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Abstract. Recently Wolff [25] obtained a nearly sharpL2 bilinear restric-
tion theorem for bounded subsets of the cone in general dimension. We
obtain the endpoint of Wolff’s estimate and generalize to the case when
one of the subsets is large. As a consequence, we are able to deduce some
nearly-sharpLp null form estimates.
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1. Introduction

Letn ≥ 2 be a fixed integer. We say that a functionφ : Rn+1 → H is ared
waveif it takes values in a finite dimensional complex Hilbert spaceH, and
its space-time Fourier transform̂φ is anL2 measure on the set

2kΣred := {(ξ, |ξ|) : ∠(ξ, e1) ≤ π

8
, 2k ≤ |ξ| ≤ 2k+1}

for some integerk, wheree1 is a fixed basis vector. Similarly, we say that
ψ : Rn+1 → H ′ is ablue waveif it takes values in a finite dimensional
complex Hilbert spaceH ′ andψ̂ is anL2 measure on

2kΣblue := {(ξ,−|ξ|) : ∠(ξ, e1) ≤ π

8
, 2k ≤ |ξ| ≤ 2k+1}

for some integerk. In both cases we call2k the frequencyof the wavesφ,
ψ.

Red and blue waves both solve the free wave equation, but propagate
along different sets of characteristics. Note that blue waves are the time re-
versal of redwaves.Also, thesewavesareautomatically smoothandbounded
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thanks to the frequency localization. The vector valued formulation will be
convenient for inductive reasons, but our implicit constants shall always be
independent ofH andH ′.

We define theenergyof φ, ψ by

E(φ) := ‖φ(t)‖2
2, E(ψ) := ‖ψ(t)‖2

2 (1)

wheret ∈ R is arbitrary. This definition is independent of the choice oft,
and is related to the standard notion of energy by the formula

22kE(φ) ∼ 1
2

∫
Rn

|φt(0)|2 + |∇φ(0)|2 dx.

Throughout the paper,p0 = p0(n) will denote the exponent

p0 :=
n+ 3
n+ 1

. (2)

The main result of this paper is the following bilinear estimate.

Theorem 1.1. Letφ be a red wave of frequency 1, andψ be a blue wave of
frequency2k for somek ≥ 0. Then we have

‖φψ‖p � 2k(
1
p
− 1

2+ε)
E(φ)1/2E(ψ)1/2 (3)

for all 2 ≥ p ≥ p0, ε > 0. In particular,φ, ψ have frequency 1 then

‖φψ‖p � E(φ)1/2E(ψ)1/2. (4)

In theabove theoremand in the sequel, the implicit constantsmaydepend
onε but are independent ofH,H ′, andφψ : Rn+1 → H ⊗H ′ denotes the
tensor productφ⊗ ψ of φ andψ.

The estimate (4) solves a conjecture of Machedon and Klainerman. The
restrictionp ≥ p0 is sharp; see e.g. [7], [22], [21]. For2 ≤ p ≤ ∞ the
theory is much simpler, and the best possible estimate is

‖φψ‖p � 2kn(
1
2− 1

p
)
E(φ)1/2E(ψ)1/2.

This is easily proved from thep = 2 case and Sobolev embedding.
The estimate (4) is a genuinely bilinear estimate and cannot be proven

directly from linear estimates. Indeed, the Strichartz estimate [19] combined
with the Hölder inequality only yields the rangep ≥ (n+1)/(n−1), while
Plancherel’s theorem and Cauchy-Schwarz only gives the rangep ≥ 2 (see
e.g. [11]). In then = 2 case, the fact that one could go belowp = 2 was
first shown by Bourgain [2], and in [22] a concrete range ofp was given,
namelyp > 2 − 8

121 . More recently, Wolff [25] obtained the rangep > p0
for all dimensionsn. Thus (4) is the endpoint of that in [25].
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The generalization (3) of (4) is necessary in order to develop sharp null
form estimates, as we shall see in Sect. 17. The estimate (3) is sharp except
for the ε. To see this, letψ be a blue wave whose Fourier transform is
supported in a unit “square” in2kΣblue, and which is comparable to 1 on a
2k×1 tube oriented in a blue null direction, and letφ = (φi)2

k

i=1 be a vector-
valued red wave of frequency1 such thatφi is comparable to 1 onBi, where
theBi are a family of2k unit balls that cover the above tube. Theε term can
probably be removed whenp > p0. Whenp = p0 the author conjectures
thatε can still be removed, but this seems to require an extremely delicate
analysis and some new Kakeya estimates for null rays. However, it should
be fairly straightforward to replace the2εk factor by a polynomialkC in this
case.

Broadly, our strategy toproveTheorem1.1 isas follows.Weshall localize
the estimate (3) to a cubeQ of side-lengthR � 2k, and obtain a bound
independent ofR. This will be obtained by induction onR, as follows.

If φ andψ are dispersed fairly evenly throughoutQ, we shall decompose
Q into sub-cubes of side-length2−C0R and decomposeφ andψ into smaller
waves, each of which is concentrated on one of these sub-cubes. By an
interpolation between bilinearL1 andL2 estimates as in Wolff [25], the
cross-terms are well controlled, and one can replaceφ andψ by a “quilt”
of waves on the2−C0R-cubes. One then applies the induction hypothesis to
each sub-cube and sums up.

This tactic works well whenφ andψ are dispersed, but there is a problem
when almost all the energy ofφ andψ simultaneously concentrate in a disk
D of radiusr � R. ByHuygens’ principle thewaveφψ is then concentrated
in the double light cone generated byD. Restricting to this smaller set, we
can exploit a more favourable bilinearL1 estimate (Corollary 13.2) than
the more trivial bilinearL1 estimate (27) used in the non-concentrated case.
One can then repeat the non-concentrated argument, and localizeφ andψ
all the way down to the scale ofr, at which point the waves become non-
concentrated and one obtains enough of a gain to close the induction.

The proof is unfortunately rather complex. In an attempt to give the
reader a sense of the full argument without drowning in the details, the
author has abstracted the argument into several sections. We first give the
top-level argument, in which Theorem 1.1 is deduced from several major
propositions. Then, we give the medium-level argument, in which these
major propositions are deduced from some elementary estimates and a key
estimate, Proposition 4.1. Finally, we devote several sections to the proof
of Proposition 4.1. We have tried to make each section as self-contained as
possible, so that the arguments in each section rely only on the Propositions
and Lemmata of the previous sections, and not on the method of arguments
or on notation specific to a single section.
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2. Some notation

In this section we list some notation which will be used throughout the
argument.

We fixN � 1 to be a large integer depending only onn (N = 2n
10
will

suffice); the disclaimer “assumingN is sufficiently large” will be implicit
throughout our arguments. We also let0 < ε � 1 be an arbitrary small
number. We also letC0 denote an integer much larger thanN , 1/ε; for
instance,

C0 := 2�N/ε�10 (5)

will suffice. Generally speaking, we useN as a large exponent, andC0 as
a very large constant (large enough to dominate any reasonable quantity
arising fromN or ε). As a rule of thumb, any term containing anr−N or
R−N factor may be ignored for all practical purposes; these error terms
only arise because one cannot quite simultaneously localize in both space
and frequency.

Weuse thenotationA := B to indicate thatA is beingdefined toequalB.
We shall extend this notation in several ways, for instancef̂ := g indicates
thatf is being defined via the Fourier transform.

We letC denote various large numbers that vary from line to line (possi-
bly depending onN , ε, but will not depend explicitly onC0), and letA � B
or A = O(B) denote the estimateA ≤ CB whereC depends only onn
andε. Similarly we useA� B to denoteA ≤ C−1B. Generally speaking,
we shall use the� notation to control error terms, but will need the more
precise≤ notation for the main terms due to the inductive nature of the
argument. In par ticular, we will be dealing with many estimates of the form
A ≤ B + CE, A ≤ (1 + Cc)B + c−CE, orA ≤ (1 + CNc)B + c−CE,
whereB is the main term,E is the error term, and0 < c� 1 is some small
parameter which wemay optimize in later. For such estimates it will be very
important that the factor in front ofB is either 1 or very close to 1, as we
will be unable to close the induction otherwise.

Note that our constantsC are independent of the dimension of the spaces
H,H ′. This will be important for the induction argument.
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If φ(x, t) is a function of both space and time, we useφ(t) to denote the
spatial functionφ(t)(x) := φ(x, t).

We use the hat notation for the spatial Fourier transform

f̂(ξ) :=
∫
Rn
e−2πix·ξf(x) dx

as well as the spacetime Fourier transform

φ̂(ξ, τ) :=
∫
Rn+1

e−2πi(x·ξ+tτ)φ(x, t) dxdt,

with themeaning being clear from context. We define thefrequency support
supp(f̂) of a functionf to be the support of the Fourier transform̂f .

We shall always treatRn+1 as endowed with the Euclidean metric and
never with the Minkowski metric, so that terms such as length|x|, angle
∠(x, y), etc. retain their usual meaning inRn+1. On the other hand, we will
employ the Lorentz transforms on occasion, especially when we derive null
form estimates in Sect. 17.

We now define some familiar geometric objects, namely disks, cubes,
cones, and conic neighbourhoods.

A diskwill be any subsetD of Rn+1 of the form

D = D(xD, tD; rD) := {(x, tD) : |x− xD| ≤ rD}
for some(xD, tD) ∈ Rn+1 andrD > 0. The reader should note that disks
aren-dimensional objects even though they reside inRn+1. We calltD the
time co-ordinateof the diskD. If D is a disk, we define the cutoff function
χ̃D onRn+1 by

χ̃D(x, t) :=
(

1 +
|x− xD|
rD

)−N10

. (6)

If D = D(xD, tD; rD) is a disk andc > 0, we definecD to be the disk
cD = D(xD, tD; crD), and thedisk exteriorDext = Dext(xD, tD; rD) to
be the region

Dext(xD, tD; rD) := {(x, tD) : |x− xD| > rD}.
We endow disks and disk exteriors with spatial Lebesgue measuredx.

We defineQ(xQ, tQ; rQ) to be then + 1-dimensional cube inRn+1

centered at(xQ, tQ) with side-lengthrQ and with sides parallel to the axes.
We call the interval[tQ − rQ/2, tQ + rQ/2] the lifespanof Q. If Q =
Q(xQ, tQ; rQ) is a cube andc > 0, we usecQ to denote the cubecQ :=
Q(xQ, tQ; crQ). Finally, we define the cubical annuliQann(xQ, tQ; r1, r2)
by

Qann(xQ, tQ; r1, r2) := Q(xQ, tQ; r2)\Q(xQ, tQ; r1).
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LetΣ = Σn denote the spatial region

Σ := {ξ :
1
2
≤ |ξ| ≤ 4,∠ (ξ, e1) ≤ π

4
}.

If (x0, t0) ∈ Rn+1, define thered conewith vertex(x0, t0) to be the set

Cred(x0, t0) := {(x0 + rω, t0 − r) : r ∈ R, ω ∈ Sn−1 ∩Σ},
and theblue coneat this vertex to be

Cblue(x0, t0) := {(x0 + rω, t0 + r) : r ∈ R, ω ∈ Sn−1 ∩Σ}.
For anyr � 1, we defineCred(x0, t0; r), Cblue(x0, t0; r) to be ther-
neighbourhoods ofCred(x0, t0),Cblue(x0, t0) respectively. Finally, we de-
fine the combined conic neighbourhoodCpurple(x0, t0; r) to be

Cpurple(x0, t0; r) := Cred(x0, t0; r) ∪ Cblue(x0, t0; r).

For any integerj, letDj denote the dilation operator

Djφ(x, t) := φ(2jx, 2jt),

andT to be the time reversal operator

Tφ(x, t) := φ(x,−t).
The operatorT maps red waves onto blue waves and vice versa, while the
operatorDj maps waves of frequency1 onto waves of frequency2j .

In our induction argument we shall frequently be decomposing red and
blue waves into smaller waves. Unfortunately, these decompositions often
enlarge the Fourier support of the waves slightly, which is a potential ob-
struction to closing the induction. To get around this we introduce the notion
of themarginmargin(φ) of a waveφ. More precisely, ifφ is a red wave of
frequency1, we define margin(φ) to be the non-negative real number

margin(φ) := dist(supp(φ̂), Σ+\Σred)
whereΣ± denotes the light cones

Σ± := {(ξ,±|ξ|) : ξ ∈ Rn}.
We extend this definition to general red or blue waves by the formulae

margin(TDkφ) := margin(Dkφ) := margin(φ).

Thus, for instance, ifψ is a blue wave of frequency2k, then

margin(ψ) := 2−kdist(supp(ψ̂), 2k(Σ−\Σblue)).
The concept of margin is only needed to overcome the technical obstruction
mentioned earlier, and otherwise plays no role of importance.
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3. The top-level proof of Theorem 1.1

In this section we give the top-level proof of Theorem 1.1, in which we
state the key propositions and give the inductive argument which yields the
Theorem from these propositions. We shall prove these propositions in later
sections.

Throughout the proofn ≥ 2, k ≥ 0, ε > 0 will be fixed. It suffices to
verify the casek ≥ 2C

10
0 , since thek < 2C

10
0 case follows by applying a

Lorentz transform.Weshall thus assumek ≥ 2C
10
0 throughout the argument.

In particular, any factor depending onk will dwarf any factor depending on
C0, which in turn dwarfs any factor depending onN , which in turn dwarfs
any absolute constants.

We can also assume thatk is a multiple ofC0. This is a purely notational
convenience that we shall only use in Sect. 16.

It is known (see e.g. [2], [11], [22], [16], [7], or Lemma 14.2 below) that

‖φψ‖2 � E(φ)1/2E(ψ)1/2. (7)

Thus Theorem 1.1 holds forp = 2. By interpolation it thus suffices to prove
the theorem when

p = p0 =
n+ 3
n+ 1

, (8)

and we shall implicitly assume this throughout the proof.

