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Abstract. Every simplicial complex∆ ⊂ 2[n] on the vertex set
[n] = {1, . . . , n} defines a real resp. complex arrangement of coordinate
subspaces inRn resp.Cn via the correspondence∆ 3 σ 7→ span{ei : i ∈
σ}. The linear structure of the cohomology of the complement of such an
arrangement is explicitly given in terms of the combinatorics of∆ and its
links by the Goresky–MacPherson formula. Here we derive, by combinato-
rial means, the ring structure on the integral cohomology in terms of data of
∆. We provide a non-trivial example of different cohomology rings in the
real and complex case. Furthermore, we give an example of a coordinate
arrangement that yields non-trivial multiplication of torsion elements.

1 Introduction and results

This article is concerned with coordinate subspace arrangements, a family
of (linear) subspace arrangements in real and complex space associated
with simplicial complexes. For a detailed survey of subspace arrangements
we refer to [Bj]; all we need here is given in Sect. 2. Associated with any
subspace arrangement are its link and its complement. The homology of the
link, the cohomology of the complement, and in particular its ring structure,
have motivated a lot of research [Ar], [BZ], [Br], [CP], [FZ], [GM], [OS],
[OT], [Zi].

The Goresky–MacPherson formula for the homology of the link is the
starting point of our investigation. By analyzingAlexander duality combina-
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torially in the case of coordinate subspace arrangements, we give a complete
combinatorial description of the ring structure of the integral cohomology.
In this analysis the duality of the cross polytope and the cube plays a crucial
role.

This work was motivated by a result of S.Yuzvinsky [Yu] on the rational
cohomology ring structure of complex arrangements. We can give a partial
positive answer to Conjecture 6.6 on the integral cohomology ring structure
of complex arrangements of his article. Our modeling of the cohomology of
the complement was inspired by the article [BC] of E. Babson and C. Chan.

We provide an example of a simplicial complex not containing faces of
cardinalityn− 1, so that the complement of the associated real coordinate
subspace arrangement is connected, that yields different ring structures for
the cohomology of the complement of the associated real and complex ar-
rangement. This answers a question by Gasharov, Peeva and Welker [GPW].

Finally, we give an example of a coordinate subspace arrangement that
yields non trivial multiplication of torsion elements.

Results

Our main result – the description of the ring structure on the cohomology
of the complementC∆ of a coordinate subspace arrangement – is based on
the Goresky–MacPherson formula for the link (cf. [GM]). After applying
Alexander duality it is given in our situation by

H̃ i(C∆; Z) ∼=
⊕
σ∈∆

H̃n−i−|σ|−2(link∆ σ; Z).

To describe the multiplication iñH∗(C∆; Z) it suffices to describe how
to multiply classes[u] and[v] that correspond to[c] ∈ Hr(link∆ σ; Z) and
[c′] ∈ Hr′(link∆ σ′; Z) under the Goresky–MacPherson isomorphism. Note
that there is a double grading of cohomology classes by assigning the grade
(r, σ) to [u].

Our main result is the following.

Theorem 1.1 Let∆ ⊂ 2[n] be a simplicial complex, and letC∆ denote the
complement of the associated real coordinate subspace arrangement. The
ring structure ofH̃∗(C∆; Z) is given by the homomorphisms

H̃r(link∆ σ; Z) ⊗ H̃r′(link∆ σ′; Z) −→ H̃r+r′+2(link∆ σ ∩ σ′; Z)

[c]⊗ [c′] 7−→
{

ε · [〈iσ′〉 ∗ c ∗ c′ − 〈iσ〉 ∗ c ∗ c′] if σ ∪ σ′ = [n],
0 otherwise.

whereiσ ∈ [n] \ σ andiσ′ ∈ [n] \ σ′, andε ∈ {±1} is a sign depending on
n, σ, σ′, r, r′ computed in Sect. 3.4. IfC∆ is not connected there is additional
non-trivial multiplication of cohomology classes in dimension zero.
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This implies in particular that the multiplication respects the double grad-
ing of cohomology classes. The conditionσ ∪ σ′ = [n] is the “standard
codimension condition” (cf., e.g., [Yu], [HRW, Proposition 6]). As a conse-
quence we obtain the following Corollary, which answers Conjecture 6.6 in
[Yu] in the case of coordinate subspace arrangements.

Corollary 1.1 Let∆ ⊂ 2[n] be a simplicial complex, and letCC
∆ denote the

complement of the associated complex coordinate subspace arrangement.
The ring structure of̃H∗(CC

∆; Z) is given by the homomorphisms

H̃r(link∆ σ; Z) ⊗ H̃r′(link∆ σ′; Z) −→ H̃r+r′+2(link∆ σ ∩ σ′; Z)

[c]⊗ [c′] 7−→
{

ε · [〈iσ′〉 ∗ c ∗ c′ − 〈iσ〉 ∗ c ∗ c′] if σ ∪ σ′ = [n],
0 otherwise.

whereiσ ∈ [n] \ σ and iσ′ ∈ [n] \ σ′, andε ∈ {±1} a sign depending on
n, r, r′ computed in Sect. 3.6.

The fact that the signε depends onσ andσ′ in the real case, but not in the
complex case, is the reason why in general there is no (dimension-shifting)
isomorphism of graded rings between the cohomology rings of the real
and complex arrangement associated with∆ (compare Corollary 2.1 and
Sect. 4).

Example 1.1There is a simplicial complex∆ ⊂ 2[8] on eight vertices such
that the following holds.

. The complement of the associated real arrangement is connected.

. The ring structure of̃H∗(C∆; Z) differs fromH̃∗(CC
∆; Z).

Example 1.2There is a simplicial complex∆ ⊂ 2[10] on ten vertices such
that the cohomology ring of the complement of the associated real (or com-
plex) arrangement yields non-trivial multiplication of torsion elements.

Acknowledgements.I want to thank G. M. Ziegler who contributed many ideas and sugges-
tions to the content of this article, V. Welker for many discussions and who taught me a lot
on coordinate subspace arrangements and their relation to Tor-Algebras, and C. Haase who
always encouraged me in moments of confusion. Furthermore, I want to thank A. Bj¨orner
for his hospitality during my stay at KTH Stockholm in december 1998, where part of this
paper came to existence. The visit to the KTH Stockholm was partially funded in the setting
of the “Projektbezogener Personenaustausch mit Schweden” of the DAAD, 313/S-PPP.

