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Abstract. For a regular representation of a Euclidean Jordan algebra, we
introduce multi-parameter zeta distributions with harmonic polynomial co-
efficient. Bernstein-Sato type identities are obtained and used to prove a
functional equation. Examples are discussed in relation with Sato’s general
theory of zeta functions.
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0. Introduction

Let h be a harmonic polynomial onRn, homogeneous of degreek. Fors a
complex number, with�s > −n

2 , the formula

Z(f, s ;h) =
∫

Rn

f(ξ)h(ξ) ‖ξ‖2s dξ

clearly defines a tempered distribution. As a function ofs, it can be mero-
morphically extended to the complex plane. The Fourier transform of this
distribution can be expressed through the following formula, valid for any
functionf in the Schwartz class

Z(f̂ ,−s ;h) = π
n
2 4−s+n

2 + k
2 (−i)k Γ (−s+ n

2 + k)
Γ (s)

Z(f, s−n

2
−k ;h) .

This is the functional equation for the Epstein zeta distribution.
There are many extensions of this formula, and they culminate in the

broad program developed by M. Sato, T. Shintani, F. Sato and others (see
[Sa] for a presentation of this circle of ideas mainly based on the notion
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of prehomogeneous vector space). A different approach was initiated by
Faraut and Koŕanyi (see [F-K]), which is connected with the theory of Jordan
algebras and their representations. See also [A1], [A2]. There are some cases
notcovered by the general theory developped by Sato and al. We follow this
second approach (see section 5 for further discussion).

1. Preliminary results on Euclidean Jordan algebras

Let V be a real Euclidean Jordan algebra, which we assume for simplicity
to be simple. A general reference for notations and results is [F-K].V ×
denotes the set of invertible elements inV , andΩ is the open component
of V × containing the neutral elemente. Its closure is the set of squares in
V . Let n be the dimension ofV , r its rank. Thenn = r + d r(r−1)

2 , where
d is an integer. Denote bytr (resp.det) the trace and the generic norm of
V . LetG be the neutral component of the group of linear transformations
which preserveΩ, and letK the stabilizer ofe in G. The groupK is a
maximal compact subgroup ofG and it is the connected component of the
group of automorphisms of the Jordan algebraV . As inner product onV ,
set(x | y) = tr(xy). It satisfies(xz | y) = (z | xy) for anyx, y, z ∈ V .
Also the groupK is the intersection ofG and the orthogonal groupO(V )
for this inner product.

Fix a Pierce decomposition

(1) e = c1 + c2 + · · · + cr ,

and let∆1, . . . , ∆r = det be the associated principal minors. Recall that for
eachj, 1 ≤ j ≤ r, ∆j is a polynomial of degreej, and each∆j is strictly
positive onΩ. Fors = (s1, s2, . . . , sr) ∈ Cr, let |s| = s1 + s2 + · · · + sr.
Forx ∈ Ω, define

(2) ∆s(x) = ∆1(x)s1−s2∆2(x)s2−s3 . . . ∆r(x)sr

(generalizedpower function). Form ∈ Nr, andm1 ≥ m2 ≥ · · · ≥ mr ≥ 0,
observe that∆m extends as a polynomial onV .

Let us recall some useful formulæ. First recall the functionΓΩ, defined
by

(3) ΓΩ(s) =
∫

Ω
e− tr x∆s(x)d∗x

whered∗x = det(x)− n
r dx stands for theG-invariant measure onΩ. The

integral converges absolutely when�sj > (j − 1)d
2 , for j = 1, 2, . . . , r
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and it can be extended meromorphically toCr. In factΓΩ is a product of
classicalΓ functions

(4) ΓΩ(s) = (2π)
n−r

2

r∏
j=1

Γ
(
sj − (j − 1)

d

2

)
.

Generalizing the classical notation(s)k = s(s + 1) . . . (s + k − 1), write
for s ∈ Cr andm ∈ Nr

(s)m =
ΓΩ(s + m)
ΓΩ(s)

=
r∏

j=1

(
sj − (j − 1)

d

2

)
mj

.

