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Introduction

Let F' be an algebraically closed field of characterigtic- 0 and X, =
Sym({2) be the symmetric group on anelement sef?2. We are interested
in the following

Problem. For anyn describe all pair$G, D) whereG < X, is a subgroup
andD is a simpleF'X,-module of dimension greater thdarsuch that the
restrictionDg; is irreducible.

If the characteristic of’ is zero, this problem has been solved by Saxl
[16]. Animportant feature of SaxI's result is that a grakips in the problem
above is either 2-transitive or fixes a point, i.e. is contained in sbineg .

The cas&r < X, _; canthen be settled using the branching rule and induc-
tion. On the other hand, an explicit list éftransitive groups (fok > 2)

is available, which can be used to complete the proof in characteristic zero,
see [16] for more details.

From now on we assume that> 0. In this case the problem is impor-
tant for determining maximal subgroups of finite classical groups [1],[13].
However, the situation is now more complicated. For example, to determine
the pairg G, D) as above witlz = A,, one needs the Mullineux conjecture
[71, [2].

If G is intransitive then, up to a conjugation, it is contained in a standard
Young subgroup of the formv,,_, x X%. The irreducible restrictions from
X, to X, _1 have been described in [14], see also [11], [6]. In[11] itis also
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shown forp > 2 that the Young subgroups,, , x Xy with1l <k <n—1

never act irreducibly on a simplEX’,,-module of dimension- 1 (this fact

is also proved in this paper, see Theorem 3.10). This reduces the intransitive
case to the subgroups &f,_1. The main result here is

Main Theorem. Letp > 2,n > 4, G < X, andD be a simplef'X,,-
module withdim D > 1. If the restrictionD¢ is irreducible then either
G < X,_1 or G is 2-transitive onf?.

We refer the reader to Theorem 3.10 for a partial result in theycase.

Forp > 2 the problem above is thus reduced to 2-transitive groups. This
turns out to be a very important step in a complete solution of the problem,
which is obtained in [3] (for the cage> 3).

1. Preliminaries

Let 2 be a finite set with{2| = n, andk < n/2. A groupG < Sym(£2)
is calledk-homogeneous(resp.k-transitive ) on £2 if G acts transitively
on the unordered (resp. orderddelement subsets ab. Moreover,G is
calledk*-homogeneouson {2 if G is k-homogeneous but néttransitive
on{2.

Let F' be an algebraically closed field of characterigtic- 0, G be
a group, andV be anFG-module. Denote by“ the space of37-fixed
points inV. We writeV = Vj| - - - |V}, if V admits auniquefiltration with
sections isomorphic t&;,1 < j < k, counted from bottom to top. In
particular, if the sections are irreducible this means fhais uniserial.

If H < G is a subgroup, theiWy or V| denotes the restriction dff
to H. If W is an F H-module theniv’1¢ denotes the induced module. If
V = V* asFG-modules theV; = (V)* asF H-modules. We lel=1;
denote the trivial representation@f If V andWW areF'G-modules we write
Homg (V, W) (respHom(V, W)) for the space of ali"'G-homomorphisms
(resp.F-linear maps) fromV to W. Note thatHom (V, W) is anF'G-module
with Homg(V, W) = Hom(V, W)%.

Basic facts on the representation theory of the symmetric group can be
found in [8]. ForA = (A4, ..., A, ), a composition ofi with non-zero parts,
we letXy = X, x --- x X denote the corresponding Young subgroup
of ¥,. We may identify, _; with X,,_; ;). We letY* $* and M* =
(1&”2” denote the Young, Specht, and permutation modules labelled by
\, respectively. If\ is p-regular we writeD* for the unique irreducible
quotient of S*. It is well known thatM* Y, and D* are all self-dual
FX,-modules. Lesgn denote the sign representation)df.

We will need the structure of the permutation modué§*—11) and
M™=22) The proof of the next three lemmas is obtained by applying [8,
17.17, 24.15] and the ‘Nakayama Conjecture’ [10, 6.1.21, 2.7.41].
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Lemma 1.1. The modulél/("~11) is isomorphic taD ™) ¢ 1if n 2 0

(mod p), and1|D(~1D|1 = §(r=1D) |1 > 1|(S(»=1.D)* otherwise.

