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Abstract. This paper classifies the simple modules of the cyclotomic Hecke
algebras of typeG(r, 1, n) and the affine Hecke algebras of typeA in ar-
bitrary characteristic. We do this by first showing that the simple modules
of the cyclotomic Hecke algebras are indexed by the set of “Kleshchev
multipartitions”.

Introduction

Let n andr be integers withn ≥ 0 andr ≥ 1. LetR be a commutative ring
with 1 and letq, Q1, . . . , Qr be elements ofR with q invertible. The cyclo-
tomic Hecke algebraHR,n = HR,n(q; {Q1, . . . , Qr}) of type G(r, 1, n)
is the unital associativeR–algebra with generatorsT0, T1, . . . , Tn−1 and
relations

(T0 − Q1) · · · (T0 − Qr) = 0,
T0T1T0T1 = T1T0T1T0,

(Ti + 1)(Ti − q) = 0 for 1 ≤ i ≤ n − 1,
Ti+1TiTi+1 = TiTi+1Ti for 1 ≤ i ≤ n − 2,

TiTj = TjTi for 0 ≤ i < j − 1 ≤ n − 2.

The first result of this paper says that, in a certain sense, the number
of simpleHR,n–modules is independent of the base field and independent
of q. To state this precisely, let` be the smallest positive integer such that
1 + q + · · · + q`−1 = 0; set` = ∞ if no such integer exists.

A.M.S subject classification (1991): 16G99, 17B67, 20G05.
The first author was supported in part by the DFG–JSPS program ”Representation Theory
of Finite and Algebraic Groups”
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Theorem A Suppose thatR is a field and let{Q1, . . . , Qr} = S0 t S1 t
. . . t Sa be a partition of the parameter set such thatS0 = { Qi | Qi = 0 }
and, for the remaining non–zero parameters,Qi/Qj is a power ofq if and
only if there exists an integerb such thatQi andQj both belong toSb. For
i = 1, 2, . . . , a choosesi ∈ Si and definenij to be the multiplicity ofsiq

j

in Si. Then the number of simpleHR,n–modules depends only upon` and
the integersnij .

Whenq = 1 the simpleHR,n–modules have been classified in [22] and it
is easy to see that Theorem A is true in this case. Whenq 6= 1 the arguments
of [24, 27] allow us to reduce to the case where all ofQi are non–zero and
Qi/Qj is always a power ofq. The key idea now is to varyn and consider
the (graded dual of the) direct sum of the Grothendieck groups ofHR,n; by
[1], this is an irreducible module of a Kac–Moody algebra whenR is a field
of characteristic zero. In fact, this is true independently of the characteristic
of R, from which the result follows.

To date, few studies have been made of the modular representations
of affine Hecke algebras in fields of positive characteristic. Theorem A,
combined with results of Chriss and Ginzburg [5], yields a classification of
the irreducible representations of the affine Hecke algebras of type A over
arbitrary fields. Let̂HR,n be the affine Hecke algebra associated toGL(n, F )
whereF is a local field; the algebrâHZ[q,q−1],n is again aZ[q, q−1]–algebra.

A segment of lengthd ≥ 1 is a sequence ofd consecutive residues
[i, i+1, . . . , i+d−1] wherei, i+1, . . . , i+d−1 ∈ Z/`Z. A multisegment
m is an unordered collection of segments; we denote by|m| the sum of the
lengths of the segments inm. A multisegment isaperiodic if for every d
there exists ani ∈ Z/`Z such that[i, i+1, . . . , i+d−1] does not appear in
m. Denote byM` the set of aperiodic multisegments and letk×

q = k×/<q>.
For any fieldk, let

Mn
` (k) =


λ : k×

q −→M`|
∑

x∈k×
q

|λ(x)| = n


 .

Then, using Theorem A, we can deduce the following result.

Theorem B Suppose thatk is a field and thatq 6= 1 has order` in k. Let
(K, O, k) be a modular system such thatq lifts to an element of order̀ in
O.

(i) The simpleĤk,n–modules are indexed byMn
` (k).

(ii) There is a set of̂HO,n–modules{ Sλ | λ ∈ Mn
` (k) } such that

(a) eachSλ ⊗ K is a simpleĤK,n–module; and,
(b) Sλ ⊗ k has a simple head and the irreducible quotients form a

complete set of simplêHk,n–modules.
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As explained in Sect. 3, by work of Vigneras this result completes the
classification of the irreducible admissible representations of the general
linear groups defined overp–adic fields.

Returning now to the simpleHR,n–modules, integrable representations
of Kac–Moody algebras have a basis indexed by the vertices of Kashiwara’s
crystal graph; by determining this graph we obtain our next result.

Theorem C Suppose thatR is a field,q 6= 1 and thatQ1, . . . , Qr are all
non–zero elements ofR. Then the irreducibleHR,n–modules are indexed
by the set of Kleshchev multipartitions.

We define Kleshchev multipartitions below. We remark that we could include
the case where some of theQi are0 in Theorem C; however, this would
overly complicate the definition of Kleshchev multipartitions.

Before giving the definition of Kleshchev multipartitions, we note the
following consequence of Theorem C and the Weyl–Kacq–dimension for-
mula. To do this we introduce formal power seriesF`({ni}i∈Z/`Z;x), when
` is finite, andF∞({ni}i∈Z;x), when` is infinite.

We treat the casè < ∞ first. Suppose thatn0, . . . , n`−1 are integers
and defineF`({ni}i∈Z/`Z;x) to be the formal power series

∏
1≤i<j≤`

1 − xNji

1 − xj−i

∏
k>0

(1 − xkN`

1 − xk`

)`−1

×
∏

1≤i<j≤`

1 − (xNij + xNji)xkN` + x2kN`

1 − (xi−j + xj−i)xk` + x2k`

whereNi =
∑i−1

j=0(nj + 1) andNij = Ni − Nj . This is invariant under a
cyclic permutation of the indices.

Suppose next that̀ = ∞. Then, given integers. . . , n−1, n0, n1, . . .
such that only finitely many of them are non–zero, letF∞({ni}i∈Z;x) be
the rational function ∏

i<j

1 − xNji

1 − xj−i

whereNji =
∑

i≤k<j(nk + 1). This is invariant under the shift operation
on the indices.

Finally, we defineF`(x) = F`({ni};x) whereni = δi0 for all i ∈ Z/`Z.
The following theorem gives the precise number of Kleshchev diagrams

associated with a parameter set{q, Q1, . . . , Qr}; as we explain in the fi-
nal section, this has important consequences for the classification of the
irreducible modules of the finite groups of Lie type in non–defining charac-
teristic.
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Theorem DSuppose thatR is a field,q 6= 1 and define integersnij relative
to a partitioning of the parameter set{Q1, . . . , Qr} = S0 t S1 t . . . t Sa

as in Theorem A. Then the generating function for the number of simple
HR,n–modules is

F`(x)
a∏

i=1

F`({nij}j∈Z/`Z;x).

