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Abstract. This paper is concerned with a Cauchy problem

®) up = Au + uP in RY x (0, 00),
u(z,0) = Ap(z) inRYN,

wherep > p, = (N +2)/(N —2), A > 0 andy is a nonnegative radially

symmetric function irC’*(RV) with compact support. Denote the solution

of (P) byu,. Letp* = 0 if 3 < N < 10andp* =1+ 6/(N — 10) if

N > 11. We show that ifp, < p < p*, then there is\, > 0 such that:

(i) If A < A, thenuy exists globally in time in the classical sense and
u (t) converges to zero locally uniformly R ast — oc.

(i) If X = A\, thenuy blows upincompletelyin finite time.

(iii) If A > A, thenuy blows upcompletelyin finite time .

Mathematics Subject Classification (198HK15, 35K57

1 Introduction
In this paper, we are concerned with a Cauchy problem

up = Au + uP in RY x (0, 00),
(1.1)

u(z,0) = ug(z) InRY,

wherep > 1 andwg is a nonnegative function ih>(R"). The behavior
of solutions of (1.1) depends on the valuepofFujita [2] showed that all



216 N. Mizoguchi

nontrivial solutions of (1.1) necessarily blow up in finite timelikk p <
1+ 2/N, while there exists a nontrivial global classical solution of (1.1) if
p > 14 2/N. Here we say that a solutianof (1.1) blows up in finite time

if |u(t)|oc — o0 ast — T for someT < +oo, where| - |, denotes the
supremum norm iR ™.

Furthermore when a solution of (1.1) blows up in finite time, the
blowup is called complete if the continuation of the solution is trivial, that
is,u(x,t) = oo fort > T with someT’ < +oco and incomplete otherwise in
Galaktionov and Vazquez [3], [4]. In [4] it was proved thapiis critical or
subcritical in the sense of Sobolev embedding, thatis- 2)p < N + 2,
then any radially symmetric solution of (1.1) exhibits the complete blowup,
but both the complete and the incomplete blowup occur in the supercritical
case, thatisp > p, = (N + 2)/(N — 2) with N > 3. Some sufficient
conditions on initial data for the complete blowup were given there. They
also obtained a radially symmetric selfsimilar solution of (1.1) which blows
up in finite time and then decays to zero selfsimilarlyt as oo for p,. <
p < p*.Herep* = cif 3< N <10andp* =1+6/(N —10)if N > 11.

On the other hand, Ni, Sacks and Tavantzis [8] showed the following:
Letp > p, andf? be a bounded convex domain instead of the whole space.
Then for any nonnegative function € L°°({2) there isA > 0 such that
a solution of (1.1) inf2 under the Dirichlet boundary condition with initial
data\y is global in the sense df! (£2) but unbounded iL.>(£2).

The purpose of this paper is to obtain solutions blowingngpmpletely
foralarge class of initial data and to show that such a class forms a separatrix
between global classical solutions converging to zero locally uniformly in
RY ast — co andcompletelyblowing-up solutions in finite time. We call a
functionu a global solution in the sense b} if u € C([0, 00); L (RY))
satisfies

t t
/ / {up; + ulp+uPp} drdr — [/ U(T)pdl‘:| =0
s JRN RN s

forany0 < s <t < oo andp € C2(RY x [0, 00)) with compact support
in RY x [0,00), whereL}, (RY) denotes the space of locally integrable
functions onRV. Denote byD the set of nonnegative radially symmetric
functionsf(r) of classC! with compact support ifd, oo) such that the set
of local minima off(r) is bounded away from zero. Hefér,) is called a
local minimum of f(r) if f(ro) < f(r)inU andf(ro) < f(r) ondU for
some bounded neighborhoodrfin [0, o).

Theorem 1.1 Letp, = (N +2)/(N —2),andp* = o0 if 3 < N <10
andp* =1+4+6/(N —10)if N > 11. If p, < p < p*, then for eachp € D
there exists\, > 0 such that:



Semilinear parabolic equation with supercritical nonlinearity 217

(i) If A < Xy, thenuy exists globally in time in the classical sense and
u(t) converges to zero locally uniformly RY ast — oc.

