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Introduction

Let F be an algebraically closed field of characteristicp ≥ 0 andΣn =
Sym(Ω) be the symmetric group on ann-element setΩ. We are interested
in the following

Problem.For anyn describe all pairs(G,D) whereG ≤ Σn is a subgroup
andD is a simpleFΣn-module of dimension greater than1 such that the
restrictionDG is irreducible.

If the characteristic ofF is zero, this problem has been solved by Saxl
[16]. An important feature of Saxl’s result is that a groupG as in the problem
above is either 2-transitive or fixes a point, i.e. is contained in someΣn−1.
The caseG ≤ Σn−1 can then be settled using the branching rule and induc-
tion. On the other hand, an explicit list ofk-transitive groups (fork ≥ 2)
is available, which can be used to complete the proof in characteristic zero,
see [16] for more details.

From now on we assume thatp > 0. In this case the problem is impor-
tant for determining maximal subgroups of finite classical groups [1],[13].
However, the situation is now more complicated. For example, to determine
the pairs(G,D) as above withG = An one needs the Mullineux conjecture
[7], [2].

If G is intransitive then, up to a conjugation, it is contained in a standard
Young subgroup of the formΣn−k ×Σk. The irreducible restrictions from
Σn toΣn−1 have been described in [14], see also [11], [6]. In [11] it is also
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shown forp > 2 that the Young subgroupsΣn−k ×Σk with 1 < k < n− 1
never act irreducibly on a simpleFΣn-module of dimension> 1 (this fact
is also proved in this paper, see Theorem 3.10). This reduces the intransitive
case to the subgroups ofΣn−1. The main result here is

Main Theorem. Let p > 2, n ≥ 4, G ≤ Σn, andD be a simpleFΣn-
module withdimD > 1. If the restrictionDG is irreducible then either
G ≤ Σn−1 orG is 2-transitive onΩ.

We refer the reader to Theorem 3.10 for a partial result in the casep = 2.
Forp > 2 the problem above is thus reduced to 2-transitive groups. This

turns out to be a very important step in a complete solution of the problem,
which is obtained in [3] (for the casep > 3).

1. Preliminaries

Let Ω be a finite set with|Ω| = n, andk ≤ n/2. A groupG ≤ Sym(Ω)
is calledk-homogeneous(resp.k-transitive ) onΩ if G acts transitively
on the unordered (resp. ordered)k-element subsets ofΩ. Moreover,G is
calledk*-homogeneousonΩ if G is k-homogeneous but notk-transitive
onΩ.

Let F be an algebraically closed field of characteristicp > 0, G be
a group, andV be anFG-module. Denote byV G the space ofG-fixed
points inV . We writeV ∼= V1| · · · |Vk if V admits auniquefiltration with
sections isomorphic toVj , 1 ≤ j ≤ k, counted from bottom to top. In
particular, if the sections are irreducible this means thatV is uniserial.
If H ≤ G is a subgroup, thenVH or V ↓H denotes the restriction ofV
to H. If W is anFH-module thenW↑G denotes the induced module. If
V ∼= V ∗ asFG-modules thenVH

∼= (VH)∗ asFH-modules. We let1=1G

denote the trivial representation ofG. If V andW areFG-modules we write
HomG(V,W ) (resp.Hom(V,W )) for the space of allFG-homomorphisms
(resp.F -linear maps) fromV toW.Note thatHom(V,W ) is anFG-module
with HomG(V,W ) ∼= Hom(V,W )G.

Basic facts on the representation theory of the symmetric group can be
found in [8]. Forλ = (λ1, . . . , λr), a composition ofn with non-zero parts,
we letΣλ = Σλ1 × · · · × Σλr denote the corresponding Young subgroup
of Σn. We may identifyΣn−1 with Σ(n−1,1). We letY λ, Sλ andMλ =
(1Σλ

)↑Σn denote the Young, Specht, and permutation modules labelled by
λ, respectively. Ifλ is p-regular we writeDλ for the unique irreducible
quotient ofSλ. It is well known thatMλ, Y λ, andDλ are all self-dual
FΣn-modules. Letsgn denote the sign representation ofΣn.

