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Abstract. Recently Wolff [25] obtained a nearly shafg bilinear restric-

tion theorem for bounded subsets of the cone in general dimension. We
obtain the endpoint of Wolff’s estimate and generalize to the case when
one of the subsets is large. As a consequence, we are able to deduce some
nearly-shar@.? null form estimates.
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1. Introduction

Letn > 2 be a fixed integer. We say that a function R"*! — H is ared
waveif it takes values in a finite dimensional complex Hilbert spateand
its space-time Fourier transforgnis an L? measure on the set

2607 = (1)) (6, 1) < 5,28 < Jg| < 2}

for some integek, wheree; is a fixed basis vector. Similarly, we say that
¢ : R — H'is ablue waveif it takes values in a finite dimensional
complex Hilbert spacél’ and+ is anL? measure on

2 i (€, ~Je]) s £(€ 1) < T, 2" < Jg] < 204

for some integek. In both cases we cal* the frequencyof the wavesp,
.

Red and blue waves both solve the free wave equation, but propagate
along different sets of characteristics. Note that blue waves are the time re-
versal of red waves. Also, these waves are automatically smooth and bounded
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thanks to the frequency localization. The vector valued formulation will be
convenient for inductive reasons, but our implicit constants shall always be

independent off andH'.
We define theenergyof ¢, ¢ by
E(¢) = o3, E®) = [lv@)3 1)

wheret € R is arbitrary. This definition is independent of the choice,of
and is related to the standard notion of energy by the formula

PEG) ~ 5 [ 1O + [0 do.

Throughout the papepy = po(n) will denote the exponent

n+3
= . 2
Po= (2

The main result of this paper is the following bilinear estimate.

Theorem 1.1. Let¢ be a red wave of frequency 1, andbe a blue wave of
frequency2” for somek > 0. Then we have

ol S 26734 B(9) 2B(y) 2 3)
forall 2 > p > pg, € > 0. In particular, ¢, ) have frequency 1 then

6w, < E(o)2E(w)' 2. (4)

Inthe above theorem and in the sequel, the implicit constants may depend
one but are independent df, H', and¢y : R"*! — H ® H' denotes the
tensor product ® v of ¢ andi.

The estimate (4) solves a conjecture of Machedon and Klainerman. The
restrictionp > pg is sharp; see e.qg. [7], [22], [21]. F@r < p < oo the
theory is much simpler, and the best possible estimate is

lgwll, S 25375 E(¢) /2B (y) V2.

This is easily proved from the = 2 case and Sobolev embedding.

The estimate (4) is a genuinely bilinear estimate and cannot be proven
directly from linear estimates. Indeed, the Strichartz estimate [19] combined
with the Holder inequality only yields the range> (n+1)/(n—1), while
Plancherel's theorem and Cauchy-Schwarz only gives the range (see
e.g. [11]). In then = 2 case, the fact that one could go belpw= 2 was
first shown by Bourgain [2], and in [22] a concrete range afas given,
namelyp > 2 — 1% More recently, Wolff [25] obtained the range> pg
for all dimensions:. Thus (4) is the endpoint of that in [25].
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The generalization (3) of (4) is necessary in order to develop sharp null
form estimates, as we shall see in Sect. 17. The estimate (3) is sharp except
for the . To see this, let) be a blue wave whose Fourier transform is
supported in a unit “square” i?¥ Xy;,,., and which is comparable to 1 on a
2F % 1 tube oriented in a blue null direction, and {et= (¢i)§il be a vector-
valued red wave of frequendysuch thatp; is comparable to 1 oB;, where
the B; are a family of2* unit balls that cover the above tube. Td&erm can
probably be removed whemn > py. Whenp = pg the author conjectures
thate can still be removed, but this seems to require an extremely delicate
analysis and some new Kakeya estimates for null rays. However, it should
be fairly straightforward to replace tR€* factor by a polynomiak® in this
case.

Broadly, our strategy to prove Theorem 1.1 is as follows. We shall localize
the estimate (3) to a culi@ of side-lengthR > 2*, and obtain a bound
independent of:. This will be obtained by induction oR, as follows.

If ¢ andy are dispersed fairly evenly throughdtwe shall decompose
Q into sub-cubes of side-leng?T“° R and decomposgandz) into smaller
waves, each of which is concentrated on one of these sub-cubes. By an
interpolation between bilineak! and L? estimates as in Wolff [25], the
cross-terms are well controlled, and one can repfaead by a “quilt”
of waves on th@ =0 R-cubes. One then applies the induction hypothesis to
each sub-cube and sums up.

This tactic works well wheg andqy are dispersed, but there is a problem
when almost all the energy gfand« simultaneously concentrate in a disk
D ofradiusr < R. By Huygens’ principle the wawvgy is then concentrated
in the double light cone generated by Restricting to this smaller set, we
can exploit a more favourable bilinear estimate (Corollary 13.2) than
the more trivial bilinear.! estimate (27) used in the non-concentrated case.
One can then repeat the non-concentrated argument, and logaize)
all the way down to the scale ef at which point the waves become non-
concentrated and one obtains enough of a gain to close the induction.

The proof is unfortunately rather complex. In an attempt to give the
reader a sense of the full argument without drowning in the details, the
author has abstracted the argument into several sections. We first give the
top-level argument, in which Theorem 1.1 is deduced from several major
propositions. Then, we give the medium-level argument, in which these
major propositions are deduced from some elementary estimates and a key
estimate, Proposition 4.1. Finally, we devote several sections to the proof
of Proposition 4.1. We have tried to make each section as self-contained as
possible, so that the arguments in each section rely only on the Propositions
and Lemmata of the previous sections, and not on the method of arguments
or on notation specific to a single section.
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2. Some notation

In this section we list some notation which will be used throughout the
argument.

We fix N > 1 to be a large integer depending only@@V = 27" will
suffice); the disclaimer “assuminy is sufficiently large” will be implicit
throughout our arguments. We also (e ¢ < 1 be an arbitrary small
number. We also le€y denote an integer much larger thadh 1/¢; for
instance,

Co = 2LN/el™ (5)

will suffice. Generally speaking, we ugé as a large exponent, aii as
a very large constant (large enough to dominate any reasonable quantity
arising fromN or ¢). As a rule of thumb, any term containing an” or
RN factor may be ignored for all practical purposes; these error terms
only arise because one cannot quite simultaneously localize in both space
and frequency.

We use the notatioA := Btoindicate that is being defined to equa.
We shall extend this notation in several ways, for instafice g indicates
that f is being defined via the Fourier transform.

We letC denote various large numbers that vary from line to line (possi-
bly depending oV, ¢, but will not depend explicitly ol’y), and letA < B
or A = O(B) denote the estimatd < C'B whereC depends only om
ande. Similarly we used < B to denoted < C~!B. Generally speaking,
we shall use theS notation to control error terms, but will need the more
precise< notation for the main terms due to the inductive nature of the
argument. In par ticular, we will be dealing with many estimates of the form
A<B+CE,A<(1+Cc)B+c “E,orA<(1+CNc)B+cCE,
whereB is the main term[’ is the error term, ant < ¢ < 1 is some small
parameter which we may optimize in later. For such estimates it will be very
important that the factor in front aB is either 1 or very close to 1, as we
will be unable to close the induction otherwise.

Note that our constants are independent of the dimension of the spaces
H, H'. This will be important for the induction argument.
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If ¢(x, ) is a function of both space and time, we ugeé) to denote the

spatial functiony(t)(z) := ¢(x, ).
We use the hat notation for the spatial Fourier transform

f(€) = / ne_%m'gf(x) dx

as well as the spacetime Fourier transform

é(ga T) = /Rn+1 6727ri(m-§+t7-)¢(x7 t) dadt,

with the meaning being clear from context. We definefteguency support
supr(f) of a functionf to be the support of the Fourier transfofim

We shall always tregR"*! as endowed with the Euclidean metric and
never with the Minkowski metric, so that terms such as lengthangle
Z(x,y), etc. retain their usual meaningR¥ . On the other hand, we will
employ the Lorentz transforms on occasion, especially when we derive null
form estimates in Sect. 17.

We now define some familiar geometric objects, namely disks, cubes,
cones, and conic neighbourhoods.

A diskwill be any subseD of R"*! of the form

D = D(xp,tp;rp) :=={(z,tp) : |zt —xp| < rp}

for some(zp,tp) € R* andrp > 0. The reader should note that disks
aren-dimensional objects even though they residBTi!. We calltp the
time co-ordinateof the diskD. If D is a disk, we define the cutoff function
xp onR" "1 by

) ’J?_xD| _N10
xp(z,t):=(14+ — :
D

If D = D(zp,tp;rp) is a disk and: > 0, we definecD to be the disk
c¢D = D(zp,tp;crp), and thedisk exteriorD*t = D¢t (xp tp;rp) to
be the region

(6)

Demt(xD,tD;rD) :={(x,tp) : |x —xzp| >rp}.

We endow disks and disk exteriors with spatial Lebesgue medsure

We defineQ(zq,to;rq) to be then + 1-dimensional cube iR"™*!
centered atz(, tg) with side-lengthg and with sides parallel to the axes.
We call the intervalitg — r7q/2,tg + ro/2] the lifespanof Q. If Q =
Q(zg,tg;rq) is a cube and > 0, we usec() to denote the cube() :=
Q(zq,tg; crq). Finally, we define the cubical anndll*™" (xq, tg;r1, 2)
by

QU (zq, i1, m2) == Q0,1 m2)\Q(2Q, tQ; 1)
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Let ¥ = X denote the spatial region
1 T
i={e: 5l <4 L(Ee) < Th

If (z0,t0) € R"™!, define thaed conewith vertex(z, to) to be the set
C%(z0,t0) == {(x0 +rw,to —7) : 7 € R,w € S" N X},
and theblue coneat this vertex to be
CtMe (g, t0) := {(z0 + Tw,to +7) : T € R,w e SN L}

For anyr > 1, we defineC"*?(xq, to;r), CP(xq,tp;r) to be ther-
neighbourhoods af¢?(xz, tg), C*"¢(xz, o) respectively. Finally, we de-
fine the combined conic neighbourhoG@“?' (x, to; r) to be

Cpurple(:co,to; r) = C’Ted(xo,tg; r) U C’bl“e(xo,to; T).
For any integey, let D; denote the dilation operator
Djo(x,t) == ¢(2x,2'1),
andT to be the time reversal operator
To(x,t) := ¢(x,—t).

The operatoim maps red waves onto blue waves and vice versa, while the
operatoD; maps waves of frequendyonto waves of frequency/’.

In our induction argument we shall frequently be decomposing red and
blue waves into smaller waves. Unfortunately, these decompositions often
enlarge the Fourier support of the waves slightly, which is a potential ob-
struction to closing the induction. To get around this we introduce the notion
of themarginmargin¢) of a waveg. More precisely, ifp is a red wave of
frequencyl, we define margify) to be the non-negative real number

margin(¢) := dist(supg$), £\ £7)
whereX* denotes the light cones
T = {(& ) € e R
We extend this definition to general red or blue waves by the formulae
marginTDy¢) := marginDx¢) := margin¢).
Thus, for instance, i) is a blue wave of frequencgif, then
margin(y) := 2~ *dist(supg(¢)), 2F (2 7\ Z¥ue)).

The concept of margin is only needed to overcome the technical obstruction
mentioned earlier, and otherwise plays no role of importance.



Endpoint restriction for the cone 221

3. The top-level proof of Theorem 1.1

In this section we give the top-level proof of Theorem 1.1, in which we
state the key propositions and give the inductive argument which yields the
Theorem from these propositions. We shall prove these propositions in later
sections.

