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Abstract. Every simplicial complexA < 2" on the vertex set

[n] = {1,...,n} defines a real resp. complex arrangement of coordinate
subspaces iR" resp.C™ via the correspondencé > o — span{e; : i €

o}. The linear structure of the cohomology of the complement of such an
arrangement is explicitly given in terms of the combinatoricz\afind its

links by the Goresky—MacPherson formula. Here we derive, by combinato-
rial means, the ring structure on the integral cohnomology in terms of data of
A. We provide a non-trivial example of different conomology rings in the
real and complex case. Furthermore, we give an example of a coordinate
arrangement that yields non-trivial multiplication of torsion elements.

1 Introduction and results

This article is concerned with coordinate subspace arrangements, a family
of (linear) subspace arrangements in real and complex space associated
with simplicial complexes. For a detailed survey of subspace arrangements
we refer to [Bj]; all we need here is given in Sect. 2. Associated with any
subspace arrangement are its link and its complement. The homology of the
link, the cohomology of the complement, and in particular its ring structure,
have motivated a lot of research [Ar], [BZ], [Br], [CP], [FZ], [GM], [OS],
[OT], [Zi].

The Goresky—MacPherson formula for the homology of the link is the
starting point of our investigation. By analyzing Alexander duality combina-
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torially in the case of coordinate subspace arrangements, we give a complete
combinatorial description of the ring structure of the integral cohomology.
In this analysis the duality of the cross polytope and the cube plays a crucial
role.

This work was motivated by a result of S. Yuzvinsky [Yu] on the rational
cohomology ring structure of complex arrangements. We can give a partial
positive answer to Conjecture 6.6 on the integral cohomology ring structure
of complex arrangements of his article. Our modeling of the cohomology of
the complement was inspired by the article [BC] of E. Babson and C. Chan.

We provide an example of a simplicial complex not containing faces of
cardinalityn — 1, so that the complement of the associated real coordinate
subspace arrangement is connected, that yields different ring structures for
the cohomology of the complement of the associated real and complex ar-
rangement. This answers a question by Gasharov, Peeva and Welker [GPW].

Finally, we give an example of a coordinate subspace arrangement that
yields non trivial multiplication of torsion elements.

Results

Our main result — the description of the ring structure on the cohomology
of the complement’, of a coordinate subspace arrangement — is based on
the Goresky—MacPherson formula for the link (cf. [GM]). After applying
Alexander duality it is given in our situation by

H(CA;Z) = @D Hy o2 (linka 05 Z).
oc€EA

To describe the multiplication itif*(C»; Z) it suffices to describe how
to multiply classegu] and[v] that correspond tr] € H,(link o;Z) and
['] € H,(linka 0’; Z) under the Goresky—MacPherson isomorphism. Note
that there is a double grading of cohomology classes by assigning the grade
(r,o) to [u].

Our main result is the following.
Theorem 1.1 Let A ¢ 2["! be a simplicial complex, and lét, denote the
complement of the associated real coordinate subspace arrangement. The
ring structure of H*(C4; Z) is given by the homomorphisms

H,(linkp 0;Z) ® Hy(linkao'; Z) — H, o io(linka o N o’; Z)

[ @ [¢] — {

wherei, € [n]\ o andi,s € [n]\ ¢/, ande € {+1} is a sign depending on
n,o, o', r,r computed in Sect. 3.4.0f4 is not connected there is additional
non-trivial multiplication of cohomology classes in dimension zero.

e [(ig!) xcxd — (ig) xcxd] ifoUd =[n],
0 otherwise.
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This implies in particular that the multiplication respects the double grad-
ing of cohomology classes. The conditierJ ¢/ = [n] is the “standard
codimension condition” (cf., e.qg., [Yu], [HRW, Proposition 6]). As a conse-
guence we obtain the following Corollary, which answers Conjecture 6.6 in
[Yu] in the case of coordinate subspace arrangements.

Corollary 1.1 LetA c 2" be a simplicial complex, and 1€t% denote the
complement of the associated complex coordinate subspace arrangement.
The ring structure of*(C; Z) is given by the homomorphisms

H,(linkpa 0;7) ® Hy(linkao'; Z) — Hyypoio(linka o N o’; Z)

[ &[] — {

e [(igt) xcxd — (ig)xcx ] foUd =In],
0 otherwise.

wherei, € [n]\ o andi,s € [n]\ ¢/, ande € {£1} a sign depending on
n,r,r’ computed in Sect. 3.6.

The fact that the siga depends o ando”’ in the real case, but not in the
complex case, is the reason why in general there is no (dimension-shifting)
isomorphism of graded rings between the cohomology rings of the real
and complex arrangement associated whkttjcompare Corollary 2.1 and
Sect. 4).

Example 1.1There is a simplicial complexd c 2[8] on eight vertices such
that the following holds.

> The complement of the associated real arrangement is connected.
> The ring structure of/*(Cx; Z) differs from H*(C§; 7).

Example 1.2There is a simplicial complext ¢ 219 on ten vertices such
that the cohomology ring of the complement of the associated real (or com-
plex) arrangement yields non-trivial multiplication of torsion elements.

