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Abstract. We prove that ifD is a pseudoconvex domain with Lipschitz
boundary having an exhaustion functiesuch that-(—p)" is plurisubhar-
monic, then the Bergman projection maps the Sobolev spadeoundedly
to itself for anys < /2.
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1 Introduction

It was long an open problem whether in any smoothly bounded pseudocon-
vex domain the Bergman projection preserves smoothness up to the bound-
ary. This question was finally resolved in the negative by M Christ in [Ch].
Christ’s proof is based on a previous result by D Barrett [Ba], saying that for
anys > 0, there is a smoothly bounded pseudoconvex domain such that the
Bergman projection does not map the Sobolev splgeo itself. (Barretts
theorem is in turn inspired by an earlier resflt»O Kiselman, [Ki], who
constructed non-smooth pseudoconvex domains with this property.)

Among the abundance of results in the positive direction, the one which
is most relevant to us here is the theorem of Boas and Straube, [Bo-St1],
saying that if a smoothly bounded pseudoconvex domain has a plurisubhar-
monic defining function that is smooth up to the boundary, then the Bergman
projection map$V; to itself for anys > 0. (Their theorem is even a bit more
general, requiering the defining function to be plurisubharmonic only at the
boundary.)
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It was proved already by Diederich and Fornaess, [Di-Fo1l], that in gen-
eral such a plurisubharmonic defining function does not exist. However,
Diederich and Fornaess also proved that for any smoothly bounded pseudo-
convex domain there is a number- 0 such thatD has a defining function
such that—(—p)" is plurisubharmonic. The main result of this note (The-
orem 2.4) says that the bigger one can take the numlwerthe theorem
of Diederich and Fornaess, the better regularity properties one has for the
Bergman projection. More precisely, we show that the Bergman projection
is bounded oV, for anys < n/2. We also show that a similar result holds
for the operatork giving the L?-minimal solution to the problem.

The proof consistin showing that the Bergman projectionidrsatisfy a
weightedL?-estimate of a type first considered by Donnelly and Fefferman,
[D-F], and after that generalized by many authore @g [Di-O], [McN 1],

[B], [Del]). We will however not need to use the methods developed in
these papers, but will instead give a selfcontained and simple proof of a
generalized Donnelly-Fefferman estimate, using oriyrilanders theorem
[H]. From this weighted estimate the Sobolev estimate follows from well
known results in elliptic PDE:s. Actually, by more recent work in this area,
these results hold also in domains of low regularity, so our main result holds
also for domains with Lipschitz boundary.

The case; = 1 was previously considered in [Bon-Ch 1] and [Bon-
Ch 2]. Forn = 1 our main result follows from the theorem in [Bon-Ch 1],
at least in the case of a boundary of clags

This note is also related to a recent paper by Kohn, [Ko], who shows that
the Bergman projection is bounded on the Sobolev spH&efor a range
of s depending on the constantin the Diederich-Fornaess theorem . The
dependence = s(n) in Kohn’s theorem is however not easy to compute
and we have not been able to prove Theorem 2.4 from Kohn's result. On
the other hand, Kohn'’s theorem has the advantagethatends tooo asn
tends to 1, thus giving back the Boas-Straube theorem in the limit. Finally, J
McNeal, [McN 2], has kindly informed us that he also has obtained a proof
of Theorem 2.4 (unpublished).

2 Weighted estimates and Sobolev estimates

First we need to introduce the set up and some terminology/Lbe a
bounded pseudoconvex domain andddie a locally bounded realvalued
function. We shall consider the weight&d-spaces

L2(e%) = {f; / |22 < oo}
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of differential forms of various degrees. We @; be the adjoint of the
0-operator inL?(e~?), and let

O, = 007 + 330
be the associated complex Laplace operatap. # 0 we shall omit sub-

scripts and write simply’, = 9*, 0, = O etc. LetN, 4 be thed)-Neumann
operator on0, ¢)-forms (cf [F-Ko]), solving

D¢Nq7¢(f) =f

for any (0, ¢)-form f in L?(e~?) (in our later specific choices of weight
function ¢ the 9-Neumann operator will always exist).

