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Abstract. This paper is concerned with a Cauchy problem

(P)

{
ut = ∆u + up in RN × (0,∞),

u(x, 0) = λϕ(x) in RN ,

wherep > p∗ ≡ (N + 2)/(N − 2), λ > 0 andϕ is a nonnegative radially
symmetric function inC1(RN ) with compact support. Denote the solution
of (P) byuλ. Let p∗ = ∞ if 3 ≤ N ≤ 10 andp∗ = 1 + 6/(N − 10) if
N ≥ 11. We show that ifp∗ < p < p∗, then there isλϕ > 0 such that:

(i) If λ < λϕ, thenuλ exists globally in time in the classical sense and
uλ(t) converges to zero locally uniformly inRN ast → ∞.

(ii) If λ = λϕ, thenuλ blows upincompletelyin finite time.
(iii) If λ > λϕ, thenuλ blows upcompletelyin finite time .

Mathematics Subject Classification (1991):35K15, 35K57

1 Introduction

In this paper, we are concerned with a Cauchy problem{
ut = ∆u + up in RN × (0,∞),

u(x, 0) = u0(x) in RN ,
(1.1)

wherep > 1 andu0 is a nonnegative function inL∞(RN ). The behavior
of solutions of (1.1) depends on the value ofp. Fujita [2] showed that all
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nontrivial solutions of (1.1) necessarily blow up in finite time if1 < p ≤
1 + 2/N , while there exists a nontrivial global classical solution of (1.1) if
p > 1 + 2/N . Here we say that a solutionu of (1.1) blows up in finite time
if |u(t)|∞ → ∞ ast → T for someT < +∞, where| · |∞ denotes the
supremum norm inRN .

Furthermore when a solutionu of (1.1) blows up in finite time, the
blowup is called complete if the continuation of the solution is trivial, that
is,u(x, t) ≡ ∞ for t > T with someT < +∞ and incomplete otherwise in
Galaktionov and Vazquez [3], [4]. In [4] it was proved that ifp is critical or
subcritical in the sense of Sobolev embedding, that is,(N − 2)p ≤ N + 2,
then any radially symmetric solution of (1.1) exhibits the complete blowup,
but both the complete and the incomplete blowup occur in the supercritical
case, that is,p > p∗ ≡ (N + 2)/(N − 2) with N ≥ 3. Some sufficient
conditions on initial data for the complete blowup were given there. They
also obtained a radially symmetric selfsimilar solution of (1.1) which blows
up in finite time and then decays to zero selfsimilarly ast → ∞ for p∗ <
p < p∗. Herep∗ = ∞ if 3 ≤ N ≤ 10 andp∗ = 1+6/(N − 10) if N ≥ 11.

On the other hand, Ni, Sacks and Tavantzis [8] showed the following:
Let p ≥ p∗ andΩ be a bounded convex domain instead of the whole space.
Then for any nonnegative functionϕ ∈ L∞(Ω) there isλ > 0 such that
a solution of (1.1) inΩ under the Dirichlet boundary condition with initial
dataλϕ is global in the sense ofL1(Ω) but unbounded inL∞(Ω).

The purpose of this paper is to obtain solutions blowing upincompletely
for a large class of initial data and to show that such a class forms a separatrix
between global classical solutions converging to zero locally uniformly in
RN ast → ∞ andcompletelyblowing-up solutions in finite time. We call a
functionu a global solution in the sense ofL1

loc if u ∈ C([0,∞);L1
loc(R

N ))
satisfies∫ t

s

∫
RN

{uρτ + u∆ρ + upρ} dxdτ −
[∫

RN

u(τ)ρdx
]t

s

= 0

for any0 ≤ s < t < ∞ andρ ∈ C2(RN × [0,∞)) with compact support
in RN × [0,∞), whereL1

loc(R
N ) denotes the space of locally integrable

functions onRN . Denote byD the set of nonnegative radially symmetric
functionsf(r) of classC1 with compact support in[0,∞) such that the set
of local minima off(r) is bounded away from zero. Heref(r0) is called a
local minimum off(r) if f(r0) ≤ f(r) in U andf(r0) < f(r) on∂U for
some bounded neighborhood ofr0 in [0,∞).