Acknowledgementd.want to thank G. M. Ziegler who contributed many ideas and sugges-
tions to the content of this article, V. Welker for many discussions and who taught me a lot
on coordinate subspace arrangements and their relation to Tor-Algebras, and C. Haase who
always encouraged me in moments of confusion. Furthermore, | want to thankeBj”

for his hospitality during my stay at KTH Stockholm in december 1998, where part of this
paper came to existence. The visit to the KTH Stockholm was partially funded in the setting
of the “Projektbezogener Personenaustausch mit Schweden” of the DAAD, 313/S-PPP.

2 Objects, tools and facts

In this section we recall basic facts on coordinate subspace arrangements,
provide combinatorial models for their links and complements, and describe
Lefschetz duality in the framework of cubical conomology for the comple-
ment of a coordinate subspace arrangement.
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2.1 Coordinate subspace arrangements

Simplicial complexes give rise to real and complex subspace arrangements.
For that, let{ey, ... ,e,} be the standard basis Bf*, resp.{e}, ... e

the standard basis 6. Let A ¢ 2" be a simplicial complex on the vertex
set[n] = {1,...,n}. We define that alway’ € A is a face. To avoid trivial
cases we assume throughout the article that 2[") andn > 2. The(real)

coordinate subspace arrangemaémfR™ associated witlkA is

Aa = {spang{e;, ... ,ei, } : {io,... i} € A},
the(complex) coordinate subspace arrangemnierif” associated with is

AS = {span(c{ei%,... ,e(ii} {io, ... ik} € A}.
For every subspace arrangement we have the notion of the link and the
complement, which in our case we denote by andC 4, resp.LS and

ot

LA:SnflﬁU.AA C'A:]Rn\UAA
L3 =s""n|JAZ ci=cr\[JAR

2.2 Models for the real case

We introduce combinatorial models, andI’4 for L, andC 4. Consider
the n-dimensional cross polytop@” = conv{+e; : i = 1,...,n}. Its

proper faces form a simplicial complex, which we denotely*. Let A

be the subcomplex @lQ™ of all simplices that are contained(ij.AA.

A= {{e0€ins- - senea} s fios o sin} € A (eo,.. ep) € {£1}4}
Let I'4 be the “mirror complex” ofd 5 (cf. [BBC]), i.e., the faces of the-
cubeC™ = [—1, 1]™ disjoint tol J .A A considered as a polytopal subcomplex
of the cube.

I'n = {c: caproper face o€, [n] \ {varying coord. ot} & A}

The underlying spacesia| and|I’s| are homeomorphic, resp. homotopy
equivalent, to the linkl o and the complemenit s, see e.g. [Mu, p. 414].
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/N

AC
An*;\
o
o # n Y (n (o)) o=n"Y(n(as))
link oc o is a cone link sc o = (linka 7(0))C

Fig. 1. Example for the “complexification” of a complex

2.3 From complex to real arrangements

As far as the topology is concerned any complex coordinate arrangement
can be modeled as a real subspace arrangement te2!”! be a simplicial
complex on the vertex s¢tl, ... ,n}. Letn : [2n] — [n] the map defined

by 2i — 1,2i — i for i € [n]. Define the‘complexification” of A by

A = {0 c 2n] : 7(0) € A}.

For an example of a “complexification” and the following Lemma see Fig. 1.
Lemma 2.1

> Under the standard identificatio®” = R?" the spaceg . A% and
|J Axc correspond to each other.
> For o € AC the following homotopy equivalence holds

* if 7=1(n(0)) # o,

link o~
Hace {linkA n(o) if 77 (n(0)) = 0.
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2.4 The Goresky—MacPherson theorem

Let A be a (linear) subspace arrangemer®inwith link L = S*~'nJ A
and complement’ = R™ \ | J.A. Denote byP the intersection poset oA
ordered by reversed inclusion, and & — N the dimension function.
Forv € P let P, be the subposet of all elementsithat are smaller than
v. For any finite posef) denote byA(Q) the order complex of).

Theorem (Goresky—MacPherson [GM, Part Ill]) The homology of the
link L 4, and the cohomology of the complemént, of a subspace arrange-
mentA in R” can be computed from the dat&, d) andn:

L.Au @Hl dv) P<U);Z)7
veEP

C.Aa @Hn i—d(v)— (P<U)7Z)
veP

This theorem, originally proven by means of stratified Morse theory in [GM],
was given an elementary proof by Ziegler afidaljevic in [ZZ].

2.5 The Goresky—MacPherson theorem for coordinate subspace
arrangements

In the situation of a real coordinate subspace arrangementhe order
complexesA(P-,) can be described more explicitly. The posgis given
by the face poset of the simplicial complegxordered by inverse inclusion.
The posetP.,, then is isomorphic to the opposite face latticdiak, o =
{reA:o0Ur € A ont = 0}. Thus we obtain the following formulation
of the Goresky—MacPherson theorem.

Theorem Let A c 2[") be a simplicial complex with vertex st . .. , n}.
Then

Hi(La;Z) = @ ﬁi_m(linkA o),
ocA

H(CA;Z) = @D Hy i o2 (linka 05 Z).
ceA

Here|o| denotes the cardinality of, i.e.,|o| = dimo + 1.

