2 + . . . + a;p; is @a sum of a commutator and a
linear combination of strictly fewer elements. By induction, this shows that
z; € [CQ,CQ). 0

Lemma 3.5. dRr{, CQ is isomorphic a<C-space to

PV ) a
@ e;.CQ.ej da = EB @ @d
OO
Proof. If p.q is not a cycle, themdg = [p, dq] and so vanishes idR{, CQ
so we only have to consider termédq with p.q an oriented cycle ind). For
any three pathg, ¢ andr in Q we have the equality

[p.qdr] = pgdr — qd(rp) + qrdp

whence indR{, CQ we have relations allowing to reduce the length of the
differential part

qd(rp) = pgdr + qrdp



150 R. Bocklandt, L. Le Bruyn

sodR%, CQ is spanned by terms of the forpada with a € Q, andp.a an
oriented cycle inQ. Therefore, we have a surjection

2 CQ— B €CQejda

By construction, it is clear thdt2), CQ, £2{, CQ)] lies in the kernel of this
map and using an argument as in the lemma above one shows also the
converse inclusion. O

Using the above descriptions d)]RZ"/ CQ fori = 0,1 and the differen-
tial drY, CQ LN dr{, CQ we can defingartial differential operators

associated to any arraw)<—<)in Q.

9 0 COe. _ of
5 P BYCQ ——eCQe; by  df = > 5 -da

a€Qq

To take the partial derivative of a necklace wardvith respect to an arrow
a, we run throughw and each time we encountemwe open the necklace
by removing that occurrence af and then take the sum of all the paths
obtained.

Defining therelative deRham cohomology’;, CQ to be the cohomol-
ogy of the Karoubi complex and observing that the operatgrandig on
(%3, CQ induce operators on the Karoubi complex, we havesatylicity
result

Theorem 3.6. The relative Karoubi complex has the following cohomology

HY,CQ ~V
H1,CQ ~0 Vn>1

12

Proof. DefineK = @,,,,[£2, CQ, £2{} CQ)] then one verifies for the Euler
derivation that

LE(K)CK ZE(K)CK Lgp=igod+doig

The length of a path induces a graded algebra structuryerC@ and
clearlyK andd—! K are spanned by homogeneous elements. The differential
of a homogeneous element is either zero or an element of the same length.
Writing x = Y, z; € d~1K in homogeneous components we have=

>, dz; is a homogeneous decomposition. Hencedall € K whence
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z; € d~'K. Assume that is a homogeneous element of length 1 in
d~'K, then

1

_ %(iE(dw) +d(ip(w))) + K
— d(ip(w)) + K

From these facts the result follows by mimicking the proof for the cohomol-
ogy of the relative differential form complex above. O

4 Symplectic interpretation

In this section we use the acyclicity result to give a Poisson interpretation to
the Lie bracket ifNg. This generalizes thiontsevich brackeftl8] in the

free case to path algebras of doubles of quiverg.is a quiver with double
quiver Q, then we can define a canonicgimplectic structuren the path
algebra of the doubl€Q determined by the element

w= Z da*da € dR}, CQ
aEQa

As in the commutative case; defines a bijection between the noncom-
mutativel-formsdr{, CQ and thenoncommutative vectorfielaghich are
defined to be th& -derivations ofCQ. This correspondence is

Dery CQ —~ dRl, CQ  givenby  7(8) = ig(w)

In analogy with the commutative case we define a derivatianDery, CQ

to besymplectidf and only if Lyw = 0 € dR}, CQ and denote the sub-
space of symplectic derivations Byer,, CQ. It follows from the homotopy
formula and the fact that is a closed form, tha € Der, CQ implies

Lyw = digw = d7(6) = 0. That is, () is a closed form which by the
acyclicity of the Karoubi complex shows that it must be an exact form. That
is we have an isomorphism of exact sequenceés-géctorspaces

0 -V ~ drY, CQ _4 (dRY; CQ)exget — 0
= ~ 1
CQ
0 -V - — Der, C 0
T, €l E

The symplectic structure defines a Poisson bracket on the noncommutative
functions.
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Definition 4.1. Let@ be a quiver and) its double. Th&ontsevich bracket
on the necklace words i@, dR?, CQ is defined to be

{wy, walee = >

aGQa

871)1 811)2 6w1 8w2
( da da*  da* da > mod [CQ, CQ

By the description of the partial differential operatorsiitis clear tha{, CQ
with this bracket is isomorphic to the necklace Lie algelga

The symplectic derivation®er,, CQ have a natural Lie algebra structure
by commutators of derivations. We will show that! o d is a Lie algebra
morphism.

