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Abstract. By using a Liapunov-Schmidt reduction we prove an existence
result for the nonlinear Schdinger equation-h?Au + V (z)u = f(z,u)

in RY wheref(z, u) satisfies suitable assumptions. We also provide a nec-
essary condition for the existence of solutions.
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1 Introduction

In this paper we study standing wave solutions of the nonlineaii8atger
equation

0 h?
O = A+ V()b — gl 91 (11)

i.e. solutions of the form

P(x,t) = ei%u(x), u:RY - R, (1.2)

Hereh, m andE are real numbers arid € C'(RY; RY) N L>®(RY;R). In

[7], Floer and Weinstein considered the cage- 1, g(z, |t|) = [t|* and they
proved that for smalk there exists a positive standing wave solution which
concentrates at each given nondegenerate critical point of the poténtial
This result was generalized by Oh ([15]) to the cage |¢|) = [¢|P~! with

* Supported by MURST, Project “Metodi Variazionali ed Equazioni Differenziali Non
Lineari”
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1<p< 82if N >3andp > 1if N = 1,2. The arguments in those
papers are based on a Liapunov-Schmidt reduction.
Substituting (1.2) in (1.1) and assuming that= % one has

—h?Au+ (V(z) — E)u = g(z, |u|)u
(1.3)
u >0
A suitable choice ofE makesV bounded from below by a positive
constant. Hence, without loss of generality, it is possible to assume that

E=0andV >V, > 0. Letus setf(z,t) = g(z, |t|)t. So (1.3) becomes

—h2Au+V(z)u = f(z,u) inRY
{ (1.4)
u>0

The existence of solutions of (1.4) in the possibly degenerate setting
was studied by many authors. In this context the first results seem due to
Rabinowitz (see [17]) and Ding-Ni (see [6]). In [17] it was shown that
if infV < lim inf V(z) then the mountain pass theorem provides a

RN |z|—o0
solution for smallr. This solution concentrates around a global minimum
of V ash — 0, as shown later by X. Wang (see [18]). Moreover in [18] it
was observed that concentration of any family of solutions with uniformly
bounded energy may occur only at critical pointd/of

Later Ambrosetti, Badiale and Cingolani (see [1]) obtained existence
of standing wave solutions by assuming that the poteffidlas a local
minimum or maximum with nondegenerate — th derivative, for some
integerm.

This result was generalized by Li (see [13]), where a degeneracity of any
order of the derivative is allowed. In [13] the author proves the existence of a
solution for (1.4) by only assuming that the critical pointdoére “stable”
with respect to a small'' -perturbation ofl/.

Here we remark that all the previous papers deal with the fase) = 7.

In [5] Del Pino and Felmer consider a more general nonlinegfity
and obtained a solution of (1.4) by considering a “topologically nontrivial”
critical value of the energy functional associated.

When the nonlinearity’ depends on the first result seems to appear in
[17]wheref (z,t) = K (z)[tP~1+Q(z)[t|7 L, p > ¢, K, Q satisfy suitable
assumptions ant is coercive. Such a result was improved by Bartsch and
Z.Q. Wang in [2] where the assumption dhare weakened provided the
functionsV, K, () are invariant under the action of some suitable group of
rotations. Other results regarding this type of nonlineafity, ¢) are due to
X. Wang and Zeng (see [19]) and Cingolani and Lazzo (see [3]).

In [19] the authors proved, among other results, a sufficient condition
involving the functionsV, K, Q in order to deduce the existence of the
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solution of (1.4). This condition is generalized in [3] where the number of
the solutions of (1.4) is related with the topology of the set of the global
minima of a suitable ground energy function.

Inthis paperwe consider amore general class of nonlinearities depending
both onz andt (see(fy) — (f2) in Sect. 2).

The first result we get concerns solutions which concentrate at some
point.

Definition 1.1 We say thatu;, concentrates at?, if there exist positive
constantg”, v, R such that

For any e > 0there exists hg > 0 such that if h < hg we have
up(z) < e for |x — Py| > Rh and
uh(Ph) >~v>0 (15)

whereP;, — P, is the point where the maximumf is achieved.

