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Abstract. We prove that ifD is a pseudoconvex domain with Lipschitz
boundary having an exhaustion functionρ such that−(−ρ)η is plurisubhar-
monic, then the Bergman projection maps the Sobolev spaceWs boundedly
to itself for anys < η/2.
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1 Introduction

It was long an open problem whether in any smoothly bounded pseudocon-
vex domain the Bergman projection preserves smoothness up to the bound-
ary. This question was finally resolved in the negative by M Christ in [Ch].
Christ’s proof is based on a previous result by D Barrett [Ba], saying that for
anys > 0, there is a smoothly bounded pseudoconvex domain such that the
Bergman projection does not map the Sobolev spaceWs to itself. (Barretts
theorem is in turn inspired by an earlier result of C O Kiselman, [Ki], who
constructed non-smooth pseudoconvex domains with this property.)

Among the abundance of results in the positive direction, the one which
is most relevant to us here is the theorem of Boas and Straube, [Bo-St1],
saying that if a smoothly bounded pseudoconvex domain has a plurisubhar-
monic defining function that is smooth up to the boundary, then the Bergman
projection mapsWs to itself for anys > 0. (Their theorem is even a bit more
general, requiering the defining function to be plurisubharmonic only at the
boundary.)
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It was proved already by Diederich and Fornaess, [Di-Fo1], that in gen-
eral such a plurisubharmonic defining function does not exist. However,
Diederich and Fornaess also proved that for any smoothly bounded pseudo-
convex domain there is a numberη > 0 such thatD has a defining function
such that−(−ρ)η is plurisubharmonic. The main result of this note (The-
orem 2.4) says that the bigger one can take the numberη in the theorem
of Diederich and Fornaess, the better regularity properties one has for the
Bergman projection. More precisely, we show that the Bergman projection
is bounded onWs for anys < η/2. We also show that a similar result holds
for the operator,K giving theL2-minimal solution to thē∂ problem.

The proof consist in showing that the Bergman projection andK satisfy a
weightedL2-estimate of a type first considered by Donnelly and Fefferman,
[D-F], and after that generalized by many authors (see e g [Di-O], [McN 1],
[B], [Del]). We will however not need to use the methods developed in
these papers, but will instead give a selfcontained and simple proof of a
generalized Donnelly-Fefferman estimate, using only Hörmanders theorem
[H]. From this weighted estimate the Sobolev estimate follows from well
known results in elliptic PDE:s. Actually, by more recent work in this area,
these results hold also in domains of low regularity, so our main result holds
also for domains with Lipschitz boundary.

The caseη = 1 was previously considered in [Bon-Ch 1] and [Bon-
Ch 2]. Forη = 1 our main result follows from the theorem in [Bon-Ch 1],
at least in the case of a boundary of classC2.

This note is also related to a recent paper by Kohn, [Ko], who shows that
the Bergman projection is bounded on the Sobolev spacesWs for a range
of s depending on the constantη in the Diederich-Fornaess theorem . The
dependences = s(η) in Kohn’s theorem is however not easy to compute
and we have not been able to prove Theorem 2.4 from Kohn’s result. On
the other hand, Kohn’s theorem has the advantage thats(η) tends to∞ asη
tends to 1, thus giving back the Boas-Straube theorem in the limit. Finally, J
McNeal, [McN 2], has kindly informed us that he also has obtained a proof
of Theorem 2.4 (unpublished).

2 Weighted estimates and Sobolev estimates

First we need to introduce the set up and some terminology. LetD be a
bounded pseudoconvex domain and letφ be a locally bounded realvalued
function. We shall consider the weightedL2-spaces

L2(e−φ) = {f ;
∫

|f |2e−φ < ∞}



The Bergman kernel 3

of differential forms of various degrees. We let∂̄∗
φ be the adjoint of the

∂̄-operator inL2(e−φ), and let

✷φ = ∂̄∂̄∗
φ + ∂̄∗

φ∂̄

be the associated complex Laplace operator. Ifφ = 0 we shall omit sub-
scripts and write simplȳ∂∗

φ = ∂̄∗,✷φ = ✷ etc. LetNq,φ be the∂̄-Neumann
operator on(0, q)-forms (cf [F-Ko]), solving

✷φNq,φ(f) = f

for any (0, q)-form f in L2(e−φ) (in our later specific choices of weight
functionφ the ∂̄-Neumann operator will always exist).

We denote byBq,φ the Bergman operator, mapping a(0, q)-form in
L2(e−φ) to its orthogonal projection in the closed subspace of∂̄-closed
forms. In particular, forq = 0, B0,φ maps a function to a holomorphic
function. Finally we put

Kq,φ(f) = ∂̄∗
φNq,φ(f).

By a classical result, iff is ∂̄-closed, then

u = Kq,φ(f)

is the solution tō∂u = f of minimal norm inL2(e−φ).
We are now ready to state our first result.