2 Objects, tools and facts

In this section we recall basic facts on coordinate subspace arrangements,
provide combinatorial models for their links and complements, and describe
Lefschetz duality in the framework of cubical cohomology for the comple-
ment of a coordinate subspace arrangement.
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2.1 Coordinate subspace arrangements

Simplicial complexes give rise to real and complex subspace arrangements.
For that, let{e1, . . . , en} be the standard basis ofR

n, resp.{eC
1 , . . . , eC

n}
the standard basis ofC

n. Let∆ ⊂ 2[n] be a simplicial complex on the vertex
set[n] = {1, . . . , n}. We define that always∅ ∈ ∆ is a face. To avoid trivial
cases we assume throughout the article that∆ 6= 2[n] andn ≥ 2. The(real)
coordinate subspace arrangementin R

n associated with∆ is

A∆ = {spanR{ei0 , . . . , eik} : {i0, . . . , ik} ∈ ∆} ,

the(complex) coordinate subspace arrangementin C
n associated with∆ is

AC
∆ =

{
spanC{eC

i0 , . . . , eC
ik
} : {i0, . . . , ik} ∈ ∆

}
.

For every subspace arrangement we have the notion of the link and the
complement, which in our case we denote byL∆ andC∆, resp.LC

∆ and
CC

∆.

L∆ = S
n−1 ∩

⋃
A∆ C∆ = R

n \
⋃
A∆

LC
∆ = S

2n−1 ∩
⋃
AC

∆ CC
∆ = C

n \
⋃
AC

∆

2.2 Models for the real case

We introduce combinatorial modelsΛ∆ andΓ∆ for L∆ andC∆. Consider
the n-dimensional cross polytopeQn = conv{±ei : i = 1, . . . , n}. Its
proper faces form a simplicial complex, which we denote by∂Qn. Let Λ∆

be the subcomplex of∂Qn of all simplices that are contained in
⋃A∆.

Λ∆ =
{
{ε0ei0 , . . . , εkeik} : {i0, . . . , ik} ∈ ∆, (ε0, . . . , εk) ∈ {±1}k+1

}

Let Γ∆ be the “mirror complex” ofA∆ (cf. [BBC]), i.e., the faces of then-
cubeCn = [−1, 1]n disjoint to

⋃A∆ considered as a polytopal subcomplex
of the cube.

Γ∆ = {c : c a proper face ofCn, [n] \ {varying coord. ofc} 6∈ ∆}

The underlying spaces|Λ∆| and|Γ∆| are homeomorphic, resp. homotopy
equivalent, to the linkL∆ and the complementC∆, see e.g. [Mu, p. 414].
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Fig. 1.Example for the “complexification” of a complex∆

2.3 From complex to real arrangements

As far as the topology is concerned any complex coordinate arrangement
can be modeled as a real subspace arrangement. Let∆ ⊂ 2[n] be a simplicial
complex on the vertex set{1, . . . , n}. Letπ : [2n] −→ [n] the map defined
by 2i− 1, 2i 7→ i for i ∈ [n]. Define the“complexification” of∆ by

∆C = {σ ⊂ [2n] : π(σ) ∈ ∆}.

For an example of a “complexification” and the following Lemma see Fig. 1.

Lemma 2.1

. Under the standard identificationCn ∼= R
2n the spaces

⋃AC
∆ and⋃A∆C correspond to each other.

. For σ ∈ ∆C the following homotopy equivalence holds

link∆C σ '
{
∗ if π−1(π(σ)) 6= σ,

link∆ π(σ) if π−1(π(σ)) = σ.

ut
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2.4 The Goresky–MacPherson theorem

LetA be a (linear) subspace arrangement inR
n with link L = S

n−1 ∩⋃A
and complementC = R

n \⋃A. Denote byP the intersection poset ofA
ordered by reversed inclusion, and byd:P −→ N the dimension function.
Forv ∈ P let P<v be the subposet of all elements inP that are smaller than
v. For any finite posetQ denote by∆(Q) the order complex ofQ.

Theorem (Goresky–MacPherson [GM, Part III]) The homology of the
link LA, and the cohomology of the complementCA, of a subspace arrange-
mentA in R

n can be computed from the data(P, d) andn:

H̃i(LA; Z) ∼=
⊕
v∈P

H̃i−d(v)(∆(P<v); Z),

H̃ i(CA; Z) ∼=
⊕
v∈P

H̃n−i−d(v)−2(∆(P<v); Z).

This theorem, originally proven by means of stratified Morse theory in [GM],
was given an elementary proof by Ziegler andŽivaljević in [ZZ].

2.5 The Goresky–MacPherson theorem for coordinate subspace
arrangements

In the situation of a real coordinate subspace arrangementA∆ the order
complexes∆(P<v) can be described more explicitly. The posetP is given
by the face poset of the simplicial complex∆ ordered by inverse inclusion.
The posetP<σ then is isomorphic to the opposite face lattice oflink∆ σ =
{τ ∈ ∆ : σ∪τ ∈ ∆, σ∩τ = ∅}. Thus we obtain the following formulation
of the Goresky–MacPherson theorem.

Theorem Let∆ ⊂ 2[n] be a simplicial complex with vertex set{1, . . . , n}.
Then

H̃i(L∆; Z) ∼=
⊕
σ∈∆

H̃i−|σ|(link∆ σ; Z),

H̃ i(C∆; Z) ∼=
⊕
σ∈∆

H̃n−i−|σ|−2(link∆ σ; Z).

Here|σ| denotes the cardinality ofσ, i.e.,|σ| = dimσ + 1.

In view of section 2.2 this yields the following result for the associated
complex coordinate subspace arrangement.
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Corollary 2.1 For simplicial complexes∆ ⊂ 2[n] we have

H̃i

(
LC

∆; Z
) ∼= ⊕

σ∈∆

H̃i−2|σ| (link∆ σ; Z)

H̃ i
(
CC

∆; Z
) ∼= ⊕

σ∈∆

H̃2n−i−2|σ|−2 (link∆ σ; Z) ,

and hence there is a dimension-shifting group isomorphism between the
(co)homologies of the real and complex coordinate subspace arrangements.
Every homology class

[c] ∈ H̃n−i−|σ|−2(link∆ σ; Z) = H̃2n−(n+|σ|+i)−2|σ|−2(link∆ σ; Z)

corresponds to

[u] ∈ H̃ i(C∆; Z)

and to

[uC] ∈ H̃n+|σ|+i
(
CC

∆; Z
)

.

The correspondence[u] 7−→ [uC] sets up the isomorphism.

2.6 A homology model and a map into the link

We establish a simplicial version of the Ziegler–Živaljević [ZZ] proof for
the Goresky–MacPherson theorem. Let∆ ⊂ 2[n] be a simplicial com-
plex. We construct a simplicial complexL∆ together with a simplicial map
Φ : L∆ −→ Λ∆ to the link that induces an isomorphism in homology. Let
L∆ be the following one-point union of spaces.

L∆ =

( ⋃̇
σ∈∆

∂Q|σ| ∗ link∆ σ

)
/∼ =


∆ ∪̇

⋃̇
σ∈∆\{∅}

∂Q|σ| ∗ link∆ σ


 /∼

The one-point union is given by the following identifications∼. For each
σ = {i0 < . . . < ik} ∈ ∆, σ 6= ∅, identify e1 ∈ ∂Q|σ| ∗ link∆ σ with the
vertexi0 ∈ ∆ = ∂Q|∅| ∗ link∆ ∅. Compare Fig. 2.

