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1 Introduction

Letf : X — Y be a continuous map of locally compact spaces. We say that
the mappingf is not proper at a poinj € Y, if there is no a neighborhood
U of a pointy such that the set~*(cl(U)) is compact.

The setS; of points at which the ma is not proper indicates how the
map f differs from a proper map. In particuldris proper if and only if this
set is empty. Moreover, if (X) is open, thert; contains the border of the
setf(X). The setSy is the minimal se5 with a property that the mapping
f: X\ f1(S)— Y\ Sis proper.

Further, if f : R™ — R™ is a generically finite polynomial mapping,
then the mapping has a constant topological degree over every connected
component of the s&™ \ Sy.

In our previous paper [8] we described the Sgin the case of complex
polynomial mappingg : C* — C™ and in the paper [9] we described this
set in the case of real polynomial mappinfsR? — R2.

The aim of this paper is to do the same in the general case of real polyno-
mial non-constant mappings: R™ — R™. Our main resultis the following

Theorem. Let f : R®™ — R™ be a polynomial non-constant mapping. Then
the setS; is closed, semi-algebraic and for every non-empty connected

* This paper was partially supported by the grant of KBN.
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componentS C Sy we havel < dim S < n — 1. Moreover, the sef; is
R-uniruled. It means, that for every poiatc Sy there is a non-constant
polynomial mapping : R — S such thaip(0) = a.

Corollary. If f: R® — R™ is a polynomial non-constant mapping, then
every non-empty connected componeri,0is unbounded.

If the mappingf is generically finite, then we can say more:

Theorem. Let f : R™ — R™ be a polynomial generically-finite mapping.
Letdeg f; = d; and assume thaf; > ds... > d,,. Then there is a real
polynomialP € R[x1, ..., x,,] of degree at mosb = d,ds...d,—1 — 1, such
that Sy ¢ P~1(0) and f(R™) ¢ P~1(0).

In this paper we use methods from our recent papers [7] and [8]. The
author wishes to express his gratitude to the referee for his useful remarks,
which allow us to state our theorems in stronger versions and improve their
proofs.

2 Terminology

Let X c R"(P"(R)) be a semi-algebraic set. The Zariski closur&oWill
be denoted bylz(X). By CX we denote a complexification df , i.e.,CX
is a Zariski closure of the séf in C" (P™(C)).

More generally, ifX c P"(R) x P*(R) is an algebraic set, then by its
complexificationCX we mean a Zariski closure of the s&tin P"(C) x
P™(C) etc.

Let X C R™ be an algebraic set. A mapping: X — R™ is called
polynomial, if f = (f1,..., fm), Where eachy; is a restriction toX of a
polynomial fromR |z, ..., z,].

More generally, ifX c P*(R), Y c P™(RR) are semialgebraic sets and
f + X — Y is aregular mapping thefiis called polynomial if it has an
extension to aregular mappifi : CX — CY. Letusrecall thata mapping
f : X — Y of semi-algebraic subsets of a projective space is regular, if
it can be written locally as a composition of quotients of homogeneous
polynomials.

Foran algebraic séf C R" we consider its coordinate ring: R[X ] :=
Rlzy, ..., zp]/I(X), wherel (X) = {f € R[z1,...,z,] : f(X)={0}}.

A polynomial mappingf : X — R™ is called generically-finite if for
a genericr € X the fiber f~1(f(z)) is finite. It is easy to see that is
generically-finite if and only if the mapping : CX — C™ is generically-
finite. A polynomial mappingf : X — R™ is called quasi-finite if all its
fibers are finite.

If X C R™is the empty set, then we put codifh = co.
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3 Preliminaries

In the beginning we recall some basic facts about polynomial mappings of
C2. We start with the theorem about surfaces which corZims an open
subset ([8]):

Theorem 3.1 LetX be acomplete normal surface. Assume, i@bntains
aplaneC? asanopen, dense subset. Uét, W, C X\(C2 be two connected,
complete curves without common components. Then the interséction
W, is either the empty set or it is a point.

Definition 3.2 Let I" be an affine curve such that there is a surjective poly-
nomial mappingp : C — I'. Then[ is called to bean affine parametric
line and the mapping is called to bea parametrization of .