Lemma 1.2. Letp > 2 andn > 4.

() 1fn#1,2 (modp)thenM (22 =~ yn-22) g prin—11) where
y (n=2,2) o~ S(n—2,2) ~ p(n-22)

(i) fn =1 (modp)thenM=22) = yr=-22) ¢ pr-1L1) where
y (n=2,2) o~ 1|D(n—2,2)|1 ~ 1|(s(n—272))*.

(i) fn=2 (mod p)thenM (22 =y (=22 g1 where

y (n=22) o p(n—11) |D(n—2,2) |D(n—1,1) o~ D(n—1,1)|(s(n—2,2))*.
We will only need the casg = 2 whenn is odd:

Lemma 1.3. Letp = 2 andn > 4 be odd.

() Ifn =1 (mod4)thenM=22 = y(®-22) g pr-1L1) where
Yy (n=22) o 1|D(n—2,2)|1 o~ 1|(S(n—2,2))*_
i) Ifn =3 (mod4) then M\"==2) = Y= ¢ M\"~HY where
i If h (n—2,2) (n—2,2) (n=1,1) \wh
vy (n=22) o0 p(n—22)

The following easy result is well known.

Lemma 1.4. Let X be aG-set, andM be the corresponding permutation
FG-module. Therlim M equals the number @-orbits onX.

Proof. It suffices to consider the case whe¥eis transitive onf2. Then
M = (1)1 whereH is a point stabilizer. Butim Hom¢(1¢, (15)1¢) =
dim Hompy (147, 1) = 1 by Frobenius reciprocity. O

For1 < k < n denote byd, the number ofz-orbits on the unordered
k-element subsets @P. The following lemma characterizés in terms of
the corresponding permutation module.

Lemmalb.Letl < k < nandG < X, be a subgroup. Thedim
(M(nfk,k))G = d.

Proof. Note thatMé"*k’k) is the permutatio’G-module on thé:-element

subsets. Now we can use Lemma 1.4. O
Lemma1.6.1f G < ¥, andn # 0 (mod p) thendim(D"~1D)& =
di — 1.

Proof. This follows from Lemmas 1.1 and 1.5. O
Lemma 1l.7. Letn > 4,G < X, andn be odd ifp = 2. Supposel; < ds.
Then(Y ("=22)¢ and((S(~22)*)% are non-zero. Moreover jf > 2 and
n=1 (modp),orp=2andn=1 (mod 4),thendim(Y "~22)¢ >
2.
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Proof. By Lemmas 1.2 and 1.3 (or [8, 17.17]), there is an exact sequence
0 — M(n—l,l) N M(n—2,2) N (S(n—Q,Q))* N 0’

which implies that((S(~22)*)¢ =£ 0, by assumption and Lemma 1.5.
By 1.2(i) and 1.3(ii),Y "2 = (§("=22)* unlessp > 2, n = 1,2
(modp)orp=2,n=1 (mod4).Ifp>2andn =2 (mod p)then
by Lemma 1.2(iii),dim(Y (»=22)¢ = dy — 1 > d; > 0. In the remaining
cases, using Lemma 1.6, we géin(Y ("~22)¢ = d, — (d; —1) > 2. O

Lemma 1.8. LetG < X, be transitive anch # 0 (mod p). ThenG is
2-transitive if and only iflim EndG(D(G”_LU) =1

Proof. Note that7 is 2-transitive or1? if and only if G has exactly two orbits
on {2 x (2. However, the corresponding permutation module is isomorphic

to Mé"_l’l) ® Mé”_l’l). By Lemma 1.4, we now have thétis 2-transitive

if and only if dim(Mé"_l’l) ® Mg‘_l’l))c’ = 2. By Lemmas 1.6 and 1.1,
this is equivalent telim (D™~ 11 @ D(»~1.D)& = 1, which by self-duality
of irreducible modules is equivalent to our claim. O