For every necklace word we have a symplectic derivatidp, = 7~ 'dw

defined by
Ouw(a) =—5%
Op(a*) = %—Z’

With this notation we get the following interpretations of the Kontsevich
bracket

{wl? w2}K = iewl (/i01112w) = Lewl (wz) = _L9w2 (wl)

where the next to last equality follows becaugg w = dw, and the fact
thatip,, (dw) = Ly, (w) for anyw. More generally, for any’-derivation
# and any necklace word we have the equation

ig(ig,w) = Lg(w).

When we look at the image of the Kontsevich bracket undeéu, we
obtain the following

-1 -1
T d{wi, we bk =7 dLg,, w2
= T71L9w1 dws

= T_1L9w1 19, W

w2

= T_l ([L9w1 ’ ier] + ier L€w1 )(.U

=T ’L'[gwl 79w2}w
= [9101 ’ 9102]

Above we made use of the fact th§ commutes withl, and the defining
equationdwsy = 0, W- In the fourth line we omitted the last term because
6., is a symplectic derivation. Finally Lemma 3.1 enabled us to transform
the commutator i and L to of commutator of the derivatiords,, andd,,,.

This calculation concluded the proof of:
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Theorem 4.2. With notations as beforedr), CQ with the Kontsevich
bracket is isomorphic to the necklace Lie algebfg, and the sequence

,[.71
0——V — Ng =% Der, CQ — 0

is an exact sequence (hence a central extension) of Lie algebras.

5 Coadjoint orbits

Consider a dimension vectar= (ng, ..., ng), thatis, ak-tuple of natural
numbers, then the space afdimensional representations of the double
quiverQ, rep, Q can be identified via the trace pairing with the cotangent
bundleT™ rep, @ of the space ofv-dimensional representations of the
quiver @, see for example [8], and as such acquires a natural symplectic
structure. The natural action of the basechange gfeiip) = GL,, X

. X GLy, onrep, Q is symplectic and induces a Poisson structure on
the coordinate ring as well as on the ring of polynomial quiver invariants,
which are generated by traces along oriented cycles by [21].

The symplectic derivation®er,, CQ correspond to thé -automor-
phisms of the path algebra of the doufill® preserving thenoment element

m = Z [a,a*] € CQ
a€Qq

For this reason it is natural to consider tmmplex moment map

rep, Q a MS(C) V= Z [Vaa Va*]
a€Qq

whereM?(C) is the subspace éftuples(my, ..., mg) € M, (C)®...®
M,, (C) such that)", tr(m;) = 0, that isM?(C) = Lie PGL(«) where
PGL(0) = GL(0)[C* (T, ..., Tu,).

For A = (A1,...,\;) € C¥ such thaty", n;\; = 0 we consider the
element\ = (A1, - . ., Ay Ty, ) in M2(C). The inverse image:'()) is a
GL(«a)-closed affine subvariety afep,, Q.

In [13] V. Ginzburg proved the following coadjointness result using the
results of the preceding sections.

Theorem 5.1 (Ginzburg).Assume thapgl(g) is smooth and irreducible
and thatPG L(«) acts freely onuz' (1), then the quotient variety (the orbit
space)

Het(V)/GL(w)

is a coadjoint orbit for the necklace Lie algebk,.
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Using results of W. Crawley-Boevey [8] we will identify the situations
(e, \) satisfying the conditions of the theorem. Pore C* as above, W.
Crawley-Boevey and M. Holland introduced and studieddéf®rmed pre-
projective algebra

CcQ

(m—A)

whereX = Aje; + ... + A\gex € CQ. From [10] we recall thagi' ())
is the scheme ofi-dimensional representatiomsp,, 17, of the deformed
preprojective algebral .

