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Abstract
We study the structure of mod 2 cohomology rings of oriented Grassmannians ˜Grk(n)

of oriented k-planes in R
n . Our main focus is on the structure of the cohomology ring

H∗(˜Grk(n);F2) as a module over the characteristic subring C , which is the subring gen-
erated by the Stiefel–Whitney classes w2, . . . , wk . We identify this module structure using
Koszul complexes, which involves the syzygies between the relations defining C . We give
an infinite family of such syzygies, which results in a new upper bound on the characteristic
rank of ˜Grk(2t ), k < 2t , and formulate a conjecture on the exact value of the characteristic
rank of ˜Grk(n). For the case k = 3, we use the Koszul complex to compute a presentation of
the cohomology ring H = H∗(˜Gr3(n);F2) for 2t−1 < n ≤ 2t − 4 for t ≥ 4, complementing
existing descriptions in the cases n = 2t − i , i = 0, 1, 2, 3 for t ≥ 3. More precisely, as
a C-module, H splits as a direct sum of the characteristic subring C and the anomalous
module H/C , and we compute a complete presentation of H/C as a C-module from the
Koszul complex. We also discuss various issues that arise for the cases k > 3, supported by
computer calculation.
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1 Introduction

The cohomology of realGrassmannians is by now fairlywell understood, bothwithmod 2 and
with integral coefficients, by ways of Schubert calculus. It might then be very surprising that
something as innocuous as taking a double cover can produce something as little understood
as the oriented Grassmannians. While the mod 2 and rational Betti numbers are known, the
mod2cohomology ring structure aswell as the integral cohomology are still fairlymysterious.
In this paper, we study the mod 2 cohomology ring of the oriented Grassmannians ˜Gr3(n) of
oriented 3-planes in an oriented real n-dimensional vector space, using Koszul complexes.

1.1 Question and known results

To give an idea of the context and known results pertaining to the cohomology ring structure
for the oriented Grassmannians, we give a brief overview before formulating our results in
the next section.

Before even getting to the ring structure, recall that the mod 2 Betti numbers for the
oriented Grassmannians are known by work of Ozawa [15], using Morse theory.

Turning to the ring structure, there are some general approaches that can be used for
homogeneous spaces, e.g. the Eilenberg–Moore spectral sequence for the fibration G/H →
BH → BG, combinedwith informationon the cohomology rings of classifying spaces.Many
results have been achieved with this technique, see e.g. the papers of Borel [3], Baum [2] and
Franz [6]. Such techniques work very well for the additive structure. For the multiplicative
structure, there are extension problems, but in [6] these extension problems are solved under
the assumption that 2 is invertible in the coefficients. The case of mod 2 coefficients seems
to be the most difficult, as examples are known where the passage from the E∞-page to the
actual cohomology involves nontrivial extensions.

This means that some additional information is necessary to investigate the ring structure
in the oriented Grassmannian case. In [12], Korbaš and Rusin determined the ring structure
for ˜Gr2(n) using the Gysin sequence combined with information on the characteristic rank
and the image of the pullback along the double cover from [13].

Beyond the case˜Gr2(n), no complete information on cohomology rings has been available
so far. In the cases ˜Grk(n), k = 3 or 4, information on the characteristic rank and the image
of the pullback has been obtained using Gröbner bases in [16, 18] (for k = 3) and [11, 17]
(for k = 4). Computations of cohomology rings have been made in some cases: Basu and
Chakraborty [1] partially computed the cohomology ring structures for ˜Grk(n) with k = 3
and n = 2t − i , where t ≥ 3 and i = 0, 1, 2, 3, and remaining ambiguities in the relations
were recently resolved by Colović–Prvulović [4] and Jovanović–Prvulović [9]. Our focus in
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this paper is the description of the remaining cases for k = 3, when 2t−1 < n ≤ 2t − 4 and
t ≥ 4.

For a few more known computations, Jovanović also recently determined integral coho-
mology for some ˜Gr3(n) cases in [8], and Rusin computed some mod 2 cohomology rings
for ˜Gr4(n) in [19].

1.2 The general setup

After the overviewof the literature,wenow turn to describe a simple framework for computing
the mod 2 cohomology of ˜Grk(n). Before we can formulate our results, we need to set up
some background and notation, which is discussed in more detail in Sect. 2 below. The first
thing to note is that the Gysin sequence for the double cover ˜Grk(n) → Grk(n) produces an
exact sequence of C-modules

0 C H∗(˜Grk(n),F2)
δ

K 0. (1.1)

where C and K are the cokernel and kernel of the map w1 : H∗(Grk(n),F2) →
H∗+1(Grk(n),F2) given by multiplication with the first Stiefel–Whitney class of the tau-
tological subbundle. This immediately poses three questions:

a) describe C as a ring using generators and relations,
b) describe K as a C-module using generators and relations, and
c) determine the extension class in ExtC (K ,C) given by the exact sequence (1.1).

For step a), the ring C has a well-known [7] explicit description as follows:

C = F2[w2, . . . , wk]/(qn−k+1, . . . , qn), (1.2)

withwi = wi (S) and qi = wi (�S)where�S is the formal inverse of the tautological bundle
S → BSO(k). The qi can be expressed in terms of wi via a Giambelli type formula (3.1),
(3.3) or a recursion, see 3.4. A lot of information on the structure of C as a commutative ring
can be obtained via Gröbner basis methods used in many papers, e.g. [4, 7, 16, 17].