In the sequel we need also the following (see [8]):

Proposition 3.3 Let X be an irreducible affine variety. The following con-
ditions are equivalent:

1. foreverypoint € X thereis a parametric affine line iN going through
X,

2. there exists a Zariski-open, non-empty subset X, such that for every
pointz € U there is a parametric affine line iX going through x;

3. there exists a subsEtof X of the second Baire’s category, such that for
every pointr € U there is a parametric affine line iX going through
X.

Definition 3.4 An affine irreducible varietyX is calledC — uniruled if it
satisfies one of equivalent conditiohs— 3) listed in Proposition 3.3. More
generally, an affine variet is calledC — uniruled if all its irreducible
components ar€ — uniruled.

The next result was proved in our papers [7], [8]:
Theorem 3.5 Let f = (f1, ..., fn) : C* — C" be a dominant polynomial

map. Then the sef; of points at whichf is not proper is either empty, or
it is a C-uniruled hypersurface. Moreover, its degree is not greater than

[T, degfi — p(f)

. M
min;—1 . pdeg f;

wherey( f) denotes the maximal number of points in (finite) fiberg.of
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4 Mappings of the real plane

In this section we study non-constant polynomial mappifig®? — R™.
We start with the following:

Definition 4.1 LetI" C R™ be a semi-algebraic curve, such that there exists
a polynomial surjective mapping : R — I'. ThenI" will be called a
parametric semi-lin@nd the mapping will be calleda parametrization of

I.

We come to our first result:

Theorem 4.2 Let f = (f1,..., fm) : RZ — R™ be a non-constant poly-
nomial mapping. Then the s8t of points at whichf is not proper is a
union of a finite family (possibly empty) of parametric semi-lines.

Proof. First assume that the mappirfgis generically-finite. Extend the
mappingf to a rational mapping?(R) — P"(R), also denoted by. Now
resolve points of indeterminacy ¢fby a sequence of blowup’s. In this way
we obtain a smooth surfa¢tand a regular mapping : Z — P™(R), such
thatresge F' = f.

We can also consider the surfaCe’ and the mappin@ F', which are
canonical complexifications &f andF’ (i.e. to obtainCZ, CF' we consider
complex extension of real blowup’s). Hence the mapiifgis regular in
a neighborhood ofZ. Without loss of generality we can assume that the
mappingCF is regular on the whole df Z (later we resolve only complex
points of indeterminacy).

The setR := Z \ R? is connected and it is a unidn R; of circles
R; = PY(R). Moreover, the complexificatio R; := S; is isomorphic
to P!(C) and it containsk; asP!(R), i.e., there is a (complex) biregular
mapping¥; : P'(C) — S; such that it induces a (real) biregular mapping
¥; - PL(R) — R;. It follows from elementary blowup properties.

Let us denote by, the hyperplane at infinity ilR™ and takeQ) :=
F~1(Ls). Let R; be a component of which is not in@. We show
that R; has at most one common point wifh Indeed, the curve)’ :=
CF~1(CLy) is connected as the complement of semi-affine surface
CF~1(C™) (see [8]). Hence our assertion follows from Theorem 3.1 (ap-
plied to the surfac&€ 7).

Now let us note that the sét; is exactly the sef’(R \ Q). Let H be
a connected (non-empty) component of the$etHence there are indices
Jis .-, Jk Such thatd = Ule F(Rj; \ Q). On the other hand we know that
for every; the curveR; = P*(R) has at most one common point with
Consequently, the restriction of the mappiAgo R; \ @ gives a regular
mapping¢; : R — H C R™. Here we identifyR with R; \ @Q or (if
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R; N Q = 0) with R; minus one point. Without restriction of generality we
can assume that all mappingsare non-constant. Indeed, since the/set
connected, it means that the $&tR) C Sy U L is connected, too, hence
H cannot be an isolated point. Consequently, we can exclude all constant
mappingsp;. Now, we show that the mapping; must be polynomial.

