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Abstract. This paper classifies the simple modules of the cyclotomic Hecke
algebras of typ&7(r, 1,n) and the affine Hecke algebras of tydein ar-
bitrary characteristic. We do this by first showing that the simple modules
of the cyclotomic Hecke algebras are indexed by the set of “Kleshchev
multipartitions”.

Introduction

Letn andr be integers witm > 0 andr > 1. Let R be a commutative ring
with 1 and letg, @1, . .. , Q.- be elements ol with ¢ invertible. The cyclo-
tomic Hecke algebréir, = Hrn(q;{Q1,...,Qr}) oOf type G(r,1,n)
is the unital associativ&®—algebra with generatorg,, 71, ... ,T,,_1 and
relations
(To — Q1) (To — Q) =0,
ToTyToTy = ThToTh To,

(T; +1)(T; —q) =0 forl <i<mn-—1,
T TiTi1 =TT T forl <i<n-—2,
T, =T;T,  for0<i<j—1<n-2

The first result of this paper says that, in a certain sense, the number
of simple? r ,—modules is independent of the base field and independent
of ¢. To state this precisely, Iétbe the smallest positive integer such that
14+qg+---+ ¢! =0; set¢ = oo if no such integer exists.

A.M.S subject classification (1991): 16G99, 17B67, 20G05.
The first author was supported in part by the DFG-JSPS program "Representation Theory
of Finite and Algebraic Groups”
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Theorem A Suppose thakR is a field and le{@Q1,...,Q,} = So L S1 U
... S, be a partition of the parameter set such tifat= { Q; | Q; =0}
and, for the remaining non—-zero parametegs,/(); is a power ofg if and
only if there exists an integérsuch thatQ); and@; both belong ta5;,. For
i =1,2,... ,achooses; € S; and definen;; to be the multiplicity ok, ¢’
in S;. Then the number of simp¥z ,—modules depends only upéand
the integersy;;.

Wheng = 1the simpleH  ,—modules have been classified in [22] and it
is easy to see that Theorem A is true in this case. Whgrl the arguments
of [24, 27] allow us to reduce to the case where alipfare non-zero and
Qi/Q; is always a power of. The key idea now is to vary and consider
the (graded dual of the) direct sum of the Grothendieck grougs0f; by
[1], this is an irreducible module of a Kac—Moody algebra wiiis a field
of characteristic zero. In fact, this is true independently of the characteristic
of R, from which the result follows.

To date, few studies have been made of the modular representations
of affine Hecke algebras in fields of positive characteristic. Theorem A,
combined with results of Chriss and Ginzburg [5], yields a classification of
the irreducible representations of the affine Hecke algebras of type A over
arbitrary fields. Le#H r ,, be the affine Hecke algebra associate@1gn, F)
whereF is a local field; the algebrézm_l]m is again &|q, ¢~ ']-algebra.

A segment of lengthd > 1 is a sequence af consecutive residues
[i,i+1,... ,i+d—1]wherei,i+1,... ,i+d—1 € Z/¢Z. Amultisegment
m is an unordered collection of segments; we denotmbjthe sum of the
lengths of the segments . A multisegment isaperiodic if for every d
there exists ane Z/¢Z suchthafi,i+1, ... ,i+d—1] does not appear in
m. Denote byM, the set of aperiodic multisegments anddgt= k* /<q>.
For any fieldk, let

M (k) = {A:k(;ﬂw > @) n}

xek;
Then, using Theorem A, we can deduce the following result.

Theorem B Suppose that is a field and thaty # 1 has order/ in k. Let
(K, O, k) be a modular system such thalifts to an element of ordef in
0.

(i) The simplef; ,—modules are indexed byt} (k).
(i) Thereis a set offp ,—modules{ S | A € M7 (k) } such that
(@) eachS2 ® K is a simpIeFIK,n—module; and,
(b) S2 ® k has a simple head and the irreducible quotients form a
complete set of simpld;, ,,—modules.
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As explained in Sect. 3, by work of Vigneras this result completes the
classification of the irreducible admissible representations of the general
linear groups defined overadic fields.

Returning now to the simpl# r ,—modules, integrable representations
of Kac—Moody algebras have a basis indexed by the vertices of Kashiwara’s
crystal graph; by determining this graph we obtain our next result.

Theorem C Suppose thak is a field,q # 1 and thatQ, ... , Q. are all
non-zero elements @&. Then the irreduciblé{ r ,—modules are indexed
by the set of Kleshchev multipartitions.

We define Kleshchev multipartitions below. We remark that we could include
the case where some of tidg are0 in Theorem C; however, this would
overly complicate the definition of Kleshchev multipartitions.

Before giving the definition of Kleshchev multipartitions, we note the
following consequence of Theorem C and the Weyl-Kadimension for-
mula. To do this we introduce formal power sert&${n; };cz¢z; ), when
is finite, andF i ({n; }icz; ), when/ is infinite.

We treat the casé < oo first. Suppose thatg, ... ,n,_1 are integers
and define’;({n;};cz,/¢z; ©) to be the formal power series

1 — i 1 — gkNey -1
I = IG=)
1<i<j<t k>0
1— (xNij + xNji)xk’Ng + $2kNg
X H 1— (219 + a0 )kl 4 72K

1<i<j<e

whereN; = Z;;%)(nj + 1) andN;; = N; — Nj. This is invariant under a
cyclic permutation of the indices.

Suppose next that = oo. Then, given integers.. ,n_q,ng,ny,...
such that only finitely many of them are non—zero,Agt({n;}icz; z) be

the rational function

11—z
H 1— it
1<)
whereN;; = Zi§k<j<nk + 1). This is invariant under the shift operation
on the indices.

Finally, we defing’(z) = Fy({n;}; x) wheren; = §,o foralli € Z/VZ.