Another ingredient is the Laplace transform w.r.t. the coneΩ. For instance,
the following formula holds for�sj > (j − 1)d

2 , j = 1, 2, . . . , r :

(5)
∫

Ω
e−(x|y)∆s(x)d∗x = ΓΩ(s)∆s(y−1), ∀y ∈ Ω .

Introduce also theopposite minors∆∗
j , 1 ≤ j ≤ r, analoguous to the

principal minors, but associated to the reverse Pierce decompositione =
cr + cr−1 + · · · + c1. If s = (s1, s2, . . . , sr), let s∗ = (sr, sr−1, . . . , s1).
There are two important formulæ. The first one is

(6) ∆s(x−1) = ∆∗
−s∗(x) .

For the second introduce any elementm0 in K such thatm0 cj = cr−j+1
for j = 1, 2, . . . , r. Then

(7) ∆∗
s(x) = ∆s(m−1

0 x) .

Notice also the following result which will be used later on

(8) (−s∗)m = (−1)|m|(s − m∗ +
n

r
)m∗ .

To any polynomialponV one associates the constant coefficients differential
operatorp( ∂

∂x), characterized by the following property:

p(
∂

∂x
) e(x|y) = p(y)e(x|y),

for all x, y ∈ V .
Form = (m1,m2, . . . ,mr) in Nr with m1 ≥ m2 ≥ . . .mr, the differ-

ential operator∆∗
m( ∂

∂x) satisfies the following Bernstein identity :

(9) ∆∗
m(

∂

∂x
) ∆s (x) =

(
s − m∗ +

n

r

)
m∗

∆s−m∗(x)

(cf [F-K], Prop. VII.1.6).
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Let us state the main result on the analytic continuation of the Riesz
distributions (cf [F-K] Theorem VII.2.6.).

Proposition 1.The distribution

ϕ 
→ 1
ΓΩ(s)

∫
Ω
ϕ(x)∆s(x)d∗x

has an analytic continuation toCr.

We also need some information on the generalizedK-Bessel functions.
Forx, y ∈ Ω, define

Ks(x, y) =
∫

Ω
e−(x|u)−(y|u−1)∆s(u)d∗u .

Proposition 2. (i) The integral is absolutely convergent for alls ∈ Cr, and
defines an entire function ofs.

(ii) For �sj < −d
2(r− j), 1 ≤ j ≤ r, the integral extends continuously

to x ∈ Ω, y ∈ Ω, and satisfies the estimate

(10) |Ks(x, y)| ≤ ΓΩ(−�s∗)∆�s(y), ∀x ∈ Ω, y ∈ Ω .

Moreover, under the same conditions ons

(11) lim
ε↓0

Ks(εe, y) = ΓΩ(−s∗)∆s(y) .

For the first statement, see [F-K], Prop. XVI.3.1, and [C1]. For the second
statement, observe that forx ∈ Ω, andu ∈ Ω, (x | u) ≥ 0, so that

|Ks(x, y)| ≤
∫

Ω
e−(y|u−1)∆�s(u)d∗u .

Use the change of variablesv = u−1, (6) and (5) to get the inequality of
the statement. Now, the proof for getting the limit is just obtained from this
inequality and the dominated convergence theorem.

2. The Bernstein identity forPs

Let Φ be a representation ofV in a Euclidean spaceE, of dimensionN ,
equipped with an inner product< ., . >, and letQ : E −→ V be the
associated quadratic map defined by the formula

(12) (Q(ξ), x) =< Φ(x)ξ, ξ >, ∀x ∈ V .

(see [F-K] ch. XVI, [C2] for the relevant definitions).
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Notice that the image ofQ is contained inΩ and is stable by the action
ofG. We further assume that the representation isregular, that is we assume
that the image ofQ containse (hence all the elements ofΩ) (see [C2]). Let
E′ = {ξ ∈ E|Q(ξ) ∈ Ω}, which is an open dense subset ofE, whose
complement has Lebesgue measure0.

To any polynomialp onV we associate the polynomialP onE defined
by

P (ξ) = p(Q(ξ)) .