Since the mapping; is regular, we have; = (P1/Q1, ..., Pn/Qm),
whereP;, Q; are relatively prime real polynomials froRj¢] with Q; # 0
everywhere. (see [1], 3.1.9).

Moreover, the mapping; extends uniquely to the mappidg : S; =
PY(C) — P™(C). If [[%, Q; # const, thenS; would have two or more
(conjugate) complex common points wit = CF~1(CL.,) (namely
zeros of some of);). By Theorem 3.1 it is a contradiction.

Hence, the mapping; is indeed a polynomial mapping. This also implies
thatR; N Q # 0 (i.e. R; \ Q = R), and consequentl§l = (J*_, ¢,. (R).

Now assume that the mappirfgs not generically finite. It can be easy
deduced form the liroth theorem, that there are polynomial ..., ¢,,, €
R[t] and a polynomiak(z, y) € R[z,y], suchthaf; = ¢;(h), i = 1,...,m.
Let us consider the (non-constant) polynomial mapgingR? — R. Let
A denote the point at infinity of the linR ¢ P!(R). In the same way as
in the first part of our proof we see that the $gtis closed and that the set
Sy U {A} is connected. In particular, the s is either the whole of the
line R, or a closed half-line or a union of two closed half-lines (or the empty
set). In all cases it is a union of parametric semi-lines. But= ¢(S4),
where¢ = (¢1, ..., ¢,) and the theorem follows. O

Remark 4.3Let Sy, ..., S, € R™, wherem > 2, be parametric semi-lines.
We show in the section 7, Theorem 7.1, that there exists a polynomial map-
ping f : R? — R™ with finite fibers for whichS; = Ule S;. In particular

this gives a full characterization of the set for generically-finite polyno-

mial mappingsf : R2 — R™:

A subsetS C R™ (m > 2) is equal to the ses; for some generically
finite polynomial mapping : R> — R™ if and only if it is a union of a
finite family (possibly empty) of parametric semi-lines.

5 Extensions of finite mappings

To prove the next result we need also some facts about extensions of finite
mappings.

Definition 5.1 Let k. = R or k& = C. For algebraic setsX C k™ and
Y Cck™letf = (fi,....fm) : X — Y be a polynomial mapping and let
f*:k[Y] > h — ho f € k[X] denote the induced mapping. The mapping
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f is called finite if the ringk[X] is integral over its subringf*(k[Y]) =
k[f17 7fm]

Remark 5.2

a) Afinite mapping is proper and it has finite fibers. Conversely; ferC,
the proper mapping of affine varieties is finite.

b) If a real mappingf is finite then the mappin@f : CX — CY is also
finite and conversely.

c) A composition of finite mappings is a finite mapping.

d) A non-constant polynomial mapping: R — R is finite.

Theorem 5.3 Let X C R™ be a real affine algebraic variety and |ét be

a closed algebraic subvariety of. Letf : I — R™ be a finite polynomial
map and assume > dim X. Then there exists a finite polynomial map
F: X — R" such thatresp F = f.

Proof. We follow closely our method from [7]. Lef(I") denote the ideal
of I' in R[X]. Letg = (¢1,...,9,) be a polynomial extension of to

X. Letay,...,x, be coordinate polynomial functions R™. By our as-
sumptions there exist polynomial functiom?e R[X},..., X,], such that

H; = Y7, ai(g)z;"™ = 0 mod I(I'), andag(g) = const # 0 for
1=1,...,m.

Consider the mafH = (g1,...,9n, H1,..., Hy) : X — R"T™,
By the construction, the mapping is finite, H(I') ¢ R"™ x {0} and
dim H(X) =dim X < n. Of course, the set{(X) is a closed (in the
Euclidian topology) subset ®&"*™. LetY := clz(H (X)) be the Zariski
closure ofH (X) in R"*™. Then dimY” = dim X. Itis easy to see that there
exists a finite linear projection : Y — R™ x {0}.