The following theorem gives the precise number of Kleshchev diagrams
associated with a parameter get @1, ... ,Q,}; as we explain in the fi-
nal section, this has important consequences for the classification of the
irreducible modules of the finite groups of Lie type in non—defining charac-
teristic.
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Theorem D Suppose thak is a field,q # 1 and define integers;; relative

to a partitioning of the parameter s¢)1,...,Q,} = SoUS1 U... U S,

as in Theorem A. Then the generating function for the number of simple
‘Hr—modules is

Fy(x) H Fo({nij}jezyem; ©)-
=1

By Theorem 1.6, the simple modules #fz ,,(¢; Sp) are indexed by
multipartitions of the form((0), ... , (0), x) wherey is an/—restricted par-
tition; so, in fact,Fy(z) is the generating function for the set#frestricted
partitions. For example,

(1 _ x4k—2)(1 _ x4k—1>2(1 _ x4k)2(1 _ x4k‘+1)2(1 _ x4k+2)
[

Fy(a) = (1 — 23F=2)(1 — 23F—1)2(1 — 29%)2(1 — 3R H1)2(1 — 23k +2)

k>0
1 (1 _ x4k—1)(1 _ x4k)(1 _ :E4k+1)(1 _ x4k+2)
o (1—2x) kEIo (1 — 23k=1)(1 — 23k)(1 — 23k+1)2(1 — 23k+2)
B (1—2x) 1
- (1 _ :c)Q(l _ mZ) kl;Io (1 _ $3k+1)(1 _ x3k+2)
1— a3k
- H 1 — 2F

We now define the set of Kleshchev multipartitions; in order to do this
we need some notation. partition of an integerm is a sequence =
(A1, A2, ... ) of non—negative integers suchthat> Ay > --- and)_, \; =
m; we write [A\| = m. A multipartition of n (with r—components), is an
orderedr—tupleX = (A, ..., A(")) of partitions such that\| = [A\(V)| +
-+ |A")] = n. Let IT,, be the set of all multipartitions of.

Thediagram of A\ € I, is the set

A ={(a,be)|1<c<randl <b< A},

The elements df\] are thenodes of \; more generally, a node is any element
of N x N x N. If v = (a,b,¢) andy’ = (d/,V/, ) are two nodes then
is below ~/, or 7/ is above ~, if eitherc > ¢/, orc = ¢ anda > d'. If
v = (a,b,c) € [A] is a node then itsesidue, relative to{q, Q1,... ,Q:},
isres(y) = ¢"*Q., an element ofk. If res(y) = = then we say thay is
anz—node.

Write A — p if u is a multipartition ofn + 1 such thaf)] C [y]. In this
caselu] = [A] U {~} for some nodey. We say thaty is anaddable node
of A and aremovable node of p. If res(y) = « then we shall also write
XS
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Let » be a multipartition and suppose thats a removable node of
with res(n) = . Thenn is anormal z—node if whenevery is an addable—
node iny which is belowr then there are more removahienodes between
~ andn than there are addabie-nodes. In additiony is good if it is the
highest normak—node ing.

If n is a goodz—node ofu and A is the multipartition such thdu] =

[A] U {n} we write A - . Notice that ifA — 1 then 5 4.

Definition Suppose thak > 0 and that@,... ,Q, are all non-zero.
The setlC,, = K,,(¢, Q1 - .. , Q) of Kleshchev multipartitions is defined
inductively as follows.

(i) Kny1={we€ 41| X— pforsomei € £, and somer € R }.

There exist multipartitions which have no good or normal nodes so it is
not completely obvious that,, # @. However,((0),...,(0), (1)) € K,
for all n, sokC,, is always non—empty.

ExampleSuppose that = 3v/1,Q = Q2 = gandQs; = 1. Then/ = 3and
res(y) € {¢' | 0 < i < £} for all nodesy. Let A = ((5,4,2), (6,3,2,1),

(6,5, 3))); although one can use the definition directly to find the good nodes
in A the following procedure is easier. In the diagram below we record the
residues in\ by writing i if the residue is;’.

1l2]ol1]2] |1 oli]2fo] [ol1i]2]o]1]2]
ol12]lo]  |o 2 "2 lol1]2]o
2] 0 2 2 [0

|1

We find the good node in of residue¢” = 1. Reading nodes from the
bottom up, we obtain the sequence

AR R AARARR R A

where each “A” corresponds to an addalfenode and each “R” to a re-
movableg'—node. From this sequence, remove all occurrences of the string
“AR”, and keep on doing this until all such strings have been deleted. The
“R”s that remain are the normaf—nodes of\ and the highest of these is
the goodg’—node. In this example, all of the grouped letters disappear; so
the normal nodes are the circled nodes in the diagram and the;endde
is (2,4, 1). Notice that\ is not a Kleshchev multipartition because the node
(3,3,3) can never be good.

Whenr = 1, II,, can be identified with the set of partitionsofind it is
not difficult to see thaiC,, is the set of—restricted partitions. The definition
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of good and normal nodes in this case is due to Kleshchev [19] who used
them to describe the socle of the restriction of the irreducible modules for
the symmetric group in characteristicWhenr > 1 we do not know of a
simple description of the séf,, (unlessg = —1; see [22]).

1 Specht modules and Grothendieck groups

Let Hr, be a cyclotomic Hecke algebra, as defined in the introduction.
WhenR = Q(q, Q1, . .. , Q) the simple}{ p ,—modules were constructed
by the first author and Koike in [3]; for arbitrary fields the set of simple mod-
ules was first constructed by Graham and Lehrer [13], as we now describe
(see also [8]).

Giventwo multipartitions\ = (A, ... . AMYandy = (M, ..., u()
say that\ dominates p, and writeA > p, iffor a = 1,2... ,r and for all

1>1
a—1 i a—1 i
SOOI IA = 3O+ 3
b=1 j=1 b=1 j=1

If A\ > pandX # pwe write A > p. This defines a partial order on the set
of multipartitions.

Graham and Lehrer showed that for any riR@nd any multipartitior
of n there exists a rigiﬁ{Rm—moduleS}%, called aSpecht module (or cell
module). WhenR = Q(q,Q1, ... ,Q,), the Specht modules are simple
‘Hr,—modules and coincide with the simple modules defined in [3]. In
general S possesses a natural bilinear form and the radiedlS7, of this
formis anH r ,—submodule of7. Let R be a field andDy, = S/ rad Sy;
thenD, is either absolutely irreducible or

Thus, given partitions\ and x of n with DY, # 0 we can talk of the
composition multiplicityd,,, of D'; in S}%. Graham and Lehrer proved the
following fundamental result.

