Representations of the symmetric group are reducible over simply transitive subgroups

A. S. Kleshchev, J. K. Sheth

Department of Mathematics, University of Oregon, Eugene, OR 97403, USA (e-mail: klesh@math.uoregon.edu, sheth@noether.uoregon.edu)

Received April 8, 1999 / Published online July 3, 2000 – C Springer-Verlag 2000

Mathematics Subject Classification (1991):20C30, 20B20

Introduction

Let F be an algebraically closed field of characteristic $p \geq 0$ and $\Sigma_n =$ $Sym(\Omega)$ be the symmetric group on an n-element set Ω . We are interested in the following

Problem. For any *n* describe all pairs (G, D) where $G \leq \sum_n$ is a subgroup and D is a simple $F\Sigma_n$ -module of dimension greater than 1 such that the restriction D_G is irreducible.

If the characteristic of F is zero, this problem has been solved by Saxl [16]. An important feature of Saxl's result is that a group G as in the problem above is either 2-transitive or fixes a point, i.e. is contained in some Σ_{n-1} . The case $G \leq \sum_{n=1}^{\infty}$ can then be settled using the branching rule and induction. On the other hand, an explicit list of k-transitive groups (for $k \ge 2$) is available, which can be used to complete the proof in characteristic zero, see [16] for more details.

From now on we assume that $p > 0$. In this case the problem is important for determining maximal subgroups of finite classical groups [1],[13]. However, the situation is now more complicated. For example, to determine the pairs (G, D) as above with $G = A_n$ one needs the Mullineux conjecture [7],[2].

If G is intransitive then, up to a conjugation, it is contained in a standard Young subgroup of the form $\Sigma_{n-k} \times \Sigma_k$. The irreducible restrictions from Σ_n to Σ_{n-1} have been described in [14], see also [11], [6]. In [11] it is also

The first author partially supported by the NSF, grant DMS-9600124.

shown for $p > 2$ that the Young subgroups $\sum_{n-k} \times \sum_k$ with $1 < k < n - 1$ never act irreducibly on a simple $F\sum_{n}$ -module of dimension > 1 (this fact is also proved in this paper, see Theorem 3.10). This reduces the intransitive case to the subgroups of Σ_{n-1} . The main result here is

Main Theorem. Let $p > 2, n \ge 4, G \le \sum_n$ and D be a simple $F\sum_n$ module with dim $D > 1$. If the restriction D_G is irreducible then either $G \leq \sum_{n=1}^{\infty}$ or G is 2-transitive on Ω .

We refer the reader to Theorem 3.10 for a partial result in the case $p = 2$.

For $p > 2$ the problem above is thus reduced to 2-transitive groups. This turns out to be a very important step in a complete solution of the problem, which is obtained in [3] (for the case $p > 3$).

1. Preliminaries

Let Ω be a finite set with $|\Omega| = n$, and $k \leq n/2$. A group $G \leq Sym(\Omega)$ is called **k-homogeneous** (resp. **k-transitive**) on Ω if G acts transitively on the unordered (resp. ordered) k-element subsets of Ω . Moreover, G is called k^* -homogeneous on Ω if G is k -homogeneous but not k -transitive on $Ω$.

Let F be an algebraically closed field of characteristic $p > 0$, G be a group, and V be an FG -module. Denote by V^G the space of G -fixed points in V. We write $V \cong V_1 \cdots V_k$ if V admits a *unique* filtration with sections isomorphic to V_j , $1 \leq j \leq k$, counted from bottom to top. In particular, if the sections are irreducible this means that V is uniserial. If $H \leq G$ is a subgroup, then V_H or $V_{\downarrow H}$ denotes the restriction of V to H. If W is an FH-module then $W\uparrow^G$ denotes the induced module. If $V \cong V^*$ as FG-modules then $V_H \cong (V_H)^*$ as FH-modules. We let **1**=**1**_G denote the trivial representation of G . If V and W are FG -modules we write $\text{Hom}_G(V, W)$ (resp. $\text{Hom}(V, W)$) for the space of all FG-homomorphisms (resp. F-linear maps) from V to W. Note that $Hom(V, W)$ is an FG -module with $\text{Hom}_G(V, W) \cong \text{Hom}(V, W)^G$.

Basic facts on the representation theory of the symmetric group can be found in [8]. For $\lambda = (\lambda_1, \ldots, \lambda_r)$, a composition of n with non-zero parts, we let $\Sigma_{\lambda} = \Sigma_{\lambda_1} \times \cdots \times \Sigma_{\lambda_r}$ denote the corresponding Young subgroup of Σ_n . We may identify Σ_{n-1} with $\Sigma_{(n-1,1)}$. We let $\overline{Y}^{\lambda}, S^{\lambda}$ and $\overline{M}^{\lambda} =$ $(1_{\Sigma_{\lambda}})\uparrow^{\Sigma_n}$ denote the Young, Specht, and permutation modules labelled by λ , respectively. If λ is *p*-regular we write D^{λ} for the unique irreducible quotient of S^{λ} . It is well known that M^{λ} , Y^{λ} , and D^{λ} are all self-dual $\overline{F} \Sigma_n$ -modules. Let sgn denote the sign representation of Σ_n .