The next step b) – and the one this paper is really focused on – is to compute a presentation
for K as a C-module. To determine C and K , we note that they appear as 0th and 1st Koszul
homology groups for the ideal I = (qn−k+1, . . . , qn) over the ring W2 = F2[w2, . . . , wk].
The generators of K are directly related to the syzygies between generators of the ideal I in
W2, see the discussion in Sect. 5.

After determining the extension class in step c), most of the information relevant for the
mod 2 cohomology ring is available, namely all products where one factor is in C . We settle
this description for k = 3, in the cases that are not covered in the literature.

1.3 The case k = 3

Next, we summarize our computations of the mod 2 cohomology rings of˜Gr3(n). As detailed
above, the cases n = 2t − i , with i = 0, 1, 2, 3 and t ≥ 3, have been mostly settled in the
literature, and we will focus on the remaining cases 2t−1 < n ≤ 2t − 4 in the present paper.

The reason for the distinction between the two cases n = 2t − i , i = 0, 1, 2, 3 and
2t−1 < n ≤ 2t − 4 is that in the former case, the one dealt with in the literature, the C-
module K is free of rank one, so the extension automatically splits, answering both questions
b) and c). In the cases 2t−1 < n ≤ 2t − 4 that we are dealing with here, K is no longer free,
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and it is generated by two elements an and dn . The degrees of the generators were already
determined in [1], but the relations in the presentation of K have not been determined before.
Our key computation in Sect. 6 is based on a detailed investigation of the Koszul complex
for the ideal I = (qn−2, qn−1, qn) over the ring W2 = F2[w2, w3]. The main results of the
paper give a presentation for K as a C-module, answering question b). Having that, it turns
out that the above exact sequence splits as an extension ofC-modules for degree reasons, see
Proposition 7.1, which settles the extension problem. In conclusion, we obtain the following
description of the cohomology ring of ˜Gr3(n) for 2t−1 < n ≤ 2t − 4.

Theorem 1.1 Let t ≥ 4, 2t−1 < n ≤ 2t −4, let C be defined as in (1.2) and set i = 2t −3−n
and j = n − 2t−1 + 1.

Then we have an isomorphism of C-modules

H∗(˜Gr3(n);F2) ∼= C〈1, an, dn〉/(qian + r j−1dn, qi+1an + w3r j−2dn, w3qi−1an + r j dn),

(1.3)

where deg an = 3n − 2t − 1 and deg dn = 2t − 4. Here qi are polynomials in F2[w2, w3]
defined by the recursion qi = w2qi−2+w3qi−3 with q0 = 1, q<0 = 0, and r j are polynomials
in F2[w2, w3] defined by the recursion

r j+1 = w2r j + w2
3r j−2.

with r0 = 1, r<0 = 0. Closed-form expressions for q j and r j can be found in (3.5) and
(4.15), respectively.

The remaining ring structure of H∗(˜Gr3(n),F2) is determined by

a2n = andn = d2n = 0. (1.4)

The proof proceeds in the following steps:

(I) In Proposition 6.3 we show that the kernel of the differential in the Koszul complex is
a free W2-module on two elements:

ker
(

d1 : W⊕3
2 → W2

)

= W2〈u3n−2t , v2t−3〉,
(II) we compute the relations in the presentation of K as a C-module (using the Koszul

differential d2) in Proposition 6.5,
(III) we show that we have a splitting of C-modules H∗(˜Gr3(n),F2) = C ⊕ K in Proposi-

tion 7.1,
(IV) and we compute the remaining products (1.4) in Proposition 8.1.

1.4 The general method, and the case k = 4

The approach used for k = 3 can also help computations and get some mileage in the cases
k > 3. It should be noted, however, that already the situation for k = 4 differs in a significant
number of aspects from the k = 3 case, which really appears to be unusually smooth. Part of
the difficulty of computing the cohomology rings H∗(˜Grk(n);F2) for k > 3 is related to the
difficulty of computing a presentation of the first Koszul homology group as a C-module.
We briefly outline the general method and mention some aspects that fail for k > 3 here. For
a more detailed discussion, see Sect. 2 for the general method and Sect. 9 for a description of
the phenomena in the k > 3 cases.
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1.4.1 The Koszul complex

The short exact sequence (1.1) derived from the Gysin sequence as well as the description
of C and K as the zeroth and first homology of the Koszul complex works in complete
generality. From this description, the generators of K are directly related to the syzygies
between generators of the ideal I = (qn−k+1, . . . , qn) in W2 = F2[w2, . . . , wk], see the
discussion in Sect. 5.

We find some such syzygies in Theorem 4.6:

Theorem 1.2 For n = 2t and0 < k < 2t , the following relation holds betweenqn−k , . . . , qn:
∑

k≥i≥0 even

qn−iwi =
∑

k≥i>1 odd

qn−iwi = 0. (1.5)

The relation (1.5) is a generalization of a result of Fukaya and Korbaš about the vanishing
of q2t−3 in the cases k = 3, 4, see [11], [7], which is crucial in understanding the characteristic
rank in these cases. The above result provides aC-module generator of the anomalousmodule
K , and thus provides a new upper bound on the characteristic rank of ˜Grk(2t ) for general k
and t , see Theorem 5.6.