Throughout the proof > 2, £ > 0, ¢ > 0 will be fixed. It suffices to
verify the casek > 2%°, since thek < 2%° case follows by applying a
Lorentz transform. We shall thus assuing 25" throughout the argument.

In particular, any factor depending érwill dwarf any factor depending on
Co, which in turn dwarfs any factor depending 8f which in turn dwarfs
any absolute constants.

We can also assume thats a multiple ofCy. This is a purely notational
convenience that we shall only use in Sect. 16.

Itis known (see e.g. [2], [11], [22], [16], [7], or Lemma 14.2 below) that

lpylla < E(9)2E(p)Y2. 7)

Thus Theorem 1.1 holds fpr= 2. By interpolation it thus suffices to prove

the theorem when ;
n +
= = — 8
P=po= (8)

and we shall implicitly assume this throughout the proof.

Definition 3.1. For anyR > Cy2*, we defined(R) to be the best constant
for which the inequality

1609l Lo (@) < A(R)E ()2 E()M/? (9)

holds for all spacetime cubégr of side-lengthR, red waves of frequency
1, and blue waves of frequency2” such that one has the margin requirement

margin¢), margin(y)) > 1/100 — (2F/R)/V. (10)

The wavesyp, » may take values in arbitrary finite-dimensional Hilbert
spaces.

Note that it suffices to verify (9) for thosg ) which obey the normal-
ization

E(¢) = E(y) = 1. (11)

From (7) it is clear thatd(R) is finite for eachR. The margin require-
ments onA(R) are technicalities which are needed for the inductioron
to work properly, as many of our decompositions will decrease the margin
of ¢ and+ slightly. However, we may remove the margin requirements by
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a finite partition of space and frequency, and some mild Lorentz transforms
to obtain the crude estimate

16vllon S AR)E(¢) 2 E(y)!/? (12)

for any cube&l  of side-lengthR, any R’ ~ R, and any red and blue waves
&, ¢ of frequencyl, 2* respectively. In particular to prove (3) it suffices to
show that

A(R) < 20C0gkk(=3) (13)
uniformly for all R > C2*.
Because of the increasingly strict margin requirement® as co we

see thatA(R) is not necessarily increasing . We therefore define the
auxiliary quantityA(R) for all R > Cy2* by

A(R):= sup A(r).
Co2k<r<R

We now begin the proof of (13). In Sect. 7 we shall prove (13) wRen
is close ta2":

Proposition 3.2. For any R > C;2*, we have the bound
A(R) < 20%0(R/2k)C2MG3),

This proposition is needed to begin the inductive argument. The exact
power of(R/2¥) is unimportant as we shall soon improve this bound sub-
stantially.

In Sect. 8, we adapt the localization ideas from [25] to prove the following
recursive inequality ol (R).

Proposition 3.3. Let R > 2C2% and0 < ¢ < 2%, and let¢, ¢ be re
and blue waves of frequency 1 aRféirespectively which obey the relaxed
margin requirement

margin(¢), margin(y)) > 1/100 — 2(2F/R)'/N. (14)

Then for any cubé€) i of side-lengthk we have

160l e (o < [(1+ CeVA(R/2) + ¢ C2* 62| E(g) 2 E(1) /2. (15)

In particular, we have

A(R) < (1 + ONe)A(R/2) + ¢ €286 ),
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The slight relaxation of margin requirements in Proposition 3.3 (as com-
pared to (10)) is important for technical reasons, but should be ignored for
a first reading.

The loss ofCN¢ in the main term comes about because we need to
divide an R-cube into sub-cubes at various scales, and then shrink those
cubes further by aboutin order to create some separation between those
sub-cubes (this is necessary, otherwise the error terms can blow up). In
practice we can always optimizeso that its impact on the argument is
negligible.

By settinge = (2¥/R) <~ in Proposition 3.3, we obtain

AR) < (1+ CN(Qk/R)ﬁ)Z(R/Q) + C(Qk/R)E/NQk(%*%)

for all R > 2C,2". Iterating this and using Proposition 3.2 whBn~ 2%,
we obtain -
A(R) S 2090 (R/2F)/N2M2) (16)

for any R > Cy2*. This can then be used to obtain Theorem 1.1for py
(cf. [25], [23], [2]), but we shall not do so here.

From the preceding discussion we observe that (13) is already proven
for R < 2€0F Thus we may assume th&t > 2°0%. R is now very large,
dominating most quantities which depend onlyfQry, N, ande.

In the largeR case we need to introduce the notion of energy concentra-
tion.

Definition 3.4. For anyr > 0, spacetime cubé&), red wave, and blue
waver), we define thenergy concentratiot,. o (¢, 1) to be the quantity

Erq(¢,v) := max <;E(¢)1/2E(1/1)1/27 Sup ||¢”L2(D)H¢HL2(D))

where D ranges over all disks of radiuswhose time co-ordinatep is
contained in the lifespan @).

Clearly we haveF,. o(¢,) ~ E(¢)'/2E(y)'/? for anyr, with equality
or near-equality only occurring whef) ¢) simultaneously concentrate in a
disk of radiusr. However, the choice of whether to uBg (¢, ¢) instead
of E(¢)Y/2E(x))'/? will be crucial to make a certain induction work.

Roughly speaking, the strategy for the> 2¢°* case is to show that
Proposition 3.3 can be improved slightly unless there is substantial energy
concentration. This slight improvement will be enough to close the induc-
tion, however, one must still deal with the concentrated case. In this case
we use Huygens principle to restrict ourselves to a small region of a double
coneC?¥Ple in which case one can obtain an improvement of Proposition
3.3 by other means.
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To make this strategy more precise we shall need the following technical
variant of A(R) which is weighted slightly to exploit the gain in the non-
concentrated case.

Definition 3.5. For anyR > 2€°F and anyr’,r > 0, we defineA(R, r, ")
to be the best constant for which the inequality

H(;51/]”Lp(QRﬂCp”Tple(xo,to;r/))
< AR, 1,7")(E(¢) PEW) ) P By coqn(¢.0)7 (A7)

holds for all spacetime cub&py of side-lengthR, all (zg, o) € R"*, red
wavese of frequency 1, and blue waves of frequency2® such that one
has the margin requirement (10) and the energy bound (11).

As before, it suffices to verify (17) assuming the energy normalization
(11). Itis important that the right-hand side if (17) is exactly as stated, and
not (for instance) the comparable quantityR, r, ') E(¢)'/2E()/2. In
practicer andr’ shall usually be comparable in size.

The preceding heuristics regarding concentration can be formalized in
the following Proposition, which we prove in Sect.11. This Proposition
is basically an application of Huygens’ principle, combined with some

more sophisticated arguments to deal with the highly concentrated case
r < R1/2+4/N

Proposition 3.6. For any R > 2¢0% we have

AR) < (1-Cy9)  sup  A(R,r,Co(1+ 1)) + 200022k -3),
2Cok<R<R
R1/2+4/N <,

The requiremenR!/2+4/N < 1 is somewhat difficult to obtain, but it is
necessary to do so because the tools we shall develop to cdrfRol, )
have a spatial uncertainty of aboy and so one cannot effectively exploit
any concentration effects near or below this scale. This uncertaingfof
is responsible for all the powers of/N and R'/N which appear in the
arguments; these powers should be ignored for a first reading. The key point
to observe in Propo sition 3.6 is that we have somehow wrested a small
gain(1 — CO‘C) from the main term on the right-hand side, thanks to the
beneficial effects of nhon-concentration in (17). This gain will allow us to
absorb all error terms and + C'¢) factors in the other Propositions in this
section, thus closing the induction.

To use this inequality inductively we need to bout@R, r, ') in terms
of A(R). From (12) it is easy to show that(R,r,r") < C A(R), but this
is too crude to close the induction, and one must take some more care with
the constant in the leading term.
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The bounding ofA(R, r,7’) by A(R) can be split into two stages. First,
we shall use finite speed of propagation in Sect. 12 to observe that one can
obtain the desired bound in the non-concentrated cas€’§ R:

Proposition 3.7. ForanyR > 2¢o% » > C§'R,r’ > 0,and0 < ¢ < 27,
we have -
A(R,r,r") < (1+ C)A(R) + ¢ C2"672).

For the concentrated case we iterate the following Proposition, which is
provenin 9.

Proposition 3.8. For any R > 2¢0* andC§'R > r > R'/>+3/N 'we have

A(R,7,7") < (14 CNc)A(R/Co,r(1 — Cr /3N )

—1/N
4@ (1 + ;j) 9k —2)
T

forany0 < ¢ < 27Co,

The decay of1 + 2TRT)—1/N in the error term is crucial for this endpoint
result as it allows us to avoid losing a logarithmic fackeg(R/r) in the
iteration, which would otherwise be fatal to the proof of the endpoint. This
decay ultimately arises from the improved energy estimates on cones as
encoded in Lemma 13.1. However, the presence oRthmeans that we
still lose a factor ofk when summing over scalds, and this is the main
source of thes* loss in (3).

These two Propositions combine to give

Corollary 3.9. For any R > 2CoF andr > RY/2+4/N  we have
AR, 7, Co(1 + 7)) < (1+ ON)A(R) + ¢ C2skk(5—3)
forany0 < ¢ < 2%,

Proof. We may assume that< C§ R since the claim follows from Propo-
sition 3.7 otherwise. Lef be the firstinteger such that> 2=/ C§' R; from
the hypotheses we have < log(r). Definer =: rg > r > ... > ry
inductively byr; 1 = r;(1 — Cr;_l/gN). One can verify inductively that
rj =1+ O(jr~1/4N) for all j, and in particular that; ~ .

From Proposition 3.8 we have

A(R/2j,rj, C[)(l + 7")) < (1 + CNCj)A(R/2j+1,Tj+1, C[)(l + T))

R —I/N 1_1
—-C k(
+Cj <1+ 2j2kr> 20w 2
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forany0 < ¢; < 27,
Observe that

R~ ooogt-ih,

1 ,
+ 27 2ky ~

If we thus set; := k~1c2(/=1=k)+/(2CN) for g suitable constart, we
thus obtain

A(R/Qja T, 00(1 + ’I"))
< (14 CONE e~ U=i=R+/CONN A(R /2T [ rj1 1, Co(1 4 7))
4 }kCeCo=(T=i=k)+/2Ngk(,—3)

Iterating this, one obtains
AR, 7, Co(147)) < (L+CNE)A(R/2” 17, Co(147)) +kCeC2FG2),

The claim then follows from Proposition 3.7. a

Combining this with (3.6) and setting:= 2-°, we thus obtain
A(R) S (1 — CO_C)TR)—F 200025]92]@(%_%)

for all R > 2€°F, Combining this with (16) we thus see that this inequality
thus holds for allR > C2*. Taking suprema and using the monotonicity
of A(R) we thus obtain

m < (1 — C()_C)m+ 200025]@2]6(%,%)
forall R > C2¥, which implies
A(R) < 2002k 5 =2),

and (13) follows for allR > C(2* as desired.

It remains to prove Propositions 3.2-3.8. It turns out that most of these
propositions follow as consequences of a localization property for red and
blue waves, Proposition 4.1, which we shall state in the next section, af-
ter some notation. In Sections 7-12 we show how this Proposition implies
Propositions 3.2-3.8. Finally, in Sections 13-16 we give a proof of Proposi-
tion 4.1.
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4. The main proposition

In this section we state the main proposition of the argument, Proposition
4.1. As we shall see in the next few sections, this Proposition will be the
main tool used to prove Propositions 3.2, 3.3, and 3.8, and also plays a minor
role in the proof of Proposition 3.7.