(i) If A = Ay, thenu, is a global solution in the sense 6f . and blows
up incompletely in finite time.

(iii) If A > A, thenuy blows up completely in finite time,

whereu) denotes the solution of (1.1) with initial dadg.
Furthermore in the case of < A\, there isty > 0 such that fort > ¢
the solutionu) (x, t) is nonincreasing inz| and satisfies

uy(z,t) < Clz|~#®=D  for z € RV\{0},

where(C' is a positive constant depending only dhif the first derivative
©r With respect to- = |z| changes its sign at most finitely many times.

This result is similar to the above one due to [8]. The most important
step in the proof is to show that a set of parameter 0 defined by

A={\>0:u, is aglobal classical solution of (1.1) and

(1.2) u(t) — 0 locally uniformly inR™ ast — oo}

is open in(0, c0). In [8], the proof of openness of is based on the fact
that zero is an isolated stationary solution of (1.1) on a bounded domain.
However under the present circumstance, zerois notisolated (see e.qg. [5], [6],
[10]), which makes the situation different from that in [8]. In order to prove
the openness al, we make use of the nonincrease of intersection number
between two solutions of (1.1) in time , the properties of stationary solutions
and selfsimilar blowup solutions of (1.1) and an estimate of solutions of (1.1)
at spatial infinity at each time.

Throughout the present paper, we use notatjgrendp* to denote the
special exponents in Theorem 1.1.

This paper is organized as follows: In Sect. 2, we get some preliminary
results. Section 3 is devoted to the proof of opennesk @fe complete the
proof of main theorem in Sect. 4.

2 Preliminary results

In this section, we prepare some results which are used in the subsequent
sections.
ForR > 0, letyg be the first eigenvalue ef A in Bg(0) with the Dirich-
let boundary condition anglr the corresponding eigenfunction normalized
in L'(Br(0)), whereBg(z) is the open ball with radiug > 0 centered at
zin RN, Then it is immediate that

Y1 1 T
21 yr=15 and Gr(r) = o <E> for r > 0.
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Lemma 2.1 If v is a global classical solution of (1.1) with nonnegative
initial data in L>°(RY), then for anyR > 0 it holds

/ u(z,t)pr(z)dr < vi/(pfl)R_W(p_l) forall ¢t > 0.
Br(0)

Proof Fix R > 0 arbitrarily. Multiplying (1.1) by¢r and integrating by
parts yields

d
dt BRr(0)

> =R /BR(O)u(ac,t)%z(ﬂﬁ)der </BR(O) u(fﬂthR(x)dm)

forall ¢t > 0 from Jensen’s inequality. Then the assertion follows from (2.1)
sinceu(t) € L} (RN)forallt >0. O

loc

u(z,t)pr(x)dx

We next obtain a pointwise estimate of a global classical solution of
(1.1). For a radially symmetric functiofiwith f # 0, definez(f) by the
supremum over all such thatthere exist<r; < rp < --- <111 < +00
with

flri) - flriy1) <0 fori=1,2,--- 4.

For two radially symmetric solutions andus of (1.1) in(0, to) with ¢y > 0,
the following is shown in the same way as in [1];
(i) z(ui(t) —ua(t)) <ocofor0 <t <ty
(i) z(uq(t) — uz(t)) is nonincreasing iv < ¢ < ty
(iii) if

Ul(Tl, tl) — UQ(’I“l,tl) =0 and (ul(T,tl) — ’LLQ(T,tl))T ‘T=T1 =0

for somer; > 0, and0 < t; < tp, then

z(u1(t) —ua(t)) < z(ui(s) —wua(s)) for 0 <s <t <t<tp.
Lemma 2.2 If u is a radially symmetric global classical solution of (1.1)
with positive initial dataug in C*(RY) satisfyingz((uo),) < oo, then it
holdsu,(r,t) < 0 and