We also develop a general technique of “ascending” and “descending” such relations
between the q j in Sect. 4, which allows to obtain such relations for ˜Grk(n) from similar
relations for˜Grk(n−1) or˜Grk(n+1). In the case k = 3, all syzygies (and thus all generators
of K ) are obtained from the vanishing q2t−3 = 0 via ascending and descending relations.
This is already not true for k = 4, as we demonstrate in Sect. 9. However, the technique of
ascending and descending relations provides syzygies for arbitrary n. Combining the funda-
mental relation in Theorem 1.2 with the technique of ascending and descending relations, we
formulate a general conjecture on the characteristic rank in Conjecture 5.8 which is supported
by computer experiments for small k and n, see the discussion in Sect. 9.

An intermediate step in the computation of K as a C-module — viewed as the first
homology of the Koszul complex — is the computation of the kernel of the differential
d1 : K1 → K0, cf. Definition 5.1. In the case k = 3, this kernel is free of rank 2, generated
exactly by the ascended and descended relations. This fails for k = 4: more generators are
necessary to generate the kernel, which is also no longer free. Computational experiments
suggest that the kernel (as a W2-module) always has a free resolution of length k − 2.
Nevertheless, it seems possible to obtain presentations for the kernel in the k = 4 case, and
once this is done, the relations in a presentation of K as C-module can be extracted from the
differential d2 : K2 → K1 much as in the present paper.

1.4.2 The extension class

Once a presentation of K as a C-module has been obtained, we can ask how to determine the
class of the extension 0 → C → H∗(˜Grk(n),F2) → K → 0 as an element in Ext1C (K ,C).
In the k = 3 case, the degree zero part of the Ext-group vanishes for degree reasons, see
the discussion in Sect. 7. However, computer algebra experiments show that the Ext-group
is not generally trivial already for some k = 4 cases. This non-vanishing of the Ext-group
means that determining the C-module structure on H∗(˜Grk(n),F2) is potentially much more
complicated for k > 3, a level of difficulty that seems to have not been noticed before.
Nevertheless, one could imagine that the explicit description of the Koszul complex and
kernel as in the previous step will help in computing the Ext-group more conceptually (at
least in the k = 4 case). This computation, and the question how to determine the class
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of the extension for H∗(˜Grk(n),F2) in this Ext-group (which is equivalent to computing a
presentation of the cohomology as a C-module), will be the focus of future research.

1.4.3 Remaining ambiguities

Once we understand H∗(˜Grk(n),F2) as a C-module, most of the product structure is
described. All that remains is to compute products between (lifts of) generators of K as
elements in H∗. In the case k = 3, there are only three products that need to be determined,
one of which is trivial for degree reasons. The squares are shown to be zero via a similar
induction as the one used for the relations, cf. Propositions 8.4 and 8.7. For k > 3, one can
well imagine to use integral cohomology information or cohomology operations to remove
the remaining ambiguities as was done in recent papers [4, 9]. There are also some k = 4, 5, 6
cases where the Ext-group vanishes and the remaining ambiguities can be removed easily,
which we discuss in Sect. 9.

1.5 Structure of the paper

We begin in Sect. 2 with a review of possible techniques that have been employed to com-
pute the cohomology of the oriented Grassmannians. We also emphasize the questions of
extensions and module structures over the characteristic subring. Section3 provides infor-
mation on the characteristic subring and its properties. In Sect. 4 we give a syzygy between
the Stiefel–Whitney polynomials defining the characteristic subring and a new inductive pro-
cedure to obtain further relations. Then Sect. 5 recalls Koszul complexes and provides the
concrete identification of the anomalous module K as first Koszul homology. This allows to
compute an explicit presentation of K as a module over the characteristic subring in Sect. 6.
A general discussion of Ext-groups and the vanishing result for the k = 3 case is provided
in Sect. 7, and the remaining products of anomalous generators are investigated in Sect. 8.
We also include an extensive discussion of the differences in the k > 3 cases in Sect. 9. We
include three appendices with information we think might be helpful: Appendix A provides
the Macaulay2 code used for the experiments, Appendix B provides some recollection on
graded Ext-groups, and Appendix c explains how our presentation of the cohomology ring
˜Gr3(n) leads to significantly simplified formulas for Betti numbers.

2 General method and notations

In this section we describe our general approach as well as introduce some notation and
terminology. We also recall some other possible approaches and show how Poincaré duality
completely settles the C-module question in cases when K is generated by a single element.