We denote byB, 4 the Bergman operator, mapping(@, ¢)-form in
L?(e~?) to its orthogonal projection in the closed subspacé-alosed
forms. In particular, forg = 0, By 4 maps a function to a holomorphic
function. Finally we put

Kqs(f) = 05Ny 6(f)-

By a classical result, if is 0-closed, then

U = Kq,¢(f)

is the solution t@)u = f of minimal norm inL2(e~%).
We are now ready to state our first result.

Theorem 2.1. Let D C C" be a bounded pseudocomvex domain. Suppose
€ PSH(D) satisfies

10 A O < 10O 1)

wherer < 1. Let¢ be a plurisubharmonic function i. Thend; N, 4
mapsLj ,(e*~?) boundedly taL§ , ,(e¥~?), and By 4 mapsLj (e ~?)
boundedly to itself.

The condition (1) (introduced in [D-F]; see also [Gr]) is of crucial im-
portance in this paper. An alternative formulation of (1) is that the norm of
the formdy, measured in the metric withabler formdor is smaller than
r at any point. Yet another equivalent formulation is that the function

el

is plurisubharmonic. The last formulation also makes it clear howto interpret
(1) in casey is not of clasg"?, and shows that any that satisfies (1) in this
weak sense can, on any relatively compact subdomain, be approximated
by a decreasing sequence of smooth functions satisfying the same thing.
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Therefore it will be enough to prove Theorem 2.1 for smooth functions
although in the end we will apply it to functions that are not necessarily
smooth. Similarily, in the proof of Theorem 2.1, we will also assumeghat
is smooth; the general case then follows from a standard limiting procedure.
By definition the Bergman operator is bounded fréd{e~?) to itself.
What Theorem 2.1 says is thaf is also bounded for the (in general stronger)
norms inLg ,(e¥~?), as long as) satisfies (1). For a particular choice of
v and for forms that satisfy certain elliptic equations, these norms will be
equivalent to Sobolev norms (see Theorem 2.4).
To prove Theorem 2.1 we shall first establish a more precise result for
the operato@;Nw, related to the Donnelly-Fefferman estimate. For this

we have to recall an appropriate version dfrhhander’s fundamentdl?-
estimate for thé-equation (cf [H] ), and to formulate that theorem we first
need some preparations from linear algebra.
Let
2= Z_Qj,;dzj A dZ

be a positiveg 0, 1)-form. We shall usé? to define a norml| f||», on (0, ¢)-
forms inC"™. This norm has three crucial properties. The first one is that if
visa(0,1)-form then

L Avlle < llvllelfl,

where|f| is the Euclidean norm of. Next, || - ||, is a decreasing function
of 2, and finally|| f|[5 = (1/q)|f|* if

0= Xdzj N\ dzy,

is the Kahler form of the Euclidean metric, arfds of bidegre€0, ).
Forq = 1 our norm is simply defined by

1£1%, = S f; fi

where(27%) is the inverse matrix off2;;). Inotherwords|| f||; is the norm

of f measured in the &hler metric defined by?. This is however not true

for forms of higher degree where the definition is a bit more cumbersome.
The reader who is primarily interested in the casé0ofl )-forms can skip

the next paragraph.

We first define the nornil f||% for forms of bidegregn, q) and then
define it on(0, ¢)-forms using the trivial identification afz, ¢)- and(0, ¢)-
forms in C™. The customary definition uses the formalism dhter Ge-
ometry. LetA denote the operator of interior multiplication with thétder
form (3, so that for any forms andv

(Au, v) = (u, B Au),
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where(, ) denotes the Euclidean scalar productang)-forms. Then con-
sider the quadratic form

(22 A AR, B).

We put
| fll2 = sup(f, h)

where the supremum is taken over all formwith (£2 A Ah,h) < 1.

One can then verify that the norff¥||; has the three properties stated
just before. We refer the reader to [D] where this is done in detail, even in
the context of forms with values in a vector bundle.

The version of Wrmander’s theorem refered to above is the following.