2. 2*-homogeneous groups

The main result of this section is Theorem 2.5 which shows that the restric-
tion of a simpleF'X,,-module D of dimension> 1 to a 2*-homogeneous
subgroup is reducible. We will use a theorem of Kantor [12] (see also [4,
9.4B]) which describes 2*-homogeneous groups et [, be afinite field

of orderg = ¢ for a primer. Let Auty, (F,) denote the Galois group, which

is a cyclic groupC, of ordere. Let AX' L (q) (resp.ASL1(q)) be the group

of all transformations of, of the formz + a2z + b (resp.z +— a®z + b)

with a € F,b € F, ando € Autp, (F,). These are permutation groups on
the elements aof,.

Proposition 2.1. [12] Let G be a 2*-homogeneous group. Then, up to per-
mutation isomorphismdSL;(q) < G < A¥Li(q) withg =3 (mod 4)
q> 3.

Let R,,(m) denote the class of simplEX,,-modulesD such that for
somep-regular partition\ = (A1, Ae,...) with A\; > n — m, we have
D = D* or D = D* ® sgn. We need the following results from [9] and
the main results in [17],[18].

Proposition 2.2. [9, Theorem 7]f n > 15and D is a simpleF’X,,-module,
then eitherdim D > J(n — 1)(n — 2) or D € R,(2).
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Proposition 2.3. [9, p.420]If D € R,,(2)\R,(1)thendim D > In(n—5).
If D € R,(1) thendim D > n — 2.

Proposition 2.4. [17], [18], [9, Theorem 6()]If n > 7 and D is a simple
FX,-module, then eithetim D > n —10or D € R,(1).

Proposition 2.5. LetG be a 2*-homogeneous subgroupXf and D be a
simpleF'X,,-module withdim D > 1. Then the restrictiorD¢ is reducible.

Proof. In view of Proposition 2.1 we may assurie= AX'L(q) < X,
g =3 (mod 4), andg > 3. In particular,q > 7 andr > 2. Let D be
irreducible. Then

(1) dim D < /|G| = V/q(q — 1)e/2.

Moreover,e = log, ¢ < ¢ —5asq > 7andr > 2. So

@ dimD < gv/{a~5)/2 < 34(a ~5)

If ¢ = 7o0rq = 11 thene = 1 and we get a contradiction by (1) and
Propositions 2.4, 2.3. Let > 15. Then from (2) and Propositions 2.2, 2.3
we conclude thaD € R, (1),i.e. D = D11 or D = D("~1D) @ sgn .

If Dg isirreducible, we have by Schur’s lemma

1 = dimEndg(Dg) = dim Endg (D, po=h 1))

Now, if p does not dividg thend' is 2-transitive orf', by Lemma 1.8, giving

a contradiction. Otherwise the restrictionfto F, <1 G is semisimple by
Clifford’s theorem. But the trivial module is the only simple module over the
groupkF,, aslF, is ap-group. Hencér, acts trivially onD. This contradicts
the fact thatD is faithful over,. 0

3. Main Results

Denote byo the transpositiortn — 1,n) € X,. We will write X, _5 5 for
the Young subgroupy,,_, 2y = X, o x Xs. For anF'X;,-moduleV and

a homomorphisn® € Endy, ,(Vly, ) define a ma@ : V — V by
setting

O(v) :=0(v) +ob(ov) (veV).
Lemma 3.1. Letp > 2 andn > 4. Then the mag — 6 is an injective map
fromEnds, ,(Vl]y )t0Ends, ,,(Vis

n72,2)'

Proof. Itis routine that) € Endy, _,,(Vis, ,,). Assumed = 0. Then
O(ov) = —of(v) for all v € V. But @ is also anF'X,,_1-homomorphism.

So
0(v) = 0((a(1,n = 1))*v) = —(a(1,n — 1))*0(v) = —0(v),
whenced(v) = 0 for anyv € V. 0
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Lemma 3.2. Letp > 2, andW be aF X;-module with((1,4) + (2,3) —
(1,3) — (2,4))W = 0. ThenA, acts trivially onTV.