Theorem 1.1 Let p∗ = (N + 2)/(N − 2), andp∗ = ∞ if 3 ≤ N ≤ 10
andp∗ = 1 + 6/(N − 10) if N ≥ 11. If p∗ < p < p∗, then for eachϕ ∈ D
there existsλϕ > 0 such that:
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(i) If λ < λϕ, thenuλ exists globally in time in the classical sense and
uλ(t) converges to zero locally uniformly inRN ast → ∞.

(ii) If λ = λϕ, thenuλ is a global solution in the sense ofL1
loc and blows

up incompletely in finite time.
(iii) If λ > λϕ, thenuλ blows up completely in finite time,

whereuλ denotes the solution of (1.1) with initial dataλϕ.
Furthermore in the case ofλ ≤ λϕ, there istλ > 0 such that fort ≥ tλ

the solutionuλ(x, t) is nonincreasing in|x| and satisfies

uλ(x, t) ≤ C|x|−2/(p−1) for x ∈ RN\{0},
whereC is a positive constant depending only onN if the first derivative
ϕr with respect tor = |x| changes its sign at most finitely many times.

This result is similar to the above one due to [8]. The most important
step in the proof is to show that a set of parameterλ > 0 defined by

Λ = {λ > 0 : uλ is a global classical solution of (1.1) and
uλ(t) → 0 locally uniformly inRN ast → ∞}(1.2)

is open in(0,∞). In [8], the proof of openness ofΛ is based on the fact
that zero is an isolated stationary solution of (1.1) on a bounded domain.
Howeverunder thepresent circumstance, zero isnot isolated (seee.g. [5], [6],
[10]), which makes the situation different from that in [8]. In order to prove
the openness ofΛ, we make use of the nonincrease of intersection number
between two solutions of (1.1) in time , the properties of stationary solutions
and selfsimilar blowup solutions of (1.1) andanestimate of solutions of (1.1)
at spatial infinity at each time.

Throughout the present paper, we use notationsp∗ andp∗ to denote the
special exponents in Theorem 1.1.

This paper is organized as follows: In Sect. 2, we get some preliminary
results. Section 3 is devoted to the proof of openness ofΛ. We complete the
proof of main theorem in Sect. 4.

2 Preliminary results

In this section, we prepare some results which are used in the subsequent
sections.

ForR > 0, letγR be the first eigenvalue of−∆ inBR(0)with theDirich-
let boundary condition andφR the corresponding eigenfunction normalized
in L1(BR(0)), whereBR(x) is the open ball with radiusR > 0 centered at
x in RN . Then it is immediate that

γR =
γ1

R2 and φR(r) =
1

RN
φ1

( r

R

)
for r ≥ 0.(2.1)
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Lemma 2.1 If u is a global classical solution of (1.1) with nonnegative
initial data in L∞(RN ), then for anyR > 0 it holds∫

BR(0)
u(x, t)φR(x)dx ≤ γ

1/(p−1)
1 R−2/(p−1) for all t ≥ 0.

Proof Fix R > 0 arbitrarily. Multiplying (1.1) byφR and integrating by
parts yields

d

dt

∫
BR(0)

u(x, t)φR(x)dx

≥ −γR

∫
BR(0)

u(x, t)φR(x)dx +

(∫
BR(0)

u(x, t)φR(x)dx

)p

for all t > 0 from Jensen’s inequality. Then the assertion follows from (2.1)
sinceu(t) ∈ L1

loc(R
N ) for all t ≥ 0. ✷

We next obtain a pointwise estimate of a global classical solution of
(1.1). For a radially symmetric functionf with f �≡ 0, definez(f) by the
supremumover allj such that there exist0 ≤ r1 < r2 < · · · < rj+1 < +∞
with

f(ri) · f(ri+1) < 0 for i = 1, 2, · · · , j.
For two radially symmetric solutionsu1 andu2 of (1.1) in(0, t0)with t0 > 0,
the following is shown in the same way as in [1];

(i) z(u1(t) − u2(t)) < ∞ for 0 < t < t0
(ii) z(u1(t) − u2(t)) is nonincreasing in0 ≤ t < t0
(iii) if

u1(r1, t1) − u2(r1, t1) = 0 and (u1(r, t1) − u2(r, t1))r |r=r1 = 0

for somer1 ≥ 0, and0 < t1 < t0, then

z(u1(t) − u2(t)) < z(u1(s) − u2(s)) for 0 < s < t1 < t < t0.