In view of section 2.2 this yields the following result for the associated
complex coordinate subspace arrangement.
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Corollary 2.1 For simplicial complexeg\ c 2" we have

H; (L(C ; Z) = @ ffi,2|g| (linkp 03 Z)
ocEA

' (CS; Z) = C@ﬁ%iwz (linka 05Z)

and hence there is a dimension-shifting group isomorphism between the
(co)homologies of the real and complex coordinate subspace arrangements.
Every homology class

[c] € ]:[n,i,|0|,2(linkA o) = ﬁ2n,(n+‘g‘+i),2‘o|,2(linkA o;7)
corresponds to
[u] € H'(Cai Z)
and to
[u€] € Hrtlol+ (Cg; Z) .

The correspondende] — [u®] sets up the isomorphism.

2.6 A homology model and a map into the link

We establish a simplicial version of the ZieglZivaljevic [ZZ] proof for
the Goresky—MacPherson theorem. L&t 2 be a simplicial com-
plex. We construct a simplicial complex, together with a simplicial map
® : Lo — Aa to the link that induces an isomorphism in homology. Let
£ 4 be the following one-point union of spaces.

La= < U Q7! % link 5 o‘) [~ = (AU U 0Q1°! x link o 0’) /~

oeA seA\{0}

The one-point union is given by the following identificatiors For each
o={ig<...<ix} € A o #0,identifye; € Q7! x link 5 o with the
vertexip € A = 9Q!% x link , (). Compare Fig. 2.

We get the ma by defining it on the piece8Q!?! « link o 0. Let

Oy : 8Q|0| *linkpo — Ap
be defined by the simplicial homeomorphism

8Q|U| — SpanR{eioa . 76ik} N aQna
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€3

A Aa £a
Fig. 2. An easy example for the model spatea

o ={ip < --- <ix},suchthat,(e;1) = e;;, in particularp, (e1) = ;.
Onlink 5 o the mapg,, is defined by

{jO?' .. 7jl} — {ej()7' e 7ejl} € AA

for {jo,... ,5i} € linka o. By construction all these maps fit together and
yield a simplicial mapp.

Proposition 2.1 The mapp induces an isomorphism in homology. (In fact,
it is a homotopy equivalence.)

Proof. (Sketch of proofThe proof works as in [ZZ] by induction on the
cardinality of A. In the induction step one removes a maximal simpleA of

and uses the Mayer-Vietoris sequence along with the induction hypotheses
(resp. the Glueing Lemma, to obtain the homotopy equivalendg).

2.7 Cubical cohomology

The homotopy model’4 of the complemenC 4 is a subcomplex of the
boundary of the cube. We compute its cohomology by using “cubical coho-
mology.” We give a short overview of the most important notation and the
formula for the cup product (see also [Ma]).

Let I be a subcomplex of the-cube C™, and letT € I be at-
dimensional cube. We use two descriptiong of
Denote the projection to theth coordinate byr;. On the one hand, we can
identify 7" with a vector in{+, —, x}", where thei-th coordinate ist, —
or x iff m;(T) = {41}, {—1}, resp.[—1,+1]. On the other hand, there are
three set§’, , 7, T, C {1,... ,n} that uniquely define the cube,

T &5 (Ty, T, To),
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where|T,| = t and the following holds for the coordinate projections.

mi(T) = {+1} fori e Ty,
i (T) = {-1} forjeT_,
m(T) = [-1,+1] for k € 7.

Let Cy(I") be the free abelian group generated byttocebes inl". In order
to get a boundary map we begin by defining face operatorsT'Letl” be
at-dimensional cubd <4 (T4, T, T) with T, = {ky < --- < k¢ }. For
A={ai,...,ap} C{1,...,t} ande = +1 define thgt — p)-cube

DIZT: (T+ U{kCLl?-.. 7kap}7T—7T* \ {ka17... 7kap}> If £ = +1'
(T+’T_ U{kal"" ’kap}’T* \ {kaw-" 7kap}) if e =—1.

D5T is the face of 7' obtained by fixing the varying coordinates
{kay,-.. ,kq,} toc. A boundary operator is now defined by

8t : Ct(F) — thl([’),

t
a +1 -1
T—s 2(—1) (DpyT-DRiT).
The homology of the resultingubical chain complekC..(I"), 0.) is canon-
ically isomorphic to singular homology. The cup product formula in this sit-
uation is given on the chain level by the following. ket Hom(C),(I"), Z)
andv € Hom(C,(I), Z), then for a(p + ¢)-cubeT” we obtain

(wU)(T) =Y pux - u(DET)v (DL'T),

where the sum is taken over alsubsetd? of {1, ... ,p+q}, K isthe com-
plementofH, andpy i is the sign of the permutatidd K of {1,. .. , p+¢},
i.e., the signature of the shuffié7, K).

2.8 Lefschetz duality for the cross polytope

As a crucial part of Alexander duality, we describe Lefschetz duality explic-
itly for simplicial homology of the cross polytope and cubical conomology
of the cube (cf. [Mu]).