Proof. By assumption we hav1,3) + (2,4))v = ((1,4) + (2,3))v for
all v € W. Conjugating by(2, 3) we get
B  (1,2)+(3,4))v=((1,3)+(2,4))v = ((1,4) + (2,3))v.

The group algebr&’[ Yy x X5] is semisimple and has four irreducible mod-
ules:1y, ® 1yx,, 1y, ® sgny,, sgny, ¥1yx,, andsgny, @sgny, . We
claim that onlyl s, ® 15, andsgny, ® sgny, may appear in the restric-
tion Wiy, . x,. Indeed, assume for example thiat, ® sgny,, appears
in this restriction. Pick a non-zero vectorin the corresponding isotypic
component. Theltl, 2)v = v and(3,4)v = —v. S0(1,2)(3,4)v = —v

and ((1,2) + (3,4))v = 0. By (3), we have(1,3)v = —(2,4)v and
(1,4)v = —(2,3)v. Hence
4 (1,3)(2,4)v =—v and (1,4)(2,3)v = —v.

But (1,2)(3,4) = (1,3)(2,4)(1,4)(2, 3). So (4) implieg(1,2)(3,4)v = v,
and we have arrived to a contradiction. The casegefy,, ®15, is consid-
ered similarly.

As the elementl, 2)(3,4) acts trvially on bothl s, ® 15, andsgny;,
®sgny, , it must act trivially onl¥. By conjugation, we conclude that the
whole Klein group

H = {1, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)}

acts trivially onW. As (1,2) = (3,4) (mod H) and(2,3) = (1,4
(mod H), the equation (3) implie§l, 2)v = (2, 3)v. Hence(1, 2, 3)v = v,
and soA, acts trivially onW. O

Theorem 3.3. Letp > 2 andn > 4. Assume that is an F'X,,-module
such that the alternating groug,, < X, does not act trivially or/. Then

dimEndy, ,(Vlg, ) <dimEnds, ,,(Vig,_,,)

Proof. By Lemma 3.1 it is enough to demonstrate an endomorphism
Endy, ,,(Vis,_,,) whichis notinthe image af — 6. Sety(v) := ov,

v € V. Assume that) = 6 for somed € Endy, ,(Vly ). Then

(5) O(ov) =v—00(v) (veV).
Fori =1,2,...,n—2denoter; := (i,n—1) andr; := (i,n). Then, using
(5), we get

O(miomiv) = mif(omv) = mi(mv — 00(mv)) = v — miomH(v).
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Note thatr;om; = 7; SO we have proved that
(6) O(riv) =v—70(v), i=12,....n—2 (veV).

Using (5), (6) and the equality; = 7,07, we get for anyv € V and
1<i<n-2

mif(v) = 0(mv) = 0(romv) = orv — 1;0(0TV)
= orv — 7(Tiv — 00(Tv)) = oTv — v + T (v — T0(v))
=0TV — v + Tiov — T;0T;0(v) = 0TV — v + Ti0v — W0(v).

Solving form;0(v) and multiplying byr;, we find
(MO(v) = (1/2)(ov — moTiv +Tv), i=1,2,....n—2 (veV).
Takingi = 1 and: = 2, we have
(1/2)(cv — miomiv 4+ Tv) = (1/2)(0v — 72020 + T20)  (V E V).
Conjugating by(3,n — 1)(4,n), we get
((1,4) +(2,3) — (1,3) — (2,4))V =0.

By Lemma 3.2, the natural subgroufy < X, acts trivially onV, which
implies by conjugation thaf,, acts trivially onV, giving a contradictiond

Now we study the casp = 2. If n = 2l is even we writeS for the
irreducible moduleD(+11~1) and ifn = 21 + 1 is odd we writeS for
DU+LD "We callS thespinorrepresentation af,,. The following result is
proved in [15], see also [5] for a generalization.

Lemma3.4. Letp = 2, n > 3, and D be an irreducibleF'X,,-module
different from the spinor representatigh Then for any3-cycley € X,
there exists a non-zero vectore D such thatyv = v.