Lemma 2.2 If u is a radially symmetric global classical solution of (1.1)
with positive initial datau0 in C1(RN ) satisfyingz((u0)r) < ∞, then it
holdsur(r, t) ≤ 0 and

u(r, t) ≤ Nγ
1/(p−1)
1
ωN

· inf
0<k<1

{
k2/(p−1)−N

φ1(k)

}
· r−2/(p−1)

for all r > 0 andt ≥ t0 with some positive constantt0 satisfying

t0 ≥ 1

(p − 1)mp−1
0

,

where
m0 = min{u0(r) : r is a local minimizer ofu0}.
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Proof Wesketch the proof to get a lower estimate oft0 although ourmethod
is similar to that in [7]. LetS be the maximal existence time of a curver(t)
of local minimum ofu(r, t). The differentiability ofr(t) was studied in [7].
Then we see

r(t)N−1urr(r(t), t) + (N − 1)ur(r(t), t) ≥ 0 for all t > 0.

Puttingm(t) = u(r(t), t), we have

m′(t) = ur(r(t), t)r′(t) + ut(r(t), t)
≥ m(t)p.

This implies

S ≤ 1
(p − 1)m(0)p−1 ≤ 1

(p − 1)mp−1
0

.

Thusur ≤ 0 in [0,∞) for all t ≥ t0 with some positive constantt0 with

t0 ≥ 1

(p − 1)mp−1
0

sincez((u0)r) < ∞.

Then it follows from Lemma 2.1 and (2.1) that

ωNkNφ1(k)
N

u(kr, t) ≤
∫

SN−1

∫ kr

0
u(ρ, t)φr(ρ)ρN−1dρ

≤ γ
1/(p−1)
1 r−2/(p−1)

for all r > 0 andt ≥ t0, wherek is an arbitrary constant with0 < k < 1
andωN denotes the area of the(N − 1)-dimensional unit sphere. Therefore
we obtain

u(r, t) ≤ Nγ
1/(p−1)
1
ωN

· inf
0<k<1

{
k2/(p−1)−N

φ1(k)

}
· r−2/(p−1)

for all r > 0 andt ≥ t0. This completes the proof. ✷

Putting
ψ(r) = αr−2/(p−1) for r > 0(2.2)

with

α =
(

2
p − 1

(
N − 2 − 2

p − 1

))1/(p−1)

,(2.3)

it is trivial thatψ is a singular stationary solution of (1.1).
The following property of stationary solutions of (1.1) was investigated

in [5], which is summarized in Lemma 9.3 in [4].
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Proposition 2.1 For p > p∗, the set of positive radially symmetric station-
ary solutions of (1.1) consists of{µ2/(p−1)h(µr) : µ > 0} with a fixedh
and any positive radially symmetric stationary solutionw of (1.1) satisfies

w(r)
ψ(r)

→ 1 asr → ∞,

whereψ is defined in (2.2).

For an arbitraryT > 0, put

vT (r, t) = (T − t)−1/(p−1)V (η) and η = (T − t)−1/2r,(2.4)

whereV satisfies

Vηη +
N − 1

η
Vη − η

2
Vη − 1

p − 1
V + V p = 0 for η > 0.(2.5)

ThenvT is a backward selfsimilar solution of (1.1) which blows up at
t = T .

The following result was shown in Theorems 12.1 and 12.2 of [4].

Proposition 2.2 If p∗ < p < p∗, then there exists a solutionV of (2.5)
satisfying

V (η)
ψ(η)

→ β asη → ∞

for some positive constantβ < 1.