1.1 [Graham-Lehrer [13]Buppose thak is a field.

(i) Then{ D}2 | A e I, andD}% # 0 } isacomplete set of non—-isomorphic
irreducible H g ,—modules. Moreover, wheneng\% iS non—zero it is
absolutely irreducible.

(i) Let X and be multipartitions ofn and suppose thab’, # 0. Then
dy, = 1anddy, # 0only if A > p.

(iiiy The Hecke algebra  ,, is semisimple if and only % = D for all
multipartitions € I1,,.

Fori=1,2,... ,nletL; = ¢'"~T;_ ... T\ToT, ... Tj_, and set,, =
L1+ Ls+---+ L,. Because,, is a symmetric polynomial in the elements
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Lq,..., L, itfollows from [3: Lemma 3.3] that,, belongs to the centre of
Hr,n. The next result describes haw acts upon the Specht modules.

1.2 Lemma Suppose thaR is a field and let\ be a multipartition ofn.
Thenc, is central inH g, and acts on the Specht modlﬂg as multipli-
cation by

cn(A) = Z res(7y).

veN

Proof. WhenR = C(q, Q, ... ,Q,) the Specht modul&? is irreducible
andc,, must act upory as multiplication by a scalar because it is central;
that this scalar is;,(\) follows from [3: Prop. 3.16]. By restriction, the
Lemma also holds wheRk = Z[q, @1, ... ,Q.]; hence, the general case
follows by specialization. ]

Fix a partition{Q1,...,Q,} = So U S1 U... LS, be of the parameter
set as in Theorem A and writ®, = {Qx,, - .. ,Qk%} fork=0,1,... ,a.
Given a multipartition\ = (AM, ... X)) let A, = (A1) AEn)y
and sety, = [A\r|. ThenDr(\) = D @ --- @ Dy is anH gy, (4; So) O

-+ @R HRn,(q; Se)—-module and, as described in (1.4)(ii) below, we can
define the induce@® r ,—modulelnd Dg(\).

Key to the proof of our main results is the following reduction theorem
which we prove using results of Rogawski [24] and Vigneras [27]; the result
is also a consequence of the main result of Dipper—Mathas [9].

1.3 Theorem Suppose thak is a field and let\ be a multipartition ofn
and maintain the notation above. Théh, 2 Ind Dg()).

Before proving the theorem we need to setup some notation( lbet
the abelian subalgebra &fr ,, generated by, ..., L,,. Over a field, the
irreducible representations gfare one dimensional and are labelled by the
setX’ of weights. An irreducible representatigne X is uniquely deter-
mined by the sequende(L+), ..., x(Ln)). If X' € X and the sequence
(X'(L1),...,x'(Lyn)) is obtained from that fox by interchangingy(L;)
andy(L;+1) then we writey’ = s;x.

If M is anHp,—module andy € X let M{™ be the generalized
eigenspace ab/ with respect toy.

Let S, ..., S, be as above and denote thig>—orbit containingSy by
Si. We deflneXred to be the set of weights whose values satigf.;) € S
fori =mno+---+ng_1+1,...,n0+---+ni. Suppose thal/ isanH g ,—
module and definéd/..q = @xeXred M. Then M,.q is a generalized
eigenspace for the polynomials Iy, . . ., L,,, which are symmetric with
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respecttdS,,, x - - - x 8,,. ThusM,q is stable undeL, ..., L, andT,,,
forw € G,, x ---6,,, since these elements commute with the partially
symmetric polynomials id.q, ..., L, by [3: 3.3].

1.4 To prove Theorem 1.3 it is enough to show the following.

() MieqisanHtpny(q; So) ®r -+~ @r HRn, (¢; Sa)—Module.
(i) Mieq ® Hp =~ M.
(i) M isirreducible if and only ifM,.q is irreducible.

Let H be the algebra generated By X andY whose relations are
(T—q¢)(T+1)=0, ¢ 'TXT=Y and XY =YX.

We do not assume that andY are invertible. Let/(a, 3) be the two
dimensional representation &f given by

T»—>((1) qzl>X|—><(O)é _(q§1>ﬂ>,andyr—><g (q;”ﬂ).

Itis easy to see that it is irreducible if and onlyiit£ ¢!, and in this case
we havel (a, 8) ~ I(3, «).

1.5 Lemma Suppose thad/ is anH  ,,—module and view/{™ + M3
as anH-module via

T>—>TZ', X—=L; and Yi—>LZ‘+1.
Assume that (L;) # ¢t x(L;+1). Then the following hold.

() The composition factors d¥/§™ + ME' are of the form
I(x(Li), x(Li+1))-

(i) dimM™ = dimM§ES,.

(iii) Suppose thatV > 0. Then(L;+1 — Q)" acts ag) on My if and only
if (L; — Q)" acts as) on MEY'.

Proof. (i) Consider the radical series af;"" + MES'. Then each succes-
sive subquotient is a semisimple module and each the simple factor contains
a simultaneous eigenvectarof X andY. As a multiset, the eigenvalues
of X andY are{x(L;), x(L;+1)}. Therefore,u and Tu span the sim-
ple factor, and this factor is isomorphic to one Ioffx(L;), x(Li+1)) or
I(x(Lit1), x(Li))-

(i) Seta = x(L;) and = x(Lit+1). If @ = g there is nothing to
prove; hence we may assume that4 3. Notice that the vectorél, 0)™
and ((¢ — 1)8,a — B)T are simultaneous eigenvectors fitrr, 3) of X
andY’, and that the eigenvalues &f andY on one vector are obtained by
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interchanging the eigenvalues of the other. ByXi§*" + M$5' is a module
whose composition factors have the fofifa, ), this implies (ii).