Proposition 4.1 involves the localization of wawgsy on a large cube
Q into smaller waves localized on sub-cubegfTo make this precise we
must introduce some notation.

If @ is acube of side-lengtR, and;j > 0 is an integer, we may partition
Q into 2(**1J cubes of side-length—7 R; we useQ;(Q) to denote the
collection of these cubes.

If Qis acubeandg > 0is an integer, we definerad wave tables on
Q@ with depthj to be any red wave with the vector form

¢ = (qb(q))qGQj (@)

where the componenig? may themselves be vector-valued) I€ j/ < 7,
andq’ € Q;/(Q), we defines(?) to be the red wave table afwith depth
j — j' given by
()@ .= ¢l forall g € Q;_j(q).
Note that )
E(¢)= Y  E@¢\7)
q’er/(Q)
forall0 < j" <j.

If ¢ is ared wave table 0@ of depthj and0 < ;' < j, we define the
J'-quilt [¢];» of ¢ to be the non-negative function

@l = > 169 xq-
quj/(Q)

Note we have the pointwise estimates

169]xq < [6]; < [8]j-1--- < [8lo = |¢]x0 (18)

forall ¢ € Q;(Q). We define blue wave tables and their quilts analogously.
The estimates (18) are of course very crude, and we shall frequently be
exploiting various improvements to this estimate in the sequel.
If Qis acubek > 0is an integer, and < ¢ <« 1, we define the
(¢, k)-interior I¢*(Q) of Q by

Q)= | (1-oq (19)
€k (Q)



228 T. Tao

The advantage of working with®*(Q) instead ofQ is that the sub-cubes
of I¢*(Q) have some significant separation properties.

With these notational preliminaries, we are now ready to state Proposition
4.1.

Proposition 4.1. Let R > Cy2%, 0 < ¢ < 27, and letg, 4 be red and
blue waves with frequency 1 ar¥i respectively, which obey the energy
normalization (11) and the relaxed margin requirement (14). For any cube
Q, define the seX (Q) C Q by

k

X(@ = (1" Q. (20)

j=Co

Then for any cubé) of side-lengthC' R, we can find a red wave tabi&on
@ with depthk and frequency 1, and a blue wave talleon (Q with depth
Cy and frequency*, such that we have the margin estimates

margin®), margin@) > 1/100 — (2++ /R)Y/N (21)
we have the energy estimates
E(?),E(W) <1+ Ce, (22)

and we have the inequality

1_1
6l o(x @) < N@1l®)cyll o (@) + €22, (23)
For any coneCP¥Ple (g, to; r) with r > 1, we may improve (23) to

6%l Lo (x(@)nerereie (w0 toir)) < NP1k lco | Le(x (@)nerurvie (2o t0:ir)

11 R —-1/N
4 CokG3) (1 + 2kr> .(24)

Furthermore, we have the persistence of non-concentration
B, gpr1/13)20(8, ) < Epaq(é,1) + Ce+ ¢ “REOTNZ - (25)
for all » > R/2+3/N

The reason why we us& (@) instead ofQ is that the sub-cubes of
X (Q) have some non-zero separation between them, which will let us avoid
some unpleasantness in Sect. 15. To return fP() to Q we shall use
an averaging lemma, Lemma 6.1; this causes the lo§& @ many of the
Propositions stated previously. The estimates (22), (25) are stating,that
¥ are “smaller than or equal ta’, ¢ in energy norm, while (23), (24) state
that the quilts®], [¥]¢, are good approximations faf, ¢ respectively.
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This replacement of waves by quilts of essentially equal or lesser energy
allows one to induct efficiently (providing that one has constants close to 1
in the main terms).

Note that the margin requirementsony) are slightly weaker than those
in Definition 3.5. The gain of1 + %)*VN in (24) over (23) is responsible
for the corresponding gain in Proposition 3.8 as compared against similar
estimates such as Proposition 3.3. This gain is essential as it needs to com-
pensate both for thé€'c loss in (22) and for théog(R) loss that would
otherwise arise from an induction on scale.

Interestingly, the low-frequency wavecan be localized much further
than the high-frequency wavg the former can be localized to cube<0f
the side-length, whereas the high-frequency waves can only be localized by
about2—¢0 before the error estimates begin to deteriorate logarithmically.
This behaviour is also seen in the example given in the introduction demon-
strating that the power df in (3) is essentially sharp. In applications we
shall only need to localize 0, however in the proof of Proposition 4.1
we shall need to localiz¢ all the way down t®—* before one can begin to
localize.

The proof of Proposition 4.1 is the longest part of the argument, and is
basically a “pigeonhole-free” version of the arguments in Wolff [25]. Since
itis the statement of this Propaosition, rather than the method of proof, which
are required to prove the Propositions of the previous section, we shall defer
the proof of Proposition 4.1 to sections 14-16. For now, we devote ourselves
to the question of how this Proposition, combined with some other more
elementary tools, can be used to prove Propositions 3.2-3.8.

5. Energy estimates

In this section we record some fairly easy energy estimates which will be
used throughout the paper.

Let ¢, ¢ be red and blue waves. By integrating (1) along the life-span of
a cube we see that

16 20m) S BVPE@)?, 1Wll2@p S RVPEW)? (26)
for any cubel) i of side-lengthR. By Holder’s inequality we thus have

0¥l 21 (0p) S RE(9)Y2E()Y2. (27)

To compensate for the loss &fin (27) we shall often seek variants of (7)
in which one has a gain d&—("~1)/4, This gain exactly balances the loss
of R when interpolated at the expongnt= py. One such example of this
gainis Lemma 14.2; see also (54), (108).

To tackle the casg > 1 of widely differing frequencies we shall need
the following improvement of (27) whepis replaced by a quilt.
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Lemmab5.1. LetQr be a cube of side-lengtR > 0, j > 0 is an integer,
¢ be a red wave table o) with depth at leasy, and be a blue wave.
Then

Iigljllz S 2772 RV2E(9)"?,

and |
el < 27I2RE(¢) 2 E ()2,

Proof. Letq € Q;(Qg). From (26) for¢(?) we have
16002 S 2772 RY2E(6(9)12,

Square summing this iywve obtain the first estimate, and the second estimate
follows from (26) fory) and Hdlder’s inequality. a

This improvement over (27) is one demonstration of the gain involved
when passing from a wave to a quilt. The other major advantage of quilts
is that they allow one to localize estimates on large cubes to estimates on
small cubes so efficiently that one can make induction on scale arguments
work.

6. An averaging lemma

The following averaging lemma will be needed in the proofs of Proposition
3.2, 3.3, 3.8. It allows one to average out a boundsXd®) to obtain a
bound onQ).

Lemma6.1l.LetR > 0,0 < ¢ < 2=, and F be an arbitrary smooth
function. LetQ r be a cube of side-lengtR. Then there exists a culdg of
side-lengthC' R contained inC2Q i such that

1E(zr@r) < (1 +CNF| 1o (x(0)))
whereX (Q) is the set in (20).

Proof. By the pigeonhole principle it suffices to show that

1
1F2r 0 < 1051 /QR(l + CPIF L @an(x(@otoicry) Wodto-

From the symmetry and translation covarianc&@t)) we have the identity

/Q N (@ (X (oo stoic )y @0dto

R

— [ IF@OPIX(@Q.t CR) 1 Q] dadt
Qr
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On the other hand, from (19) we have
|Q (20, to; CRI\I®*(Q(0, to; CR))| < ¢|Q(x0,t0; CR)|
so from (20) we have
Q(z,t; CR\X(Q(z,1; CR))| S Ne|Q(z, t; CR)|
and thus that
|Qr| < (1+CNo)|X(Q(z,t; CR)) N Qrl.

The claim then follows. O

7. Proof of Proposition 3.2

We now have enough machinery to prove Propositions 3.2, 3.3, and 3.8. We
begin with Proposition 3.2.

Fix R > Cy2*, and letg, ¥ be red and blue waves of frequency 1
and2* respectively, obeying the margin requirement (10) and the energy
normalization (11). Lef) r be a cube of side-length. To prove Proposition
3.2 it suffices to show that

11
oYl Lr@p) < QCCO(R/2k)02k(p 2),

Setc := 27% sothatl + CNc¢ ~ 1. From Lemma 6.1 with¥ := ¢,
we may find a cubé) of side-lengthC' R such that

oYl e 0r) S N0Vl Lr(x(Q))-

Let &, ¥ be as in Proposition 4.1. By (23) and (18), we thus have
169120 @r) < N[BT + 20024572,
By (18), (7) and (22) we have
@122 < %2 < E(@)/2EW)? S 1,
while from Lemma 5.1 and (22) we have
I @l |l < 27**RE(®)?EW@)'/? S 27M2R = (R/2¥)2".

Interpolating between the two, one obtains

l@hll, S (/25262

and the claim follows. O
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8. Proof of Proposition 3.3

Let ¢, ¢, Qr, c be as in Proposition 3.3. We may assume the normalization
(10). We may assume th&t > 2¢¢02F for some large”, since the claim
(15) follows from Proposition 3.2 otherwise.

From Lemma 6.1 withf" := ¢, we may find a cubé) of side-length
CR such that

0¥l r(@r) < (L + CNO) |9V Lo (x(Q))-

Let @, ¥ be as in Proposition 4.1. By (23), we thus have

1_1
10¥llr(@r) < (1 + CNPk[Wlco | e (x (@) + Ok,

By (18) and the hypothesis>> Cj, we thus have

1_1
19Vl Lr(@r) < (1 + CNO|[Dlcy [l e () + ") (28)

We expand

1/p
[¢]CO[W100LP<Q>( > ‘P(Q)W(q”ip(q)) :

By (9) and (21), then the inclusiadd c I!, followed by Cauchy-Schwarz
and then (22) we thus have

1/p
I[®lco[P]ey | riq) < A(RTCR) ( S E@9)pEWw <>)P/2)

4€Qc,(Q)
<AR2) Y B@9)2p@) 2

1/2 1/2
< A(R/2) ( > E(P(q) ( > E(W)))
9€Qc,(Q) 9€Qc, (@)

A(R/2)E(®)/2E(w)'/?
< (14 Cc)A(R/2).

/\

Inserting this back into (28) we obtain the desired estimate (15). O
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9. Proof of Proposition 3.8

We now prove Proposition 3.8. This will be a reprise of the argument used
to prove Proposition 3.3, but will use non-concentration to improve upon
the inclusion” C I' used previously.