1/(p-1) R
) < Yy {’“/(7’)}.7,2/@1)
0<k<1

wN ¢1(k)
forall » > 0 andt > ¢, with some positive constaty satisfying
tO Z ;
(p—1)mh~"
where

mo = min{ug(r) : 7 is a local minimizer ofu }.
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Proof We sketch the proof to get a lower estimatecdithough our method
is similar to that in [7]. LetS be the maximal existence time of a cung)
of local minimum ofu(r, t). The differentiability ofr(¢) was studied in [7].
Then we see

()N Ly (r(t), ) + (N — Du,(r(t),t) >0 forallt > 0.
Puttingm(t) = u(r(t),t), we have

m/(t) = up (r(t), t)r' (t) + uy(r(t), 1)
> m(t)P.
This implies
1 - 1
(p = DmO)P~ = (p— ymh~"

Thusu, < 01in [0,00) for all ¢ > t, with some positive constamg with

S<

toz(p—l) 51 sincez((uo)r) < oo.

Then it foIIows from Lemma 2.1 and (2.1) that

N kr
wnk” 61(k) u(kr, t) / / u(p,t)gr(p)p™ " tdp
N vt

<71/p ) ,.—2/(p-1)

for all » > 0 andt > tq, wherek is an arbitrary constant with < k£ < 1
andwy denotes the area of tli&y — 1)-dimensional unit sphere. Therefore
we obtain

/=D 2/(p-1)-N
u(r,t)SL g JFTTT L e
WN 0<k<1 ¢1(k')

for all » > 0 andt > t. This completes the proof. O

Putting
(2.2) Y(r) = ar~2®=1 " for r >0
with
1/(p—1)
(2.3) a:(z <N—2—2>> ,
p—1 p—1

it is trivial that« is a singular stationary solution of (1.1).
The following property of stationary solutions of (1.1) was investigated
in [5], which is summarized in Lemma 9.3 in [4].
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Proposition 2.1 For p > p,, the set of positive radially symmetric station-
ary solutions of (1.1) consists ¢f:>/ "~V h(ur) : 1 > 0} with a fixedh
and any positive radially symmetric stationary solutiorof (1.1) satisfies
w(r)
¥(r)
wherey is defined in (2.2).

—1 asr — oo,

For an arbitrary’ > 0, put
(2.4) vr(r,t) = (T —t)"/®"DV(y) and n=(T-t)" "

whereV satisfies

N-1 1
(25) Vnn + TVW — gVn — ﬁv + VP =0 fOI‘77 > 0.

Thenwvy is a backward selfsimilar solution of (1.1) which blows up at
t="T.
The following result was shown in Theorems 12.1 and 12.2 of [4].

Proposition 2.2 If p, < p < p*, then there exists a solutiori of (2.5)
satisfying
M — 3 asn—

¥(n)

for some positive constapt< 1.

We get an estimate of solutions of (1.1) at spatial infinity enough to
compare them with a stationary solution in Proposition 2.1 and a backward
selfsimilar blowup solution in Proposition 2.2. Let s denote the sup-
port of a functionf.

Lemma 2.3 Suppose thaty € L°°(R") is nonnegative, not identically
equal to zero and has compact support, that is, $uppC Br(0) for some
R > 0. Letwu be a global classical solution of (1.1) with initial data.
Then for each > 0 there is a positive constaxt; such that

2
u(z,t) < Crexp <_;2‘t> for z € RN with |z| > 2R.

Proof SettingM (t) = sup{|u(s)|e : 0 < s <t} fort > 0, it holds
up < Au+ M@E)Pu inRY x (0,1).
According to the comparison theorem, we see

(2.6) u(z,t) < K()U(z,t)  inRY x (0,1),
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whereU is a solution of the heat equationR"" with initial datau, and

K(t) = exp (/Ot M(s)p‘lds) for ¢ > 0.