We recall the characterization due to V. Kac [14] of the dimension vectors
of indecomposable representations of the quiyefo a vertexy; in which

2

Q has no loop, we defineraflectionzZ* —“~ Z* by

Iy =

ri(a) =a—To(a, €)e;

wheree; = (015, ..,0%). TheWeyl group of the quive® Weylg is the
subgroup ofG Ly (Z) generated by all reflections.

A root of the quiverQ is a dimension vectar € N* such thatrep,, Q
contains indecomposable representations. All roots have connected support.
A root is said to be

real if xo(a,a) =1
imaginary  if xyg(a,a) <0

For a fixed quiverQ) we will denote the set of all roots, real roots and
imaginary roots respectively by, A,.. and4;,,,. With 17 we denote the set
{e; | v; has noloopg. Thefundamental set of roois defined to be the
following set of dimension vectors

Fg={aeN—0 | To(a,e) < 0andsupp(a) is connected
Kac’s result asserts that

Are =Weylg.JIN NF
Ai = Wele.FQ N NF

Example 5.2.The quiver@ and double quivef) appearing in the study
of Calogero phase space (see [26] and [12]) which stimulated the above
generalizations are

O———0_)» and C (8
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The Euler- and Tits form of the quivép are determined by the matrices
1-1 2 —1
XQ:[OO] and TQ:[_IO]

The root-system fo€) is easy to work out. We have

n

Fq iay,

.
Fq ={(m,n) | n>2m}
Ay, ={(m,n) | n>m}
= Af, ={(1,0)}

Fix A € CFand denoteﬁj to be the set of positive roots= (b1, . .., by)
for @ such that\.5 = >, \ib; = 0. With S, (resp.X,) we denote the
subsets of dimension vectatiswhich are roots for) such that

1—XQ(06,0K) > (resp'>) T_XQ(ﬁbﬁl) _"‘_XQ(ﬁTaﬁT)

for all decompositionsy = 31 + ... + 3, with the 3; € A}. The main
results of [8] can be summarized into:

Theorem 5.3 (W. Crawley-Boevey).

(1) « € Sy if and only if uc is a flat morphism. In this casey is also
surjective.

(2) a € Xy if and only if IT) has a simplex-dimensional representation.
In this casep"()) is a reduced and irreducible complete intersection
of dimensionl + a.ae — 2x¢g (o, @).

Using the results of [21] one verifies that the set of dimension vectors
of simple representations @ coincides with the fundamental s&f). As
any simplell-representation is a simp{@-representations it follows that
2\ — FQ.

Example 5.4.For the Calogero-example above, we have
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(1) The setS, consisting of all(m, n) such that the complex moment map
uc is surjective and flat is the set of roots

So={(m,n) | n>2m—1}U{(1,0)}

(2) The setX, of dimension vectorém, n) of simple representations of the
preprojective algebrél is the set of roots

2o = {(mvn) | n > 2777,} U {(170)}

which is Fp L {(1,0)}.
(3) ForA = (—n, m) with ged(m,n) = 1, the set™’, of dimension vectors
of simple representations of the deformed preprojective algebra is the
set of roots
Xy=A{k.(m,n) | ke N;}

with unique minimal elementn, n).

For the first two parts the essential calculation is to verify the conditions on
the decompositiofim, n) = (m — 1,n) + (1,0).

We obtain the following combinatorial description of the couggtes))
for which Ginzburg'’s criterium applies.

Theorem 5.5. u(gl(g) is smooth and irreducible with a free action of
PGL(a) (and henceus'(A)/GL(e) is a coadjoint orbit forNy) if and
only if « is @ minimal non-zero element &f,.

Proof. We know thatu(gl(g) = rep, II). By a result of M. Artin [1] one
knows that the geometric points of the quotient schew, I7,/GL(«)
are the isomorphism classesmdimensional semi-simple representations
of IT,. Moreover, thePG L(«)-stabilizer of a point ircep,, I7) is trivial if
and only if it determines a simple-dimensional representation ofy. The
result follows from this and the results recalled above. The facu@]a@)

is smooth ifc is @ minimal non-zero element &f, follows from computing
the differential of the complex moment map, see also [8, Lemma 5.5].