(iii) As in (i), we consider the direct summands bf{™ + MES'. Note
that(L; 1 — Q)" acts as 0 o/ if and only if ((L; — Q)(Lit1 — Q)N
acts as 0 on/{™. Since the radical of this block algebra is the two-sided
ideal generated b\ + Y —aBandXY —aB,t?> — (X +Y)t + XY for
t = «, @ are elements of the radical which are notin the square of the radical.
Thus,(Li+1 — Q)" acts ag) on ME™ if and only if Q = x(L;+1) and the
lengths of the direct summands bf{™ less than or equal t&/. Similarly,
(L; — Q)" acting a®) on MES is equivalent to this same condition. O

We are now in a position to prove conditions (i)—(iii) from (1.4). Itis easy
to see thab/,.q is a module for the affine Hecke algetﬁfao R - ~®Rﬁna.
We check the conditions fak; , fori = 1,ng +1,.... If x € X,.q and
i =mno+---+ni_1+ 1theny(L;) must be an element ifi;, sincex(L;)
must appear as an eigenvaluelgfby Lemma 1.5(ii). Let) be an element
in S;, and denote its multiplicity i}, by ng. Then Lemma 1.5(iii) says that
(L; — Q)" = 0 on My for thosey € X,.q Which satisfyy(L;) = Q and
i =ng+ ...+ nx_1 + 1. Taking the product of these factqis; — Q)"<,
we see thal/,eq IS aNH g 1, (¢; S0) @R - - - @R HR ., (¢; Sa)—module. We
have proved (1.4)(i). )

By the argument of [24: Proposition 4.1], asldp—module M isisomor-
phic to the induced module @f,.q. Since the spaces,,/H,, ® - - - @ Hy,
andt,/Hn, ® --- ® Hy, have the same dimension, this gives (1.4)(ii).

Finally, (1.4)(iii) follows because the functofd +— M,.; and N —
Hrn @ N are both exact.

This completes the proof of Theorem 1.3. 0

Thus, because of Theorem 1.3, in order to prove our main results we can
reduce to the cases where the paramefgts. ., Q, are either (i) all zero,
or (i) all units in R and@; /@ is a power ofy for all 1 <4, j < r. We next
dispense with case (i) by classifying the irreducitle ,—modules when
Q1=-=0Qr=0.

Recall that is the smallest positive integer such thatg+- - -+¢‘~ =
0; if no such integer exists theh= oco. A partition A = (A, A\a,...) IS
{—restricted if \; — \;+1 < £ foralli > 1. In particular, all partitions are
oco—-restricted. Letl] be the set of all multipartitions = (A, ..., A(")
of n such that\(") is ¢/—restricted and?) = (0) for 1 < j < r.

1.6 Theorem Suppose thak is a field and that); = --- = @, = 0.

() Letx =AM, ... A")Dbeamultipartition of.. ThenD?, is non-zero
if and only if\ € A .



610 S. Ariki, A. Mathas

(i) {D}2 | A € AS }is a complete set of non—isomorphic irreducible right
Hrn—modules.

Before we can establish the theorem we have to recall some notation
from [8] and prove a preliminary lemma.

In [8: Theorem 3.26] it is shown tha@{r , is a cellular algebra with a
cellular basigms}, wheres andt run over all pairs of standard-tableaux
of the same shape for all multipartitions af The dominance ordepr
extends naturally to the set of standard tableaux and for #dbbre is a
unique tablead such that* > s for all \A-tableaw. These details can be
found in [8].

Given a multipartition) let N* be the submodule oHr,, spanned
by the basis elementsn,,}, whereu andv are standargi—tableaux for
some multipartitiony such thaty > A. Then N* is a two—-sided ideal
of Hr,, and the Specht modulﬁ}2 is isomorphic to theR—module with
basisms = N* + mya,, Wheres runs over the set of standaketableaux.
Moreover, there is a natural bilinear forfn, ) defined onS% which is
determined by

<m5, mt>mt>\t/\ = mt/\smtt/\ mOd N)\
Finally, Dy, = S/ rad Sy, where
rad Sy = {z € S} | (x,y) =0forally € Sy }.

1.7 Lemma Supposethad; = --- = @, = 0 and that\ is a multipartition
of n. Letk be an integer withl < k < n. Thenmu Ly € N* for any
standard\—tableaus.

Proof. We argue by induction os. Whens = t* the result is a special
case of [15: Prop. 3.7]. l§ # t* then there exists an integésuch that
t =s5(i,i+1) > sandl < i < n. Thereforemp Ly = mpd; L.
If i £k —1andi # k thenT; and L, commute so the lemma follows
by induction. The remaining cases also follow by inductionsdrecause
Tp-1Li = (¢ — 1)Lk + Lg—y andTy Ly, = qLp 1 T}, O

Proof of Theorem 1.6BecauseH g, is a cellular algebra, we need only
consider part (i). For this, recall thaty, = 0 if and only ifrad Sy # Sp. If
s andt are standard—tableaux then the bilinear form gy, is determined
by
(Ms, M)Mpx = mpgngn mod N
First suppose that /10+. Then for all standard—tableauxs andt we
have thatm o ;m» € Hrn(S,) and so it follows from [7: Theorem 6.3]
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that D}% # 0. (Note that in the notation of [7] we are working with dual
Specht modules and so partitions must be conjugated.)

To prove the converse, we claim thatif¢ A then (mg, m¢) = 0 for
all standard\—Tableaux andt; in particular, this will show thatad S}% =
S}% and so complete the proof of the theorem. As in [8: Defn. 3.5], write
mpp = my = ulzy; all that we need to know about this factorization is
that L, is a factor ofu} if A\ ¢ A . By the above remarks,

— _ * +
(ms, mgmpp = mpgmep = mopT 5 Taug

EE asmpgug  mod N,
5l

for somea, € R. So in order to prove our claim it suffices to show that
mpgug € N for all standard\-Tableauxs’. However, we have already
noted thatZ, is a factor ofu} when\ ¢ AJ; so, Lemma 1.7 proves the
claim and hence the theorem. m]

Thus, in order to prove Theorems A, C and D we are reduced to the
following situation.

1.8 Henceforth, we assume th&tis a field,q # 1 and that there exist
integersn; such thatQ, = ¢™ fori = 1,2,... r. Let? be the smallest
positive integer such that = 1; set? = oo if no such integer exists. #fis
finite letl, = {0,1,... ,¢ — 1}, otherwise, letl, = Z.