Definition 3.1. For anyR ≥ C02k, we defineA(R) to be the best constant
for which the inequality

‖φψ‖Lp(QR) ≤ A(R)E(φ)1/2E(ψ)1/2 (9)

holds for all spacetime cubesQR of side-lengthR, red wavesφ of frequency
1, andbluewavesψ of frequency2k such that onehas themargin requirement

margin(φ),margin(ψ) ≥ 1/100 − (2k/R)1/N . (10)

The wavesφ, ψ may take values in arbitrary finite-dimensional Hilbert
spaces.

Note that it suffices to verify (9) for thoseφ, ψ which obey the normal-
ization

E(φ) = E(ψ) = 1. (11)

From (7) it is clear thatA(R) is finite for eachR. The margin require-
ments onA(R) are technicalities which are needed for the induction onR
to work properly, as many of our decompositions will decrease the margin
of φ andψ slightly. However, we may remove the margin requirements by
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a finite partition of space and frequency, and some mild Lorentz transforms
to obtain the crude estimate

‖φψ‖QR
� A(R′)E(φ)1/2E(ψ)1/2 (12)

for any cubeQR of side-lengthR, anyR′ ∼ R, and any red and blue waves
φ, ψ of frequency1, 2k respectively. In particular to prove (3) it suffices to
show that

A(R) � 2CC02εk2k(
1
p
− 1

2 ) (13)

uniformly for allR ≥ C02k.
Because of the increasingly strict margin requirements asR → ∞ we

see thatA(R) is not necessarily increasing inR. We therefore define the
auxiliary quantityA(R) for all R ≥ C02k by

A(R) := sup
C02k≤r≤R

A(r).

We now begin the proof of (13). In Sect. 7 we shall prove (13) whenR
is close to2k:

Proposition 3.2. For anyR ≥ C02k, we have the bound

A(R) � 2CC0(R/2k)C2k(
1
p
− 1

2 )
.

This proposition is needed to begin the inductive argument. The exact
power of(R/2k) is unimportant as we shall soon improve this bound sub-
stantially.

InSect. 8,weadapt the localization ideas from [25] toprove the following
recursive inequality onA(R).

Proposition 3.3. LetR ≥ 2C02k and0 < c ≤ 2−C0 , and letφ, ψ be re
and blue waves of frequency 1 and2k respectively which obey the relaxed
margin requirement

margin(φ),margin(ψ) ≥ 1/100 − 2(2k/R)1/N . (14)

Then for any cubeQR of side-lengthR we have

‖φψ‖Lp(QR) ≤ [(1 +Cc)A(R/2) + c−C2k(
1
p
− 1

2 )]E(φ)1/2E(ψ)1/2. (15)

In particular, we have

A(R) ≤ (1 + CNc)A(R/2) + c−C2k(
1
p
− 1

2 )
.
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The slight relaxation of margin requirements in Proposition 3.3 (as com-
pared to (10)) is important for technical reasons, but should be ignored for
a first reading.

The loss ofCNc in the main term comes about because we need to
divide anR-cube into sub-cubes at various scales, and then shrink those
cubes further by aboutc in order to create some separation between those
sub-cubes (this is necessary, otherwise the error terms can blow up). In
practice we can always optimizec so that its impact on the argument is
negligible.

By settingc = (2k/R)
ε

CN in Proposition 3.3, we obtain

A(R) ≤ (1 + CN(2k/R)
ε

CN )A(R/2) + C(2k/R)ε/N2k(
1
p
− 1

2 )

for all R ≥ 2C02k. Iterating this and using Proposition 3.2 whenR ∼ 2k,
we obtain

A(R) � 2CC0(R/2k)ε/N2k(
1
p
− 1

2 ) (16)

for anyR ≥ C02k. This can then be used to obtain Theorem 1.1 forp > p0
(cf. [25], [23], [2]), but we shall not do so here.

From the preceding discussion we observe that (13) is already proven
for R ≤ 2C0k. Thus we may assume thatR > 2C0k. R is now very large,
dominating most quantities which depend only onk, C0,N , andε.

In the largeR case we need to introduce the notion of energy concentra-
tion.

Definition 3.4. For anyr > 0, spacetime cubeQ, red waveφ, and blue
waveψ, we define theenergy concentrationEr,Q(φ, ψ) to be the quantity

Er,Q(φ, ψ) := max
(

1
2
E(φ)1/2E(ψ)1/2, sup

D
‖φ‖L2(D)‖ψ‖L2(D)

)
whereD ranges over all disks of radiusr whose time co-ordinatetD is
contained in the lifespan ofQ.

Clearly we haveEr,Q(φ, ψ) ∼ E(φ)1/2E(ψ)1/2 for anyr, with equality
or near-equality only occurring whenφ, ψ simultaneously concentrate in a
disk of radiusr. However, the choice of whether to useEr,Q(φ, ψ) instead
of E(φ)1/2E(ψ)1/2 will be crucial to make a certain induction work.

Roughly speaking, the strategy for theR ≥ 2C0k case is to show that
Proposition 3.3 can be improved slightly unless there is substantial energy
concentration. This slight improvement will be enough to close the induc-
tion, however, one must still deal with the concentrated case. In this case
we use Huygens principle to restrict ourselves to a small region of a double
coneCpurple, in which case one can obtain an improvement of Proposition
3.3 by other means.
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Tomake this strategymore precise we shall need the following technical
variant ofA(R) which is weighted slightly to exploit the gain in the non-
concentrated case.

Definition 3.5. For anyR ≥ 2C0k and anyr′, r > 0, we defineA(R, r, r′)
to be the best constant for which the inequality

‖φψ‖Lp(QR∩Cpurple(x0,t0;r′))

≤ A(R, r, r′)(E(φ)1/2E(ψ)1/2)1/pEr,C0QR
(φ, ψ)1/p

′
(17)

holds for all spacetime cubesQR of side-lengthR, all (x0, t0) ∈ Rn+1, red
wavesφ of frequency 1, and blue wavesψ of frequency2k such that one
has the margin requirement (10) and the energy bound (11).

As before, it suffices to verify (17) assuming the energy normalization
(11). It is important that the right-hand side if (17) is exactly as stated, and
not (for instance) the comparable quantityA(R, r, r′)E(φ)1/2E(ψ)1/2. In
practicer andr′ shall usually be comparable in size.

The preceding heuristics regarding concentration can be formalized in
the following Proposition, which we prove in Sect. 11. This Proposition
is basically an application of Huygens’ principle, combined with some
more sophisticated arguments to deal with the highly concentrated case
r � R1/2+4/N .

Proposition 3.6. For anyR ≥ 2C0k, we have

A(R) ≤ (1 − C−C
0 ) sup

2C0k≤R̃≤R

R̃1/2+4/N ≤r

A(R̃, r, C0(1 + r)) + 2CC02εk2k(
1
p
− 1

2 )
.

The requirement̃R1/2+4/N ≤ r is somewhat difficult to obtain, but it is
necessary to do so because the tools we shall develop to controlA(R, r, r′)
have a spatial uncertainty of about

√
R and so one cannot effectively exploit

any concentration effects near or below this scale. This uncertainty of
√
R

is responsible for all the powers ofr1/N andR1/N which appear in the
arguments; these powers should be ignored for a first reading. The key point
to observe in Propo sition 3.6 is that we have somehow wrested a small
gain (1 − C−C

0 ) from the main term on the right-hand side, thanks to the
beneficial effects of non-concentration in (17). This gain will allow us to
absorb all error terms and(1 +Cc) factors in the other Propositions in this
section, thus closing the induction.

To use this inequality inductively we need to boundA(R, r, r′) in terms
of A(R). From (12) it is easy to show thatA(R, r, r′) ≤ CA(R), but this
is too crude to close the induction, and one must take some more care with
the constant in the leading term.
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The bounding ofA(R, r, r′) byA(R) can be split into two stages. First,
we shall use finite speed of propagation in Sect. 12 to observe that one can
obtain the desired bound in the non-concentrated caser ≥ CC0 R:
Proposition 3.7. For anyR ≥ 2C0k, r ≥ CC0 R, r′ > 0, and0 < c ≤ 2−C0 ,
we have

A(R, r, r′) ≤ (1 + Cc)A(R) + c−C2k(
1
p
− 1

2 )
.

For the concentrated case we iterate the following Proposition, which is
proven in 9.

Proposition 3.8. For anyR ≥ 2C0k andCC0 R ≥ r > R1/2+3/N , we have

A(R, r, r′) ≤ (1 + CNc)A(R/C0, r(1 − Cr−1/3N ), r′)

+ c−C
(

1 +
R

2kr

)−1/N

2k(
1
p
− 1

2 )

for any0 < c ≤ 2−C0 .

The decay of(1+ R
2kr

)−1/N in the error term is crucial for this endpoint
result as it allows us to avoid losing a logarithmic factorlog(R/r) in the
iteration, which would otherwise be fatal to the proof of the endpoint. This
decay ultimately arises from the improved energy estimates on cones as
encoded in Lemma 13.1. However, the presence of the2k means that we
still lose a factor ofk when summing over scalesR, and this is the main
source of the2εk loss in (3).

These two Propositions combine to give

Corollary 3.9. For anyR ≥ 2C0k andr ≥ R1/2+4/N , we have

A(R, r, C0(1 + r)) ≤ (1 + CNc)A(R) + c−C2εk2k(
1
p
− 1

2 )

for any0 < c ≤ 2−C0 .

Proof. Wemay assume thatr < CC0 R since the claim follows from Propo-
sition 3.7 otherwise. LetJ be the first integer such thatr ≥ 2−JCC0 R; from
the hypotheses we haveJ � log(r). Definer =: r0 > r1 > . . . > rJ

inductively byrj+1 := rj(1 − Cr1−1/3N
j ). One can verify inductively that

rj = r +O(jr−1/4N ) for all j, and in particular thatrj ∼ r.
From Proposition 3.8 we have

A(R/2j , rj , C0(1 + r)) ≤ (1 + CNcj)A(R/2j+1, rj+1, C0(1 + r))

+ c−Cj

(
1 +

R

2j2kr

)−1/N

2k(
1
p
− 1

2 )
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for any0 < cj ≤ 2−C0 .
Observe that

1 +
R

2j2kr
� C−C

0 2(J−j−k)+ .

If we thus setcj := k−1c2−(J−j−k)+/(2CN) for a suitable constantC, we
thus obtain

A(R/2j , rj , C0(1 + r))

≤ (1 + CNk−1c2−(J−j−k)+/(2CN))A(R/2j+1, rj+1, C0(1 + r))

+ kCc−C2−(J−j−k)+/2N2k(
1
p
− 1

2 )
.

Iterating this, one obtains

A(R, r, C0(1+r)) ≤ (1+CNc)A(R/2J , rJ , C0(1+r))+kCc−C2k(
1
p
− 1

2 )
.

The claim then follows from Proposition 3.7. ��

Combining this with (3.6) and settingc := 2−C0 , we thus obtain

A(R) ≤ (1 − C−C
0 )A(R) + 2CC02εk2k(

1
p
− 1

2 )

for all R ≥ 2C0k. Combining this with (16) we thus see that this inequality
thus holds for allR ≥ C02k. Taking suprema and using the monotonicity
of A(R) we thus obtain

A(R) ≤ (1 − C−C
0 )A(R) + 2CC02εk2k(

1
p
− 1

2 )

for all R ≥ C02k, which implies

A(R) ≤ 2CC02εk2k(
1
p
− 1

2 )
,

and (13) follows for allR ≥ C02k as desired.
It remains to prove Propositions 3.2-3.8. It turns out that most of these

propositions follow as consequences of a localization property for red and
blue waves, Proposition 4.1, which we shall state in the next section, af-
ter some notation. In Sections 7-12 we show how this Proposition implies
Propositions 3.2-3.8. Finally, in Sections 13-16 we give a proof of Proposi-
tion 4.1.
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4. The main proposition

In this section we state the main proposition of the argument, Proposition
4.1. As we shall see in the next few sections, this Proposition will be the
main tool used to provePropositions 3.2, 3.3, and 3.8, and also plays aminor
role in the proof of Proposition 3.7.

Proposition 4.1 involves the localization of wavesφ, ψ on a large cube
Q into smaller waves localized on sub-cubes ofQ. To make this precise we
must introduce some notation.

If Q is a cube of side-lengthR, andj ≥ 0 is an integer, we may partition
Q into 2(n+1)j cubes of side-length2−jR; we useQj(Q) to denote the
collection of these cubes.

If Q is a cube andj ≥ 0 is an integer, we define ared wave tableφ on
Q with depthj to be any red wave with the vector form

φ =: (φ(q))q∈Qj(Q),

where the componentsφ(q) may themselves be vector-valued. If0 ≤ j′ < j,
andq′ ∈ Qj′(Q), we defineφ(q′) to be the red wave table onq′ with depth
j − j′ given by

(φ(q′))(q) := φ(q) for all q ∈ Qj−j′(q′).
Note that

E(φ) =
∑

q′∈Qj′ (Q)

E(φ(q′))

for all 0 ≤ j′ ≤ j.
If φ is a red wave table onQ of depthj and0 ≤ j′ ≤ j, we define the

j′-quilt [φ]j′ of φ to be the non-negative function

[φ]j′ :=
∑

q∈Qj′ (Q)

|φ(q)| χq.

Note we have the pointwise estimates

|φ(q)|χq ≤ [φ]j ≤ [φ]j−1 . . . ≤ [φ]0 = |φ|χQ (18)

for all q ∈ Qj(Q). We define blue wave tables and their quilts analogously.
The estimates (18) are of course very crude, and we shall frequently be

exploiting various improvements to this estimate in the sequel.
If Q is a cube,k ≥ 0 is an integer, and0 ≤ c � 1, we define the

(c, k)-interior Ic,k(Q) of Q by

Ic,k(Q) :=
⋃

q∈Qk(Q)

(1 − c)q. (19)
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The advantage of working withIc,k(Q) instead ofQ is that the sub-cubes
of Ic,k(Q) have some significant separation properties.