We get an estimate of solutions of (1.1) at spatial infinity enough to
compare them with a stationary solution in Proposition 2.1 and a backward
selfsimilar blowup solution in Proposition 2.2. Let supp(f) denote the sup-
port of a functionf .

Lemma 2.3 Suppose thatu0 ∈ L∞(RN ) is nonnegative, not identically
equal to zero and has compact support, that is, supp(u0) ⊂ BR(0) for some
R > 0. Let u be a global classical solution of (1.1) with initial datau0.
Then for eacht > 0 there is a positive constantCt such that

u(x, t) ≤ Ct exp
(

−|x|2
32t

)
for x ∈ RN with |x| ≥ 2R.

Proof SettingM(t) = sup{|u(s)|∞ : 0 ≤ s ≤ t} for t ≥ 0, it holds

ut ≤ ∆u + M(t)p−1u in RN × (0, t).

According to the comparison theorem, we see

u(x, t) ≤ K(t)U(x, t) in RN × (0, t),(2.6)
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whereU is a solution of the heat equation inRN with initial datau0 and

K(t) = exp
(∫ t

0
M(s)p−1ds

)
for t > 0.

Forx ∈ RN with |x| ≥ 2R andt > 0, we have

U(x, t) =
1

(4πt)N/2

∫
RN

u0(y) exp
(

−|x − y|2
4t

)
dy

≤ M(0)
(4πt)N/2

∫
BR(0)

exp
(

−|x − y|2
4t

)
dy

≤ M(0)
(4πt)N/2 exp

(
−|x|2

32t

)∫
BR(0)

exp
(

−|x − y|2
8t

)
dy

= 2N/2M(0) exp
(

−|x|2
32t

)
.

This inequality together with (2.6) yields

u(x, t) ≤ 2N/2M(0)K(t) exp
(

−|x|2
32t

)

for x ∈ RN with |x| ≥ 2R andt > 0. This completes the proof. ✷

Define the energy functionalE by

E(w) =
1
2

∫
RN

|∇w|2dx − 1
p + 1

∫
RN

|w|p+1dx

for w ∈ Lp+1(RN ) with ∇w ∈ (L2(RN )
)N

. Let u be a global classical

solutionof (1.1)withu0 ∈ L∞(RN )∩Lp+1(RN )and∇u0 ∈ (L2(RN )
)N

.
Multiplying (1.1) byut and integrating by parts, we have∫

RN

ut(t)2dx = − d

dt
E(u(t)) for t > 0(2.7)

and henceE(u(t)) is nonincreasing int.

Lemma 2.4 Letu0 ∈ L∞(RN ) ∩ Lp+1(RN ) with ∇u0 ∈ (L2(RN )
)N

.
If u is a global classical solution of (1.1) with nonnegative initial datau0,
thenE(u(t)) ≥ 0 for all t ≥ 0.
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Proof Assume thatE(u(t0)) < 0 for somet0 ≥ 0. Then there areR > 0
andũ0 ∈ Lp+1(BR(0)) with ∇ũ0 ∈ (L2(BR(0))

)N
such that supp(ũ0) ⊂

BR(0), 0 ≤ ũ0 ≤ u(t0) in BR(0) andE(ũ0) < 0. Let ũ be a solution of


ũt = ∆ũ + ũp in BR(0) × (0,∞),

ũ(x, t) = 0 on∂BR(0) × (0,∞),

ũ(x, 0) = ũ0(x) in BR(0).

(2.8)

Let Ẽ be the energy functional inBR(0) defined by

Ẽ(w) =
1
2

∫
BR(0)

|∇w|2dx − 1
p + 1

∫
BR(0)

|w|p+1dx

for w ∈ H1
0 (BR(0)). Multiplying (2.8) byũ and integrating by parts yields

d

dt

∫
BR(0)

ũ(t)2dx = −2Ẽ(ũ(t)) +
p − 1
p + 1

∫
BR(0)

ũ(t)p+1dx

≥ C

(∫
BR(0)

