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1 Introduction

Letf : X → Y be a continuous map of locally compact spaces. We say that
the mappingf is not proper at a pointy ∈ Y , if there is no a neighborhood
U of a pointy such that the setf−1(cl(U)) is compact.

The setSf of points at which the mapf is not proper indicates how the
mapf differs from a proper map. In particularf is proper if and only if this
set is empty. Moreover, iff(X) is open, thenSf contains the border of the
setf(X). The setSf is the minimal setS with a property that the mapping
f : X \ f−1(S) → Y \ S is proper.

Further, iff : R
n → R

n is a generically finite polynomial mapping,
then the mappingf has a constant topological degree over every connected
component of the setRn \ Sf .

In our previous paper [8] we described the setSf in the case of complex
polynomial mappingsf : C

n → C
m and in the paper [9] we described this

set in the case of real polynomial mappingsf : R
2 → R

2.
The aim of this paper is to do the same in the general case of real polyno-

mial non-constant mappingsf : R
n → R

m.Our main result is the following

Theorem. Letf : R
n → R

m be a polynomial non-constant mapping. Then
the setSf is closed, semi-algebraic and for every non-empty connected

� This paper was partially supported by the grant of KBN.
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componentS ⊂ Sf we have1 ≤ dim S ≤ n − 1. Moreover, the setSf is
R-uniruled. It means, that for every pointa ∈ Sf there is a non-constant
polynomial mappingφ : R → Sf such thatφ(0) = a.

Corollary. If f : R
n → R

m is a polynomial non-constant mapping, then
every non-empty connected component ofSf is unbounded.

If the mappingf is generically finite, then we can say more:

Theorem. Let f : R
n → R

m be a polynomial generically-finite mapping.
Let deg fi = di and assume thatd1 ≥ d2... ≥ dm. Then there is a real
polynomialP ∈ R[x1, ..., xm] of degree at mostD = d1d2...dn−1 −1, such
thatSf ⊂ P−1(0) andf(Rn) �⊂ P−1(0).

In this paper we use methods from our recent papers [7] and [8]. The
author wishes to express his gratitude to the referee for his useful remarks,
which allow us to state our theorems in stronger versions and improve their
proofs.

2 Terminology

LetX ⊂ R
n(Pn(R)) be a semi-algebraic set. The Zariski closure ofX will

be denoted byclZ(X).By CX we denote a complexification ofX, i.e.,CX
is a Zariski closure of the setX in C

n (Pn(C)).
More generally, ifX ⊂ P

n(R) × P
n(R) is an algebraic set, then by its

complexificationCX we mean a Zariski closure of the setX in P
n(C) ×

P
n(C) etc.

Let X ⊂ R
n be an algebraic set. A mappingf : X → R

m is called
polynomial, if f = (f1, ..., fm), where eachfi is a restriction toX of a
polynomial fromR[x1, ..., xn].

More generally, ifX ⊂ P
n(R), Y ⊂ P

m(R) are semialgebraic sets and
f : X → Y is a regular mapping thenf is called polynomial if it has an
extension to a regular mappingCf : CX → CY.Let us recall that a mapping
f : X → Y of semi-algebraic subsets of a projective space is regular, if
it can be written locally as a composition of quotients of homogeneous
polynomials.

For an algebraic setX ⊂ R
n we consider its coordinate ringX: R[X] :=

R[x1, ..., xn]/I(X), whereI(X) = {f ∈ R[x1, ..., xn] : f(X) = {0}}.
A polynomial mappingf : X → R

m is called generically-finite if for
a genericx ∈ X the fiberf−1(f(x)) is finite. It is easy to see thatf is
generically-finite if and only if the mappingf : CX → C

m is generically-
finite. A polynomial mappingf : X → R

m is called quasi-finite if all its
fibers are finite.