Fix R > 260k 0 < ¢ <27%, ¢/ > 0,andC§' R > r > RY2T3/NV et
&, ¥ be red and blue waves of frequency2t, respectively obeying (14).
We may assume the normalization (11). gt be a spacetime cube of
side-lengthR, and let(x, ty) be a point in spacetime. To prove Proposition
3.8 it suffices to show that

”@/’|’LP(QRmCPWPle(xO,tO;r/)) <(1+CNc)A(R/Co,T, T/)Er,CoQR (¢, ¢)1/p

—1/N
+c @ (1+ R > 9k —2)
r

where 7 := r(1 — Cor—'/3N), Here we have used the fact that

Ey.coqp (6,917 ~ 1.
Applying Lemma 6.1 with

F = QW’XCPWPZ@ (zo,to;r’)

we see that there exists a cufeof side-lengthC' R contained inC?Qr
such that

H(bwHLP(QRF‘ICP“TPZE(xo,tO;r’)) < (1 + CNC)H¢wHLP(X(Q)F‘ICP“TPZE(xo,to;r’))'

Let @, ¥ be as in Proposition 4.1. By (24) and the inclusisp ¢ CyQr,
it thus suffices to show that

Lk ¥]eo | Lo x @nererste o toir)
<(1+ CC)A(R/C07F77«/)ET72Q(¢,zp)l/p’ + ¢ CRC-N/2,

since the latter factor can easily be absorbeddnfo(1+ )~ 1N kG —3)
sinceR > 2C0k,

By (18) we can estimat@|;, by [?]¢,. By (25) it thus suffices to show
that

1[@]co [P coll e (@nerurrie (wo 1)
< (14 C)A(R/Co, 7 1") Er o (B, W)/

Here we have used some trivial boundiitR /Cy, 7, ') which is polynomial
in R, e.g. by (7) and @lder.
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Raising both sides to thé" power and expanding, we reduce to showing
that

Yo e DTDYL, < (14 Ce)A(R/Co, 7,7 )P Er aq (B, )P/
q€Qc,(Q)
(29)
The cubey has side-lengtB~“°C R < R/Cy, so in particulaiCyq C 2Q.
By (17) and (21) we thus have

||Qs(q)g,(q) ||Lp(q)
A(R/Cy, T, r/) (E(QB(‘I))1/2E(W(‘J))1/2)1/pEf,2Q @(q) 7 g(q))l/p’.

Also, by (22) we have
Erog(9@, 0@ < (1 4 Cc)Ejaq(d,¥).
Comparing these estimates to (29), it suffices to show that

> E@9)2E@)? <1+ Ce.
9€Qc, (Q)

But this follows from Cauchy-Schwarz and (22) (cf. the proof of Proposition
3.3). 0

10. Spatial localization, and Huygens’ principle

We shall shortly begin the proof of Propositions 3.6 and 3.7, but we must
first develop some machinery concerning the localization of a wave to a disk,
and the resulting estimates arising from Huygens’ principle. This machinery
will also be useful in proving the persistence of non-concentration estimate
(56) in Sect. 15.

To localize a wave to a disk we shall need a bump functigand an
evolution operatot/(t), which we now construct.

Let o to denote a fixed non-negative Schwarz functiodR&rwith total
mass 1 and whose Fourier transform is supported on the unit disk; such a
function can be constructed for instancerpy= ¢ * ¢, wherey is a real
even bump function supported near the origin such iy = 1. For any
r > 0 we definen, by

n (T
ne(x) :=r""ng (;) ) (30)
The functiony, is thus anL'-normalized Schwarz function concentrating

on anr-disk with good frequency localization properties. We shall use this



Endpoint restriction for the cone 235

cutoff function both in this section and in the construction of the wave packet
decomposition in Appendix .

Fix a(£) to be a bump function supported df which equals 1 on
the spatial projection oE7¢¢ and X*“¢. We define the evolution operator
U(t) =Ur(t) by

o —

U(t)F(€) = (&)™ f(€) (31)
and the kerneK; by

Ki(w) = / a(€)e D ge.
We have the propagation law

¢(t) = U(t)$(0) = ¢(0) x K (32)

for all red wavesp with frequencyl, and all timeg, t,. A stationary phase
computation gives the pointwise estimate

|Ki(2)| S (1 + dist((z, t), CT4(0,0)) " (33)

We shall also use the operatbi(t) in the proof of an energy estimate
on cones (Lemma 13.1), and in the proof of wave packet decomposition
(Lemma 15.2) in Appendix I.

Definition 10.1. If D = D(zp,tp;r) is a disk, andp is a red wave of
frequency 1, we defin€p ¢ at timetp by

Ppé(tp) :== (XD * 11-1/v)d(tp)
and at other timesby
Ppo(t) :=U(t —tp)Ppoé(tp).
Heren,. For red waves of frequen®/ we definePp by the formula
PpDj¢ :=D;Ppo,
and for blue waves we defin@, by the formula
PpT¢ :=TPpo.

The operatoiPp localizes a wave to the digR at timetp, while1 — Pp
similarly localizes taD“**, More precisely:
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Lemma 10.2. Letj be an integer > Cop277. LetD = D(xp,tp;r) be a
disk with radiusr, and let¢ be a red wave with frequen®/ and margin
margin(¢) > Co(2/r)~+/N. ThenPp¢ is a red wave of frequency/
which satisfies margin estimate

margin Pp¢) > margin¢) — Co(277) 1 H1/N

and the energy estimates

IX5" Pod |l L2(pesty S (297) N E(¢)"/? (34)
I(1 = Pp)ollrzpy S (27r) NV E(¢)/? (35)
E(Pp¢) < |I9]I72(p, ) + C(2'r)"VE(¢)  (36)

IN

|6/172(peaty + C(277) N E(¢)  (37)

D-)
9)
E((1-Pp)o)
) < E(¢) (38)

E(Ppg¢), E((1 - Pp)¢
whereD_, D, are the disks
Dy = D(xp,tp;r(1+ (277)71/2NY),

Note in particular that

1
P cD-cDcDycC2D.

Proof. By scaling it suffices to verify this whej = 0. The claims follow
directly from the easily verified estimates

0 < xp*nu-yn(z) <1,

XD *Na—yn(x) SrNforz e D,

1—Cr™N < xp*n1-un(z) forz € D,

Applying T we see that similar statements hold for blue waves.

We now investigate the localization propertiedf for times other than
tp. Heuristically speaking?p ¢ is supported on the co&“? (z p, tp; Cr),
while (1 — Pp)¢ vanishes on the cub@(zp,tp; C~'r). More precisely,
we have

Lemma 10.3. Let D be a disk of radiug > C, and let¢ be a red wave of
frequencyl and marginmargin(¢) > Cor—'TV/N Letl < ¢ <2, R > r.
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— If ¥ is a blue wave of arbitrary frequency, we have the finite speed of
propagation law
1((1 = Pp)®)Ul La(@enip.o-1ry S ¢ NE(@)2E@)Y? (39)
and the Huygens’ principle

I(PDO)YD Il a(Qap tps N e i+ RYN)
SROVE(9)PEW)2. (40)
— If 1 is a blue wave of frequen@y for somek >0 such that margifw)>
(2Fr)=1+1/N then we have
(Pp@)(PoY) | La(ann(ap tp:cr+ CRUN R))
SROVE(9)PEW) 2. (41)
We will also need to use (39), (40), (41) with the rolesot) and red
and blue reversed. If one repeats the arguments below, one finds that one
loses a factor o2¢* on the right-hand sides; however,if> 2% one can

absorb these losses into the factorsof N or R~V . Thus we may freely
interchanges andy and red and blue in the > 2 case.

Proof. By Holder it suffices to verify the claims when= 2.
To prove (39) we first use (32), (33), and (35) to obtain

1L = Pp)l 1 (@ep o1y S ¢V E(@)2,

and (39) follows from (26). A similar argument gives

1PDB|| Loe (e s R)\Cred e st 1NY) 5 BETVE(9)Y?, (42)
and (40) follows from (26).

We now prove (41). From (40) witty replaced byPp), we have

I(Pp@)(PoU) | 12(Qap t s RNC 4 (2t p3Crt- RUNY)
S REVE(9)'PEW)'2.

By applying (42) withR, r replaced by2*R, 2¥r, and then applying

TD,,, we obtain

HPDwHLOO(Q(JCD,tD;R)\Cblue(acD,tD;CT—i—Rl/N)) S RCiNE(i/J)l/Z,

so by (26) we have
I(Ppo)(PoU) | L2(Q 2 p st o3 RNCH e (2 p st p3Crt- RNY)
S RONE(@9)PEW)2.
Combining this with the previous estimate we obtain (41). a

The estimate (41) is one way of exploiting the transversality of red and
blue null directions. We shall also rely on transversality in other ways, no-
tably in Lemma 13.1 and in Lemma 14.3.
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11. Proof of Proposition 3.6

We now have enough machinery to prove Propositions 3.6 and 3.7, except
for a somewhat difficult estimate, Lemma 11.1, which we defer to Appendix
Il

Fix R > 2¢% and letg, v be red and blue waves of frequency 1
and2* respectively, obeying the margin requirement (10) and the energy
normalization (11). Lef) r be a cube of side-lengtR. To prove Proposition
3.6 we have to show that

B 1_1
6wl o(on) < (1-C5 ) sup AR, r, Co(1+7))+20C02k"572),

2C0k<R<R
R1/2+4/N <,
(43)
We may of course assume thaty are nearly extremal in the sense that
16¢]|Lr(@r) ~ A(R). (44)
We may also assume that
A(R) > 2609k —3) (45)

since (43) is trivial otherwise.
Let0 < § < 1/2 be a small number to be chosen later. kdie the
supremum of all radii- > Cy2F such that

B coqr(0,9) <14, (46)

orr = Cy2% if no such radius exists.

Sinceg, ¥ are smooth and have finite energy, it is easy to seertigat
well defined, and that one can find a diSk= D(xy, to; r) of radiusr with
to in the lifespan ofCy,Q  for which

min(||¢||%2(p), "¢"%2(D)) >1-20. (47)
Fix the diskD(x, to; ), and define the disk’ by
D' = CY?D = D(x,t; C}/*r)
and define the double conic regiohby
2 := QrNCP™Pe(x0, to; Co(1 +1)).

We now show that i) g, the expressiony) is mostly concentrated if?.
We split¢ andv into red and blue waves respectively as

¢=1~-Pp)o+Ppop, = (1~-Pp)+ Ppy

where the projection operatéty is as in the previous section.
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From (47), (11), and (37) we have
E((1~ Pp)¢), E((1 — Pp)$) 6+ Cy©.
From (12) we thus see that
1((1 = Pp)e) (1 = Po)tbllogm) S (6+Co )A(R).  (48)

On the other hand, from (40) and its analogue with the roles of red and blue
reversed (using the assumptiorn> 2%: see the remarks following Lemma
10.3) we have

1(Pprd) | o \2)s (1 = Po)d) Porbll oo m)s < Co ©
Combining these estimates using the triangle inequality we obtain
16¢ll Lo @mv) S (6 + Co ©)A(R).
We thus see from (44) that

6|l o) S 6+ Co ) dYllLo(@n)-

Raising this to the'" power and re-arranging, we see that

169] o) = (1 = C(6 + Cy )PP ||| Lo () - (49)

We now divide into two cases. First suppose that we are in the medium or
low concentration case > R'/2t4/N_|n particular we have > Cy2F,

so from the definition of- we see that (46) holds. From the definition of
A(R,r) (and the assumptioh < 1/2) we thus have

9] o) < (1 — )P A(R, 7).

Combining these estimates and setting some small negative power of
Cy we obtain the desired estimate (43) as desired (provided thistlarge
enough; (5) suffices).