By Theorem 1.6, the simple modules ofHR,n(q;S0) are indexed by
multipartitions of the form((0), . . . , (0), µ) whereµ is an`–restricted par-
tition; so, in fact,F`(x) is the generating function for the set of`–restricted
partitions. For example,

F3(x) =
∏
k>0

(1 − x4k−2)(1 − x4k−1)2(1 − x4k)2(1 − x4k+1)2(1 − x4k+2)
(1 − x3k−2)(1 − x3k−1)2(1 − x3k)2(1 − x3k+1)2(1 − x3k+2)

=
1

(1 − x)

∏
k>0

(1 − x4k−1)(1 − x4k)(1 − x4k+1)(1 − x4k+2)
(1 − x3k−1)(1 − x3k)(1 − x3k+1)2(1 − x3k+2)

=
(1 − x)

(1 − x)2(1 − x2)

∏
k>0

1
(1 − x3k+1)(1 − x3k+2)

=
∏
k>0

1 − x3k

1 − xk

We now define the set of Kleshchev multipartitions; in order to do this
we need some notation. Apartition of an integerm is a sequenceλ =
(λ1, λ2, . . . ) of non–negative integers such thatλ1 ≥ λ2 ≥ · · · and

∑
i λi =

m; we write |λ| = m. A multipartition of n (with r–components), is an
orderedr–tupleλ = (λ(1), . . . , λ(r)) of partitions such that|λ| = |λ(1)| +
· · · + |λ(r)| = n. Let Πn be the set of all multipartitions ofn.

Thediagram of λ ∈ Πn is the set

[λ] = { (a, b, c) | 1 ≤ c ≤ r and1 ≤ b ≤ λ(c)
a } .

The elements of[λ] are thenodes of λ; more generally, a node is any element
of N × N × N. If γ = (a, b, c) andγ′ = (a′, b′, c′) are two nodes thenγ
is below γ′, or γ′ is above γ, if either c > c′, or c = c′ anda > a′. If
γ = (a, b, c) ∈ [λ] is a node then itsresidue, relative to{q, Q1, . . . , Qr},
is res(γ) = qb−aQc, an element ofR. If res(γ) = x then we say thatγ is
anx–node.

Write λ → µ if µ is a multipartition ofn + 1 such that[λ] ⊂ [µ]. In this
case[µ] = [λ] ∪ {γ} for some nodeγ. We say thatγ is anaddable node
of λ and aremovable node of µ. If res(γ) = x then we shall also write
λ

x→ µ.
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Let µ be a multipartition and suppose thatη is a removable node ofµ
with res(η) = x. Thenη is anormal x–node if wheneverγ is an addablex–
node inµ which is belowη then there are more removablex–nodes between
γ andη than there are addablex–nodes. In addition,η is good if it is the
highest normalx–node inµ.

If η is a goodx–node ofµ andλ is the multipartition such that[µ] =
[λ] ∪ {η} we writeλ

x� µ. Notice that ifλ
x� µ thenλ

x→ µ.

Definition Suppose thatn ≥ 0 and thatQ1, . . . , Qr are all non–zero.
The setKn = Kn(q, Q1 . . . , Qr) of Kleshchev multipartitions is defined
inductively as follows.

(i) K0 = {((0), . . . , (0))}; and

(ii) Kn+1 = { µ ∈ Πn+1 | λ
x� µ for someλ ∈ Kn and somex ∈ R }.

There exist multipartitions which have no good or normal nodes so it is
not completely obvious thatKn 6= ∅. However,((0), . . . , (0), (1n)) ∈ Kn

for all n, soKn is always non–empty.

ExampleSuppose thatq = 3
√

1,Q1 = Q2 = q andQ3 = 1. Then` = 3 and
res(γ) ∈ { qi | 0 ≤ i < ` } for all nodesγ. Let λ =

(
(5, 4, 2), (6, 3, 2, 1),

(6, 5, 3))
)
; although one can use the definition directly to find the good nodes

in λ the following procedure is easier. In the diagram below we record the
residues inλ by writing i if the residue isqi.(

1 2 0 1 2
0 1 2 0©
2 0

, 1 2 0 1 2 0
0 1 2
2 0
1

, 0 1 2 0 1 2
2 0 1 2 0©
1 2 0

)

We find the good node inλ of residueq0 = 1. Reading nodes from the
bottom up, we obtain the sequence

AR R AARARR R A

where each “A” corresponds to an addableq0–node and each “R” to a re-
movableq0–node. From this sequence, remove all occurrences of the string
“AR”, and keep on doing this until all such strings have been deleted. The
“R”s that remain are the normalq0–nodes ofλ and the highest of these is
the goodq0–node. In this example, all of the grouped letters disappear; so
the normal nodes are the circled nodes in the diagram and the goodq0–node
is (2, 4, 1). Notice thatλ is not a Kleshchev multipartition because the node
(3, 3, 3) can never be good.

Whenr = 1, Πn can be identified with the set of partitions ofn and it is
not difficult to see thatKn is the set of̀ –restricted partitions. The definition
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of good and normal nodes in this case is due to Kleshchev [19] who used
them to describe the socle of the restriction of the irreducible modules for
the symmetric group in characteristic`. Whenr > 1 we do not know of a
simple description of the setKn (unlessq = −1; see [22]).

1 Specht modules and Grothendieck groups

Let HR,n be a cyclotomic Hecke algebra, as defined in the introduction.
WhenR = Q(q, Q1, . . . , Qr) the simpleHR,n–modules were constructed
by the first author and Koike in [3]; for arbitrary fields the set of simple mod-
ules was first constructed by Graham and Lehrer [13], as we now describe
(see also [8]).

Given two multipartitionsλ = (λ(1), . . . , λ(r))andµ = (µ(1), . . . , µ(r))
say thatλ dominates µ, and writeλ D µ, if for a = 1, 2 . . . , r and for all
i ≥ 1

a−1∑
b=1

|λ(b)| +
i∑

j=1

λ
(a)
j ≥

a−1∑
b=1

|µ(b)| +
i∑

j=1

µ
(a)
j .

If λ D µ andλ 6= µ we writeλ B µ. This defines a partial order on the set
of multipartitions.

Graham and Lehrer showed that for any ringR and any multipartitionλ
of n there exists a rightHR,n–moduleSλ

R, called aSpecht module (or cell
module). WhenR = Q(q, Q1, . . . , Qr), the Specht modules are simple
HR,n–modules and coincide with the simple modules defined in [3]. In
general,Sλ

R possesses a natural bilinear form and the radical,radSλ
R, of this

form is anHR,n–submodule ofSλ
R. LetR be a field andDλ

R = Sλ
R/ radSλ

R;
thenDλ

R is either absolutely irreducible or0.
Thus, given partitionsλ andµ of n with Dµ

R 6= 0 we can talk of the
composition multiplicitydλµ of Dµ

R in Sλ
R. Graham and Lehrer proved the

following fundamental result.

1.1 [Graham–Lehrer [13]]Suppose thatR is a field.