Forz € RN with |z| > 2R andt > 0, we have

1 z —yl?
U(xat):W/RNUO@)eXP <—| i | )dy

)
M(0 |z —y|?
= )V /BR(O) xp <_ At >dy
(
)

M (0 |22 |z —yl?
<——exp| — exp | — dy
~ (4mt N/2 32t Br(0) 8t

= 2NV2)1(0) exp P :
32t

This inequality together with (2.6) yields

T 2
w(z,t) < 2V2M(0)K (t) exp <‘32|t>

for » € RN with |z| > 2R andt > 0. This completes the proof. O
Define the energy functiondl by

1 1
E(w) = 2/ |Vw|?dx — ] lw|Pdx
RN p RN

for w € LPHI(RN) with Vw € (LQ(RN))N. Let u be a global classical
solution of (1.1) withug € L= (RM)NLPTHRN)andVuyg € (LZ(RN))N.
Multiplying (1.1) by «; and integrating by parts, we have

2.7) /R w(t)2de = —%E(u(t)) for ¢ >0

and henceZ(u(t)) is nonincreasing im.
Lemma 2.4 Letuy € L(RN) N LPHY(RY) with Vuy € (L2(RN))V.

If u is a global classical solution of (1.1) with nonnegative initial data
thenE (u(t)) > 0forall t > 0.
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Proof Assume thatt'(u(tp)) < 0 for somet, > 0. Then there ar&? > 0
andiiy € LPT1(Bg(0)) with Vi € (L2(Br(0)))" such that supi) C
Br(0),0 < ap < u(tg) in Bg(0) andE(ug) < 0. Letu be a solution of

u = Au+ P in Br(0) x (0,0),
(2.8) u(x on9dBRr(0) x (0, 00),
= ’u,[)(.%') in BR(O)
Let E be the energy functional iz (0) defined by
1 1

Blw) = L 1 bl
(w) 2/BR(O)|Vw|d:1: ol N

forw € H}(Br(0)). Multiplying (2.8) bya and integrating by parts yields
d ~ -1

— () 2dr = —2E(a(t)) + L= a(t)PTdx
7 BR(O)() (a(t)) | ()()

(10+1)/2
>C / a(t)2da
Br(0)

for someC' > 0 sinceE(i(t)) is nonincreasing in. Here we used Jensen’s
inequality to get the above inequality. This implies thdtlows up at some
T < +o0. On the other hand, we get

u(z,t +tg) > u(zx,t) in Br(0) x (0,T)

by the comparison theorem and hencklows up in finite time. This con-
tradiction completes the proof. O

Lemma 2.5 If u is a radially symmetric global classical solution of (1.1)
with nonnegative initial data, € D such thahm sup |u(t)|so < +00,then

u(t) converges to a nonnegative radially symmetrlc stationary solution of
(1.1) locally uniformly inR" ast — cc.

Proof Integrating (2.7) in0, s) for anys > 0, we get

/S/ ug(t)?dxdt = E(ug) — E(u(s))
0 JRN

< E(up)

for anys > 0 sinceE(u(s)) > 0 from Lemma 2.4 and hence

/ / ug(t dxdt < 0.
RN
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Thus there is a sequengsg, } with t,, — oo asn — oo such thaty(¢,,) con-
verges td) in L2(RY) asn — oc. Then we can take a subsequence, which
is written by{¢,, } again, such thai(t,,) converges to a stationary solution
w of (1.1) locally uniformly inR" asn — oo by the parabolic regularity
theory. It is immediate that is nonnegative and radially symmetric.

We assume that there afe,}, {s,} with ¢t,, — oo ands,, — oo as
n — oo and nonnegative radially symmetric stationary solutiansws
with w1 # wo such that

(2.9) u(tn) — wy, u(sy) — we locally uniformly in RY asn — .