With thesenotational preliminaries,wearenowready tostateProposition
4.1.

Proposition 4.1. LetR ≥ C02k, 0 < c ≤ 2−C0 , and letφ, ψ be red and
blue waves with frequency 1 and2k respectively, which obey the energy
normalization (11) and the relaxed margin requirement (14). For any cube
Q, define the setX(Q) ⊂ Q by

X(Q) :=
k⋂

j=C0

Ic2
−(k−j)/N ,j(Q). (20)

Then for any cubeQ of side-lengthCR, we can find a red wave tableΦ on
Q with depthk and frequency 1, and a blue wave tableΨ onQ with depth
C0 and frequency2k, such that we have the margin estimates

margin(Φ),margin(Ψ) ≥ 1/100 − (2k+C0/R)1/N , (21)

we have the energy estimates

E(Φ), E(Ψ) ≤ 1 + Cc, (22)

and we have the inequality

‖φψ‖Lp(X(Q)) ≤ ‖[Φ]k[Ψ ]C0‖Lp(X(Q)) + c−C2k(
1
p
− 1

2 )
. (23)

For any coneCpurple(x0, t0; r) with r > 1, we may improve (23) to

‖φψ‖Lp(X(Q)∩Cpurple(x0,t0;r)) ≤ ‖[Φ]k[Ψ ]C0‖Lp(X(Q)∩Cpurple(x0,t0;r))

+ c−C2k(
1
p
− 1

2 )
(

1 +
R

2kr

)−1/N

. (24)

Furthermore, we have the persistence of non-concentration

Er(1−C0r−1/4N ),2Q(Φ, Ψ) ≤ Er,2Q(φ, ψ) + Cc+ c−CRC−N/2 (25)

for all r � R1/2+3/N .

The reason why we useX(Q) instead ofQ is that the sub-cubes of
X(Q) have some non-zero separation between them, which will let us avoid
some unpleasantness in Sect. 15. To return fromX(Q) to Q we shall use
an averaging lemma, Lemma 6.1; this causes the loss ofCc in many of the
Propositions stated previously. The estimates (22), (25) are stating thatΦ,
Ψ are “smaller than or equal to”φ, ψ in energy norm, while (23), (24) state
that the quilts[Φ]k, [Ψ ]C0 are good approximations forφ, ψ respectively.
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This replacement of waves by quilts of essentially equal or lesser energy
allows one to induct efficiently (providing that one has constants close to 1
in the main terms).

Note that themargin requirements onφ,ψ are slightly weaker than those
in Definition 3.5. The gain of(1+ R

2kr
)−1/N in (24) over (23) is responsible

for the corresponding gain in Proposition 3.8 as compared against similar
estimates such as Proposition 3.3. This gain is essential as it needs to com-
pensate both for theCc loss in (22) and for thelog(R) loss that would
otherwise arise from an induction on scale.

Interestingly, the low-frequency waveφ can be localized much further
than the high-frequency waveψ; the former can be localized to cubes of2−k
the side-length, whereas the high-frequency waves can only be localized by
about2−C0 before the error estimates begin to deteriorate logarithmically.
This behaviour is also seen in the example given in the introduction demon-
strating that the power ofk in (3) is essentially sharp. In applications we
shall only need to localize to2−C0 , however in the proof of Proposition 4.1
we shall need to localizeφ all the way down to2−k before one can begin to
localizeψ.

The proof of Proposition 4.1 is the longest part of the argument, and is
basically a “pigeonhole-free” version of the arguments in Wolff [25]. Since
it is the statement of this Proposition, rather than themethod of proof, which
are required to prove the Propositions of the previous section, we shall defer
the proof of Proposition 4.1 to sections 14-16. For now, we devote ourselves
to the question of how this Proposition, combined with some other more
elementary tools, can be used to prove Propositions 3.2–3.8.

5. Energy estimates

In this section we record some fairly easy energy estimates which will be
used throughout the paper.

Letφ,ψ be red and blue waves. By integrating (1) along the life-span of
a cube we see that

‖φ‖L2(QR) � R1/2E(φ)1/2, ‖ψ‖L2(QR) � R1/2E(ψ)1/2 (26)

for any cubeQR of side-lengthR. By Hölder’s inequality we thus have

‖φψ‖L1(QR) � RE(φ)1/2E(ψ)1/2. (27)

To compensate for the loss ofR in (27) we shall often seek variants of (7)
in which one has a gain ofR−(n−1)/4. This gain exactly balances the loss
of R when interpolated at the exponentp = p0. One such example of this
gain is Lemma 14.2; see also (54), (108).

To tackle the casek � 1 of widely differing frequencies we shall need
the following improvement of (27) whenφ is replaced by a quilt.
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Lemma 5.1. LetQR be a cube of side-lengthR > 0, j ≥ 0 is an integer,
φ be a red wave table onQR with depth at leastj, andψ be a blue wave.
Then

‖[φ]j‖2 � 2−j/2R1/2E(φ)1/2,

and
‖[φ]jψ‖1 � 2−j/2RE(φ)1/2E(ψ)1/2.

Proof. Let q ∈ Qj(QR). From (26) forφ(q) we have

‖φ(q)‖L2(q) � 2−j/2R1/2E(φ(q))1/2.

Squaresumming this inqweobtain thefirst estimate, and thesecondestimate
follows from (26) forψ and Ḧolder’s inequality. ��

This improvement over (27) is one demonstration of the gain involved
when passing from a wave to a quilt. The other major advantage of quilts
is that they allow one to localize estimates on large cubes to estimates on
small cubes so efficiently that one can make induction on scale arguments
work.

6. An averaging lemma

The following averaging lemma will be needed in the proofs of Proposition
3.2, 3.3, 3.8. It allows one to average out a bounds onX(Q) to obtain a
bound onQ.

Lemma 6.1. LetR > 0, 0 < c ≤ 2−C0 , andF be an arbitrary smooth
function. LetQR be a cube of side-lengthR. Then there exists a cubeQ of
side-lengthCR contained inC2QR such that

‖F‖Lp(QR) ≤ (1 + CNc)‖F‖Lp(X(Q))),

whereX(Q) is the set in (20).

Proof. By the pigeonhole principle it suffices to show that

‖F‖pLp(QR) ≤
1

|QR|
∫
QR

(1 + Cc)p‖F‖pLp(QR∩(X(Q(x0,t0;CR)))) dx0dt0.

From the symmetry and translation covariance ofX(Q)wehave the identity∫
QR

‖F‖pLp(QR∩(X(Q(x0,t0;CR)))) dx0dt0

=
∫
QR

|F (x, t)|p|X(Q(x, t;CR)) ∩QR| dxdt.
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On the other hand, from (19) we have

|Q(x0, t0;CR)\Ic,k(Q(x0, t0;CR))| � c|Q(x0, t0;CR)|
so from (20) we have

|Q(x, t;CR)\X(Q(x, t;CR))| � Nc|Q(x, t;CR)|
and thus that

|QR| ≤ (1 + CNc)|X(Q(x, t;CR)) ∩QR|.
The claim then follows. ��

7. Proof of Proposition 3.2

We now have enough machinery to prove Propositions 3.2, 3.3, and 3.8. We
begin with Proposition 3.2.

Fix R ≥ C02k, and letφ, ψ be red and blue waves of frequency 1
and2k respectively, obeying the margin requirement (10) and the energy
normalization (11). LetQR be a cube of side-lengthR. To prove Proposition
3.2 it suffices to show that

‖φψ‖Lp(QR) � 2CC0(R/2k)C2k(
1
p
− 1

2 )
.

Setc := 2−C0 , so that1 + CNc ∼ 1. From Lemma 6.1 withF := φψ,
we may find a cubeQ of side-lengthCR such that

‖φψ‖Lp(QR) � ‖φψ‖Lp(X(Q)).

LetΦ, Ψ be as in Proposition 4.1. By (23) and (18), we thus have

‖φψ‖Lp(QR) � ‖[Φ]kΨ‖p + 2CC02k(
1
p
− 1

2 )
.

By (18), (7) and (22) we have

‖[Φ]kΨ‖2 ≤ ‖ΦΨ‖2 � E(Φ)1/2E(Ψ)1/2 � 1,

while from Lemma 5.1 and (22) we have

‖[Φ]kΨ‖1 ≤ 2−k/2RE(Φ)1/2E(Ψ)1/2 � 2−k/2R = (R/2k)2k/2.

Interpolating between the two, one obtains

‖[Φ]kΨ‖p � (R/2k)C2k(
1
p
− 1

2 )
,

and the claim follows. ��
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8. Proof of Proposition 3.3

Letφ, ψ,QR, c be as in Proposition 3.3. We may assume the normalization
(10). We may assume thatR ≥ 2CC02k for some largeC, since the claim
(15) follows from Proposition 3.2 otherwise.

From Lemma 6.1 withF := φψ, we may find a cubeQ of side-length
CR such that

‖φψ‖Lp(QR) ≤ (1 + CNc)‖φψ‖Lp(X(Q)).

LetΦ, Ψ be as in Proposition 4.1. By (23), we thus have

‖φψ‖Lp(QR) ≤ (1 + CNc)‖[Φ]k[Ψ ]C0‖Lp(X(Q)) + c−C2k(
1
p
− 1

2 )
.

By (18) and the hypothesisk � C0, we thus have

‖φψ‖Lp(QR) ≤ (1 + CNc)‖[Φ]C0 [Ψ ]C0‖Lp(Q) + c−C2k(
1
p
− 1

2 )
. (28)

We expand

‖[Φ]C0 [Ψ ]C0‖Lp(Q) =

 ∑
q∈QC0 (Q)

‖Φ(q)Ψ (q)‖pLp(q)

1/p

.

By (9) and (21), then the inclusionlp ⊂ l1, followed by Cauchy-Schwarz
and then (22) we thus have

‖[Φ]C0 [Ψ ]C0‖Lp(Q) ≤ A(2−C0R)

 ∑
q∈QC0 (Q)

E(Φ(q))p/2E(Ψ (q))p/2

1/p

≤ A(R/2)
∑

q∈QC0 (Q)

E(Φ(q))1/2E(Ψ (q))1/2

≤ A(R/2)

 ∑
q∈QC0 (Q)

E(Φ(q))

1/2 ∑
q∈QC0 (Q)

E(Ψ (q))

1/2

= A(R/2)E(Φ)1/2E(Ψ)1/2

≤ (1 + Cc)A(R/2).

Inserting this back into (28) we obtain the desired estimate (15). ��
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9. Proof of Proposition 3.8

We now prove Proposition 3.8. This will be a reprise of the argument used
to prove Proposition 3.3, but will use non-concentration to improve upon
the inclusionlp ⊂ l1 used previously.

Fix R ≥ 2C0k, 0 < c ≤ 2−C0 , r′ > 0, andCC0 R ≥ r > R1/2+3/N . Let
φ, ψ be red and blue waves of frequency 1,2k respectively obeying (14).
We may assume the normalization (11). LetQR be a spacetime cube of
side-lengthR, and let(x0, t0) be a point in spacetime. To prove Proposition
3.8 it suffices to show that

‖φψ‖Lp(QR∩Cpurple(x0,t0;r′))≤(1 + CNc)A(R/C0, r̃, r
′)Er,C0QR

(φ, ψ)1/p

+ c−C
(

1 +
R

2kr′

)−1/N

2k(
1
p
− 1

2 )

where r̃ := r(1 − C0r
−1/3N ). Here we have used the fact that

Er,C0QR
(φ, ψ)1/p ∼ 1.

Applying Lemma 6.1 with

F := φψχCpurple(x0,t0;r′)

we see that there exists a cubeQ of side-lengthCR contained inC2QR
such that

‖φψ‖Lp(QR∩Cpurple(x0,t0;r′)) ≤ (1 + CNc)‖φψ‖Lp(X(Q)∩Cpurple(x0,t0;r′)).

Let Φ, Ψ be as in Proposition 4.1. By (24) and the inclusion2Q ⊂ C0QR,
it thus suffices to show that

‖[Φ]k[Ψ ]C0‖Lp(X(Q)∩Cpurple(x0,t0;r′))

≤ (1 + Cc)A(R/C0, r̃, r
′)Er,2Q(φ, ψ)1/p

′
+ c−CRC−N/2,

since the latter factor can easily be absorbed intoc−C(1+ R
2kr′ )

−1/N2k(
1
p
− 1

2 )

sinceR > 2C0k.
By (18) we can estimate[Φ]k by [Φ]C0 . By (25) it thus suffices to show

that

‖[Φ]C0 [Ψ ]C0‖Lp(Q∩Cpurple(x0,t0;r′))

≤ (1 + Cc)A(R/C0, r̃, r
′)Er̃,2Q(Φ, Ψ)1/p

′
.

Herewehaveusedsome trivial bound inA(R/C0, r̃, r
′)which ispolynomial

in R, e.g. by (7) and Ḧolder.
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Raising both sides to thepth power and expanding, we reduce to showing
that∑
q∈QC0 (Q)

‖Φ(q)Ψ (q)‖pLp(q) ≤ (1 + Cc)A(R/C0, r̃, r
′)pEr̃,2Q(Φ, Ψ)p/p

′
.

(29)
The cubeq has side-length2−C0CR� R/C0, so in particularC0q ⊂ 2Q.
By (17) and (21) we thus have

‖Φ(q)Ψ (q)‖Lp(q)

A(R/C0, r̃, r
′)(E(Φ(q))1/2E(Ψ (q))1/2)1/pEr̃,2Q(Φ(q), Ψ (q))1/p

′
.