(i) Then{ Dλ
R | λ ∈ Πn andDλ

R 6= 0 } is a complete set of non–isomorphic
irreducibleHR,n–modules. Moreover, wheneverDλ

R is non–zero it is
absolutely irreducible.

(ii) Let λ andµ be multipartitions ofn and suppose thatDµ
R 6= 0. Then

dµµ = 1 anddλµ 6= 0 only if λ D µ.
(iii) The Hecke algebraHR,n is semisimple if and only ifSλ

R = Dλ
R for all

multipartitionsλ ∈ Πn.

Fori = 1, 2, . . . , n let Li = q1−iTi−1 . . . T1T0T1, . . . Ti−1 and setcn =
L1 +L2 + · · ·+Ln. Becausecn is a symmetric polynomial in the elements
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L1, . . . , Ln it follows from [3: Lemma 3.3] thatcn belongs to the centre of
HR,n. The next result describes howcn acts upon the Specht modules.

1.2 Lemma Suppose thatR is a field and letλ be a multipartition ofn.
Thencn is central inHR,n and acts on the Specht moduleSλ

R as multipli-
cation by

cn(λ) :=
∑
γ∈[λ]

res(γ).

Proof. WhenR = C(q, Q1, . . . , Qr) the Specht moduleSλ
R is irreducible

andcn must act uponSλ
R as multiplication by a scalar because it is central;

that this scalar iscn(λ) follows from [3: Prop. 3.16]. By restriction, the
Lemma also holds whenR = Z[q, Q1, . . . , Qr]; hence, the general case
follows by specialization.

Fix a partition{Q1, . . . , Qr} = S0 t S1 t . . . t Sa be of the parameter
set as in Theorem A and writeSk = {Qk1 , . . . , Qkrk

} for k = 0, 1, . . . , a.

Given a multipartitionλ = (λ(1), . . . , λ(r)) let λk = (λ(k1), . . . , λ(krk
))

and setnk = |λk|. ThenDR(λ) = Dλ0
R ⊗· · ·⊗Dλa

R is anHR,n0(q;S0)⊗R

· · · ⊗R HR,na(q;Sa)–module and, as described in (1.4)(ii) below, we can
define the inducedHR,n–moduleIndDR(λ).

Key to the proof of our main results is the following reduction theorem
which we prove using results of Rogawski [24] and Vigneras [27]; the result
is also a consequence of the main result of Dipper–Mathas [9].

1.3 Theorem Suppose thatR is a field and letλ be a multipartition ofn
and maintain the notation above. ThenDλ

R
∼= IndDR(λ).

Before proving the theorem we need to setup some notation. LetL be
the abelian subalgebra ofHR,n generated byL1, . . . , Ln. Over a field, the
irreducible representations ofL are one dimensional and are labelled by the
setX of weights. An irreducible representationχ ∈ X is uniquely deter-
mined by the sequence

(
χ(L1), . . . , χ(Ln)

)
. If χ′ ∈ X and the sequence(

χ′(L1), . . . , χ′(Ln)
)

is obtained from that forχ by interchangingχ(Li)
andχ(Li+1) then we writeχ′ = siχ.

If M is an HR,n–module andχ ∈ X let Mgen
χ be the generalized

eigenspace ofM with respect toχ.
Let S0, . . . , Sa be as above and denote the<q>–orbit containingSk by

Ŝk. We defineXred to be the set of weights whose values satisfyχ(Li) ∈ Ŝk

for i = n0 + · · ·+nk−1 +1, . . . , n0 + · · ·+nk. Suppose thatM is anHR,n–
module and defineMred =

⊕
χ∈Xred

Mgen
χ . ThenMred is a generalized

eigenspace for the polynomials inL1, . . . , Lm which are symmetric with
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respect toSn0 × · · · × Sna . ThusMred is stable underL1, . . . , Ln andTw,
for w ∈ Sn0 × · · ·Sna , since these elements commute with the partially
symmetric polynomials inL1, . . . , Ln by [3: 3.3].

1.4 To prove Theorem 1.3 it is enough to show the following.

(i) Mred is anHR,n0(q;S0) ⊗R · · · ⊗R HR,na(q;Sa)–module.
(ii) Mred ⊗ Hn ' M .
(iii) M is irreducible if and only ifMred is irreducible.

Let Ĥ be the algebra generated byT , X andY whose relations are

(T − q)(T + 1) = 0, q−1TXT = Y and XY = Y X.

We do not assume thatX and Y are invertible. LetI(α, β) be the two
dimensional representation of̂H given by

T 7→
(

0 q
1 q−1

)
X 7→

(
α −(q−1)β
0 β

)
, and Y 7→

(
β (q−1)β
0 α

)
.

It is easy to see that it is irreducible if and only ifβ 6= q±1α, and in this case
we haveI(α, β) ' I(β, α).

1.5 Lemma Suppose thatM is anHR,n–module and viewMgen
χ + Mgen

siχ

as anĤ–module via

T 7→ Ti, X 7→ Li and Y 7→ Li+1.

Assume thatχ(Li) 6= q±1χ(Li+1). Then the following hold.

(i) The composition factors ofMgen
χ + Mgen

siχ are of the form
I
(
χ(Li), χ(Li+1)

)
.

(ii) dimMgen
χ = dimMgen

siχ .
(iii) Suppose thatN ≥ 0. Then(Li+1 −Q)N acts as0 onMgen

χ if and only
if (Li − Q)N acts as0 onMgen

siχ .

Proof. (i) Consider the radical series ofMgen
χ + Mgen

siχ . Then each succes-
sive subquotient is a semisimple module and each the simple factor contains
a simultaneous eigenvectoru of X andY . As a multiset, the eigenvalues
of X and Y are {χ(Li), χ(Li+1)}. Therefore,u and Tu span the sim-
ple factor, and this factor is isomorphic to one ofI

(
χ(Li), χ(Li+1)

)
or

I
(
χ(Li+1), χ(Li)

)
.

(ii) Set α = χ(Li) andβ = χ(Li+1). If α = β there is nothing to
prove; hence we may assume thatα 6= β. Notice that the vectors(1, 0)T

and
(
(q − 1)β, α − β

)T
are simultaneous eigenvectors inI(α, β) of X

andY , and that the eigenvalues ofX andY on one vector are obtained by
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interchanging the eigenvalues of the other. By (i),Mgen
χ +Mgen

siχ is a module
whose composition factors have the formI(α, β), this implies (ii).

(iii) As in (ii), we consider the direct summands ofMgen
χ + Mgen

siχ . Note
that(Li+1 − Q)N acts as 0 onMgen

χ if and only if ((Li − Q)(Li+1 − Q))N

acts as 0 onMgen
χ . Since the radical of this block algebra is the two-sided

ideal generated byX + Y − αβ andXY − αβ, t2 − (X + Y )t + XY for
t = α, β are elements of the radical which are not in the square of the radical.
Thus,(Li+1 − Q)N acts as0 onMgen

χ if and only if Q = χ(Li+1) and the
lengths of the direct summands ofMgen

χ less than or equal toN . Similarly,
(Li − Q)N acting as0 onMgen

siχ is equivalent to this same condition.