We will need the structure of the permutation modulesM (n−1,1) and
M (n−2,2). The proof of the next three lemmas is obtained by applying [8,
17.17, 24.15] and the ‘Nakayama Conjecture’ [10, 6.1.21, 2.7.41].
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Lemma 1.1. The moduleM (n−1,1) is isomorphic toD(n−1,1) ⊕ 1 if n �≡ 0
(mod p), and1|D(n−1,1)|1 ∼= S(n−1,1)|1 ∼= 1|(S(n−1,1))∗ otherwise.

Lemma 1.2. Letp > 2 andn ≥ 4.

(i) If n �≡ 1, 2 (mod p) thenM (n−2,2) ∼= Y (n−2,2) ⊕ M (n−1,1) where
Y (n−2,2) ∼= S(n−2,2) ∼= D(n−2,2).

(ii) If n ≡ 1 (mod p) thenM (n−2,2) ∼= Y (n−2,2) ⊕ D(n−1,1) where
Y (n−2,2) ∼= 1|D(n−2,2)|1 ∼= 1|(S(n−2,2))∗.

(iii) If n ≡ 2 (mod p) thenM (n−2,2) ∼= Y (n−2,2) ⊕ 1 where

Y (n−2,2) ∼= D(n−1,1)|D(n−2,2)|D(n−1,1) ∼= D(n−1,1)|(S(n−2,2))∗.

We will only need the casep = 2 whenn is odd:

Lemma 1.3. Letp = 2 andn ≥ 4 be odd.

(i) If n ≡ 1 (mod 4) thenM (n−2,2) ∼= Y (n−2,2) ⊕ D(n−1,1) where
Y (n−2,2) ∼= 1|D(n−2,2)|1 ∼= 1|(S(n−2,2))∗.

(ii) If n ≡ 3 (mod 4) thenM (n−2,2) ∼= Y (n−2,2) ⊕ M (n−1,1) where
Y (n−2,2) ∼= D(n−2,2).

The following easy result is well known.

Lemma 1.4. LetX be aG-set, andM be the corresponding permutation
FG-module. ThendimMG equals the number ofG-orbits onX.

Proof. It suffices to consider the case whereG is transitive onΩ. Then
M = (1H)↑G whereH is a point stabilizer. Butdim HomG(1G, (1H)↑G) =
dim HomH(1H ,1H) = 1 by Frobenius reciprocity. 
�

For 1 ≤ k ≤ n denote bydk the number ofG-orbits on the unordered
k-element subsets ofΩ. The following lemma characterizesdk in terms of
the corresponding permutation module.

Lemma 1.5. Let 1 ≤ k ≤ n and G ≤ Σn be a subgroup. Thendim
(M (n−k,k))G = dk.

Proof. Note thatM (n−k,k)
G is the permutationFG-module on thek-element

subsets. Now we can use Lemma 1.4. 
�
Lemma 1.6. If G ≤ Σn andn �≡ 0 (mod p) thendim(D(n−1,1))G =
d1 − 1.

Proof. This follows from Lemmas 1.1 and 1.5. 
�
Lemma 1.7. Letn ≥ 4, G ≤ Σn andn be odd ifp = 2. Supposed1 < d2.
Then(Y (n−2,2))G and((S(n−2,2))∗)G are non-zero. Moreover ifp > 2 and
n ≡ 1 (mod p), or p = 2 andn ≡ 1 (mod 4), thendim(Y (n−2,2))G ≥
2.
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Proof. By Lemmas 1.2 and 1.3 (or [8, 17.17]), there is an exact sequence

0 → M (n−1,1) → M (n−2,2) → (S(n−2,2))∗ → 0,

which implies that((S(n−2,2))∗)G �= 0, by assumption and Lemma 1.5.
By 1.2(i) and 1.3(ii),Y (n−2,2) = (S(n−2,2))∗, unlessp > 2, n ≡ 1, 2
(mod p) or p = 2, n ≡ 1 (mod 4). If p > 2 andn ≡ 2 (mod p) then
by Lemma 1.2(iii),dim(Y (n−2,2))G = d2 − 1 ≥ d1 > 0. In the remaining
cases, using Lemma 1.6, we getdim(Y (n−2,2))G = d2 − (d1 − 1) ≥ 2. 
�
Lemma 1.8. LetG ≤ Σn be transitive andn �≡ 0 (mod p). ThenG is

2-transitive if and only ifdim EndG(D(n−1,1)
G ) = 1.