Specifically, forj, 1 ≤ j ≤ r, let Pj(ξ) = ∆j(Q(ξ)). The polynomialPj

is homogeneous of degree2j and takes nonnegative values onE. Also use
the notationPm = ∆m ◦ Q = Pm1−m2

1 Pm2−m3
2 . . . Pmr

r . Note thatPm
is homogeneous of degree2 |m|. Using the opposite Pierce decomposition,
we define similarlyP ∗

j andP ∗
m.

Forf a function in the Schwartz classS(E), define its Fourier̂f by

f̂(η) =
∫

E
f(ξ)e−i<ξ,η>dξ for η ∈ E .

This definition is then extended by duality to the space of tempered distri-
butions onE.

As usual, we may associate to any polynomialR onE a constant coeffi-
cients differential operator denoted either by∂(R) or R( ∂

∂ξ ) characterized
by

R(
∂

∂ξ
) e<η, ξ > = R(η)e<η, ξ>, ∀η ∈ E .

If s ∈ Cr satisfies�s1 > �s2 > · · · > �sr > 0, the function

Ps(ξ) = P1(ξ)s1−s2P2(ξ)s2−s3 . . . Pr(ξ)sr

is well defined onE and defines a tempered distribution onE. It is known that
s 
−→ Ps has a meromorphic extension toCr as a tempered distribution (the
simplest way is to use the existence of generalized Bernstein polynomials,
see [S]). We still denote byPs this extension. The following result is a kind
of Bernstein identity (which however wouldnot be sufficient to prove the
analytic continuation, see the observation in [B-R]).

Theorem 1.For eachm ∈ Nr such thatm1 ≥ m2 ≥ · · · ≥ mr,

(13) P ∗
m(

∂

∂ξ
)Ps = Bm(s)Ps−m∗

with

Bm(s) = 4|m|(−s∗ − N

2r
+
n

r
)m (−s∗)m .
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The proof is inspired by [F-K] Prop XVI.4.1. Introduce thegeneralized
heat kernelG(x, ξ) defined onΩ × E′ by

G(x, ξ) = (2π)−N

∫
E
e−<Φ(x)η,η>ei<ξ,η>dη

= (2π
1
2 )−N det(x)− N

2r e− 1
4<Φ(x−1) ξ,ξ> .

For any polynomialh onV ,

(14) h(
∂

∂x
)G(x, ξ) = H(

∂

∂ξ
)G(x, ξ) .

where, in accordance with our general conventionH = h ◦Q.
Let ξ ∈ E′, and consider the following integral :

(15) Fs(ξ) =
∫

Ω
G(x, ξ)∆s+ N

2r
(x) d∗x .

The integral converges for�sj < −(r − j)d
2 , 1 ≤ j ≤ r. In fact, using

the change of variabley = x−1 (which preserves the measured∗x), (6) and
(7):

Fs(ξ) = (2π
1
2 )−N

∫
Ω
e− 1

4 (x−1 | Q(ξ))∆s(x)d∗x

= (2π
1
2 )−N

∫
Ω
e− 1

4 (y | Q(ξ))∆∗
−s∗(y)d∗y

= (2π
1
2 )−N

∫
Ω
e− 1

4 (y | Q(ξ))∆−s∗(m−1
0 y)d∗y

= (2π
1
2 )−N

∫
Ω
e− 1

4 (z | m−1
0 Q(ξ))∆−s∗(z)d∗z .

Now use (5) to get

Fs(ξ) = (2π
1
2 )−NΓΩ(−s∗)∆−s∗

(
(m−1

0
Q(ξ)

4
)−1)

and use again (6) and (7) to get

(16) Fs(ξ) = (2π
1
2 )−N4−|s|ΓΩ(−s∗)Ps(ξ) .