Also, by (22) we have

Er̃,2Q(Φ(q), Ψ (q)) ≤ (1 + Cc)Er̃,2Q(Φ, Ψ).

Comparing these estimates to (29), it suffices to show that∑
q∈QC0 (Q)

E(Φ(q))1/2E(Ψ (q))1/2 ≤ 1 + Cc.

But this follows fromCauchy-Schwarz and (22) (cf. the proof of Proposition
3.3). ��

10. Spatial localization, and Huygens’ principle

We shall shortly begin the proof of Propositions 3.6 and 3.7, but we must
first develop somemachinery concerning the localization of awave to a disk,
and the resulting estimates arising fromHuygens’ principle. Thismachinery
will also be useful in proving the persistence of non-concentration estimate
(56) in Sect. 15.

To localize a wave to a disk we shall need a bump functionη0 and an
evolution operatorU(t), which we now construct.

Let η0 to denote a fixed non-negative Schwarz function onRn with total
mass 1 and whose Fourier transform is supported on the unit disk; such a
function can be constructed for instance byη0 = ϕ̂ ∗ ϕ̂, whereϕ is a real
even bump function supported near the origin such thatϕ(0) = 1. For any
r > 0 we defineηr by

ηr(x) := r−nη0
(x
r

)
. (30)

The functionηr is thus anL1-normalized Schwarz function concentrating
on anr-disk with good frequency localization properties. We shall use this
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cutoff function both in this section and in the construction of thewave packet
decomposition in Appendix I.

Fix a(ξ) to be a bump function supported onΣ which equals 1 on
the spatial projection ofΣred andΣblue. We define the evolution operator
U(t) = U red(t) by

Û(t)f(ξ) := a(ξ)e2πit|ξ|f̂(ξ) (31)

and the kernelKt by

Kt(x) :=
∫
a(ξ)e2πi(x·ξ+t|ξ|) dξ.

We have the propagation law

φ(t) = U(t)φ(0) = φ(0) ∗Kt (32)

for all red wavesφwith frequency1, and all timest1, t2. A stationary phase
computation gives the pointwise estimate

|Kt(x)| � (1 + dist((x, t), Cred(0, 0))−N10
. (33)

We shall also use the operatorU(t) in the proof of an energy estimate
on cones (Lemma 13.1), and in the proof of wave packet decomposition
(Lemma 15.2) in Appendix I.

Definition 10.1. If D = D(xD, tD; r) is a disk, andφ is a red wave of
frequency 1, we definePDφ at timetD by

PDφ(tD) := (χD ∗ ηr1−1/N )φ(tD)

and at other timest by

PDφ(t) := U(t− tD)PDφ(tD).

Hereηr. For red waves of frequency2j we definePD by the formula

PDDjφ := DjPDφ,

and for blue waves we definePD by the formula

PDTφ := TPDφ.

The operatorPD localizes a wave to the diskD at timetD, while1−PD
similarly localizes toDext. More precisely:



236 T. Tao

Lemma 10.2. Let j be an integer,r ≥ C02−j . LetD = D(xD, tD; r) be a
disk with radiusr, and letφ be a red wave with frequency2j and margin
margin(φ) ≥ C0(2jr)−1+1/N . ThenPDφ is a red wave of frequency2j

which satisfies margin estimate

margin(PDφ) ≥ margin(φ) − C0(2jr)−1+1/N

and the energy estimates

‖χ̃−N
D PDφ‖L2(Dext

+ ) � (2jr)−NE(φ)1/2 (34)

‖(1 − PD)φ‖L2(D−) � (2jr)−NE(φ)1/2 (35)

E(PDφ) ≤ ‖φ‖2
L2(D+) + C(2jr)−NE(φ) (36)

E((1 − PD)φ) ≤ ‖φ‖2
L2(Dext

− ) + C(2jr)−NE(φ) (37)

E(PDφ), E((1 − PD)φ) ≤ E(φ) (38)

whereD−,D+ are the disks

D± := D(xD, tD; r(1 ± (2jr)−1/2N )).

Note in particular that

1
2
D ⊂ D− ⊂ D ⊂ D+ ⊂ 2D.

Proof. By scaling it suffices to verify this whenj = 0. The claims follow
directly from the easily verified estimates

0 ≤ χD ∗ ηr1−1/N (x) ≤ 1,

χD ∗ ηr1−1/N (x) � r−N for x ∈ D−,

1 − Cr−N ≤ χD ∗ ηr1−1/N (x) for x ∈ Dext+ .

��
Applying T we see that similar statements hold for blue waves.
We now investigate the localization properties ofPD for times other than

tD. Heuristically speaking,PDφ is supportedon the coneCred(xD, tD;Cr),
while (1 − PD)φ vanishes on the cubeQ(xD, tD;C−1r). More precisely,
we have

Lemma 10.3. LetD be a disk of radiusr ≥ C0, and letφ be a red wave of
frequency1 and marginmargin(φ) ≥ C0r

−1+1/N . Let1 ≤ q ≤ 2,R � r.
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– If ψ is a blue wave of arbitrary frequency, we have the finite speed of
propagation law

‖((1 − PD)φ)ψ‖Lq(Q(xD,tD,C−1r)) � rC−NE(φ)1/2E(ψ)1/2 (39)

and the Huygens’ principle

‖(PDφ)ψ‖Lq(Q(xD,tD;R)\Cred(xD,tD;Cr+R1/N ))

� RC−NE(φ)1/2E(ψ)1/2. (40)

– If ψ is a blue wave of frequency2k for somek≥0 such that margin(ψ)�
(2kr)−1+1/N , then we have

‖(PDφ)(PDψ)‖Lq(Qann(xD,tD;Cr+CR1/N ,R))

� RC−NE(φ)1/2E(ψ)1/2. (41)

We will also need to use (39), (40), (41) with the roles ofφ, ψ and red
and blue reversed. If one repeats the arguments below, one finds that one
loses a factor of2Ck on the right-hand sides; however, ifr ≥ 2k one can
absorb these losses into the factors ofrC−N orRC−N . Thus we may freely
interchangeφ andψ and red and blue in ther ≥ 2k case.

Proof. By Hölder it suffices to verify the claims whenq = 2.
To prove (39) we first use (32), (33), and (35) to obtain

‖(1 − PD)φ‖L∞(Q(xD,tD;C−1r)) � rC−NE(φ)1/2,

and (39) follows from (26). A similar argument gives

‖PDφ‖L∞(Q(xD,tD;R)\Cred(xD,tD;Cr+R1/N )) � RC−NE(φ)1/2, (42)

and (40) follows from (26).
We now prove (41). From (40) withψ replaced byPDψ, we have

‖(PDφ)(PDψ)‖L2(Q(xD,tD;R)\Cred(xD,tD;Cr+R1/N ))

� RC−NE(φ)1/2E(ψ)1/2.

By applying (42) withR, r replaced by2kR, 2kr, and then applying
TDk, we obtain

‖PDψ‖L∞(Q(xD,tD;R)\Cblue(xD,tD;Cr+R1/N )) � RC−NE(ψ)1/2,

so by (26) we have

‖(PDφ)(PDψ)‖L2(Q(xD,tD;R)\Cblue(xD,tD;Cr+R1/N ))

� RC−NE(φ)1/2E(ψ)1/2.

Combining this with the previous estimate we obtain (41). ��
The estimate (41) is one way of exploiting the transversality of red and

blue null directions. We shall also rely on transversality in other ways, no-
tably in Lemma 13.1 and in Lemma 14.3.
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11. Proof of Proposition 3.6

We now have enough machinery to prove Propositions 3.6 and 3.7, except
for a somewhat difficult estimate, Lemma 11.1, which we defer to Appendix
II.

Fix R ≥ 2C0k, and letφ, ψ be red and blue waves of frequency 1
and2k respectively, obeying the margin requirement (10) and the energy
normalization (11). LetQR be a cube of side-lengthR. To prove Proposition
3.6 we have to show that

‖φψ‖Lp(QR) ≤ (1−C−C
0 ) sup

2C0k≤R̃≤R

R̃1/2+4/N ≤r

A(R̃, r, C0(1+r))+2CC02εk2k(
1
p
− 1

2 )
.

(43)
We may of course assume thatφ, ψ are nearly extremal in the sense that

‖φψ‖Lp(QR) ∼ A(R). (44)

We may also assume that

A(R) ≥ 2CC02k(
1
p
− 1

2 ) (45)

since (43) is trivial otherwise.
Let 0 < δ < 1/2 be a small number to be chosen later. Letr be the

supremum of all radiir ≥ C02k such that

Er,C0QR
(φ, ψ) ≤ 1 − δ, (46)

or r = C02k if no such radius exists.
Sinceφ, ψ are smooth and have finite energy, it is easy to see thatr is

well defined, and that one can find a diskD = D(x0, t0; r) of radiusr with
t0 in the lifespan ofC0QR for which

min(‖φ‖2
L2(D), ‖ψ‖2

L2(D)) ≥ 1 − 2δ. (47)

Fix the diskD(x0, t0; r), and define the diskD′ by

D′ := C
1/2
0 D = D(x0, t0;C

1/2
0 r)

and define the double conic regionΩ by

Ω := QR ∩ Cpurple(x0, t0;C0(1 + r)).

We now show that inQR, the expressionφψ is mostly concentrated inΩ.
We splitφ andψ into red and blue waves respectively as

φ = (1 − PD′)φ+ PD′φ, ψ = (1 − PD′)ψ + PD′ψ

where the projection operatorPD′ is as in the previous section.
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From (47), (11), and (37) we have

E((1 − PD′)φ), E((1 − PD′)ψ) � δ + C−C
0 .

From (12) we thus see that

‖((1 − PD′)φ)(1 − PD′)ψ‖Lp(QR) � (δ + C−C
0 )A(R). (48)

On the other hand, from (40) and its analogue with the roles of red and blue
reversed (using the assumptionr ≥ 2k; see the remarks following Lemma
10.3) we have

‖(PD′φ)ψ‖Lp(QR\Ω), ‖((1 − PD′)φ)PD′ψ‖Lp(QR\Ω),� C−C
0 .

Combining these estimates using the triangle inequality we obtain

‖φψ‖Lp(QR\Ω) � (δ + C−C
0 )A(R).

We thus see from (44) that

‖φψ‖Lp(QR\Ω) � (δ + C−C
0 )‖φψ‖Lp(QR).

Raising this to thepth power and re-arranging, we see that

‖φψ‖Lp(Ω) ≥ (1 − C(δ + C−C
0 )p)1/p‖φψ‖Lp(QR). (49)

We now divide into two cases. First suppose that we are in the medium or
low concentration caser ≥ R1/2+4/N . In particular we haver > C02k,
so from the definition ofr we see that (46) holds. From the definition of
A(R, r) (and the assumptionδ � 1/2) we thus have

‖φψ‖Lp(Ω) ≤ (1 − δ)1/p′
A(R, r).

Combining these estimates and settingδ to some small negative power of
C0 we obtain the desired estimate (43) as desired (provided thatC0 is large
enough; (5) suffices).

Now suppose instead that we are in the highly concentrated caser ≤
C0R

1/2+4/N . DefineR̃ by the formula

R̃ := max(2C0k, (r)
1

1/2+4/N ).

thus2C0k ≤ R̃ ≤ R. In analogy to the previous case, we observe that
‖φψ‖Lp(Q(x0,t0;R̃)∩Ω) ≤ (1 − δ)1/p′

A(R̃, r)

whenR̃ > 2C0k. WhenR̃ = 2C0k one can use (13) (which has already been
proven for this value of̃R) and (12) to obtain

‖φψ‖Lp(Q(x0,t0;R̃)∩Ω) ≤ 2CC02εk2k(
1
p
− 1

2 )
.
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In either case, we see that if we could show that

‖φψ‖Lp(QR\Q(x0,t0;R̃)) � (δ + C−C
0 )A(R) (50)

thenwe could repeat the argument in the first case and obtain (43) as desired.
It remains to prove (50). By (48) and the triangle inequality it suffices to

show that

‖(PD′φ)ψ‖Lp(QR\Q(x0,t0;R̃)) � (δ + C−C
0 )A(R)

and

‖((1 − PD′)φ)PD′ψ‖Lp(QR\Q(x0,t0;R̃)) � (δ + C−C
0 )A(R).

By a dyadic decomposition and (45) this will follow from

Lemma 11.1. LetR ≥ 2C0k, and letC02k < r ≤ R1/2+4/N . LetD =
D(x0, t0, C

1/2
0 r) be a disk. Then for any red waveφ and blue waveψ of

frequency1, 2k respectively with

margin(φ),margin(ψ) ≥ 1/200

we have

‖(PDφ)ψ‖Lp(Qann(x0,t0;R,2R)), ‖φ(PDψ)‖Lp(Qann(x0,t0;R,2R))

� E(φ)1/2E(ψ)1/2R−1/C .

The proof of this lemma shall be postponed to Appendix II, as it requires
some machinery which is developed later in this paper, and the arguments
used to prove this lemma are not used elsewhere. The estimate in Lemma
11.1 is not of an endpoint type, and could probably be proven by more
elementary means than the methods used in the Appendix.

Assuming Lemma 11.1, the proof of Proposition 3.6 is thus complete.��

12. Proof of Proposition 3.7

Let R ≥ 2C0k, 0 < c ≤ 2−C0 , andr > C0R. Let φ, ψ be red and blue
waves of frequency 1 and2k respectively obeying (11) and (10). LetQR be
a cube of side-lengthR. To prove Proposition 3.7, it suffices to show that

‖φψ‖Lp(QR) ≤ Er,C0QR
(φ, ψ)1/p(1 + Cc)A(R) + c−C2k(

1
p
− 1

2 )
.

Let (xQR
, tQR

) be the center ofQR, and letD denote the disk

D := D(xQR
, tQR

; r/2).
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We then divide

φ = (1 − PD)φ+ PDφ, ψ = (1 − PD)ψ + PDψ.