If X ⊂ R
m is the empty set, then we put codimX = ∞.
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3 Preliminaries

In the beginning we recall some basic facts about polynomial mappings of
C

2. We start with the theorem about surfaces which containC
2 as an open

subset ([8]):

Theorem 3.1 LetX be a complete normal surface. Assume, thatX contains
a planeC2 as an open, dense subset. LetW1,W2 ⊂ X\C

2 be two connected,
complete curves without common components. Then the intersectionW1 ∩
W2 is either the empty set or it is a point.

Definition 3.2 LetΓ be an affine curve such that there is a surjective poly-
nomial mappingφ : C → Γ. ThenΓ is called to bean affine parametric
line and the mappingφ is called to bea parametrization ofΓ.

In the sequel we need also the following (see [8]):

Proposition 3.3 LetX be an irreducible affine variety. The following con-
ditions are equivalent:

1. for every pointx ∈ X there is a parametric affine line inX going through
x;

2. there exists a Zariski-open, non-empty subsetU ofX, such that for every
pointx ∈ U there is a parametric affine line inX going through x;

3. there exists a subsetU ofX of the second Baire’s category, such that for
every pointx ∈ U there is a parametric affine line inX going through
x.

Definition 3.4 An affine irreducible varietyX is calledC − uniruled if it
satisfies one of equivalent conditions1)−3) listed in Proposition 3.3. More
generally, an affine varietyX is calledC − uniruled if all its irreducible
components areC − uniruled.

The next result was proved in our papers [7], [8]:

Theorem 3.5 Letf = (f1, ..., fn) : C
n −→ C

n be a dominant polynomial
map. Then the setSf of points at whichf is not proper is either empty, or
it is a C-uniruled hypersurface. Moreover, its degree is not greater than

∏n
i=1 degfi − µ(f)

mini=1,...,ndeg fi
,

whereµ(f) denotes the maximal number of points in (finite) fibers off .
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4 Mappings of the real plane

In this section we study non-constant polynomial mappingsf : R
2 −→ R

m.
We start with the following:

Definition 4.1 LetΓ ⊂ R
n be a semi-algebraic curve, such that there exists

a polynomial surjective mappingφ : R → Γ . ThenΓ will be called a
parametric semi-lineand the mappingφ will be calleda parametrization of
Γ.

We come to our first result:

Theorem 4.2 Let f = (f1, ..., fm) : R
2 −→ R

m be a non-constant poly-
nomial mapping. Then the setSf of points at whichf is not proper is a
union of a finite family (possibly empty) of parametric semi-lines.

Proof. First assume that the mappingf is generically-finite. Extend the
mappingf to a rational mappingP2(R) → P

m(R), also denoted byf . Now
resolve points of indeterminacy off by a sequence of blowup’s. In this way
we obtain a smooth surfaceZ and a regular mappingF : Z → P

m(R), such
thatresR2F = f.

We can also consider the surfaceCZ and the mappingCF , which are
canonical complexifications ofZ andF (i.e. to obtainCZ,CF we consider
complex extension of real blowup’s). Hence the mappingCF is regular in
a neighborhood ofZ. Without loss of generality we can assume that the
mappingCF is regular on the whole ofCZ (later we resolve only complex
points of indeterminacy).

The setR := Z \ R
2 is connected and it is a union

⋃
Ri of circles

Ri
∼= P

1(R). Moreover, the complexificationCRi := Si is isomorphic
to P

1(C) and it containsRi asP
1(R), i.e., there is a (complex) biregular

mappingΨi : P
1(C) → Si such that it induces a (real) biregular mapping

ψi : P
1(R) → Ri. It follows from elementary blowup properties.

Let us denote byL∞ the hyperplane at infinity inRm and takeQ :=
F−1(L∞). Let Rj be a component ofR which is not inQ. We show
thatRj has at most one common point withQ. Indeed, the curveQ′ :=
CF−1(CL∞) is connected as the complement of semi-affine surface
CF−1(Cm) (see [8]). Hence our assertion follows from Theorem 3.1 (ap-
plied to the surfaceCZ).