Rewrite

Fs(ξ) =
∫

Ω
G(x, ξ)∆s+ N

2r
− n

r
(x) dx ,

apply (14) withh = ∆∗
m, and integrate by parts|m| times to get

P ∗
m(

∂

∂ξ
)Fs(ξ) = (−1)|m|

∫
Ω
G(x, ξ)

(
∆∗

m(
∂

∂x
)∆s+ N

2r
− n

r

)
(x)dx
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Hence from (9)

P ∗
m( ∂

∂ξ )Fs(ξ) = (−1)|m|
(
s − m∗ +

N

2r

)
m∗

Fs−m∗(ξ)

= (−s∗ − N

2r
+
n

r
)m Fs−m∗(ξ) .

Now use (16) to get the formula (13), forξ ∈ E′. This argument is valid under
the restriction�sj < −(r−j)d

2 , 1 ≤ j ≤ r, but both sides can be continued
analytically onE′. For�sj � 0, both sides of (13) are continuous functions.
As they coincide on a dense open set, they must coincide everywhere onE.
Then the existence of a meromorphic continuation of both sides as tempered
distributions imply that the result is true for all values ofs.

3. The functional equation for the zeta integral

Introduce theStiefel manifoldΣ = {ξ ∈ E|Q(ξ) = e}. Every element in
E′ can be written in a unique way asξ = Φ(x

1
2 )σ, with x ∈ Ω andσ ∈ Σ.

The Euclidean structure induces a Riemannian structure on the submanifold
Σ, and hence a measuredσ onΣ which we normalize so that

∫
Σ dσ = 1.

Then there is an integration formula in (generalized) polar coordinates :

(17)
∫

E
f(ξ)dξ =

πN/2

ΓΩ(N
2r )

∫
Ω

∫
Σ
f(Φ(x1/2)σ)∆(x)

N
2r d∗x dσ .

Thezeta integralis either of the following expressions

Z(f, s) =
∫

E
Ps(ξ)f(ξ)dξ .

Z∗(f, s) =
∫

E
P ∗

s (ξ)f(ξ)dξ .

Forf in the Schwartz class, the first integral converges for

�sj > (j − 1)
d

2
− N

2r
,

as it is easily deduced from (17). As observed earlier, the zeta integral can
be continued meromorphically ins as a tempered distribution.

Theorem 2.For any functionf in the Schwartz spaceS(E),

Z∗(f̂ ,−s∗) = γ(s)Z(f, s − N

2r
) ,

with

γ(s) = π
N
2 4−|s|+N

2
ΓΩ(−s∗ + N

2r )
ΓΩ(s)

.
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We need an auxiliary result.

Proposition 3.For a ∈ Ω, �sj >
N
2r + d

2(r − j) andη ∈ E,

(18)
∫

E
∆∗

−s(a+Q(ξ))e−i<ξ,η>dξ =
π

N
2

ΓΩ(s∗)
Ks∗− N

2r
(a,

1
4
Q(η)).

The proof can be read in [F-K], Prop. XVI.3.2., although the formula is
erroneously stated for∆−s instead of∆∗−s. One also needs the observation
that the conditions ons imply thatKs∗− N

2r
is indeed extendible toΩ × Ω,

asQ(η) may belong to the boundary ofΩ.
Let us now prove Theorem 2. Assume first that�sj >

N
2r + d

2(r−j). Let
f be a function in the Schwartz classS(E), and letε > 0. By the previous
proposition,
(19)∫

E
∆∗

−s(εe+Q(ξ))f̂(ξ)dξ =
π

N
2

ΓΩ(s∗)

∫
E
Ks∗− N

2r
(εe,

1
4
Q(ξ))f(ξ)dξ .

As ∆∗
j (a + b) ≥ ∆∗

j (a) > 0 for any a ∈ Ω and b ∈ Ω, there are no
singularities forξ 
−→ ∆∗

s(εe+Q(ξ)) onE , and hence the left handside has
a holomorphic extension toCr. Hence

∫
E Ks∗− N

2r
(εe, 1

4Q(ξ))f(ξ)dξ has a

meromorphic continuation as a function ofs, with singularities possibly at
poles ofΓΩ(s∗).