We are now in a position to prove conditions (i)–(iii) from (1.4). It is easy
to see thatMred is a module for the affine Hecke algebraĤn0 ⊗R · · ·⊗RĤna .
We check the conditions forLi , for i = 1, n0 + 1, . . . . If χ ∈ Xred and
i = n0 + · · · + nk−1 + 1 thenχ(Li) must be an element inSk, sinceχ(Li)
must appear as an eigenvalue ofL1 by Lemma 1.5(ii). LetQ be an element
in Sk and denote its multiplicity inSk by nQ. Then Lemma 1.5(iii) says that
(Li −Q)nQ = 0 onMgen

χ for thoseχ ∈ Xred which satisfyχ(Li) = Q and
i = n0 + . . . + nk−1 + 1. Taking the product of these factors(Li − Q)nQ ,
we see thatMred is anHR,n0(q;S0) ⊗R · · · ⊗R HR,na(q;Sa)–module. We
have proved (1.4)(i).

By the argument of [24: Proposition 4.1], as anĤn–module,M is isomor-
phic to the induced module ofMred. Since the spaceŝHn/Ĥn0 ⊗· · ·⊗ Ĥna

andHn/Hn0 ⊗ · · · ⊗ Hna have the same dimension, this gives (1.4)(ii).
Finally, (1.4)(iii) follows because the functorsM 7→ Mred andN 7→

HR,n ⊗ N are both exact.
This completes the proof of Theorem 1.3.

Thus, because of Theorem 1.3, in order to prove our main results we can
reduce to the cases where the parametersQ1, . . . , Qr are either (i) all zero,
or (ii) all units inR andQi/Qj is a power ofq for all 1 ≤ i, j ≤ r. We next
dispense with case (i) by classifying the irreducibleHR,n–modules when
Q1 = · · · = Qr = 0.

Recall that̀ is the smallest positive integer such that1+q+· · ·+q`−1 =
0; if no such integer exists theǹ= ∞. A partition λ = (λ1, λ2, . . . ) is
`–restricted if λi − λi+1 < ` for all i ≥ 1. In particular, all partitions are
∞–restricted. LetΛ+

0 be the set of all multipartitionsλ = (λ(1), . . . , λ(r))
of n such thatλ(r) is `–restricted andλ(j) = (0) for 1 ≤ j < r.

1.6 Theorem Suppose thatR is a field and thatQ1 = · · · = Qr = 0.

(i) Let λ = (λ(1), . . . , λ(r)) be a multipartition ofn. ThenDλ
R is non–zero

if and only ifλ ∈ Λ+
0 .
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(ii) { Dλ
R | λ ∈ Λ+

0 } is a complete set of non–isomorphic irreducible right
HR,n–modules.

Before we can establish the theorem we have to recall some notation
from [8] and prove a preliminary lemma.

In [8: Theorem 3.26] it is shown thatHR,n is a cellular algebra with a
cellular basis{mst}, wheres andt run over all pairs of standardλ–tableaux
of the same shape for all multipartitions ofn. The dominance orderD
extends naturally to the set of standard tableaux and for eachλ there is a
unique tableautλ such thattλ D s for all λ–tableaus. These details can be
found in [8].

Given a multipartitionλ let N̄λ be the submodule ofHR,n spanned
by the basis elements{muv}, whereu andv are standardµ–tableaux for
some multipartitionµ such thatµ B λ. Then N̄λ is a two–sided ideal
of HR,n and the Specht moduleSλ

R is isomorphic to theR–module with
basisms = N̄λ + mtλs, wheres runs over the set of standardλ–tableaux.
Moreover, there is a natural bilinear form〈 , 〉 defined onSλ

R which is
determined by

〈ms, mt〉mtλtλ ≡ mtλsmttλ mod N̄λ.

Finally, Dλ
R = Sλ

R/ radSλ
R, where

radSλ
R = { x ∈ Sλ

R | 〈x, y〉 = 0 for all y ∈ Sλ
R } .

1.7 Lemma Suppose thatQ1 = · · · = Qr = 0 and thatλ is a multipartition
of n. Let k be an integer with1 ≤ k ≤ n. ThenmtλsLk ∈ N̄λ for any
standardλ–tableaus.

Proof. We argue by induction ons. Whens = tλ the result is a special
case of [15: Prop. 3.7]. Ifs 6= tλ then there exists an integeri such that
t = s(i, i + 1) B s and1 ≤ i < n. Therefore,mtλsLk = mtλtTiLk.
If i 6= k − 1 and i 6= k thenTi andLk commute so the lemma follows
by induction. The remaining cases also follow by induction ons because
Tk−1Lk = (q − 1)Lk + Lk−1 andTkLk = qLk+1T

−1
k .

Proof of Theorem 1.6.BecauseHR,n is a cellular algebra, we need only
consider part (i). For this, recall thatDλ

R 6= 0 if and only if radSλ
R 6= Sλ

R. If
s andt are standardλ–tableaux then the bilinear form onSλ

R is determined
by

〈ms, mt〉mtλtλ ≡ mtλsmttλ mod N̄λ.

First suppose thatλ ∈ Λ+
0 . Then for all standardλ–tableauxs andt we

have thatmtλsmttλ ∈ HR,n(Sn) and so it follows from [7: Theorem 6.3]
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that Dλ
R 6= 0. (Note that in the notation of [7] we are working with dual

Specht modules and so partitions must be conjugated.)
To prove the converse, we claim that ifλ /∈ Λ+

0 then〈ms, mt〉 = 0 for
all standardλ–Tableauxs andt; in particular, this will show thatradSλ

R =
Sλ

R and so complete the proof of the theorem. As in [8: Defn. 3.5], write
mtλtλ = mλ = u+

a xλ; all that we need to know about this factorization is
thatL1 is a factor ofu+

a if λ /∈ Λ+
0 . By the above remarks,

〈ms, mt〉mtλtλ ≡ mtλsmttλ = mtλsT
∗
d(t)xλu+

a

≡
∑
s′

as′mtλs′u+
a mod N̄λ,

for someas′ ∈ R. So in order to prove our claim it suffices to show that
mtλs′u+

a ∈ N̄λ for all standardλ–Tableauxs′. However, we have already
noted thatL1 is a factor ofu+

a whenλ /∈ Λ+
0 ; so, Lemma 1.7 proves the

claim and hence the theorem.

Thus, in order to prove Theorems A, C and D we are reduced to the
following situation.

1.8 Henceforth, we assume thatR is a field,q 6= 1 and that there exist
integersni such thatQi = qni for i = 1, 2, . . . , r. Let ` be the smallest
positive integer such thatq` = 1; set` = ∞ if no such integer exists. If̀is
finite letI` = {0, 1, . . . , ` − 1}; otherwise, letI` = Z.

We also writeλ
i−→ µ and λ

i� µ rather thanλ
qi

→ µ and λ
qi

� µ
respectively.