We also writeh — wand A 5 w1 rather than\ 9, wand A % 1
respectively.

Letur, = Go(Hrn) ®z C be the Grothendieck group of finitely gen-
erated* r ,—modules modulo short exact sequences, with coefficients ex-
tended taC; see [6: Sect. 16]. Given a finitely genera&g ,,—module let
[M] denote its equivalence classtip ,,. By (1.1),ur ,, is an abelian group
which is free as &—module with basig [D%] | 1 € II,, and D/, # 0 }.
Furthermore[S}] = 3°, di,[D%] if p € II,, and Dy # 0.

GivenanyH r ,—module) letRes M be the restrictionaf/ toH g ,,—1.
ThenRes is an exact functor from the category of rightz ,—modules to
the category of right{  ,—1—modules. Similarly, we have an adjoint induc-
tion functorInd given bylnd M = M ®3, . Hrn+1- These functors in-
duce maps between the corresponding Grothendieck groupsviad/| =
[Res M| andInd [M] = [Ind M].

1.9 Proposition Suppose that is a multipartition ofn. ThenRes S}% has a
filtration with composition factors precisely the Specht modStgsvhere
v is a multipartition ofn — 1 andv — .
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Proof. As above, lef{m,} be the standard basis of the Specht modijle
If tis a standard—tableau let | n — 1 be the tableau obtained by deleting
the node labelled and let|t | n — 1| be the corresponding multipartition.
By repeating the proof of [8: 3.15,3.18],/ifc Hr ,—1 thenmh is alinear
combination of termsn,, such thatjv | n — 1| > [t | n — 1|; that is,
n occupies either the same node or a lower node than it does int.
Therefore, by extending the dominance order on the sety — A} to a
total order, we can define &g ,——stable filtration ofS}z where for each
quotient there exists a multipartitionsuch thatr — X and the quotient
has a basis indexed by thetableau such thaft | n — 1| = v. Asin [8:
3.20], for each such, we can define a map fros¥; into the corresponding
quotient of the filtration which maps to the image ofn in the quotient
wheres =t | n — 1. From what we have said, this is & ,_;—module
homomorphism; by a counting argument, it is actually an isomorphism.
m|

1.10 Corollary Let be a multipartition ofn. Then

Res[Sp] = > [Sk] and Ind[Sp]= > [SH].

v—A A—p

Proof. The restriction formula is a direct consequence of Proposition 1.9.
The induction formula follows by adjointness. ]

By (1.1), [D%] is a linear combination of Specht modulgs,] so this
completely determines the mapss andInd at the level of Grothendieck
groups.

Now consider the elemeny, and suppose thdd’, # 0. By Lemma 1.2,
¢, is central and acts of;, and hence also of’,, as multiplication by
cn(p). Let M be al p ,—module and led! = &, M, be the decomposition
of M into a direct sum of generalized eigenspatésfor the action ofc,,.
Then, giveni € I, we have functors—Res and-Ind given by
(1.11)

i-ReM = P (Res M,),_,: and i—IndM = @5 (Ind M), 4.

z€ER TER

ThenRes = ), i-Res andnd = ), i—Ind. In turn, these functors induce
homomorphisms-Res ug ,, —ug ,—1 andi—Ind: ug , — upr 11 given
by i-RegM] = [i—-ResVI| andi—Ind[M] = [i—IndM]. Comparing the
definitions and Corollary 1.10 we can rephrase this as follows.
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1.12 Corollary Suppose that is a multipartition ofr. and leti € I,. Then
the homomorphisms-Res ug ,, — ug -1 andi—Ind: ug , — UR 41
are completely determined by

i—RegSpl = Y [kl and i-Ind[Sx] = ) [kl

2

v—>A /\—i>u

Although we are most interestag ,, it is more useful to con&det% o
the Grothendieck group of finitely generat@ojectivemodules, again with
coefficients extended 6. If P is a projective} r ,—module write] P] for
its image muR For each multipartition: with D“ # 0, up to isomor-
phism, there is a uniquely determined prOJectlve indecomposable module
Pp anduy, , is the free abelian group which is free a€amodule with
basis{ [PZ] | 1€ II, and DY, # 0 }.

It is easy to see that the functdRe:s andInd take projectives to pro-
jectives and so again induce maps betwegn, anduj, .. Moreover,
by Lemma 1.2, each projective decomposes into a sum of generalized
eigenspaces aof,, which are again projective modules, so we also have
homomorphismg-Res and—Ind which are defined using (1.11) exactly as
before.

The next lemma is standard.

1.13 Lemma Letuy ,, = Homc (up,n, C).

(i) The abelian groupaOR’n andujy, , are canonically isomorphic.
(i) The natural pairingu®, ~xug, — Cisdetermined by[PA], [D%]) =
R,’VL ) R R

I
(iii) If P is a projectiveH g ,—module and\/ is anyH g ,+1—module then

(i-Ind[P], [M]) = ([P],—RegM]).

(iv) If Pis a projectiveH r,—module andV/ is anyH r ,—1—module then

(i-Red[P], [M]) = ([P],i—Ind[M]).

Proof. (i) Given any projectivé{ r ,—moduleP the functortiomsy, , , (P, )
is exact; hence, we can define a nagpe uy , by dp[M] = dim Homy,, ,
(P, M). It follows that P — dp is an isomorphism of abelian groups.

(if) The natural pairing betweeny, . andug, is given by evaluation;
therefore, using the notation of (i),

([PR], [DR]) = dp)[Dg] = dim Homy, , (Pg, D) =
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(iii) Using the adjointness of-Res and—Ind we find that

(i~Ind[P], [M]) = dim Homy,, , (~~IndP, M)
= dim Homy,, , (P, i-Res\/)
_ (IP],i-RegM)).

The proof of (iv) is similar. o

Henceforth, we identify}, , anduj, .