Theorem 2.1. LetD ⊂ C
n be a bounded pseudocomvex domain. Suppose

ψ ∈ PSH(D) satisfies

i∂ψ ∧ ∂̄ψ ≤ ri∂∂̄ψ (1)

wherer < 1. Let φ be a plurisubharmonic function inD. Then∂̄∗
φNq,φ

mapsL2
0,q(e

ψ−φ) boundedly toL2
0,q−1(e

ψ−φ), andBq,φ mapsL2
0,q(e

ψ−φ)
boundedly to itself.

The condition (1) (introduced in [D-F]; see also [Gr]) is of crucial im-
portance in this paper. An alternative formulation of (1) is that the norm of
the form∂ψ, measured in the metric with K̈ahler form∂∂̄ψ is smaller than
r at any point. Yet another equivalent formulation is that the function

−e−ψ/r

is plurisubharmonic. The last formulation also makes it clear how to interpret
(1) in caseψ is not of classC2, and shows that anyψ that satisfies (1) in this
weak sense can, on any relatively compact subdomain, be approximated
by a decreasing sequence of smooth functions satisfying the same thing.
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Therefore it will be enough to prove Theorem 2.1 for smooth functionsψ
although in the end we will apply it to functions that are not necessarily
smooth. Similarily, in the proof of Theorem 2.1, we will also assume thatφ
is smooth; the general case then follows from a standard limiting procedure.

By definition the Bergman operator is bounded fromL2(e−φ) to itself.
What Theorem 2.1 says is thatBq is also bounded for the (in general stronger)
norms inL2

0,q(e
ψ−φ), as long asψ satisfies (1). For a particular choice of

ψ and for forms that satisfy certain elliptic equations, these norms will be
equivalent to Sobolev norms (see Theorem 2.4).

To prove Theorem 2.1 we shall first establish a more precise result for
the operator̄∂∗

φNq,φ, related to the Donnelly-Fefferman estimate. For this
we have to recall an appropriate version of Hörmander’s fundamentalL2-
estimate for thē∂-equation (cf [H] ), and to formulate that theorem we first
need some preparations from linear algebra.

Let
Ω = ΣΩjk̄dzj ∧ dz̄k

be a positive(0, 1)-form. We shall useΩ to define a norm,||f ||Ω, on(0, q)-
forms inC

n. This norm has three crucial properties. The first one is that if
v is a(0, 1)-form then

||f ∧ v||Ω ≤ ||v||Ω|f |,
where|f | is the Euclidean norm off . Next,|| · ||Ω is a decreasing function
of Ω, and finally||f ||2β = (1/q)|f |2 if

β = Σdzj ∧ dz̄k

is the K̈ahler form of the Euclidean metric, andf is of bidegree(0, q).
For q = 1 our norm is simply defined by

||f ||2Ω = ΣΩjk̄fj f̄k

where(Ωjk̄) is the inverse matrix of(Ωjk̄). In other words,||f ||Ω is the norm
of f measured in the K̈ahler metric defined byΩ. This is however not true
for forms of higher degree where the definition is a bit more cumbersome.
The reader who is primarily interested in the case of(0, 1)-forms can skip
the next paragraph.

We first define the norm||f ||2Ω for forms of bidegree(n, q) and then
define it on(0, q)-forms using the trivial identification of(n, q)- and(0, q)-
forms in C

n. The customary definition uses the formalism of Kähler Ge-
ometry. LetΛ denote the operator of interior multiplication with the Kähler
form β, so that for any formsu andv

〈Λu, v〉 = 〈u, β ∧ u〉,
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where〈, 〉 denotes the Euclidean scalar product on(n, q)-forms. Then con-
sider the quadratic form

〈Ω ∧ Λh, h〉.
We put

||f ||Ω = sup〈f, h〉
where the supremum is taken over all formsh with 〈Ω ∧ Λh, h〉 ≤ 1.

One can then verify that the norm||f ||Ω has the three properties stated
just before. We refer the reader to [D] where this is done in detail, even in
the context of forms with values in a vector bundle.

The version of Ḧormander’s theorem refered to above is the following.

Theorem 2.2. LetD be a pseudoconvex domain inC
n and letφbe plurisub-

harmonic and of classC2 in D. Letf be a∂̄-closed(0, q)-form inD. Then
there is a solution to the equation

∂̄u = f (2)

satisfying the estimate
∫

|u|2e−φ ≤
∫

||f ||2i∂∂̄φe−φ. (3)

In [H] this theorem is formulated with2|f |2/c instead of||f ||2
i∂∂̄φ

, but
the statement of Theorem 2 follows from basically the same proof. The
precise estimate (3) for the solution is a special case of Theorem 4.1 in [D]
and we refer the reader to that article for the proof.