Now let us note that the setSf is exactly the setF (R \ Q). Let H be
a connected (non-empty) component of the setSf . Hence there are indices
j1, ..., jk such thatH =

⋃k
i=1 F (Rji \Q). On the other hand we know that

for everyj the curveRj
∼= P

1(R) has at most one common point withQ.
Consequently, the restriction of the mappingF to Rj \ Q gives a regular
mappingφj : R → H ⊂ R

m. Here we identifyR with Rj \ Q or (if
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Rj ∩Q = ∅) with Rj minus one point. Without restriction of generality we
can assume that all mappingsφj are non-constant. Indeed, since the setR is
connected, it means that the setF (R) ⊂ Sf ∪ L∞ is connected, too, hence
H cannot be an isolated point. Consequently, we can exclude all constant
mappingsφj . Now, we show that the mappingφj must be polynomial.

Since the mappingφj is regular, we haveφj = (P1/Q1, ..., Pm/Qm),
wherePi, Qi are relatively prime real polynomials fromR[t] with Qi �= 0
everywhere. (see [1], 3.1.9).

Moreover, the mappingφj extends uniquely to the mappingΦj : Sj
∼=

P
1(C) → P

m(C). If
∏m

i=1Qi �= const, thenSj would have two or more
(conjugate) complex common points withQ′ = CF−1(CL∞) (namely
zeros of some ofQi). By Theorem 3.1 it is a contradiction.

Hence, the mappingφj is indeed a polynomial mapping. This also implies
thatRj ∩Q �= ∅ (i.e.Rj \Q ∼= R), and consequentlyH =

⋃k
i=1 φji(R).

Now assume that the mappingf is not generically finite. It can be easy
deduced form the L̈uroth theorem, that there are polynomialφ1, ..., φm ∈
R[t] and a polynomialh(x, y) ∈ R[x, y], such thatfi = φi(h), i = 1, ...,m.
Let us consider the (non-constant) polynomial mappingh : R

2 → R. Let
A denote the point at infinity of the lineR ⊂ P

1(R). In the same way as
in the first part of our proof we see that the setSh is closed and that the set
Sh ∪ {A} is connected. In particular, the setSh is either the whole of the
line R, or a closed half-line or a union of two closed half-lines (or the empty
set). In all cases it is a union of parametric semi-lines. ButSf = φ(Sh),
whereφ = (φ1, ..., φm) and the theorem follows.��
Remark 4.3Let S1, ..., Sk ⊂ R

m, wherem ≥ 2, be parametric semi-lines.
We show in the section 7, Theorem 7.1, that there exists a polynomial map-
pingf : R

2 → R
m with finite fibers for whichSf =

⋃k
i=1 Si. In particular

this gives a full characterization of the setSf for generically-finite polyno-
mial mappingsf : R

2 → R
m:

A subsetS ⊂ R
m (m ≥ 2) is equal to the setSf for some generically

finite polynomial mappingf : R
2 −→ R

m if and only if it is a union of a
finite family (possibly empty) of parametric semi-lines.

5 Extensions of finite mappings

To prove the next result we need also some facts about extensions of finite
mappings.

Definition 5.1 Let k = R or k = C. For algebraic setsX ⊂ kn and
Y ⊂ km let f = (f1, ..., fm) : X → Y be a polynomial mapping and let
f∗ : k[Y ] � h → h ◦ f ∈ k[X] denote the induced mapping. The mapping
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f is called finite if the ringk[X] is integral over its subringf∗(k[Y ]) =
k[f1, ..., fm].

Remark 5.2

a) A finite mapping is proper and it has finite fibers. Conversely, fork = C,
the proper mapping of affine varieties is finite.

b) If a real mappingf is finite then the mappingCf : CX → CY is also
finite and conversely.

c) A composition of finite mappings is a finite mapping.
d) A non-constant polynomial mappingφ : R → R

m is finite.

