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Abstract. For a regular representation of a Euclidean Jordan algebra, we
introduce multi-parameter zeta distributions with harmonic polynomial co-
efficient. Bernstein-Sato type identities are obtained and used to prove a
functional equation. Examples are discussed in relation with Sato’s general
theory of zeta functions.
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0. Introduction

Let h be a harmonic polynomial dR™, homogeneous of degrée For s a
complex number, wittits > —7, the formula

207550 = [ 1O RO el de

clearly defines a tempered distribution. As a function,df can be mero-
morphically extended to the complex plane. The Fourier transform of this
distribution can be expressed through the following formula, valid for any
function f in the Schwartz class

I'(—s+5+k)
I'(s)
This is the functional equation for the Epstein zeta distribution.
There are many extensions of this formula, and they culminate in the

broad program developed by M. Sato, T. Shintani, F. Sato and others (see
[Sa] for a presentation of this circle of ideas mainly based on the notion
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of prehomogeneous vector space). A different approach was initiated by
Faraut and Kdxnyi (see [F-K]), which is connected with the theory of Jordan
algebras and their representations. See also [Al], [A2]. There are some cases
notcovered by the general theory developped by Sato and al. We follow this
second approach (see section 5 for further discussion).

1. Preliminary results on Euclidean Jordan algebras

Let V be a real Euclidean Jordan algebra, which we assume for simplicity
to be simple. A general reference for notations and results is [A/K].
denotes the set of invertible elementslinand{? is the open component
of V* containing the neutral elemeatlts closure is the set of squares in
V. Letn be the dimension o¥, r its rank. Them = r + dm’;l), where
d is an integer. Denote byt (resp.det) the trace and the generic norm of
V. Let G be the neutral component of the group of linear transformations
which preservef?, and let K the stabilizer ofe in G. The groupK is a
maximal compact subgroup 6f and it is the connected component of the
group of automorphisms of the Jordan algebraAs inner product or/,
set(x | y) = tr(zy). It satisfies(zz | y) = (z | zy) foranyz,y,z € V.
Also the groupK is the intersection of and the orthogonal group (V')
for this inner product.

Fix a Pierce decomposition

(1) e=c1+c+-+c ,

andletdy, ..., A, = det be the associated principal minors. Recall that for
eachj,1 < j <r, A, is a polynomial of degreg¢, and each); is strictly
positive on{2. Fors = (s1,$2,...,5,) € C", let|s| = sy +s2 + -+ + s,

Forz € (2, define
(2) Ag(x) = Ap(x)17°2 Ag(x)%27 %3 ... Ap(x)®"

(generalizeghower functiol. Form € N",andmy > mo > --- > m, > 0,
observe that\,,, extends as a polynomial dn.
Let us recall some useful formulae. First recall the functign defined

by
(3) Fofs) = /Q T A (2)d"

whered*z = det(z)~ " dz stands for thes-invariant measure of2. The
integral converges absolutely whés; > (j — 1)%, forj =1,2,...,r
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and it can be extended meromorphicallyd@d. In fact I, is a product of
classicall” functions

(@ ro(s) = 0= I (55— G- 05)
j=1

Generalizing the classical notatigg), = s(s +1)...(s + k — 1), write
fors € C"andm € N"

_ Ip(s+m) 4 A . d
G =~ 121 (- G- 1>§)m]_

Another ingredient is the Laplace transform w.r.t. the céhé&or instance,
the following formula holds foits; > (j — 1)%, i=1,2,...,r:

(5) /Q W Ay(@)d x = To(s) As(y™), Wy € 2

Introduce also thepposite minorsA?, 1 < j < r, analoguous to the
principal minors, but associated to the reverse Pierce decomposition

¢t cer1+ -+ lfs=(s1,8,...,8) lets* = (sp,8p-1,...,51)-
There are two important formulee. The first one is
(6) Ag(z™h) = ALy (2)

For the second introduce any elemenf in K such thatngc; = ¢,—j+1
forj=1,2,...,r. Then

(7) AL (z) = As(mg ')
Notice also the following result which will be used later on
® (=5 m = (=1)™(s =+ D

To any polynomiap onV one associates the constant coefficients differential
operatoq)(a—i), characterized by the following property:

0

p(5-) e = p(y)et,

forall x,y € V.
Form = (mq,ma,...,m,) in N" with m; > mgy > ...m,, the differ-
ential operatoﬂfn(%) satisfies the following Bernstein identity :

0 n

(9) Mnl5) As (@) = (s—m" + %)  Asme(a)

(cf [F-K], Prop. VII.1.6).
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Let us state the main result on the analytic continuation of the Riesz
distributions (cf [F-K] Theorem VII.2.6.).