2.1 The Gysin sequence and setup of notation

We denote by Grk(n) the real Grassmannian of k-planes in Rn and by ˜Grk(n) the Grassman-
nian of oriented k-planes in R

n , where 0 < k < n. At the core of the upcoming algebraic
computations is the Gysin sequence associated to the degree 2 covering π : ˜Grk(n) →
Grk(n):

Hi−1(Grk (n);F2)
w1

Hi (Grk (n);F2)
π∗

Hi (˜Grk (n);F2)
δ

Hi (Grk (n);F2)
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In particular, the cohomology of ˜Grk(n) sits in the short exact sequence

0 cokerw1
π∗

H∗(˜Grk(n);F2)
δ

kerw1 0 (2.1)

where each map is a homomorphism of graded cokerw1-modules and δ is a map of degree
0. Since they will appear so often in the text, we introduce the shorthand notation

C := cokerw1, H := H∗(˜Grk(n);F2), K := kerw1, (2.2)

where k and n are usually fixed beforehand and clear from context. When k and n are not
fixed, we use the notation Ck(n) and Kk(n).

For k fixed, we will denote W1 = F2[w1, . . . , wk] and W2 = F2[w2, . . . , wk] (in most
of the paper k = 3). Then H∗(Grk(n);F2) has a presentation as W1/(Qn−k+1, . . . , Qn)

where Qi are some quotient Stiefel–Whitney classes (which can be expressed as Giambelli
determinants) recalled in Sect. 3, and

C = H∗(Grk(n);F2)/(w1) = W2/(qn−k+1, . . . , qn),

where q j = Q j |w1=0. Before proceeding further, let us fix some practical terminology.

Definition 2.1 The subring π∗C ⊆ H∗(˜Grk(n);F2) is called the characteristic subring,
since it is the subring generated by the Stiefel–Whitney classes of the tautological bundle
S → ˜Grk(n). In the terminology of [13], a class x ∈ H is anomalous, if x /∈ Im π∗,
equivalently, if its image under the projection δ : H → K is nonzero. In abuse of terminology,
we will therefore also call K the anomalous module.

Remark 2.2 We will be careful to distinguish between anomalous classes in H and their
image in K in cases where it matters (such as for questions of the ring structure, since δ is
only a C-module homomorphism). Namely, for k = 3 and 2t−1 < n < 2t − 3 for t ≥ 4,
we will see in Proposition 6.5 that K3(n) is generated by two elements An and Dn ; note
that these denote elements of H∗(Gr3(n);F2). We will use an and dn to denote lifts of these
elements to H∗(˜Gr3(n);F2), i.e. these are elements satisfying δ(ai ) = Ai and δ(di ) = Di .

In connection with the question of computing the ring structure for H , we can ask what
the C-module structure of H is. Since (2.1) is a short exact sequence of graded C-modules,
the C-module structure determines all products where at least one factor is in the image
of the characteristic subring C . Knowing the C-module structure of H , all that remains to
determine the ring structure of H is the computation of products of anomalous classes in H .
In fact, it suffices to compute products of classes which map to C-module generators of K –
in the cases k ≤ 3, there are at most two such generators.

To determine the C-module structure on the cohomology H using the exact sequence
(2.1), one is faced with the following questions:

a) describe C as a ring using generators and relations,
b) describe K as a C-module using generators and relations, and
c) determine the extension class in ExtC (K ,C) given by the exact sequence (1.1).

Question a) has been much addressed in the literature, often in terms of Gröbner bases.
For the case k = 3, we will answer question b) in Sect. 6. Question c) also turns out to have a
simple answer for k = 3 as the Ext-group actually vanishes in this case, cf. Sect. 7. However,
we will see in Sect. 9 that the Ext-group is in general non-trivial for k ≥ 4, making question c)
significantly more difficult to answer in general.
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We will need the following compatibility of Steenrod squares with (2.1). The following
proposition and its proof appear in [14]. We reproduce them here for the convenience of the
reader.

Proposition 2.3 In the short exact sequence (2.1), C = cokerw1 and K = kerw1 are
Steenrod-modules, and the maps are Steenrod-module homomorphisms.

Proof For the first half of the statement, it is enough to note that the ideal K is a Steenrod
submodule by the Cartan formula. The compatibility of Steenrod operations with pullback is
immediate. The second morphism (projection to K ) factors as a composition of a boundary
map and a Thom isomorphism Th. Stability of Steenrod operations implies that Sqk com-
mutes with the boundary map, but in general, Steenrod operations don’t commute with the
Thom isomorphism, instead the following holds: Th ◦Sq ◦Th−1 = w ·Sq, where w denotes
the total Stiefel–Whitney class and Sq denotes the total Steenrod square. The key point in
our case is that the total Stiefel–Whitney class is w = 1+ w1, and any element in the image
of δ is in K = ker(w1) ⊆ H∗(Grk(n);F2). This implies that the Thom isomorphism com-
mutes with Steenrod squares for elements in the image of δ, and consequently the projection
H∗(˜Grk(n);F2) → K is compatible with Steenrod operations. ��

2.2 Comparison to spectral sequencemethods

While for the present, we will focus on using the Gysin sequence as a way to determine the
cohomology of ˜Grk(n), we briefly discuss other approaches that have been considered in the
literature.

First, we note that complete information on the additive structure, i.e., information on the
mod 2 Betti numbers, is available, cf. [15]. All the ways we know to compute the mod 2 Betti
numbers eventually boil down to understanding themultiplicationwithw1 onH∗(Grk(n),F2)

in terms of Young diagram combinatorics. Note, however, that the presentation of the coho-
mology ring of ˜Gr3(n) given in Theorem 1.1 allows for much simpler formulas describing
the Betti numbers. We discuss this in Appendix c.