Let uR,n = G0(HR,n) ⊗Z C be the Grothendieck group of finitely gen-
eratedHR,n–modules modulo short exact sequences, with coefficients ex-
tended toC; see [6: Sect. 16]. Given a finitely generatedHR,n–module let
[M ] denote its equivalence class inuR,n. By (1.1),uR,n is an abelian group
which is free as aC–module with basis{ [Dµ

R] | µ ∈ Πn andDµ
R 6= 0 }.

Furthermore,[Sλ
R] =

∑
λ dλµ[Dµ

R] if µ ∈ Πn andDµ
R 6= 0.

Given anyHR,n–moduleM letRes M be the restriction ofM toHR,n−1.
ThenRes is an exact functor from the category of rightHR,n–modules to
the category of rightHR,n−1–modules. Similarly, we have an adjoint induc-
tion functorInd given byIndM = M ⊗HR,n

HR,n+1. These functors in-
duce maps between the corresponding Grothendieck groups viaRes [M ] =
[Res M ] andInd [M ] = [IndM ].

1.9 Proposition Suppose thatλ is a multipartition ofn. ThenRes Sλ
R has a

filtration with composition factors precisely the Specht modulesSν
R where

ν is a multipartition ofn − 1 andν → λ.
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Proof. As above, let{mt} be the standard basis of the Specht moduleSλ
R.

If t is a standardλ–tableau lett ↓ n − 1 be the tableau obtained by deleting
the node labelledn and let|t ↓ n − 1| be the corresponding multipartition.
By repeating the proof of [8: 3.15,3.18], ifh ∈ HR,n−1 thenmth is a linear
combination of termsmv such that|v ↓ n − 1| D |t ↓ n − 1|; that is,
n occupies either the same node or a lower node inv than it does int.
Therefore, by extending the dominance order on the set{ ν | ν → λ } to a
total order, we can define anHR,n−1–stable filtration ofSλ

R where for each
quotient there exists a multipartitionν such thatν → λ and the quotient
has a basis indexed by theλ–tableaut such that|t ↓ n − 1| = ν. As in [8:
3.20], for each suchν, we can define a map fromSν

R into the corresponding
quotient of the filtration which mapsms to the image ofmt in the quotient
wheres = t ↓ n − 1. From what we have said, this is anHR,n−1–module
homomorphism; by a counting argument, it is actually an isomorphism.

1.10 Corollary Letλ be a multipartition ofn. Then

Res [Sλ
R] =

∑
ν→λ

[Sν
R] and Ind [Sλ

R] =
∑
λ→µ

[Sµ
R].

Proof. The restriction formula is a direct consequence of Proposition 1.9.
The induction formula follows by adjointness.

By (1.1), [Dµ
R] is a linear combination of Specht modules[Sλ

R] so this
completely determines the mapsRes andInd at the level of Grothendieck
groups.

Now consider the elementcn and suppose thatDµ
R 6= 0. By Lemma 1.2,

cn is central and acts onSµ
R, and hence also onDµ

R, as multiplication by
cn(µ). LetM be aHR,n–module and letM = ⊕xMx be the decomposition
of M into a direct sum of generalized eigenspacesMx for the action ofcn.
Then, giveni ∈ I` we have functorsi–Res andi–Ind given by
(1.11)

i–ResM =
⊕
x∈R

(Res Mx)x−qi and i–IndM =
⊕
x∈R

(IndMx)x+qi .

ThenRes =
∑

i i–Res andInd =
∑

i i–Ind. In turn, these functors induce
homomorphismsi–Res: uR,n −→uR,n−1 andi–Ind: uR,n −→uR,n+1 given
by i–Res[M ] = [i–ResM ] and i–Ind[M ] = [i–IndM ]. Comparing the
definitions and Corollary 1.10 we can rephrase this as follows.
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1.12 Corollary Suppose thatλ is a multipartition ofn and leti ∈ I`. Then
the homomorphismsi–Res: uR,n −→ uR,n−1 and i–Ind: uR,n −→ uR,n+1
are completely determined by

i–Res[Sλ
R] =

∑
ν

i−→λ

[Sν
R] and i–Ind[Sλ

R] =
∑

λ
i−→µ

[Sµ
R].

Although we are most interesteduR,n it is more useful to consideru0
R,n,

the Grothendieck group of finitely generatedprojectivemodules, again with
coefficients extended toC. If P is a projectiveHR,n–module write[[P ]] for
its image inu0

R,n. For each multipartitionµ with Dµ
R 6= 0, up to isomor-

phism, there is a uniquely determined projective indecomposable module
Pµ

R andu0
R,n is the free abelian group which is free as aC–module with

basis{ [[Pµ
R]] | µ ∈ Πn andDµ

R 6= 0 }.
It is easy to see that the functorsRes andInd take projectives to pro-

jectives and so again induce maps betweenu0
R,n and u0

R,n±1. Moreover,
by Lemma 1.2, each projective decomposes into a sum of generalized
eigenspaces ofcn, which are again projective modules, so we also have
homomorphismsi–Res andi–Ind which are defined using (1.11) exactly as
before.

The next lemma is standard.

1.13 Lemma Letu∗
R,n = HomC(uR,n, C).

(i) The abelian groupsu0
R,n andu∗

R,n are canonically isomorphic.

(ii) The natural pairingu0
R,n×uR,n → C is determined by([[P λ

R]], [Dµ
R]) =

δλµ.
(iii) If P is a projectiveHR,n–module andM is anyHR,n+1–module then

(i–Ind[[P ]], [M ]) = ([[P ]], i–Res[M ]).

(iv) If P is a projectiveHR,n–module andM is anyHR,n−1–module then

(i–Res[[P ]], [M ]) = ([[P ]], i–Ind[M ]).

Proof.(i) Given any projectiveHR,n–moduleP the functorHomHR,n
(P, )

is exact; hence, we can define a mapdP ∈ u∗
R,n bydP [M ] = dim HomHR,n

(P, M). It follows thatP 7→ dP is an isomorphism of abelian groups.
(ii) The natural pairing betweenu∗

R,n anduR,n is given by evaluation;
therefore, using the notation of (i),

([[P λ
R]], [Dµ

R]) = dP λ
R
[Dµ

R] = dim HomHR,n
(P λ

R, Dµ
R) = δλµ.
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(iii) Using the adjointness ofi–Res andi–Ind we find that

(i–Ind[[P ]], [M ]) = dim HomHR,n
(i–IndP, M)

= dim HomHR,n
(P, i–ResM)

= ([[P ]], i–Res[M ]).

The proof of (iv) is similar.

Henceforth, we identifyu0
R,n andu∗

R,n.
There is a natural homomorphismc : u0

R,n −→ uR,n given by [[P ]] 7→
[P ]. The mapc is the so–called “Cartan map” and it is best understood as
follows. LetFn be the free abelian group withC–basis the set of symbols
{ [[Sλ]] | λ ∈ Πn }. We define group homomorphismsRes, i–Res,Ind and
i–Ind fromFn to Fn±1 by formulas in Corollary 1.12; importantly, these
maps are independent of the fieldR.