In this context the following vector field : RY — RY seems to play
a crucial role (se¢fy) — (f2) for the definition ofwp and F;)).

10V

G,(P) :—56,—%@) /RN w}%+/RN Fy,(Pwp). (1.6)

Indeed, we have the following result

Theorem 1.1 AssuméVy)-(V2) and(fo) — (f2). Let us consider a positive
solutionu, which concentrates afy. ThenP, is a zero of the vector field
G.

In order to state our existence result we need the definition of stable zero
;letussetB, , = {x € RV : |z — y| < p}. Then

Definition 1.2 LetG € C(RY;R") be a vector field. We say thatis a
“set of stable zeroes” foiG if G(P) = 0 forany P € Z and ifG,, is a
sequence of vector fields such that,, — G||c(s,, ) — 0 for somep > 0,
then there exist®,, such thatG,,(P,) = 0 anddist(F,, Z) — 0

If G is a conservative vector field this type of condition was considered
by Liin [13].

A sufficient condition orG andZ which implies that” is a “set of stable
zeroes” is the following one

There exists a sequence of compact g&fs> Z such that
i) G #00onoD, foranyn € N,
i) dist(0Dy,,Z) — 0asn — oo
i) the Brouwer degree satisfiegg(G, D,,,0) # 0 foranyn € N.



690 M. Grossi

If Z = {P}whereP isanisolated zero @, the previous condition becomes
i(G, P,0) # 0, (1.7)
where the index of P at zet¢G, P, 0) is given by
i(G, P,0) = ig% deg(G, Bpg,0).

Now we are ready to state our main theorem.

Theorem 1.3 AssuméVp)-(V2) and(fo) — (f2) and let us suppose that
is some stable bounded set of zero&ofhen there exists, such that for
0 < h < hg the problem (1.4) admits a family of solutiong € C?(RY)

whose unique maximum poi@%, satisfieslist(Qn, Z) — 0ash — 0.

Theorem 1.3 has the following corollary (see [13] or [5] for analogous
results):

Corollary 1.4 Assumé/)-V, and (fo) — (f2) with f(z,t) = f(t). If Z is

some stable bounded set of zero§/df then there existg such that for
0 < h < ho the problem (1.4) admits a family of solutiong € C?(RY)

whose unique maximum poifd}, satisfieslist(Qn, Z) — 0ash — 0

Whenf(z,t) = K(x)t? Theorem 1.3 provides the following result (which
generalizes the previous one of [19] and [3]).

Corollary 1.5 Let us suppose thadf is some stable bounded set of critical

points ofVQM;V/Zi ”1/)((2;72)(“) . Thenthere existg, suchthatfof < h < hg

the problem (2.4) admits a family of solutiong € C?(R") whose unique
maximum point);, satisfiesiist(Qy, Z) — 0ash — 0.

We would like to point out that the Proof of Theorem 1.3 is based on a
Liapunov-Schmidt procedure as in the pioneering paper [7]. This approach
was recently used to study (1.4) in bounded domains (see [10]).

The paper is organized as follows: in Sect. 2 and 3 we state some pre-
liminaries and repeat the classical Liapunov-Schmidt procedure used in [7].
In Sect. 4 we prove Theorem 1.3 and Corollary 1.5. In Sect. 5 we prove
Theorem 1.1.

2 Preliminaries

Let us consider the following problem
—h2Au+ V(x)u = f(z,u) inRY

(Pr) u >0 in RY

u(z) =0 as|z| — oo
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whereh > 0, N > 2, the potential satisfies the following assumptions
(Vo) V € CH(RYN),

(Vi) 0 < Vo < V(z) < WA,

(Vo) |VV (z)] < Ce%l for || large and for some § > 0.
and the nonlinearity’ satisfies the following assumptions:
(fo) f € C*RY xR) and f(-,u) = 0¥ u <0,

N
(f1) There exist a €]0,1], s €]1, m[zf N >5ands > 1lif N <5,
t
M >0, 6 >0, such that, if denote by F(x,t) :/ flx, 2)dz
0