We get the mapΦ by defining it on the pieces∂Q|σ| ∗ link∆ σ. Let

φσ : ∂Q|σ| ∗ link∆ σ −→ Λ∆

be defined by the simplicial homeomorphism

∂Q|σ| −→ spanR{ei0 , . . . , eik} ∩ ∂Qn,
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Fig. 2.An easy example for the model spaceL∆

σ = {i0 < · · · < ik}, such thatφσ(ej+1) = eij , in particularφσ(e1) = ei0 .
On link∆ σ the mapφσ is defined by

{j0, . . . , jl} 7−→ {ej0 , . . . , ejl
} ∈ Λ∆

for {j0, . . . , jl} ∈ link∆ σ. By construction all these maps fit together and
yield a simplicial mapΦ.

Proposition 2.1 The mapΦ induces an isomorphism in homology. (In fact,
it is a homotopy equivalence.)

Proof. (Sketch of proof)The proof works as in [ZZ] by induction on the
cardinality of∆. In the induction step one removes a maximal simplex of∆
and uses the Mayer-Vietoris sequence along with the induction hypotheses
(resp. the Glueing Lemma, to obtain the homotopy equivalence).ut

2.7 Cubical cohomology

The homotopy modelΓ∆ of the complementC∆ is a subcomplex of the
boundary of the cube. We compute its cohomology by using “cubical coho-
mology.” We give a short overview of the most important notation and the
formula for the cup product (see also [Ma]).

Let Γ be a subcomplex of then-cubeCn, and letT ∈ Γ be a t-
dimensional cube. We use two descriptions ofT :
Denote the projection to thei-th coordinate byπi. On the one hand, we can
identify T with a vector in{+,−, ∗}n, where thei-th coordinate is+, −
or ∗ iff πi(T ) = {+1}, {−1}, resp.[−1,+1]. On the other hand, there are
three setsT+, T−, T∗ ⊆ {1, . . . , n} that uniquely define the cube,

T
1−1! (T+, T−, T∗),
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where|T∗| = t and the following holds for the coordinate projections.

πi(T ) = {+1} for i ∈ T+,

πj(T ) = {−1} for j ∈ T−,

πk(T ) = [−1,+1] for k ∈ T∗.

Let Ct(Γ ) be the free abelian group generated by thet-cubes inΓ . In order
to get a boundary map we begin by defining face operators. LetT ∈ Γ be

a t-dimensional cubeT
1−1! (T+, T−, T∗) with T∗ = {k1 < · · · < kt}. For

A = {a1, . . . , ap} ⊆ {1, . . . , t} andε = ±1 define the(t− p)-cube

Dε
AT =

{
(T+ ∪ {ka1 , . . . , kap}, T−, T∗ \ {ka1 , . . . , kap}) if ε = +1,

(T+, T− ∪ {ka1 , . . . , kap}, T∗ \ {ka1 , . . . , kap}) if ε = −1.

Dε
AT is the face of T obtained by fixing the varying coordinates
{ka1 , . . . , kap} to ε. A boundary operator is now defined by

∂t : Ct(Γ ) −→ Ct−1(Γ ),

T 7−→
t∑

a=1

(−1)a
(
D+1

{a}T −D−1
{a}T

)
.

The homology of the resultingcubical chain complex(C∗(Γ ), ∂∗) is canon-
ically isomorphic to singular homology. The cup product formula in this sit-
uation is given on the chain level by the following. Letu ∈ Hom(Cp(Γ ), Z)
andv ∈ Hom(Cq(Γ ), Z), then for a(p + q)-cubeT we obtain

(u ∪ v)(T ) =
∑

ρH,K · u
(
D+1

H T
)
v
(
D−1

K T
)
,

where the sum is taken over allq-subsetsH of {1, . . . , p+q}, K is the com-
plement ofH, andρH,K is the sign of the permutationHK of {1, . . . , p+q},
i.e., the signature of the shuffle(H, K).

2.8 Lefschetz duality for the cross polytope

As a crucial part of Alexander duality, we describe Lefschetz duality explic-
itly for simplicial homology of the cross polytope and cubical cohomology
of the cube (cf. [Mu]).

Theorem [Lefschetz Duality] Let(X, A) be a compact, orientable, trian-
gulated relative homologyn-manifold. Then there is an isomorphism

Hk(X, A) ∼= Hn−k(|X| \ |A|).
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Fig. 3. The 3-dimensional cross polytope with the 1-skeleton of the 3-dimensional cube in
the barycentric subdivision

Proof. (Outline of the proof)Let X− be the simplicial complex consisting
of all simplices of the barycentric subdivisionsd X that are disjoint from
|A|. Then

. |X−| is a deformation retract of|X| \ |A|.

. |X−| equals the union of all blocksD(σ) dual to simplicesσ ∈ X that
are not inA.

Now there is a chain isomorphism

Ck(X, A)
∼=−→ Dn−k(X−),

whereD∗(X−) denotes the dual chain complex ofX−. Dualization yields

Ck(X, A) ∼= Hom(Ck(X, A), Z)
∼=←− Hom(Dn−k(X−), Z).

The inverse mapCk(X, A) −→ Hom(Dn−k(X−), Z) is given by
σ 7→ D(σ)∗, whereσ is a k-simplex of X not in A. This induces the
desired isomorphism.ut
Lefschetz duality is dealing with the complexX−, whose underlying space
is the union of the dual blocksD(σ), σ ∈ X \A. In caseX is the boundary
of the cross polytopeQn, the dual blocks|D(σ)|, σ ∈ X, correspond to the
faces of the boundary of then-dimensional cubeCn. See Fig. 3.

Let nowA = Λ∆ be the subcomplex ofX = ∂Qn given by the arrange-
ment associated with a simplicial complex∆ (Section 2.2). Then there is a
chain isomorphism from the dual block complex of(∂Qn)− to the cubical
chain complex ofΓ∆

Dj((∂Qn)−) −→ Cj(Γ∆),
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which yields a chain isomorphism

Ψ : Ck(∂Qn, Λ∆) −→ Hom(Dn−1−k((∂Qn)−), Z)
−→ Hom(Cn−1−k(Γ∆), Z)

where

Ψ(σ) = (−1)i0+···+ik(−1)|T−(σ)|(T+(σ), T−(σ), T∗(σ))∗,

for σ = 〈ε0ei0 , . . . , εkeik〉 ∈ ∂Qn \ Λ∆, i0 < · · · < ik, with

T+(σ) = {ij ∈ [n] : εj = +1},
T−(σ) = {ij ∈ [n] : εj = −1},
T∗(σ) = [n] \ (T+(σ) ∪ T−(σ)).