Oneway to understand themultiplicative structure is by use of suitable spectral sequences.
First, note that the oriented Grassmannian ˜Grk(n) also has the structure of a homogeneous
space SO(n)/ (SO(k) × SO(n − k)). To compute cohomology of a general homogeneous
spaceG/H with coefficients in a field k, one can use the Eilenberg–Moore spectral sequence

E∗,∗
2 = Tor∗,∗

H∗(BH ,k)(H
∗(BG, k); k) ⇒ H∗(G/H , k)

associated to the fiber sequence G/H → BH → BG combined with the computation of
cohomology of classifying spaces of Lie groups. This is the approach taken e.g. by Baum [2]
and Franz [6].

However, there are still problems with the cohomology ring structure. While the spec-
tral sequence has a multiplicative structure, this only implies that there is a filtration on
H∗(G/H ,Fp) whose associated graded is computed by the E∞-page. As shown in [2] and
[6], these extension problems can be solved (and the extensions are split) in many cases, but
for the particular case of p = 2 there seem to be no general methods to solve the extension
problems at this point. In the context of the spectral sequences, what we do in this paper is
compute the multiplicative structure of the E∞-page (that’s the C-module structure of K )
and solve the extension problem (that’s the vanishing of the Ext-group) for the specific case
of ˜Gr3(n).
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Alternatively, one could also use the Serre spectral sequence associated to the degree 2
covering˜Grk(n) → Grk(n) to compute the cohomology of˜Grk(n). However, in this case, the
Serre spectral sequence in fact degenerates to the Gysin sequence. Similarly, in the case of
the Eilenberg–Moore spectral sequence, the filtration on cohomology only has one nontrivial
step. This means that in the case ˜Grk(n), the spectral sequences available don’t have more
information than the Gysin sequence, and solving the extension problem requires different
methods anyway. For this reason, we will work with the Gysin sequence throughout.

2.3 Poincaré duality

In some simpler cases, we can also exploit the Poincaré duality structure to establish relations
between C and K .

Proposition 2.4 Poincaré duality on Grk(n) induces a perfect pairing between K = kerw1

and C = cokerw1. In particular, if cd , kd denote the Betti numbers of C and K in degree d,
respectively, then ci = kN−i , where N is the dimension of Grk(n).

Proof We denote by

b : H∗(Grk(n),F2) ⊗ H∗(Grk(n),F2) → F2 : (x, y) �→ π!(x ∪ y)

the perfect pairing of Poincaré duality. Restrict b to kerw1⊗H∗(Grk(n),F2). The orthogonal
complement of kerw1 under b is (w1): by definition, (w1) ⊂ (kerw1)

⊥, but then we have
dimF2 ker(w1) + dimF2(w1) = dimF2 H

∗(Grk(n),F2), forcing equality. Thus b descends to
a perfect pairing kerw1 ⊗ cokerw1 → F2. ��
Remark 2.5 This is a purely algebraic and a more general statement; we just need a Poincaré
duality algebra and an element in it.

Corollary 2.6 In the situation˜Grk(n), if the anomalousmodule K is generated by one element,
then K is free of rank one. Consequently, H∗(˜Grk(n),F2) ∼= C ⊕ K ∼= C⊕2 as C-modules
(with the second isomorphism ignoring the grading).

Proof We can consider the total dimension of K as F2-vector space. Since by assumption K
is cyclic, this is at most the total dimension ofC as F2-vector space. The perfect pairing from
Proposition 2.4 then implies that K needs to be free: any relation divided out would reduce
the total dimension. From this, we deduce that the extension (2.1) splits and the second claim
follows. ��
Remark 2.7 This covers many situations considered in the literature, such as the cases n =
2t − i , i = 0, 1, 2, 3, for ˜Gr3(n) in [1, 4, 9], or the cases Gr4(n) for n = 8, 9 in [19].
We also find several further situations in Sect. 9 such as ˜Gr5(16), ˜Gr5(32) and ˜Gr4(n) for
n = 13, . . . , 17, 29, . . . , 33.One could conjecture that this generalizes to˜Gr5(2t ) and˜Gr4(n)

with 2t − 3 ≤ n ≤ 2t + 1.

3 The characteristic subring and its properties

In this short section, we will recall some information on the characteristic subring C =
coker(w1) as a ring and its presentation in terms of Giambelli determinants qi .
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2 Page 10 of 44 Á. K. Matszangosz, M. Wendt

3.1 Presentation of the characteristic subring

Recall that the cohomology of the (unoriented) real Grassmannian Grk(n) has a presentation
as

H∗(Grk(n);F2) = F2[w1, . . . , wk]/(Qn−k+1, . . . , Qn),

where the Q j are uniquely determined by theWhitney sum formula (since Q j lives in degree
j):

1 + w1 + . . . + wk = 1

1 + Q1 + Q2 + . . .
.

More explicitly, the Q j can be written as the following Giambelli determinant:

Q j = det

⎛

⎜

⎜

⎜

⎜

⎜

⎝

w1 w2 . . . w j−1 w j

1 w1 w2 . . . w j−1
...

. . .
. . .

. . .
...