DI f(z,t) = f(z, )| < klt —t'|* Vo e RN, ¢, € R,
(id) | f/(z, )| < Cut™' Wt > M,

ottt ife< M
(41) | Fr, (2, )] <
cedlzlys ift > M

(f2) For any P € RN the following problem

—Aw +V(P)w = f(P,w) inRN
w >0 in RN
w(zx) — 0 as|z| — oo

has a unique solution wp which is nondegenerate in the space
of the radial function, i.e. the operator Lp = —A+ V(P) —
fu(P,wp)is invertible in H*(RY) = {u € H*(RY) : u = u(|z|)}.
A class of nonlinearities which satisfyy ), ( f1) and( f2) is the following
one:
flz,t) = K(z)t?P — Q(z)tifort > 0, f(z,t) = 0fort < 0with K(x) >
ko>0,Q(z) >0andl < g<p< {2 if N>30rl<g<p<+ooif
N =2 (see [12] and [4]).
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Remark 2.1We recall that by [8}uvp is spherically symmetric with respect

to some point ofRY, say the origin, lim wp(r)e’r z = vp > 0 and
r—00

lim 20 — _q

r—o0 W(r)

Moreover from( f2) it follows that

owp owp

Ker Lp = span {a— (2.2)
T

g e e ey %
(see Lemma 4.2 in [14] for example).

Remark 2.2Assumptiong fo) — (f2) imply that

ctotl ift< M
|f(x,1)] < (2.2)

Ct? ift>M

We would like to point out thaf (z, ¢) may have a different behavior at
the origin and at infinity. This allows us to treat nonlinearities of the type
f(x,t) = t? 4+ t4. We remark that we consider only the case 1 > «.

In factif s — 1 < « the functionf (z, t) satisfies a unique inequality which
holds everywhere, namely

|f(z, )] < O™t (2.3)
and obviously it can be treated in the same way.

Of course the problertP,) is equivalent to the following one

~Au+ V(P +hx)u= f(P+ hz,u) inRY
u>0 in RY (2.4)
u(x) — 0 as|x| — oo
Let us consider the operatsy, p : H?(RY) — L2(RY)
Sh,p(v) = —Av+ V(P + hx)v — f(P + hz,v). (2.5)

If v = wp + @p we have the following expansion &, p

Sh,p(wp +@p) = S p(wp) + S}, p(wp)®@p + Ry p(Pp)  (2.6)

where
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Rp.p(®p) = f(P+hx,wp)— f(P+ha,wp+Pp)+ f,(P+hx,wp)Pp.

(2.7)
Finally let us denote by
o 1 /

Lypp=1Ipo Sh,P(wP)’K#mm(RN) (2.8)

with
K# = {¢ e LA(RY) : ¢a“”” =0 fori=1,.. .,N} (2.9)

RN ({“)xl

and

g : P(RY) — K (2.10)

is the projection operator. The following proposition is a classical result
(see [7] or [15])

Proposition 2.3 There are constants, h; > 0 such that if0 < h < hy
and¢ € K N H%(RY) then

[Ln, (D) L2y = VOl 2wy (2.11)

3 Reduction to finite dimensions

In this section we prove that, for anfy € RV andh small enough there
exists a uniqué,, p such that

HIJ;.‘OSMP(UJP—FQSP) = 0. (3.1)

By using (2.6) we see that (3.1) is equivalent to provedhat is a fixed
point of the mapF), p on H2(RY) defined by

Fp(®) = =Ly o [lIp o Ry p + pShp(wp)|(®).  (3.2)

Let us denote by{ ||z the standard norm in the Sobolev spat&R™Y).
We need the following lemma

Lemma 3.1 There exists a positive constariindependent oP andh such
that for all  and ¢’ in H?(RY) we have

1R, p(@p)||2rny < CUIPI 5 + 1P (3.3)
and
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| Ri,p($p) — Ry p(Pp)||2myy < CM(Pp,Dp)||Pp — Dplln
whereM ($p, Bp) — 0as||®p||m, ||Pp||g — 0. (3.4)
Proof. By using the mean value theorem we have
|Rp,p(®p)| = |f(P + ha,wp + ®p) — f(P + hz,wp)

1
P+ Do, wp)p| < (p| [ 5P+ o wp + t0p)
0

—fl(P + hx,wp)|dt, (3.5)
and by (fo) — (f1) and recalling tha2 + 2a < 2s < ]\2, 1, by Sobolev
embedding Theorem we get