The signs inΨ(σ) result from the condition thatΨ must commute with the
respective boundary maps.

3 Proofs of results

In this section we prove Theorem 1.1. We begin by introducing joins of
chains, and then exhibit explicit cohomology classes inH̃∗(Γ∆) with respect
to the Goresky–MacPherson theorem. We derive an explicit formula for the
cup product of two such classes. In most of the cases the product vanishes
as stated in Theorem 1.1. Then we treat the case in which the product does
not vanish. The considerations of the complex case follow then.

3.1 Joins of chains

Definition 3.1 The join c ∗ c′ of two simplicial chainsc =
∑

j αjτj and

c′ =
∑

k α′
kτ

′
k in a simplicial complex∆ ⊂ 2[n] is defined by∑

j,k
τj∩τ ′

k=∅

αjα
′
k τj ∗ τ ′

k,

where the join of two disjoint oriented simplices is defined by

〈v0, . . . , vr〉 ∗ 〈w0, . . . , ws〉 = 〈v0, . . . , vr, w0, . . . , ws〉.
Lemma 3.1 Let R = {r0, . . . , rs} be a subset of the vertex set,
c =

∑
j αjτj a cycle. ForR ⊂ τj define the (oriented) simplex̄τj by

the equationτj = τ̄j ∗ 〈r0, . . . , rs〉. Then
∑

j:R⊂τj
αj τ̄j is a cycle.
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Proof. We writec as

c =
∑

j:R 6⊂τj

αjτj +
∑

j:R⊂τj

αj τ̄j ∗ 〈r0, . . . , rs〉,

and obtain for the boundary

∂


 ∑

j:R 6⊂τj

αjτj


+ ∂


 ∑

j:R⊂τj

αj τ̄j


 ∗ 〈r0, . . . , rs〉

±
∑

j:R⊂τj

αj τ̄j ∗ ∂(〈r0, . . . , rs〉) = 0.

The only simplices that containR appear in the second summand, and hence
this summand must be zero on its own.ut
Lemma 3.2 Let i be a vertex and letc =

∑
j αjτj andc′ =

∑
k α′

kτ
′
k be

two cycles that share at most the vertexi. Then

∂(〈i〉 ∗ c ∗ c′) = c ∗ c′.

Proof.

∂(〈i〉 ∗ c ∗ c′) = ∂


〈i〉 ∗ ∑

j:i6∈τj

αjτj ∗
∑

k:i6∈τ ′
k

α′
kτ

′
k




=
∑

j:i6∈τj

αjτj ∗
∑

k:i6∈τ ′
k

α′
kτ

′
k − 〈i〉 ∗ ∂


∑

j:i6∈τj

αjτj


 ∗ ∑

k:i6∈τ ′
k

α′
kτ

′
k

± 〈i〉 ∗
∑

j:i6∈τj

αjτj ∗ ∂


 ∑

k:i6∈τ ′
k

α′
kτ

′
k




=
∑

j:i6∈τj

αjτj ∗
∑

k:i6∈τ ′
k

α′
kτ

′
k + 〈i〉 ∗ ∂


∑

j:i∈τj

αjτj


 ∗ ∑

k:i6∈τ ′
k

α′
kτ

′
k

± 〈i〉 ∗
∑

j:i6∈τj

αjτj ∗ ∂


 ∑

k:i6∈τ ′
k

α′
kτ

′
k




= c ∗
∑

k:i6∈τ ′
k

α′
kτ

′
k −

∑
j:i6∈τj

αjτj ∗ 〈i〉 ∗ ∂


 ∑

k:i6∈τ ′
k

α′
kτ

′
k



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= c ∗
∑

k:i6∈τ ′
k

α′
kτ

′
k +

∑
j:i6∈τj

αjτj ∗ 〈i〉 ∗ ∂


 ∑

k:i∈τ ′
k

α′
kτ

′
k




= c ∗ c′,

where possible empty sums are considered to be zero.ut

3.2 Explicit cocycles

Using the Goresky–MacPherson theorem and the explicit description of
Alexander duality we now derive explicit cohomology cocycles for the com-
plement of a coordinate subspace arrangement. For that, we use the following
sequence of homomorphisms.

H̃r(link∆ σ)
∼=−−−−−→

suspension
H̃r+|σ|

(
∂Q|σ| ∗ link∆ σ

)
↪→−−−→

(φσ)∗
H̃r+|σ|(Λ∆) −−−−−−−→

pair sequence
H̃r+|σ|+1 (∂Qn, Λ∆)

∼=−−−−−−−−−→
Lefschetz duality

H̃n−r−|σ|−2(Γ∆) (1)

Before describing the maps explicitly, we introduce some notation.

Notation 3.1

. For each subset{j1, . . . , js} ⊂ [n] we define

sign(j1j2 · · · js) = signπ,

where π is the permutation of(1, . . . , s) such thatjπ(1) < · · · <
jπ(s). For every family of subsetsA1, . . . , Ak ⊂ [n], where
Ai = {ji

1 < · · · < ji
mi
}, we define

sign(A1 · · ·Ak) = sign(j1
1 , . . . , j1

m1
, j2

1 , . . . , j2
m2

, . . . , jk
1 , . . . , jk

mk
).

Furthermore, for every setA = {a1, . . . , ak} ⊂ [n] we abbreviate
(−1)a1+···+an by (−1)ΣA.

. For eachσ ∈ ∆ let

sσ =
∑

ε=(ε0,... ,εk)∈{±1}k+1

ε0 · · · εk · 〈ε0e0, . . . , εkek〉

be a generating simplicial cycle of̃H|σ|−1(∂Q|σ|).
. For eachσ ∈ ∆ chooseiσ ∈ [n] \ σ arbitrarily.
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Now, let σ ∈ ∆ and [c] ∈ H̃r(link∆ σ), c =
∑

j αjτj . Consider
Φ:L∆ −→ Λ∆ as defined in Section2.6 and the induced chain map
Φ] : C∗(L∆) → C∗(Λ∆). The first two steps in the sequence (1) of
homomorphisms are given by

[c] 7−→ [sσ ∗ c] 7−→ [Φ](sσ ∗ c)].

Now we construct the pair sequence map. Consider the following “cone”
over the chainΦ](sσ ∗ c):

〈eiσ〉 ∗ Φ](sσ ∗ c).

Observation 3.1

. 〈eiσ〉 ∗ Φ](sσ ∗ c) ∈ Cr+|σ|+1(∂Qn, Λ∆) by the definition ofΦ andiσ,

. ∂(〈eiσ〉 ∗ Φ](sσ ∗ c)) = Φ](sσ ∗ c) as a special case of Lemma 3.2, and

. for anyi′σ ∈ [n] \ σ, the cycles〈eiσ〉 ∗ Φ](sσ ∗ c) and〈ei′σ〉 ∗ Φ](sσ ∗ c)
in Cr+|σ|+1(∂Qn, Λ∆) are homologous.