Indeed, we have the canonical inclusiBf™™ c P"*(R) and the set
W of points at infinity ofY” has dimensior< n — 1. Hence we can find a
linear subspacé of the hyperplane at infinity of dimension — 1 which
is disjoint fromW U c¢l(R™ x {0}). Letmy, : P"™™(R) — cl(R™ x {0})
be the projection determined hiy. The restriction ofry to Y is a finite
mapping ofY” intoR™ x {0} and it is the projectiom we were looking for.
Now, to obtain a finite extension gfto the whole ofX, it is enough to take
F=poH. O

It is worth to note (although we do not need this in the sequel) that we
also have:

Theorem 5.4 Let X C R™ be a real affine variety ani C X be a closed
algebraic subvariety. Lef : Y — R" be a polynomial mapping. Assume,
that
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dim X < n. Then there exists a real polynomial mappifg: X — R"
such that

1l resyF=f
2. the mappingesx\y F : X \ Y — R" is quasi-finite.

In particular if the mappingf is quasi-finite, then the mapping is quasi-
finite, too.

Proof. Let I(Y) = (hi,...,h,) be the ideal ofY in R[X]. Denote by
g = (g1, ---,9n) apolynomial extension of to X and byx, ..., z,, co-
ordinate polynomials ilR™. TakeH;; := h;-x;; i =1,...,r, j = 1,...,m;
and consider the maff = (g1, ..., 9n, b1y, hpy Hi1y oooy Hipny ooy Hyp1,s

. Hpp) + X — R By the construction, the mapping is in-
jective outsideY’, H(Y) € R™ x {0} and dmH (X) = dim X < n.
Let I" denote the Zariski closure df (X) in R+ |t is easy to see
(as in the proof of Theorem 5.3) that there exists a finite linear projection
m: I' - R" x {0}, such thatr(H (X)) C R" x {0}. Now it is enough to
takeF'=moH. O

6 General case

In the beginning we compare the real Sgtwith the complex one. We have
the following basic fact, whose proof is an easy exercise from the general
topology:

Proposition 6.1 Let f : R® — R be a generically-finite polynomial map
and letCf : C" — C" be its complexification. Then the sgt of points
at which f is not proper is contained in the sét; of points at which the
mappingC f is not proper.

In the sequel the following definition will be useful:

Definition 6.2 Let S C R™ be a semialgebraic set. The $tis calledR-
uniruled if for every point, € S there is a parametric semi-lineffthrough
the pointa. Moreover, the se$ is called genericallyR-uniruled if there is
an open and dense subsetC S, such that for every point € U there is a
parametric semi-line ity through this point.

Remark 6.30f course, everR-uniruled setis genericallg-uniruled. More-
over, if a setS is genericallyR-uniruled, then the sdf.S is C-uniruled. It
follows immediately from Proposition 3.3.

Now we are ready to prove our main theorem:
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Theorem 6.4 Let f : R™ — R™ be a non-constant polynomial mapping.
Thenthe sef is closed, semi-algebraic and for every non-empty connected
componentS C Sy we havel < dim S < n — 1. Moreover, the sef; is
R-uniruled.

Proof. Of course, we can assume that> 1. Let X be the closure of the
setX := graph(f) C R™ x R™ in P*(R) x R™. Let us note thatX is
polynomially isomorphic t&R™. The setX is semi-algebraic, hence the set
R := X \ X is semialgebraic, too. Of course, difh < n. Moreover, if

7 : P*(R) x R™ — R™ is the canonical projection we hatg = w(R)
and hence the sé&t; is closed, semi-algebraic and dit < n.

Letb € S;. By the curve selecting lemma and the classical Puisex
Theorem, there is a meromorphic functioft) = ast*+...4+a_jt *+... €
R™ (wherea; € R™), with a pole at infinity, which is defined fat| > R,
such thatlim;— f(¢(t)) = b. In particular for a sufficiently largé we
havef(ast® + ... + a_xt %) = b+ wy /t + ... + w, /", wherew; € R™.
Lety(t) = ast® + ... + a_pt .

There are two possible cases; eithieis a polynomial, or) has a pole
for t = 0. Let us define the seX C R? in the following way: if1) is a
polynomial thenX is the line{x(t) = (¢,0);t € R}, if ¢ has a pole for
t =0, thenX is the hyperbolgd z(t) = (t,1/t);t € R}.