Example 5.6.Consider the special case wher= (—n, 1) anda = (1,n)
the unique minimal element iy, then it follows from [26] that we have
canonical identifications of the quotient varieties

issy I\ ~ Calo,

whereCalo, is the phase spacewnfCalogero particles. In particularialo,
is a coadjoint orbit. Wilson [26] has shown that

Grod = |_| Caloy,
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whereGr®® is the adelic Grassmannian which can be thought of as the space
parametrizing isomorphism classes of right ideals in the first Weyl algebra
A1(C) = Clz,y)/(xy — yx — 1) by [7]. In [3] it is shown that there is

a non-differentiable action of the automorphism groupiefC) on Gr®?
having a transitive action on each of th&lo,,. It was then conjectured

by Y. Berest and G. Wilson that'alo,, might be a coadjoint orbit for a
central extension of the automorphism group. (Added may 2001: for more
information on these connections as well as to related papers [7], [19] and
[15] we refer to the recent preprints of Yu. Berest and G. Wilson [3] and

[41.)

Example 5.7.M. Holland and W. Crawley-Boevey have a conjectural ex-
tension of the foregoing example. L@t be an extended Dynkin quiver on

k vertices{vy, ..., vt} with minimal imaginary root = (dy,...,dx). A
vertexw; is said to be an extending vertex providéd= 1. Consider the
quiverQ onk + 1 vertices{vg, v1, .. ., v; } which is@’ on the lask vertices

and there is one extra arrow fram to an extending verte;. For a generic

N = (A1,...,\) they defined a noncommutative algeld?d extending

the role of the Weyl algebra in the previous example. They conjecture that
there is a bijection between the isomorphism classes of stably free right
ideals inO* and points in

U iz (M) /G L)

wherea,, = (1,nd) and ), = (—nX.0,\'). This remains to be seen but
from our theorem we deduce that each of the quotient variggie$\, )/
GL(ay,) is a coadjoint orbit for the necklace Lie algeli¥g. (Note added
may 2001: recently the Crawley-Boevey and Holland conjecture was proved
by V. Baranovsky, V. Ginzburg and A. Kuznetsov see [2].)

If o € Xy but not minimal, there are severapresentation types =
(ma, B1; ..., My, By) Of semi-simplen-dimensional representations &y
with the 3; € X\ and)>_ m;3; = « and them,; determine the multiplicities
of the simple components. Wittss,, (7) we denote the subvariety of the
quotient varietiss,, II\ = rep,, II)/GL(«a) consisting of all semi-simple
representations of type

Consider the algebrd = C[Ng]®cCQ which has a naturdétace map
tr : Ag — C[Ng] mapping an oriented cycle i@ to the corresponding
necklace word and all open paths to zero. Witht, we denote the auto-
morphism group of trace preservifigalgebra automorphisms dfg which
preserve the moment element= >, [a,a’]. A natural extension of
the above coadjoint orbit result would be a positive solution to the following
problem.

Conjecture 5.8. Aut( acts transitively on every stratuiss,, (7).
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6 Smoothness and deformed preprojective algebras

In this section we will relate the coadjoint orbit result to different notions of
smoothness in noncommutative geometry.

The path algebr&Q of the double quivef) is formally smooth in the
sense of [11], thatis, it has the lifting property with respect to nilpotentideals.
HenceCQ is the coordinate ring of a noncommutative affine manifold and
has a good theory of differential forms (acyclicity).

On the other hand, we will see that the deformed preprojective algebras
IT, areneverformally smooth. For this reason, the differential form&ap
when restricted td7, may have rather unpredictable behavior.

Still, it may be possible that certain representation spaegg 17, are
smooth and we need a notion of noncommutative (formal) smoothness rel-
ative to the dimension vectaer. Recall that ifa is a minimal dimension
vector inXy, thenrep,, I\ = /hEl(A) is smooth. We will now investigate
whether there are other examples of smooth fib@]s{g) using the relative
notion of smoothness introduced by C. Procesi in [24] and studied in detail
in [20]. First, we will recall its ringtheoretical characterization.