There is a natural homomorphisen u%,n — Ug, given by [P] —
[P]. The mapc is the so—called “Cartan map” and it is best understood as
follows. Let F,, be the free abelian group with-basis the set of symbols
{[S* | A € II,, }. We define group homomorphismies, i—Res,Ind and
i—Ind from F,, to F,+1 by formulas in Corollary 1.12; importantly, these
maps are independent of the figid

By [13: Theorem 3.7], the projective indecomposablg has a filtra-
tion with each composition factor isomorphic to some Specht module such
thatS]%2 occurs with multiplicitydy,,. Since the[P%] are linearly indepen-
dent, we have a well-defingdjective homomorphism of abelian groups
e:ul, — Fn given bye[Pg] = Y, dx,[SY]. Similarly, there is a
well-definedsurjectivehomomorphisnd : 7, — ug ,, given byd[[SA]} =
(S} = > D [D'z]. Moreover, by [13: Theorem 3.7] the diagram

uR,n

\\?
c Fa
/1
URn

commutes. By (1.1)(iii),F,, is isomorphic to the Grothendieck group of
a semisimple Hecke algebra, so this is really just the Cartan—Braaer
triangle forH r ,, (see [6: Sect. 18]).

Finally, it follows directly from the definitions that all of the maps in
the Cartan triangle commute with the homomorphisafides and—Ind. We
summarize these results in the following lemma.
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1.14 Lemma Suppose thaR is a field and that € I,. Then all of the
squares and triangles in the diagram

0 1—Res 0 i—Ind 0
Upn1*+——— UYpn—— > Upni1

N N

i—Res
~¢.n—l - -7:71 > Jn+1

I D T

URn—1 URp ——————» UR n+1

1—Res

commutethe vertical arrows are the Cartan map$.

2 The Kac—Moody algebra

Throughout this section we maintain the assumptions of (1.8). In particular,
¢ is the smallest positive integer such that= 1; ¢ = ~ if no such integer
exists.

If £is finite letU (g) be the Kac—Moody algebra of typ@él_)l; if £ =00
let U(g) be the Kac—-Moody algebra of typé...> We refer the reader to
Kac’s book [17] for the standard properties of Kac—Moody algebras.

The Kac—Moody algebr& (g) is generated by elements f;, h; andd
where: € I,. LetU(h) be the Cartan subalgebrai@fg), the subalgebra of
U(g) generated by, andd, and fori € I;letA;, o; € h* be the fundamental
and simple weights ot/(g). We may choosel so thatA;(d) = 0 and
Oéz(d) = ;o foralli € I,.

The following result is a theorem of Hayashi [14] whee= 1 (see also
[23]); the general case follows easily; see [1: 4.5]. We give the proof of a
slightly stronger result in Proposition 2.6 below.

2.1 Definition Giveni € Iy letN;(\) = # {u| X == p}—#{v|v - A}
and letNg(\) = # { (a,b,¢c) € [\] | res(a,b,c) =0 }.

2.2Llemmalet F = @, -, Fn. ThenF becomes &/ (g)-module with
action -

el = D151, £l = D[], hi[SM] = N:(MISM,

v— A—p

for eachi € I, andd[S*] = —Ng(M\)[S*].

1 We call the universal enveloping algebra the Kac-Moody algebra.
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Comparing Lemma 2.2 with Corollary 1.12, we can ideniiynd and
i—Res withf; ande; on@u}, .

Forj = 1,2,... ,rrecall thatQ; = ¢" for some integer.;. When/
is finite ¢ = 1 we may assume that < n; < ¢ for all 5. In this way we
associate the dominant weight= A,,, +-- -+ A, with Hg ,,. Notice that
the multiplicity of 4; in A is equal to the number @, such that); = ¢'.

2.3 Theorem Let R be a field and set), = @, u%,,- Thenuy, is iso-
morphic to the integrable highest weidlitg)—module of highest weight.

Proof. When R = C this is just [1: Theorem 4.4(i)]: the crucial point in
the proof is to show that?, is a cyclicU(g)—-module, which was proved

by counting orbits in quiver spaces which are known to parametrize both
the irreducible representations of the affine Hecke algebras ofAyaed

also a basis of the quantum algebras of affine typé&et R be a field of
characteristi€ and letR’ be an extension at. By (1.1)(i), D'; is absolutely
irreducible saD%, = DY, ®r R’ andi—Ind andi—Res act in the same way
upon[D’] and[D*,] for all .. Thus, we may identify, andu?, asU (g)—
modules. In conclusion, the Theorem holds for fields of charactetistic
embedding them into a suitable extensiorCof

Now suppose thaR is a field of positive characteristic. By construction,
u?% is aC—submodule ofF. However, by Lemma 1.14 and Lemma 2.2, if
DY, is non—zero then botf[P5] ande; [P%] are elements af?; so,u?, is
actually al/ (g)—submodule ofF. Notice also thaf is integrable since each
multipartition has a finite number of addable and removable nodes; hence,
uY is also integrable.

Letuy = [S(©)(0)] be the vector inF corresponding to the empty
multipartition; thenU (g)us C u%. Now u, is annihilated by, and byd
andh;uy = A(hy)uy for all i € Iy; thus,U(g)u, is an integrable highest
weight module of highest weight and to complete the proof we must show
thatu? = U(g)u,. To do this, take a modular systeift, O, R) where K
is a field of characteristié andq’ is an element of ordetin © C K which
is in the preimage of. As in Sect. 2, we have operatarRes and-Ind for
ul- andu% respectively; by Corollary 1.12 these are defined by their action
on Specht modules and by Corollary 1.10 they are both restrictions of the
same operators acting dgf. By lifting idempotents,u% is a submodule
of u%.. However, we have already shown thdt is the integrable highest
weight module of weight!; so any submodule af’. which contains the
highest weight vector coincides with the module itself. Thds= U (g)u,
as required. 0

Note that Theorem 2.3 is completely independent of the figldence,
this completes the proof of Theorem A.
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Proof of Theorem BLet & be a field. We first notice that any simp‘lﬁyn—
module is a simple module for sor#, ,,. Hence we can use Theorem 1.3 to
reduce to the case where the suppott &f a single<g>-orbitink. In this
case, the simplé/c ,—modules are indexed by aperiodic multisegments;
see [5: Theorem 8.6.12] and [1: Proposition 4.3]. Therefore, by an similar
argument to that of the first paragraph of the proof of Theorem 2.3, we de-
duce that the simplé{k,n—modules are indexed by aperiodic multisegments
wheneverk is a field of characteristi@.