Let us note that the functiogp induces a finite polynomial mapping
g: X 3> z(t) = (t) € R™. Indeed, the mappinGg is proper, hence finite
and this implies that the mappings finite. By Theorem 5.3 we can extend
the mapping; to a finite polynomial mapping : R? — R™.

Since the mapping is non-constant, we can assume that the mapping
F := fo(@isalsonon-constant (indeed, itis enough to chaegethis way
that for somer ¢ X, we haveG(z) & f~1(b)). FurtherJim—.. F(z(t)) =
limi—co f (ast® + ...+ a_gt %) = limy—oob+w1 /t+...+w, /t" = b, hence
b € Sr. Moreover, since the mappirg is finite, we haveSr C Sy. Now
by Theorem 4.2 we get that there is a parametric semi-lirtg ithroughb.

In particular for every non-empty connected compongnt Sy we have
1<dim S. O

If the mappingf is generically finite, then we can say more:

Theorem 6.5 Let f : R™ — R™ be a polynomial generically-finite map-
ping. Letdeg f; = d; and assume that; > ds... > d,,. Then there is a
real polynomialP € R[zq, ..., z,,,] of degree at mosb = d;ds...d,,—1 — 1,
such thatSy ¢ P~1(0) and f(R") ¢ P~1(0).

Proof. Let T : R™ — R" be a sufficiently general projection of the type
T(x1, .y tm) = OO0 atwy, S, a?ay, .., > alz;). Takeh = T o
f. Thenh : R® — R" is a generically-finite polynomial mapping and
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T(Sy¢) C Sp. Let us consider the mappirigh : C* — C". We know by
Proposition 6.1 thab;, C Scp. By Theorem 3.5 the sefcy, is described
by a polynomial) of degree at mosD’ = deg hi...deg h, 1 — 1 <
dids...d,—1 — 1 = D. Moreover, since the mappirigis real, we have that
the polynomialy is also real (it can be deduced from [4]). Now, the Sgt
is contained in the zero set of a polynomial:= @ o T and the theorem
follows. O

Corollary 6.6 Let f : R™ — R™ be a non-constant polynomial mapping.
Then every non-empty connected componef o R-uniruled, in partic-
ular unbounded.

Corollary 6.7 Letn > 1 and f : R — R"™ be a non-constant polyno-
mial mapping. Let) be a non-empty connected componenRof\ Sy.
ThenH,_1(Q,Z) = 0. In particular, forn = 2 every such component is
homeomorphic to an open disc, consequently it is simply connected.

Proof. Let S™ be a one point compactification &" and Sy denote the
closure ofS; in S™. Since all components of; are unbounded, the s&f

is connected. Further we hav§, ;(R" \ Sy,Z) = H,,—1(S™\ S;,Z) =
H'(S",S},2) = H°(S;,7) = 0, where H° denotes the reduced module

of cohomology. Consequentl/,,_1(Q,Z) = 0. Hence forn = 2 we have
H,(Q,Z) = 0 and it is well-known that it implies thap is homeomorphic

to an open disc, in particular it is simply connected (it can be easily deduced
e.g. from [11] Theorem 13.11).00

Remark 6.8In particular, the last statement of Corollary 6.7 gives a full
geometric picture for polynomial mappings: R? — R? with a non-zero
Jacobian (e.g. for the Pinchuk mapping, see [10]). Indeed;let., S, be

all connected components of the &t \ Sy with non-empty preimages.
Takef~1(S;) = UjZ, Si,j, whereS; ; are connected components of the set
F1S). Mappingsress, ; f : Si; — S; are proper and unramified, hence
they are topological coverings. Since all sgfsare simply connected, the
mappingsresg, ; f are diffeomorphisms, and consequently the mapging
is a glueing of a finite number of diffeomorphisms of discs.

Corollary 6.9 Let f : R — R™ be a non-constant polynomial mapping.
Assume thab is an irreducible algebraic component of the (real) Zariski
closure ofS;. Then the sef is unbounded and the algebraic variefys is
C-uniruled. Moreover, ifS C Sy and eitherS is smooth and connected 6r
is smooth and has pure dimension- 1, thensS is genericallyR-uniruled.