Theorem 2.2. LetD be a pseudoconvex domair(ifi and let¢ be plurisub-
harmonic and of clas€? in D. Let f be ad-closed(0, ¢)-form in D. Then
there is a solution to the equation

ou = f 2

satisfying the estimate

[ 1ue® < [11f1Ea,e ©)

In [H] this theorem is formulated witB| f|? /c instead off| f||? S50 UL
the statement of Theorem 2 follows from basically the same proof. The
precise estimate (3) for the solution is a special case of Theorem 4.1 in [D]
and we refer the reader to that article for the proof.

Before continuing let us remark that one can view (3) as a complex
Poincaé inequality. It is clear that (3) must be satified by th&(e=?)-
minimal solution to (2), that is by the solution satisfying

/u-ﬁe—¢:o 4

for any 0-closed formh. Hence the theorem implies thatifis any form
whichis orthogonalirL? (e~?) to the space af-closed forms then satisfies

[ 1ule < [ 10,0

We are now ready to formulate our main weighfiedstimate. It's content
is that if ¢ satisfies the crucial assumption (1), then we can improve the
estimate in rmander’s theorem by replaciief|[,054) BY [1.f[lioa(s-+0)
without having to change the weight function frafto ¢ + ¢ . We may
even make the weight functiamlessplurisubharmonic by subtracting.
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Theorem 2.3. Let D be a bounded pseudoconvex domainCh Let ¢
and v be plurisubharmonic and of clags? in D, and assume) > 0
satisfies (1) withr < 1. Let f be ad-closed(0, ¢)-form in D belonging to
L?(e¥=9) C L?(e~?) and letu be the solution to the equation

du=f 5)
of minimal norm inL2(e=%) Then
[1urer=2 <0 [ Bg g ©)

Proof. Sincey > 0 f liesin L?(e~?), so by Hhrmander’s theorem there is
a solution to (1) inL.?(e~?). Letu be theL?(e~?)-minimal solution, so that
(4) is satisfied. For a moment we assume thés bounded. Put = ue?.
Then clearlyv is orthogonal to all closed forms ih?(e~¥~?), so by the
remark immediately before the theorem we have

/ o]2e¥—? < / 1001250006~

Recalling the definition of

J1ule=e < 115 +36 Al e <

<@+ 1/0) [ 1B + (14 6) [ 1l 00100~
(7
By the discussion preceeding Theorem 2.2

[l 09| ) < Nun O[5, < rlul.

2 —
i09(¢+¢
Choosinge so small that(1 + €)r < 1 we can thus absorb the last term
in (7) in the left hand side, which immediately gives the theorem. This is
proved under the assumption thiats bounded but the general case follows
by exhausting with relatively compact subdomains.

The casey = v in Theorem 2.3 is essentially the Donnelly-Fefferman
estimate, see [D-F]. Results related to Theorem 2.3 can be found in [O],
[Di-O], [Gr],[Del] [McN] and [B], to mention only a few examples. We
have included the proof of Theorem 2.2 here first since we have not found
exactly the statement we need in the literature, and secondly because it is
the simplest proof we know of the Donnelly-Fefferman estimate.
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Proof of Theorem 2.1We shall carry out the proof in the case when
andz are of clasgC? up to the boundary; the general case follows from a
standard limiting procedure. Notice that sindes bounded we can replace
Y by ¢ = 9 + d|z|? if & is small enough ang will still satisfy (1). Since
109y > 63, this implies the first part of Theorem 2.1 forclosed forms.
For a non-closed fornf we decompose

f=fi+ fo,

where f; is é-clos_ed andf, is orthogonal to the space Ofclosed forms
in L2(e~?). Thend; Ny (f) = 05Ny (f1), so to prove boundedness of the

operatord; N, on all forms it suffices to prove that the mgp— f; is
bounded. But this map is precisely the Bergman operator, so to prove The-
orem 2.1 completely it suffices to prove that the Bergman operagais
bounded.

We then claim that

By(f) = e Y Byyy(e f) — 5Ny (0(e™Y Byyy (e f)).-

Indeed, the right hand sidedsclosed and has the same scalar produgt as
against any-closed form. The first term;, defines a bounded operator on
L?(e¥~%) since

J1kee = [1Bosenpeve < [lesgpev-e

= [1rpere.