Assume now that�sj <
N
2r − d

2(j− 1), and thats is not a singularity of
ΓΩ(s∗). The conditions ons guarantee that�(s∗ − N

2r )j < −d
2(r − j) so

that we may use inequalities (10) to get the estimate (uniformly with respect
to ε)

|Ks∗− N
2r

(εe,
1
4
Q(ξ))| ≤ Γ (−�s +

N

2r
)P�(s∗− N

2r
)(
ξ

2
) .

Choosem ∈ Nr with m1 � m2 � · · · � mr � 0 so that the integral∫
E
P�s∗− N

2r
(
η

2
)Pm(η) |f(η)| dη

converges. Now, asPm is of degree2 |m |
(
Pm(

∂

∂ξ
)f̂

)
(ξ) = (−1)|m|(P̂mf

)
(ξ) .

SubstituePmf to f in (19), and letε −→ 0, using Lebesgue dominated
convergence theorem and the limit result (11), to get

(−1)|m|
∫

E
P ∗

−s(ξ)
(
Pm(

∂

∂ξ
)f̂

)
(ξ)dξ = γ(s)

∫
E
Ps∗− N

2r
(η)Pm(η)f(η)dη ,
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where

γ(s) = 4−|s|+N
2
π

N
2 ΓΩ(N

2r − s)
ΓΩ(s∗)

.

This may be rewritten as

(−1)|m|Z∗(Pm(
∂

∂ξ
)f̂ ,−s

)
= γ(s)Z(f, s∗ + m − N

2r
) .

But after2|m | integrations by parts and using the Bernstein-type identity
(13), we get

Z∗(Pm(
∂

∂ξ
)f̂ ,−s

)
= Bm(−s)Z∗(f̂ ,−s − m∗)

Using (8)

(−1)|m|Bm(−s) = 4|m |(−s − m∗ +
N

2r
)m∗(s∗)m

= 4|m | ΓΩ(−s + N
2r )

ΓΩ(−s − m∗ + N
2r )

ΓΩ(s∗ + m)
ΓΩ(s∗)

Hence,

Z∗(f̂ ,−s−m∗)=4−|s+m|+N
2 π

N
2
ΓΩ(−s − m∗ + N

2r )
ΓΩ(s∗ + m)

Z(f, s∗+m−N

2r
) .

The change of variableσ = s∗ + m gives the result, at least in some
open set. The full result is obtained by analytic continuation.

4. Zeta functions associated toΦ-homogeneous harmonic polynomials

A polynomialh onE is said to beΦ-homogeneousof degreek if

(20) h(Φ(x)ξ) = (detx)kh(ξ), ∀x ∈ V, ∀ξ ∈ E .

Notice thath is then necessarily homogeneous of degreekr. The polynomial
h is said to be harmonic if∆h = 0, where, as usal∆ denotes the Laplace
operator associated to the inner product onE.

In preparation for the main theorem, we give two lemmas on Fourier
transforms, which generalize classical formulae.

Lemma 1.Leth be a polynomial onE which isΦ-homogeneous of degree
k and harmonic. Then, for allx ∈ Ω and for allη ∈ E,

(21)
∫

E
h(ξ)e−<Φ(x)ξ,ξ>e−i<ξ,η>dξ . . .
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= π
N
2 (−i)kr2−k(detx)− N

2r
−kh(η)e− 1

4<Φ(x−1)η,η> .

The lemma is a consequence of the classical Hecke formula for the
Fourier transform of a homogeneous harmonic polynomial times a Gaussian
function, after the change of variableξ 
−→ Φ(x

1
2 )ξ.

Lemma 2.Leth be a polynomial onE, which isΦ-homogeneous of degree
k and harmonic. Then,

(22) ∂(h)Ps (ξ) = (−1)kr2k ΓΩ(−s∗ + k)
ΓΩ(−s∗)

h(ξ)Ps−k(ξ) .

Needless to say, the equality has to be interpreted in the sense of tempered
distributions. For convenience, we will prove the corresponding result for
P ∗

s∗ . First reinterpret (21) by using the classical result on Fourier transform

that (̂pf) = im∂(p)f̂ for p any homogeneous polynomial of degreem on
E, to get

(23) ∂(h)(e−<Φ(x)η,η>) = (−1)kr2k(detx)kh(η)e−<Φ(x)η,η> .