By [13: Theorem 3.7], the projective indecomposablePµ
R has a filtra-

tion with each composition factor isomorphic to some Specht module such
thatSλ

R occurs with multiplicitydλµ. Since the[[Pµ
R]] are linearly indepen-

dent, we have a well–definedinjectivehomomorphism of abelian groups
e : u0

R,n −→ Fn given by e[[Pµ
R]] =

∑
λ dλµ[[Sλ]]. Similarly, there is a

well–definedsurjectivehomomorphismd :Fn −→uR,n given byd[[Sλ]] =
[Sλ

R] =
∑

µ dλµ[Dµ
R]. Moreover, by [13: Theorem 3.7] the diagram

d�
��	

Fn

e@
@@R

u0
R,n

uR,n

?

c

commutes. By (1.1)(iii),Fn is isomorphic to the Grothendieck group of
a semisimple Hecke algebra, so this is really just the Cartan–Brauercde–
triangle forHR,n (see [6: Sect. 18]).

Finally, it follows directly from the definitions that all of the maps in
the Cartan triangle commute with the homomorphismsi–Res andi–Ind. We
summarize these results in the following lemma.
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1.14 Lemma Suppose thatR is a field and thati ∈ I`. Then all of the
squares and triangles in the diagram

d�
��	

Fn−1

e@
@@R

u0
R,n−1

uR,n−1
?

c

d�
��	

Fn

e@
@@R

u0
R,n

uR,n

?
d�

��	

Fn+1

e@
@@R

u0
R,n+1

uR,n+1
?

� i–Res -i–Ind

� i–Res -i–Ind

� i–Res -i–Ind

commute(the vertical arrows are the Cartan mapsc).

2 The Kac–Moody algebra

Throughout this section we maintain the assumptions of (1.8). In particular,
` is the smallest positive integer such thatq` = 1; ` = ∞ if no such integer
exists.

If ` is finite letU(g) be the Kac–Moody algebra of typeA(1)
`−1; if ` = ∞

let U(g) be the Kac–Moody algebra of typeA∞.1 We refer the reader to
Kac’s book [17] for the standard properties of Kac–Moody algebras.

The Kac–Moody algebraU(g) is generated by elementsei, fi, hi andd
wherei ∈ I`. LetU(h) be the Cartan subalgebra ofU(g), the subalgebra of
U(g) generated byhi andd, and fori ∈ I` letΛi, αi ∈ h∗ be the fundamental
and simple weights ofU(g). We may choosed so thatΛi(d) = 0 and
αi(d) = δi0 for all i ∈ I`.

The following result is a theorem of Hayashi [14] whenr = 1 (see also
[23]); the general case follows easily; see [1: 4.5]. We give the proof of a
slightly stronger result in Proposition 2.6 below.

2.1 Definition Giveni ∈ I` letNi(λ) = # {µ | λ i−→ µ }−# { ν | ν i−→ λ}
and letNd(λ) = # { (a, b, c) ∈ [λ] | res(a, b, c) = 0 }.

2.2 Lemma Let F =
⊕

n≥0 Fn. ThenF becomes aU(g)–module with
action

ei[[Sλ]] =
∑

ν
i−→λ

[[Sν ]], fi[[Sλ]] =
∑

λ
i−→µ

[[Sµ]], hi[[Sλ]] = Ni(λ)[[Sλ]],

for eachi ∈ I`, andd[[Sλ]] = −Nd(λ)[[Sλ]].

1 We call the universal enveloping algebra the Kac-Moody algebra.
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Comparing Lemma 2.2 with Corollary 1.12, we can identifyi–Ind and
i–Res withfi andei on

⊕
u0

R,n.
For j = 1, 2, . . . , r recall thatQj = qnj for some integernj . When`

is finite q` = 1 we may assume that0 ≤ nj < ` for all j. In this way we
associate the dominant weightΛ = Λn1 + · · ·+Λnr with HR,n. Notice that
the multiplicity ofΛi in Λ is equal to the number ofQj such thatQj = qi.

2.3 Theorem Let R be a field and setu0
R =

⊕
n≥0 u0

R,n. Thenu0
R is iso-

morphic to the integrable highest weightU(g)–module of highest weightΛ.

Proof. WhenR = C this is just [1: Theorem 4.4(i)]: the crucial point in
the proof is to show thatu0

R is a cyclicU(g)–module, which was proved
by counting orbits in quiver spaces which are known to parametrize both
the irreducible representations of the affine Hecke algebras of typeA and
also a basis of the quantum algebras of affine typeA. Let R be a field of
characteristic0 and letR′ be an extension ofR. By (1.1)(i),Dµ

R is absolutely
irreducible soDµ

R′ ∼= Dµ
R ⊗R R′ andi–Ind andi–Res act in the same way

upon[Dµ
R] and[Dµ

R′ ] for all µ. Thus, we may identifyu0
R andu0

R′ asU(g)–
modules. In conclusion, the Theorem holds for fields of characteristic0 by
embedding them into a suitable extension ofC.

Now suppose thatR is a field of positive characteristic. By construction,
u0

R is aC–submodule ofF . However, by Lemma 1.14 and Lemma 2.2, if
Dµ

R is non–zero then bothfi[[P
µ
R]] andei[[P

µ
R]] are elements ofu0

R; so,u0
R is

actually aU(g)–submodule ofF . Notice also thatF is integrable since each
multipartition has a finite number of addable and removable nodes; hence,
u0

R is also integrable.
Let uΛ = [[S((0),... ,(0))]] be the vector inF corresponding to the empty

multipartition; thenU(g)uΛ ⊆ u0
R. Now uΛ is annihilated byei and byd

andhiuΛ = Λ(hi)uΛ for all i ∈ I`; thus,U(g)uΛ is an integrable highest
weight module of highest weightΛ and to complete the proof we must show
thatu0

R = U(g)uΛ. To do this, take a modular system(K, O, R) whereK
is a field of characteristic0 andq′ is an element of order̀in O ⊂ K which
is in the preimage ofq. As in Sect. 2, we have operatorsi–Res andi–Ind for
u0

K andu0
R respectively; by Corollary 1.12 these are defined by their action

on Specht modules and by Corollary 1.10 they are both restrictions of the
same operators acting onF . By lifting idempotents,u0

R is a submodule
of u0

K . However, we have already shown thatu0
K is the integrable highest

weight module of weightΛ; so any submodule ofu0
K which contains the

highest weight vector coincides with the module itself. Thus,u0
R = U(g)uΛ

as required.

Note that Theorem 2.3 is completely independent of the fieldR; hence,
this completes the proof of Theorem A.
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Proof of Theorem B.Let k be a field. We first notice that any simplêHk,n–
module is a simple module for someHk,n. Hence we can use Theorem 1.3 to
reduce to the case where the support ofλ is a single<q>–orbit ink. In this
case, the simplêHC,n–modules are indexed by aperiodic multisegments;
see [5: Theorem 8.6.12] and [1: Proposition 4.3]. Therefore, by an similar
argument to that of the first paragraph of the proof of Theorem 2.3, we de-
duce that the simplêHk,n–modules are indexed by aperiodic multisegments
wheneverk is a field of characteristic0.