Hence an element[c] ∈ H̃r(link∆ σ) is mapped under (1) as follows.

[c] 7−→ [sσ ∗ c] 7−→ [Φ](sσ ∗ c)] 7−→
7−→ [〈eiσ〉 ∗ Φ](sσ ∗ c)] 7−→ [Ψ(〈eiσ〉 ∗ Φ](sσ ∗ c))]

The cocycleΨ(〈eiσ〉 ∗ Φ](sσ ∗ c)) is explicitly given by

∑
j:iσ 6∈τj

∑
ε∈{±1}k+1

sign(iσστj) · (−1)iσ+
∑

σ+
∑

τj · αj ·

(T+(j, ε), T−(j, ε), T∗(j, ε))∗,

where

T+(j, ε) = τj ∪ {iσ} ∪ {il : εl = +1},
T−(j, ε) = {il : εl = −1},
T∗(j, ε) = [n] \ (T+(j, ε) ∪ T−(j, ε))

= [n] \ (σ ∪ τj ∪ {iσ}).

Here we made use of the equalityε0 · · · εk · (−1)|T−(j,ε)| = +1. In the other
representation the cubes(T+(j, ε), T−(j, ε), T∗(j, ε)) look as in Fig. 4 (up
to a permutation of coordinates), where the±-signs correspond to the sign
vectorε.

Throughout the rest of the article we will use this correspondence be-
tween homology cycles of the links of∆ and cocycles of the complement
of the arrangement.
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(± ± ± ± ± ± ± ± ± ∗ ∗ ∗ ∗ + ∗ ∗ ∗ ∗ ∗ + + + + ∗ ) ,
︸ ︷︷ ︸

σ

︸︷︷︸

{iσ}
︸ ︷︷ ︸

τj

Fig. 4.Schematic description of(T+(j, ε), T−(j, ε), T∗(j, ε))

3.3 The cup product

Now consider two cohomology classes[u] and [v] of Γ∆ corresponding
to two homology classes[c] ∈ H̃r(link∆ σ) and [c′] ∈ H̃r′(link∆ σ′) for
simplicesσ, σ′ ∈ ∆,c =

∑
j αjτj andc′ =

∑
k α′

kτ
′
k. Letp = n−r−|σ|−2

andq = n − r′ − |σ′| − 2 and letT ∈ Γ∆ be a(p + q)-cube. For the cup
product of[u] and[v] evaluated atT we obtain∑

H,K

∑
j:iσ 6∈τj

k:iσ′ 6∈τ ′
k

∑
ε,ε ′

ρH,K sign(iσστj) sign(iσ′σ′τ ′
k) ·

(−1)iσ+iσ′+
∑

σ+
∑

τj+
∑

σ′+
∑

τ ′
k · αjα

′
k ·

(T+(j, ε), T−(j, ε), T∗(j, ε))∗ (D+1
H T

) ·
(T ′

+(k, ε ′), T ′
−(k, ε ′), T ′

∗(k, ε ′))∗ (D−1
K T

)
,

where the first summation is over all(q, p)-shuffles(H, K). Let us first
consider only the last term

(T+(j, ε), T−(j, ε), T∗(j, ε))∗ (D+1
H T

) ·
(T ′

+(k, ε ′), T ′
−(k, ε ′), T ′

∗(k, ε ′))∗ (D−1
K T

)
. (∗)

Observation 3.2 The term (∗) vanishes for allH, K andε, ε ′ unless

σ ∪ σ′ ∪ {iσ} ∪ {iσ′} ∪ τj ∪ τ ′
k = [n].

Proof. The sets of varying coordinates inD+1
H T andD−1

K T are disjoint.
This gives

∅ = T∗(j, ε) ∩ T ′
∗(k, ε ′)

= ([n] \ (σ ∪ τj ∪ {iσ})) ∩
(
[n] \ (σ′ ∪ τ ′

k ∪ {iσ′})) ,

which yields the result. ut
Now we turn to the general computation of the cup product.

Case I:σ 6= σ′ andσ ∪ σ′ 6= [n].
In this case we will show that the cup product vanishes as demanded

in the statement of the main Theorem. By anti-commutativity of the cup
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τj∩σ′
︷ ︸︸ ︷

σ
︷ ︸︸ ︷ ↓

τj\σ′
︷ ︸︸ ︷

iσ
︷︸︸︷

( ∗ ∗ + + + + ∗ ∗ ∗ ∗ ∗ ± ± ± ± ± ± ∗ ∗ ∗ + + + + )∗(D+1
H T )·

(± ± ± ± ± ± ± ± ± ± ± ± ± ± ∗ ∗ + + + + + ∗ ∗ + )∗(D−1
K T )

︸ ︷︷ ︸

σ′
︸ ︷︷ ︸

τ ′
k

︸︷︷︸

iσ′

(∗ ∗ + + + + ∗ ∗ ∗ ∗ ∗ ± ± ± ∗ ∗ + ∗ ∗ ∗ + ∗ ∗ + )

Fig. 5.The term (∗) schematically and all cubesT for which (∗) has a chance not to vanish

product we may assumeσ′ 6⊂ σ. By Observation 3.1 we can assume
iσ = iσ′ 6∈ [n] \ (σ ∪ σ′). Our situation is represented in Fig. 5.

Observation 3.3 The term (∗) vanishes for allH, K, ε, ε ′, andk unless
the following holds

σ ∪ σ′ ∪ {iσ} ∪ τj = [n].

Proof. As the down arrow↓ points out in Fig. 5, if there is a coordinate only
covered byτ ′

k it will be a fixed−1-coordinate inD−1
K T . ut

Hence all terms that have a chance to contribute to a non trivial product are
as shown in Fig. 6. Gathering all contributing terms with the right sign and

τj∩σ′
︷ ︸︸ ︷

σ
︷ ︸︸ ︷

τj\σ′
︷ ︸︸ ︷

iσ
︷︸︸︷

( ∗ ∗ + + + + ∗ ∗ ∗ ∗ ∗ ± ± ± ± ± ± + + + + + + + )∗(D+1
H T )·

(± ± ± ± ± ± ± ± ± ± ± ± ± ± ∗ ∗ + + + + + ∗ ∗ + )∗(D−1
K T )

︸ ︷︷ ︸

σ′
︸ ︷︷ ︸

τ ′
k

︸︷︷︸

iσ′

(∗ ∗ + + + + ∗ ∗ ∗ ∗ ∗ ± ± ± ∗ ∗ + + + + + ∗ ∗ + )

Fig. 6.The term (∗) schematically and all cubesT contributing non zero summands

coefficient, we obtain that the cup product is represented by the following
cocycle (up to a global sign)