Now assume that�sj > (j − 1)d
2 , for 1 ≤ j ≤ r. From (5) and (6), for any

ξ ∈ E′,

P ∗
−s∗(ξ) =

1
ΓΩ(s)

∫
Ω
e−<Φ(x)ξ,ξ>∆s(x)d∗x .

Thanks to (23),

∂(h)P ∗
−s∗(ξ) = (−1)kr2k 1

ΓΩ(s)
h(ξ)

∫
Ω
e−<Φ(x)ξ,ξ>∆s+k(x)d∗x ,

from which follows

∂(h)P ∗
−s∗(ξ) = (−1)kr2k ΓΩ(s + k)

ΓΩ(s)
h(ξ)P ∗

−s∗−k(ξ) .

So, by analytic continuation both sides coincide onE′ for all s. Now for
�sr � �sr−1 � · · · � �s1 � 0, P ∗−s∗ is continuously differentiable as
many times as wanted, and hence the formula is valid onE by continuity.
In particular the associated tempered distributions coincide. But now,P ∗−s∗
viewed as a tempered distribution is meromorphic ins, and hence the result
is valid everywhere.

Introduce thezeta integral with coefficient hto be either of the following
expressions :

Z(f, s ;h) =
∫

E
Ps(ξ)h(ξ)f(ξ)dξ

Z∗(f, s ; h) =
∫

E
P ∗

s (ξ)h(ξ)f(ξ)dξ
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wheref is any function int the Schwartz spaceS(E). As before, both ex-
pressions converge for�sj > (j − 1)d

2 − N
2r , define tempered distributions

and can be continued meromorphically inCr.

Theorem 3.Leth be a harmonic polynomial,Φ- homogeneous of degreek.
For any functionf in the Schwartz spaceS(E),

Z∗(f̂ ,−s∗;h) = γk(s)Z(f, s − N

2r
− k ;h)

where

γk(s) = π
N
2 4−|s|+N

2 + k
2 (−i)krΓΩ(−s∗ + N

2r + k)
ΓΩ(s)

.

On one hand,Z∗(f̂ ,−s∗ ;h) = Z∗(hf̂ ,−s∗). Now for any polynomial

p onE which is homogeneous of degreem, pf̂ = (−i)m ∂̂(p)f . Hence

(24) Z∗(f̂ ,−s∗ ;h) = (−i)krZ∗(∂̂(h)f,−s∗) .

On the other hand,

Z(∂(h)f, s) = (∂(h)f, Ps) = (−1)kr(f, ∂(h)Ps)

= 2kΓΩ(−s∗ + k)
ΓΩ(−s∗)

(f, hPs−k)

using successively integration by parts and (22), so that

(25) Z(∂(h)f, s) = 2kΓΩ(−s∗ + k)
ΓΩ(−s∗)

Z(f, s − k ; h) .

The result now follows from Theorem 2, (24) and (25).

5. Examples

ConsiderV = Sym(r,R) the space ofm×m symmetric matrices with real
entries with its Jordan productx.y = 1

2(xy + yx), the inner product being
(x, y) = trxy. The dimension ofV is n = 1

2r(r + 1), the rank isr and the
integerd is 1. The setΩ in V is the cone of positive-definite matrices, the
functions∆j are the usual principal minorsdj (1 ≤ j ≤ r).

Letk be any integer, and letE = Mrk be the vector space ofr×kmatrices
with real entries, equipped with the inner product< ξ, η >= tr ξ ηt. To
eachx ∈ V , define

Φ(x)ξ = xξ .
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ThenΦ(x) is a symmetric operator onE and the mappingΦ defines a
representation ofV onE, which is regular if (and only if) we assume the
conditionk ≥ r. The corresponding quadratic mapQ : E 
−→ V is given
by

Q(ξ) = ξ ξt .

Hence, fors = (s1, s2, . . . , sr)

Ps(ξ) = d1(ξ ξt)s1−s2d2(ξ ξt)s2−s3 . . . dr(ξ ξt)sr .