Proof. Let clz(Sy) = UU;_; Si be a decomposition ofl(S) into ir-
reducible algebraic components. We can assume $hat S;. The set
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R = Sy \ U;_, Si is nonempty. Letz € R. By Theorem 6.4 there is
a parametric semi-liné in S; through the point. Since the parametric
semi-line is irreducible we have that in fdct S, in particular the sef is
unbounded. If additionally C Sy and eithelS is smooth and connected or
S is smooth and has pure dimension- 1, then the seR is dense inS and

S is genericallyR-uniruled. Finally, the algebraic varieys is C-uniruled
by Proposition 3.3 p. 3). O

Remark 6.10If f : R™ — R™ is a generically finite polynomial mapping,
thenthe real algebraic closure of theSgtan be not genericallg-uniruled.
In fact Gwazdziewicz show in [5], that iff is the Pinchuk mapping, then
the algebraic closure of the s€} has a point as an isolated component.

7 Examples

In this section we give some examples of thesgtas well as some appli-
cations of our results.

Theorem 7.1 Let Sy, ..., S, C R™ be semi-algebraic sets and assume that
there are finite and surjective polynomial mappipg: R¥ — S; (n >

k; > 1). Assume thatn > n. Then there exists a polynomial mapping
F :R" — R™, with finite fibers for whict6r = |J;_, S.

Proof.Let L4, ..., L, be a family of linear subspaces®&f, such that

1)dimL; = k;,

2) L; is given by linear equationg(x1,...,zp—1) =0, j =1,...,p; =
n— ki7

3)LiﬂLj = () for ¢ 75]

Note that; is given by the equatios; (z1, ..., z,—1) = ?;1 (lij)2 =
0.LetG : R" 3 (21, .oy Tp) = (@1, ooy 1, ([Ti—; €:)22 +2,). Itis easy
to see thatG has finite fibers andg = {z € R" : [[;_, ei(z) = 0} =
ULl Li.

Now let¢; : L; 2 = — ¢(z) € S; C R™ be a finite polynomial
parametrization of;. By Theorem 5.3, the mapping = J;_, ¢; can be
extended to a finite polynomial mappidg: R” — R™. Itis easy to check
thatif I/ = ®oG, thenF hasfinite fibersanfr = &(S¢) = ¢(UJ;_; Li) =
Uiz S O

Remark 7.2a) Let us consider a polynomial mappirfg: R™ — R”. If

n = 2,thenthe sef (if non-empty) has codimension 1. Theorem 7.1 shows
that forn > 2 itis not longer true even for generically-finite mappings. In

fact, for every0 < k < n, we can construct a generically-finite mapping

fr : R" — R"™ such that codinty, =n — k.
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b) On the other hand, in the case of the (not generically-finite) projection
fiR" S (21,0, 2p, oo, ) — (21, ..., 7)) € R, wheren > k, we have
Sy =RF.

Example 7.3

a) There is no a polynomial mapping: R™ — R™ such thatf(R") =
{(z1,.c0,xy) € R" : 29 > 0,23 > 0,...,2yy > 0, x1 - ... -z, > 1},
Indeed, letU = f(R"™) andS = bd(U) (the border ofU/). Since dim
S = n—1wehavethat’ := clz(S)is an algebraic component of the set
clz(Sy). By Corollary 6.9 the sefS” must beC-uniruled. It means that
the hypersurfac¢(z1, ...,z,) € C* : z - ... - x,, = 1} is C-uniruled.
Since the last hypersurface does contain no affine parametric curves, we
get a contradiction.

b) There is no polynomial mapping§ : R” — R" such thatf(R") =
{(z1,..,zp) € R* : Y% 22 > 1}. Indeed, letU = f(R") and

=11
S =bd(U) = {(z1,...,2n) € R : Y7 22 = 1}. ThenS is a real
algebraic set of dimensiom — 1 and consequently it must be an irre-
ducible component of the sdt; (S ). In particular it must be generically
R-uniruled, hence unbounded, a contradiction.
c) More generally, lel ¢ R™ be an open domain. Assume ttal(U)

contains an algebraic sét of dimensionn — 1, such that eithef” is
bounded, of"is smooth, connected and not generic®yniruled. Then

there is no polynomial mapping: R™ — R"™ such thatf(R") = U.