Let o = (n1,...,ni) and setn = ). n;. With algea we denote
the category of allV-algebrasA which are equipped with a trace map,
that is a linear mapr : A —— A such that for alla,b € A we have
tr(a)b = btr(a), tr(ab) = tr(ba) andtr(tr(a)b) = tr(a)tr(b) satisfying
the following properties. First, we must have thatl) = n, the trace map
must satisfy the formal Cayley-Hamilton identity of degreesee [24] and
finally the trace values of the vertex-idempotents are givetrby) = n;,
the components of the dimension vector

Morphisms in the categorylg@a are trace preserving-algebra mor-
phisms. An algebral in in alg@a is said to bex-smoothif it satisfies the
lifting property with respect to nilpotent ideals #lgea. That is, every
diagram

B
B— " =
I
V_.
RO
36
A

with B, ? in alg@q, I a nilpotent ideal and and¢ trace preserving maps,

can be completed with a trace preserving algebra fmap

Observe that i = 1 anda = (1) we have thatlg@a = commalg the
category of commutativ€-algebras and by Grothendieck’s characterization
of regular algebras one has in this case that an algelraimooth if and
only if it is regular.
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In general, a geometric characterization of this lifting property is that
an algebrad is a-smooth if and only if the scheme afdimensional trace
preserving representations4fs a smoottG L(«)-variety, see [24] or [20].

There is a partial functoilg —— alg@a which assigns to an affine
V-algebraB the algebra otz L(«)-equivariant maps

rep, A — M,(C)

(whereGL(«) acts on)M,,(C) by conjugation via the obvious embedding
along the diagonalz (o) —— GL,,) which is an object irnlgea. We
will denote this algebra of equivariant maps By2«. Clearly, the scheme
rep, B of a-dimensional representations Bfcoincides with the scheme
of a-dimensional trace preserving representation8Ofx.

For this reason, the fibw@l(g) is a smooth affine variety if and only if
the algebrd’,Qa is a-smooth. As we have seen befdilg Q« is a-smooth
if (A, @) is such that\.c« = 0 and« is @ minimal non-zero vector i&y. In
this case/7,Qa is even an Azumaya algebra over the coadjoint orbit, that
is, the quotient map

rep, II\ = pc' (A) — pc'(A)/GL()

is a principal PG L(«)-fibration in theétale topology. For more details on
Azumaya algebras and their relationétale cohomology we refer to the
book by J.S. Milne [23].

Noncommutative geometry, as propagated by M. Kontsevich in [18] is
based on the fact that noncommutative functions and noncommutative (rel-
ative) differential forms associated to a formally smoBtalgebraA (resp.

a formally smooth/-algebraA) induce ordinary functions and differential
forms on the smooth representations scheregs A (resp.rep, A) of n-
dimensional (respx-dimensional) representations and their corresponding
guotient varieties ss,, A resp.iss, A. For this reason one expects that the
closed subschemiss,, IT) behaves well with respect to noncommutative
symplectic forms (in particular, is a coadjoint orbit for the necklace algebra
Np) if and only if IT) Qo is a-smooth.

On the other hand, if the coadjoint orbit result follows from the conjec-
tural transitive action of the grouputg as stated in Conjecture 5.8, this
can only happen if there is just one stratum. That is, if and onljif2« is
an Azumaya algebra, or equivalently, thais a minimal element of”.

These conjectural equivalences of (1)'()\)/GL(«) coadjoint orbit,

(2) II,@Qa ana-smooth algebra and (3) a minimal element oy follow
from a stronger conjecture on deformed preprojective algebras formulated
below.

Consider the algebraic quotient map

rep,, Iy L% iss, Iy, = rep, II\/GL(a)
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By Artin’s result[1], aC-point¢ of iss,, 11 corresponds to an isomorphism
class of arv-dimensional semisimple representation

Me= S @... .0 8P

of IT,. Here,S; is ana;-dimensional simple representation/@j occurring
with multiplicity e; in M. In particular we have that

forall::a; € X, and Zeiai =«

7

Fix a point)M of the closedsL(«a)-orbit O(M¢) in rep,, I1,. We will say
that¢ € iss, I1) belongs to th@eoncommutative smooth locls,, 17, of
II, (or of IT\@q) if rep, IT) is smooth inM,. Because the singular locus
is a closed subvariety @kp,, 11, is a closed subvariety we have tHai Qo

is a-smooth iff Sm, I\ = iss, II,.

Now we restrict too. € X'\ and consider the Zariski open subscheme
Az IT\@Qq of points¢ € iss, 1 such thatM, is a simple representation
of IT, then the restriction of the quotient map to 7, ' (A2 I1,Qa) is a
principal PG L(«)-fibration in theétale topology. We callz IT,Q« the
Azumaya locusf I7,@Qa. The above conjectural equivalences follow from
an affirmative answer to the following conjecture.