Proposition 1. The distribution

Fgl(s) /Q o(x)Ag(z)d

has an analytic continuation t6".

QY —

We also need some information on the generaligeBessel functions
Forx,y € £2, define

Ka(a,y) = /Qe(m|“)(y“_1)As(u)d*u

Proposition 2. (i) The integral is absolutely convergent for alk C", and
defines an entire function ef

(i) For Rs; < —4(r — 4),1 < j < r, the integral extends continuously
tox € £2,y € £2, and satisfies the estimate

(10) |Ks(z,y)| < To(—Rs*)Aps(y), Vo e 2,ye 2
Moreover, under the same conditionsn
(11) hig Ks(667 y) = FQ(_S*) As(y)

Forthe first statement, see [F-K], Prop. XVI1.3.1, and [C1]. For the second
statement, observe that forc 2, andu € (2, (z | u) > 0, so that

Ka(a,y)] < / 1) Ap, (w)d*u
N

Use the change of variables= « !, (6) and (5) to get the inequality of
the statement. Now, the proof for getting the limit is just obtained from this
inequality and the dominated convergence theorem.

2. The Bernstein identity for Ps

Let @ be a representation of in a Euclidean spac#, of dimension\N,
equipped with an inner produet .,. >, and letQ : ¥ — V be the
associated quadratic map defined by the formula

(12) (Q(§),z) =< P(z)§,{ >, Vo eV
(see [F-K] ch. XVI, [C2] for the relevant definitions).
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Notice that the image af is contained in2 and is stable by the action
of G. We further assume that the representatioegsilar, that is we assume
that the image of) containse (hence all the elements 6f) (see [C2]). Let
E' = {¢ € E|Q(&) € 2}, which is an open dense subsetof whose
complement has Lebesgue meadure

To any polynomiap on V' we associate the polynomi& on E defined
by

P(§) = p(Q(8))

Specifically, forj,1 < j < r, let P;(§) = A;(Q(§)). The polynomialP;

is homogeneous of degrég¢ and takes nonnegative values BnAlso use
the notationPy, = Ay 0 Q = P/ "2 P27 ™3 P Note thatPp,

is homogeneous of degréém|. Using the opposite Pierce decomposition,
we define similarlyP; and Py, .

For f a function in the Schwartz clasq E), define its Fourielf by

f(n) = /E fOe<EdE forne B

This definition is then extended by duality to the space of tempered distri-
butions onk.

As usual, we may associate to any polynoniiadn ' a constant coeffi-
cients differential operator denoted eitherdyR) or R(%) characterized
by
0
29
If s € C" satisfieskts; > Rsy > --- > s, > 0, the function

Ps(§) = Pr(§)™ 2P (8)” 7% ... B ()™

iswell defined orE and defines atempered distributioniént is known that

s — P5 has a meromorphic extension@b as a tempered distribution (the
simplest way is to use the existence of generalized Bernstein polynomials,
see [S]). We still denote h¥s this extension. The following result is a kind

of Bernstein identity (which however woulibt be sufficient to prove the
analytic continuation, see the observation in [B-R]).

R(=)e<"¢> = R(n)e<"¢, VneE

Theorem 1.For eachm € N” such thatn; > mq > --- > m,.,

., 0
(13) Pm(aig)Ps B (8) Ps—m*
with
Bun(s) = 4=~ X0 ™ s
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The proof is inspired by [F-K] Prop XVI1.4.1. Introduce tgeneralized
heat kernel(x, £) defined onf2 x E’ by

G(m,f) = (27T)_N/ 6—<¢(a:)77,77>62‘<.§,17>d77
E

= (272) N det(z) zre <P EE>
For any polynomiah onV,

0 0

(14) h(5,)G(2,€) = H(a?)G(w, )

where, in accordance with our general conventibe= h o Q.
Let¢ € E/, and consider the following integral :