From Lemma 10.2 (especially (36)), Definition 3.4 and the hypothesisR ≥
2C0k we see thatPDφ,PDψ obey the relaxed margin requirements (14) and
the energy estimates

E(PDφ), E(PDψ) ≤ Er,C0QR
(φ, ψ) + CRC−N .

From Proposition 3.3 we thus have

‖(PDφ)(PDψ)‖Lp(QR)

≤ (1 + Cc)(Er,C0QR
(φ, ψ) + CRC−N )A(R) + c−CCC0 2k(

1
p
− 1

2 )
.

TheRC−N term can easily be absorbed into thec−CCC0 2k(
1
p
− 1

2 ) term by
some trivial bound onA(R) (Proposition 3.2 will do). By the triangle in-
equality, we will thus be done if we can show

‖((1 − PD)φ)ψ‖Lp(QR), ‖(PDφ)(1 − PD)ψ‖Lp(QR) ≤ c−CCC0 2k(
1
p
− 1

2 )
.

But these estimates follow easily from (39) and the counterpart with red
and blue reversed (this is legitimate by the hypothesisR ≥ 2C0k and the
remarks following Lemma 10.3). ��

13. Energy estimates on light cones of opposite color

To prove Theorem 1.1 it remains only to prove Proposition 4.1. Of course,
we shall not use Propositions 3.2-3.8 in the proof of this Proposition.

In this sectionand thenext,wederive twobasic estimatesneeded toprove
Proposition 4.1; these are “pigeonhole-free” versions of similar estimates
in [25]. The first estimate is an extension of (26) from a cube to a conic
neighbourhood of opposite color. The second is a strengthening of (7) when
at least oneof thewavesφ,ψ has low frequencydispersion. Then, inSect. 15,
we combine these two estimateswith awave packet decomposition to derive
a key ingredient (Proposition 15.1) in the proof of Proposition 4.1.

We begin with the energy estimate on cones:

Lemma 13.1. Letφ be a red wave of frequency2j . Then for any(x0, t0) ∈
Rn+1 andR � 2−j we have

‖φ‖L2(Cblue(x0,t0;R)) � R1/2E(φ)1/2.
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Proof. By translation invariance we may take(x0, t0) = 0, and by scaling
we may takej = 0.

The blue cone is a null surface, and so standard energy estimates will
not prove this estimate. However this can be salvaged sinceφ is red, so that
the characteristics ofφ will be transverse to the blue cone.

We turn to the details. LetU(t) be the wave evolution operator defined
in (31). By (32), it suffices to show that

(
∫

‖χStU(t)f‖2
L2(Rn

) dt)
1/2 � R1/2‖f‖L2(Rn

)

for all f ∈ L2(Rn), whereSt is the sliceSt := {x:(x, t) ∈ Cblue(0, 0;R)}.
We shall apply theTT ∗ method. By duality the above estimate is equiv-

alent to

‖
∫
U(t)∗(χStF (t)) dt‖L2(Rn

) � R1/2‖F‖
L2(Rn+1

)
.

We square this as∫ ∫
〈χSsU(s)U(t)∗(χStF (t)), F (s)〉 dtds � R‖F‖2

2

where〈f, g〉 =
∫
Rn f(x)g(x) dx is the usual complex inner product. By

Cauchy-Schwarz and Young’s inequality it suffices to show that

|〈χSsU(s)U(t)∗(χStF (t)), F (s)〉| � (1 + |s− t|/R)−N‖F (t)‖2‖F (s)‖2

for all s, t.
When |s − t| � R this follows from Cauchy-Schwarz and theL2

boundedness of the operatorχSsU(s)U(t)∗χSt , so we may assume that
|s− t| � R. The convolution operatorU(s)U(t)∗ behaves essentially like
U(s − t), and its kernelKs,t(x) satisfies a similar kernel estimate to (33),
namely

|Ks,t(x)| � (1 + dist((x, s− t), Cred(0, 0))−N10
.

The claim then follows from the transversality ofCred(0,0)andCblue(x0,t0)
and crude estimates. ��

Applying T, we see that a similar estimate holds with the roles of red
and blue reversed. As a corollary of both Lemma 13.1 and its time-reversed
counterpart, we obtain the following improvement to (27) when one restricts
to a double cone.
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Corollary 13.2. Letφ, ψ be red and blue waves of frequency1, 2k respec-
tively. LetR > r � 1, (x0, t0) ∈ Rn+1, andQR be a cube of side-length
R. Then

‖φψ‖L2(Cpurple(x0,t0;r)∩QR) � r1/2R1/2E(φ)1/2E(ψ)1/2.

Proof. The contribution ofCblue(x0, t0; r) ∩ QR is acceptable by using
Lemma13.1 to controlφ and (26) to controlψ. Similarly for the contribution
of Cred(x0, t0; r) ∩QR. ��

14. Bilinear L2 estimates in the low dispersion case.

To prove Proposition 4.1 we shall need to study waves with rather low fre-
quency dispersion. Tomake this concept precise, we introduce the following
notation, which we shall re-use in later sections.

Definition 14.1. If φ is a red or blue wave (of any frequency), we define the
angular dispersionof φ to be the quantity

diam

{
ξ

|ξ| : (ξ, τ) ∈ supp(φ̂)
}
.

A key observation (implicit in [16], and exploited explicitly in [25]) is
that there is an improvement to (7) when eitherφ orψ has low dispersion.

Lemma 14.2. [16,25] Letφ be a red wave of frequency 1, and letψ be a
blue wave. Ifφ has angular dispersionO(1/r) for somer � 1, then

‖φψ‖
L2(Rn+1

)
� r−(n−1)/2E(φ)1/2E(ψ)1/2. (51)

Proof. Letψ have frequency2k. From hypothesis, the frequency support of
φ is contained in a a sectorΓ of widthO(1/r). By Plancherel’s theorem it
thus suffices to show that

‖fdσ1 ∗ gdσ2‖2 � r−(n−1)/2‖f‖L2(Γ )‖g‖L2(2kΣblue)

for all f andg, wheredσ1 anddσ2 denote surfacemeasure onΓ and2kΣblue

respectively. By Young’s inequality we have

‖fdσ1 ∗ gdσ2‖1 � ‖f‖1‖g‖1

so it suffices by interpolation to show that

‖fdσ1 ∗ gdσ2‖∞ � r−(n−1)‖f‖∞‖g‖∞,

which by positivity reduces to showing that

‖dσ1 ∗ dσ2‖∞ � r−(n−1). (52)



244 T. Tao

But this follows from the observation that the intersection ofΓ andx −
2kΣblue is always transverse and hasn − 1-dimensional measure at most
O(r−(n−1)) for anyx ∈ Rn+1. ��

This estimate is global in spacetime, however for our purposes it will be
convenient to work with a localized form of this estimate.

Lemma 14.3. Letj be an integer andr � 1, 2−j . Letφ be a red wave with
frequency 1 and angular dispersionO(1/r), and letψ be a blue wave with
frequency2j such that

margin(φ),margin(ψ) ≥ 1/200.

Then we have

‖φψ‖L2(Q) � r−(n+1)/2‖φ‖L2(CQ)‖ψ‖L2(CQ) + rC−NE(φ)1/2E(ψ)1/2

(53)
for all cubesQ of side-lengthr.

Proof. The idea is to combine Lemma 13.1 with the localization machinery
developed in Sect. 10.

Let D be the diskD := D(xQ, rQ;C1/2r). If C is sufficiently large,
then from (39) and (38) we have

‖((1 − PD)φ)ψ‖L2(Q) � rC−NE(φ)1/2E(ψ)1/2

and

‖PDφ(1 − PD)ψ‖L2(Q) � rC−NE(φ)1/2E(ψ)1/2.

From the triangle inequality we thus have

‖φψ‖L2(Q) ≤ ‖(PDφ)(PDψ)‖
L2(Rn+1

)
+ CrC−NE(φ)1/2E(ψ)1/2.

From Lemma 10.2 we see thatPDφ has dispersionO(1/r). By Lemma 14.2
and (38) we thus have

‖φψ‖L2(Q) � r−(n+1)/2‖φ‖L2(CD)‖ψ‖L2(CD) + rC−NE(φ)1/2E(ψ)1/2.

The claim then follows by lettingtD range over the lifespan ofQ, averaging,
and applying Cauchy-Schwarz. ��

An analogue of this lemma exists with the roles of red and blue reversed,
but we shall not invoke this analogue explicitly.
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15. Wave packet decomposition

Using the results of the previous section, we can now prove the main tool
used to derive Proposition 4.1.

Proposition 15.1. Let j, j′ be integers, and letR � 2−j , 2j−2j′ , 0 < c ≤
2−C0 . LetQ be a spacetime cube of side-lengthR, φ be a red wave of fre-
quency2j withmargin(φ) ≥ (2jR)−1/2, andψ be a blue wave of frequency
2j

′
.
Then there exists a red wave tableΦ = Φc(φ, ψ;Q) onQwith depthC0,

frequency2j with margin

margin(Φ) ≥ margin(φ) − C(2jR)−1/2

such that the following properties hold.

– ([Φ]C0 approximatesφ) We have

‖(|φ| − [Φ]C0)ψ‖L2(Ic,C0 (Q)) � c−C
(

2j

R

)(n−1)/4

E(φ)1/2E(ψ)1/2.

(54)
– (Bessel inequality) We have

E(Φ) ≤ (1 + Cc)E(φ) (55)

– (Persistence of non-concentration) For anyr � R1/2+1/N2−j(1/2−1/N),
we have

Er(1−C0(2jr)−1/2N ),C0Q
(Φ,ψ) ≤ (1 + Cc)Er,C0Q(φ, ψ) (56)

Roughly speaking,Φ(q) is the portion ofφ which concentrates inq. The
Proposition is phrased using frequencies2j and2j

′
rather than 1 and2k

in order to make it symmetric inφ andψ, as we shall also need the time
reversal of Proposition 15.1.

Proof. The quantitiesr,R have the units of length, while the frequencies
2j , 2j

′
have the units of inverse length. Finally,c and themargins are dimen-

sionless. One can then verify that the entire Proposition is dimensionally
correct and thus scale invariant. By scaling wemay thus setj = 0. By trans-
lation invariancewemay assumeQ is centered at the origin. Setr := 2−JR,
whereJ is chosen so thatr ∼ √

R.
We may assume thatc > R−1/10n (for instance), since otherwise the

claim is trivial by settingΦ = 0 (and using some trivial bound such as (7)
to show (54).
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Let E be a maximal1/r-separated subset ofSn−1 ∩Σ, and letL denote
the latticeL := c−2rZn. We define ared tubeto be any setT = T (ωT , xT )
of the form

T = {(x, t) ∈ Rn+1 : |x− (xT + ωT t)| ≤ r}
wherexT ∈ L andωT ∈ E . We letT = Tred denote the set of all red tubes.
If T is a red tube, we define the cutoff functionχ̃T onRn+1 by

χ̃T (x, t) := χ̃D(xT +ωT t,t;r)(x). (57)

Weshall need the followingcareful decompositionofφ intowavepackets
which are concentrated on tubes inT.

Lemma 15.2.With the above notation, one can find for eachT ∈ T a red
waveφT with frequency 1 and angular dispersion at mostCR−1/2, such
that

– We have the margin estimate

margin(φT ) ≥ margin(φ) − CR−1/2. (58)

– The mapφ �→ φT is linear for eachT , and

φ =
∑
T∈T

φT . (59)

– We have
E(φT ) � c−C‖χ̃T (t)φ(t)‖2 (60)

for all T ∈ T andt in the lifespan ofC0Q.
– If dist(T,Q) ≥ C0R then

‖φT ‖L∞(Q) � dist(T,Q)C−NE(φ)1/2. (61)

– We have∑
T∈T

sup
q∈QJ (Q)

χ̃T (xq, tq)−3‖φT ‖2
L2(Cq) � c−CrE(φ). (62)

– We have the Bessel inequality∑
q0

E(
∑
T∈T

mq0,TφT )

1/2

≤ (1 + Cc)E(φ)1/2 (63)

wheneverq0 runs over a finite index set and themq0,T are non-negative
numbers such that ∑

q0

mq0,T = 1 (64)

for all T ∈ T.
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Roughly speaking,φT is the portion ofφwhich has frequency support in
the sector of width1/r and direction(ωT , 1), and is spatially concentrated
in T . A naivemicrolocalization to this region of space and frequency, taking
some care to ensure that theφT are still waves, would obtain most of the
above properties, but would probably need to replace the(1 + Cc) factor
in (63) by a larger constant, which would then cause a similar unacceptable
loss in (22) and then destroy the induction. This necessitates a delicate
construction of theφT based on averaging. Because the details of the proof
are technical and not particularly relevant to the rest of the argument, we
defer the proof of this Lemma to Appendix I, and continue with the proof
of Proposition 15.1.

Using Lemma 15.2, we can now defineΦ by

Φ(q0) :=
∑
T∈T

mq0,T
mT

φT (65)

for all q0 ∈ Q, where
mq0,T := ‖ψχ̃T ‖2

L2(q0) +R−10nE(ψ), (66)

and

mT :=
∑

q0∈QC0 (Q)

mq0,T = ‖ψχ̃T ‖2
L2(Q) +R−10n2(n+1)C0E(ψ). (67)

TheR−10nE(ψ) factor is only present in (66) to ensure thatmT does not
completely degenerate to zero. One can think ofΦ(q0) as consisting of those
wave packetsφT such thatψχT concentrates inq0.