Theorem [Lefschetz Duality] Let (X, A) be a compact, orientable, trian-
gulated relative homology-manifold. Then there is an isomorphism

Hy (X, A) = H" (| X\ |A]).
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Fig. 3. The 3-dimensional cross polytope with the 1-skeleton of the 3-dimensional cube in
the barycentric subdivision

Proof. (Outline of the proofl.et X~ be the simplicial complex consisting
of all simplices of the barycentric subdivisied X that are disjoint from
|Al. Then

> |X ™| is a deformation retract afX | \ | A|.
> | X | equals the union of all block® (o) dual to simplicesr € X that
are not inA.

Now there is a chain isomorphism
CH(X,A) 5 Dy (X7,
whereD, (X ™) denotes the dual chain complex&f~. Dualization yields
Ci(X, A) = Hom(C*(X, A),Z) <— Hom(Dy,_4(X ™), Z).

The inverse mapCy(X,A) — Hom(D, (X ~),Z) is given by
o +— D(o)*, whereo is a k-simplex of X not in A. This induces the
desired isomorphism. O

Lefschetz duality is dealing with the complék—, whose underlying space
is the union of the dual blockB (o), o € X \ A. In caseX is the boundary
of the cross polytop&”, the dual blocksD(¢)|, o € X, correspond to the
faces of the boundary of thedimensional cub€™. See Fig. 3.

LetnowA = A A be the subcomplex of = 0Q™ given by the arrange-
ment associated with a simplicial complgx(Section 2.2). Then there is a
chain isomorphism from the dual block complex(6f)™)~ to the cubical
chain complex ofl 4

D;((0Q")7) — Cj(I'a),
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which yields a chain isomorphism
¥ Cp(0Q", An) — Hom(Dy—1-((0Q")7), Z)
— Hom(Cy—1-x(I'a), Z)
where
V(o) = (~1)°+ ()T ONT (0), T (0), Tu(0))",
for o = (eoeiy, - - - ,ex€i,) € 0Q™ \ Aa, io < - -+ < iy, With
Ty (o) ={ij € [n] : g5 = +1},

)
T (o) ={i; € [n]: ]__1}
Ti(o) = [n] \ (T4 (o) UT_(0)).

The signs inZ (o) result from the condition that must commute with the
respective boundary maps.

3 Proofs of results

In this section we prove Theorem 1.1. We begin by introducing joins of
chains, and then exhibit explicit cohomology classdg i/ 4 ) with respect

to the Goresky—MacPherson theorem. We derive an explicit formula for the
cup product of two such classes. In most of the cases the product vanishes
as stated in Theorem 1.1. Then we treat the case in which the product does
not vanish. The considerations of the complex case follow then.

3.1 Joins of chains

Definition 3.1 Thejoin ¢ x ¢’ of two simplicial chains: = >, «;7; and
¢ =¥, o} inasimplicial complexA ¢ 2" is defined by

> oo xT,
rjm;,gzw
where the join of two disjoint oriented simplices is defined by
(Vs « s Up) % (W0, . ooy Ws) = (VOy v ey Upy WOy« - o, W)

Lemma3.1lLet R = {rg,...,rs} be a subset of the vertex set,
c = Zj a;7; a cycle. ForR C 7; define the (oriented) simplex by

the equationr; = 7; * (ro, ... ,7s). Theny . p - a;7; is a cycle.
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Proof. We writec as
c= Z a;Tj + Z ;T % (10, ... ,Ts),
J:REZT; J:RCT;

and obtain for the boundary

0 Z a;7; | +0 Z a;7j | *(ro,... ,7s)

J:RZT; J:RCTj

+ Y a7« 0((ro, ... 1)) =0.

j:RCTj

The only simplices that contai appear in the second summand, and hence
this summand must be zero on its owrt]

Lemma 3.2 Leti be a vertex and let = >, a;7; andc’ = >, aj. 7y be
two cycles that share at most the verieXhen

O((i)yxcxc)=cxc.

Proof.

(@) xexd)=0 | (i) x Y ajm* Y g,

JugT; kg,
_ — ! __/ - — ! __/
— Z Q;Tj * z o, — (i) % 0 2 a;7j | * Z 4T,
JHiET) kg JiigT; kg,
+ (i) * E a;Tj % 0 E LT
JET; k:i&f,’c
= ;T * o7y, + (i) * 0 7| BT
= 373 kT T \? Q5Tj QT
JHigT; kg JUET; kg,
+ (1) E a;Tj * 0 E QT
JET; k::i&ﬂ-,’9

:c*g 0‘;@7'1,@—5 a7 * (i) * O E Ty,

kg, JHigT; kg
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:C*E a;CT];—i-E a;T;* (i) * 0 Zaﬁmg

kuadr] JugTy kieT],

/
=cxcC,

where possible empty sums are considered to be zero.

3.2 Explicit cocycles

Using the Goresky—MacPherson theorem and the explicit description of
Alexander duality we now derive explicit cohomology cocycles for the com-
plement of a coordinate subspace arrangement. For that, we use the following
sequence of homomorphisms.