8 Real Jacobian conjecture

At the end of this paper we consider the case of a real polynomial mapping
with the nowhere vanishing Jacobian. We start with the following:

Lemma 8.1 Let S be a closed semialgebraic subse¥fIf codim S > 2,
then the seR”™ \ S is connected. ltodim S > 3, then the seR™ \ S is
simply connected.

Proof. If S is smooth, in particular finite it follows directly from [4, Th.3.1

p. 22 and Th.2.3 p. 146]. In the general case we use induction with respect
todimS. Letr = dim S and letS; be a r-dimensional stratum in a finite
semialgebraic stratification ¢f [1, Proposition 2.5.1]. The§ = S; U F,
where dimE < r — 1 andE is a closed semialgebraic subseffsf. Now
assume that codirf > 2. Since the ses$; is smooth inR™ \ £ and codim

S1 > 2, we have by [4, Th.3.1, p. 22] that the S \ S is connected if

the setR™ \ E' is, and we conclude this part of the proof by the induction
principle.
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Now let codimS > 3. Since the se$; is smooth inR™ \ E, we have by
[4, Th.2.3, p. 146] thatr; (R™ \ S) = m (R™ \ £) and we again conclude
our proof by the induction principle. O

We have the following:

Theorem 8.2 Let f : R — R" be a real polynomial mapping with the
Jacobian which nowhere vanishescéidim Sy > 3 then f is a bijection
(and consequentlg; = 0).

Proof. Let us consider set¥ := R" \ Sy andY := R"\ f~1(S}). Since

the mappingf is a local homeomorphism, we have that codim (S;) =
codimS; > 3. In particular itimplies that the sét is connected. Moreover,
sincecodim Sy > 3 we have that the seX is simply connected. Since
the mappingf : Y — X is proper and unramified, we have thais a
topological covering. In particular it is a homeomorphism. Consequently,
the general fiber of the mappinfjis a one point. Since the mappirfgis
unramified, this implies that is an injection. Now it suffices to use theorem
of Bial ynicki-Rosenlicht - see [2]. O

On the other hand, the example of Pinchuk (see [10]) shows that there
are real polynomial mappings with the Jacobian which nowhere vanishes
and with codimS; = 1. Hence the only interesting case is that of codim
Sy = 2 and we can state:

Real Jacobian Conjecture. Let f : R® — R"™ be a real polynomial map-
ping with the Jacobian which nowhere vanishesoltim Sy > 2 thenf is
a bijection (and consequentlyy = ).

By Theorem 4.2 this conjecture is true in dimension two. Consequently,
the first interesting caseis= 3 and dimSy = 1.

The Real Jacobian Conjecture is closely connected with the following fa-
mous Jacobian Conjecture:

Jacobian Conjecture. Let f : C* — C™ be a polynomial mapping with
the Jacobian which nowhere vanishes. Tlda an isomorphism.

In fact we have:

Proposition 8.3 The Real Jacobian Conjecture in dimenstanmplies the
Jacobian Conjecture in (complex) dimension

Proof. Indeed, letf : C* — C" be a polynomial mapping with a non-
zero Jacobian. We can treat the mappfrap a real polynomial mapping:
R?" — R?". Assume thaf is not anisomorphism. In particular the mapping
f can not be finite. Thus by [7], [8] we get that the $gthas a complex
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codimension 1, hence it has a real codimeng&iddonsequently, if the Real
Jacobian Conjecture holds in dimensibn this gives a contradiction. O

Remark 8.4From a topological point of view our Real Jacobian Conjecture
is a real counterpart of the (complex) Jacobian Conjecture. In particular
if we find a counterexample to the Real Jacobian Conjecture we show that
there is no topological obstruction to find a counterexample to the (complex)
Jacobian Conjecture. From this point of view the example of Pinchuk, which
is a glueing of finite number of diffeomorphisms of discs (see Remark 6.8)
gives nothing.
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