We will need the structure of the permutation modules $M^{(n-1,1)}$ and $M^{(n-2,2)}$. The proof of the next three lemmas is obtained by applying [8, 17.17,24.15] and the 'Nakayama Conjecture' [10,6.1.21,2.7.41].

Representations of the symmetric group 101

Lemma 1.1. *The module* $M^{(n-1,1)}$ *is isomorphic to* $D^{(n-1,1)} \oplus 1$ *if* $n \neq 0$ (mod p), and $\mathbf{1}[D^{(n-1,1)}]$ $\cong S^{(n-1,1)}$ $\cong \mathbf{1}[(S^{(n-1,1)})^*$ *otherwise.*

Lemma 1.2. *Let* $p > 2$ *and* $n \ge 4$ *.*

- (i) *If* $n \neq 1,2 \pmod{p}$ *then* $M^{(n-2,2)} \cong Y^{(n-2,2)} \oplus M^{(n-1,1)}$ *where* $Y^{(n-2,2)} \cong S^{(n-2,2)} \cong D^{(n-2,2)}.$
- (ii) *If* $n \equiv 1 \pmod{p}$ *then* $M^{(n-2,2)} \cong Y^{(n-2,2)} \oplus D^{(n-1,1)}$ *where* $Y^{(n-2,2)} \cong \mathbf{1}|D^{(n-2,2)}|\mathbf{1} \cong \mathbf{1}|(S^{(n-2,2)})^*.$
- (iii) *If* $n \equiv 2 \pmod{p}$ *then* $M^{(n-2,2)} \cong Y^{(n-2,2)} \oplus 1$ *where* $Y^{(n-2,2)} \cong D^{(n-1,1)}|D^{(n-2,2)}|D^{(n-1,1)} \cong D^{(n-1,1)}|(S^{(n-2,2)})^*$.

We will only need the case $p = 2$ when n is odd:

Lemma 1.3. *Let* $p = 2$ *and* $n \ge 4$ *be odd.*

- (i) *If* $n \equiv 1 \pmod{4}$ *then* $M^{(n-2,2)} \cong Y^{(n-2,2)} \oplus D^{(n-1,1)}$ *where* $Y^{(n-2,2)} \cong 1$ | $D^{(n-2,2)}$ | $1 \cong 1$ | $(S^{(n-2,2)})^*$.
- (ii) *If* $n \equiv 3 \pmod{4}$ *then* $M^{(n-2,2)} \cong Y^{(n-2,2)} \oplus M^{(n-1,1)}$ *where* $Y^{(n-2,2)} \simeq D^{(n-2,2)}$

The following easy result is well known.

Lemma 1.4. *Let* X *be a* G*-set, and* M *be the corresponding permutation* FG -module. Then $\dim M^G$ equals the number of G -orbits on X .

Proof. It suffices to consider the case where G is transitive on Ω . Then $M = (1_H)\uparrow^G$ where H is a point stabilizer. But dim $\text{Hom}_G(\mathbf{1}_G, (\mathbf{1}_H)\uparrow^G) =$ $\dim \text{Hom}_H(\mathbf{1}_H, \mathbf{1}_H) = 1$ by Frobenius reciprocity.

For $1 \leq k \leq n$ denote by d_k the number of G-orbits on the unordered k-element subsets of Ω . The following lemma characterizes d_k in terms of the corresponding permutation module.

Lemma 1.5. Let $1 \leq k \leq n$ and $G \leq \sum_{n}$ be a subgroup. Then dim $(M^{(n-k,k)})^G = d_k.$

Proof. Note that $M_G^{(n-k,k)}$ is the permutation FG-module on the k-element subsets. Now we can use Lemma 1.4.

Lemma 1.6. *If* $G \leq \sum_n$ *and* $n \neq 0 \pmod{p}$ *then* dim $(D^{(n-1,1)})^G =$ $d_1 - 1.$

Proof. This follows from Lemmas 1.1 and 1.5. □

Lemma 1.7. *Let* $n \geq 4$, $G \leq \sum_{n}$ *and* n *be odd if* $p = 2$ *. Suppose* $d_1 < d_2$ *. Then* $(Y^{(n-2,2)})^G$ *and* $((S^{(n-2,2)})^*)^G$ *are non-zero. Moreover if* $p > 2$ *and* $n \equiv 1 \pmod{p}$, or $p = 2$ and $n \equiv 1 \pmod{4}$, then $\dim(Y^{(n-2,2)})$ ^G ≥ 2.