(15) R(©) = [ 6w Ayl

The integral converges fats; < —(r — j)g , 1 < j < r.Infact, using
the change of variablg = z—! (which preserves the measuter), (6) and
(7):

R = ()™ [ 100, @)

:(QW%)— /Q ~1y1Q ))A_s*(y)d*y
/e WA (my ty)dy
_ (2rh)- /Q L Ima Q) A (2)d"2
Now use (5) to get
F(€) = (27h) N T~ Ay ((my A8

and use again (6) and (7) to get

(16) Fs(€) = (2m2) N4 B ry(—s%) Py(€)

Rewrite

9= [ 6@9A s s .
apply (14) withh = A}, and integrate by partsn| times to get

Rl = (1" [ 610.6) (8D s ) @)do

2r r

P*(85
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Hence from (9)

P8R = ()™ (s —m* 4 ) Fome(©)

= (—s" - % + ;)m Fs—m=+(§)
Now use (16) to getthe formula (13), 6 E’. Thisargumentis valid under

the restrictiorits; < —(r—j)g, 1 < j < r,butboth sides can be continued
analytically onE’. Forfts; >> 0, both sides of (13) are continuous functions.

As they coincide on a dense open set, they must coincide everywhére on
Then the existence of a meromorphic continuation of both sides as tempered
distributions imply that the result is true for all valuessof

3. The functional equation for the zeta integral

Introduce theStiefel manifoldY = {¢ € E|Q(§) = e}. Every element in

E’ can be written in a unique way ds= di(a;%)a, with z € {2 ando € X,

The Euclidean structure induces a Riemannian structure on the submanifold
Y, and hence a measude on % which we normalize so thaf, do = 1.

Then there is an integration formula in (generalized) polar coordinates :

aN/2
I'o(f)
Thezeta integralis either of the following expressions

an [ - | [ @0 aw)F aw o

Z(f.5) = /E () f(€)de

2(r9) = [ P
For f in the Schwartz class, the first integral converges for
d N

Rsj > (— 15— 5 -

as it is easily deduced from (17). As observed earlier, the zeta integral can
be continued meromorphically gas a tempered distribution.

Theorem 2.For any functionf in the Schwartz spacg(F),

with
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We need an auxiliary result.

Proposition 3.Fora € 2, Rs; > ¥ + 4(r — j) andn € E,

T 1
Ta(s) o210 300)

(18) /E A* (o + Q(€))e <67 d =

The proof can be read in [F-K], Prop. XV1.3.2., although the formula is
erroneously stated fafA_g instead ofA* .. One also needs the observation
that the conditions omimply that K. _ ~ is indeed extendible t& x 0,

2r

as@(n) may belong to the boundary 6f.

Letus now prove Theorem 2. Assume first tRag > ¥+ 4(r — j). Let
f be afunction in the Schwartz claS$E), and let=: > 0. By the previous
proposition

/A (ee + Q( ))f(g)d»g:“/EKs* x (ee, i@(&))f(&)df

FQ(S*)
As A%(a +b) > Ai(a) > 0foranya € 2 andb € (2, there are no
singularities fog — AZ(ce+Q(&)) onE, and hence the left handside has
a holomorphic extension t6". Hence [, K. (ee, %Q(g))f(g)df has a
2

meromorphic continuation as a functionsofwith singularities possibly at
poles of ' (s*).

Assume now thals; < & — 4(j — 1), and thas is not a singularity of

I'o(s*). The conditions o guarantee thel(s* — &); < —4(r — j) so

that we may use inequalities (10) to get the estimate (uniformly with respect
toe)

1 N
Ky (ee, RON < T(—Rs + 5 Pae_3)(5)

Choosem € N” with my > ms > --- > m, > 0 so that the integral

[ P (Pt 0]
P

converges. Now, aBy, is of degree |m |

(Pm<§§>f> () = (—)m (BuF) (6)

SubstitueP,, f to f in (19), and let: — 0, using Lebesgue dominated
convergence theorem and the limit result (11), to get

D PO (P ) D€ =205) [ Pre_ e ()Pl F0) .