Theorem 5.3 LetX ⊂ R
m be a real affine algebraic variety and letΓ be

a closed algebraic subvariety ofX. Letf : Γ → R
n be a finite polynomial

map and assumen ≥ dim X. Then there exists a finite polynomial map
F : X → R

n, such thatresΓF = f .

Proof. We follow closely our method from [7]. LetI(Γ ) denote the ideal
of Γ in R[X]. Let g = (g1, . . . , gn) be a polynomial extension off to
X. Let x1, . . . , xm be coordinate polynomial functions inRm. By our as-
sumptions there exist polynomial functionsai

j ∈ R[X1, . . . , Xn], such that

Hi =
∑ni

j=0 ai
j(g)x

ni−j
i = 0 mod I(Γ ), andai

0(g) = const �= 0 for
i = 1, . . . ,m.

Consider the mapH = (g1, . . . , gn, H1, . . . , Hm) : X → R
n+m.

By the construction, the mappingH is finite, H(Γ ) ⊂ R
n × {0} and

dim H(X) =dim X ≤ n. Of course, the setH(X) is a closed (in the
Euclidian topology) subset ofRn+m. Let Y := clZ(H(X)) be the Zariski
closure ofH(X) in R

n+m. Then dimY = dimX. It is easy to see that there
exists a finite linear projectionπ : Y → R

n × {0}.
Indeed, we have the canonical inclusionR

n+m ⊂ P
n+m(R) and the set

W of points at infinity ofY has dimension≤ n − 1. Hence we can find a
linear subspaceL of the hyperplane at infinity of dimensionm − 1 which
is disjoint fromW ∪ cl(Rn × {0}). Let πL : P

n+m(R) → cl(Rn × {0})
be the projection determined byL. The restriction ofπL to Y is a finite
mapping ofY into R

n × {0} and it is the projectionπ we were looking for.
Now, to obtain a finite extension off to the whole ofX, it is enough to take
F = p ◦H. ��

It is worth to note (although we do not need this in the sequel) that we
also have:

Theorem 5.4 LetX ⊂ R
m be a real affine variety andY ⊂ X be a closed

algebraic subvariety. Letf : Y → R
n be a polynomial mapping. Assume,

that
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dim X ≤ n. Then there exists a real polynomial mappingF : X → R
n

such that

1. resY F = f
2. the mappingresX\Y F : X \ Y → R

n is quasi-finite.

In particular if the mappingf is quasi-finite, then the mappingF is quasi-
finite, too.

Proof. Let I(Y ) = (h1, ..., hr) be the ideal ofY in R[X]. Denote by
g = (g1, . . . , gn) a polynomial extension off toX and byx1, . . . , xm co-
ordinate polynomials inRm. TakeHij := hi ·xj ; i = 1, ..., r, j = 1, ...,m;
and consider the mapH = (g1, . . . , gn, h1, . . . , hr, H11, ..., H1m, ..., Hr1,
. . . , Hrm) : X → R

n+r+mr. By the construction, the mappingH is in-
jective outsideY , H(Y ) ⊂ R

n × {0} and dimH(X) = dim X ≤ n.
Let Γ denote the Zariski closure ofH(X) in R

n+r+mr. It is easy to see
(as in the proof of Theorem 5.3) that there exists a finite linear projection
π : Γ → R

n × {0}, such thatπ(H(X)) ⊂ R
n × {0}. Now it is enough to

takeF = π ◦H. ��

6 General case

In the beginning we compare the real setSf with the complex one. We have
the following basic fact, whose proof is an easy exercise from the general
topology:

Proposition 6.1 Letf : R
n −→ R

n be a generically-finite polynomial map
and letCf : C

n −→ C
n be its complexification. Then the setSf of points

at whichf is not proper is contained in the setSCf of points at which the
mappingCf is not proper.