Now suppose instead that we are in the highly concentratedrcase
CoRY?t4/N  DefineR by the formula

R := max(2°°% (r) 1/2+14/N).
thus2Co% < R < R. In analogy to the previous case, we observe that
||¢¢||LP(Q(IO¢O;R)QQ) <(1- 5)1/p A(R,r)

whenR > 20k, WhenR = 2€0% one can use (13) (which has already been
proven for this value oR?) and (12) to obtain

CCooekok(:—2
||¢¢||LP(Q(Io,t0;R)ﬂQ) < 2@ “095F9 (p 2).
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In either case, we see that if we could show that

1291 Lo 0\ Qo oty S (6 + Co ©)A(R) (50)

then we could repeat the argumentin the first case and obtain (43) as desired.
It remains to prove (50). By (48) and the triangle inequality it suffices to
show that

1P @)l Lo gom @aotocityy S (0 + Co )AR)
and
11 = Po)d)Portll oo oeonsiy < 6+ Co CVA(R).
By a dyadic decomposition and (45) this will follow from

Lemma 11.1. Let R > 2% and letCy2* < r < RY2H4/N |etD =

D(xo, to, 03/27“) be a disk. Then for any red waveand blue wave) of
frequencyl, 2* respectively with

margin¢), marginy») > 1,/200
we have
H(PD¢)¢HLP(Q@nn(xo,to;R,zR))a ‘|¢(PD¢)HLP(QG"'"(zo,to;R,QR))
S B(9)/E(p) PRV

The proof of this lemma shall be postponed to Appendix Il, as it requires
some machinery which is developed later in this paper, and the arguments
used to prove this lemma are not used elsewhere. The estimate in Lemma
11.1 is not of an endpoint type, and could probably be proven by more
elementary means than the methods used in the Appendix.

Assuming Lemma 11.1, the proof of Proposition 3.6 is thus compiete.

12. Proof of Proposition 3.7

Let R > 2C0% 0 < ¢ < 27%, andr > CyR. Let ¢, ¥ be red and blue
waves of frequency 1 arzf respectively obeying (11) and (10). L@tz be
a cube of side-lengtl®. To prove Proposition 3.7, it suffices to show that

VETY 1_1
160l Lo (@r) < Ercoqn(d:¥)P(1+ Ce)A(R) + ¢ C2M2),
Let (zg,,to,) be the center of) g, and letD denote the disk

D= D(wQR,tQR; r/2).
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We then divide

¢=1-Pp)p+Ppop, ©=(1-Pp)y+ Ppip.

From Lemma 10.2 (especially (36)), Definition 3.4 and the hypothiesis
200k we see thaPp ¢, Pp1 obey the relaxed margin requirements (14) and
the energy estimates

E(Pp¢), E(Ppy) < Eycogn(é.y) + CREN.
From Proposition 3.3 we thus have

I(Ppé)(Ppy)lle(@n)
< (1+ CO)(Ercon($¥) + CRENYA(R) 4 ¢ CCF2H G2,

The R~ term can easily be absorbed into #e” 25 ~2) term by
some trivial bound oA (R) (Proposition 3.2 will do). By the triangle in-
equality, we will thus be done if we can show

1((1 = Pp)d)e |l oo |(Pod) (L = Po)il oo < ¢ CCE2HG—2),

But these estimates follow easily from (39) and the counterpart with red
and blue reversed (this is legitimate by the hypothésis 2¢0% and the
remarks following Lemma 10.3). a

13. Energy estimates on light cones of opposite color

To prove Theorem 1.1 it remains only to prove Proposition 4.1. Of course,
we shall not use Propositions 3.2-3.8 in the proof of this Proposition.

Inthis section and the next, we derive two basic estimates needed to prove
Proposition 4.1; these are “pigeonhole-free” versions of similar estimates
in [25]. The first estimate is an extension of (26) from a cube to a conic
neighbourhood of opposite color. The second is a strengthening of (7) when
atleast one of the waves has low frequency dispersion. Then, in Sect. 15,
we combine these two estimates with a wave packet decomposition to derive
a key ingredient (Proposition 15.1) in the proof of Proposition 4.1.

We begin with the energy estimate on cones:

Lemma 13.1. Let¢ be a red wave of frequen@y. Then for any(xzo, to) €
R™" and R > 277 we have

Il L2 (cvtve (o t0:m)) S RY2E(0)Y2.
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Proof. By translation invariance we may takey, tg) = 0, and by scaling
we may takej = 0.
The blue cone is a null surface, and so standard energy estimates will
not prove this estimate. However this can be salvaged gigeed, so that
the characteristics af will be transverse to the blue cone.
We turn to the details. LY (¢) be the wave evolution operator defined
in (31). By (32), it suffices to show that

([ IXs U@ ey 0 € B8] o

forall f € L?(R™), whereS; is the sliceS; := {z:(z,t) € C*"¢(0,0; R)}.
We shall apply th@T™ method. By duality the above estimate is equiv-
alent to

1/2
‘/ XSt )dtHL2 R”) N <R / HF”L2(RH+1)

We square this as
/ / (xs. TSV (xs, F(1)), F(s)) dtds < R|[F|3

where(f, g) fRn g(z) dz is the usual complex inner product. By
Cauchy-Schwarz and Young s inequality it suffices to show that

(s USU ) (s F(8)), F(s)| S (1+ |s = tl/R) N[ F(@)l|2| F(s)ll2

for all s, .

When |s —t| < R this follows from Cauchy-Schwarz and the’
boundedness of the operatg, U (s)U(t)*xs,, SO we may assume that
|s — t| > R. The convolution operatdy (s)U (t)* behaves essentially like
U(s —t), and its kernelK ;(x) satisfies a similar kernel estimate to (33),
namely

1Ko i(2)| < (14 dist((z, s — t),C™%(0,0))"N".

The claim then follows from the transversality@f?(0,0) andC®"“¢(zq,t,)
and crude estimates. 0

Applying T, we see that a similar estimate holds with the roles of red
and blue reversed. As a corollary of both Lemma 13.1 and its time-reversed
counterpart, we obtain the following improvementto (27) when one restricts
to a double cone.



Endpoint restriction for the cone 243

Corollary 13.2. Let¢, v be red and blue waves of frequerigy2* respec-
tively. LetR > r > 1, (zg, to) € R"+1 andQp be a cube of side-length
R. Then

B[l L2 (Crurpte (ag tomyn0m) S T 2RY2E()V2E ()2,

Proof. The contribution ofC?"¢(xq,to;r) N Qg is acceptable by using
Lemma 13.1to contrab and (26) to contrad. Similarly for the contribution
of C™4(xq,t0;7) N QR. a

14. Bilinear L? estimates in the low dispersion case.

To prove Proposition 4.1 we shall need to study waves with rather low fre-
guency dispersion. To make this concept precise, we introduce the following
notation, which we shall re-use in later sections.

Definition 14.1. If ¢ is ared or blue wave (of any frequency), we define the
angular dispersiorof ¢ to be the quantity

diam{é’ L (€,7) € sume))}.

A key observation (implicit in [16], and exploited explicitly in [25]) is
that there is an improvement to (7) when eitheor «» has low dispersion.

Lemma 14.2. [16, 25] Let¢ be a red wave of frequency 1, and lebe a
blue wave. It has angular dispersio®(1/r) for somer > 1, then

19ll o gr1y S v~ V2 E(9) 2B ()2, (51)

Proof. Lett have frequencg”. From hypothesis, the frequency support of
¢ is containedn a a sectof" of width O(1/r). By Plancherel’s theorem it
thus suffices to show that

Ifdor * gdozllz S ="V f ) L2y g 2 ok soiwe

for all f andg, wheredo; anddo, denote surface measure Brand2” yblue
respectively. By Young's inequality we have

[fdoy * gdosa|[1 S [ £l llglly
so it suffices by interpolation to show that
| fdor # gdos]|oo S 77V flloolglloos
which by positivity reduces to showing that

|doy % dog]ee < 771, (52)
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But this follows from the observation that the intersection/oandz —
ok yblue ig always transverse and has- 1-dimensional measure at most
O(r=(»=1) for anyx € R™1. u|

This estimate is global in spacetime, however for our purposes it will be
convenient to work with a localized form of this estimate.

Lemma 14.3. Let;j be an integer and > 1,277, Let¢ be a red wave with
frequency 1 and angular dispersi@n(1/r), and lety> be a blue wave with
frequency2’ such that

margin¢), marginyy) > 1/200.

Then we have

lo¥ll 20y S 7~ "2 2 co 1Pl 2oy + rC N E(¢) 2B ()2
for all cubes( of side-length-.

Proof. The ideais to combine Lemma 13.1 with the localization machinery
developed in Sect. 10.

Let D be the diskD := D(zq,rq; C*/?r). If C is sufficiently large,
then from (39) and (38) we have

(1 = Pp))ell () S ¢ NV E(9) 2 B(w) /2

and
IPpé(1 — Pp)i| 2y S v¢ N E(¢)2E(w)'/2.

From the triangle inequality we thus have
le¥liz2@) < I(Ppe) (DY) 5 grtry + CroNE(¢) PE(p)' 2.

From Lemma 10.2 we see th8h ¢ has dispersiof)(1/r). By Lemma 14.2
and (38) we thus have

oYl 20y < 7’_("+1)/2H¢HL2(CD)WHL?(CD) +rO N E(¢) 2 E(p) 2.

The claim then follows by lettingp range over the lifespan 6, averaging,
and applying Cauchy-Schwarz. a

An analogue of this lemma exists with the roles of red and blue reversed,
but we shall not invoke this analogue explicitly.
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15. Wave packet decomposition

Using the results of the previous section, we can now prove the main tool
used to derive Proposition 4.1.

Proposition 15.1. Let j, j’ be integers, and leR > 277,29-%" (0 < ¢ <
2-C0, Let( be a spacetime cube of side-lendth¢ be a red wave of fre-
quency2’ with margin(¢) > (27 R)~/2, andy be a blue wave of frequency
2",

Then there exists a red wave talfle= o.(¢, 1; Q) onQ with depthCy,
frequency2’ with margin

margin(®) > margin(¢) — C(2/R) /2

such that the following properties hold.

— ([?]¢, approximatesy) We have

C 2j (= 1/2 1/2
1061 = e )ollagecnan S () B@Ew
(54)
— (Bessel inequality) We have
E(@) < (1+Cc)E(9) (55)

— (Persistence of non-concentration) For anyg R1/2+1/Ng—i(1/2=1/N),
we have

ET(1700(2-7.7‘)71/2N)700Q(457 ¢) < (1 + CC)EKCOQ(qbv ¢) (56)

Roughly speakingp(?@) is the portion ofp which concentrates ig. The
Proposition is phrased using frequenciésand 2/’ rather than 1 an@*
in order to make it symmetric ip and+), as we shall also need the time
reversal of Proposition 15.1.

Proof. The quantities:, R have the units of length, while the frequencies
27, 27" have the units of inverse length. Finalyand the margins are dimen-
sionless. One can then verify that the entire Proposition is dimensionally
correct and thus scale invariant. By scaling we may thug se0. By trans-
lation invariance we may assur@ds centered at the origin. Set= 2-7R,
where.J is chosen so that ~ v/R.