0 . . . 1 w1 w2

0 . . . 0 1 w1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(3.1)

where Q1 = w1, Q2 = w2
1 + w2 and so on. In these formulas, if l > k, wl = 0, since these

are Stiefel–Whitney classes of a rank k bundle.
For the cokernel C = coker(w1), being the quotient by w1, we get a similar presentation

C = F2[w2, . . . , wk]/(qn−k+1, . . . , qn),

where now the relations q j of degree j are determined by

1 + w2 + . . . + wk = 1

1 + q1 + q2 + . . .
. (3.2)

Alternatively, we obtain q j explicitly by settingw1 = 0 in the above Giambelli determinant:

q j = Q j |w1=0. (3.3)

This implies that the q j satisfy the following recursive formula (with q j = 0 for j < 0 and
q0 = 1):

q j =
k

∑

l=2

wlq j−l . (3.4)

Via a standard computation, [4, (2.8)], we can also write even more explicitly

q j =
∑

j=2a2+...+kak

(|a|
a

)

wa, (3.5)

where a = (a2, . . . , ak), wa = ∏k
i=2 w

ai
i , |a| = ∑k

i=2 ai and
(|a|
a

)

is the mod 2 multinomial
coefficient corresponding to a. We will use the following statement in the description of
Koszul homology.

Proposition 3.1 For 2 ≤ k < n we have the following equality of ideals in W2 =
F2[w2, . . . , wk]:

√

(qn−k+1, . . . , qn) = (w2, . . . , wk)
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Proof The ring C is the quotient of the cohomology ring H∗(Grk(n);F2) by the ideal (w1).
Since H∗(Grk(n);F2) is bounded above, C is also bounded from above. Since C = W2/I
where I = (qn−k+1, . . . , qn), W2 and I agree in high enough degrees. Therefore the radical
of I is the irrelevant ideal. ��

4 Syzygies of the characteristic subring

In this section, we give a system of syzygies between (qn−k, . . . , qn) over W2 =
F2[w2, . . . , wk]. First, we will describe one such relation for arbitrary k and n = 2t which
plays a fundamental role. More precisely, we prove in Theorem 4.6 (with the convention that
wl = 0 for l > k):

∑

i≥0

w2i qn−2i = 0.

From this relation we recover the relations discovered by Fukaya [7] and Korbaš [11] in their
study of the cohomological properties of ˜Gr3(n) and ˜Gr4(n).

In the second half of this section, wewill examine how these relations give further relations
as n increases or decreases - we call this method ascending and descending relations. In this
way we obtain relations between (qn−k, . . . , qn) for all n, cf. (4.3) and (4.9). We will use this
method in our computation of the Koszul homology of the ˜Gr3(n) case. The discussion in
Sect. 9 suggests that the fundamental syzygy and the procedure of ascending and descending
relations might play a key role also in k > 3 cases.

4.1 Multinomial coefficients mod 2

We first review some properties of multinomial coefficients mod 2 which will be relevant for
the proof of the fundamental syzygy in Theorem 4.6.

For a sequence of non-negative integers a = (a2, . . . , ak)1 we say that their base-2
expansions are disjoint if each power of 2 appears in the base-2 expansion of at most one of
the a j . We will denote the multinomial coefficient corresponding to the sequence a by

(|a|
a

)

,

where |a| = ∑k
i=2 ai . The following characterization of mod 2 multinomial coefficients is

also known as Lucas’ theorem.

Lemma 4.1 For a tuple a = (a2, . . . , ak), denote |a| = ∑k
i=2 ai . Then the 2-adic valuation of

the multinomial coefficient
( |a|
a2,...,ak

)

equals the number of carrying operations in the addition
|a| = a2 + · · · + ak. As a consequence, the following are equivalent:

(1)
( |a|
a2, . . . , ak

)

≡ 1 mod 2

(2) There is no carrying in the addition |a| = a2 + · · · + ak in base 2.
(3) The base 2 expansions of the ai are disjoint.

Proof The Legendre formula for the 2-adic valuation of a factorial n! states that ν2(n!) =
n−s2(n)where s2 is the sum of the digits in the base-2 expansion of n. The latter is simply the

1 To agree with later notation we start the indexing from a2.
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number of 1 s in the base-2 expansion of n. So, for the multinomial coefficient, we compute
the 2-adic valuation as follows:

ν2

( |a|
a2, . . . , ak

)

= ν2

( |a|!
a2! · · · ak !

)

= ν2(|a|!) − ν2(a2! · · · ak !)

= |a| − s2(|a|) − (|a| − s2(a2) − · · · − s2(ak)) =
k

∑

i=2

s2(ai ) − s2(|a|).

We see that the 2-adic valuation of the multinomial coefficient is the sum of nonzero digits
in the a2, . . . , ak minus the nonzero digits in |a|. But this is equal to the number of carry
operations (since each carry operation reduces the number of nonzero digits by 1). The
equivalent characterizations of mod 2 nonvanishing of the multinomial coefficient follows
directly from this. ��
Example 4.2 The base-2 expansion of a = (2, 5, 8) is [a]2 = (10, 101, 1000). Their sum is
1111, which needs no carrying. The corresponding multinomial coefficient is

(|a|
a

) = 135135
which is odd.