Proof. Note thatG is 2-transitive onΩ if and only ifGhas exactly two orbits
onΩ ×Ω. However, the corresponding permutation module is isomorphic
toM (n−1,1)

G ⊗M
(n−1,1)
G . By Lemma 1.4, we now have thatG is 2-transitive

if and only if dim(M (n−1,1)
G ⊗ M

(n−1,1)
G )G = 2. By Lemmas 1.6 and 1.1,

this is equivalent todim(D(n−1,1) ⊗D(n−1,1))G = 1, which by self-duality
of irreducible modules is equivalent to our claim. 
�

2. 2*-homogeneous groups

The main result of this section is Theorem 2.5 which shows that the restric-
tion of a simpleFΣn-moduleD of dimension> 1 to a 2*-homogeneous
subgroup is reducible. We will use a theorem of Kantor [12] (see also [4,
9.4B]) which describes 2*-homogeneous groups. LetΩ = Fq be a finite field
of orderq = re for a primer. LetAutFr(Fq) denote the Galois group, which
is a cyclic groupCe of ordere. LetAΣL1(q) (resp.ASL1(q)) be the group
of all transformations ofFq of the formx �→ a2xσ + b (resp.x �→ a2x+ b)
with a ∈ F

∗
q , b ∈ Fq andσ ∈ AutFr(Fq). These are permutation groups on

the elements ofFq.

Proposition 2.1. [12] LetG be a 2*-homogeneous group. Then, up to per-
mutation isomorphism,ASL1(q) ≤ G ≤ AΣL1(q) with q ≡ 3 (mod 4)
q > 3.

Let Rn(m) denote the class of simpleFΣn-modulesD such that for
somep-regular partitionλ = (λ1, λ2, . . .) with λ1 ≥ n − m, we have
D ∼= Dλ or D ∼= Dλ ⊗ sgn . We need the following results from [9] and
the main results in [17],[18].

Proposition 2.2. [9, Theorem 7]If n ≥ 15 andD is a simpleFΣn-module,
then eitherdimD > 1

2(n− 1)(n− 2) or D ∈ Rn(2).
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Proposition 2.3. [9, p.420]IfD ∈ Rn(2)\Rn(1) thendimD ≥ 1
2n(n−5).

If D ∈ Rn(1) thendimD ≥ n− 2.

Proposition 2.4. [17], [18], [9, Theorem 6(i)]If n ≥ 7 andD is a simple
FΣn-module, then eitherdimD > n− 1 or D ∈ Rn(1).

Proposition 2.5. LetG be a 2*-homogeneous subgroup ofΣn andD be a
simpleFΣn-module withdimD > 1. Then the restrictionDG is reducible.

Proof. In view of Proposition 2.1 we may assumeG = AΣL1(q) < Σq,
q ≡ 3 (mod 4), andq > 3. In particular,q ≥ 7 andr > 2. Let DG be
irreducible. Then

dimD ≤
√

|G| =
√
q(q − 1)e/2.(1)

Moreover,e = logr q < q − 5 asq ≥ 7 andr > 2. So

dimD < q
√

(q − 5)/2 ≤ 1
2
q(q − 5).(2)

If q = 7 or q = 11 then e = 1 and we get a contradiction by (1) and
Propositions 2.4, 2.3. Letq ≥ 15. Then from (2) and Propositions 2.2, 2.3
we conclude thatD ∈ Rn(1), i.e.D ∼= D(n−1,1) orD ∼= D(n−1,1) ⊗ sgn .
If DG is irreducible, we have by Schur’s lemma

1 = dim EndG(DG) = dim EndG(D(n−1,1)
G ).