H,(links ) i) f]r+|g| (8@'”‘ * link o O')
suspension

—— Hyy10(A4) ———— Hy 410141 (9Q", Aa)
(¢0 )« pair sequence

ﬁn_T_|U|_2(FA) (l)

o

_
Lefschetz duality

Before describing the maps explicitly, we introduce some notation.

Notation 3.1
> For each subsetyji,. .. ,js} C [n] we define
sign(jija - - - js) = sign,
where r is the permutation of1,... ,s) such thatj.;) < --- <
Jn(s)- For every family of subsetsd,..., Ay C [n], where

Ay = {ji <+ < ji }, we define

Sign(Al U Ak) = Sign(jllv s aj}npj%v s aj72n27 s ajfa s )]nklk)
Furthermore, for every sel = {a1,...,ar} C [n] we abbreviate
(=1t by (—1)>4,
> For eacho € A let
Sy = Z €0 €k - (€0€0, - - - ,ELCE)

e=(c0,- op) E{H1}FH1

be a generating simplicial cycle |, (0Q'"!).
> For eacho € A choosei, € [n]\ o arbitrarily.
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Now, let o € A and[d € H.(linkao), ¢ = 3 a;7;. Consider
d:£0 — Ap as defined in Section2.6 and the induced chain map
Dy : Ci(La) — Ci(Aa). The first two steps in the sequence (1) of
homomorphisms are given by

[c] =[50 * c] — [P4(s0 * C)].

Now we construct the pair sequence map. Consider the following “cone”
over the chaid; (s, * c):

(€i,) * Py(s5 * C).
Observation 3.1

> (€i,) * Py(sq * ¢) € Crpjg)41(0Q", A4) by the definition off andi,,
> O((es,) * Py(sq * ¢)) = P4(s, * ¢) as a special case of Lemma 3.2, and
> foranyi;, € [n]\ o, the cyclese;, ) x P4(s, * c) and(e;r ) * Py(s5 * c)

in C, 1 |541(0Q", A4) are homologous.

Hence an element] € H, (linkx o) is mapped under (1) as follows.

[c] — [0 * c] — [P4(55 * C)] —
— [(€i,) * Py(so * )] — [ ((ei,) * Py(so * €))]

The cocyclel((e;,) * P4(s, * ¢)) is explicitly given by

Z Z sign(igoT;) - (—1)let ot L g

Jio@Tj ec{£1}k+1
(T-i-(ja Ef), T (]7 E)v T*(.]v E))*7

where

T+<],€) T; U{ZU}U{ZZ g = +1},

T (j,e) = {ir: &1 = —1},

T.(j,e) = [n ]\(T+(J, e)UT (j,¢))
=[]\ (e U7 U{ic}).

Here we made use of the equality- - - ¢, - (—1)/7- @)l = 41, In the other
representation the cub€s, (j,e),7_(j,¢),T:(j,€)) look as in Fig. 4 (up
to a permutation of coordinates), where thesigns correspond to the sign
vectore.

Throughout the rest of the article we will use this correspondence be-
tween homology cycles of the links af and cocycles of the complement
of the arrangement.
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(F++++E++++]* % * *‘ + ‘* * % % *++++‘*),
—_— ~— ——

o {io} Tj

Fig. 4. Schematic description ¢ (j,€), T-(j,€), T« (J, €))

3.3 The cup product

Now consider two cohomology classkg and [v] of I's corresponding
to two homology classelg] € H,(linky o) and[¢'] € H,(link, ¢’) for
simplicesr, o’ € A,c =), aymjandd = > a; 7. Letp = n—r—|o]-2
andg =n —r' —|o'| — 2 and letT’ € I'x be a(p + ¢)-cube. For the cup
product of[u] and[v] evaluated af” we obtain

Z Z Z pH K sign(iyoT;) sign(iyo'm,) -

H\K jis¢Tj €&’
ki &1,
(—1)ir i TRt RN g, -
(T4(j,€), T-(j,€), To(j,€))* (D} T) -

(T} (k,e"), T (k,e"), Ti(k,e"))" (DE'T),
where the first summation is over &l, p)-shuffles(H, K). Let us first
consider only the last term

(T+(.j7 5)7 T (]7 5)7 T*<]7 8))* (D]—!—_IIT) '
(T (k,e"), T (k,e"), Ti(k,e")* (DL'T). (%)
Observation 3.2 The term §) vanishes for all{, K ande, e’ unless
oUo' U{iz}U{is}UT;UTL, = [n].
Proof. The sets of varying coordinates m;lT and D;(lT are disjoint.
This gives
@ = T*(.]> 6) N T;(kv El)
=\ (e U U{ic}H)) N ([n]\ (o' U U{io}))
which yields the result. O

Now we turn to the general computation of the cup product.

Case l:0 # ¢’ ando U o’ # [n].
In this case we will show that the cup product vanishes as demanded
in the statement of the main Theorem. By anti-commutativity of the cup
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T_-ﬁol - ‘r_~\o" io
(= *‘++—|—+ * % ok % *‘iiiiii‘* * *‘—|—+—|— + )*(D;rIlT)-
(Fdtddttddttdtd]s «[+++++[x x| + ) (DL'T)
~

f .
o Tk 1ol

(x *‘—&——&——l——&—‘* * % ok *‘:I::I::t‘* *‘—&-‘* * *‘-f—‘* *‘ + )

Fig. 5. The term §) schematically and all cub&sfor which (x) has a chance not to vanish

product we may assume& ¢ o. By Observation 3.1 we can assume
ic = 1o & [n]\ (0 Ud’). Our situation is represented in Fig. 5.