Proof. It is proved in [15] that the only irreducible representations of the
alternating groupd,, for which 3-cycles act fixed-point-freely come from
the restriction of the spinor module t,. This implies the result as these
irreducibleA,,-modules do not appear in the restriction/af to A4,,, unless
D xS, O

Lemma 3.5. Letp = 2, n > 3, b,c € F, and D be an irreduciblef’ X, -
module. Ifb # 0 and

(b(1,2) +¢(1,2,3) + ¢(1,3,2) + c)v =0

for all v € D thenD is the trivial modulel 5, .
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Proof. By conjugating with(2, 3) we also get
(0(1,3) +¢(1,2,3) + ¢(1,3,2) + ¢)D =0,

so(1,2)v = (1,3)v, hence(1,2,3)v = v forallv € D. By conjugating we
also get(1, 3,2)v = v for anywv. Now it follows from the assumption that
(1,2) acts trivially onD, whence any transposition acts trivially. O

Theorem 3.6. Letp = 2, n > 4, and D be a non-trivial irreduciblef’ X, , -
module. Then

dimEndy, ,(Dly, ) <dimEndg, ,,(Dls, _,,),
unlessn is odd andD is the spinor modulé.

Proof. We first note that the kernel of the linear map> 4 defined in the
beginning of this section i$-dimensional and is spanned by the identity
mapidp. Indeedf(v) = 0 is equivalent td(ov) = of(v). Butf is also
an 'Y, _1-homomorphism. Hencgis an F'X,,-endomorphism of) so it
must be proportional talp, by Schur’s lemma.
Letidp,01,...,0; be a basis of the vector spaeds, ,(Dly, ).

Define a map) : D — D by settingy(v) = ov, v € D. Then is an
element oftndy, ,,(Dly, ,,).- We claim that

éla é?a R ék’a ide d)

are linearly independent elementsiofdy, ,,(Dly, ,,). This of course
implies the theorem.
A linear dependence between our endomorphisms looks like

(8) alél+a2é2+...+akék+bidp+c¢EO

with a;, b, c € F. We may assume that # 0 for somei, since otherwise we
would get a linear dependence betwéép and, which is only possible
if Dis trivial. Letf := a1601 + ... + apf. Thena161 + ... + apbp = 0,
and we may rewrite (8) as

0+ bidp + cyp = 0.

By the first paragraph of the proof, we haec) # (0,0). The last equality
is equivalent to

f(ov) = 06(v) + bov + cv. (ve D)

Letm; = (i,n — 1), , = (i,n) € X,. Thenr; = m;om;. So for anyv € D
we have

0(1iv) = O(mjomv) = mif(omv) = m;(00(mv) + bomv + cmiv)
= mio0(mv) + briomv + cv = 7,0(v) + bryv + cv. (ve D)



Representations of the symmetric group 107

As m; = 1;07; we also have for any € D

m0(v) = 0(mv) = O(1i0mv) = 1,0(0TV) + bTjoTV + coTivV
= 7;(00(Tv) + boT;v + cTv) + brioTV 4+ coTv
= 1;,00(T;v) + brioTiv 4+ cv + bryoTv + coTv
= 10(1i0(v) + briv + cv) + cv + coTv

= m;0(v) + bmv + cTio0v + cv + coTv,

whencebr;v + ¢(1;0 + o1; + 1)v = 0. In particular,c # 0. If b # 0 we
have

(bm; + crio + comi + ¢)v = 0. (ve D)
Conjugating we get
(b(1,2) +¢(1,2,3) +¢(1,3,2) + c)v = 0. (veD)

Lemma 3.5 now leads to a contradiction/as® 15, . So we may assume
thatb = 0. Then we get the identity

(ric+ o1 +1)v=0. (ve D)

But 7,0 =: v is a3-cycle andor; = 2. So it suffices to show that there
is a non-zeraw € D such thatyv = v. But this follows from Lemma 3.4,
providedD 2¢ S. Finally if D = S andn = 2lis even, thers = D{(+1i-1),
By [14], DUHLID | = D=l andDGI-D | s reducible (and
self-dual). So the Hom-spaces under consideration have dimensa
2, and the theorem is true. O