Before continuing let us remark that one can view (3) as a complex
Poincaŕe inequality. It is clear that (3) must be satified by theL2(e−φ)-
minimal solution to (2), that is by the solution satisfying

∫
u · h̄e−φ = 0 (4)

for any ∂̄-closed formh. Hence the theorem implies that ifu is any form
which is orthogonal inL2(e−φ) to the space of̄∂-closed forms thenusatisfies

∫
|u|2e−φ ≤

∫
||∂̄u||2i∂∂̄φe−φ.

We are now ready to formulate our main weighted∂̄-estimate. It’s content
is that if ψ satisfies the crucial assumption (1), then we can improve the
estimate in Ḧormander’s theorem by replacing||f ||i∂∂̄(φ) by ||f ||i∂∂̄(ψ+φ)
without having to change the weight function fromφ to φ + ψ . We may
even make the weight functionφ lessplurisubharmonic by subtractingψ.
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Theorem 2.3. Let D be a bounded pseudoconvex domain inC
n. Let φ

and ψ be plurisubharmonic and of classC2 in D, and assumeψ ≥ 0
satisfies (1) withr < 1. Letf be a∂̄-closed(0, q)-form inD belonging to
L2(eψ−φ) ⊂ L2(e−φ) and letu be the solution to the equation

∂̄u = f (5)

of minimal norm inL2(e−φ) Then
∫

|u|2eψ−φ ≤ Cr

∫
||f ||2i∂∂̄(ψ+φ)e

ψ−φ. (6)

Proof. Sinceψ ≥ 0 f lies inL2(e−φ), so by Ḧormander’s theorem there is
a solution to (1) inL2(e−φ). Letu be theL2(e−φ)-minimal solution, so that
(4) is satisfied. For a moment we assume thatψ is bounded. Putv = ueψ.
Then clearlyv is orthogonal to all closed forms inL2(e−ψ−φ), so by the
remark immediately before the theorem we have

∫
|v|2e−ψ−φ ≤

∫
||∂̄v||2i∂∂̄(ψ+φ)e

−ψ−φ.

Recalling the definition ofv
∫

|u|2eψ−φ ≤
∫

||f + ∂̄ψ ∧ u||2i∂∂̄(ψ+φ)e
ψ−φ ≤

≤ (1 + 1/ε)
∫

||f ||2i∂∂̄(ψ+φ)e
ψ−φ + (1 + ε)

∫
||u ∧ ∂̄ψ||2i∂∂̄(ψ+φ)e

ψ−φ.

(7)

By the discussion preceeding Theorem 2.2

||u ∧ ∂̄ψ||2i∂∂̄(ψ+φ) ≤ ||u ∧ ∂̄ψ||2i∂∂̄ψ ≤ r|u|2.

Choosingε so small that(1 + ε)r < 1 we can thus absorb the last term
in (7) in the left hand side, which immediately gives the theorem. This is
proved under the assumption thatψ is bounded but the general case follows
by exhausting with relatively compact subdomains.

The caseφ = ψ in Theorem 2.3 is essentially the Donnelly-Fefferman
estimate, see [D-F]. Results related to Theorem 2.3 can be found in [O],
[Di-O], [Gr],[Del] [McN] and [B], to mention only a few examples. We
have included the proof of Theorem 2.2 here first since we have not found
exactly the statement we need in the literature, and secondly because it is
the simplest proof we know of the Donnelly-Fefferman estimate.
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Proof of Theorem 2.1.We shall carry out the proof in the case whenφ
andψ are of classC2 up to the boundary; the general case follows from a
standard limiting procedure. Notice that sinceD is bounded we can replace
ψ by ψ̃ = ψ + δ|z|2 if δ is small enough and̃ψ will still satisfy (1). Since
i∂∂̄ψ̃ ≥ δβ, this implies the first part of Theorem 2.1 for∂̄-closed forms.
For a non-closed formf we decompose

f = f1 + f2,

wheref1 is ∂̄-closed andf2 is orthogonal to the space of̄∂-closed forms
in L2(e−φ). Then∂̄∗

φNφ(f) = ∂̄∗
φNφ(f1), so to prove boundedness of the

operator∂̄∗
φNφ on all forms it suffices to prove that the mapf → f1 is

bounded. But this map is precisely the Bergman operator, so to prove The-
orem 2.1 completely it suffices to prove that the Bergman operatorBφ is
bounded.

We then claim that

Bφ(f) = e−ψBφ+ψ(eψf) − ∂̄∗
φNφ(∂̄(e−ψBφ+ψ(eψf)).

Indeed, the right hand side is̄∂-closed and has the same scalar product asf
against anȳ∂-closed form. The first term,v, defines a bounded operator on
L2(eψ−φ) since∫

|v|2eψ−φ =
∫

|Bψ+φ(eψf)|2e−ψ−φ ≤
∫

|eψf |2e−ψ−φ

=
∫

|f |2eψ−φ.