In the sequel the following definition will be useful:

Definition 6.2 Let S ⊂ R
n be a semialgebraic set. The setS is calledR-

uniruled if for every pointa ∈ S there is a parametric semi-line inS through
the pointa. Moreover, the setS is called genericallyR-uniruled if there is
an open and dense subsetU ⊂ S, such that for every pointa ∈ U there is a
parametric semi-line inS through this point.

Remark 6.3Ofcourse,everyR-uniruledset isgenericallyR-uniruled.More-
over, if a setS is genericallyR-uniruled, then the setCS is C-uniruled. It
follows immediately from Proposition 3.3.

Now we are ready to prove our main theorem:
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Theorem 6.4 Let f : R
n → R

m be a non-constant polynomial mapping.
Then the setSf is closed, semi-algebraic and for every non-empty connected
componentS ⊂ Sf we have1 ≤ dim S ≤ n − 1. Moreover, the setSf is
R-uniruled.

Proof. Of course, we can assume thatn > 1. Let X be the closure of the
setX := graph(f) ⊂ R

n × R
m in P

n(R) × R
m. Let us note thatX is

polynomially isomorphic toRn. The setX is semi-algebraic, hence the set
R := X \ X is semialgebraic, too. Of course, dimR < n. Moreover, if
π : P

n(R) × R
m → R

m is the canonical projection we haveSf = π(R)
and hence the setSf is closed, semi-algebraic and dimSf < n.

Let b ∈ Sf . By the curve selecting lemma and the classical Puisex
Theorem, there is a meromorphic functionφ(t) = ast

s+...+a−kt
−k+... ∈

R
n (whereaj ∈ R

n), with a pole at infinity, which is defined for|t| > R,
such thatlimt=∞f(φ(t)) = b. In particular for a sufficiently largek we
havef(ast

s + ... + a−kt
−k) = b + w1/t + ... + wr/t

r, wherewj ∈ R
m.

Letψ(t) = ast
s + ...+ a−kt

−k.
There are two possible cases; eitherψ is a polynomial, orψ has a pole

for t = 0. Let us define the setX ⊂ R
2 in the following way: ifψ is a

polynomial thenX is the line{x(t) = (t, 0); t ∈ R}, if ψ has a pole for
t = 0, thenX is the hyperbola{x(t) = (t, 1/t); t ∈ R}.

Let us note that the functionψ induces a finite polynomial mapping
g : X � x(t) → ψ(t) ∈ R

m. Indeed, the mappingCg is proper, hence finite
and this implies that the mappingg is finite. By Theorem 5.3 we can extend
the mappingg to a finite polynomial mappingG : R

2 → R
n.

Since the mappingf is non-constant, we can assume that the mapping
F := f ◦G is also non-constant (indeed, it is enough to chooseG in this way
that for somex �∈ X, we haveG(x) �∈ f−1(b)). Further,limt=∞F (x(t)) =
limt=∞f(ast

s + ...+a−kt
−k) = limt=∞b+w1/t+ ...+wr/t

r = b, hence
b ∈ SF . Moreover, since the mappingG is finite, we haveSF ⊂ Sf . Now
by Theorem 4.2 we get that there is a parametric semi-line inSf throughb.
In particular for every non-empty connected componentS ⊂ Sf we have
1 ≤ dim S. ��

If the mappingf is generically finite, then we can say more:

Theorem 6.5 Let f : R
n → R

m be a polynomial generically-finite map-
ping. Letdeg fi = di and assume thatd1 ≥ d2... ≥ dm. Then there is a
real polynomialP ∈ R[x1, ..., xm] of degree at mostD = d1d2...dn−1 − 1,
such thatSf ⊂ P−1(0) andf(Rn) �⊂ P−1(0).