Conjecture 6.1. Fora € X, we have
Sme Il = Az I1,Qq«

We will give an affirmative solution to this conjecture in the special case
of the preprojective algebrd. By a result of W. Crawley-Boevey [9], we
can control theEzt!-spaces of representations Bf. Let VV and W be
representations dfl, of dimension vectors andg, then we have

dime Exty, (V,W) = dimc Homp,(V, W) + dimc Homg, (W, V)
_TQ(aa ﬁ)

For¢ € iss, Il to belong to the smooth locyse Sm,, Il itis necessary

and sufficient thatep,, 11, is smooth along the orbi® (M) wherel, is

the semi-simplex-dimensional representation 6f, corresponding tq.
Assume that is of typer = (e1, aq;...;e,, az), thatis,

M= St @... .0 8P

with .S; a simplell-representation of dimension vectay. Then, the nor-
mal space to the orbi®(M;) is determined b)El‘t}Yo(Mg, M;¢) and can
be depicted by a local quiver settii@., o) whereQ is a quiver onz
vertices having as many arrows from vertebo vertex;j as the dimension
of Exty; (S;,5;) and whereye = a; = (e1,...,e.).
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As rep,, Il is assumed to be smooth M we can apply the strong
form of the Luna slice theorem, see [22] or [25] which asserts that the action
morphism and corresponding quotient maps

GL(ar) xGHee) N¢ — rep, Il

A\

Ng/GL(Oég) — 1iss, H()

where N is the normal space to the orbit i, areétale inM¢ (resp. in
€) and that the upper map S L(«)-equivariant. With the above quiver-
theoretic interpretation of the normal spaggwe deduce

Lemma 6.2. With notations as above,c Sm,, 11 if and only if
dim GL(a) x“H) Batyy (M, Me) = dimag, rep,, Iy
As we have enough information to compute both sides, we can prove:

Theorem 6.3.1f { € iss, Iy with o = (aq,...,a;) € Sp, then €
Sme, Il if and only if M is a simplen-dimensional representation éfy.
That is, the smooth locus éfy coincides with the Azumaya locus.

Proof. Assume that is a point of semi-simple representation type=
(e1,15...5€5, ), that s,

Mg = 5?61 G...PD S?ez with dzm(Sl) =
andsS; a simplell,-representation. We have
dim(c Emt}YO(S,-, S]) = —TQ(O[Z', Oéj) 1 75 j
dimg Emt}YO(Si, Si) =2 TQ(CMZ‘, Ozz')

But then, the dimension dfzt}; (Mg, M) is equal to

z

> 2= Tola, ai))el + ) eiej(~Tolai, a;)) =2 ef — To(a,a)

i=1 i#] i=1

from which it follows immediately that

z
dim GL(a) x @) Exty (Mg, Me) = oo+ Z e? — To(a, a)
i=1
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On the other hand, as € Sy we know that

dim rep,, Iy = a.av — 1 + 2pg ()
=oaa—1+2-2xg(0,0) =a.a+1—-Th(o, )

But then, equality occurs if and only ), e? = 1, thatis,r = (1, ) or M
is a simplen-dimensional representation f,. O

In particular it follows that the preprojective algelifg is neverformally
smooth as this implies that all the representation varieties must be smooth.
Further, ag; = (0,...,1,0,...,0) are dimension vectors of simple repre-
sentations off ] it follows that ITj is a-smooth if and only ifa = v; for
somei.

Example 6.4.Let () be an extended Dynkin diagram andhe minimal
imaginary root, them € Sy. The dimension of the quotient variety

dim isss IIp = dim reps IIg — 6.0 + 1
=2

so it is a surface. The only other semi-sim@ldimensional representation

of 11y is the trivial representation. By the theorem, this must be an isolated
singular point ofisss Q. In fact, one can show thats; 1 is the Kleinian
singularity corresponding to the extended Dynkin diagtam

The proof of Theorem 6.3 can be repeated verbatim for the deformed
preprojective algebrad ), provided we would have an analogue of Crawley-
Boevey’s formula for the dimension of the extension groEm}YA (M, N).
Unfortunately, no such formula is known at present. Observe that an affir-
mative answer to Conjecture 6.1 follows from

Conjecture 6.5. Let S andT be (isomorphism classes of) simglg, rep-
resentations of dimension vecteresp.3, then

dime Extyy, (S,T) = 2657 — Tg(a, B)

In particular, the extension form on semisimple-representations is sym-
metric.