Ψ


〈eiσ〉 ∗ Φ]


sσ∩σ′ ∗

∑
j:iσ 6∈τj

R⊂τj

αj τ̄j ∗
∑

k:iσ 6∈τ ′
k

α′
kτ

′
k




 ,
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whereR = {r0, . . . , rs} = [n]\ (σ∪σ′∪{iσ}) andτj = τ̄j ∗〈r0, . . . , rs〉.
Tracing this element back through the sequence of homomorphisms in (1)
and using Lemma 3.2 we arrive (up to a global sign) at

∂


〈iσ〉 ∗ ∑

j:iσ 6∈τj

R⊂τj

αj τ̄j ∗
∑

k:iσ 6∈τ ′
k

α′
kτ

′
k


 =

∑
j

R⊂τj

αj τ̄j ∗ c′

as a representing cycle iñH∗(link∆(σ ∩ σ′)), which we denote bȳc ∗ c′.
This is a chain inCk(link∆(σ ∩ σ′)) for the following reason. Consider an
arbitrary pair of simplices̄τj andτ ′

k. Sinceτ ′
k ∈ link∆ σ′ we haveσ′∪τ ′

k ∈ ∆
and sincēτj ⊂ σ′ we obtainτ̄j ∪ τ ′

k ∈ ∆.
We claim that the cyclēc ∗ c′ is a boundary inCk(link∆(σ ∩ σ′)). Since

σ′ 6⊂ σ there is ap ∈ σ′ \ σ and as before all simplices{p} ∪ τ̄j ∪ τ ′
k ∈ ∆.

Hence〈p〉 ∗ c̄ ∗ c′ ∈ Ck+1(link∆(σ ∩ σ′)) with boundarȳc ∗ c′ as follows
by Lemma 3.2.

Case II: σ = σ′ (of courseσ 6= [n]). We will show that the cup product
vanishes unless the complementC∆ is not connected. In this case we get
non-trivial self multiplication of elements in cohomological dimension 0.
Again we can assumeiσ = iσ′ . Our situation is shown in Fig. 7.

σ
︷ ︸︸ ︷ ↓

τj
︷ ︸︸ ︷

iσ
︷︸︸︷

(± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ∗ ∗ + + + + + )∗(D+1
H T )·

(± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± + + + + ∗ ∗ + )∗(D−1
K T )

︸ ︷︷ ︸

σ′
︸ ︷︷ ︸

τ ′
k

︸︷︷︸

iσ′

(± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ∗ ∗ + + ∗ ∗ + )

Fig. 7.The term (∗) schematically and all possible cubesT on which it does not vanish

As in the last case (↓) the only interesting terms are the ones with
σ∪τj∪{iσ} = [n]. If such a term existsc must be a multiple of a generating
cycle of the sphere on the vertices[n]\σ. But forc′ not to be trivial the same
holds forc′, since the reduced homology of the sphere is non trivial only in
the dimension of the sphere. Nown− |σ| − r− 2 = n− |σ′| − r′− 2 = 0.
Therefore the corresponding cohomology classes are not zero only ifC∆

is not connected, which means that there are simplices of dimensionn− 2
in ∆.
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Case III: σ∪σ′ = [n]. Consider Fig. 8. Gathering the cocubes corresponding
to the non vanishing summands together with signs and coefficients gives
the following representing cocycle for the cup product (up to a global sign,
see Sect. 3.4)

Ψ


〈eiσ〉 ∗ 〈eiσ′ 〉 ∗ Φ]


sσ∩σ′ ∗

∑
j:iσ 6∈τj

αjτj ∗
∑

k:iσ′ 6∈τ ′
k

α′
kτ

′
k




 .

τj
︷ ︸︸ ︷

iσ
︷︸︸︷

σ
︷ ︸︸ ︷

( ∗ ∗ + + + + ∗ ∗ + ∗ ∗ ± ± ± ± ± ± ± ± ± ± ± ± ± )∗(D+1
H T )·

(± ± ± ± ± ± ± ± ± ± ± ± ± ± ∗ ∗ + + + + + ∗ ∗ + )∗(D−1
K T )

︸ ︷︷ ︸

σ′
︸ ︷︷ ︸

τ ′
k

︸︷︷︸

iσ′

(∗ ∗ + + + + ∗ ∗ + ∗ ∗ ± ± ± ∗ ∗ + + + + + ∗ ∗ + )

Fig. 8.The term (∗) schematically and all cubesT for which (∗) does not vanish

Tracing this element back to a cycle inCr+r′+2(link∆(σ∩σ′)) leads up
to a factor of(−1)|σ∩σ′| to

∂


〈iσ〉 ∗ 〈iσ′〉 ∗

∑
j:iσ 6∈τj

αjτj ∗
∑

k:iσ′ 6∈τ ′
k

α′
kτ

′
k


 =

= 〈iσ′〉 ∗
∑

j:iσ 6∈τj

αjτj ∗
∑

k:iσ′ 6∈τ ′
k

α′
kτ

′
k − 〈iσ〉 ∗

∑
j:iσ 6∈τj

αjτj ∗
∑

k:iσ′ 6∈τ ′
k

α′
kτ

′
k

− 〈iσ′〉 ∗ 〈iσ〉 ∗ ∂


 ∑

j:iσ 6∈τj

αjτj


 ∗ ∑

k:iσ′ 6∈τ ′
k

α′
kτ

′
k

+ 〈iσ〉 ∗
∑

j:iσ 6∈τj

αjτj ∗ 〈iσ′〉 ∗ ∂


 ∑

k:iσ′ 6∈τ ′
k

α′
kτ

′
k




= 〈iσ′〉 ∗
∑

j:iσ 6∈τj

αjτj ∗
∑

k:iσ′ 6∈τ ′
k

α′
kτ

′
k − 〈iσ〉 ∗

∑
j:iσ 6∈τj

αjτj ∗
∑

k:iσ′ 6∈τ ′
k

α′
kτ

′
k

+ 〈iσ′〉 ∗ 〈iσ〉 ∗ ∂


 ∑

j:iσ∈τj

αjτj


 ∗ ∑

k:iσ′ 6∈τ ′
k

α′
kτ

′
k
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− 〈iσ〉 ∗
∑

j:iσ 6∈τj

αjτj ∗ 〈iσ′〉 ∗ ∂


 ∑

k:iσ′∈τ ′
k

α′
kτ

′
k




= 〈iσ′〉 ∗ c ∗
∑

k:iσ′ 6∈τ ′
k

α′
kτ

′
k − 〈iσ〉 ∗

∑
j:iσ 6∈τj

αjτj ∗ c′

= 〈iσ′〉 ∗ c ∗ c′ − 〈iσ〉 ∗ c ∗ c′.

This finishes the proof of Theorem 1.1.