Proof. By Lemmas 1.2 and 1.3 (or $[8, 17.17]$), there is an exact sequence

$$
0 \to M^{(n-1,1)} \to M^{(n-2,2)} \to (S^{(n-2,2)})^* \to 0,
$$

which implies that $((S^{(n-2,2)})^*)^G \neq 0$, by assumption and Lemma 1.5. By 1.2(i) and 1.3(ii), $Y^{(n-2,2)} = (S^{(n-2,2)})^*$, unless $p > 2$, $n \equiv 1,2$ (mod p) or $p = 2$, $n \equiv 1 \pmod{4}$. If $p > 2$ and $n \equiv 2 \pmod{p}$ then by Lemma 1.2(iii), $\dim(Y^{(n-2,2)})^G = d_2 - 1 \ge d_1 > 0$. In the remaining cases, using Lemma 1.6, we get $\dim(Y^{(n-2,2)})^G = d_2 - (d_1 - 1) \ge 2$. □

Lemma 1.8. *Let* $G \leq \sum_{n}$ *be transitive and* $n \not\equiv 0 \pmod{p}$. *Then G is* 2-transitive if and only if $\dim \text{End}_G(D_G^{(n-1,1)}) = 1$.

Proof. Note that G is 2-transitive on Ω if and only if G has exactly two orbits on $\Omega \times \Omega$. However, the corresponding permutation module is isomorphic to $M_G^{(n-1,1)} \otimes M_G^{(n-1,1)}$. By Lemma 1.4, we now have that G is 2-transitive if and only if $\dim(M_G^{(n-1,1)} \otimes M_G^{(n-1,1)})^G = 2$. By Lemmas 1.6 and 1.1, this is equivalent to dim $(D^{(n-1,1)} \otimes D^{(n-1,1)})$ ^G = 1, which by self-duality of irreducible modules is equivalent to our claim.

2. 2*-homogeneous groups

The main result of this section is Theorem 2.5 which shows that the restriction of a simple $F\Sigma_n$ -module D of dimension > 1 to a 2^{*}-homogeneous subgroup is reducible. We will use a theorem of Kantor [12] (see also [4, 9.4B]) which describes 2*-homogeneous groups. Let $\Omega = \mathbb{F}_q$ be a finite field of order $q = r^e$ for a prime r. Let ${\rm Aut}_{\mathbb{F}_r}(\mathbb{F}_q)$ denote the Galois group, which is a cyclic group C_e of order e. Let $A\Sigma L_1(q)$ (resp. $ASL_1(q)$) be the group of all transformations of \mathbb{F}_q of the form $x \mapsto a^2x^{\sigma} + b$ (resp. $x \mapsto a^2x + b$) with $a \in \mathbb{F}_q^*, b \in \mathbb{F}_q$ and $\sigma \in \text{Aut}_{\mathbb{F}_r}(\mathbb{F}_q)$. These are permutation groups on the elements of \mathbb{F}_q .

Proposition 2.1. [12] *Let* G *be a 2*-homogeneous group.Then, up to permutation isomorphism,* $ASL_1(q) \le G \le A\Sigma L_1(q)$ *with* $q \equiv 3 \pmod{4}$ $q > 3$.

Let $R_n(m)$ denote the class of simple $F\mathcal{Z}_n$ -modules D such that for some *p*-regular partition $\lambda = (\lambda_1, \lambda_2, \ldots)$ with $\lambda_1 \geq n - m$, we have $D \cong D^{\lambda}$ or $D \cong D^{\lambda} \otimes$ sgn. We need the following results from [9] and the main results in [17],[18].

Proposition 2.2. [9, Theorem 7] *If* $n \ge 15$ *and D is a simple* $F\sum_{n}$ *-module, then either* $\dim D > \frac{1}{2}(n-1)(n-2)$ *or* $D \in R_n(2)$.

Proposition 2.3. [9, p.420]*If* $D \in R_n(2) \setminus R_n(1)$ then $\dim D \geq \frac{1}{2}n(n-5)$. *If* $D \in R_n(1)$ *then* dim $D \geq n-2$.

Proposition 2.4. [17], [18], [9, Theorem 6(i)] *If* $n \ge 7$ *and D is a simple* $F\Sigma_n$ -module, then either dim $D>n-1$ or $D\in R_n(1)$.

Proposition 2.5. *Let* G *be a* 2^* -homogeneous subgroup of Σ_n and D *be a simple* $F\Sigma_n$ -module with dim $D > 1$. Then the restriction D_G is reducible.

Proof. In view of Proposition 2.1 we may assume $G = A \Sigma L_1(q) < \Sigma_q$, $q \equiv 3 \pmod{4}$, and $q > 3$. In particular, $q \ge 7$ and $r > 2$. Let D_G be irreducible. Then

(1)
$$
\dim D \leq \sqrt{|G|} = \sqrt{q(q-1)e/2}.
$$

Moreover, $e = \log_{r} q < q - 5$ as $q \geq 7$ and $r > 2$. So

(2)
$$
\dim D < q\sqrt{(q-5)/2} \le \frac{1}{2}q(q-5).
$$

If $q = 7$ or $q = 11$ then $e = 1$ and we get a contradiction by (1) and Propositions 2.4, 2.3. Let $q \ge 15$. Then from (2) and Propositions 2.2, 2.3 we conclude that $D \in R_n(1)$, i.e. $D \cong D^{(n-1,1)}$ or $D \cong D^{(n-1,1)} \otimes \operatorname{sgn}$. If D_G is irreducible, we have by Schur's lemma

$$
1 = \dim \operatorname{End}_G(D_G) = \dim \operatorname{End}_G(D_G^{(n-1,1)}).
$$

Now, if p does not divide q then G is 2-transitive on \mathbb{F}_q by Lemma 1.8, giving a contradiction. Otherwise the restriction of D to $\mathbb{F}_q \triangleleft G$ is semisimple by Clifford's theorem. But the trivial module is the only simple module over the group \mathbb{F}_q , as \mathbb{F}_q is a p-group. Hence \mathbb{F}_q acts trivially on D. This contradicts the fact that D is faithful over Σ_q .