ũ(t)2dx

)(p+1)/2

for someC > 0 sinceẼ(ũ(t)) is nonincreasing int. Here we used Jensen’s
inequality to get the above inequality. This implies thatũ blows up at some
T̃ < +∞. On the other hand, we get

u(x, t + t0) ≥ ũ(x, t) in BR(0) × (0, T̃ )

by the comparison theorem and henceu blows up in finite time. This con-
tradiction completes the proof.✷

Lemma 2.5 If u is a radially symmetric global classical solution of (1.1)
with nonnegative initial datau0 ∈ D such thatlim sup

t→∞
|u(t)|∞ < +∞, then

u(t) converges to a nonnegative radially symmetric stationary solution of
(1.1) locally uniformly inRN ast → ∞.

Proof Integrating (2.7) in(0, s) for anys > 0, we get∫ s

0

∫
RN

ut(t)2dxdt = E(u0) − E(u(s))

≤ E(u0)

for anys > 0 sinceE(u(s)) ≥ 0 from Lemma 2.4 and hence∫ ∞

0

∫
RN

ut(t)2dxdt < ∞.
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Thus there is a sequence{tn}with tn → ∞ asn → ∞ such thatut(tn) con-
verges to0 in L2(RN ) asn → ∞. Then we can take a subsequence, which
is written by{tn} again, such thatu(tn) converges to a stationary solution
w of (1.1) locally uniformly inRN asn → ∞ by the parabolic regularity
theory. It is immediate thatw is nonnegative and radially symmetric.

We assume that there are{tn}, {sn} with tn → ∞ andsn → ∞ as
n → ∞ and nonnegative radially symmetric stationary solutionsw1, w2
with w1 �≡ w2 such that

u(tn) → w1, u(sn) → w2 locally uniformly inRN asn → ∞.(2.9)

We may suppose without loss of generality thatw1(0) < w2(0). Choose a
positive radially symmetric stationary solutionw3 such thatz(u0 − w3) <
+∞ andw1(0) < w3(0) < w2(0). On the other hand, there is{τn} with
τn → ∞ asn → ∞ such thatu(0, τn) = w3(0) for all n from (2.9).
Since(u(t) − w3)r |r=0 = 0 for t > 0, this cannot occur by the finiteness
of z(u0 − w3). This contradiction implies thatu(t) converges tow locally
uniformly inRN ast → ∞. ✷

3 Proof of openness ofΛ

This section is devoted to the proof of openness ofΛ defined by (1.2). To
do that, we need the following result.

Lemma 3.1 Letϕ ∈ D anduλ be a solution of (1.1) with initial dataλϕ
for λ > 0. If uλ(t) converges to a nonnegative radially symmetric stationary
solutionw of (1.1) locally uniformly inRN ast → ∞, thenw is identically
equal to zero.

Proof Nowwe assume thatw �≡ 0. Take a positive constantδ with δ < (α−
β)/(α + β), whereα andβ are positive constants in (2.3) and Proposition
2.2, respectively. It follows from Proposition 2.1 that

w(r) ≥ α(1 − δ)r−2/(p−1) for r ≥ r2(3.1)

with somer2 > 0. Fix a positive constantε with ε < {α − β − δ(α +
β)}r−2/(p−1)

2 . Sinceu(t) → w locally uniformly inRN ast → ∞, there
is t1 > 0 such that

|uλ(r, t) − w(r)| < ε for 0 ≤ r ≤ r2 andt ≥ t1.(3.2)

Thus we get

uλ(r2, t) ≥ α(1 − δ)r−2/(p−1)
2 − ε for t ≥ t1.(3.3)

from (3.1) and (3.2).
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On the other hand, letvT be defined by (2.4) usingV obtained in Propo-
sition 2.2. According to Proposition 2.2, there existsr3 > 0 such that

V (η) ≤ β(1 + δ)η−2/(p−1) for η ≥ r3(3.4)

and hence

vT (r, t) ≤ β(1 + δ)r−2/(p−1) for r ≥ (T − t)1/2r3.(3.5)

Sinceϕ ∈ D , we havez(λϕ − vT (0)) ≤ 1 if T > max{t1, (r2/r3)2} is
sufficiently large. SincevT blows up at the origin att = T anduλ(t) is
uniformly bounded inRN from (3.8), we see

uλ(0, sT ) < vT (0, sT ) for some positivesT < T.