3.4 The global sign

We show how to compute the global sign. In the cup product formula we
have the sign

ρH,K sign(iσστj) sign(iσ′σ′τ ′
k) · (−1)iσ+iσ′+

∑
σ+

∑
τj+

∑
σ′+

∑
τ ′
k . (∗)

For the image of〈iσ′〉 ∗ c ∗ c′ − 〈iσ〉 ∗ c ∗ c′ under the sequence of homo-
morphisms (1) we obtain

(−1)|σ∩σ′| · Ψ

〈eiσ〉 ∗ 〈eiσ′ 〉 ∗ Φ]


sσ∩σ′ ∗

∑
j:iσ 6∈τj

αjτj ∗
∑

k:iσ′ 6∈τ ′
k

α′
kτ

′
k




 .

In this sum the sign of the cube in question is

(−1)|σ∩σ′| · sign
(
iσiσ′(σ ∩ σ′)τjτ

′
k

) · (−1)iσ+iσ′+
∑

(σ∩σ′)+
∑

τj+
∑

τ ′
k .

(∗∗)
The global sign is given by the quotient of the two signs(∗) and(∗∗).

(−1)|σ∩σ′| ·ρH,K sign (iσστj) ·sign
(
iσ′σ′τ ′

k

) ·sign
(
iσiσ′(σ ∩ σ′)τjτ

′
k

) ·
(−1)iσ+iσ′+

∑
σ+

∑
τj+

∑
σ′+

∑
τ ′
k · (−1)iσ+iσ′+

∑
(σ∩σ′)+

∑
τj+

∑
τ ′
k

= (−1)|σ∩σ′|+∑
(σ∪σ′) · ρH,K sign(iσστj) · sign

(
iσ′σ′τ ′

k

) ·
sign

(
iσiσ′

(
σ ∩ σ′) τjτ

′
k

)
,

where

H = [n] \ (σ′ ∪ τ ′
k ∪ {iσ′})

K = [n] \ (σ ∪ τj ∪ {iσ}) .

We will derive a formula that is easier to handle and, in particular, shows
the independence ofj, k andiσ, iσ′ .
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Lemma 3.3 Letσ, σ′ ⊂ [n] such thatσ ∪ σ′ = [n], andι = {i} ⊂ [n] \ σ,
ι′ = {i′} ⊂ [n] \ σ′, and r, r′ ≥ 0. Then forτ ⊂ [n] \ (σ ∪ ι) and
τ ′ ⊂ [n] \ (σ′ ∪ ι′) of cardinalityr, resp.r′ we have

sign(([n] \ (σ′ ∪ τ ′ ∪ ι′))([n] \ (σ ∪ τ ∪ ι))) ·
sign(ιστ) sign(ι′σ′τ ′) sign(ιι′(σ ∩ σ′)ττ ′)

= (−1)rr′+r′(n−|σ|−1)+1 sign(([n] \ σ′)([n] \ σ)).

Note that for simplicity we have usedr, r′ for the cardinalities ofτ, τ ′ instead
of the dimensions.

Proof. We proceed in two steps. First we show, what happens if we reduce
(r, r′) in the lexicographic order.

For (r, r′) = (0, 0), we just have

sign(([n] \ (σ′ ∪ ι′))([n] \ (σ ∪ ι)))
· sign(ισ)sign(ι′σ′) sign(ιι′(σ ∩ σ′)). (2)

Now assumer = 0 and r′ > 0. Choose twor′-setsτ ′
1, τ

′
2 ⊂ [n] \ (σ′ ∪ ι′),

and choose elementsv1 ∈ τ ′
1, v2 ∈ τ ′

2. Let τ̄ ′
1 = τ1\{v1}andτ̄ ′

2 = τ ′
2\{v2}.

Then

sign(([n] \ (σ′ ∪ τ ′
1/2 ∪ ι′))([n] \ (σ ∪ ι)))

= sign([n] \ (σ′ ∪ τ̄ ′
1/2 ∪ ι′)[n] \ (σ ∪ ι))(−1)|{a∈[n]\(σ∪ι):a<v1/2}|,

sign(ι′σ′τ ′
1/2) = sign(ι′σ′τ̄ ′

1/2)(−1)|{a∈ι′∪σ′:a>v1/2}|,

sign(ιι′(σ ∩ σ′)τ ′
1/2) = sign(ιι′(σ ∩ σ′)τ̄ ′

1/2)(−1)|{a∈ι∪ι′∪(σ∩σ′):a>v1/2}|.

Consider the sum of the(−1)-exponents.

|{a ∈ [n] \ (σ ∪ ι) : a < v1/2}|+ |{a ∈ ι′ ∪ σ′ : a > v1/2}|+
|{a ∈ ι ∪ ι′ ∪ (σ ∩ σ′) : a > v1/2}|
≡ |[n] \ (ι ∪ σ)| − |{a ∈ [n] \ (σ ∪ ι) : a > v1/2}|+
|{a ∈ σ′ : a > v1/2}|+ |{a ∈ ι ∪ (σ ∩ σ′) : a > v1/2}|
≡ |[n] \ (ι ∪ σ)|+ |{a ∈ σ′ : a > v1/2}|+
|{a ∈ [n] \ (σ ∪ ι) : a > v1/2}|+ |{a ∈ ι ∪ (σ ∩ σ′) : a > v1/2}|
≡ |[n] \ (ι ∪ σ)|+ 2|{a ∈ σ′ : a > v1/2}|
≡ |[n] \ (ι ∪ σ)| (mod 2).

Hence, for reducingr′ by one we obtain a factor of(−1)n−|σ|−1 and thus
in total a factor(−1)r′(n−|σ|−1).
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Assume r > 0. This case works analogously, reducing two choices
of r-setsτ1/2. In each step one gets a factor(−1)r′

. Hence, afterr steps,

we obtain a factor(−1)rr′
.

Treating the expression (2) similarly yields

(−1) · sign(([n] \ σ′)([n] \ σ)),

which gives the result. ut
Thus, we derived the following global sign

(−1)
n(n+1)

2 +|σ∩σ′|+(r+1)(r′+1)+(r′+1)(n−|σ|−1)+1 ·sign(([n]\σ′)([n]\σ))

= (−1)
n(n+1)

2 +|σ∩σ′|+(r′+1)(n+|σ|+r)+1 · sign(([n] \ σ′)([n] \ σ)). (3)

3.5 The complex case

We will explicitly compute the multiplication iñH∗(CC
∆; Z) using the results

and notation of Sect. 2.3 and the previous Section. Let[u], [v] ∈ H̃∗(CC
∆; Z)

correspond to

[c] ∈ H̃r(link∆ σ) ∼= H̃r

(
link∆C π−1(σ)

)
and

[c′] ∈ H̃r′(link∆ σ′) ∼= H̃r′
(
link∆C π−1(σ′)

)
for simplicesσ, σ′ ∈ ∆.

Case I: If σ ∪ σ′ 6= [n] thenπ−1(σ) ∪ π−1(σ′) 6= [2n] and hence the cup
product of[u] and[v] is zero.

Case II: If σ = σ′ 6= [n] the cup product vanishes since the complement of
a complex coordinate subspace arrangement is connected.