TheΦ-homogeneous polynomials are the so-calleddeterminantally ho-
mogeneouspolynomials. Ifk > 2r, the space of polynomials which are
harmonic andΦ-homogeneous of degreem is spanned by the following
polynomials

p(ξ) =
(
Det(ξ ηt)

)m

whereη ∈ EC andη ηt = 0 (see [T] Corollary 3.7).
From a different point of view,E can be looked at as tensor product

Rr ⊗ Rk, or in other words, we may consider also actions on the right side.
The groupGLr(R) acts on the left byξ 
−→ gξ, and we may consider
the action of the group of isometriesO(k) on theright side byξ 
−→ ξ u.
Finally, let introduce the Borel subgroupBr of GLr(R) of invertible lower
triangularr × r matrices. Then the spaceE under the action ofBr ×O(k)
is a prehomogeneous vector space. In fact, ifξ is an element ofE′ which
we can think of as a set ofr linearly independent vectors inRk, it can be
transformed into an orthonormalr-frame by the Gram-Schmidt process,
which is tantamount to a multiplication on the left by an element ofBr.
Then, using the right action ofO(k), this can be transformed to the base
point

Ir =




1 0 . . . 0 . . . 0
0 1 . . . 0 . . . 0

0 0
... 0 . . . 0

0 0 . . . 1 . . . 0


 ,

thus showing thatE′ is a unique orbit under the action ofBr×O(k). The zeta
distributions we have introduced and the corresponding functional equations
could be obtained from the general theory developped by F. Sato (see [Sa]
Theorem 3.1).

Similar examples come from the Jordan algebra of hermitian matrices
(resp. quaternionic-hermitian matrices), and these examples can also be
studied from the point of view of prehomogeneous vector spaces.

The situation for rank2 Euclidean Jordan algebras exhibits new features.
LetW be a Euclidean vector space of dimensionqwith inner product denoted
by 〈 , 〉, and define onV = R ⊕W the Jordan product

(λ, v)(µ,w) = (λ+ 〈 v, w〉, λw + µv) .
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ThenV is a Euclidean Jordan algebra, of rank2 and this construction ex-
hausts all possibilities in rank2 case (see [F-K]). The inner product is given
by (

(λ, v) , (µ,w)
)

= λµ+ 〈 v, w〉
and the setΩ is then theLorentzian cone

Ω =
{

(λ, v) | λ2− < v, v > > 0, λ > 0
}

.

The element1 = (1, 0) is the neutral element ofV . Choose an orthonormal
basis ofW , say{v1, v2, . . . , vq}. Then

1 = (
1
2
,
1
2
v1) + (

1
2
,−1

2
v1)

is a Peirce decomposition. Moreover,

∆2(λ, v) = det(λ, v) = λ2 − 〈v, v〉 and ∆1(λ, v) = λ+ 〈v1, v〉 .

Observe that for anyv, w ∈ W , (0, v)(0, w) =< v,w > 1. Hence
a representation ofV on a Euclidean vector space(E,< , >) is nothing
but aClifford modulefor the Clifford algebraCliff(W ) associated toW
with relationsv.w + w.v = 2 < v,w > 1 (see [C2]). Letv be an element
of W , which we can view as an element ofCliff(W ), and denote by
v.ξ = Φ(0, v) ξ the corresponding action on the Clifford moduleE. Then
an elementary calculation shows that the quadratic mapQ is given by

Q(ξ) =
(‖ξ‖2,

q∑
i=1

< vi.ξ, ξ > vi

)

In particular, fors = (s1, s2)

Ps(ξ) =
(‖ξ‖2+ < v1ξ, ξ >

)s1−s2
(‖ξ‖4 −

q∑
i=1

< viξ, ξ >
2 )s2 .

This situation isnot related to a prehomogeneous vector space (except in
low dimension), and hence the functional equations for the corresponding
zeta distributions seem to be new.
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J.P. (eds.) Harmonic Analysis, Lecture Notes in math., Springer-Verlag,1359(1988),
122–134
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