2r
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where Y
= N
(s) =4Sy T22 20 78 La(z, —s)
FQ(S*)

This may be rewritten as

V=) = v Z(f,s" +m— )

(~ 1)1 2 (P ( 2 al

B3
But after2| m | integrations by parts and using the Bernstein-type identity
(13), we get
* d . ; *( F *
Z (Pm(i)fa _S) = Bm(_S)Z (fv —S—m )
Using (8)

(1) ™ By (—5) = 4™ (=5 =07 + e (57

2r
FQ(—S+%> I'o(s* +m)

— 4lm]
F_Q(—S—m*—l—%) FQ(S*)

Hence,

. Io(—s—m* + ) N
7% P :4—|s+m|+ﬁ N 2r A * 2y
(fv S—m ) 2me FQ(S*—FII’I) (f,S +m 27“)

The change of variable = s* + m gives the result, at least in some
open set. The full result is obtained by analytic continuation.

4. Zeta functions associated t@-homogeneous harmonic polynomials

A polynomialh on E is said to beb-homogeneousf degreek if
(20) h(®(x)€) = (det 2)*h(€), Vo € V, VE € E

Notice that: is then necessarily homogeneous of degred he polynomial
h is said to be harmonic if\h = 0, where, as usal\ denotes the Laplace
operator associated to the inner productfan

In preparation for the main theorem, we give two lemmas on Fourier
transforms, which generalize classical formulae.

Lemma 1.Leth be a polynomial oy which is¢-homogeneous of degree
k and harmonic. Then, for alt € 2 and for allnp € E,

(21) / h(€)e™ <P@EE>gmi<tn>ge
E
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N
2

=72 (—i)"27%(det x)*%*kh(n)e*%<¢($7l)7m>

The lemma is a consequence of the classical Hecke formula for the
Fourier transform of a homogeneous harmonic polynomial times a Gaussian

function, after the change of variatje— (P(x%)f.

Lemma 2.Leth be a polynomial orE, which isé-homogeneous of degree
k and harmonic. Then,

krok Io(—s*+k)

(22) AR () = (-2 STE

h(é) Ps—k(é)

Needlessto say, the equality has to be interpreted in the sense of tempered
distributions. For convenience, we will prove the corresponding result for
PZ.. First reinterpret (21) by using the classical result on Fourier transform
that(pf) = z‘ma(p)ffor p any homogeneous polynomial of degreeon
E, to get

(23) 8(h)(6—<4'>(:c)77,?7>) — (—1)kr2k(det x)kh(n)e_<q’(z)’7’”>

Now assume thaks; > (j — 1)%, for1 < j <r.From (5) and (6), for any
EeF,

Pr®) = 7o /Q e Ay()d'z

Thanks to (23),
1

N _(_1\krok
(P (§) = ()72 s

h(€) / e <P@EE AL (2)d x|
Q
from which follows

A(h)P* . (€) = (—1)brok TR H)

I'o(s)

So, by analytic continuation both sides coincide &nfor all s. Now for
Rs, < s, < -+ K Rs1 < 0, P*,. is continuously differentiable as
many times as wanted, and hence the formula is vali&dyy continuity.
In particular the associated tempered distributions coincide. But Rdy,
viewed as a tempered distribution is meromorphis,iand hence the result
is valid everywhere.

Introduce thezeta integral with coefficientto be either of the following
expressions :

h(&) P~ 1, (E)

ZM&M—A%@WV@%

ZW@M=L@@WWW§
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where f is any function int the Schwartz spaS¢F). As before, both ex-
pressions converge féts; > (j — 1)% — Q—NT define tempered distributions

and can be continued meromorphicallyGh.

Theorem 3.Leth be a harmonic polynomia#- homogeneous of degrée
For any functionf in the Schwartz spacg(F),

*/ [ * N
2 st = @) 25— X~ ksn)
where
_ot 4 N
’)/k(S) = W%47|S‘+%+g(_i)k7“ F‘Q( %F—i(_sir + k)
2

On one handz*(f, —s* ; h) = Z*(hf, —s*). Now for any polynomial
p on E which is homogeneous of degree pf = (—i)" d(p) f. Hence

(24) Z*(f,—s" ;h) = (=)*" Z*(D(h) |, —s")
On the other hand,

Z(9(h) f,s) = (9(h)f, Ps) = (=1)*"(f,d(h)Ps)
kM(ﬁ hPs—k)

=2 FQ(—S*)

using successively integration by parts and (22), so that

(25)  Zm)fs) =2

Z(fs—k;h)

The result now follows from Theorem 2, (24) and (25).