/R Rup(@p)%ds (36)

g/ P p? (/ (fU(P + ha,wp + t&p) — ft’(P+hx,wp)]dt>2dx

<C [ |@p|*dx+C | |Pp[Pdz < C(||@p]|F* + ||9pIF)
|Pp|<M |op|>M

which proves (3.3).
On the other hand

|Rp,.p(®p) — Ryp(@p)| = | f(P + ha,wp + Pp)
— f(P + hx,wp +®p) + f/(P + hx,wp)Pp
— f{(P+ hz,wp)®p| < |f(P+ hz,wp + Pp)
— f(P+ ha,wp + Dp) — f{(P + ha,wp + $p)(Pp — Bp)|
+ |f{(P + ha,wp + &p)(Pp — Pp)
— P+ B ) (@ — )] @)
Integrating (3.7) we obtain

/N ‘Rh,P(éP) — Ry, p(®p)|*da
R

<2 [ 1P+ haywp+ @p) = f(P + hawp + 8p)
RN

—ft/(P -+ hx,wp =+ 513)(@13 — 5p)]2dx

+2/ |fI(P + ha,wp + ®p) — fI(P + hx,wp)|>|®p — Pp|>dx
RN

=1 + I
3.8)
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Again by (f1) we deduce that there exists a constanindependent of
such that

|f(2,81) = f(x,80) = fi(,51)(s1 = 82)] < Cls1 — s2[*T. (3.9)
So, if we setD = z € RN | {|@p ()| < M and|®p(z)| < M} we get

|I1] :2/|f(P+hx,wp+d5p) — f(P + ha,wp + Dp)

DU{RN\D}
—fI(P + hz,wp + &p)(Pp — Dp)|*dz + (3.10)
< c/ Bp — Bp2+2dy + O / B + Bp2bp — Bp|2da

D RN

< C[(ll@pll + [12p1)** + (1@pl| + 12p[)** )| @p — 2P|
On the other hand
|| < C(||®p]|* + ||@p|[**2)||Dp — Dpl[* (3.11)
and so the claim follows

Lemma 3.2 Let A ¢ RY be a compact set. Then

/N |Sp.p(wp)|*dr — 0 ash — 0 uniformly with respect t®® € A .
R
(3.12)

Proof. We have

’Sh’p(’wp)|2 =|— Awp + V(P + hx)wp — f(P + hxjwp)|2

= |(V(P + hz) = V(P))wp + f(P,wp) — f(P + hx,wp)|*

< 2[V(P + ha) — V(P)[Pwd + 2| f(P,wp) — f(P + ha, wp)|?
(3.13)

and integrating ok we get
/ |Shp(wp)|2da
RN
<2 / |V(P + hz) — V(P)|*whdx
|z| <K

+2 / V(P + hz) — V(P)|*whdx

|lz|>K
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+2 / |f(P,wp) — f(P + hx,wp)|*dz
|z| <K

+2 / |f(P,wp) — f(P+ hx,wp)|*dz. (3.14)

|lz|>K

Now by (2.2) we get,

/ |f(P,wp) — f(P + hx,wp)|*dx < C w2 dz. (3.15)
lz|>K lz|>K

Then for anye > 0, let us setk. such that

/ whdr < 2. (3.16)
|z|> K.
After we choose: small such that, fofz| < K.

€

P —f(P+h
‘f( ,U)P) f( + x,wp)\ < (meas BO,ke)1/2

€
(fRN w%)l/Q.

Here we point out that the estimates are uniform with respegtifoP
belongs to a compact set.
Finally we get

V(P + hz) — V(P)| < (3.17)

/RN |Sh.p(wp)|?dr < 26 + 8V12/ whdx +

|z|> K

+2e2 4+ C w2 dr < (44 8V + C)e? (3.18)
|z|> K

and so the claim follows.