Now suppose that is a field of positive characteristic and, as in [1], let
7 be the graded dual of the direct sum of Grothendieck grourfikgf—
modules; cf. the definition af). Then(; is aU~(g)-module and:} is a
quotient oftl; by [1: Lemma 4.1]. By fixing: and taking the highest weight
A sufficiently large, the degree part of L[}, is isomorphic to the degree
part ofu;. Since Theorem A tells us that the dimension of the degneart
of uy only depends on the multiplicative ordergfwe have that the simple
Hk,n—modules are also indexed by the aperiodic multisegments ofisize
We have proved (i).

To prove (ii), take a modular systefi’, O, k) wherey lifts to an element
ofthe same order i®. Recall that the isomorphisn’i( ~ ug, whichinduces
an isomorphism fronn,, to ux by Lemma 1.13(i), is given by the modular
reduction procedure. Hence, (1.1) gives (ii). 0

Now we turn to the proof of Theorem C. By Theorem A, we can restrict
ourselvesto the cage = C. The main result of [1] states that/f = C then
the canonical basis ou% coincides with the basis (Il% given by the principal
indecomposablg/c ,—modules. The canonical basisu@fis indexed by the
vertices of the crystal graph m@; to describe this we next introduce the
quantized enveloping algebra©fg).

Let v be an indeterminate ovél and letU,(g) be the quantized en-
veloping algebra ot/ (g). This is aC(v)—algebra generated by elements
E;, F;, K, and K (for i € 1), which are subject to the quantized Serre
relations [21: 1.4.3].

We first show howF, = F ®c C(v) may be endowed with the structure
of a U,(g)-module. For convenience, considgy to be the freeC(v)-
module with basi§ A | A € II,, for somen > 0 }.

2.4 Definition [cf.[20]] Let A, v andp be multipartitions such that SN
and\ —— y for somei € I,.

M) NN =#{rSalasA}-#{8 -\ v}

(i) N\ p)=#{X—alp>al—#{8 " p|B>A}.
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These definitions can be rephrased in terms of the addable and removable
nodes of the introduction (cf. 2 below).

2.5 Lemma Suppose thah and p are multipartitions withA N u for
somei € I,. Letn be the addable node afsuch thatu:] = [A\]U {n}. Then
nis normal if and only ifV! (X, i) < 0 and N} (A, ) < N}(\,v) whenever

A ——vandy > v.

Proof. The addable—nodes below; are in bijection with those multipar-
titions a such that\ — a andy > «; similarly, the removablé—nodes

below 7 correspond to the multipartitions with 5 — p and3 > .
Hence, the Lemmais just a translation of the original definition given in the
introduction into the notation of Definition 2.4. m

2.6 Proposition TheC(v)-moduleF, is an integrabléU, (g)-module with
action determined by

Kp = oM\ K\ = v~ Na) )\
Ex= ) v NNy, Fa= Y oMOwy
=50 )\Lw

wherei € I, and A is multipartition ofk.

Proof. First consider the case where= 1. In this caseF, is the Fock

space?—“gl); that is, the fre€C(v)—module with basis the set of all partitions
of all integers), and this action was discovered by Hayashi [14] (cf. [20]). In
fact, he considered only the case whére= 1; however, the general case
is easily derived from this.

Suppose now that > 1 and identifyF, with ]—'81) X ® ]—"égr) via the
C(v)-linear map which sends\(, ... . A1) to AV @ .- @ A", Now,
U, (g) is a Hopf algebra having a standard comultiplication mapecause
of its compatibility with the representation theory?f, ,, we use the twisted
coproduct map\’ = wyAwg, wherewy is the longest element @,.. Then
A’ is theC(v)-linear map determined by

1

A(Kp) = K ® Kp,
A(E)=FE;®1+ K_j, @ E;, andA'(F}) = F; @ Kp, + 1 ® F,
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foralli € I, and allh € U(h). The coproduct map\’ induces an action of
U,(g) uponF,. For example, using the obvious notation,

B\ = Ei)\(l) XD @ .. o) £ thi)\(l) ® Ei)\(z) ® - @AM
+oo A+ K A V@ o K A7) @ EAM

— <ZU—N¢T(>\(1>7M(U) u(”> A @ .. @A)
e
T 5o NN

o @ArD g ( > U—N{(A(”’W))g

‘UJ(T)
NT(A,
— E o~ NT )

7

A—pu

as required. The other calculations are similar.

Finally, F, is integrable because each basis elemeést weight vector
andEF)\ = FFX = 0 for all sufficiently largek since) has only a finite
number of addable and removable nodes. m

By the Proposition, the empty multipartitian; = ((0),... ,(0)) in F,
is a highest weight vector of weightt Now integrabléU,, (g)—modules are
completely reducible [21: 6.2.2], so the highest weight moduld) :=
U,(g) - uy is a direct summand of,.

If i € I, andk > 0let E) = EF/[k], and F¥) = F¥/[k]|, where
(K], = [11[2]o - - - [k], where[k], = (vF —v™F) /(v — o7 1).

Giveni € I, let U; be the subalgebra df,(g) generated by;, F;
andK .. Every element of F, can be written in a unique way as a linear
combinationz = "z wherel” € h* andKp,zr = v Wz forall h € b.

If x =z for somel” € h*, becauses; and F; both act as locally nilpotent
operators orf, it follows from [21: 16.1.4] that

T = Z Fi(s)xs,
s>0

where eaclr; is uniquely determined by the conditions ttgt:s = 0 and
Kz = vl (hi)+2s5  TheKashiwara operators [18] E; andE; are defined
by
(2.7) Ex = Z Fi(s_l)xs andF,z = Z Fi(sH)a:S.

s>1 s>0

Let A be the ring of rational functions i@ (v) which do not have a pole
at0. Let F4 = @A)\ where runs over all multipartitions of all integers.
We denote the set of multipartitions @Y.
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2.8 Theorem (cf. [16: Theorem 3.6Buppose that is a multipartition ofn
and leti € I,.