For a given sequence a = (a2, . . . , ak), let â j denote the sequence

â j = (a2, . . . , a j − 1, . . . , ak).

We will need a lemma about ‘consecutive’ multinomial coefficients mod 2:

Lemma 4.3 The following relations hold for consecutive multinomial coefficients mod 2:

(1) If
(|a|
a

) ≡ 1 mod 2, then there is a unique l, such that
(|a|−1

âl

) ≡ 1 mod 2. If 2p is the

largest two-power dividing all ai , then l is the unique index for which 2p+1 does not
divide al .

(2) If
(|a|
a

) ≡ 0 mod 2, then there are either exactly two indices j such that
(|a|−1

â j

) ≡ 1 mod 2

or there are none. If there are two such indices j , then they are characterized as follows:
if 2p is the largest two-power dividing all ai , then these are the indices j for which 2p+1

does not divide a j .2

Proof (1) By Lemma 4.1, the numbers a2, . . . , ak have disjoint base-2 expansions. Decreas-
ing one such number by 1 means changing the right-most digit 1 in the base-2 expansion to
a 0, and changing all the zeros to the right of this position to 1 s. The only way this doesn’t
destroy disjointness between the base-2 expansions is if we do this to the (unique) overall
right-most digit 1 in the base-2 expansions of a2, . . . , ak . Since by assumption the base-2
expansions of the a2, . . . , ak are disjoint, there is a unique j where the right-most digit 1
appears. This argument also implies the statement about the largest two-power dividing ai .

(2) Assume that there exists an index j , such that
(|a|−1

â j

) ≡ 1 mod 2. We will show that

there exists a unique l �= j such that
(|a|−1

âl

) ≡ 1 mod 2.ByLemma4.1, the base-2 expansions
of (a2, . . . , a j − 1, . . . , ak) are disjoint, but the base-2 expansions of (a2, . . . , a j , . . . , ak)
are not. In a j , there is exactly one nonzero bit which was zero in a j − 1 (this holds for any
number, the nonzero bit is the last carry). Since the (a2, . . . , a j − 1, . . . , ak) are disjoint,
but (a2, . . . , a j , . . . , ak) are not, the new nonzero bit in a j is nonzero in exactly one other

2 In other words, if there is exactly one bit overlap between the base-2 expansions of (a2, . . . , ak ) which can
be removed by decreasing some index j , then there are actually exactly two indices that can be decreased to
remove the overlap.
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al . So the largest two-power 2p dividing a j also divides al , but 2p+1 does not. Therefore
(a2, . . . , al − 1, . . . , ak) are also disjoint. For any other i /∈ { j, l}, (|a|−1

âi

) ≡ 0 mod 2, since
a j and al are not disjoint. ��
Example 4.4 In the base-2 expansions of a = (2, 5, 8), if we decrease 10, we get overlap
between 1 and 101 and the corresponding multinomial coefficient is even. If we decrease
1000, we get 111 and overlap with both 10 and 101, and an even multinomial coefficient.
Only if we decrease 101, we get 100 which doesn’t overlap with any of the others.

From the lemma, for any nonzeromultinomial coefficientwe get a unique chain of decreas-
ing multinomial coefficients which are nonzero mod 2:

(2, 5, 8) → (2, 4, 8) → (1, 4, 8) → (4, 8) → (3, 8) → (2, 8) → (1, 8) → (8) → (7) → . . .

The following proposition is the key step in proving the relation between the qi ’s.

Proposition 4.5 If for a sequence a = (a2, . . . , ak) we have
∑k

i=2 iai = 2t , then

(|a|
a

)

=
�k/2�
∑

j=1

(|a| − 1

â2 j

)

Proof There are two cases depending on the parity of
(|a|
a

)

.

If
(|a|
a

) ≡ 1 mod 2, then by part (1) of Lemma 4.3, there is a unique l such that
(|a|−1

âl

)

is also ≡ 1 mod 2. We claim that l is even, so that a unique term on the right-hand side is
nonzero. If 2p is the largest 2-power dividing all ai , then al is the unique ai not divisible by
2p+1 by Lemma 4.3. If l is odd, then

∑k
i=2 iai ≡ 2p mod 2p+1. Since the left-hand side is

equal to 2t , this implies 2p = 2t , but this is impossible since l > 1.
Assume now that

(|a|
a

) ≡ 0 mod 2. It is enough to show that if
(|a|−1

â2 j

) ≡ 1, then there is a

unique l, such that
(|a|−1

âl

) ≡ 1 and that l is even. The unique existence of l is given by part
(2) of Lemma 4.3. We now show that l is even. By part (2) of Lemma 4.3, 2p divides both
a2 j and al , but 2p+1 does not. If l is odd, then since 2 j is even,

∑k
i=2 iai ≡ 2p mod 2p+1,

and we can conclude as above. ��

4.2 Explicit relations between qi

For thedescriptionof theKoszul homology,weneed tounderstand theW2 = F2[w2, . . . , wk]-
relations between the q j . Using the above results on mod 2 multinomial coefficients, we now
obtain the following syzygy between the qi ’s for n = 2t and arbitrary k:

Theorem 4.6 The following relationbetween theq j holds inW2 = F2[w2, . . . , wk] if n = 2t :
∑

0≤i≤k even

qn−iwi =
∑

1<i≤k odd

qn−iwi = 0. (4.1)

If k ≥ n, then relation (4.1) holds only if n = 2t .