We may assume that > R~1/197 (for instance), since otherwise the
claim is trivial by settingp = 0 (and using some trivial bound such as (7)
to show (54).
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Let £ be a maximal /r-separated subset 8f~! N X, and letL denote
the latticeL := ¢~2rZ". We define aed tubeto be any seT’ = T'(wr, z7)
of the form

T ={(z,t) € = |z — (xp + wrt)| < r}
wherezr € L andwr € £. We letT = T"*? denote the set of all red tubes.
If T is a red tube, we define the cutoff functigm on R+ by
)ZT(:L'a t) = )NCD(:ET-Fth,t;T) (:B) (57)

We shall need the following careful decompositioafito wave packets
which are concentrated on tubesTin

Lemma 15.2. With the above notation, one can find for edéke T a red
wave ¢ with frequency 1 and angular dispersion at mesR—'/2, such
that

— We have the margin estimate

margin¢r) > margin¢) — CR™/2. (58)
— The mapp — ¢ is linear for eachl’, and
¢ = Z o (59)
TeT
— We have
E(¢r) S ¢ “lxr()et)]2 (60)

forall T € T andt in the lifespan o0y Q.
— If dist(T, Q) > CpR then

67|10y S dist(T, Q)N E(¢)'/2. (61)
— We have
sup X7 (g, tq) o7 2(0q S ¢ TE(9).  (62)
7T q€Q5(Q)

— We have the Bessel inequality

1/2
(ZE(quO,chT)) <(1+CoE@)'*  (63)

9 TeT

whenevery, runs over a finite index set and the,, 7 are non-negative
numbers such that
> mgr =1 (64)
q0
forall T e T.
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Roughly speakingpr is the portion ofp which has frequency supportin
the sector of width /r and directionwr, 1), and is spatially concentrated
in 7. A naive microlocalization to this region of space and frequency, taking
some care to ensure that the are still waves, would obtain most of the
above properties, but would probably need to replacg the C¢) factor
in (63) by a larger constant, which would then cause a similar unacceptable
loss in (22) and then destroy the induction. This necessitates a delicate
construction of theyr based on averaging. Because the details of the proof
are technical and not particularly relevant to the rest of the argument, we
defer the proof of this Lemma to Appendix |, and continue with the proof
of Proposition 15.1.

Using Lemma 15.2, we can now defiteby

Ple0) = Z Tao.T or (65)
mr
TeT
for all ¢ € Q, where
Mo, = (VX7 F2(40) + BEW), (66)
and
mpi= Y mgr = [[Wxrlizg) + ROV DCER). (67)

qo0€ QCO (Q)

The R~19"E(v) factor is only present in (66) to ensure tha does not
completely degenerate to zero. One can think@f) as consisting of those
wave packetg such that)x, concentrates ig.

Itis clear thawp is a red wave with

margin(®) > margin¢) — CR~'/2

and that
b= Z &(00) (68)
90€Qc,(Q)

The estimate (55) follows from (63).

We now show (56). LeD = D(xzg, to; (1 — Cor—/?N)) be any disk
of radiusr(1 — Cor—1/2N) with t, in the lifespan ofCyQ. By (55) it then
suffices to show that

1Pl L2y 1Yl 22Dy < (1 + Ce)Epr gy (b, 7). (69)

Let D’ denote the slightly larger disk’ := D(zo, to,r — 2r~1/2V), and
let D" denote the even larger digk’ := D(xy, to, r). We may divide

¢=Ppo+(1—Pp)p=:d1+ ¢
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The mapp — @ is linear, so we may writé =: ¢, + @, accordingly. From
(55) and (36) we have

@1l z2(py < E(®1)? < (14 Ce)E(¢y)"?
< (L+Co)|¢llr2 oy + ¢ NE(¢). (70)
Next, we claim that
P2l r2(py S 7€ NE(9). (71)

To see this, we first consider the tubBsvhich do not intersec'Q. By
(65), (61), and Hlder, their contribution is acceptable. Thus we need only
considerthose tubes which inters€}. By the triangle inequality it suffices

to show

1(#2)7llr2(py S ¢ VE(¢)

for each tubd".
First suppose that digf, D) < R'/>+1/100N Then by (35), (38), and
the assumption > R'/2+1/N we see that

X7 (to)da(to) |2 < v~V E(¢).

The claim then follows from (60).
Now suppose that di§f’, D) > R!/2+1/100N By (62), the hypothesis
¢ > R~Y/10 and Bernstein’s inequality (or Sobolev embedding) we see that

1($2)7 o) S TNV E(¢2) S9N E(9)

whenever digiy, T') > R'/>t1/200N_ The claim then follows. This com-
pletes the proof of (71).
Combining (70) and (71), we see that

19120y < (L + Co)lgll2(pry + N E(9),

and (69) easily follows (using the trivialinequality (| .2 (py < |¥]l 2 (pr))-
This proves (56).
We now turn to the proof of (54). By (68) we have

(16l = [@Pleolwl < D - [%[(1 = xg),

q0€Qc, (Q)
so by the triangle inequality it suffices to show that
[ 2 recoionan S €T TIEEW) PEW)2 (72)

for eachg in Q¢ (Q).
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Fix qo. We shall use a (heavily disguised) version of the arguments in
Wolff [25]. If ¢ € Q;(Q) intersectd ““°(Q)\qo, then distq, ¢o) > cR. By
squaring (72), we thus reduce to showing that

> D)) S Cr VB E®Y).  (73)
q€Q,(Q):dist(q,q0)>cR

Consider a single summand from (73). From (65) and the triangle inequality
we have

1| o < D = Mao.T pl Gl P20 (74)

TeT
Consider the tube¥' which do not intersec’Q. By (61) and (26), their
total contribution to (74) i) (RC~N E(¢)'/2E(1))1/?). As for the tubeq”
which do intersec€'Q, we may apply Lemma 14.3 (sinee> 1,277') to
obtain
¥l r2¢g) S 7"V 2]l L2 (g 67l L2(C)
+ RONE(¢r) P E@)'2.
The total contribution of the error termto (74Y RC—N E(¢) /2 E(1)1/?)

by (63) and the fact that there are orlf R“) tubes being summed here.
Combining all these estimates we obtain

|80 12
< pm ) /Zuwrmoq 3

TeT

m —
|07l a0y + ROV E@)2EW) 2,

m

Inserting this back into (73), we see that it suffices to show that

2
2 Mgy,
E ‘|¢HL2(C’q) (Z H?LOT ”¢T||L2 Cq))

4€9,(Q):dist(g,q0)>cR TeT
S “r?E(¢)E(). (75)

Using the trivial estimate

/2
Mgy, T < q0,T
mrp m;ﬂ

followed by Cauchy-Schwarz, we have

2
m
(Z —do-L o7l L2 (Cq) )
mr

TeT
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lér 120,
() ()

TeT TeT
By (66), we have

3" mg (e te) S l0xl3 + R E()

TeT
1/2
= (Z Xr(%q, tq)f(%) Xqo-

TeT

where

Since distq, o) = cR, we see from elementary geometry that

i re —10n
@) S e € <1+ dist((z, t), C d(xq,tq))> |

r

From Lemma 13.1 and the triangle inequality we thus have

x5 < e “rE().

Inserting all these estimates back into (75), we see that it will suffice to show
that

671220
S ey S D < OrE(9).  (76)
a mTXT(wqatq)
q€Q(Q) TeT

We re-arrange the left-hand side as

10117 2y X1 (%45 t4)?
oY (g ty) Plerlia ey S

TeT q€25(Q) mr

and estimate this by

H¢HL2 (Cq) XT(xqat )2

mr

S sup Krlagt) orliaey) Y
TeT q€Q;(Q) 9€Q,(Q)

Since the inner sum i©(1) by (67), the desired estimate (76) then follows
from (62). This proves (54). O

We define the wave tablg.(¢, v; Q) in analogy to?.(¢, v; Q) by time
reversal:

Vo (0,0;Q) :==TP(TY, T TQ).

Of course, one has the analogue of Proposition 15.% flont with the roles
of red and blue reversed.
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16. Proof of Proposition 4.1

We are now ready to prove Proposition 4.1, in whigh is replaced by a
quilted analogué®|.[¥]c, .

We begin with the construction @; this will be achieved by iterating
Proposition 15.1.

We define recursively the wave tablgsonQ of depthj forall0 < j < k
which are multiples o’ (recall that we assumeédto be a multiple o’y
in Sect. 3). Set, to be the wave table off of depth 0

(¢0) @ = ¢
and then define inductively
00, = Py iy (647, 05.9)

forall ¢ € Q;(Q). We then choose to bed := ¢;,.
By induction we see that

margin(¢;) > 1/100 — (2*/R)'/N — C(27/R)"/?

for eachj. This gives the desired margin requirementsisinceRR > 2.
From (55) we have

E(¢;) < (14 Ce2~* Ny B(¢; y)
forall Cy < j < k. Telescoping this, we obtain
E(¢;) <(1+Ce)E(¢) =1+ Cc (77)

for all j. Thus (22) holds forp. A similar iteration of (56) (absorbing any
factor of k which appears into a small poweraf") yields

Er(l—r_1/3N),CoQ(¢7 w) < (1 + CC)ET’,COQ((b? w) (78)

forall r > RY/2+2/N,
Let Cp < j < k be a multiple ofCy, and letg* be a cube inQ;(Q).
From (54) withR replaced by2!' 7 R, @ replaced by;*, and¢ replaced by

¢§q*), we see that

({8515 — [@j+colj+co) ¥l L2 (x(@)ng)
5 C—C2C(k—j)/N(21—jR)—”T*1E(¢§q*))1/2.

Square-summing this i@ and using (77) we obtain

1([¢4]5 — [Bi+coli+co) ¥l x @) S ¢=C2C0=D/N (271 R)=*F". (79)
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On the other hand, from Lemma 5.1 wiltreplaced by* R and¢ replaced
by ¢;, we have

I3l x@) S 279 R.
Replacingj by j + Cy and then subtracting, we obtain
(515 — [@5+coli+co)llirx @) S 9CCo9=I/2R,
Interpolating this with (79) using (8), we obtain
(515 = [¢5+culirca) [l e (x (@)
< ~CoCl-)Ng=i(35) _ (~Coali-igt(-3)

for some constant > 0. Telescoping this with the triangle inequality, we
obtain

11

6l o x @) < @kl o(x gy +c 272, (80)
Having constructed, we now define/ as
V= wc(év Y; Q)

The estimate (22) faF follows from the time reversal of (55). It remains
to prove (23), (24), and (25).
To prove (23), we observe from the analogue of (54) that

D[] — o)l 2xqy S ¢ C20(R/28) "V E(0) 2 E(y) /2.
From (22) and (18) we thus have
@]k (] — [Pleo)ll 2 x @) S ¢ 209 (Ry28)~(=D/4, (81)
From Lemma 5.1 we have
11@lkllL2(x (@) S 27K R/2. (82)
From (22) we thus we have
@16l 21 x @) 1P | 21 (x (@) < 27F2R
so from (18) and the triangle inequality we have
@) (1] = eyl (x @y S 2R
Interpolating this with (81), we obtain
11
@1k (] = [@loo)llrx (@) S ¢ €202, (83)

and (23) follows from this, (80), and the triangle inequality.
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Now we prove (24). We shall assume tR4t < R since (24) follows
from (23) otherwise. For brevity l&? denote the region

2:= X(Q) N CPPe (0. to: 7).

We will need to localize (80) and (83) t@. We begin with the localization
of (80). By (18) and Corollary 13.2 we have

#5159 12y < 95l o) S r2RY? < (2Fr/R)V/?27IR.
Replacingj by j + Cy and then subtracting, we obtain
(6515 = [Bs+coli+co)bllr (o) S (2°r/R)/?277R.

Interpolating this with (79) using (8), we obtain

06315 = bscolssc) bl e C26no 1 (G=8) ok y,
Telescoping this with the triangle inequality, we obtain
160l o () < N@ktbll () + CeC2002F G2 (2kr/RYUN . (84)
Now we localize (83). From (18) and Corollary 13.2 we have
@1l 21 0y P Nl 11 () S 7 /2 RY? = (287 /R)227F/2 R,
so from (18) and the triangle inequality we have
@] = [Pleg) (o) S (25r/R)/227*2R.
Interpolating this with (81), we obtain
11@1(19] = [Pl o) S (2Fr/R)N e C20C02MG2),
and (23) follows from this, (80), and the triangle inequality.