We may suppose without loss of generality that0) < w2 (0). Choose a
positive radially symmetric stationary solutian such that:(ug — ws) <
+oo andw; (0) < w3(0) < wz(0). On the other hand, there {s;,} with

T, — 00 asn — oo such thatu(0,7,) = ws(0) for all n from (2.9).
Since(u(t) — ws), |r—o = 0 for ¢t > 0, this cannot occur by the finiteness
of z(up — ws). This contradiction implies that(¢) converges tav locally
uniformly inRY ast — co. O

3 Proof of openness oA

This section is devoted to the proof of opennessl afefined by (1.2). To
do that, we need the following result.

Lemma 3.1 Lety € D anduy be a solution of (1.1) with initial datay

for A > 0. If uy(¢) converges to a nonnegative radially symmetric stationary
solutionw of (1.1) locally uniformly irRY ast — oo, thenw is identically
equal to zero.

Proof Now we assume that # 0. Take a positive constafiwith § < («—
B)/(a+ B), wherea and are positive constants in (2.3) and Proposition
2.2, respectively. It follows from Proposition 2.1 that

(3.1) w(r) > a(l = 8)r 2/~ for r>ry

with somery > 0. Fix a positive constart with ¢ < {a — § — §(a +

B)}ry 2P Sinceu(t) — w locally uniformly inRY ast — oo, there
ist; > 0 such that

(3.2) lur(r,t) —w(r)] <e for 0 <r <ryandt>t.
Thus we get
(3.3) ur(ra,t) > a(l — &)y 7PV e fort > ¢y

from (3.1) and (3.2).
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On the other hand, let- be defined by (2.4) using obtained in Propo-

sition 2.2. According to Proposition 2.2, there exigfs> 0 such that

(3.4) V(n) < B+ 8y~ ®=D for i > rs

and hence

(35)  vr(rt) <A +8)r YCD for v > (T — )/ 2r;.

Sincep € D, we havez(\¢ — vr(0)) < 1if T > max{ty, (r2/r3)?} is
sufficiently large. Sincerr blows up at the origin at = 7" andu,(t) is
uniformly bounded ilR" from (3.8), we see

ux(0,s7) < vp(0,s7) for some positivesy < T.
By Proposition 2.2 and Lemma 2.3, foredth: t < T
ux(r,t) <wvp(r,t) for r> Ry

with someR; > 0. Therefore it follows from the nonincrease of intersection
number between, andvr that

ux(rysp) < vp(ry,sp)  for r >0
and hence
(3.6) ux(r,t) <wvp(r,t) for r>0andsy <t <T.
However it follows from (3.3) and (3.5) that if
max{sT,tl,T — (7’2/7"3)2} <t<T,
then

u,\(Tz, t) > UT(TQ, t)

by the choice of > 0, which contradicts (3.6). Therefore we obtain= 0.
O

Lemma 3.2 If ¢ € D, then the setl defined by (1.2) is open i), o).

Proof Suppose thaf, € A. Thenuy, is a global classical solution of
(1.1) anduy, (t) — 0 locally uniformly in RY ast — oo. Fromy € D,
we can take a positive radially symmetric stationary solutiosatisfying
z(Ap—w) < 1for A > 0with |[\— \g| sufficiently small by Proposition 2.1.
Sinceu,, (t) — 0 locally uniformly inRY ast — oo, there arerg,ty > 0
such that

Ux (1, t0) < w(r) for 0 <r <ry.

Then we get
ux(r, to) <w(r) for 0<r <ry
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if [\— M| is sufficiently small. On the other hand, it follows from Proposition
2.1 and Lemma 2.3 that

ux(ryto) <w(r) for r>ri(\)

for somer;(A) > ro for A with |\ — Xo| sufficiently small. Therefore if
A — Ao is sufficiently small, then

(3.7) ux(r, to) <w(r) for r>0.