3. Main Results

Denote by σ the transposition $(n - 1, n) \in \Sigma_n$. We will write $\Sigma_{n-2,2}$ for the Young subgroup $\Sigma_{(n-2,2)} \cong \Sigma_{n-2} \times \Sigma_2$. For an $F\Sigma_n$ -module V and a homomorphism $\theta \in \text{End}_{\Sigma_{n-1}}(V \downarrow_{\Sigma_{n-1}})$ define a map $\hat{\theta}: V \to V$ by setting setting $\hat{\theta}(v) := \theta(v) + \sigma \theta(\sigma v) \quad (v \in V).$

$$
\ddot{\theta}(v) := \theta(v) + \sigma \theta(\sigma v) \quad (v \in V).
$$

Lemma 3.1. *Let* $p > 2$ *and* $n \geq 4$ *. Then the map* $\theta \mapsto \hat{\theta}$ *is an injective map from* $\text{End}_{\Sigma_{n-1}}(V\downarrow_{\Sigma_{n-1}})$ *to* $\text{End}_{\Sigma_{n-2,2}}(V\downarrow_{\Sigma_{n-2,2}})$.

Proof. It is routine that $\hat{\theta} \in \text{End}_{\Sigma_{n-2,2}}(V \downarrow_{\Sigma_{n-2,2}})$. Assume $\hat{\theta} = 0$. Then $\theta(\sigma v) = -\sigma\theta(v)$ for all $v \in V$. But θ is also an $F\mathcal{Z}_{n-1}$ -homomorphism. So

$$
\theta(v) = \theta((\sigma(1, n-1))^3 v) = -(\sigma(1, n-1))^3 \theta(v) = -\theta(v),
$$

whence $\theta(v)=0$ for any $v \in V$.

Lemma 3.2. *Let* $p > 2$ *, and W be a* $F\sum_{4}$ *-module with* $((1, 4) + (2, 3) (1, 3) - (2, 4)W = 0$. *Then* A_4 *acts trivially on W.*

Proof. By assumption we have $((1, 3) + (2, 4))v = ((1, 4) + (2, 3))v$ for all $v \in W$. Conjugating by $(2, 3)$ we get

(3)
$$
((1,2) + (3,4))v = ((1,3) + (2,4))v = ((1,4) + (2,3))v.
$$

The group algebra $F[\Sigma_2 \times \Sigma_2]$ is semisimple and has four irreducible modules: $\mathbf{1}_{\Sigma_2} \otimes \mathbf{1}_{\Sigma_2}$, $\mathbf{1}_{\Sigma_2} \otimes \mathbf{sgn}_{\Sigma_2}$, $\mathbf{sgn}_{\Sigma_2} \otimes \mathbf{1}_{\Sigma_2}$, and $\mathbf{sgn}_{\Sigma_2} \otimes \mathbf{sgn}_{\Sigma_2}$. We claim that only $1_{\Sigma_2} \otimes 1_{\Sigma_2}$ and $\overline{\text{sgn}}_{\Sigma_2} \otimes \overline{\text{sgn}}_{\Sigma_2}$ may appear in the restriction $W \downarrow_{\Sigma_2 \times \Sigma_2}$. Indeed, assume for example that $\mathbf{1}_{\Sigma_2} \otimes \mathbf{sgn}_{\Sigma_2}$ appears in this restriction. Pick a non-zero vector v in the corresponding isotypic component. Then $(1, 2)v = v$ and $(3, 4)v = -v$. So $(1, 2)(3, 4)v = -v$ and $((1,2) + (3,4))v = 0$. By (3), we have $(1,3)v = -(2,4)v$ and $(1, 4)v = -(2, 3)v$. Hence

(4)
$$
(1,3)(2,4)v = -v \text{ and } (1,4)(2,3)v = -v.
$$

But $(1, 2)(3, 4) = (1, 3)(2, 4)(1, 4)(2, 3)$. So (4) implies $(1, 2)(3, 4)v = v$, and we have arrived to a contradiction. The case of $\text{sgn}_{\Sigma_2} \otimes 1_{\Sigma_2}$ is considered similarly.