Proof. Let T : R
m → R

n be a sufficiently general projection of the type
T (x1, ..., xm) = (

∑m
i=1 a

1
ixi,

∑m
i=2 a

2
ixi, ...,

∑m
i=n a

n
i xi). Takeh = T ◦

f. Thenh : R
n → R

n is a generically-finite polynomial mapping and



Geometry of real polynomial mappings 329

T (Sf ) ⊂ Sh. Let us consider the mappingCh : C
n → C

n. We know by
Proposition 6.1 thatSh ⊂ SCh. By Theorem 3.5 the setSCh is described
by a polynomialQ of degree at mostD′ = deg h1...deg hn−1 − 1 ≤
d1d2...dn−1 − 1 = D. Moreover, since the mappingh is real, we have that
the polynomialQ is also real (it can be deduced from [4]). Now, the setSf

is contained in the zero set of a polynomialP := Q ◦ T and the theorem
follows. ��
Corollary 6.6 Let f : R

n → R
m be a non-constant polynomial mapping.

Then every non-empty connected component ofSf is R-uniruled, in partic-
ular unbounded.

Corollary 6.7 Let n > 1 and f : R
n → R

n be a non-constant polyno-
mial mapping. LetQ be a non-empty connected component ofR

n \ Sf .
ThenHn−1(Q,Z) = 0. In particular, for n = 2 every such component is
homeomorphic to an open disc, consequently it is simply connected.

Proof. Let S
n be a one point compactification ofR

n andSf denote the
closure ofSf in S

n. Since all components ofSf are unbounded, the setSf

is connected. Further we haveHn−1(Rn \ Sf ,Z) = Hn−1(Sn \ Sf ,Z) ∼=
H1(Sn, Sf ,Z) ∼= H̃0(Sf ,Z) = 0, whereH̃0 denotes the reduced module
of cohomology. ConsequentlyHn−1(Q,Z) = 0. Hence forn = 2 we have
H1(Q,Z) = 0 and it is well-known that it implies thatQ is homeomorphic
to an open disc, in particular it is simply connected (it can be easily deduced
e.g. from [11] Theorem 13.11).��
Remark 6.8In particular, the last statement of Corollary 6.7 gives a full
geometric picture for polynomial mappingsf : R

2 → R
2 with a non-zero

Jacobian (e.g. for the Pinchuk mapping, see [10]). Indeed, letS1, ..., Sr be
all connected components of the setR

2 \ Sf with non-empty preimages.
Takef−1(Si) =

⋃ri
j=1 Si,j , whereSi,j are connected components of the set

f−1(Si). MappingsresSi,jf : Si,j → Si are proper and unramified, hence
they are topological coverings. Since all setsSi are simply connected, the
mappingsresSi,jf are diffeomorphisms, and consequently the mappingf
is a glueing of a finite number of diffeomorphisms of discs.

Corollary 6.9 Let f : R
n → R

m be a non-constant polynomial mapping.
Assume thatS is an irreducible algebraic component of the (real) Zariski
closure ofSf . Then the setS is unbounded and the algebraic varietyCS is
C-uniruled. Moreover, ifS ⊂ Sf and eitherS is smooth and connected orS
is smooth and has pure dimensionn− 1, thenS is genericallyR-uniruled.

Proof. Let clZ(Sf ) =
⋃r

i=1 Si be a decomposition ofclZ(Sf ) into ir-
reducible algebraic components. We can assume thatS = S1. The set
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R := Sf \ ⋃r
i=2 Si is nonempty. Leta ∈ R. By Theorem 6.4 there is

a parametric semi-linel in Sf through the pointa. Since the parametric
semi-line is irreducible we have that in factl ⊂ S, in particular the setS is
unbounded. If additionallyS ⊂ Sf and eitherS is smooth and connected or
S is smooth and has pure dimensionn− 1, then the setR is dense inS and
S is genericallyR-uniruled. Finally, the algebraic varietyCS is C-uniruled
by Proposition 3.3 p. 3). ��
Remark 6.10If f : R

n → R
m is a generically finite polynomial mapping,

then the real algebraic closure of the setSf can be not genericallyR-uniruled.
In fact Gwózdziewicz show in [5], that iff is the Pinchuk mapping, then
the algebraic closure of the setSf has a point as an isolated component.