Now suppose thatk is a field of positive characteristic and, as in [1], let
U∗

k be the graded dual of the direct sum of Grothendieck groups ofĤk,n–
modules; cf. the definition ofu0

k. ThenU∗
k is aU−(g)–module andu∗

k is a
quotient ofU∗

k by [1: Lemma 4.1]. By fixingn and taking the highest weight
Λ sufficiently large, the degreen part ofU∗

k is isomorphic to the degreen
part ofu∗

k. Since Theorem A tells us that the dimension of the degreen part
of u∗

k only depends on the multiplicative order ofq, we have that the simple
Ĥk,n–modules are also indexed by the aperiodic multisegments of sizen.
We have proved (i).

To prove (ii), take a modular system(K, O, k) whereq lifts to an element
of the same order inO. Recall that the isomorphismu0

K ' u0
k, which induces

an isomorphism fromuk to uK by Lemma 1.13(i), is given by the modular
reduction procedure. Hence, (1.1) gives (ii).

Now we turn to the proof of Theorem C. By Theorem A, we can restrict
ourselves to the caseR = C. The main result of [1] states that ifR = C then
the canonical basis ofu0

C
coincides with the basis ofu0

C
given by the principal

indecomposableHC,n–modules. The canonical basis ofu0
C

is indexed by the
vertices of the crystal graph ofu0

C
; to describe this we next introduce the

quantized enveloping algebra ofU(g).
Let v be an indeterminate overC and letUv(g) be the quantized en-

veloping algebra ofU(g). This is aC(v)–algebra generated by elements
Ei, Fi, Khi

andKd (for i ∈ I`), which are subject to the quantized Serre
relations [21: 1.4.3].

We first show howFv = F ⊗C C(v) may be endowed with the structure
of a Uv(g)–module. For convenience, considerFv to be the freeC(v)–
module with basis{ λ | λ ∈ Πn for somen ≥ 0 }.

2.4 Definition [cf. [20]] Let λ,ν andµ be multipartitions such thatν
i−→ λ

andλ
i−→ µ for somei ∈ I`.

(i) N r
i (ν, λ) = # { ν

i−→ α | α B λ } − # { β
i−→ λ | ν B β } .

(ii) N l
i (λ, µ) = # { λ

i−→ α | µ B α } − # { β
i−→ µ | β B λ } .
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These definitions can be rephrased in terms of the addable and removable
nodes of the introduction (cf. 2 below).

2.5 Lemma Suppose thatλ and µ are multipartitions withλ
i−→ µ for

somei ∈ I`. Letη be the addable node ofλ such that[µ] = [λ] ∪ {η}. Then
η is normal if and only ifN l

i (λ, µ) ≤ 0 andN l
i (λ, µ) < N l

i (λ, ν) whenever

λ
i−→ ν andµ B ν.

Proof. The addablei–nodes belowη are in bijection with those multipar-

titions α such thatλ
i−→ α andµ B α; similarly, the removablei–nodes

below η correspond to the multipartitionsβ with β
i−→ µ and β B λ.

Hence, the Lemma is just a translation of the original definition given in the
introduction into the notation of Definition 2.4.

2.6 Proposition TheC(v)–moduleFv is an integrableUv(g)–module with
action determined by

Khi
λ = vNi(λ)λ, Kdλ = v−Nd(λ)λ

Eiλ =
∑

ν
i−→λ

v−Nr
i (ν,λ)ν, Fiλ =

∑
λ

i−→µ

vN l
i (λ,µ)µ

wherei ∈ I` andλ is multipartition ofk.

Proof. First consider the case wherer = 1. In this caseFv is the Fock
spaceF (1)

Q1
; that is, the freeC(v)–module with basis the set of all partitions

of all integers), and this action was discovered by Hayashi [14] (cf. [20]). In
fact, he considered only the case whereQ1 = 1; however, the general case
is easily derived from this.

Suppose now thatr > 1 and identifyFv with F (1)
Q1

⊗ · · · ⊗ F (1)
Qr

via the

C(v)–linear map which sends(λ(1), . . . , λ(r)) to λ(1) ⊗ · · · ⊗ λ(r). Now,
Uv(g) is a Hopf algebra having a standard comultiplication map∆; because
of its compatibility with the representation theory ofHR,n we use the twisted
coproduct map∆′ = w0∆w0, wherew0 is the longest element ofSr. Then
∆′ is theC(v)–linear map determined by

∆′(Kh) = Kh ⊗ Kh,

∆′(Ei) = Ei ⊗ 1 + K−hi
⊗ Ei, and∆′(Fi) = Fi ⊗ Khi

+ 1 ⊗ Fi,
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for all i ∈ I` and allh ∈ U(h). The coproduct map∆′ induces an action of
Uv(g) uponFv. For example, using the obvious notation,

Eiλ = Eiλ
(1) ⊗ λ(2) ⊗ · · · ⊗ λ(r) + K−hi

λ(1) ⊗ Eiλ
(2) ⊗ · · · ⊗ λ(r)

+ · · · + K−hi
λ(1) ⊗ · · · ⊗ K−hi

λ(r−1) ⊗ Eiλ
(r)

=
(∑

µ(1)

v−Nr
i (λ(1),µ(1))µ(1)

)
⊗ λ(2) ⊗ · · · ⊗ λ(r)

+ · · · + v
∑r−1

j=1 −Ni(λ(j))λ(1) ⊗ · · ·
· · · ⊗ λ(r−1) ⊗

(∑
µ(r)

v−Nr
i (λ(r),µ(r))µ

)

=
∑

λ
i−→µ

v−Nr
i (λ,µ)µ,

as required. The other calculations are similar.
Finally,Fv is integrable because each basis elementλ is a weight vector

andEk
i λ = F k

i λ = 0 for all sufficiently largek sinceλ has only a finite
number of addable and removable nodes.

By the Proposition, the empty multipartitionuΛ =
(
(0), . . . , (0)

)
in Fv

is a highest weight vector of weightΛ. Now integrableUv(g)–modules are
completely reducible [21: 6.2.2], so the highest weight moduleL(Λ) :=
Uv(g) · uΛ is a direct summand ofFv.

If i ∈ I` andk ≥ 0 let E
(k)
i = Ek

i /[k]!v andF
(k)
i = F k

i /[k]!v where
[k]!v = [1]1[2]v . . . [k]v where[k]v = (vk − v−k)/(v − v−1).

Given i ∈ I` let Ui be the subalgebra ofUv(g) generated byEi, Fi,
andK±hi

. Every elementx of Fv can be written in a unique way as a linear
combinationx =

∑
Γ xΓ whereΓ ∈ h∗ andKhxΓ = vΓ (h)x for all h ∈ h.

If x = xΓ for someΓ ∈ h∗, becauseEi andFi both act as locally nilpotent
operators onF , it follows from [21: 16.1.4] that

x =
∑
s≥0

F
(s)
i xs,

where eachxs is uniquely determined by the conditions thatEixs = 0 and
Kixs = vΓ (hi)+2sxs. TheKashiwara operators [18] Ẽi andF̃i are defined
by

(2.7) Ẽix =
∑
s≥1

F
(s−1)
i xs andF̃ix =

∑
s≥0

F
(s+1)
i xs.