As the element $(1, 2)(3, 4)$ acts trvially on both $\mathbf{1}_{\Sigma_2} \otimes \mathbf{1}_{\Sigma_2}$ and sgn_{Σ_2} \otimes **sgn**_{Σ 2}, it must act trivially on W. By conjugation, we conclude that the whole Klein group

$$
H := \{1, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)\}
$$

acts trivially on W. As $(1,2) \equiv (3,4) \pmod{H}$ and $(2,3) \equiv (1,4)$ (mod H), the equation (3) implies $(1, 2)v = (2, 3)v$. Hence $(1, 2, 3)v = v$, and so A_4 acts trivially on W.

Theorem 3.3. Let $p > 2$ and $n \geq 4$. Assume that V is an $F\sum_{n}$ -module *such that the alternating group* $A_n < \Sigma_n$ *does not act trivially on V. Then*

$$
\dim \text{End}_{\Sigma_{n-1}}(V\downarrow_{\Sigma_{n-1}})<\dim \text{End}_{\Sigma_{n-2,2}}(V\downarrow_{\Sigma_{n-2,2}}).
$$

Proof. By Lemma 3.1 it is enough to demonstrate an endomorphism $\psi \in$ $\text{End}_{\Sigma_{n-2,2}}(V \downarrow_{\Sigma_{n-2,2}})$ which is not in the image of $\theta \mapsto \hat{\theta}$. Set $\psi(v) := \sigma v$, $v \in V$. Assume that $\psi = \hat{\theta}$ for some $\theta \in \text{End}_{\Sigma_{n-1}}(V \downarrow_{\Sigma_{n-1}})$. Then

(5)
$$
\theta(\sigma v) = v - \sigma \theta(v) \quad (v \in V).
$$

For $i = 1, 2, \ldots, n-2$ denote $\pi_i := (i, n-1)$ and $\tau_i := (i, n)$. Then, using (5) , we get

$$
\theta(\pi_i \sigma \pi_i v) = \pi_i \theta(\sigma \pi_i v) = \pi_i(\pi_i v - \sigma \theta(\pi_i v)) = v - \pi_i \sigma \pi_i \theta(v).
$$

Note that $\pi_i \sigma \pi_i = \tau_i$ so we have proved that

(6)
$$
\theta(\tau_i v) = v - \tau_i \theta(v), \quad i = 1, 2, ..., n-2 \quad (v \in V).
$$

Using (5), (6) and the equality $\pi_i = \tau_i \sigma \tau_i$, we get for any $v \in V$ and $1 \leq i \leq n-2$

$$
\pi_i \theta(v) = \theta(\pi_i v) = \theta(\tau_i \sigma \tau_i v) = \sigma \tau_i v - \tau_i \theta(\sigma \tau_i v) \n= \sigma \tau_i v - \tau_i(\tau_i v - \sigma \theta(\tau_i v)) = \sigma \tau_i v - v + \tau_i \sigma (v - \tau_i \theta(v)) \n= \sigma \tau_i v - v + \tau_i \sigma v - \tau_i \sigma \tau_i \theta(v) = \sigma \tau_i v - v + \tau_i \sigma v - \pi_i \theta(v).
$$

Solving for $\pi_i \theta(v)$ and multiplying by π_i , we find

$$
(7)\theta(v) = (1/2)(\sigma v - \tau_i \sigma \tau_i v + \tau_i v), \quad i = 1, 2, \dots, n-2 \quad (v \in V).
$$

Taking $i = 1$ and $i = 2$, we have

$$
(1/2)(\sigma v - \tau_1 \sigma \tau_1 v + \tau_1 v) = (1/2)(\sigma v - \tau_2 \sigma \tau_2 v + \tau_2 v) \quad (v \in V).
$$

Conjugating by $(3, n - 1)(4, n)$, we get

$$
((1,4) + (2,3) - (1,3) - (2,4))V = 0.
$$

By Lemma 3.2, the natural subgroup $A_4 < \sum_n$ acts trivially on V, which implies by conjugation that A_n acts trivially on V, giving a contradiction. \Box

Now we study the case $p = 2$. If $n = 2l$ is even we write S for the irreducible module $D^{(l+1,l-1)}$ and if $n = 2l + 1$ is odd we write S for $D^{(l+1,l)}$. We call S the *spinor* representation of Σ_n . The following result is proved in $[15]$, see also $[5]$ for a generalization.

Lemma 3.4. *Let* $p = 2$, $n > 3$, and D be an irreducible $F\sum_{n}$ -module *different from the spinor representation* S. Then for any 3*-cycle* $\gamma \in \Sigma_n$ *there exists a non-zero vector* $v \in D$ *such that* $\gamma v = v$ *.*

Proof. It is proved in [15] that the only irreducible representations of the alternating group A_n for which 3-cycles act fixed-point-freely come from the restriction of the spinor module to A_n . This implies the result as these irreducible A_n -modules do not appear in the restriction of D^{λ} to A_n , unless $D^{\lambda} \cong S$. $D^{\lambda} \cong S.$

Lemma 3.5. *Let* $p = 2$, $n \geq 3$, $b, c \in F$, and D *be an irreducible* $F\Sigma_n$ *module. If* $b \neq 0$ *and*

 $(b(1, 2) + c(1, 2, 3) + c(1, 3, 2) + c)v = 0$

for all $v \in D$ *then* D *is the trivial module* $\mathbf{1}_{\Sigma_n}$ *.*

Proof. By conjugating with (2, 3) we also get

$$
(b(1,3) + c(1,2,3) + c(1,3,2) + c)D = 0,
$$

so $(1, 2)v = (1, 3)v$, hence $(1, 2, 3)v = v$ for all $v \in D$. By conjugating we also get $(1, 3, 2)v = v$ for any v. Now it follows from the assumption that $(1, 2)$ acts trivially on D, whence any transposition acts trivially.