It is clear thatΦ is a red wave with

margin(Φ) ≥ margin(φ) − CR−1/2

and that
φ =

∑
q0∈QC0 (Q)

Φ(q0). (68)

The estimate (55) follows from (63).
We now show (56). LetD = D(x0, t0; r(1 − C0r

−1/2N )) be any disk
of radiusr(1 − C0r

−1/2N ) with t0 in the lifespan ofC0Q. By (55) it then
suffices to show that

‖Φ‖L2(D)‖ψ‖L2(D) ≤ (1 + Cc)Er′,C0Q(φ, ψ). (69)

LetD′ denote the slightly larger diskD′ := D(x0, t0, r − C0
2 r

−1/2N ), and
letD′′ denote the even larger diskD′′ := D(x0, t0, r). We may divide

φ = PD′φ+ (1 − PD′)φ =: φ1 + φ2.
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Themapφ �→ Φ is linear, so wemay writeΦ =: Φ1 +Φ2 accordingly. From
(55) and (36) we have

‖Φ1‖L2(D) ≤ E(Φ1)1/2 ≤ (1 + Cc)E(φ1)1/2

≤ (1 + Cc)‖φ‖L2(D′′) + rC−NE(φ). (70)

Next, we claim that

‖Φ2‖L2(D) � rC−NE(φ). (71)

To see this, we first consider the tubesT which do not intersectCQ. By
(65), (61), and Ḧolder, their contribution is acceptable. Thus we need only
consider those tubeswhich intersectCQ. By the triangle inequality it suffices
to show

‖(φ2)T ‖L2(D) � rC−NE(φ)

for each tubeT .
First suppose that dist(T,D) ≤ R1/2+1/100N . Then by (35), (38), and

the assumptionr � R1/2+1/N we see that

‖χ̃T (t0)φ2(t0)‖2 � rC−NE(φ).

The claim then follows from (60).
Now suppose that dist(T,D) ≥ R1/2+1/100N . By (62), the hypothesis

c > R−1/10 and Bernstein’s inequality (or Sobolev embedding) we see that

‖(φ2)T ‖L∞(q) � rC−NE(φ2) � rC−NE(φ)

whenever dist(q, T ) ≥ R1/2+1/200N . The claim then follows. This com-
pletes the proof of (71).

Combining (70) and (71), we see that

‖Φ‖L2(D) ≤ (1 + Cc)‖φ‖L2(D′′) + rC−NE(φ),

and (69) easily follows (using the trivial inequality‖ψ‖L2(D) ≤ ‖ψ‖L2(D′′)).
This proves (56).

We now turn to the proof of (54). By (68) we have

(|φ| − [Φ]C0)|ψ| ≤
∑

q0∈QC0 (Q)

|Φ(q0)ψ|(1 − χq0),

so by the triangle inequality it suffices to show that

‖Φ(q0)ψ‖L2(Ic,C0 (Q)\q0) � c−Cr−(n−1)/2E(φ)1/2E(ψ)1/2. (72)

for eachq in QC0(Q).
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Fix q0. We shall use a (heavily disguised) version of the arguments in
Wolff [25]. If q ∈ QJ(Q) intersectsIc,C0(Q)\q0, then dist(q, q0) � cR. By
squaring (72), we thus reduce to showing that∑

q∈QJ (Q):dist(q,q0)�cR
‖Φ(q0)ψ‖2

L2(q) � c−Cr−(n−1)E(φ)E(ψ). (73)

Consider a single summand from (73). From (65) and the triangle inequality
we have

‖Φ(q0)ψ‖L2(q) ≤
∑
T∈T

mq0,T
mT

‖φTψ‖L2(q). (74)

Consider the tubesT which do not intersectCQ. By (61) and (26), their
total contribution to (74) isO(RC−NE(φ)1/2E(ψ)1/2). As for the tubesT
which do intersectCQ, we may apply Lemma 14.3 (sincer � 1, 2−j′) to
obtain

‖φTψ‖L2(q) � r−(n+1)/2‖ψ‖L2(Cq)‖φT ‖L2(Cq)

+RC−NE(φT )1/2E(ψ)1/2.

The total contribution of theerror term to (74) isO(RC−NE(φ)1/2E(ψ)1/2)
by (63) and the fact that there are onlyO(RC) tubes being summed here.
Combining all these estimates we obtain

‖Φ(q0)ψ‖L2(q)

� r−(n+1)/2‖ψ‖L2(Cq)

∑
T∈T

mq0,T
mT

‖φT ‖L2(Cq)+R
C−NE(φ)1/2E(ψ)1/2.

Inserting this back into (73), we see that it suffices to show that

∑
q∈QJ (Q):dist(q,q0)�cR

‖ψ‖2
L2(Cq)

∑
T∈T

mq0,T
mT

‖φT ‖L2(Cq)

2

� c−Cr2E(φ)E(ψ). (75)

Using the trivial estimate

mq0,T
mT

≤ m
1/2
q0,T

m
1/2
T

followed by Cauchy-Schwarz, we have∑
T∈T

mq0,T
mT

‖φT ‖L2(Cq)

2
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≤
∑
T∈T

‖φT ‖2
L2(Cq)

mT χ̃T (xq, tq)

∑
T∈T

mq0,T χ̃T (xq, tq)

 .
By (66), we have∑

T∈T
mq0,T χ̃T (xq, tq) � ‖ψχ‖2

2 +R−5nE(ψ)

where

χ :=

∑
T∈T

χ̃T (xq, tq)χ̃2
T

1/2

χq0 .

Since dist(q, q0) � cR, we see from elementary geometry that

χ(x, t) � c−C
(

1 +
dist((x, t), Cred(xq, tq))

r

)−10n

.

From Lemma 13.1 and the triangle inequality we thus have

‖ψχ‖2
2 � c−CrE(ψ).

Inserting all these estimates back into (75), we see that it will suffice to show
that ∑

q∈QJ (Q)

‖ψ‖2
L2(Cq)

∑
T∈T

‖φT ‖2
L2(Cq)

mT χ̃T (xq, tq)
� c−CrE(φ). (76)

We re-arrange the left-hand side as∑
T∈T

∑
q∈QJ (Q)

χ̃T (xq, tq)−3‖φT ‖2
L2(Cq)

‖ψ‖2
L2(Cq)χ̃T (xq, tq)2

mT

and estimate this by∑
T∈T

( sup
q∈QJ (Q)

χ̃T (xq, tq)−3‖φT ‖2
L2(Cq))

∑
q∈QJ (Q)

‖ψ‖2
L2(Cq)χ̃T (xq, tq)2

mT

Since the inner sum isO(1) by (67), the desired estimate (76) then follows
from (62). This proves (54). ��

We define the wave tableΨc(φ, ψ;Q) in analogy toΦc(φ, ψ;Q) by time
reversal:

Ψc(φ, ψ;Q) := TΦc(Tψ,Tφ;TQ).

Of course, one has the analogue of Proposition 15.1 forΨ but with the roles
of red and blue reversed.
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16. Proof of Proposition 4.1

We are now ready to prove Proposition 4.1, in whichφψ is replaced by a
quilted analogue[Φ]k[Ψ ]C0 .

We begin with the construction ofΦ; this will be achieved by iterating
Proposition 15.1.

Wedefine recursively thewave tablesφj onQof depthj for all0 ≤ j ≤ k
which are multiples ofC0 (recall that we assumedk to be a multiple ofC0
in Sect. 3). Setφ0 to be the wave table onQ of depth 0

(φ0)(Q) := φ

and then define inductively

φ
(q)
j+C0

:= Φc2−(k−j)/N (φ(q)
j , ψ; q)

for all q ∈ Qj(Q). We then chooseΦ to beΦ := φk.
By induction we see that

margin(φj) ≥ 1/100 − (2k/R)1/N − C(2j/R)1/2

for eachj. This gives the desired margin requirements onΦ sinceR� 2k.
From (55) we have

E(φj) ≤ (1 + Cc2−(k−j)/N )E(φj−1)

for all C0 < j ≤ k. Telescoping this, we obtain
E(φj) ≤ (1 + Cc)E(φ) = 1 + Cc (77)

for all j. Thus (22) holds forΦ. A similar iteration of (56) (absorbing any
factor ofk which appears into a small power ofr1/N ) yields

Er(1−r−1/3N ),C0Q
(Φ,ψ) ≤ (1 + Cc)Er,C0Q(φ, ψ) (78)

for all r � R1/2+2/N .
Let C0 ≤ j < k be a multiple ofC0, and letq∗ be a cube inQj(Q).

From (54) withR replaced by21−jR,Q replaced byq∗, andφ replaced by
φ

(q∗)
j , we see that

‖([φj ]j − [φj+C0 ]j+C0)ψ‖L2(X(Q)∩q∗)

� c−C2C(k−j)/N (21−jR)− n−1
4 E(φ(q∗)

j )1/2.

Square-summing this inq∗ and using (77) we obtain

‖([φj ]j − [φj+C0 ]j+C0)ψ‖L2(X(Q)) � c−C2C(k−j)/N (2−jR)− n−1
4 . (79)
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On the other hand, from Lemma 5.1 withR replaced by2kR andφ replaced
by φj , we have

‖[φj ]jψ‖L1(X(Q)) � 2−j/2R.

Replacingj by j + C0 and then subtracting, we obtain

‖([φj ]j − [φj+C0 ]j+C0)ψ‖L1(X(Q)) � 2CC02−j/2R.

Interpolating this with (79) using (8), we obtain

‖([φj ]j − [φj+C0 ]j+C0)|ψ|‖Lp(X(Q))

� c−C2C(k−j)/N2−j
(

1
p
− 1

2

)
= c−C2−α(k−j)2k(

1
p
− 1

2 )

for some constantα > 0. Telescoping this with the triangle inequality, we
obtain

‖φψ‖Lp(X(Q)) ≤ ‖[Φ]kψ‖Lp(X(Q)) + c−C2k(
1
p
− 1

2 )
. (80)

Having constructedΦ, we now defineΨ as

Ψ := Ψc(Φ,ψ;Q).

The estimate (22) forΨ follows from the time reversal of (55). It remains
to prove (23), (24), and (25).

To prove (23), we observe from the analogue of (54) that

‖Φ(|ψ| − [Ψ ]C0)‖L2(X(Q)) � c−C2CC0(R/2k)−(n−1)/4E(Φ)1/2E(ψ)1/2.

From (22) and (18) we thus have

‖[Φ]k(|ψ| − [Ψ ]C0)‖L2(X(Q)) � c−C2CC0(R/2k)−(n−1)/4. (81)

From Lemma 5.1 we have

‖[Φ]k‖L2(X(Q)) � 2−kR1/2. (82)

From (22) we thus we have

‖[Φ]kψ‖L1(X(Q)), ‖[Φ]kΨ‖L1(X(Q)) � 2−k/2R

so from (18) and the triangle inequality we have

‖[Φ]k(|ψ| − [Ψ ]C0)‖L1(X(Q)) � 2−k/2R.

Interpolating this with (81), we obtain

‖[Φ]k(|ψ| − [Ψ ]C0)‖Lp(X(Q)) � c−C2CC02k(
1
p
− 1

2 )
, (83)

and (23) follows from this, (80), and the triangle inequality.
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Now we prove (24). We shall assume that2kr < R since (24) follows
from (23) otherwise. For brevity letΩ denote the region

Ω := X(Q) ∩ Cpurple(x0, t0; r).

We will need to localize (80) and (83) toΩ. We begin with the localization
of (80). By (18) and Corollary 13.2 we have

‖[φj ]jψ‖L1(Ω) ≤ ‖φjψ‖L1(Ω) � r1/2R1/2 ≤ (2kr/R)1/22−jR.

Replacingj by j + C0 and then subtracting, we obtain

‖([φj ]j − [φj+C0 ]j+C0)ψ‖L1(Ω) � (2kr/R)1/22−jR.

Interpolating this with (79) using (8), we obtain

‖([φj ]j − [φj+C0 ]j+C0)ψ‖Lp(Ω) � c−C2C(k−j)/N2−j
(

1
p
− 1

2

)
(2kr/R)1/N .

Telescoping this with the triangle inequality, we obtain

‖φψ‖Lp(Ω) ≤ ‖[Φ]kψ‖Lp(Ω) + Cc−C2CC02k(
1
p
− 1

2 )(2kr/R)1/N . (84)

Now we localize (83). From (18) and Corollary 13.2 we have

‖[Φ]kψ‖L1(Ω), ‖[Φ]kΨ‖L1(Ω) � r1/2R1/2 = (2kr/R)1/22−k/2R.

so from (18) and the triangle inequality we have

‖[Φ]k(|ψ| − [Ψ ]C0)‖L1(Ω) � (2kr/R)1/22−k/2R.

Interpolating this with (81), we obtain

‖[Φ]k(|ψ| − [Ψ ]C0)‖Lp(Ω) � (2kr/R)1/Nc−C2CC02k(
1
p
− 1

2 )
,

and (23) follows from this, (80), and the triangle inequality.
Finally, we show (25). From the time-reversed version of (56), and con-

ceding various powers of2k andr1/N , we see that

Er(1−r−1/3N ),C0Q
(Φ, Ψ) ≤ (1 + Cc)Er(1−r1/2N ),C0Q

(Φ,ψ)

for all r � R1/2+3/N . Combining this with (78) we obtain (25) as desired.
This completes the proof of Proposition 4.1, and hence of Theorem 1.1.��
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17. Null form estimates

In this section we now apply Theorem 1.1 to obtain some nearly sharp null
form estimates. The arguments in this section do not require the methods
used above to prove Theorem 1.1.

LetD0,D+,D− denote the Fourier multipliers

D̂0φ(ξ, τ) := |ξ|φ̂(ξ, τ)
D̂+φ(ξ, τ) := (|ξ| + |τ |)φ̂(ξ, τ)
D̂−φ(ξ, τ) := ||ξ| − |τ || φ̂(ξ, τ).

If φ is a solution to the free wave equation ands ∈ R, we defineφ[0] to
be the vector(φ(0), D−1

0 φt(0)). In particular, we have

‖φ[0]‖Ḣs = (‖φ(0)‖2
Ḣs + ‖φt(0)‖2

Ḣs−1)
1/2

whereḢs := D−s
0 L2 is the homogeneous Sobolev space of orders.