Proposition 3.3 For any P € R" there exists such that for any: < hq
there exists a unique;, p in H2(RY) N K3 such that

HLS}LP(ZUP + @h,P) =0 (319)

and

|@n,plla < Cl|Sh,p(wp)||L2@ny)- (3.20)
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Proof. First let us choose > 0 such that*~! 4+ ¢* < 5 where~y and

C are the constants appearing in Lemma 3.1 and Proposition 2.3. Now we
chooseh small enough such thalﬂ]LShJDHLQ(RN) < e3. We will prove
that F}, p is a contraction fror{® € H?*(RY) : ||®||y < e} N K3 into

itself. We have that if|®||y < e thenF}, p(®) isin K3 and

1
[ Fh,p(P)||g < ;HU#Rh,P(@P) + I35y, pl 2@y

C
< Z(1@l1* + 12115 + 115 Sn,pllr2@) <

aQ 2

< +—leg

gl v\ 2
This proves thal| F, p||g < €.
Moreover F}, p is contracting since, if we choosesmall enough such
that M (&, 9') < 55 in (3.4) we get

g5 4 glta 1 ( 7) <e (3.21)

| Fp,p(P) — Fp p(&)| |t = ||Lnp o [T Rp,p(Pp) — I Ry p()]||g <
C 1
< ;H@—@'HH < §|@—@'HH- (3.22)

So by the contracting map Theorem we deduce (3.19) and (3.20).

Remark 3.4Note that, from Lemma 3.2;¢ does not depend oR for P
belonging to a compact set.

4 The existence result

Let us consider the vector fietd : R — R defined by

1
G;(P) = —W(P)/ whdz + F, (P,wp)dx.
an] RN RN J

Note that by the exponential decaywf and the assumptions dnand
F;; we get thaty is well defined. Now we prove a technical lemma which
will be useful in the following.

Lemma 4.1 The vector field is a continuous map for ang € RY.

Proof. Let us consider a sequenég — P. If we prove that

/ w%n dr — whdx (4.1)
RN RN
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and

/ F, (P,,wp, )dr — F,. (P,wp)dx 4.2)
RN RN

then the claim follows from the smoothness of the poteiifial

Let us show that (4.1) holds. For this let us consider the opefator

H2RN) x RN — L2(RY) defined by

L(u,Q) = Au+V(Q)u — f(Q,u). (4.3)
For anyP € RY we have that
oL . .
L(wp,P)=0 anda—(wp, P) is invertible (4.4)
u

So by implicit function theorem, for ani € R" there exists only one
Q) € Bp,, and exactly one functiofvg such that

L(w = li wo — =0. 4.
(0, @) = 0 and lim || — wplls =0 (4.5)

By the uniqueness of the solution of the problem (2.1) we deduce that
wp, = wp, and from (4.5) we deduce (4.1). Now let us prove (4.2). By
Remark 2.2 and (4.5) we get

/ F(Poywp, |2de < Oy / fwp, P 2dz + Cy / wp, [P dz

RN anSM 'wpn>M
< COllwp,||lg < Cllwpl|a. (4.6)

Sincewp, solves (2.1) with? = P, by the standard regularity theory
we deduce that (up to a subsequeneg) — wp in C2 RN, So

loc

/ Py, (Paywp,) — F, (P,wp)|dx

RN

< / (|, (Poywp,) — Py, (P,wp)|)dz + o(1)
|z|>M

< / \Fy, (Pwp,)| + | e, (P,wp)| + o(1)
|z|>M

<C (Pl lwp 5 + P wp|*)dz + o(1)

|z|>M

< Ce®IPl lwp|*dz + o(1) (4.7)
x> M
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and the claim follows by choosingy/ large enough and pointing out that
(4.2) holds for any subsequence/®f.
Now we are able to prove Theorem 1.3

Proof of Theorem 1.8y the previous section we have that, for @y R
there exists: = h(P) such that the function;, p = wp + @}, p solves

N
0
—Aupp + V(P +ha)upp — f(P+he,upp) =Y aip ar. (48)
i=1 Oz
Let us point out that (see Remark 3iyloes not depend oR for any
pointin Bp;.
So let us multiply (4.8) by%;” and integrate oiR"V. We get

0 0
_/Auh’p gh’Pdl‘-l-/V(P-l-hﬂ?)uhp Uh7pd$

l‘j 8xj
RN RN
ouy, p N 8wp8uhp
| fP+h Lilp P o da. (4.9
/f( + ha, up p) oz, z ;a,h N .(4.9)