(i) If uhas no good node of residu¢henE; ;. = 0 (mod vFy4).
(i) If nisthe good node of residuen . andp = A U {n} then

Fix=p (mod vFs)andE;p =X (mod vFy).

(iii)y (Fa,II)is acrystal base aof,.

Proof.Whenr = 1 this result is proved in [23]; note that they work with the
crystal basis at infinity. SincéF 4, IT) is the tensor product of the crystal
bases of levell modules, we have (iii). To prove (i) and (ii), we recall
Kashiwara'’s rule for the tensor product of crystal bases.

Let(L1, B1), (L, Bs) be crystal bases and Igt(b) = max { k | EFb # 0}
andl; (b) = max { k | FFb # 0 }. Then we have

, [ Ei(by) @ ba, if I (by) > 17 (b),
Fi(b1 ® by) = { by @ Fy(ba), if I (b1) < 17 (ba).

Note that we adopt\’ as coproduct. Assume that we have already proved
(i) and (ii) for » and consideA ® A\+D € F, @ FU )+1 Recall the proce-
dure described in the introduction for deletuAg%s from the sequence of
addable and removable nodes for this multipartition. In the final sequence,
the number of?’s remaining which came from is ;" (\), and the number

of A’s remaining from\("+1) is - (A+1D). Thus, ifZ;7 () > 17 (AUFD),

all of the A’s in A1) are cancelled andi;(A ® A1) is obtained by
changing the lowestl in X into anR. If 17 (\) > 1,7 (A1) then some of

the A’s from A("+1) still remain and the bottor is changed into ai?. This

rule is exactly the one we claimed f&t. The proof forE; is similar. O

Let L(A)a = Fa N L(A) andBy(A)
= {le ...Fik’U/A-l-UL(A)A | i € Ig}\{O}
Then (L(M) 4, Bo(A)) is a crystal base. We can now describe the crystal
graph ofL(A).
2.9 Definition (Kashiwara [18])The crystal graph of L(A) is the edge
labelled directed graph with vertex sBi(A) and edge$ ~ ¥ whenever
F;b =1V forb, b’ € By(A) andi € I,.

Kashiwara proved thd(A) is a connected graph. Consequently, from
Theorem 2.8 we obtain the following result.
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2.10 Corollary The crystal graph of.(A) is the graph with vertices the

setk = (J,,>, K, of Kleshchev multipartitions and edgées—z» 1 given by
adjoining good nodes.

Kashiwara and Lusztig have shown tH3g(A) lifts to the canonical
basis (or global basis) df(A) = L(A)4 ®4 C(v), S0 we can specialize the
canonical basis to give a basisidf indexed byB(A). This shows that,
under the assumptions of (1.8), the Kleshchev multipartitidpsndex the
simple modules 6f{r ,,. Thus, by Theorem 1.3, we have proved Theorem C.

Jimboet al [16] (see also [10]) have given a different description of
the crystal graph of.(A). The point of this construction is the following
conjecture.

2.11 Conjecture Suppose thak is a field,q # 1 and that all of the param-
etersQ)q, ... ,Q, are non-zero. The]jh%B # 0ifand only if\ is a Kleshchev
multipartition.

This conjecture is known to be true when= 1 [7] and wheng =
—1[22]. Graham and Lehrer [13] have given sufficient conditionsl]?@g’
to be non—zero and they have conjectured that these conditions are also
necessary. It seems likely that the Kleshchev multipartitions are precisely
the multipartitions which satisfy the Graham—Lehrer conjectre.

It remains to prove Theorem D. Recall the Weyl-Kaclimension for-

mula [17: Proposition 10.10]. Since the positive root systemffbj)1 is
explicitly known [17: Exercise 6.5], this implies Theorem D wheg oc.
The cased, is also obvious.

3 Applications to the groups of Lie type

In this final section, we comment on the application of our results to the

classification of the irreducible representations of finite classical groups in

non—defining characteristic. In general, these modules are parameterised by

triples(L, X, ¢) whereL is a Levi subgroup of7, X a cuspidal simple mod-

ule of L and¢ is a simple module of the endomorphism rifgd (R (X))

of the Harish—Chandra induced modut§ (X); see [12: Theorem 2.4].
Assume that7 is one of the following group$U,, (), Sp2n(q), CSpan(q)

or SO, +1(q). Then Geck, Hi3 and Malle [12: Proposition 4.4] have shown

that Endg (R (X)) is isomorphic to a product of Hecke algebras of type

B. Thus, given a cuspidal simple module, by determining the appropriate

parameters for the associated Hecke algebra, our Theorem D gives the exact

number of simple modules in the Harish—Chandra seridd.0X ). Since

2 Conjecture 2.11 has recently been established by the first author [2].
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the total number of simpl@—modules is known [11] it is therefore sufficient

to find enough cuspidal simple modules in order to complete the classifica-
tion of the simpleG—modules. This is not possible using the classification
of the simple# r ,—modules proposed by Graham and Lehrer [13], because
their classification does not give a way of counting the number of simple
modules.

Thus, Theorem D solves problem (b) from the introduction of [12], mod-
ulo determination of certain parameter values. We can therefore focus on
problem (a) of [12]; that is, the problem of finding enough cuspidal simple
modules and determining the parameters for them.

Another application of our results is to the classification of the irreducible
admissibleR—representations of the general linear groups pvadic fields.

If Ris afield of zero, this was completed by Bushnell and Kutzko [4]. Vign-
eras considered the case where the characterisiidoflifferent from that

of the residue field. In [25], she reduced this problem to the classification
of both the cuspidak-representations of the-adic general linear groups
and also the irreducible representations of affine Hecke algebras ofitype
Vigneras classified the cuspid&l-representations in [26]; she also conjec-
tured [27] that the modular Deligne—Langlands parameters parametrise the
unipotent admissible duals. Hence, Theorem B provides the final step in this
classification.

AcknowledgementsThe authors are grateful to M-F. Vigneras for explaining her work to us
[28]. We also thank R. Dipper for several conversations which motivated some of the results
in Sect. 1.
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