Observation 3.3 The term §) vanishes for allH, K, €,&’, and k unless
the following holds

oUo U{is}UT; = [n].
Proof. Asthe down arrow points outin Fig. 5, if there is a coordinate only
covered byr it will be a fixed —1-coordinate inD'7. O

Hence all terms that have a chance to contribute to a non trivial product are
as shown in Fig. 6. Gathering all contributing terms with the right sign and

‘rjﬁo', o TJ\O'/ o
—— ~~
(k x|+ 44+ % x x| EEE L+ +++++| + )(DFT):
(tttttttttttt) x|[+++++[* x| + ) (DE'T)
~~

’ /
o Tk Lt

( *‘—1——1——1——1—‘* * ok ok *‘:I::I::I:‘* *‘++—|——|—+‘* *‘ + )

Fig. 6. The term §) schematically and all cubds contributing non zero summands

coefficient, we obtain that the cup product is represented by the following
cocycle (up to a global sign)

— !/
V| (ei,) * Py | S0 * g Q;Tj * E Ty, ,
Jiio &T; ki &),
RCT]‘
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whereR = {ro,... ,rs} = [n]\ (cUd’'U{i,}) andr; = 7j* (ro,... ,rs).
Tracing this element back through the sequence of homomorphisms in (1)
and using Lemma 3.2 we arrive (up to a global sign) at

0| (iy) * Z a7y * Z QT :Zajfj*c'
J

Jiio €T kiig ¢T,/€
RCrTj RCr;

as a representing cycle i, (linka(c N ¢’)), which we denote by ¢’
This is a chain irCy(link (o N ¢”)) for the following reason. Consider an
arbitrary pair of simplices; andr; . Sincer;, € links o’ we haver’Ur;, € A
and sincer; C o’ we obtain7; U, € A.

We claim that the cycle x ¢ is a boundary irCy (link o (o N ¢”)). Since
o' ¢ othereis g € ¢’ \ o and as before all simplicdg} U 7; U], € A.
Hence(p) * ¢ * ¢’ € Cky1(linka(o N o’)) with boundarye x ¢ as follows
by Lemma 3.2.

Case ll: ¢ = o' (of courses # [n]). We will show that the cup product
vanishes unless the complemén is not connected. In this case we get
non-trivial self multiplication of elements in cohomological dimension O.
Again we can assumg = i,-. Our situation is shown in Fig. 7.

o T

\l/ J ;a\
* |+ + 4+ + ) (DET):
+++ +|x x| + )(DE'T)

T, Lyt

(tt+t++t+++t++t+t+++++++
t+t+t++t+t+t+t++t+t+++4++ 4

o!

(:I::i::t:t:t:t:l::l::l::l::l::l::l::l::l::l::l:‘* *‘-}—-1—‘* *‘ + )

Fig. 7. The term §) schematically and all possible cubiEsn which it does not vanish

As in the last caselj the only interesting terms are the ones with
oUT;U{is} = [n]. If such aterm existsmust be a multiple of a generating
cycle of the sphere on the vertices\ o. But for ¢’ not to be trivial the same
holds forc/, since the reduced homology of the sphere is non trivial only in
the dimension of the sphere. Now— |o| —r —2=n—|¢o/| =7 —2 = 0.
Therefore the corresponding cohomology classes are not zero adly if
is not connected, which means that there are simplices of dimension
in A.
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Caselll: cUs’ = [n]. Consider Fig. 8. Gathering the cocubes corresponding
to the non vanishing summands together with signs and coefficients gives
the following representing cocycle for the cup product (up to a global sign,
see Sect. 3.4)

o (e (s 3 e 3 i

Jiio&T; ki1 &,

(ks [++++][x «| + [ |2 xt+++++ L+ £+ + ) (DF'TD)
(Ft++t+++4+ £ FEdEd|s x|+ ++++x = + ) (DL'T)
—_— ~~

’ ’ q
T it

(¢ x| 4+ +|x *| + [* x|EEE]x # |+ ++++][x x| + )

Fig. 8. The term §) schematically and all cubé&s for which (x) does not vanish

Tracing this element back to a cycledh ./ 5(linka (0 N o’)) leads up
to a factor of(—1)/7""l to

O | (ig) * (igr) * Z QT * Z apty | =

Jiio €T; ki /5_17',’C
OZJTJ * Oéka. OZ]T] O‘ka
Jiio €T ki 1 &, Jiio &Tj Ksig o &1y,
— (/) * (i) x O E a;Tj | * E Ty,
Jiio €75 ki &7,
r
E QT * )% 0 E T,
Jio &T) ki /Q’r”c
O[]T] * Oéka ajT] O[ka
Jiio€T; ki &1}, Jiio €Tj ki &7},

+ (igr) * (ig) % O Z a;Tj | * Z QT

Jio€ET; ki &7,
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— (ig) * Z a;Tj * (igr) % 0 Z Ty

Jiig &7 ket
= (i) xcx Y apmp—(io)*x Y aymixd
Ksig o &1, JiicETj

:<z’0/>*c*c’—<ia>*c*c’.