7 Examples

In this section we give some examples of the setSf , as well as some appli-
cations of our results.

Theorem 7.1 LetS1, ..., Sr ⊂ R
m be semi-algebraic sets and assume that

there are finite and surjective polynomial mappingφi : R
ki → Si ( n >

ki ≥ 1). Assume thatm ≥ n. Then there exists a polynomial mapping
F : R

n → R
m, with finite fibers for whichSF =

⋃r
i=1 Si.

Proof.LetL1, ..., Lr be a family of linear subspaces ofR
n, such that

1) dimLi = ki,
2) Li is given by linear equationslj(x1, ..., xn−1) = 0, j = 1, ..., pi =

n− ki,
3)Li ∩ Lj = ∅ for i �= j.
Note thatLi is given by the equationei(x1, ..., xn−1) =

∑pi
j=1 (lij)2 =

0. LetG : R
n � (x1, ..., xn) → (x1, ..., xn−1, (

∏r
i=1 ei)x

2
n +xn). It is easy

to see thatG has finite fibers andSG = {x ∈ R
n :

∏r
i=1 ei(x) = 0} =⋃r

i=1 Li.
Now let φi : Li � x → φ(x) ∈ Si ⊂ R

m be a finite polynomial
parametrization ofSi. By Theorem 5.3, the mappingφ =

⋃r
i=1 φi can be

extended to a finite polynomial mappingΦ : R
n → R

m. It is easy to check
that ifF = Φ◦G, thenF has finite fibers andSF = Φ(SG) = φ(

⋃r
i=1 Li) =⋃r

i=1 Si. ��
Remark 7.2a) Let us consider a polynomial mappingf : R

n → R
n. If

n = 2, then the setSf (if non-empty) has codimension 1. Theorem 7.1 shows
that forn > 2 it is not longer true even for generically-finite mappings. In
fact, for every0 < k < n, we can construct a generically-finite mapping
fk : R

n → R
n such that codimSfk

= n− k.
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b) On the other hand, in the case of the (not generically-finite) projection
f : R

n � (x1, ..., xk, ..., xn) → (x1, ..., xk) ∈ R
k, wheren > k, we have

Sf = R
k.

Example 7.3

a) There is no a polynomial mappingf : R
n → R

n such thatf(Rn) =
{(x1, ..., xn) ∈ R

n : x2 > 0, x3 > 0, ..., xn > 0, x1 · ... · xn > 1}.
Indeed, letU = f(Rn) andS = bd(U) (the border ofU ). Since dim
S = n−1 we have thatS′ := clZ(S) is an algebraic component of the set
clZ(Sf ). By Corollary 6.9 the setCS′ must beC-uniruled. It means that
the hypersurface{(x1, ..., xn) ∈ C

n : x1 · ... · xn = 1} is C-uniruled.
Since the last hypersurface does contain no affine parametric curves, we
get a contradiction.

b) There is no polynomial mappingf : R
n → R

n such thatf(Rn) =
{(x1, ..., xn) ∈ R

n :
∑n

i=1 x
2
i > 1}. Indeed, letU = f(Rn) and

S = bd(U) = {(x1, ..., xn) ∈ R
n :

∑n
i=1 x

2
i = 1}. ThenS is a real

algebraic set of dimensionn − 1 and consequently it must be an irre-
ducible component of the setclZ(Sf ). In particular it must be generically
R-uniruled, hence unbounded, a contradiction.

c) More generally, letU ⊂ R
n be an open domain. Assume thatbd(U)

contains an algebraic setΓ of dimensionn − 1, such that eitherΓ is
bounded, orΓ is smooth, connected and not genericallyR-uniruled. Then
there is no polynomial mappingf : R

n → R
n such thatf(Rn) = U.