Theorem 3.6. *Let* $p = 2$, $n \geq 4$, and D *be a non-trivial irreducible* $F\Sigma_{n}$ *module.Then*

$$
\dim \text{End}_{\Sigma_{n-1}}(D \downarrow_{\Sigma_{n-1}}) < \dim \text{End}_{\Sigma_{n-2,2}}(D \downarrow_{\Sigma_{n-2,2}}),
$$

unless n *is odd and* D *is the spinor module* S*.*

Proof. We first note that the kernel of the linear map $\theta \mapsto \hat{\theta}$ defined in the beginning of this section is 1-dimensional and is spanned by the identity map id_D. Indeed, $\theta(v)=0$ is equivalent to $\theta(\sigma v) = \sigma \theta(v)$. But θ is also an $F\Sigma_{n-1}$ -homomorphism. Hence θ is an $F\Sigma_n$ -endomorphism of D so it must be proportional to id_D , by Schur's lemma.

Let $id_D, \theta_1, \ldots, \theta_k$ be a basis of the vector space $\text{End}_{\Sigma_{n-1}}(D \downarrow_{\Sigma_{n-1}})$. Define a map $\psi : D \to D$ by setting $\psi(v) = \sigma v, v \in D$. Then ψ is an element of $\text{End}_{\Sigma_{n-2,2}}(D\downarrow_{\Sigma_{n-2,2}})$. We claim that

$$
\hat{\theta_1}
$$
, $\hat{\theta_2}$, ..., $\hat{\theta_k}$, id_D, ψ

are linearly independent elements of End_{$\Sigma_{n-2,2}(D\downarrow_{\Sigma_{n-2,2}})$. This of course} implies the theorem.

A linear dependence between our endomorphisms looks like

(8)
$$
a_1\hat{\theta_1} + a_2\hat{\theta_2} + \ldots + a_k\hat{\theta_k} + b \mathrm{id}_D + c\psi \equiv 0
$$

with $a_i, b, c \in F$. We may assume that $a_i \neq 0$ for some i, since otherwise we would get a linear dependence between id_D and ψ , which is only possible if D is trivial. Let $\theta := a_1 \theta_1 + \ldots + a_k \theta_k$. Then $a_1 \hat{\theta}_1 + \ldots + a_k \hat{\theta}_k = \hat{\theta}$, and we may rewrite (8) as

$$
\hat{\theta} + b \operatorname{id}_D + c\psi \equiv 0.
$$

By the first paragraph of the proof, we have $(b, c) \neq (0, 0)$. The last equality is equivalent to

$$
\theta(\sigma v) = \sigma \theta(v) + b\sigma v + cv. \qquad (v \in D)
$$

Let $\pi_i = (i, n-1), \tau_i = (i, n) \in \Sigma_n$. Then $\tau_i = \pi_i \sigma \pi_i$. So for any $v \in D$ we have

$$
\theta(\tau_i v) = \theta(\pi_i \sigma \pi_i v) = \pi_i \theta(\sigma \pi_i v) = \pi_i(\sigma \theta(\pi_i v) + b \sigma \pi_i v + c \pi_i v)
$$

= $\pi_i \sigma \theta(\pi_i v) + b \pi_i \sigma \pi_i v + c v = \tau_i \theta(v) + b \tau_i v + c v.$ $(v \in D)$

As $\pi_i = \tau_i \sigma \tau_i$ we also have for any $v \in D$

$$
\pi_i \theta(v) = \theta(\pi_i v) = \theta(\tau_i \sigma \tau_i v) = \tau_i \theta(\sigma \tau_i v) + b\tau_i \sigma \tau_i v + c\sigma \tau_i v
$$

\n
$$
= \tau_i(\sigma \theta(\tau_i v) + b\sigma \tau_i v + c\tau_i v) + b\tau_i \sigma \tau_i v + c\sigma \tau_i v
$$

\n
$$
= \tau_i \sigma \theta(\tau_i v) + b\tau_i \sigma \tau_i v + c\tau_i \sigma \tau_i v + c\sigma \tau_i v
$$

\n
$$
= \tau_i \sigma(\tau_i \theta(v) + b\tau_i v + c\tau_i \sigma v + c\tau_i v)
$$