Let A be the ring of rational functions inC(v) which do not have a pole
at 0. Let FA = ⊕λAλ whereλ runs over all multipartitions of all integers.
We denote the set of multipartitions byΠ.
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2.8 Theorem (cf. [16: Theorem 3.6])Suppose thatµ is a multipartition ofn
and leti ∈ I`.

(i) If µ has no good node of residuei thenẼiµ = 0 (mod vFA).
(ii) If η is the good node of residuei in µ andµ = λ ∪ {η} then

F̃iλ = µ (mod vFA) andẼiµ = λ (mod vFA).

(iii) (FA, Π) is a crystal base ofFv.

Proof.Whenr = 1 this result is proved in [23]; note that they work with the
crystal basis at infinity. Since(FA, Π) is the tensor product of the crystal
bases of level1 modules, we have (iii). To prove (i) and (ii), we recall
Kashiwara’s rule for the tensor product of crystal bases.

Let(L1, B1),(L2, B2)be crystal bases and letl+i (b) = max { k |Ẽk
i b 6= 0}

andl−i (b) = max { k | F̃ k
i b 6= 0 }. Then we have

F̃i(b1 ⊗ b2) =
{

F̃i(b1) ⊗ b2, if l+i (b1) ≥ l−i (b2),
b1 ⊗ F̃i(b2), if l+i (b1) < l−i (b2).

Note that we adopt∆′ as coproduct. Assume that we have already proved
(i) and (ii) for r and considerλ ⊗ λ(r+1) ∈ Fv ⊗ F (1)

Qr+1
. Recall the proce-

dure described in the introduction for deletingAR’s from the sequence of
addable and removable nodes for this multipartition. In the final sequence,
the number ofR’s remaining which came fromλ is l+i (λ), and the number
of A’s remaining fromλ(r+1) is l−i (λ(r+1)). Thus, if l+i (λ) ≥ l−i (λ(r+1)),
all of the A’s in λ(r+1) are cancelled and̃Fi(λ ⊗ λ(r+1)) is obtained by
changing the lowestA in λ into anR. If l+i (λ) > l−i (λ(r+1)) then some of
theA’s fromλ(r+1) still remain and the bottomA is changed into anR. This
rule is exactly the one we claimed for̃Fi. The proof forẼi is similar.

Let L(Λ)A = FA ∩ L(Λ) andB0(Λ)
= { F̃i1 . . . F̃ikuΛ + vL(Λ)A | ij ∈ I` } \ {0}.

Then (L(λ)A, B0(Λ)) is a crystal base. We can now describe the crystal
graph ofL(Λ).

2.9 Definition (Kashiwara [18])The crystal graph of L(Λ) is the edge

labelled directed graph with vertex setB0(Λ) and edgesb
i� b′ whenever

F̃ib = b′ for b, b′ ∈ B0(Λ) andi ∈ I`.

Kashiwara proved thatB0(Λ) is a connected graph. Consequently, from
Theorem 2.8 we obtain the following result.



Hecke algebras of typeG(r, 1, n) 621

2.10 Corollary The crystal graph ofL(Λ) is the graph with vertices the

setK =
⋃

n≥0 Kn of Kleshchev multipartitions and edgesλ
i� µ given by

adjoining good nodes.

Kashiwara and Lusztig have shown thatB0(Λ) lifts to the canonical
basis (or global basis) ofL(Λ) = L(Λ)A ⊗A C(v), so we can specialize the
canonical basis to give a basis ofu0

R indexed byB0(Λ). This shows that,
under the assumptions of (1.8), the Kleshchev multipartitionsKn index the
simple modules ofHR,n. Thus, by Theorem 1.3, we have proved Theorem C.

Jimbo et al [16] (see also [10]) have given a different description of
the crystal graph ofL(Λ). The point of this construction is the following
conjecture.

2.11 Conjecture Suppose thatR is a field,q 6= 1 and that all of the param-
etersQ1, . . . , Qr are non–zero. ThenDλ

R 6= 0 if and only ifλ is a Kleshchev
multipartition.

This conjecture is known to be true whenr = 1 [7] and whenq =
−1 [22]. Graham and Lehrer [13] have given sufficient conditions forDλ

R
to be non–zero and they have conjectured that these conditions are also
necessary. It seems likely that the Kleshchev multipartitions are precisely
the multipartitions which satisfy the Graham–Lehrer conjecture.2

It remains to prove Theorem D. Recall the Weyl–Kacq–dimension for-
mula [17: Proposition 10.10]. Since the positive root system forA

(1)
`−1 is

explicitly known [17: Exercise 6.5], this implies Theorem D when` < ∞.
The caseA∞ is also obvious.

3 Applications to the groups of Lie type

In this final section, we comment on the application of our results to the
classification of the irreducible representations of finite classical groups in
non–defining characteristic. In general, these modules are parameterised by
triples(L, X, φ) whereL is a Levi subgroup ofG, X a cuspidal simple mod-
ule ofL andφ is a simple module of the endomorphism ringEndG(RG

L (X))
of the Harish–Chandra induced moduleRG

L (X); see [12: Theorem 2.4].
Assume thatG is one of the following groups:GUn(q),Sp2n(q),CSp2n(q)

or SO2n+1(q). Then Geck, Hiß and Malle [12: Proposition 4.4] have shown
thatEndG(RG

L (X)) is isomorphic to a product of Hecke algebras of type
B. Thus, given a cuspidal simple module, by determining the appropriate
parameters for the associated Hecke algebra, our Theorem D gives the exact
number of simple modules in the Harish–Chandra series of(L, X). Since

2 Conjecture 2.11 has recently been established by the first author [2].
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the total number of simpleG–modules is known [11] it is therefore sufficient
to find enough cuspidal simple modules in order to complete the classifica-
tion of the simpleG–modules. This is not possible using the classification
of the simpleHR,n–modules proposed by Graham and Lehrer [13], because
their classification does not give a way of counting the number of simple
modules.

Thus, Theorem D solves problem (b) from the introduction of [12], mod-
ulo determination of certain parameter values. We can therefore focus on
problem (a) of [12]; that is, the problem of finding enough cuspidal simple
modules and determining the parameters for them.

Another application of our results is to the classification of the irreducible
admissibleR–representations of the general linear groups overp–adic fields.
If R is a field of zero, this was completed by Bushnell and Kutzko [4]. Vign-
eras considered the case where the characteristic ofR is different from that
of the residue field. In [25], she reduced this problem to the classification
of both the cuspidalR–representations of thep–adic general linear groups
and also the irreducible representations of affine Hecke algebras of typeA.
Vigneras classified the cuspidalR–representations in [26]; she also conjec-
tured [27] that the modular Deligne–Langlands parameters parametrise the
unipotent admissible duals. Hence, Theorem B provides the final step in this
classification.
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