Before we can prove some partial results for deformed preprojective
algebras we need to recall the¢p, Q admits a hyper-Ehler structure
(that is, an action of the quaternion algebfa= R.1 & R.i & R.j & R.k)
defined for all arrows. € , and all arrows € Q, by the formulae, see
for example [9]

(@.V)p =iV
GV)a= =V (V)er = V]

(kV)a = =iV (kV)gr =iV

a
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where this time we denote the Hermitian adjoint of a maddxby M to
distinguish it from the star-operation on the arrows of the double q@ver
Let U(«) be the product of unitary groug$,, x ... x Uy, and consider
thereal moment map

rep, Q HE, Lie U(a) Vi Z %[Vb, V}j]
b

b€Qq

For A € R¥, multiplication by the quaternion-elemeht = % gives a
homeomorphism between the real varieties

HE ) Nt (0) — ug(0) N g (i)

Moreover, the hyper-Ehler structure commutes with the base-change action
of U(«), whence we have a natural one-to-one correspondence between the
guotient spaces

(12 (V) N (0) /U (@) — (s (0) N g (X)) /U (@)

see [9] for more details. By results of Kempf and Ness [16] we can identify
the left hand side as the quotient varies,, 17, and by results of A. King
[17] we can identify the right hand side as the moduli spatE (11, \)

of A\-semistablex-dimensional representations of the preprojective algebra
11y, at least ifA has rational components.

Recall that a representatidn € rep, Q is said to be\-(semi)stable if
and only if for every proper subrepresentatidhof V' say with dimension
vector 5 we havel.5 > 0 (resp.\. > 0). The schemeep?®(Il, \)
of A-semistablex-dimensional representations Hf is the intersection of
p*(0) with the subvariety oh-semistable representationsrep,, Q. The
corresponding moduli spadd:® (11, \) classifies isomorphism classes of
direct sums of\-stable representations 6f; of total dimensionu.

If V' € rep, IT) belongs tougy'(0) we have that/ is a semisimple
11, -representation

V=Sr"o...08%r

with the S; a simplell,-representation of dimension vectgy. If W &
rep,, I1p belongs tquz ' ()), thenV is the direct sum oi-stable represen-
tations ofIl

W=To.. o1

with T; a A-stablelly-representation of dimension vectgt. Because the
hyper-Kahler correspondence preserves blockdecomposition of matrices we
deduce fromiV = h.V thatr = s, e; = f;, 8; = v; andT; ~ h.S;.
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Proposition 6.6. The deformed preprojective algebfa, has semisimple
representations of representation type= (e1, 51;...; e, () if and only
if the preprojective algebrdl, has A-stable representations of dimension
vectorg; forall 1 <4 <.

In particular, IT, has a simple representation of dimension veetaf
and only if /1, has a\-stable representation of dimension veator

With @, we denote the set of dimension vectars X, such thafl,Q«
is a-smooth (that isrep,, 17, is smooth) and moreover the quotient variety
iss, ITy is smooth. Our conjecture is thdyf is the set of minimal elements
of Xy. The following result provides some partial support for this.

Proposition 6.7. (1) If « € X such thala € Xy, then2a ¢ P,.
(2) Leta, B,a + € Xy such thatly (o, §) < —2, thena+ 5 ¢ &,.

Proof. (1): Asa € X\ we know that the local quivep, in a simple repre-
sentationS corresponding tq is a one vertex quiver havirgy— T (o, «)
loops (becauseep,, I is smooth inS by [8, Lemma 5.5]). That s,

dim Ea:t}h(S, S)=2-Tg(o, )

Butthen, for¢ € issq, 1) a point corresponding t6 ® S, the local quiver
is still Q¢ but this time the local dimension vectog = 2. If £ lies in the
smooth locus, then by the Luna slice theorem we must have

dim GL(2a) x %12 rep,, Q¢ = dim repy, IIy

The left hand side ido.oc + 4 — 4T (v, o) whereas the right hand side is
equal to (becaust € X)) 4da.ac + 1 — 4T (v, ), @ contradiction.