Indeed, assuming that this does not hold, wezgeg(to) — w) > 2, which
is a contradiction since

2(ur(to) — w) < 2(Ap —w) < 1.
This implies (3.7). Then it holds
(3.8) ux(r,t) <w(r) for r > 0andt >ty
and henceu, exists globally in time andtgg [ux(t)]oo < +o0 if A — Ao

is sufficiently small. According to Lemmas 2.5 and 3.1, we seeuhét)
convergesto zero locally uniformly R ast — oo if |A\— )| is sufficiently
small. This completes the proof. O

4 Proof of Theorem 1.1

In this section, the proof of main theorem is completed. The following
result is similar to Theorem 15.1 in [4], which treated a glabaisolution
obtained by [8]. However when one considers (1.1) in the whole space, the
comparison between two solutions must be done more carefully than the
case of the Dirichlet boundary condition on a bounded domain.

Lemma 4.1 Suppose that, < p < p*. If ug € D, then a global classical
solutionu of (1.1) with initial datauy does not grow up, that is, is not a
global classical solution of (1.1) for whidihm sup |u(t)|ecc = 0.

t—o00

Proof On the contrary, we assume that the solutiagrows up. Lettingyp
be a solution of (1.1) defined by (2.4), we sgay — v7(0)) < 1if 7' >0
is sufficiently large.
Foru > 0, letw, be a positive radially symmetric stationary solution
of (1.1) withw,, (0) = p and(w,),(0) = 0. Take a positive constantwith
d < (a—p)/(a+ B). From Proposition 2.1, it holds

(4.1) wy(r) > a(l = 8)r2® D for p >0
"
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with somers > 0 independent oft > 0. Since|u(t)|~ iS not uniformly
bounded irt > 0, for eacht > 0 there isr,(t) > 0 such that

(4.2) u (ru(t),t) > wy (ru(t)) -
Fix T' > 0 sufficiently large so that(ug — vy (0)) < 1. Put
My = sup{lu(t)| : 0 <t < T}

and chooser with

' all — §)\ P=1/2
0 < rp < min { <(2]\4T)> 7T1/27“3 ,

wherers is the positive constant in (3.4) from which (3.5) follows. Since
w,(r) is decreasing im > 0, we get

wy(r) >2Myp  for 0 <r <rp

if > rs/rr by (4.1). Letu > rs/rr. Then we obtaim,(t) > rr > rs/p
for0 <t < T. It follows from (4.1) and (4.2) that

4.3)  u(ru(t),t) > a(l—06) (r,) P for0<t<T.

On the other hand, sinag- satisfies (3.5), we have

(4.4) vr(ru(t),1) < B(L+0) (ru(t) /@~
for T — (rp/r3)? < t < T. It follows from (4.3) and (4.4) that
(45) “(Tu(t)a t) > UT(TM(t)v t)

for T — (rr/r3)? < t < T by the choice of > 0. Itis also trivial that
(4.6) u(0,t) < vp(0,1t)

for 0 < t < T sufficiently close tdl". By Proposition 2.2 and Lemma 2.3,
for each0 < ¢ < T there isR; > 0 such that

(4.7) u(r,t) <vp(r,t) for r > Ry.

It follows from (4.5)-(4.7) thatz(u(t) — vp(t)) > 21if 0 < t < Tis
sufficiently close td@’, which contradicts (u(t) —vr(t)) < z(ug—vr(0)) <
1for 0 < t < T. This completes the proof. O

The following result can be shown in the same way as in the proof of
Theorem 5.1 in [4].
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Proposition 4.1 Letu be a positive radially symmetric solution of (1.1). If
Bu|(T)={r>0:u(r,T) = oo} # {0} for someT" > 0, thenu exhibits
the complete blowup.

We are now in a position to complete the proof of Theorem 1.1.