8 Real Jacobian conjecture

At the end of this paper we consider the case of a real polynomial mapping
with the nowhere vanishing Jacobian. We start with the following:

Lemma 8.1 LetS be a closed semialgebraic subset ofR
n If codim S ≥ 2,

then the setRn \ S is connected. Ifcodim S ≥ 3, then the setRn \ S is
simply connected.

Proof. If S is smooth, in particular finite it follows directly from [4, Th.3.1
p. 22 and Th.2.3 p. 146]. In the general case we use induction with respect
to dimS. Let r = dim S and letS1 be a r-dimensional stratum in a finite
semialgebraic stratification ofS [1, Proposition 2.5.1]. ThenS = S1 ∪ E,
where dimE ≤ r − 1 andE is a closed semialgebraic subset ofR

n. Now
assume that codimS ≥ 2. Since the setS1 is smooth inRn \E and codim
S1 ≥ 2, we have by [4, Th.3.1, p. 22] that the setR

n \ S is connected if
the setRn \ E is, and we conclude this part of the proof by the induction
principle.
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Now let codimS ≥ 3. Since the setS1 is smooth inRn \E, we have by
[4, Th.2.3, p. 146] thatπ1(Rn \ S) = π1(Rn \ E) and we again conclude
our proof by the induction principle.��

We have the following:

Theorem 8.2 Let f : R
n → R

n be a real polynomial mapping with the
Jacobian which nowhere vanishes. Ifcodim Sf ≥ 3 thenf is a bijection
(and consequentlySf = ∅).

Proof.Let us consider setsX := R
n \ Sf andY := R

n \ f−1(Sf ). Since
the mappingf is a local homeomorphism, we have that codimf−1(Sf ) =
codimSf ≥ 3. In particular it implies that the setY is connected. Moreover,
sincecodim Sf ≥ 3 we have that the setX is simply connected. Since
the mappingf : Y → X is proper and unramified, we have thatf is a
topological covering. In particular it is a homeomorphism. Consequently,
the general fiber of the mappingf is a one point. Since the mappingf is
unramified, this implies thatf is an injection. Now it suffices to use theorem
of Biaĺ ynicki-Rosenlicht - see [2]. ��

On the other hand, the example of Pinchuk (see [10]) shows that there
are real polynomial mappings with the Jacobian which nowhere vanishes
and with codimSf = 1. Hence the only interesting case is that of codim
Sf = 2 and we can state:

Real Jacobian Conjecture.Let f : R
n → R

n be a real polynomial map-
ping with the Jacobian which nowhere vanishes. Ifcodim Sf ≥ 2 thenf is
a bijection (and consequentlySf = ∅).

By Theorem 4.2 this conjecture is true in dimension two. Consequently,
the first interesting case isn = 3 and dimSf = 1.

The Real Jacobian Conjecture is closely connected with the following fa-
mous Jacobian Conjecture:

Jacobian Conjecture. Let f : C
n → C

n be a polynomial mapping with
the Jacobian which nowhere vanishes. Thenf is an isomorphism.

In fact we have:

Proposition 8.3 The Real Jacobian Conjecture in dimension2n implies the
Jacobian Conjecture in (complex) dimensionn.

Proof. Indeed, letf : C
n → C

n be a polynomial mapping with a non-
zero Jacobian. We can treat the mappingf as a real polynomial mappingf :
R

2n → R
2n.Assume thatf is not an isomorphism. In particular the mapping

f can not be finite. Thus by [7], [8] we get that the setSf has a complex
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codimension 1, hence it has a real codimension2. Consequently, if the Real
Jacobian Conjecture holds in dimension2n, this gives a contradiction.��
Remark 8.4From a topological point of view our Real Jacobian Conjecture
is a real counterpart of the (complex) Jacobian Conjecture. In particular
if we find a counterexample to the Real Jacobian Conjecture we show that
there is no topological obstruction to find a counterexample to the (complex)
Jacobian Conjecture. From this point of view the example of Pinchuk, which
is a glueing of finite number of diffeomorphisms of discs (see Remark 6.8)
gives nothing.
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