Now, if p does not divideq thenG is 2-transitive onFq by Lemma 1.8, giving
a contradiction. Otherwise the restriction ofD to Fq ✁G is semisimple by
Clifford’s theorem. But the trivial module is the only simple module over the
groupFq, asFq is ap-group. HenceFq acts trivially onD. This contradicts
the fact thatD is faithful overΣq. 
�

3. Main Results

Denote byσ the transposition(n − 1, n) ∈ Σn. We will write Σn−2,2 for
the Young subgroupΣ(n−2,2)

∼= Σn−2 × Σ2. For anFΣn-moduleV and

a homomorphismθ ∈ EndΣn−1(V ↓Σn−1
) define a map̂θ : V → V by

setting
θ̂(v) := θ(v) + σθ(σv) (v ∈ V ).

Lemma 3.1. Letp > 2 andn ≥ 4. Then the mapθ �→ θ̂ is an injective map
fromEndΣn−1(V ↓Σn−1

) to EndΣn−2,2(V ↓Σn−2,2
).

Proof. It is routine thatθ̂ ∈ EndΣn−2,2(V ↓Σn−2,2
). Assumeθ̂ = 0. Then

θ(σv) = −σθ(v) for all v ∈ V . But θ is also anFΣn−1-homomorphism.
So

θ(v) = θ((σ(1, n− 1))3v) = −(σ(1, n− 1))3θ(v) = −θ(v),
whenceθ(v) = 0 for anyv ∈ V . 
�
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Lemma 3.2. Let p > 2, andW be aFΣ4-module with((1, 4) + (2, 3) −
(1, 3) − (2, 4))W = 0. ThenA4 acts trivially onW.

Proof. By assumption we have((1, 3) + (2, 4))v = ((1, 4) + (2, 3))v for
all v ∈ W . Conjugating by(2, 3) we get

((1, 2) + (3, 4))v = ((1, 3) + (2, 4))v = ((1, 4) + (2, 3))v.(3)

The group algebraF [Σ2 ×Σ2] is semisimple and has four irreducible mod-
ules:1Σ2 ⊗ 1Σ2 , 1Σ2 ⊗ sgnΣ2

, sgnΣ2
⊗1Σ2 , andsgnΣ2

⊗ sgnΣ2
. We

claim that only1Σ2 ⊗ 1Σ2 andsgnΣ2
⊗ sgnΣ2

may appear in the restric-
tion W↓Σ2×Σ2

. Indeed, assume for example that1Σ2 ⊗ sgnΣ2
appears

in this restriction. Pick a non-zero vectorv in the corresponding isotypic
component. Then(1, 2)v = v and(3, 4)v = −v. So (1, 2)(3, 4)v = −v
and ((1, 2) + (3, 4))v = 0. By (3), we have(1, 3)v = −(2, 4)v and
(1, 4)v = −(2, 3)v. Hence

(1, 3)(2, 4)v = −v and (1, 4)(2, 3)v = −v.(4)

But (1, 2)(3, 4) = (1, 3)(2, 4)(1, 4)(2, 3). So (4) implies(1, 2)(3, 4)v = v,
and we have arrived to a contradiction. The case ofsgnΣ2

⊗1Σ2 is consid-
ered similarly.

As the element(1, 2)(3, 4) acts trvially on both1Σ2 ⊗ 1Σ2 andsgnΣ2⊗ sgnΣ2
, it must act trivially onW . By conjugation, we conclude that the

whole Klein group

H := {1, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}
acts trivially onW . As (1, 2) ≡ (3, 4) (mod H) and (2, 3) ≡ (1, 4)
(mod H), the equation (3) implies(1, 2)v = (2, 3)v. Hence(1, 2, 3)v = v,
and soA4 acts trivially onW. 
�
Theorem 3.3. Let p > 2 andn ≥ 4. Assume thatV is anFΣn-module
such that the alternating groupAn < Σn does not act trivially onV . Then

dim EndΣn−1(V ↓Σn−1
) < dim EndΣn−2,2(V ↓Σn−2,2

).