Corollary 3.7. Letn > 4 and D be an irreducible ' Y,,-module with
dim D > 1. If p = 2 andn is odd, assume thdd 2 S. Then

dim Homy, (M™~22) End(D)) > dim Homy, (M"Y End(D)).
Proof. Follows from Theorems 3.3, 3.6 and the isomorphisms
Homy,, (MY, End(D)) = Homy, (15,,End(D)) = EndEA(Dizk)'
0
Lemma 3.8. Letn > 4andD be anirreducible”X,,-module withkdim D >

1. If p = 2, assume additionally that is odd andD 2 S. ThenEnd(D)
contains eithe®”("~22) or (S("~22))* or both as submodules.
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Proof. Assume first thap > 2, n # 1,2 (modp)orp = 2, n = 3
(mod 4). Then the result follows from Lemmas 1.2(i), 1.3(ii) and Corollary
3.7.Now letp > 2 andn = 1 (mod p). ThenM 11 splits asl @
D11 By Lemma 1.2(ii), there is a surjectiall ("=2:2) — pr(n—1L1),
and by Corollary 3.7, there must exist a homomorphismM (*—2:2) —
End(D) which does not factor through this surjection. If the restriction
6|y ("=2.2) is injective ther’ ("~22) is a submodule dfnd (D). Otherwise,

in view of Lemma 1.2(ii), the kernel df|Y ("~22) is 1. ButY ("=2:2) /1 =
(S(n=22))* 50(S("=22))* embeds intd&nd(D). The casep > 2, n = 2
(mod p)andp =2,n =1 (mod 4) are considered similarly to the case
n=1 (mod p) using 1.2(iii), 1.3(i) and 3.7. O

Recall thatd; andds denote the number af-orbits on{2 and the 2-
subsets of?2, respectively.

Theorem 3.9. Letn > 4, G < X, be a subgroup, and be a simple
FX,-module withdim D > 1. If p = 2, assume additionally that is odd
and D 2 S. Then the restrictioD; is reducible whenevet; < ds.

Proof. Supposég isirreducible and; < ds. ThenEndg(Dg) = End(D)¢
is 1-dimensional by Schur’s lemma. We consider the following two cases.

Caselp>2,n#1 (modp)orp=2,n=3 (mod4). Thenby
Lemmas 1.2(i),(iii), 1.3(ii) and 3.8, eithary, @ Y("~22) C End(D) or
1x, ® (S=22)* C End(D) (or both). By Lemma 1.7End(D)¢ is at
least2-dimensional, giving a contradiction.

Case2p>2,n=1 (modp)orp=2,n=1 (mod4).ByLemma
3.8 again, eithey (»=22) C End(D) or (S"~22)* C End(D). Inthe first
case Lemma 1.7 implies th@iind (D)€ is at least2-dimensional. In the
second caséS("~22))* = D(=22)|1 implies that(S"~22)* @ 15, C
End(D). Now apply Lemma 1.7 as in Case 1. O

Theorem 3.10.Letn > 4, G < X, be a subgroup, and be a simple
FX,-module withdim D > 1. If p = 2, assume additionally that is odd
and D 2 S. If the restrictionDg; is irreducible then eithety < X, or

G is 2-transitive.

Proof. Let D¢ be irreducible. Assume first thét is intransitive. Then, up
to a conjugationds is contained in a standard Young subgradup , x X
forsomel < k < n/2.If £ > 1, thend; = 2 < d2 = 3 with respect to
the action of¥,, , x X}. HenceD]y, .5 isreducible by Theorem 3.9
applied to the subgroup’,_; x Y. This gives a contradiction. Therefore
k = 1and soG < X, 1. We may now assume that is transitive. If
G is not2-homogeneous, thah = 1 < dy and we get a contradiction by
Theorem 3.9. Thugy is 2-homogeneous. Now, (7 is not2-transitive apply
Theorem 2.5. O
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Finally, observe thatthe Main Theorem is a special case of Theorem 3.10.
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