Proof of Theorem 1.MVe first puth, = sup A. According to Fuijita’s result
([2]), u, exists globally in time in the classical sense &md(t)|.. — 0 as
t — oo if A > 0 is sufficiently small. It is also immediate thaj, blows
up in finite time for sufficiently large. > 0. Hence we se@ < A, < oo.
Define

uy, (z,t) = ,\li>rIAl up(z,t)  for (z,t) € RY x [0, 00)
@

since{uy : 0 < A < A, } is nondecreasing ik by the comparison theorem.
Let R > 0 and0 < s < t < oo be arbitrary. Multiplying (1.1) with
u = u) by ¢r and integrating by parts yields

t t
/ /RN ux(T)Pprdadr < /RN U)\(t)@RdJJ+’7R/ /RN ux(T)prdxdT
(4.8) ’

for 0 < A < Ay, whereyg and¢r denote the first eigenvalue efA in
Br(0) with the Dirichlet boundary condition and the corresponding eigen-
function normalized il (Bz(0)), respectively. From Lemma 2.1, we have

(4.9) / un(t)prdr < 7/ PTV R @D
RN
and hence
t
(4.10) / / ux(T)prdrdr < 41/PTVR2/ED for 0 < A < A,
s JRN

Thus it follows from (4.8) that

t
(4.11) / / un(r)Pprdwdr < 41/ PV R=2/0=1 (1 4 ~pt)

s JRN

for 0 < A < A,. Using the above estimates (4.9)-(4.11) v instead of
R, there isC' > 0 such that

/ ux(t)dz < CRN-2/@-)
(0)

/ / 7)dzdr < CRN=%/(P=1y
Br(0
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/ / T)Pdzdr < CRN=2/P=D(1 4 ypt)
BR(O)

sincegr(r) = R~N¢1(R™1r) for r > 0. Therefore it follows from Fa-
tou's lemma thatuy(t) € L'(Bg(0)) anduy, € L'(Bgr(0) x (s,t)) N
LP(Bg(0)  (s,1)).
For anyp € C?(RY x [0, 00)) with bounded support ilRY x [0, c0),
it holds
t

t
/ {urpr +urdp + ufp} dudr — {/ u)\(T)pdx} =0
s JRN RN

S

for0 < XA < A,. Letting A — X, we get
t

t
/S /RN {u)pr—i-u)\wAp—i—uﬁwp} dzdr — [/RN qu(T)pdx} =0.

S

We also see

/ fux(f) — ua(s)|de
Br(0)

t
:/ /u,\T(T)dT
Bgr(0) /s
1/2 1/2
wNRN
<
_( N ) (/ /BR unr (T dxd7'>

dx

wn RN 1/2
= ( N]\Jj (t— 8)) (E(ux(s)) — E(u,\(t)))l/Q
1/2
< <WNRNE(U,\(0))) (t — 5)1/2

by Lemma 2.4. Passing to the limit as— X, yields the continuity of
A, (t) from [0, c0) to L} (RM). Consequently:, , is a global solution of
(1 1) in the sense of;], .
Now we assume that, , is a global classical solution of (1.1). It follows
from Lemma 4.1 that,, does not grow up, that istug [ux,, (t)]oo < +o00.
>

Then we see thatiy, (t) — 0 locally uniformly in RN ast — oo by
Lemmas 2.5 and 3.2 and henkg € A. This contradicts the definition of
A, since/ is open in(0, oo) from Lemma 3.2. Therefore, , blows up in
finite time.

If A < Ay, then Lemma 2.2 is the same as the last statement of this
theorem. In the case of = A, letting ¢, be the positive constartg in
Lemma 2.2 withu = uy and

my = Amin{p(r) : r is alocal minimizer ofp}
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for A < A, itholdsm, > C for X close to), with someC > 0. Therefore
we can take ) independently oA close to\ .. This implies the last assertion
of Theorem 1.1 foi = A, from the definition ofu,,,.

In order to show the statement (iii), fix an arbitrary> A,. Putting

ou(@) = Aot P Vp(uz)  for z € RN
for u > 1, there aregug, dp > 0 such that forl < p < g ando < § < 4§
pu(z +dy) < Ap(x) for € RN andy € RN with |y| = 1.

Sincep?/ P~V (ux, p?t) is the solution of (1.1) with initial datg,,, it
holdsuy (7, S) = oo for 0 < r < §p with someS > 0 by the comparison
theorem. Here we extend, as a proper solution introduced in [4] after
the blowup time. Therefore we obtain the complete blowup:pffrom
Proposition 4.1. O
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