5. Examples

ConsideV = Sym(r, R) the space ofin x m symmetric matrices with real
entries with its Jordan produgty = 3(zy + yz), the inner product being
(z,y) = trzy. The dimension o’ isn = ir(r + 1), the rank is- and the
integerd is 1. The set(? in V is the cone of positive-definite matrices, the
functionsA; are the usual principal minotg (1 < j < r).

Letk be anyinteger, andléf = M, be the vector space ok k matrices
with real entries, equipped with the inner prodectt, n >= tr £ nt. To
eachx € V, define
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Then®(x) is a symmetric operator o' and the mapping defines a
representation o’ on E, which is regular if (and only if) we assume the
conditionk > r. The corresponding quadratic m&p: F —— V is given
by

Q&) =¢¢

Hence, fors = (s1, s2,...,5,)

Po(€) = di (€)1 72da (€)% L. d, (€€

The®-homogeneous polynomials are the so-catleterminantally ho-
mogeneougolynomials. Ifk > 2r, the space of polynomials which are
harmonic andp-homogeneous of degree is spanned by the following
polynomials

p(€) = (Det(¢n'))™
wheren € EC andnn! = 0 (see [T] Corollary 3.7).

From a different point of viewE can be looked at as tensor product
R™ @ R*, or in other words, we may consider also actions on the right side.
The groupGL,(R) acts on the left by — ¢¢&, and we may consider
the action of the group of isometri€¥(k) on theright side by — & u.
Finally, let introduce the Borel subgroup. of GL, (R) of invertible lower
triangularr x r matrices. Then the spa¢eunder the action 0B, x O(k)
is a prehomogeneous vector space. In fag,iff an element of2’ which
we can think of as a set oflinearly independent vectors ®*, it can be
transformed into an orthonormalframe by the Gram-Schmidt process,
which is tantamount to a multiplication on the left by an elemenBgpf
Then, using the right action @(k), this can be transformed to the base
point

o O

0
0

I, =

0

)
OO = O
oo O O

1

thus showing thak” is a unique orbit under the actionBf. x O(k). The zeta
distributions we have introduced and the corresponding functional equations
could be obtained from the general theory developped by F. Sato (see [Sa]
Theorem 3.1).

Similar examples come from the Jordan algebra of hermitian matrices
(resp. quaternionic-hermitian matrices), and these examples can also be
studied from the point of view of prehomogeneous vector spaces.

The situation for rank Euclidean Jordan algebras exhibits new features.
LetTW be a Euclidean vector space of dimensjevith inner product denoted
by (, ), and define o’ = R & ¥ the Jordan product

(A v)(p, w) = (A + (v, w), \w + po)
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ThenV is a Euclidean Jordan algebra, of rahknd this construction ex-
hausts all possibilities in rarikcase (see [F-K]). The inner product is given

by
((/\,U) ) (M7w)) =Au+ <va>

and the sef? is then the_orentzian cone
0= {()\,v) | N2 — <v,0 > >0,)\>0}

The element = (1, 0) is the neutral element df. Choose an orthonormal

basis ofiV, say{vi,vs,...,v4}. Then
11 1 1
1= Gy

is a Peirce decomposition. Moreover,
As(N,v) = det(N\,v) = X2 — (v,v) and A;(\,v) = A+ (v, )

Observe that for any,w € W, (0,v)(0,w) =< v,w > 1. Hence
a representation df’ on a Euclidean vector spa¢&, < , >) is nothing
but aClifford modulefor the Clifford algebraC'liff (W) associated té/
with relationsv.w + w.v = 2 < v,w > 1 (see [C2]). Letv be an element
of W, which we can view as an element 6f:ff (W), and denote by
v.£ = @(0,v) & the corresponding action on the Clifford module Then
an elementary calculation shows that the quadratic @&pgiven by

q
Q) = (IlE”,D ] < i, & > i)

=1

In particular, fors = (s1, s2)

q
Py(€) = (lE1P+ < vi&, 6 > )" 2 (el = ) < wig, 6 >7)

i=1

This situation isnot related to a prehomogeneous vector space (except in
low dimension), and hence the functional equations for the corresponding
zeta distributions seem to be new.
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