Proof. By Lemma 3.1 it is enough to demonstrate an endomorphismψ ∈
EndΣn−2,2(V ↓Σn−2,2

) which is not in the image ofθ �→ θ̂. Setψ(v) := σv,

v ∈ V . Assume thatψ = θ̂ for someθ ∈ EndΣn−1(V ↓Σn−1
). Then

θ(σv) = v − σθ(v) (v ∈ V ).(5)

Fori = 1, 2, . . . , n−2 denoteπi := (i, n−1) andτi := (i, n). Then, using
(5), we get

θ(πiσπiv) = πiθ(σπiv) = πi(πiv − σθ(πiv)) = v − πiσπiθ(v).
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Note thatπiσπi = τi so we have proved that

θ(τiv) = v − τiθ(v), i = 1, 2, . . . , n− 2 (v ∈ V ).(6)

Using (5), (6) and the equalityπi = τiστi, we get for anyv ∈ V and
1 ≤ i ≤ n− 2

πiθ(v) = θ(πiv) = θ(τiστiv) = στiv − τiθ(στiv)
= στiv − τi(τiv − σθ(τiv)) = στiv − v + τiσ(v − τiθ(v))
= στiv − v + τiσv − τiστiθ(v) = στiv − v + τiσv − πiθ(v).

Solving forπiθ(v) and multiplying byπi, we find

θ(v) = (1/2)(σv − τiστiv + τiv), i = 1, 2, . . . , n− 2 (v ∈ V ).(7)

Takingi = 1 andi = 2, we have

(1/2)(σv − τ1στ1v + τ1v) = (1/2)(σv − τ2στ2v + τ2v) (v ∈ V ).

Conjugating by(3, n− 1)(4, n), we get

((1, 4) + (2, 3) − (1, 3) − (2, 4))V = 0.

By Lemma 3.2, the natural subgroupA4 < Σn acts trivially onV, which
implies by conjugation thatAn acts trivially onV, giving a contradiction.
�

Now we study the casep = 2. If n = 2l is even we writeS for the
irreducible moduleD(l+1,l−1) and if n = 2l + 1 is odd we writeS for
D(l+1,l). We callS thespinorrepresentation ofΣn. The following result is
proved in [15], see also [5] for a generalization.

Lemma 3.4. Let p = 2, n ≥ 3, andD be an irreducibleFΣn-module
different from the spinor representationS. Then for any3-cycleγ ∈ Σn

there exists a non-zero vectorv ∈ D such thatγv = v.

Proof. It is proved in [15] that the only irreducible representations of the
alternating groupAn for which 3-cycles act fixed-point-freely come from
the restriction of the spinor module toAn. This implies the result as these
irreducibleAn-modules do not appear in the restriction ofDλ toAn, unless
Dλ ∼= S. 
�
Lemma 3.5. Let p = 2, n ≥ 3, b, c ∈ F , andD be an irreducibleFΣn-
module. Ifb �= 0 and

(b(1, 2) + c(1, 2, 3) + c(1, 3, 2) + c)v = 0

for all v ∈ D thenD is the trivial module1Σn .
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Proof. By conjugating with(2, 3) we also get

(b(1, 3) + c(1, 2, 3) + c(1, 3, 2) + c)D = 0,

so(1, 2)v = (1, 3)v, hence(1, 2, 3)v = v for all v ∈ D. By conjugating we
also get(1, 3, 2)v = v for anyv. Now it follows from the assumption that
(1, 2) acts trivially onD, whence any transposition acts trivially. 
�
Theorem 3.6. Letp = 2, n ≥ 4, andD be a non-trivial irreducibleFΣn-
module. Then

dim EndΣn−1(D↓Σn−1
) < dim EndΣn−2,2(D↓Σn−2,2

),

unlessn is odd andD is the spinor moduleS.