By Proposition 2.2 and Lemma 2.3, for each0 < t < T

uλ(r, t) < vT (r, t) for r ≥ Rt

with someRt > 0. Therefore it follows from the nonincrease of intersection
number betweenuλ andvT that

uλ(r, sT ) ≤ vT (r, sT ) for r ≥ 0

and hence

uλ(r, t) ≤ vT (r, t) for r ≥ 0 andsT < t < T.(3.6)

However it follows from (3.3) and (3.5) that if

max
{
sT , t1, T − (r2/r3)2

}
< t < T,

then
uλ(r2, t) > vT (r2, t)

by the choice ofε > 0, which contradicts (3.6). Therefore we obtainw ≡ 0.
✷

Lemma 3.2 If ϕ ∈ D, then the setΛ defined by (1.2) is open in(0,∞).

Proof Suppose thatλ0 ∈ Λ. Thenuλ0 is a global classical solution of
(1.1) anduλ0(t) → 0 locally uniformly inRN ast → ∞. Fromϕ ∈ D,
we can take a positive radially symmetric stationary solutionw satisfying
z(λϕ−w) ≤ 1 for λ > 0with |λ−λ0| sufficiently small by Proposition 2.1.
Sinceuλ0(t) → 0 locally uniformly inRN ast → ∞, there arer0, t0 > 0
such that

uλ0(r, t0) < w(r) for 0 ≤ r ≤ r0.

Then we get
uλ(r, t0) < w(r) for 0 ≤ r ≤ r0
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if |λ−λ0| is sufficiently small.On theother hand, it follows fromProposition
2.1 and Lemma 2.3 that

uλ(r, t0) < w(r) for r ≥ r1(λ)

for somer1(λ) > r0 for λ with |λ − λ0| sufficiently small. Therefore if
|λ − λ0| is sufficiently small, then

uλ(r, t0) ≤ w(r) for r ≥ 0.(3.7)

Indeed, assuming that this does not hold, we seez(uλ(t0) −w) ≥ 2, which
is a contradiction since

z(uλ(t0) − w) ≤ z(λϕ − w) ≤ 1.

This implies (3.7). Then it holds

uλ(r, t) ≤ w(r) for r ≥ 0 andt ≥ t0(3.8)

and henceuλ exists globally in time andsup
t>0

|uλ(t)|∞ < +∞ if |λ − λ0|
is sufficiently small. According to Lemmas 2.5 and 3.1, we see thatuλ(t)
converges to zero locally uniformly inRN ast → ∞ if |λ−λ0| is sufficiently
small. This completes the proof.✷

4 Proof of Theorem 1.1

In this section, the proof of main theorem is completed. The following
result is similar to Theorem 15.1 in [4], which treated a globalL1-solution
obtained by [8]. However when one considers (1.1) in the whole space, the
comparison between two solutions must be done more carefully than the
case of the Dirichlet boundary condition on a bounded domain.

Lemma 4.1 Suppose thatp∗ < p < p∗. If u0 ∈ D, then a global classical
solutionu of (1.1) with initial datau0 does not grow up, that is,u is not a
global classical solution of (1.1) for whichlim sup

t→∞
|u(t)|∞ = ∞.

Proof On the contrary, we assume that the solutionu grows up. LettingvT

be a solution of (1.1) defined by (2.4), we seez(u0 − vT (0)) ≤ 1 if T > 0
is sufficiently large.