\n
$$
= \pi_i \theta(v) + b\pi_i v + c\tau_i \sigma v + c\tau_i v,
$$

whence $b\pi_i v + c(\tau_i \sigma + \sigma \tau_i + 1)v = 0$. In particular, $c \neq 0$. If $b \neq 0$ we have

$$
(b\pi_i + c\tau_i \sigma + c\sigma \tau_i + c)v = 0. \qquad (v \in D)
$$

Conjugating we get

 $(b(1, 2) + c(1, 2, 3) + c(1, 3, 2) + c)v = 0.$ $(v \in D)$

Lemma 3.5 now leads to a contradiction as $D \not\cong \mathbf{1}_{\Sigma_n}$. So we may assume that $b = 0$. Then we get the identity

$$
(\tau_i \sigma + \sigma \tau_i + 1)v = 0. \qquad (v \in D)
$$

But $\tau_i \sigma =: \gamma$ is a 3-cycle and $\sigma \tau_i = \gamma^2$. So it suffices to show that there is a non-zero $v \in D$ such that $\gamma v = v$. But this follows from Lemma 3.4, provided $D \not\cong S$. Finally if $D \cong S$ and $n = 2l$ is even, then $S = D^{(l+1,l-1)}$. By [14], $D^{(l+1,l-1)}\downarrow_{\Sigma_{n-1}} \cong D^{(l,l-1)}$ and $D^{(l,l-1)}\downarrow_{\Sigma_{n-2,2}}$ is reducible (and self-dual). So the Hom-spaces under consideration have dimensions 1 and 2, and the theorem is true. \Box

Corollary 3.7. Let $n \geq 4$ and D be an irreducible $F\Sigma_n$ -module with $\dim D > 1$. If $p = 2$ and n is odd, assume that $D \not\cong S$. Then

$$
\dim \operatorname{Hom}_{\Sigma_n}(M^{(n-2,2)}, \operatorname{End}(D)) > \dim \operatorname{Hom}_{\Sigma_n}(M^{(n-1,1)}, \operatorname{End}(D)).
$$

Proof. Follows from Theorems 3.3, 3.6 and the isomorphisms

$$
\mathrm{Hom}_{\Sigma_n}(M^{\nu}, \mathrm{End}(D)) \cong \mathrm{Hom}_{\Sigma_{\nu}}(\mathbf{1}_{\Sigma_{\lambda}}, \mathrm{End}(D)) \cong \mathrm{End}_{\Sigma_{\lambda}}(D\!\downarrow_{\Sigma_{\lambda}}).
$$

Lemma 3.8. *Let* $n \geq 4$ *and D be an irreducible* $F\sum_{n}$ *-module with* dim *D* > 1. If $p = 2$, assume additionally that n is odd and $D \not\cong S$. Then $\text{End}(D)$ *contains either* $Y^{(n-2,2)}$ *or* $(S^{(n-2,2)})^*$ *or both as submodules.*

 \Box

Proof. Assume first that $p > 2$, $n \not\equiv 1, 2 \pmod{p}$ or $p = 2, n \equiv 3$ (mod 4). Then the result follows from Lemmas 1.2(i), 1.3(ii) and Corollary 3.7. Now let $p > 2$ and $n \equiv 1 \pmod{p}$. Then $M^{(n-1,1)}$ splits as $1 \oplus$ $D^{(n-1,1)}$. By Lemma 1.2(ii), there is a surjection $M^{(n-2,2)} \to M^{(n-1,1)}$, and by Corollary 3.7, there must exist a homomorphism $\theta : M^{(n-2,2)} \rightarrow$ $\text{End}(D)$ which does not factor through this surjection. If the restriction $\theta|Y^{(n-2,2)}$ is injective then $Y^{(n-2,2)}$ is a submodule of End(D). Otherwise, in view of Lemma 1.2(ii), the kernel of $\theta|Y^{(n-2,2)}$ is **1**. But $Y^{(n-2,2)}/1 \cong$ $(S^{(n-2,2)})^*$, so $(S^{(n-2,2)})^*$ embeds into End(D). The cases $p > 2$, $n \equiv 2$ (mod p) and $p = 2$, $n \equiv 1 \pmod{4}$ are considered similarly to the case $n \equiv 1 \pmod{p}$ using 1.2(iii), 1.3(i) and 3.7.

Recall that d_1 and d_2 denote the number of G-orbits on Ω and the 2subsets of Ω , respectively.

Theorem 3.9. *Let* $n \geq 4$, $G \leq \sum_{n}$ *be a subgroup, and D be a simple* $F\Sigma_n$ -module with dim $D > 1$. If $p = 2$, assume additionally that n is odd and $D \not\cong S$. Then the restriction D_G is reducible whenever $d_1 < d_2$.

Proof. Suppose D_G is irreducible and $d_1 < d_2$. Then $\text{End}_G(D_G) \cong \text{End}(D)^G$ is 1-dimensional by Schur's lemma. We consider the following two cases.

Case 1: $p > 2$, $n \not\equiv 1 \pmod{p}$ or $p = 2$, $n \equiv 3 \pmod{4}$. Then by Lemmas 1.2(i),(iii), 1.3(ii) and 3.8, either $\mathbf{1}_{\Sigma_n} \oplus Y^{(n-2,2)} \subseteq \text{End}(D)$ or $\mathbf{1}_{\Sigma_n} \oplus (S^{(n-2,2)})^* \subseteq \text{End}(D)$ (or both). By Lemma 1.7, $\text{End}(D)^G$ is at least 2-dimensional, giving a contradiction.