This finishes the proof of Theorem 1.1.

3.4 The global sign

We show how to compute the global sign. In the cup product formula we
have the sign

pH, K sign(ieoT;) sign(ip o' - (=1)lr it N ot 0T (x)
For the image ofi,/) * ¢ x ¢ — (i,) * ¢ * ¢ under the sequence of homo-

morphisms (1) we obtain

'l

(—1)‘”” W (ei,) * (€ ,) * Py | somor * Z QT * Z Ty,

Jiio €T i &,
In this sum the sign of the cube in question is

(=)l sign (igigr(o N o”)ryry) - (—1)0 o PN TR

(%)
The global sign is given by the quotient of the two sigrsand (xx).
(=1)lone’l -pH,K sign (i507;) -sign (ir0'77,) -sign (ixie (0 N o' )Ti77,) -
(_1)i0+z‘6/+2 o+ T AT (_l)ig-i-ig/-‘rZ(aﬂa’)-l-Z T+ Ty,
= (—1)“’m‘7l‘+2("u"/) - pH,K sign(i,oT;) - sign (i(,/alv'é) .
sign (ioiy (0 No’) 7571

where

H=[n]\ (a’ U 7']; U {iax})

K =[n]\(eUmU{ic}).

We will derive a formula that is easier to handle and, in particular, shows
the independence gf k£ andi,, i,/.
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Lemma 3.3 Leto, o’ C [n] suchthatv Uo’ = [n], and. = {i} C [n] \ o,
J ={i'} c [n]\o,andr,7” > 0. Then forr C [n]\ (c U:) and
7' C [n]\ (¢! U /) of cardinalityr, resp.r’ we have

sign(([n] \ (0" U UL))([n] \ (e UTUL))) -
sign(to) sign(/o’7") sign(vt/ (o N o’ )77")
= (—1)H e =D  sign(([n] \ o) ([n] \ 0)).

Note that for simplicity we have usegdr’ for the cardinalities of, 7’ instead
of the dimensions.

Proof. We proceed in two steps. First we show, what happens if we reduce
(r,7’) in the lexicographic order.
For (r,7') = (0,0), we just have

sign(([n] \ (" U)X \ (o U1)))
-sign(to)sign(d'o”) sign(u’ (o N o). (2

Now assumer = 0 and ' > 0. Choose two’-setsr, 7 C [n] \ (¢’ U//),
and choose elements € 71, vy € 7. Let7] = 71\ {v1} and7, = 75\ {v2}.
Then
sign(([n] \ (o' U], U))([n] \ (o UL)))

= sign([n] \ (o' U T2 U )] \ (oL ) (1)l {ocll Mooyl

S (101 ) = sign(V0'r ) (-1 e
Sign(LL/(O' N 0'/)7'{/2) = SigD(LL/(O' N O-/),]——{/Q)(_1)|{a6LUL’U(JﬁJ’):a>v1/2}|.

Consider the sum of th-1)-exponents.

{a €\ (cU)a<vipl+Haed/Ud" ra>uvp}|+
{ae U/ U(cna’):a> v}
=\ Uo)[—{ae ]\ (cUL):a>uvp}+
Haco :a>vip}+{actU(ona’):a> v}
=]\ (Uo)[+{a€o' ra>uvp}+
Haen]\(cUw) :a>vptl+{actU(ono):a> v}
=]\ (cUa)l +2{a €0’ a> vy}
=|[n]\ (tUo)| (mod 2).

Hence, for reducing’ by one we obtain a factor ¢f-1)"~1°/-1 and thus
in total a factor(—1)" (=lol=1),
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Assumer > 0. This case works analogously, reducing two choices
of r-setsry /. In each step one gets a fac(erl)T'. Hence, after steps,

we obtain a factof—1)""".
Treating the expression (2) similarly yields

(—1) - sign(([n] \ o')([n] \ 0)),
which gives the result. O

Thus, we derived the following global sign

n(n+1) ono’ r ! I n—|o|— .
(177 Hen D EH DDl =D sign (] \o”) ([n]\@))

= (=1)"F N DD i ([n] \ ') ([n] \ ). (3)

3.5 The complex case

We will explicitly compute the multiplication it * (Cg; Z) using the results

and notation of Sect. 2.3 and the previous Sectionjilefv] € H*(CS; Z)
correspond to

[c] € H,(linky o) = H, (link pe 71 (0))
and
(] € Hy(linka ') 2 Hy (link yc 771 (0”))
for simpliceso, o’ € A.

Case I:If 0 U o’ # [n] thenm—1(o) Un~1(c’) # [2n] and hence the cup
product of[u] and[v] is zero.

Case ll: If 0 = ¢’ # [n] the cup product vanishes since the complement of
a complex coordinate subspace arrangement is connected.