For µ > 0, let wµ be a positive radially symmetric stationary solution
of (1.1) withwµ(0) = µ and(wµ)r(0) = 0. Take a positive constantδ with
δ < (α − β)/(α + β). From Proposition 2.1, it holds

wµ(r) ≥ α(1 − δ)r−2/(p−1) for r ≥ rδ

µ
(4.1)
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with somerδ > 0 independent ofµ > 0. Since|u(t)|∞ is not uniformly
bounded int ≥ 0, for eacht > 0 there isrµ(t) ≥ 0 such that

u (rµ(t), t) > wµ (rµ(t)) .(4.2)

Fix T > 0 sufficiently large so thatz(u0 − vT (0)) ≤ 1. Put

MT = sup{|u(t)|∞ : 0 ≤ t ≤ T}
and chooserT with

0 < rT < min

{(
α(1 − δ)

2MT

)(p−1)/2

, T 1/2r3

}
,

wherer3 is the positive constant in (3.4) from which (3.5) follows. Since
wµ(r) is decreasing inr ≥ 0, we get

wµ(r) ≥ 2MT for 0 ≤ r ≤ rT

if µ ≥ rδ/rT by (4.1). Letµ ≥ rδ/rT . Then we obtainrµ(t) ≥ rT ≥ rδ/µ
for 0 ≤ t ≤ T . It follows from (4.1) and (4.2) that

u(rµ(t), t) ≥ α(1 − δ) (rµ(t))−2/(p−1) for 0 ≤ t ≤ T.(4.3)

On the other hand, sincevT satisfies (3.5), we have

vT (rµ(t), t) ≤ β(1 + δ) (rµ(t))−2/(p−1)(4.4)

for T − (rT /r3)2 < t < T . It follows from (4.3) and (4.4) that

u(rµ(t), t) > vT (rµ(t), t)(4.5)

for T − (rT /r3)2 < t < T by the choice ofδ > 0. It is also trivial that

u(0, t) < vT (0, t)(4.6)

for 0 < t < T sufficiently close toT . By Proposition 2.2 and Lemma 2.3,
for each0 < t < T there isRt > 0 such that

u(r, t) < vT (r, t) for r ≥ Rt.(4.7)

It follows from (4.5)-(4.7) thatz(u(t) − vT (t)) ≥ 2 if 0 < t < T is
sufficiently close toT ,whichcontradictsz(u(t)−vT (t)) ≤ z(u0−vT (0)) ≤
1 for 0 < t < T . This completes the proof. ✷

The following result can be shown in the same way as in the proof of
Theorem 5.1 in [4].
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Proposition 4.1 Letu be a positive radially symmetric solution of (1.1). If
B[u](T ) ≡ {r ≥ 0 : u(r, T ) = ∞} �= {0} for someT > 0, thenu exhibits
the complete blowup.

We are now in a position to complete the proof of Theorem 1.1.

Proof of Theorem 1.1.We first putλϕ = supΛ. According to Fujita’s result
([2]), uλ exists globally in time in the classical sense and|uλ(t)|∞ → 0 as
t → ∞ if λ > 0 is sufficiently small. It is also immediate thatuλ blows
up in finite time for sufficiently largeλ > 0. Hence we see0 < λϕ < ∞.
Define

uλϕ(x, t) = lim
λ→λϕ

uλ(x, t) for (x, t) ∈ RN × [0,∞)

since{uλ : 0 < λ < λϕ} is nondecreasing inλ by the comparison theorem.
Let R > 0 and0 ≤ s < t < ∞ be arbitrary. Multiplying (1.1) with

u = uλ by φR and integrating by parts yields∫ t

s

∫
RN

uλ(τ)pφRdxdτ ≤
∫
RN

uλ(t)φRdx + γR

∫ t

s

∫
RN

uλ(τ)φRdxdτ

(4.8)
for 0 < λ < λϕ, whereγR andφR denote the first eigenvalue of−∆ in
BR(0) with the Dirichlet boundary condition and the corresponding eigen-
function normalized inL1(BR(0)), respectively. From Lemma 2.1, we have∫

RN

uλ(t)φRdx ≤ γ
1/(p−1)
1 R−2/(p−1)(4.9)

and hence∫ t

s

∫
RN

uλ(τ)φRdxdτ ≤ γ
1/(p−1)
1 R−2/(p−1)t for 0 < λ < λϕ.(4.10)