Finally, we show (25). From the time-reversed version of (56), and con-
ceding various powers @ andr'/V, we see that

Er(prfl/BN),cOQ(@a v) < (1+ CC)ET(17T1/2N),COQ(¢77J))

for all > R'/2+3/N_ Combining this with (78) we obtain (25) as desired.
This completes the proof of Proposition 4.1, and hence of Theorentl.1.
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17. Null form estimates

In this section we now apply Theorem 1.1 to obtain some nearly sharp null
form estimates. The arguments in this section do not require the methods
used above to prove Theorem 1.1.

Let Dy, D+, D_ denote the Fourier multipliers

Dod(€,7) := [€|(€,7)
D(&,7) = (I¢] + 1T, T)
D_¢(€,7) = |l€] - |7]] B, 7).

If ¢ is a solution to the free wave equation and R, we definep|0] to
be the vectof¢(0), Dy ¢:(0)). In particular, we have

1600011 7o = (IS(0) 13y + 6e(0)1F.-1)"2

whereHs := D, *L? is the homogeneous Sobolev space of order
In [7] the following problem was considered:

Problem 17.1. Determine the set of all exponert(s, 5o, B+, 8-, a1, a2)
such that one has the estimates

D" D D (90) ] gty S N010] o 110] 7o (85)

for all vector-valued solutionsg, ¢ to the free wave equation (not necessarily
red or blue).

This problem was resolved in [7] fgr= 2, butis largely open otherwise
(with some partial results in [23], [13]). A successful resolution to this
problem (and of its generalization to mixed Lebesgue nofths’ and
to wheng, ¢ solve the inhomogeneous wave equation) is likely to have
application to the low-regularity behaviour of non-linear wave equations.

To see the connection between Problem 17.1 and Theorem 1.1, we first
observe the consequence of Theorem 1.1, which addresses Problem 17.1 in
the frequency-localized case.

Proposition 17.2. Let 5 be a real number, and,! > 0 be integers. Let
and be waves which have frequency supports in the sectors

{(51}5275//77—) T = ‘ﬂaél ~ 1a§2 ~ 2_l7 ‘5//‘ S 2_1} (86)

and

2k{(§17§27 //77-) T = _‘§|7 _51 ~ 1762 ~ 27[7 ’é-”’ S 271} (87)
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respectively. Then we have

1Bl 1D @Dy
< 22l (50 0) o (6o449) gy 2y 72 (eg)

forall 2 > p > pg, ¢ > 0, where|O]| is the multiplier|0| := D, D_, the
energyE(-) is defined as in (1), and the implicit constants may depend on

0, €.

Proof. Consider the Minkowski-conformal linear transformatibn R t!
— R™*! given by

+ =T n e
€)= (BT H T e STyl

and define the associated operalprby
TL¢ = ¢ © L*a

where L* is the adjoint ofZ. A routine computation shows thdy,[0| =
2-%|0|Ty, so that

T1(10|°¢) = 27%°|01°(TL¢)(Trap).

Also, we observe from Plancherel that Ty, ¢)~2"~1 E(¢) andE(T1))

~ 2(0=Di B(). Finally, we have| T, F|, = 2-+D/P||F|,,. Combining

all these facts we see that to prove (88) it suffices to do so Wwhehf.
Setl = 0. We can write

0% (¢) (, t)
=22 / / 2 (2 €) 2mit€=2 ) (¢ ) £(€) (2" ) dedy

wheref(x) := ¢(z,0) andg(z) := ¢ (x,0), andm is the symbol
m(&,n) := Ca(a(n)(|nllé] + (n,€))°".

Sincem is smooth and compactly supported, we may decomposs
a Fourier series

m(En) = Y cjpe T o
3.4’ €L
for [£], || < 1, whereL is some discrete lattice and ;; are rapidly de-
creasing co-efficients (uniformly ik). This implies that

D™ (¢y) = > ¢ty

Jy'€L
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where

¢j($vt) = ¢($—j,t), %’(53,75) = w(x_2_kj,7t)'

The first claim of (88) then follows from this decomposition, the triangle
inequality, (3), and the observation thaf, +»;; have the same energy as
¢, 1 respectively. The second claim is proven similarly but also uses the
observation thap,v;; has the same magnitude g, O

We make the technical remark that the above estimates continue to hold
if one replaceg by the complex numbes + it, with constants that grow
at most exponentially in.

We now consider the general setting of Problem 17.1, where no frequency
restrictions are assumed o@ror .

By considering a large number of key examples, it was shown in [7] that
the conditions

1
Go+ B+ +0- = a1+a2+n+ -n (89)
D 2 Po (90)
n+l n-—1
> — 91
ooz N 91)
1
Bo > Rt .
b
3
B > ”; —(n+1) (92)
1
al+ay > ]; (93)
3
ar+ay > n;— —-n (94)
n
< B4
a; > ﬂ +2
n—1 n+1,1 1
< [ - _Z
a; > B + 9 9 (2 p)

@ < ﬁ_+";1+(n+2)<;—;> (95)

were necessary for (85), wheire= 1, 2. In that paper it was also shown
that the above conditions were also necessary when2, except for the
endpoint cases when one has equality in (92), [(91) and (93)], or [(91)
and (95) for someé = 1, 2], with (85) being false in these cases. It was
then conjectured that for the above conditions are similarly necessary when
p #£ 2, except perhaps for some endpoints.



Endpoint restriction for the cone 257

By combining Proposition 17.2 with dyadic decomposition arguments
as in [23], we can obtain the following progress on this conjecture in the
p < 2 case.

Theorem 17.3. Letpy < p < 2. Then (85) holds whenever (89) holds, (91),
(92), (95) hold with strict inequality foi = 1,2, and the conditions (93),
(94) are replaced by the more strict

1 n+3,1 1

- - 96
041+Oé2>2+n_1(p 2) (96)

If p = po, then one can let (92) be obeyed with equality.

This is sharp except for endpoints wheg- 2 (since (96) nearly matches
(94) in this case), and is somewhat sharpsior 2. One can replace the
multipliers Dy, D, D_ by other symbols which satisfy the same types of
regularity and decay estimates, but we shall not pursue this matter here.

Proof. Inorder to apply the complex interpolation method we shall allow the
indicesfy, B+, - to acquire an imaginary pait. For notational simplicity
we keep ourselves to the case- 0, but the reader may easily verify that
the following argument also works for arbitraryvith constants which are

at most exponential in

Whenp = 2 these claims were proven in [7] (see also [23]). Since we
have replaced (93), (94) with the linear condition (96), we see by complex
interpolation that it suffices to verify the claims whegnr= pg. In this case
(92) becomes’, > 0; since the operatob;° D™ is bounded inZ? by
standard multiplier theory we may assume that= 0.

Let¢, ¢ be solutions to the free wave equation. By a finite decomposition
and time reversal symmetry we may assumedghiatsupported in the upper
light coneX* and that) is supported on either the upper or the lower light
coneX*,

Write ¢ =: 3" ¢, 1 =: 3 ¢x, whereg;, 1 have frequency supports
on the regionD,. ~ 27, D, ~ 2* respectively. We now rewrite (85) as

1" D101 (b0l
7.k
1/2

1/2
S 222a1jE(¢j) <Z 22a2kE(¢k)> ]
J k

It suffices to show that

IDE 101 (65wl S 271 @29 B(g,) V2 (220 E(y) /2
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for all j, k and some > 0, since the claim then follows from the triangle
inequality, Cauchy-Schwarz, and Young’s inequality for sums.

By symmetry we may takg < k; by scaling and (89) we may take= 0.
Having used (89), our arguments will no longer require this condition and
we shall discard it. Since we are assuming (95) to hold with strict inequality
we may absorb the into the«; factors, and reduce ourselves to showing
that

1D P10 (ovn)llp S 25222 B( o) /2 B () /2.

Fix k. For anyl > 0, decompose the double light cone into finitely over-
lapping projective sectorE of angular width2—!, and letg, = >.rdor,
i, =Y v r be a Fourier decomposition @f, 1, subordinate to these
sectors. It suffices to show that

I > D 1015 (d0,rve,r)

LI /(02
5 2_8l2€k2a2kE(¢)0)1/2E(¢k)1/2

for all [ > 0, since the claim follows by summing inusing the bilinear
partition of unity based on angular separation (see e.g. [21], [23]). By the
triangle inequality and Cauchy-Schwarz as before, it suffices to show that

1D P18 (go.rdn.r) Ip S 2751252 B(go 1)V E (4, 1)/
(97)

for eachI”, I with angular separatiop—!. By a spatial rotation we may
assume thap has frequency support in (86), and that eitgeor ¢ has
frequency support in (87).

Now supposé > 1. Inthis caseDﬁ“ﬁ‘ is equal t@2* times a harmless
multiplier on the frequency support 86 vy 1, S0 by Proposition 17.2 the
left-hand side of (97) is majorized by

1

k()90 (k=209 (5 =) o (5-349) gy )12 )12,

The claim (97) then follows after some algebra from (95), (89), and the
assumption that (91) holds with strict inequality.

It remains to consider the cage= O(1); by a mild Lorentz transfor-
mation we may maké = 0. (This affectsD_ slightly, but this change is
irrelevant). Sincd” andI™ differ in angle by2~!, some geometry shows that
D, is at leasR~! on the frequency support gfy. We may thus majorize
D77 in LP by 14213+ ~5-) and by Proposition 17.2 again the left-hand
side of (97) is bounded by

ntl
(1 4 2l(ﬁ+fﬁ_))2ﬁ_(72l)2l< 7 ( 1)>E(¢O,F)1/2E(w07f’)l/2-
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The claim (97) then follows after some algebra from (96), (2), (89), and the
assumption that (91) holds with strict inequality. O

It seems plausible that many of the missing endpoints in the above result
could be obtained if one was willing to prove a generalization of Proposition
17.2which considered the interaction of multiple scales and multiple angular
separations using more sophisticated tools than the triangle inequality, and
in which the2¢* loss was eliminated.

Apart from the issue of endpoints, there is still the unsatisfactory gap
between the condition (96) in Theorem 17.3, and the necessary conditions
(93), (94) conjectured in [7], when > 2. In particular, to resolve the
conjecture we would need to consider exponents near the case

n+2
n

p= =po(n—1), o1 +ax=1/p, (98)

which is the intersection of (93) and (94). This case turns out to be related
to the open (and quite difficult)

Conjecture 17.4 (Machedon-Klainerman for the Sfinger equation)_et
#, ¢ be functions orR™*! which have frequency supports in

((6508) €e 2
and

((6508) 6 -2)
respectively. Then (4) holds for all> py(n).

Proposition 17.5. Suppose that (85) holds for some set of exponents satis-
fying (98). Then Conjecture 17.4 holds withreplaced byn — 1.

Proof. We use the method of descent, exploiting the fact that the paraboloid
in R” is a conic section of the light cone Rf**!.

To prove Conjecture 17.4 far— 1, it suffices to verify it forp = po(n —
1) = 22 since the other endpoipt = oo is trivial. From Plancherel’s
theorem it suffices to show that

[ / / i et U £ (€)g () dédn)] o1,

S I 2llgll2 (99)

for all C*° functionsf,gon X, _;
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Fix f, g. Let R > 1 be a large number, and consider the functiops
Y defined orR™*! by

1 .

onar.at )= [ [ emem et st o2mie'€ () deds
—1

and

VR .1‘1,$ t / / —2mi( t+:c1)(R+s) 2mi(t— $1)4(R+9)€27rzx £ (f) déds.