Let us remark that

— Aup, P@uh il
Bgr Lj
oup, p 1 0
= — div <Vuhp > dx + = / - |Vuh,p|2 dx
/BR Bac] 2 /By Ox;j ( )
OuppOupp 1 9
= — 4+ |V | do. 4.10
/BBR< ov  Ox; +2| un,p["vj ) do ( )
Moreover
Oup,p
V(P + hz)up p———dx (4.12)
’ 833j
Br
2
OV (P + hx) ,
(P+h de — = [ ——~ d
/8m] +ha) L 5 ) 2/ 0z,  hpe
Br
1 h P+h
= / V(P + hx)u% pvjdo — / Mu% pdx
2 9Bg ’ 2 Br 83:] ’

and
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/f P+h$ uhp)8 th
8]

— / (iF(Pthﬂf Up,p) — hij(Pthf’“th))dgc

Ox;
Br
= / F(P+ hx,up p)vjdo — h / Fy; (P + hx,up p)dr.(4.12)
oBR Br
Finally

N
1%}
Za Qwp UhP g —h/ (P + hx,upp)

— G:Bi Ox;j
1 6V(P + hz)
8uh,p 8uh,p 1 2
+ / ( ov  Oxj + Q‘Vuh’P‘ Y
OBRr
1
+§V(P + hx)uipyj — F(P + hz, uhvp)yj>da. (4.14)

Now we proceed as in [18] and set

In = (4.15)
athD 8uh7p 1 1
/ < o TZL‘J + §|Vuh7p|2yj + §V(P + hx)uipyj
0Bg

—F(P + hzx, uh’p)yj>da.
(4.16)

Now by Remark 2.2 and by the Sobolev embedding Theorem we get

o0
/ \Ig|dx (4.17)
0

<D L

< c/ Vunp[2 + V(P + ha)ud p+ [F(P + ha,up p)|dz < oo
RN

(P + ha:)u;%vp + |F(P + hx,up,p)|)do
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and then there exists a sequette — oo such that/p, — 0. Passing to
the limit we deduce

N

6wp Gu;hp
g Qi dr
— T RN ox; 838]'

= h/ (Fy. (P + hx,upp) — lwu% p)dz. (4.18)
RN J 2 8LU] ’

Let us prove that
1 P+h
/ (Foy (P + hasunp) — 2V 0 e Gy(P) ash 0
RN

2 8a;j
(4.19)
uniformly on the compact set &' .
By the assumptiof’,,, (z, u)| < e’l*lu” for u > M and sincew, p — wp
in H2(RY) n C? (RN) we have that

| N Fy, (P + hx,upp) — ij(P, wp)|dx
R

g/| (|, (P + h,upp)| + | Fy, (P,wp)|)dz + o(1)
T|>p

<C (2Pl HPD ot 4 1Pl ) dae + o(1)
|z|>p
< Cep/ e uz'}lda} +o(1) = C’eP/ e wi™ + o(1).
|z|>p |z[>p

(4.20)

By Remark 2.1 and since is arbitrary we have thafyy (Fy, (P +
hx,up p) — Fr;(P,wp)) — 0 ash — 0. The same proof applies to show

that
oV (P + ha) oV / )
_— d — (P d 4.21
G e (P [ whae (@22)

and this gives (4.19).
By assumptiorG;(P) has a stable zero & and so there existB;, — P
such that

Hence (4.18) becomes
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N
P
> ain Qwp, Qunry g _ (4.23)
— gy Ox; Oz

Gwph 8uh Ph

Since the matrixfp v — o~ oa; dr — 5] Jan ( 8“’P) this implies that
the linear system (4.23) admits onIy the trivial solutmm =0.

So we have proved thay, p, satisfies—-Auy, p, + V(P + hx)up p, =
f(P 4+ hz,up,p,). Sincef(z,u) < 0foru < 0we get that, p, > 0 and
the strong maximum principle implieg, p, > 0.