Thus it follows from (4.8) that∫ t

s

∫
RN

uλ(τ)pφRdxdτ ≤ γ
1/(p−1)
1 R−2/(p−1)(1 + γRt)(4.11)

for 0 < λ < λϕ. Using the above estimates (4.9)-(4.11) with2R instead of
R, there isC > 0 such that∫

BR(0)
uλ(t)dx ≤ CRN−2/(p−1)

∫ t

s

∫
BR(0)

uλ(τ)dxdτ ≤ CRN−2/(p−1)t
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∫ t

s

∫
BR(0)

uλ(τ)pdxdτ ≤ CRN−2/(p−1)(1 + γRt)

sinceφR(r) = R−Nφ1(R−1r) for r ≥ 0. Therefore it follows from Fa-
tou’s lemma thatuλϕ(t) ∈ L1(BR(0)) anduλϕ ∈ L1(BR(0) × (s, t)) ∩
Lp(BR(0) × (s, t)).

For anyρ ∈ C2(RN × [0,∞)) with bounded support inRN × [0,∞),
it holds∫ t

s

∫
RN

{
uλρτ + uλ∆ρ + up

λρ
}
dxdτ −

[∫
RN

uλ(τ)ρdx
]t

s

= 0

for 0 < λ < λϕ. Lettingλ → λϕ, we get∫ t

s

∫
RN

{
uλϕρτ + uλϕ∆ρ + up

λϕ
ρ
}

dxdτ −
[∫

RN

uλϕ(τ)ρdx
]t

s

= 0.

We also see∫
BR(0)

|uλ(t) − uλ(s)|dx

=
∫

BR(0)

∣∣∣∣
∫ t

s
uλτ (τ)dτ

∣∣∣∣ dx
≤
(

ωNRN

N
(t − s)

)1/2
(∫ t

s

∫
BR(0)

uλτ (τ)2dxdτ

)1/2

=
(

ωNRN

N
(t − s)

)1/2

(E(uλ(s)) − E(uλ(t)))1/2

≤
(

ωNRN

N
E(uλ(0))

)1/2

(t − s)1/2

by Lemma 2.4. Passing to the limit asλ → λϕ yields the continuity of
uλϕ(t) from [0,∞) toL1

loc(R
N ). Consequentlyuλϕ is a global solution of

(1.1) in the sense ofL1
loc.

Nowwe assume thatuλϕ is a global classical solution of (1.1). It follows
from Lemma 4.1 thatuλϕ does not grow up, that is,sup

t>0
|uλϕ(t)|∞ < +∞.

Then we see thatuλϕ(t) → 0 locally uniformly in RN as t → ∞ by
Lemmas 2.5 and 3.2 and henceλϕ ∈ Λ. This contradicts the definition of
λϕ sinceΛ is open in(0,∞) from Lemma 3.2. Thereforeuλϕ blows up in
finite time.

If λ < λϕ, then Lemma 2.2 is the same as the last statement of this
theorem. In the case ofλ = λϕ, letting tλ be the positive constantt0 in
Lemma 2.2 withu = uλ and

mλ = λmin{ϕ(r) : r is a local minimizer ofϕ}
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for λ < λϕ, it holdsmλ ≥ C for λ close toλϕ with someC > 0. Therefore
we can taketλ independently ofλ close toλϕ. This implies the last assertion
of Theorem 1.1 forλ = λϕ from the definition ofuλϕ .

In order to show the statement (iii), fix an arbitraryλ > λϕ. Putting

ϕµ(x) = λϕµ
2/(p−1)ϕ(µx) for x ∈ RN

for µ > 1, there areµ0, δ0 > 0 such that for1 < µ ≤ µ0 and0 < δ ≤ δ0

ϕµ(x + δy) ≤ λϕ(x) for x ∈ RN andy ∈ RN with |y| = 1.

Sinceµ2/(p−1)uλϕ(µx, µ2t) is the solution of (1.1) with initial dataϕµ, it
holdsuλ(r, S) = ∞ for 0 ≤ r ≤ δ0 with someS > 0 by the comparison
theorem. Here we extenduλ as a proper solution introduced in [4] after
the blowup time. Therefore we obtain the complete blowup ofuλ from
Proposition 4.1. ✷
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