Proof. We first note that the kernel of the linear mapθ �→ θ̂ defined in the
beginning of this section is1-dimensional and is spanned by the identity
mapidD. Indeed,θ̂(v) = 0 is equivalent toθ(σv) = σθ(v). But θ is also
anFΣn−1-homomorphism. Henceθ is anFΣn-endomorphism ofD so it
must be proportional toidD, by Schur’s lemma.

Let idD, θ1, . . . , θk be a basis of the vector spaceEndΣn−1(D↓Σn−1
).

Define a mapψ : D → D by settingψ(v) = σv, v ∈ D. Thenψ is an
element ofEndΣn−2,2(D↓Σn−2,2

). We claim that

θ̂1, θ̂2, . . . , θ̂k, idD, ψ

are linearly independent elements ofEndΣn−2,2(D↓Σn−2,2
). This of course

implies the theorem.
A linear dependence between our endomorphisms looks like

a1θ̂1 + a2θ̂2 + . . .+ akθ̂k + bidD + cψ ≡ 0(8)

with ai, b, c ∈ F . We may assume thatai �= 0 for somei, since otherwise we
would get a linear dependence betweenidD andψ, which is only possible
if D is trivial. Let θ := a1θ1 + . . . + akθk. Thena1θ̂1 + . . . + akθ̂k = θ̂,
and we may rewrite (8) as

θ̂ + b idD + cψ ≡ 0.

By the first paragraph of the proof, we have(b, c) �= (0, 0). The last equality
is equivalent to

θ(σv) = σθ(v) + bσv + cv. (v ∈ D)

Let πi = (i, n− 1), τi = (i, n) ∈ Σn. Thenτi = πiσπi. So for anyv ∈ D
we have

θ(τiv) = θ(πiσπiv) = πiθ(σπiv) = πi(σθ(πiv) + bσπiv + cπiv)
= πiσθ(πiv) + bπiσπiv + cv = τiθ(v) + bτiv + cv. (v ∈ D)



Representations of the symmetric group 107

As πi = τiστi we also have for anyv ∈ D

πiθ(v) = θ(πiv) = θ(τiστiv) = τiθ(στiv) + bτiστiv + cστiv

= τi(σθ(τiv) + bστiv + cτiv) + bτiστiv + cστiv

= τiσθ(τiv) + bτiστiv + cv + bτiστiv + cστiv

= τiσ(τiθ(v) + bτiv + cv) + cv + cστiv

= πiθ(v) + bπiv + cτiσv + cv + cστiv,

whencebπiv + c(τiσ + στi + 1)v = 0. In particular,c �= 0. If b �= 0 we
have

(bπi + cτiσ + cστi + c)v = 0. (v ∈ D)

Conjugating we get

(b(1, 2) + c(1, 2, 3) + c(1, 3, 2) + c)v = 0. (v ∈ D)

Lemma 3.5 now leads to a contradiction asD �∼= 1Σn . So we may assume
thatb = 0. Then we get the identity

(τiσ + στi + 1)v = 0. (v ∈ D)

But τiσ =: γ is a3-cycle andστi = γ2. So it suffices to show that there
is a non-zerov ∈ D such thatγv = v. But this follows from Lemma 3.4,
providedD �∼= S. Finally ifD ∼= S andn = 2l is even, thenS = D(l+1,l−1).
By [14], D(l+1,l−1)↓Σn−1

∼= D(l,l−1) andD(l,l−1)↓Σn−2,2
is reducible (and

self-dual). So the Hom-spaces under consideration have dimensions1 and
2, and the theorem is true. 
�

Corollary 3.7. Let n ≥ 4 and D be an irreducibleFΣn-module with
dimD > 1. If p = 2 andn is odd, assume thatD �∼= S. Then

dim HomΣn(M (n−2,2),End(D)) > dim HomΣn(M (n−1,1),End(D)).

Proof. Follows from Theorems 3.3, 3.6 and the isomorphisms

HomΣn(Mν ,End(D)) ∼= HomΣν (1Σλ
,End(D)) ∼= EndΣλ

(D↓Σλ
).