Now let us prove thai;, p, — 0 as|xz| — ooc. First of all we remark that
by the standard regularity theory from (2.4) we get that p|| 2.0 wr) <
C foranyp > 2. So|[up,p||pe@yy < C. Moreover, sincd|uy p||m is
uniformly bounded, we have

2N
/ uh P — 0 asR — oo uniformly with respect ta (4.24)
lz|>R

Then we remark thaty, p, is a subsolution ofAu + c¢(z)u = 0 with
c(z) = I@Mm) < C(uj p, (x) + uf p, () < C. So by the Harnack

Up, P,

inequality (see [9]) we have

N—-2

N\ 2N
max up p, < C / up o (4.25)
By.1 Ba(y)

wherey is an arbitrary pointaR” . So by (4.23) we obtainthaj, p, — 0
as|z| — oo.

Finally let us prove thati;, p, has only one maximum point. First we
show that ifQ;, is a local maximum point ofi;, p, then

2

|Qn — P — 0. (4.26)

Indeed sinc€), is alocal maximum pointaf;, p, we have that\u, p, < 0.
Therefore, sincey, p, is a solution of (1.4)

f(Qn, un,p, (Qn))
un,p, (Qn)

If |Qn| — cowegetthat,, p, — 0and by( fy) we reach a contradiction.
Then@y, is bounded and we can assume that, up to a subsequdgnee,Q.
Sinceuy, p, — wp in C2,_(RY) we obtainVw(Q) = 0 and soQy = P
Hence (4.26) holds.

Now if Q1 5 and@3 are two different local minima points thepy, ;
andQqj, tend toP ash — 0. However, sincey, p, — wp in CfOC(RN)
andwp is strictly concave in a neighborhood Bfwe reach a contradiction.

> V(Qn) = Vo > 0. (4.27)
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Now we prove Corollary 1.5.

Proof of Corollary 1.5Let wp be the unique positive solution of

—Awp + V(P)wp = K(P)wp. (4.28)

_1
Then the functiono(z) = (%) pr(\/%) satisfies—Aw +w =

w*. So the vector fields defined at the beginning of the section becomes

GoP) = 5 gy P Gy s [ P00

1 oV V(P) =1 1 D)
o P LT @29

Now by the Pohozaev identity (see [16] or also [11]) we havettsstisfies

N — E / @3+1dy _ / EQd’y
s+ 1 2 Br Br

= [ @ VMG I+ 0P + S w o
(4.30)
and by exponential decay af we get, ask — oo
N — H —s+1 _ 9
G173 )/szw dy—/RNwdy. (4.31)
Hence (4.29) becomes
G;(P)

(s LV (P)22N=2s 9 V2p+2+N—Np/(2p—2)(x)

=T aGen anl w432

So the stable zeros of the vector figllare stable critical points of the

L V2pH2+N-Np/(2p=2) (1) . -
function K1 () and this proves the claim of the Corollary 1.5

5 Proof of Theorem 1.1

In this section we prove Theorem 1.1.
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Proof of Theorem 1.1

We follow the line of [18]. Letv;, a solution of (1.4) uniformly bounded
in H2(RN) N L= (RY) andwy,(z) = up(Py + ha). It easily seen thaty,
satisfies

—Auvy, + V(P() + hx)vh = f(P(] + hx, ’Uh) (51)

and we have that, — wp, in C2_RY. Next multiplying (5.1) byg%? and
integrating onBr we get

Ov, 1 0 9 0
Avp—— — ——— P, h —F (P,
/( Uh@xj 291, (V(Po + hx)vj, + oz, (Po + ha,vp))dx
Br
1 P
= h/ (Fy; (P + hx,vy) — fwvi)dm. (5.2)
Br 2 a.ﬁUJ

Proceeding as in the Proof of Theorem 1.3 we get that the LHS tends to zero
asR — oo. On the other hand, sineg € H?(RY) and the assumption on
F we have

19V (P + hz) ,

P}l—r)réo Br (FIJ (P + h.T,Uh) - 2 ax] ’Uh)dﬂﬁ'
B 1OV(P + hz) ,
= /I\QN (ij (P+ h.’E,'Uh) ith)dx (53)
So (5.2) becomes
/ (Fy.(P+ hx,vp) — 1Mv%)dm =0 (5.4)
RN J 2 81']

and the claim follows ag — 0.
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