In [7] the following problem was considered:

Problem 17.1. Determine the set of all exponents(p, β0, β+, β−, α1, α2)
such that one has the estimates

‖Dβ0
0 D

β+
+ D

β−
− (φψ)‖

Lp(Rn+1
)
� ‖φ[0]‖Ḣα1‖ψ[0]‖Ḣα2 (85)

for all vector-valued solutionsφ,ψ to the freewave equation (not necessarily
red or blue).

This problemwas resolved in [7] forp = 2, but is largely open otherwise
(with some partial results in [23], [13]). A successful resolution to this
problem (and of its generalization to mixed Lebesgue normsLqtL

r
x and

to whenφ, ψ solve the inhomogeneous wave equation) is likely to have
application to the low-regularity behaviour of non-linear wave equations.

To see the connection between Problem 17.1 and Theorem 1.1, we first
observe the consequence of Theorem 1.1, which addresses Problem 17.1 in
the frequency-localized case.

Proposition 17.2. Letβ be a real number, andk, l ≥ 0 be integers. Letφ
andψ be waves which have frequency supports in the sectors

{(ξ1, ξ2, ξ′′, τ) : τ = |ξ|, ξ1 ∼ 1, ξ2 ∼ 2−l, |ξ′′| � 2−l} (86)

and

2k{(ξ1, ξ2, ξ′′, τ) : τ = −|ξ|,−ξ1 ∼ 1, ξ2 ∼ 2−l, |ξ′′| � 2−l} (87)
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respectively. Then we have

‖|✷|β(φψ)‖p, ‖|✷|β(φψ)‖p
� 2β(k−2l)2l

(
n+1

p
−(n−1)

)
2k

(
1
p
− 1

2+ε
)
E(φ)1/2E(ψ)1/2 (88)

for all 2 ≥ p ≥ p0, ε > 0, where|✷| is the multiplier|✷| := D+D−, the
energyE(·) is defined as in (1), and the implicit constants may depend on
β, ε.

Proof. Consider the Minkowski-conformal linear transformationL : Rn+1

→ Rn+1 given by

L(ξ1, ξ′, τ) :=
(
ξ1 + τ

2
+ 2−2l ξ1 − τ

2
, 2−lξ′,

ξ1 + τ
2

− 2−2l ξ1 − τ
2

)
,

and define the associated operatorTL by

TLφ := φ ◦ L∗,

whereL∗ is the adjoint ofL. A routine computation shows thatTL|✷| =
2−2j |✷|TL, so that

TL(|✷|βφψ) = 2−2jβ|✷|β(TLφ)(TLψ).

Also, we observe from Plancherel thatE(TLφ)∼2(n−1)jE(φ) andE(TLψ)
∼ 2(n−1)jE(ψ). Finally, we have‖TLF‖p = 2−(n+1)l/p‖F‖p. Combining
all these facts we see that to prove (88) it suffices to do so whenl = 0.

Setl = 0. We can write

|✷|β(φψ)(x, t)

= 2nk2βk
∫ ∫

e2πix·(2
kη+ξ)e2πit(|ξ|−2k|η|)m(ξ, η)f̂(ξ)ĝ(2kη) dξdη

wheref(x) := φ(x, 0) andg(x) := ψ(x, 0), andm is the symbol

m(ξ, η) := Ca(ξ)a(η)(|η||ξ| + 〈η, ξ〉)β.
Sincem is smooth and compactly supported, we may decomposem as

a Fourier series

m(ξ, η) =
∑
j,j′∈L

cj,j′e
−2πij·ξe−2πij′·η

for |ξ|, |η| � 1, whereL is some discrete lattice andcj,j′ are rapidly de-
creasing co-efficients (uniformly ink). This implies that

D
β−
− (φψ) =

∑
j,j′∈L

cj,j′φjψj′
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where

φj(x, t) := φ(x− j, t), ψj′(x, t) := ψ(x− 2−kj′, t).

The first claim of (88) then follows from this decomposition, the triangle
inequality, (3), and the observation thatφj , ψj′ have the same energy as
φ, ψ respectively. The second claim is proven similarly but also uses the
observation thatφjψj′ has the same magnitude asφjψj′ . ��

Wemake the technical remark that the above estimates continue to hold
if one replacesβ by the complex numberβ + it, with constants that grow
at most exponentially int.

Wenowconsider thegeneral settingofProblem17.1,whereno frequency
restrictions are assumed onφ orψ.

By considering a large number of key examples, it was shown in [7] that
the conditions

β0 + β+ + β− = α1 + α2 +
n+ 1
p

− n (89)

p ≥ p0 (90)

β− ≥ n+ 1
2p

− n− 1
2

(91)

β0 ≥ n+ 1
p

− n

β0 ≥ n+ 3
p

− (n+ 1) (92)

α1 + α2 ≥ 1
p

(93)

α1 + α2 ≥ n+ 3
p

− n (94)

αi ≤ β− +
n

2

αi ≤ β− +
n− 1

2
+
n+ 1

2
(
1
2
− 1
p
)

αi ≤ β− +
n− 1

2
+ (n+ 2)

(
1
2
− 1
p

)
(95)

were necessary for (85), wherei = 1, 2. In that paper it was also shown
that the above conditions were also necessary whenp = 2, except for the
endpoint cases when one has equality in (92), [(91) and (93)], or [(91)
and (95) for somei = 1, 2], with (85) being false in these cases. It was
then conjectured that for the above conditions are similarly necessary when
p != 2, except perhaps for some endpoints.
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By combining Proposition 17.2 with dyadic decomposition arguments
as in [23], we can obtain the following progress on this conjecture in the
p ≤ 2 case.

Theorem 17.3.Letp0 ≤ p ≤ 2. Then (85) holds whenever (89) holds, (91),
(92), (95) hold with strict inequality fori = 1, 2, and the conditions (93),
(94) are replaced by the more strict

α1 + α2 >
1
2

+
n+ 3
n− 1

(
1
p
− 1

2
). (96)

If p = p0, then one can let (92) be obeyed with equality.

This is sharp except for endpointswhenn = 2 (since (96) nearlymatches
(94) in this case), and is somewhat sharp forn > 2. One can replace the
multipliersD0,D+,D− by other symbols which satisfy the same types of
regularity and decay estimates, but we shall not pursue this matter here.

Proof. In order to apply the complex interpolationmethodweshall allow the
indicesβ0, β+, β− to acquire an imaginary partit. For notational simplicity
we keep ourselves to the caset = 0, but the reader may easily verify that
the following argument also works for arbitraryt with constants which are
at most exponential int.

Whenp = 2 these claims were proven in [7] (see also [23]). Since we
have replaced (93), (94) with the linear condition (96), we see by complex
interpolation that it suffices to verify the claims whenp = p0. In this case
(92) becomesβ0 ≥ 0; since the operatorDβ0

0 D
−β0
+ is bounded inLp by

standard multiplier theory we may assume thatβ0 = 0.
Letφ,ψ be solutions to the freewave equation. By a finite decomposition

and time reversal symmetry wemay assume thatφ̂ is supported in the upper
light coneΣ+ and thatψ̂ is supported on either the upper or the lower light
coneΣ±.

Writeφ =:
∑
j φj ,ψ =:

∑
k ψk, whereφj ,ψk have frequency supports

on the regionD+ ∼ 2j ,D+ ∼ 2k respectively. We now rewrite (85) as

‖
∑
j,k

D
β+−β−
+ |✷|β−(φjψk)‖p

�

∑
j

22α1jE(φj)

1/2(∑
k

22α2kE(ψk)

)1/2

.

It suffices to show that

‖Dβ+−β−
+ |✷|β−(φjψk)‖p � 2−ε|j−k|(22α1jE(φj))1/2(22α2kE(ψk))1/2
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for all j, k and someε > 0, since the claim then follows from the triangle
inequality, Cauchy-Schwarz, and Young’s inequality for sums.

By symmetrywemay takej ≤ k; by scaling and (89)wemay takej = 0.
Having used (89), our arguments will no longer require this condition and
we shall discard it. Since we are assuming (95) to hold with strict inequality
we may absorb theε into theαi factors, and reduce ourselves to showing
that

‖Dβ+−β−
+ |✷|β−(φ0ψk)‖p � 2εk2α2kE(φ0)1/2E(ψk)1/2.

Fix k. For anyl ≥ 0, decompose the double light cone into finitely over-
lapping projective sectorsΓ of angular width2−l, and letφ0 =

∑
Γ φ0,Γ ,

ψk =
∑
Γ ψk,Γ be a Fourier decomposition ofφ0, ψk subordinate to these

sectors. It suffices to show that

‖
∑

Γ,Γ ′:∠(Γ,Γ ′)∼2−l

D
β+−β−
+ |✷|β−(φ0,Γψk,Γ ′)‖p

� 2−εl2εk2α2kE(φ0)1/2E(ψk)1/2

for all l ≥ 0, since the claim follows by summing inl using the bilinear
partition of unity based on angular separation (see e.g. [21], [23]). By the
triangle inequality and Cauchy-Schwarz as before, it suffices to show that

‖Dβ+−β−
+ |✷|β−(φ0,Γψk,Γ ′)‖p � 2−εl2εk2α2kE(φ0,Γ )1/2E(ψk,Γ ′)1/2

(97)
for eachΓ , Γ ′ with angular separation2−l. By a spatial rotation we may
assume thatφ has frequency support in (86), and that eitherψ or ψ has
frequency support in (87).

Now supposek � 1. In this caseDβ+−β−
+ is equal to2k times a harmless

multiplier on the frequency support ofφ0,Γψk,Γ ′ , so by Proposition 17.2 the
left-hand side of (97) is majorized by

2k(β+−β−)2β−(k−2l)2l
(

n+1
p

−(n−1)
)
2k

(
1
p
− 1

2+ε
)
E(φ0,Γ )1/2E(ψk,Γ ′)1/2.

The claim (97) then follows after some algebra from (95), (89), and the
assumption that (91) holds with strict inequality.

It remains to consider the casek = O(1); by a mild Lorentz transfor-
mation we may makek = 0. (This affectsD+ slightly, but this change is
irrelevant). SinceΓ andΓ ′ differ in angle by2−l, some geometry shows that
D+ is at least2−l on the frequency support ofφψ. We may thus majorize
D
β+−β−
+ inLp by1+2l(β+−β−), and by Proposition 17.2 again the left-hand

side of (97) is bounded by

(1 + 2l(β+−β−))2β−(−2l)2l
(

n+1
p

−(n−1)
)
E(φ0,Γ )1/2E(ψ0,Γ ′)1/2.
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The claim (97) then follows after some algebra from (96), (2), (89), and the
assumption that (91) holds with strict inequality. ��

It seems plausible that many of the missing endpoints in the above result
could be obtained if onewaswilling to prove a generalization of Proposition
17.2which considered the interactionofmultiple scalesandmultiple angular
separations using more sophisticated tools than the triangle inequality, and
in which the2εk loss was eliminated.

Apart from the issue of endpoints, there is still the unsatisfactory gap
between the condition (96) in Theorem 17.3, and the necessary conditions
(93), (94) conjectured in [7], whenn > 2. In particular, to resolve the
conjecture we would need to consider exponents near the case

p =
n+ 2
n

= p0(n− 1), α1 + α2 = 1/p, (98)

which is the intersection of (93) and (94). This case turns out to be related
to the open (and quite difficult)

Conjecture 17.4 (Machedon-Klainerman for theSchrödingerequation).Let
φ, ψ be functions onRn+1 which have frequency supports in

{
(
ξ,

1
2
|ξ|2
)

: ξ ∈ Σ}

and

{
(
ξ,

1
2
|ξ|2
)

: ξ ∈ −Σ}

respectively. Then (4) holds for allp ≥ p0(n).
Proposition 17.5. Suppose that (85) holds for some set of exponents satis-
fying (98). Then Conjecture 17.4 holds withn replaced byn− 1.

Proof. We use themethod of descent, exploiting the fact that the paraboloid
in Rn is a conic section of the light cone inRn+1.

To prove Conjecture 17.4 forn−1, it suffices to verify it forp = p0(n−
1) = n+2

n , since the other endpointp = ∞ is trivial. From Plancherel’s
theorem it suffices to show that

‖
∫
Σn−1

∫
Σn−1

e2πix·(ξ−η)e2πit·
1
2 (|ξ|2+|η|2)f(ξ)g(η) dξdη‖

Lp(Rn−1+1
)

� ‖f‖2‖g‖2 (99)

for all C∞ functionsf, g onΣn−1.
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Fix f , g. LetR � 1 be a large number, and consider the functionsφR,
ψR defined onRn+1 by

φR(x1, x
′, t) :=

∫ 1

−1

∫
e2πi(t+x1)(R+s)e

2πi(t−x1) |ξ|2
4(R+s) e2πix

′·ξf(ξ) dξds

and

ψR(x1, x
′, t) :=

∫ 1

−1

∫
e−2πi(t+x1)(R+s)e

2πi(t−x1) |ξ|2
4(R+s) e2πix

′·ξg(ξ) dξds.

One can easily verify thatφR andψR solve the wave equation, and that

‖φR[0]‖Ḣα1 ∼ Rα1‖f‖2, ‖ψR[0]‖Ḣα2 ∼ Rα2‖g‖2.