Case lll: Now leto U ¢’ = [n]. Consider the isomorphism

H,(linky o) — H, (link 5c 7['_1(0'))
[e] — [c]

induced by the vertex majp— 2i — 1. It corresponds to the isomorphism

induced by the homotopy equivalence. Using this isomorphism for the cup

product computation we are in the well known situation as shown in Fig. 9.
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+C iC (o

; & (0)
(¢ #[++++]* *| + [+ x x|2tt++t+ L4+ + ) (DFT)
(FxEt+t+++ £ rdd]x «|++++[x x x| + ) (D'T)
N——— ~~

—1(g5/ 1C :C
7= 1(a’) T, i

e e e I e e R A L I D

Fig. 9.A typical summand of the cup product evaluate@achematically and the cub&s
for which it does not vanish

Collecting all summands yields the cocycle

v <€i(r> <ez,>*@ﬁ Sp=1(o)Nm—1(o") Z 0437' * Z akT

Jiia @1y ke g ©

for verticesi, € [2n] \ 7~!(o) andi, € [2n] \ 7~ 1(c’). As above this
leads (up to the global sign) to

[(igr) x cx ! — {ig) xcx ] € f[r+r1+2 (linkA on 0')
&~ ~7‘+7”+2 (llnkAC 7T71(O' N O'/))
= Hy o (link pc 71 (0) N1 (0"))

3.6 The global sign in the complex case
First of all, from the computation in the real case, we obtain the sign
(_1)n(2n+1)+\7r_1(U)F‘ITr_l(cr')|+(T+1)(r’+1)+(7"+1)(2n7|7r_1(cr)|71)+1
sign(([2n] \ 7~ (o"))([2n] \ 771 (0))).

Now in7=! (o), 7= 1(c’) resp., all elements appear in pairs. This simplifies
the sign to

(71)n+r(r/+1)+1‘ (4)

4 Example of a simplicial complex yielding different ring structures

Let [u], [v], [w] be cohomology classes of the complement of a real coor-
dinate subspace arrangement corresponding to homology classes of links
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of A, such thafu] U [v] = [w]. Then our results imply that for the corre-
sponding cohomology classes of the complement of the associated complex
arrangement we have (see Corollary 2.1)

o] o ] = [

Hence it arises the question if we can choose signs in the correspondence
[u] — [u®] consistently such that it becomes a (dimension-shifting) ring iso-
morphism. An example of different ring structures containing hyperplanes
was given in [GPW]: the existence of hyperplanes lead to additional multi-
plication in the real case. Our example shows that this is not the only case
where non-isomorphic rings occur.

Remark 4.1There is a (dimension shifting) ring isomorphism of
H*(Ca;Zs) andH*(CS; Zs).

4.1 The example: different sign patterns

We construct a simplicial compleXt ¢ 28] on eight vertices given by

four facetssy, 09, 07, 0%, and investigate the multiplication of cohnomology
classes stemming from the links of these facets in the case of the associated
real and complex arrangement. For the real and complex case the resulting
sign pattern implies that there is no ring isomorphism betvs[éé@CA) and
FI*(C’S). The facets are given by the following scheme which also helps for
computing the signs appearing in the multiplication. A black box in position
(p,7) indicates thaj € p.

1123|14]5[6|7]|8

o1
g2

!
o1

%P

Fig. 10.The facets ofA

The sign patterns arising in the real and in the complex case according
to (3) and (4) are given by the following table. Clearly, there is no consistent
way of assigning signs in the correspondepde— [u®].

5 Example of non trivial multiplication of torsion elements

We construct a simplicial compled ¢ 219, Leto := {1,2,3,4,5,6}
andP c 2{1:2:3.45.6} pe g six-vertex triangulation of the projective plane.
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Sign (3)  Sign (4)

or o7 -1 -1
o1 b -1 -1
o2 o +1 -1
o2 oy -1 -1

Let o’ = {7,8,9,10}, and letS be a simpliciall-sphere on four vertices

as a subcomplex af{78910}  Now defineA = P % 27 U 27 % S. Then

the homotopy type ofA is X(P % 27 N 27 x S) = X(P = S). Hence

A has the homotopy type of a threefold suspended projective plane. Now
link A (00) = 0+ S andlink o (Pxo’) = Px0. Let[c] € H;(linka(ox0)) =
Zand['] € H(linka(0*0”)) = Zy be generating homology classes. They
correspond to elemenis] € H'9~1=6-2(14) and[v] € H'0~1=4-2(T4).

Their cup product corresponds to a generating class

[<ig/> xcxc — <ig> * C * Cl] S ﬁ10_4_0_2(linkA @) =7

fori, € {7,8,9,10} andi,» € {1,2,3,4,5,6}.
Note that this example works for the real as well as for the complex case.

6 Questions and remarks

> A very natural question is as to what extent our methods can be used to
treat more general subspace arrangements.
> Itis easy to see that ifi 2/ is a simplicial complex such that
> dim A < n—3,i.e., the associated real arrangement does not contain
hyperplanes, and
> A is Cohen-Macaulay ovéf,
then the ring structure off*(C»;Z) is trivial. Using the specific de-
scription of the multiplication it would be nice to derive a better charac-
terization of simplicial complexes yielding trivial multiplication. Confer
also [HRW].
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