(2): Let V resp.W be a\-stable representation df, of dimension
vectora resp.3. The normal space to the orbit bf W in rep?’, ; Iy is
the representation space of dimension vettot) for the quiverl” on two
vertices havin® — T («, o) loops in the first2 — T (5, 3) loops in the
second and-Ty(a, §) arrows in both directions between the vertices. By
Knop’s generalization of the Luna slice result, see [25], and a computation of
dimensions we see that the image of the slice map in the principal fibration

GL(a + ) x> repyqy I’

is of codimension one. Becaus€lg(«, 3) > 3 every codimension one
subvariety of the quotient contains a singularity in the trivial representation.
Therefore, the moduli spaddjiﬂ(ﬂo, A) is singular in the point corre-
sponding toV' @ W. But then, by the hyper-&hler correspondence, the
quotient varietyiss, II, is singular in a point of representation type
(1,51, 3), whencen + 3 ¢ D). O
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Observe that W. Crawley-Boevey has proved thagta, 3) < —2 for
a,B,a+ (€ Xy see [8, Thm 4.6]. (Added may 2001: the first author has
recently given a complete classification of quiver settings with a smooth
guotient variety, see [5] and [6]. We believe that a combination of this re-
sult and the method of proof of the previous proposition will provide a
characterization of,. We hope to come back to this problem in a future
publication.)

We end this paper by proving thatsmoothness of a closely related
sheaf of algebras is equivalentddeing a minimal element of.

Taking locally the algebras @F L («)-equivariant maps fromep?* (11,

A) to M,,(C) defines a sheaf of algebrasing@c;, A, , on the moduli space
M (I, ).

Theorem 6.8. With notations as above, far € 3’y the following are equiv-
alent:

(1) A, . isasheaf ofv- smooth algebras on the moduli spaeg® (11, \).
(2) « is a minimal non-zero vector iy (and hence the quotient variety
iss, II) is a coadjoint orbit for the necklace Lie algebigy).

Proof. As o« € X'\ we know thatiss, II, has dimension + «.ac —
2xq(a, ) — dim PGL(«) which is equal t@ — T (a, «). By the hyper-
Kahler correspondence so is the dimensioh/gf (11, A), whence the open
subset Ofu(El(Q) consisting of\-semistable representations has dimension

14+ a.a— 2xg(o, @)

as there ar@-stable representations in it (again via the hypahler corre-
spondence). Take@L(«)-closed orbitO (V) in this open set. That i3] is
the direct sum oh-stable subrepresentations

V=5%g. . @5

with S; a A-stable representation éf, of dimension vectof; occurring in
V' with multiplicity e; whencen = ), e;5;.
Again, the normal space ¥ to O(V') can be identified witiExt}YO(V,
V). As all S; are I1y-representations we can determine this space by the
knowledge of allEzty; (S;, Sj).

Extp, (i, S5) = 26i; — To(Bi, Bj)

But then the dimension of the normal space to the orbit is

dim Ewt}YO(V, V)=2 Z ei —To(o, @)
i=1
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By the Luna slice theorem [22], tledale local structure in the smooth point
V is of the formG L(a) x“L(7) Ext*(V, V) wherer = (ey,...,e,) and is
therefore of dimension

This number must be equal to the dimension of the subvarietyseimistable
representations df, which has dimensioh+a.a—Tg(a, «) ifand only if

r = lande; = 1, thatis if and only ifl” is A-stable. Hence, ifep?® (1o, \)

is smooth, thel must be a minimal non-zero vector in the set of dimension
vectors of\-stable representations éf, and hence by the hyperakler
correspondencey is a minimal non-zero vector ix).

Conversely, ifo is @ minimal vector in¥’y, theniss,, I1) is a coadjoint
orbit, whence smooth and hence sdi$*(Ily, A) by the correspondence.
Moreover, allo-dimensional\-semistable representations mustbstable
by the minimality assumption and sep;* (11, A) is a principalPG L(c)-
fibration overM3*(11y, A) whence smooth. Thereforgl, , is a sheaf of
«-Cayley smooth algebras. a
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