By the assumption that (85) holds at (98), we have

‖Dβ0
0 D

β−
− D

β+
+ (φψ)‖p � R1/p‖f‖2‖g‖2

for someβ0, β−, β+. However, a computation of the frequency support of
φψ shows thatD0,D−,D+ are all given by smooth functions comparable
to 1 on this support, and so we have

‖φψ‖p � R1/p‖f‖2‖g‖2

Making the change of variablesX = t+ x1, T = (t− x1)/2R, we have

φψ(X,x′, T ) = e4πiXR
∫ 1

−1

∫ 1

−1

∫ ∫
e2πiX(s+s′)e

2πiT
(

|ξ|2
2+s/2R

+ |η|2
2+s′/2R

)

e2πix
′·(ξ+η)f(ξ)g(η) dξdηdsds′

and so we have

‖φψ‖Lp
XL

p

x′L
p
T

� ‖f‖2‖g‖2,

theR1/p factor having cancelled against the Jacobian term.
The phase factor24πiXR can be discarded. LettingR → ∞ and taking

limits, and then evaluating thes, s′ integrations, we thus see that

‖
(

sin 2πX
X

)2 ∫ ∫
e
2πiT

(
|ξ|2
2 + |η|2

2

)
e2πix

′·(ξ+η)f(ξ) dξdη‖Lp
XL

p

x′,T

� ‖f‖2‖g‖2,

and (99) follows since theX behaviour is trivial. ��
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The Machedon-Klainerman conjecture for the Schrödinger equation
looks very similar to the results proved in Theorem 1.1 withk = 0, however
the method of proof breaks down because the strong Huygens’ principle
((40) and (41)) totally fails for this equation. The arguments in [25] fail for
similar reasons (basically, the tubesT are no longer constrained to point
in null directions). Only partial progress is known for this problem; for in-
stance, whenn = 2 this conjecture should hold for allp ≥ 2 − 1

3 , but the
best result achieved to date isp > 2 − 2

17 , see [22]. A resolution of this
conjecture would also yield new results for the very difficult restriction and
Bochner-Riesz problems for the paraboloid [21], [6] as well as the problem
of pointwise convergence of theSchrödinger equation to the initial data [23].

The estimate (85) at the endpoint (98) shares some features in common
with the conjectures (29), (30) in [25], and the resolutions to these problems
may well be related.

18. Appendix I: Proof of Lemma 15.2

We now give the proof of Lemma 15.2. The main technical difficulty is to
obtain a good constant in the main term of (63); this will be obtained by
using characteristic functions to decompose the Fourier domain, followed
by an averaging over rotations to smooth things out spatially.

Partition
Sn−1 ∩Σ =

⋃
ω∈E

Aω

whereAω consists of those points inSn−1 ∩Σ which are closer toω than
any other element ofE . ThusAω is in theO(1/r)-neighbourhood ofω.

LetG ⊂ SO(n) denote the set of all rotations inRn which differ from
the identity byO(1/r). LetdΩ bea smooth compactly supported probability
measure on the interior ofG.

For eachΩ ∈ G andω ∈ E , we define the Fourier projection operators
PΩ,ω for test functionsf onRn by

P̂Ω,ωf(ξ) := χΩ(Aω)(ξ/|ξ|)f̂(ξ).
Note that

φ(0) =
∑
ω∈E

PΩ,ωφ(0) (100)

for all Ω ∈ G and red wavesφ of frequency 1.
The decomposition (100) is well-behaved in frequency, but has terrible

spatial localization properties. To get around this we will now average in
dΩ and then apply a spatial cutoff.
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Recall the functionη0 constructed in Sect. 10. Write

ηx0(x) := η0

(
c2

r
(x− x0)

)
for all x0 ∈ L. From the Poisson summation formula we have

1 =
∑
x0∈L

ηx0 .

We define the functionsφT at time 0 by

φT (x, 0) := ηxT (x)
∫

(PΩ,ωT
φ(0))(x) dΩ (101)

and at other times by
φT (t) := U(t)φT (0),

whereU(t) was the evolution operator defined in (31). One may verify that
φT is a red wave with angular dispersionO(1/r), that the mapφ �→ φT is
linear, and that (58), (59) hold.

We now show (60). From (101) and the rapid decay ofηxT we have the
pointwise estimate

φT (0) � c−C χ̃T (0)4
∫

|PΩ,ωT
φ(0)| dΩ, (102)

so it suffices by Minkowski and theL2 boundedness ofPΩ,ωT
to show that

‖χ̃T (0)PΩ,ωT
φ(0)‖2 � CC0 ‖χ̃T (t)PΩ,ωT

φ(t)‖2.

for all Ω ∈ G, since theCC0 factor can be absorbed into thec−C factor by
the hypothesisc ≤ 2−C0 . In fact, we will show the stronger

‖φ‖L2(D(xD,tD;r)) � C0‖χ̃3
D(xD−(t−tD)ωT ,t;r)φ(t)‖2 (103)

for all disksD of radiusr and timeco-ordinatetD = O(R), andany redwave
φwith frequency support in the sector{(ξ, |ξ|) : |ξ| ∼ 1,∠(ξ, ωT ) � C/r}.
The previous claim follows by breaking up̃χT (0) into various disksD.

We now show (103). We have the identity

φ(x, tD) =
∫
e2πi(x·ξ+(t−tD)|ξ|)ϕ(ξ)φ̂(t)(ξ) dξ

whereϕ is an arbitrary bump function which equals one on the sector{ξ ∈
Σ : ∠(ξ, ωT ) � 1/r} and is adapted to a slight enlargement of this sector.
By standard stationary phase estimates and the observation thattD − t =
O(C0r

2), we thus have

φ(tD) = φ(t) ∗K
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where the kernelK satisfies the estimates

|K(x)|
� CC0 r

1−n(1+|x−(t−tD)ωT |/r)−N10
(1+|(x−(t−tD)ωT )·ωT |)−N10

.

The claim (103) then follows from a dyadic decomposition ofK around the
point (t− tD)ωT , followed by Young’s inequality. This proves (60).

We now show (61). WriteR′ := dist(T,Q). Let D denote the disk
D = D(0, 0;C−1R′). SinceR′ � R, it suffices from (32), (33), and crude
estimates to show that

‖φT ‖L2(D) � R′−NE(φ)1/2.

But this is clear from (101) and the estimates

‖ηxT ‖L∞(D) � R′−N , ‖PΩ,ωT
φ(0)‖2 ≤ E(φ)1/2.

This proves (61).
We now show (62). From (103) the left-hand side of (62) is majorized

by
r
∑
T

sup
q
χ̃T (xq, tq)−3‖χ̃3

D(xq+tqωT ,0;r)φT ‖2
2.

From (102) this is majorized by

c−Cr
∑
T

sup
q
χ̃T (xq, tq)−3‖χ̃3

D(xq+tqωT ,0;r)χ̃T (0)4
∫

|PΩ,ωT
φ(0)| dΩ‖2

2.

From (57), (6) we have the elementary inequality

χ̃D(xq+tqωT ,0;r)(x)χ̃T (x, 0) � χ̃T (xq, tq)

so we may bound the previous by

c−Cr
∑
T

‖χ̃T (0)
∫

|PΩ,ωT
φ(0)| dΩ‖2

2.

Summing inxT , we reduce to showing that∑
ω∈E

‖
∫

|PΩ,ωφ(0)| dΩ‖2
2 � E(φ).

But this follows fromMinkowski’s inequality followed by Plancherel’s the-
orem.

We now show (63). We expand the left-hand side as∑
q0

‖
∫ ∑
ω∈E

∑
x0∈L

mq0,T (ω,x0)η
x0PΩ,ω(φ(0)) dΩ‖2

2

1/2

.
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By Minkowski’s inequality this is less than or equal to

∫ (∑
q0

‖
∑
ω

∑
x0

mq0,T (ω,x0)η
x0PΩ,ω(φ(0))‖2

2

)1/2

dΩ. (104)

Define the setY ⊂ Sn−1 by

Y :=
⋃
ω∈E

{α ∈ Aω : dist(α, Sn−1\Aω) > Cc2/r};

this setY plays a similar role here to the setsIc,k(Q) used in Proposition
4.1. and definePΩ(Y ) to be the multiplier

P̂Ω(Y )f(ξ) := χΩ(Y )

(
ξ

|ξ|
)
f̂(ξ).

By the triangle inequality, (104) is less than the sum of

∫ (∑
q0

‖
∑
ω

∑
x0

mq0,T (ω,x0)η
x0PΩ,ωPΩ(Y )φ(0)‖2

2

)1/2

dΩ. (105)

and∫ (∑
q0

‖
∑
ω

∑
x0

mq0,T (ω,x0)η
x0PΩ,ω(1 − PΩ(Y ))φ(0)‖2

2

)1/2

dΩ.

(106)
Consider the quantity (105). The contributions of eachω are orthogonal as
ω varies, so we can rewrite (105) as∫ (∑

q0

∑
ω

‖
∑
x0

mq0,T (ω,x0)η
x0PΩ,ωPΩ(Y )φ(0)‖2

2

)1/2

dΩ,

which can be re-arranged as

∫ (∑
ω

∫
|(PΩ,ωPΩ(Y )φ(0))(x)|2

∑
q0

(
∑
x0

mq0,T (ω,x0)η
x0(x))2 dx

)1/2

dΩ.

This is clearly less than or equal to

∫ (∑
ω

∫
|(PΩ,ωPΩ(Y )φ(0))(x)|2(

∑
q0

∑
x0

mq0,T (ω,x0)η
x0(x))2 dx

)1/2

dΩ.
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Summing inq0 and then inx0, this simplifies to∫ (∑
ω

∫
|(PΩ,ωPΩ(Y )φ(0))(x)|2 dx

)1/2

dΩ.

By the orthogonality of thePΩ,ω, we thus have

(105) ≤
∫

‖PΩ(Y )φ(0)‖2 dΩ ≤ E(φ)1/2.

Now consider (106). Repeating the above argument, but noting that we
must use almost orthogonality instead of orthogonality, we obtain

(106) �
∫

‖(1 − PΩ(Y ))φ(0)‖2 dΩ.

By Cauchy-Schwarz we thus have

(106) � (
∫

‖(1 − PΩ(Y ))φ(0)‖2
2 dΩ)1/2;

by Plancherel we thus have

(106) � (
∫

|φ̂(ξ, 0)|2(
∫
χΩ(Y )c

(
ξ

|ξ|
)
dΩ) dξ)1/2.

The inner integral can be seen to beO(c2) for all ξ, so by Plancherel again
we have

(106) � cE(φ)1/2.

Combining our estimates for (105) and (106) we obtain (63). ��

19. Appendix II: Proof of Lemma 11.1

To complete the proof of Theorem 1.1 we have to prove Lemma 11.1. This
shall be a straightforward application of the wave packet decomposition
Lemma 15.2 and the energy estimates on cones developed in Sect. 13. How-
ever, our arguments are not as delicate as those in the rest of the proof of
Theorem 1.1, as Lemma 11.1 is not an endpoint estimate. For instance, we
will be able to lose powers ofR1/N in our estimates.

We turn to the details. LetR ≥ 2C0k, and letφ,ψ be red and blue waves
of frequency1, 2k respectively and margins at least1/200. We may assume
the energy normalization (11). By translation invariance it suffices to show
that

‖(PDφ)ψ‖Lp(Qann(0,0;R,2R)), ‖φ(PDψ)‖Lp(Qann(0,0;R,2R)) � R−1/C
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for any diskD centered at the origin with radius2k ≤ r ≤ C0R
1/2+4/N .

We shall only prove the estimate for(PDφ)ψ; the estimate forφ(PDψ) is
proven similarly, observing that any additional powers of2k which appear
can be absorbed in to theR−1/C factor.

As in previous arguments, we obtain theLp estimate by interpolation
between anL1 estimate and anL2 estimate, namely

‖(PDφ)ψ‖L1(Qann(0,0;R,2R)),� RC/NR3/4 (107)

and
‖(PDφ)ψ‖L2(Qann(0,0;R,2R)),� RC/NR−(n−1)/4. (108)

By interpolation and some algebra involving (8) one obtains the desired
result ifN is sufficiently small. The point is that (107) improves over (27)
by a substantial power ofR.

We first prove (107). The contribution outside of the setCred(0, 0;R1/2)
is acceptable by (40), and the contribution inside this set is acceptable by
Corollary 13.2. This proves (107).

Now we prove (108). SetQ := Q(0, 0; 2R). We use Lemma 15.2 with
this cubeQ and some arbitrary value ofc (sayc = 2−C0) to decompose
(PDφ) as

(PDφ) =
∑
T∈T

(PDφ)T .

By (61) and crude estimates (e.g. (7) or Lemma 14.2) the contribution
of those tubesT for which dist(T, 0) � R is acceptable, so we can restrict
ourselves to those tubesT for which dist(T, 0) � R. There are onlyO(RC)
of these tubes.

We now dispose of those remaining tubesT for which R1/2+1/N �
dist(T, 0) � R. For such tubesT we see from (60) witht = 0 and (34) that

E((PDφ)T ) � ‖χ̃T (0)PDφ(0)‖2
2 � R−NE(φ) = R−N ,

and one can dispose of the contribution of these tubes by crude estimates.
It remains to deal with those tubes for which dist(T, 0) � R1/2+1/N . In

this case wewant to exploit the fact that(PDφ)T is concentrated onR1/NT ,
the dilate ofT around its center byR1/N . Indeed, from (62) we see that

‖(PDφ)T ‖L2(Q\R1/NT ) � R−N ,

and so the contribution outsideR1/NT is acceptable by crude estimates. It
thus remains to control the expression

‖
∑
T

(PDφ)TψχR1/NT ‖L2(Qann(0,0;R,2R)).
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We now observe the geometric fact that asT ranges over all tubes inT
with dist(T, 0) � R1/2+1/N , the tubesχR1/NT have an overlap of at most
O(RC/N ) in Qann(0, 0;R, 2R)). By almost orthogonality, it thus suffices
to show that (∑

T

‖(PDφ)Tψ‖2
2

)1/2

� R−(n−1)/4.

Applying Lemma 14.2, we can bound the left-hand side by

R−(n−1)/4

(∑
T

E((PDφ)T )E(ψ)

)1/2

.

But this is acceptable by (55) and (38). ��
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