One can easily verify thatr andi g solve the wave equation, and that
16ROl oy ~ B[ fll2, 1¥R[O]]l oo ~ B**||gll2-
By the assumption that (85) holds at (98), we have
|D D2 D ()l S BVl fll2llgll2

for somepy, 5, 5. However, a computation of the frequency support of
¢ shows thatDy, D_, D, are all given by smooth functions comparable
to 1 on this support, and so we have

loll, < RYP £l2llgll2

Making the change of variable§ =t + z1, T = (t — z1) /2R, we have

(X, 2", T) 47erR/ / // 2miX (s45') 2W1T<2+S/2R+2+|:/\/2R)
e ET) £ () g(n) dédndsds’

and so we have
169l 2,12, S (I fll2llgll2,

the R'/? factor having cancelled against the Jacobian term.
The phase facta@*™*X % can be discarded. Letting — co and taking
limits, and then evaluating the s’ integrations, we thus see that

2miT 57 In1= o/
H (smzwx> [t ) s o0 g6) il g1,
S 1 llglz

and (99) follows since th& behaviour is trivial. O
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The Machedon-Klainerman conjecture for the Sclinger equation
looks very similar to the results proved in Theorem 1.1 wkith 0, however
the method of proof breaks down because the strong Huygens’ principle
((40) and (41)) totally fails for this equation. The arguments in [25] fail for
similar reasons (basically, the tub&sare no longer constrained to point
in null directions). Only partial progress is known for this problem; for in-
stance, whem = 2 this conjecture should hold for ghl > 2 — % but the
best result achieved to datejis> 2 — 1% see [22]. A resolution of this
conjecture would also yield new results for the very difficult restriction and
Bochner-Riesz problems for the paraboloid [21], [6] as well as the problem
of pointwise convergence of the Sékinger equation to the initial data [23].
The estimate (85) at the endpoint (98) shares some features in common
with the conjectures (29), (30) in [25], and the resolutions to these problems
may well be related.

18. Appendix I: Proof of Lemma 15.2

We now give the proof of Lemma 15.2. The main technical difficulty is to
obtain a good constant in the main term of (63); this will be obtained by
using characteristic functions to decompose the Fourier domain, followed
by an averaging over rotations to smooth things out spatially.
Partition
snE=J A,

we€

whereA,, consists of those points ifi*~! N X which are closer ta) than
any other element &f. ThusA,, is in theO(1/r)-neighbourhood ob.

Let G € SO(n) denote the set of all rotations R* which differ from
the identity byO(1/r). Letd(2 be a smooth compactly supported probability
measure on the interior @f.

For each? € G andw € &, we define the Fourier projection operators
Pg, for test functionsf onR" by

Poof(€) = xapa) E/1EDF ().

Note that
$(0) = Poué(0) (100)

we€
for all 2 € G and red waves of frequency 1.
The decomposition (100) is well-behaved in frequency, but has terrible
spatial localization properties. To get around this we will now average in
df2 and then apply a spatial cutoff.
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Recall the functionyy constructed in Sect. 10. Write

02
(o) i=m (S o))
for all 5 € L. From the Poisson summation formula we have
€L

We define the functiong; at time 0 by

or(x,0) :=n"T(z) /(PQ’MTQ{)(O))(ZU) df? (101)

and at other times by
¢r(t) := U(t)¢r(0),
whereU (t) was the evolution operator defined in (31). One may verify that
o7 is a red wave with angular dispersiar(1/r), that the mag) — ¢r is
linear, and that (58), (59) hold.
We now show (60). From (101) and the rapid decay'sf we have the
pointwise estimate

o7(0) < ¢ Cxr(0)* / |Pour 6(0)] 22, (102)

so it suffices by Minkowski and the? boundedness dPy, ., to show that

1X7(0) Po.wr ()2 S CF 1X7 () Powr ¢(t) 2.

for all 2 € G, since theC§ factor can be absorbed into the® factor by
the hypothesis < 270, In fact, we will show the stronger

190l L2 (D@ i) S CollXDap—(t—tpyop.sry @Dl (103)

forall disksD of radius- and time co-ordinatep, = O(R), and any red wave
¢ with frequency supportin the sectf€, |£]) : [£] ~ 1, Z(&,wr) S C/r}.
The previous claim follows by breaking ug@-(0) into various disksD.

We now show (103). We have the identity

o, tp) = / il D)EN () (7 () de

wherey is an arbitrary bump function which equals one on the selgtar

X /(& wr) < 1/r} and is adapted to a slight enlargement of this sector.
By standard stationary phase estimates and the observatiotpthat =
O(Cyr?), we thus have

¢(tp) = ¢(t) x K
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where the kernek’ satisfies the estimates
| K (z)]
< CEr Atz —(t—tp)wr|/r) ™ (1+|(@—(t—tp)wr)wr]) .

The claim (103) then follows from a dyadic decompositioro&round the
point (¢t — tp)wr, followed by Young’s inequality. This proves (60).
We now show (61). WriteR’ := dist(T’, Q). Let D denote the disk
D = D(0,0; C~'R'). SinceR’ >> R, it suffices from (32), (33), and crude
estimates to show that
lérllim) < B E(9)'2.

But this is clear from (101) and the estimates

177 | ooy S BN, | Powrd(0)]l2 < E(6)Y2.

This proves (61).
We now show (62). From (103) the left-hand side of (62) is majorized
by
r Z Sl;p XT(:EW tq)ig |’>~(3D(:rq+tqu,0;T)¢T”%‘
T

From (102) this is majorized by

c*Crngpfar(xq,tq>*3|r>z%<xq+tm,o;r>>h<0>4 / | Poo.wr (0)] d22|[3.
T

From (57), (6) we have the elementary inequality

XD(qurtqu,O;r) (x)f(T (377 0) S >~<T(xq? tQ)
so we may bound the previous by

Cr S %0(0) [ [Pawso(0) 2|
T
Summing inzy, we reduce to showing that

S / |Pow(0)] d2)2 < E(&).

we€

But this follows from Minkowski’s inequality followed by Plancherel’s the-
orem.
We now show (63). We expand the left-hand side as

1/2
(Z H / Z Z ml]o,T(w,xo)n%PfZ,w(QZ)(O)) dﬁg) .
q0

we€ xoeL



264 T. Tao

By Minkowski’s inequality this is less than or equal to

1/2
/ (Z!ZZmqo,T<w,m>nx°P9,w<¢(0>)H%) 2. (104)
q0 w o

Define the set’ ¢ S"~! by

Y = U {a € A, : dist(a, S”fl\Aw) > Cc2/7“};

weE

this setY” plays a similar role here to the se$*(Q) used in Proposition
4.1. and definé’;(y to be the multiplier

Pow)F(€) = xag) (é,) £©).

By the triangle inequality, (104) is less than the sum of

1/2
/ (ZHZZqu,T(w,mm“Pn,wpmym(mH%) dQ.  (105)
q0 w o)

and

1/2

/ (Z | Z quo,T(w,xo)W%Pﬁ,w(l - PQ(Y))¢(0)H3> df2.
q0 w xo

(106)
Consider the quantity (105). The contributions of eaclre orthogonal as
w varies, so we can rewrite (105) as

1/2
/ (ZZIIquO, (o)1 PowPay >¢>(0)H2> ds2,

which can be re-arranged as

1/2

/(Z/‘ PauFPom(0) Z quo, T(w,e0) 96'))de> 4.

This is clearly less than or equal to

1/2

/<2/| PQMPQ Y)¢ sz% T(w,z0) ))2 dﬂ?) df?.
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Summing ingg and then inzg, this simplifies to

1/2
/(Z/(P”»wPQ(YW(O))(a:)de) ds2.

By the orthogonality of thé”, .,, we thus have

(105) < [ [Payo(0) ] 42 < B(9)'.

Now consider (106). Repeating the above argument, but noting that we
must use almost orthogonality instead of orthogonality, we obtain

(106) £ [ 111 = Popy))é(0)]z d2.

By Cauchy-Schwarz we thus have

(106) / 11— Pogyy)$(0)]3 d2)V/2:

by Plancherel we thus have

(106) /¢ £,0)] / (,;) ) de)'/?.

The inner integral can be seen to®@éc?) for all ¢, so by Plancherel again
we have
(106) S cE(¢)"/>.

Combining our estimates for (105) and (106) we obtain (63). a

19. Appendix II: Proof of Lemma 11.1

To complete the proof of Theorem 1.1 we have to prove Lemma 11.1. This
shall be a straightforward application of the wave packet decomposition
Lemma 15.2 and the energy estimates on cones developed in Sect. 13. How-
ever, our arguments are not as delicate as those in the rest of the proof of
Theorem 1.1, as Lemma 11.1 is not an endpoint estimate. For instance, we
will be able to lose powers d&'/N in our estimates.

We turn to the details. Le® > 2¢0% and lety, 1) be red and blue waves
of frequencyl, 2* respectively and margins at ledg200. We may assume
the energy normalization (11). By translation invariance it suffices to show
that

1(Pp) ¢l 1o (@unn 0,028 |0(PDUY) || Lo(@ann 0.0:R 2Ry S BHE
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for any diskD centered at the origin with radi@ < r < CyRY/2+t4/N,
We shall only prove the estimate foPp¢)v; the estimate fop(Ppi)) is
proven similarly, observing that any additional powerg®bivhich appear
can be absorbed in to tHe—1/¢ factor.

As in previous arguments, we obtain thé estimate by interpolation
between arl.! estimate and an? estimate, namely

1(Ppd)¥l| L1 (Qonn(0.0:R 2R S ROV R/ (107)

and
1(Pp)¥| L2 (Qonn (0.0:R 2m))> S REN R™(=D/4, (108)

By interpolation and some algebra involving (8) one obtains the desired
result if NV is sufficiently small. The point is that (107) improves over (27)
by a substantial power ak.

We first prove (107). The contribution outside of the@&t*(0, 0; R'/?)
is acceptable by (40), and the contribution inside this set is acceptable by
Corollary 13.2. This proves (107).

Now we prove (108). Sep := Q(0,0;2R). We use Lemma 15.2 with
this cubeQ and some arbitrary value ef(sayc = 2~°°) to decompose

(Ppg) as
(Ppg) = Y _ (Ppo)r.

TeT

By (61) and crude estimates (e.g. (7) or Lemma 14.2) the contribution
of those tube§’ for which dis{7T’,0) > R is acceptable, so we can restrict
ourselves to those tub&sfor which dis{T’, 0) < R. There are only)(R®)
of these tubes.

We now dispose of those remaining tubEgfor which R!/2+1/N <
dist(7,0) < R. For such tube%’ we see from (60) with = 0 and (34) that

E((Pp¢)r) S X (0)Ppe(0)[3 S R™VE(¢) = RV,

and one can dispose of the contribution of these tubes by crude estimates.
It remains to deal with those tubes for which @ist0) < R'/2+1/N In

this case we want to exploit the fact ti&, ¢) r is concentrated oRYNT,

the dilate ofT” around its center bR/ . Indeed, from (62) we see that

I(Ppo)rllL2riney S RN,

and so the contribution outside!/V T is acceptable by crude estimates. It
thus remains to control the expression

1Y~ (Pod)rtx ginrllzgenn0,0;r,27))-
T
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We now observe the geometric fact that/aganges over all tubes im
with dist(T,0) < RY?T1/N the tubesyi/vp have an overlap of at most
O(RC/N) in Q*(0,0; R, 2R)). By almost orthogonality, it thus suffices
to show that

1/2
ST Pod)yrvl3) <R
T

Applying Lemma 14.2, we can bound the left-hand side by

1/2
RV N E(Pp¢)r)E ()
T
But this is acceptable by (55) and (38). a
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