Case 2: $p > 2$, $n \equiv 1 \pmod{p}$ or $p = 2$, $n \equiv 1 \pmod{4}$. By Lemma 3.8 again, either $Y^{(n-2,2)} \subseteq \text{End}(D)$ or $(S^{(n-2,2)})^* \subseteq \text{End}(D)$. In the first case Lemma 1.7 implies that $\text{End}(D)^G$ is at least 2-dimensional. In the second case $(S^{(n-2,2)})^* = D^{(n-2,2)}|\mathbf{1}$ implies that $(S^{(n-2,2)})^* \oplus \mathbf{1}_{\Sigma_n} \subseteq$ $\text{End}(D)$. Now apply Lemma 1.7 as in Case 1.

Theorem 3.10. *Let* $n \geq 4$, $G \leq \sum_{n}$ *be a subgroup, and D be a simple* $F\Sigma_n$ -module with dim $D > 1$. If $p = 2$, assume additionally that n is odd *and* $D \not\cong S$ *. If the restriction* D_G *is irreducible then either* $G \leq \sum_{n=1}^{\infty}$ *or* G *is* 2*-transitive.*

Proof. Let D_G be irreducible. Assume first that G is intransitive. Then, up to a conjugation, G is contained in a standard Young subgroup $\Sigma_{n-k} \times \Sigma_k$ for some $1 \leq k \leq n/2$. If $k > 1$, then $d_1 = 2 < d_2 = 3$ with respect to the action of $\Sigma_{n-k} \times \Sigma_k$. Hence $D \downarrow_{\Sigma_{n-k} \times \Sigma_k}$ is reducible by Theorem 3.9 applied to the subgroup $\Sigma_{n-k} \times \Sigma_k$. This gives a contradiction. Therefore $k = 1$ and so $G \leq \sum_{n=1}^{\infty}$. We may now assume that G is transitive. If G is not 2-homogeneous, then $d_1 = 1 < d_2$ and we get a contradiction by Theorem 3.9. Thus, G is 2-homogeneous. Now, if G is not 2-transitive apply Theorem 2.5. \Box

Finally, observe that the Main Theorem is a special case of Theorem 3.10.

References

- 1. M. Aschbacher,On the maximal subgroups of the finite classical groups, Invent. Math. **76** (1984),469–514
- 2. C. Bessenrodt and J.B. Olsson,On residue symbols and the Mullineux conjecture, J. Algebraic Combin. **7** (1998),227–251
- 3. J. Brundan and A.S. Kleshchev, Representations of the symmetric group which are irreducible over subgroups, preprint, University of Oregon, 1999
- 4. J. D. Dixon and B. Mortimer,Permutation groups. Graduate Texts in Mathematics, 163, Springer-Verlag, New York, 1996
- 5. P. Fleischmann, W. Lempken, A.E. Zalesskii, Linear groups over $GF(2^k)$ generated by a conjugacy class of a fixed point free element of order 3, in preparation
- 6. B. Ford,Irreducible restrictions of representations of the symmetric groups, Bull. London Math. Soc. **27** (1995),453–459
- 7. B. Ford and A. Kleshchev,A proof of the Mullineux Conjecture, Math. Z. **226** (1997), 267–308
- 8. G. D. James, The Representation Theory of the Symmetric Groups, volume 682 of Lecture Notes in Mathematics, Springer, New York/Heidelberg/Berlin, 1978
- 9. G. D. James,On the minimal dimensions of irreducible representations of symmetric groups, Math. Proc. Camb. Phil. Soc. 94 (1983), 417–424
- 10. G. James and A. Kerber, The representation theory of the symmetric group, Addison-Wesley, London, 1981
- 11. J. C. Jantzen and G. M. Seitz, On the representation theory of the symmetric groups, Proc. London Math. Soc. (3) **65** (1992),475–504
- 12. W. M. Kantor, k-homogeneous groups, Math. Z. 124 (1972), 261–265
- 13. P. Kleidman and M. Liebeck, The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series,129,Cambridge,Cambridge University Press
- 14. A. S. Kleshchev,On restrictions of irreducible modular representations of semisimple algebraic groups and symmetric groups to some natural subgroups,I Proc. London Math. Soc. (3) 69 (1994), 515–540
- 15. G. Mullineux, Representations of A_n in characteristic 2 with the 3-cycles fixed-pointfree, Quart. J. Math. Oxford (2) **29** (1978), 199–212
- 16. J. Saxl. The complex characters of the symmetric groups that remain irreducible in subgroups, J. Algebra **111** (1987), 210–219
- 17. A. Wagner, On the faithful linear representations of least degree of S_n and A_n over a field of characteristic 2, Math. Z. **151** (1976), 127–137
- 18. A. Wagner, The faithful linear representations of least degree of S_n and A_n over a field of odd characteristic, Math. Z. **154** (1977), 103-114