Next we note that the second term equals

∂̄∗
φNφ(−∂̄ψ ∧ v)

sinceBψ+φ(eψf) is ∂̄-closed. By (6) we have∫
|∂̄∗
φNφ(−∂̄ψ ∧ v)|2eψ−φ ≤ Cr

∫
||∂̄ψ ∧ v||2i∂∂̄(ψ+φ)e

ψ−φ.

But by our assumption onψ

||∂̄ψ ∧ v||i∂∂̄(ψ+φ) ≤ ||∂̄ψ ∧ v||i∂∂̄ψ ≤ r|v|,
and this completes the proof since we have already controlledv by f .

We shall now apply Theorem 2.1 to prove our Sobolev estimate, and
from now on we shall takeφ = 0.

The crucial assumption in Theorem 2.1 is thatψ satisfy (1), which means
precisely that the function

−e−ψ/r
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is plurisubharmonic. Now suppose that our domainD has an exhaustion
functionρ, such that−(−ρ)η is plurisubharmonic. Letδ > 0 satisfyδ < η,
and putψ = δ log −1

ρ , so thatψ satisfies (1) withr = δ/η < 1. Then
Theorem 2.1 implies that the Bergman operator satisfies∫

|B(u)|2(−ρ)−δ ≤ C

∫
|u|2(−ρ)−δ,

and that∂̄∗N satisfies a similar estimate. This implies our main result:

Theorem 2.4. Let D be a bounded pseudoconvex domain with Lipschitz
boundary. Assume there exists a functionρ < 0 in D such that

cd(·, ∂D) ≤ −ρ ≤ Cd(·, ∂D)

and such that−(−ρ)η is plurisubharmonic. Then the operators̄∂∗Nq and
Bq map the Sobolev spaceWs to itself for anys < η/2.

We will use repeatedly two facts from real analysis. The first is an em-
bedding result, see [Gri] Thm 1.4.4.3, which says that the spaceWs is con-
tinuously embedded inL2((−ρ))−2s if 0 < s < 1/2, andρ is comparable
to the distance to the boundary in a domain with Lipschitz boundary. The
second result says that anyharmonicfunction inL2((−ρ)−2s)) also lies in
Ws , under the same assumptions. This fact is a consequence of Thm 4.2 in
[J-K] together with the Lemma 1 in [Det].

Consider first the case of the Bergman operatorB = B0 on functions,
and assumeu is a function inWs. Then by the embedding result,u lies in
L2((−ρ))−2s , so by Theorem 2.1B(u) also lies in the latter space. Since
B(u) is holomorphic, hence harmonic, it follows thatB(u) belongs toWs.

Next, letf be a(0, q)-form inWs, with q ≥ 1. Then by the same embed-
ding resultf ∈ L2((−ρ)−2s) , so by Theorem 2.1Bq(f) ∈ L2((−ρ))−2s.
Note that

∂̄Bq(f) = 0 and ∂̄∗Bq(f) = ∂̄∗f.

Hence✷Bq(f), which as a differential operator is the Laplacian on each
component off satisfies

✷Bq(f) = ∂̄∂̄∗f.

Sincef ∈ Ws, f = ∆g with g ∈ Ws+2. (This follows since by Thm 1.4.3.1
in [Gri] f can be extended to a form with compact support inWs on all
of C

n, so we may takeg to be the Newtonian potential of this extension.)
Hence

∆Bq(f) = ∂̄∂̄∗f = ∆v

wherev ∈ Ws. Let w = Bq(f) − v so thatw is a form with harmonic
coefficients. Since bothBq(f) andv lie in L2((−ρ))−2s by the embedding
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theorem, so doesw. Sincew has harmonic coefficientsw lies in Ws, so
Bq(f) also belongs toWs. We have thus proved that the Bergman operator
is bounded onWs in any degree.

It only remains to prove that iff is a(0, q)-form inWs thenu = ∂̄∗Nq(f)
is also inWs. Since∂̄∗Nq(f) = ∂̄∗Nq(Bq(f)), and we already know that
Bq is bounded onWs we may as well assume from the start that∂̄f = 0.
Then

∂̄u = f and ∂̄∗u = 0.

Thus
∆u = (∂̄∂̄∗ + ∂̄∗∂̄)u = ∂̄∗f ∈ Ws−1.

By Thm 0.5 in [J-K] this implies that we can solve∆g = ∆u with g ∈
Ws+1 ⊂ Ws, indeed the Green potential of∆u will do. By the embedding
theorem bothg andf belong toL2((−ρ))−2s, so by Theorem 2.1u and
u − g also belong to this space. Sinceu − g has harmonic coefficients it
follows thatu − g lies inWs. Hence this also holds foru and Theorem 2.4
is completely proved.
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