�

Lemma 3.8. Letn ≥ 4andDbean irreducibleFΣn-modulewithdimD >
1. If p = 2, assume additionally thatn is odd andD �∼= S. ThenEnd(D)
contains eitherY (n−2,2) or (S(n−2,2))∗ or both as submodules.
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Proof. Assume first thatp > 2, n �≡ 1, 2 (mod p) or p = 2, n ≡ 3
(mod 4). Then the result follows from Lemmas 1.2(i), 1.3(ii) and Corollary
3.7. Now letp > 2 andn ≡ 1 (mod p). ThenM (n−1,1) splits as1 ⊕
D(n−1,1). By Lemma 1.2(ii), there is a surjectionM (n−2,2) → M (n−1,1),
and by Corollary 3.7, there must exist a homomorphismθ : M (n−2,2) →
End(D) which does not factor through this surjection. If the restriction
θ|Y (n−2,2) is injective thenY (n−2,2) is a submodule ofEnd(D). Otherwise,
in view of Lemma 1.2(ii), the kernel ofθ|Y (n−2,2) is 1. But Y (n−2,2)/1 ∼=
(S(n−2,2))∗, so(S(n−2,2))∗ embeds intoEnd(D). The casesp > 2, n ≡ 2
(mod p) andp = 2, n ≡ 1 (mod 4) are considered similarly to the case
n ≡ 1 (mod p) using 1.2(iii), 1.3(i) and 3.7. 
�

Recall thatd1 andd2 denote the number ofG-orbits onΩ and the 2-
subsets ofΩ, respectively.

Theorem 3.9. Let n ≥ 4, G ≤ Σn be a subgroup, andD be a simple
FΣn-module withdimD > 1. If p = 2, assume additionally thatn is odd
andD �∼= S. Then the restrictionDG is reducible wheneverd1 < d2.

Proof. SupposeDG is irreducibleandd1 < d2. ThenEndG(DG) ∼= End(D)G

is 1-dimensional by Schur’s lemma. We consider the following two cases.
Case 1:p > 2, n �≡ 1 (mod p) or p = 2, n ≡ 3 (mod 4). Then by

Lemmas 1.2(i),(iii), 1.3(ii) and 3.8, either1Σn ⊕ Y (n−2,2) ⊆ End(D) or
1Σn ⊕ (S(n−2,2))∗ ⊆ End(D) (or both). By Lemma 1.7,End(D)G is at
least2-dimensional, giving a contradiction.

Case 2:p > 2, n ≡ 1 (mod p) orp = 2,n ≡ 1 (mod 4).By Lemma
3.8 again, eitherY (n−2,2) ⊆ End(D) or (S(n−2,2))∗ ⊆ End(D). In the first
case Lemma 1.7 implies thatEnd(D)G is at least2-dimensional. In the
second case(S(n−2,2))∗ = D(n−2,2)|1 implies that(S(n−2,2))∗ ⊕ 1Σn ⊆
End(D). Now apply Lemma 1.7 as in Case 1. 
�
Theorem 3.10.Let n ≥ 4, G ≤ Σn be a subgroup, andD be a simple
FΣn-module withdimD > 1. If p = 2, assume additionally thatn is odd
andD �∼= S. If the restrictionDG is irreducible then eitherG ≤ Σn−1 or
G is 2-transitive.

Proof. LetDG be irreducible. Assume first thatG is intransitive. Then, up
to a conjugation,G is contained in a standard Young subgroupΣn−k ×Σk

for some1 ≤ k ≤ n/2. If k > 1, thend1 = 2 < d2 = 3 with respect to
the action ofΣn−k ×Σk. HenceD↓Σn−k×Σk

is reducible by Theorem 3.9
applied to the subgroupΣn−k × Σk. This gives a contradiction. Therefore
k = 1 and soG ≤ Σn−1. We may now assume thatG is transitive. If
G is not2-homogeneous, thend1 = 1 < d2 and we get a contradiction by
Theorem 3.9. Thus,G is2-homogeneous. Now, ifG is not2-transitive apply
Theorem 2.5. 
�
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Finally, observe that the Main Theorem is a special case of Theorem 3.10.
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