Case III: Now letσ ∪ σ′ = [n]. Consider the isomorphism

H̃r(link∆ σ) −→ H̃r

(
link∆C π−1(σ)

)
[c] 7−→ [cC]

induced by the vertex mapi 7→ 2i − 1. It corresponds to the isomorphism
induced by the homotopy equivalence. Using this isomorphism for the cup
product computation we are in the well known situation as shown in Fig. 9.
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τC
j

︷ ︸︸ ︷

iC
σ

︷︸︸︷

π−1(σ)
︷ ︸︸ ︷

( ∗ ∗ + + + + ∗ ∗ + ∗ ∗ ∗ ± ± ± ± ± ± ± ± ± ± ± ± )∗(D+1
H T )·

(± ± ± ± ± ± ± ± ± ± ± ± ± ± ∗ ∗ + + + + ∗ ∗ ∗ + )∗(D−1
K T )

︸ ︷︷ ︸

π−1(σ′)
︸ ︷︷ ︸

τ ′
k

C

︸︷︷︸

iC

σ′

(∗ ∗ + + + + ∗ ∗ + ∗ ∗ ∗ ± ± ∗ ∗ + + + + ∗ ∗ ∗ + )

Fig. 9.A typical summand of the cup product evaluated atT schematically and the cubesT
for which it does not vanish

Collecting all summands yields the cocycle

Ψ


〈eiσ〉 ∗ 〈eiσ′ 〉 ∗ Φ]


sπ−1(σ)∩π−1(σ′) ∗

∑
j:iσ 6∈τC

j

αjτ
C
j ∗

∑
k:iσ′ 6∈τ ′

k
C

α′
kτ

′
k

C






for verticesiσ ∈ [2n] \ π−1(σ) and iσ′ ∈ [2n] \ π−1(σ′). As above this
leads (up to the global sign) to

[〈iσ′〉 ∗ c ∗ c′ − 〈iσ〉 ∗ c ∗ c′] ∈ H̃r+r′+2
(
link∆ σ ∩ σ′)

∼= H̃r+r′+2
(
link∆C π−1(σ ∩ σ′)

)
= H̃r+r′+2

(
link∆C π−1(σ) ∩ π−1(σ′)

)
.

3.6 The global sign in the complex case

First of all, from the computation in the real case, we obtain the sign

(−1)n(2n+1)+|π−1(σ)∩π−1(σ′)|+(r+1)(r′+1)+(r′+1)(2n−|π−1(σ)|−1)+1 ·
sign(([2n] \ π−1(σ′))([2n] \ π−1(σ))).

Now in π−1(σ), π−1(σ′) resp., all elements appear in pairs. This simplifies
the sign to

(−1)n+r(r′+1)+1. (4)

4 Example of a simplicial complex yielding different ring structures

Let [u], [v], [w] be cohomology classes of the complement of a real coor-
dinate subspace arrangement corresponding to homology classes of links
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of ∆, such that[u] ∪ [v] = [w]. Then our results imply that for the corre-
sponding cohomology classes of the complement of the associated complex
arrangement we have (see Corollary 2.1)[

uC

]
∪
[
vC

]
= ±

[
wC

]
.

Hence it arises the question if we can choose signs in the correspondence
[u] 7→ [uC] consistently such that it becomes a (dimension-shifting) ring iso-
morphism. An example of different ring structures containing hyperplanes
was given in [GPW]: the existence of hyperplanes lead to additional multi-
plication in the real case. Our example shows that this is not the only case
where non-isomorphic rings occur.

Remark 4.1There is a (dimension shifting) ring isomorphism of
H̃∗(C∆; Z2) andH̃∗(CC

∆; Z2).

4.1 The example: different sign patterns

We construct a simplicial complex∆ ⊂ 2[8] on eight vertices given by
four facetsσ1, σ2, σ

′
1, σ

′
2, and investigate the multiplication of cohomology

classes stemming from the links of these facets in the case of the associated
real and complex arrangement. For the real and complex case the resulting
sign pattern implies that there is no ring isomorphism betweenH̃∗(C∆) and
H̃∗(CC

∆). The facets are given by the following scheme which also helps for
computing the signs appearing in the multiplication. A black box in position
(ρ, j) indicates thatj ∈ ρ.

1 2 3 4 5 6 7 8

σ1

σ2

σ′
1

σ′
2

Fig. 10.The facets of∆

The sign patterns arising in the real and in the complex case according
to (3) and (4) are given by the following table. Clearly, there is no consistent
way of assigning signs in the correspondence[u] 7→ [uC].

5 Example of non trivial multiplication of torsion elements

We construct a simplicial complex∆ ⊂ 2[10]. Let σ := {1, 2, 3, 4, 5, 6}
andP ⊂ 2{1,2,3,4,5,6} be a six-vertex triangulation of the projective plane.
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Sign (3) Sign (4)

σ1 σ′
1 -1 -1

σ1 σ′
2 -1 -1

σ2 σ′
1 +1 -1

σ2 σ′
2 -1 -1

Let σ′ = {7, 8, 9, 10}, and letS be a simplicial1-sphere on four vertices
as a subcomplex of2{7,8,9,10}. Now define∆ = P ∗ 2σ′ ∪ 2σ ∗ S. Then
the homotopy type of∆ is Σ(P ∗ 2σ′ ∩ 2σ ∗ S) = Σ(P ∗ S). Hence
∆ has the homotopy type of a threefold suspended projective plane. Now
link∆(σ∗∅) = ∅∗S andlink∆(∅∗σ′) = P ∗∅. Let[c] ∈ H̃1(link∆(σ∗∅)) ∼=
Z and[c′] ∈ H̃1(link∆(∅∗σ′)) ∼= Z2 be generating homology classes. They
correspond to elements[u] ∈ H̃10−1−6−2(Γ∆) and[v] ∈ H̃10−1−4−2(Γ∆).
Their cup product corresponds to a generating class

[〈iσ′〉 ∗ c ∗ c′ − 〈iσ〉 ∗ c ∗ c′] ∈ H̃10−4−0−2(link∆ ∅) ∼= Z2

for iσ ∈ {7, 8, 9, 10} andiσ′ ∈ {1, 2, 3, 4, 5, 6}.
Note that this example works for the real as well as for the complex case.

6 Questions and remarks

. A very natural question is as to what extent our methods can be used to
treat more general subspace arrangements.

. It is easy to see that if∆ ⊂ 2[n] is a simplicial complex such that
. dim∆ ≤ n−3, i.e., the associated real arrangement does not contain

hyperplanes, and
. ∆ is Cohen-Macaulay overZ,

then the ring structure of̃H∗(C∆; Z) is trivial. Using the specific de-
scription of the multiplication it would be nice to derive a better charac-
terization of simplicial complexes yielding trivial multiplication. Confer
also [HRW].
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