Next we note that the second term equals
3:;N¢(—5w A)

sinceBy14(e¥ f) is 0-closed. By (6) we have

/!5$N¢(—5w Av)2e¥ ¢ < C, / 109 Al Za5040 6"~
But by our assumption o

109 A vllioars) < 1100 Avlligay < 7lvl,
and this completes the proof since we have already controllsdf.

We shall now apply Theorem 2.1 to prove our Sobolev estimate, and
from now on we shall take = 0.
The crucial assumption in Theorem 2.1 is thatatisfy (1), which means

precisely that the function
_e YT
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is plurisubharmonic. Now suppose that our domairhas an exhaustion
functionp, such that-(—p)" is plurisubharmonic. Lef > 0 satisfyd < 7,
and puty = dlog ‘71, so thaty satisfies (1) withr = §/n < 1. Then
Theorem 2.1 implies that the Bergman operator satisfies

/ Bu)2(—p)° < C / uf2(—p),

and that)* N satisfies a similar estimate. This implies our main result:

Theorem 2.4. Let D be a bounded pseudoconvex domain with Lipschitz
boundary. Assume there exists a functioq 0 in D such that

cd(-,0D) < —p < Cd(-,0D)

and such that-(—p)" is plurisubharmonic. Then the operata#$ N, and
B, map the Sobolev spad¥; to itself for anys < /2.

We will use repeatedly two facts from real analysis. The first is an em-
bedding result, see [Gri] Thm 1.4.4.3, which says that the spgacds con-
tinuously embedded in?((—p))~2¢ if 0 < s < 1/2, andp is comparable
to the distance to the boundary in a domain with Lipschitz boundary. The
second result says that ahgrmonicfunction in L?((—p) ~2%)) also lies in
W , under the same assumptions. This fact is a consequence of Thm 4.2 in
[J-K] together with the Lemma 1 in [Det].

Consider first the case of the Bergman operd&o+ B, on functions,
and assuma is a function ini¥s. Then by the embedding resuit lies in
L?((—p))~2% , so by Theorem 2.B(u) also lies in the latter space. Since
B(u) is holomorphic, hence harmonic, it follows th@tu) belongs taV.

Next, letf be a(0, ¢)-form in Wy, with ¢ > 1. Then by the same embed-
ding resultf € L?((—p)~2%) , so by Theorem 2.B,(f) € L?((—p))~%.

Note that
OB,(f) =0 andd*B,(f) = 0*f.

HenceOB,(f), which as a differential operator is the Laplacian on each
component off satisfies

DBq(f) = 55*f

Sincef € Wy, f = Agwith g € W4. (This follows since by Thm 1.4.3.1
in [Gri] f can be extended to a form with compact supportlin on all
of C™, so we may takeg to be the Newtonian potential of this extension.)
Hence

ABy(f)=00"f = Av

wherev € W. Letw = B,(f) — v so thatw is a form with harmonic
coefficients. Since both,(f) andv lie in L?((—p)) ¢ by the embedding
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theorem, so does. Sincew has harmonic coefficients lies in W, so
B,(f) also belongs téV. We have thus proved that the Bergman operator
is bounded oWV in any degree.

It only remainsto prove thatjfis a(0, ¢)-formin W thenu = 9* N, (f)
is also inW;. Sinced* N,(f) = 0*N,(B,(f)), and we already know that
B, is bounded oriV; we may as well assume from the start thgt= 0.
Then

Ou = f andd*u = 0.

Thus
Au = (00" + 0" 0)u = 0" f € Wy_1.

By Thm 0.5 in [J-K] this implies that we can solv&ég = Au with g €
Wi C Wy, indeed the Green potential dfu will do. By the embedding
theorem botty and f belong toL?((—p)) 2%, so by Theorem 2.1 and
u — ¢ also belong to this space. Sinage- g has harmonic coefficients it
follows thatu — g lies in Ws. Hence this also holds farand Theorem 2.4
is completely proved.
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