Proof Assume that n = 2t . By the recursion (3.4), we have
∑k

i=0 wi qn−i = 0 (withw1 = 0),
so it is enough to prove the statement about the even part. Since q j = ∑

j=2a2+...+kak

(|a|
a

)

wa ,
the relation (4.1) reduces to a statement about multinomial coefficients, which is Proposi-
tion 4.5.
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For the other direction, let k ≥ n. We first assume that n is odd. We can check that the sum
in question isw3 in case n = 3, so wemay assume n ≥ 5. In that case, we can write n = i+ j
for i ≥ 2 even and j ≥ 3 odd. We claim that the monomial wiw j appears in the sum in
question. Note that the monomial is nonzero by our assumption k ≥ n. Since ai = a j = 1
and all other al are 0, the multinomial coefficient is 0 mod 2, hence wiw j doesn’t appear in
qn . Now w j appears in q j in the sum in question, but wi doesn’t appear in any qn−2i because
j is odd. So the sum in question contains the monomial wiw j and is therefore not 0.

For anym which is not a power of 2, we can writem = 2t n for n odd. Now we know from
the previous argument that the monomial wiw j (with n = i + j) appears in the sum for n.
But then the monomial w2t

i w2t
j appears in the sum for m = 2t i + 2t j and we are done. ��

We can consider specializations of this formula to different k’s via the substitutionsw>k =
0. The following proposition can be found in [7, Proposition 3.2] and [11, Lemma 2.3 (ii)].
We will show how the statements follow from Theorem 4.6:

Proposition 4.7 (1) For k = 2, q2t+1 = 0 for all t .
(2) For k = 3, q2t−3 = 0 for all t .
(3) For k = 4, q2t−3 = 0 for all t .

Proof Statement (1) is trivial, since qi = w2qi−2 by (3.4) and q−1 = 0. For k = 3, Theo-
rem 4.6 implies

q2t + w2q2t−2 = w3q2t−3 = 0.

Since F2[w2, w3] is an integral domain, q2t−3 = 0. For k = 4, Theorem 4.6 implies

q2t + w2q2t−2 + w4q2t−4 = w3q2t−3 = 0,

which implies q2t−3 = 0 as before. ��

Wewill show in the next sections that for k = 3, all the syzygies between (qn−2, qn−1, qn)
are obtained from the vanishing statement in Proposition 4.7 via ascending and descending
relations. However, in the cases n = 2t − 3, . . . , 2t , one of these relations is “inessential”,
i.e., is contained in the image of the boundary map of the Koszul complex and therefore
doesn’t contribute to the presentation of K as C-module. As we will discuss in Sect. 9, the
k = 4 case is somewhat similar in that most of the time we have two relations produced from
Proposition 4.7 via ascending and descending relations.

4.3 Descending relations

In what follows, k is fixed, and we will assume that (qi )i∈Z is a sequence in W2 (or a W2-
module) satisfying the recursive relationship:

qi =
k

∑

j=2

w j qi− j . (4.2)

Then given a relation between (qn−k+1, . . . , qn), there is also a relation between
(qn−k, . . . , qn−1) as the following proposition describes. For our application, these qi ’s are
the relations defining the characteristic subrings Ck(n) and Ck(n − 1), respectively.
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Proposition 4.8 If (qi ) satisfies (4.2) and

k−1
∑

j=0

α0
j qn− j = 0

is a homogeneous relation in W2 in degree d between (qn−k+1, . . . , qn), then

k−1
∑

j=0

αi
j qn−i− j = 0 (4.3)

is a homogeneous relation in W2 in degree d between (qn−i−k+1, . . . , qn−i ). Here, the
sequence of doubly-indexed polynomials αi

r ∈ W2 is defined by a double recursion start-
ing with α<0

0 = 0, a recursion for the αi
0 given by

αi+1
0 =

k−1
∑

r=1

wk+1−rα
i+r−k
0 , (4.4)

and finally, the αi
r are defined by

αi
k− j =

j−1
∑

r=0

wk−rα
i+r− j
0 . (4.5)

Proof Using the recursion (4.2) for qn , write

k−1
∑

j=0

α0
j qn− j =

k
∑

j=1

(α0
0w j + α0

j )qn− j =
k−1
∑

j=0

(α0
0w j+1 + α0

j+1)qn−1− j

with w1 = 0 and α0
k = 0. By induction, setting

αi+1
j = w j+1α

i
0 + αi

j+1 (4.6)

for j = 0, . . . , k − 1 and αi+1
k = 0 we get a relation between (qn−i , . . . , qn−i−k+1):

k−1
∑

j=0

αi
j qn−i− j = 0.

Using (4.6), the coefficients αi
j can also be expressed recursively from the sequence (αi

0):

αi+1
k−1 = wkα

i
0, αi+1

k−2 = wk−1α
i
0 + αi

k−1 = wk−1α
i
0 + wkα

i−1
0 ,

and by induction, we obtain (4.5). ��
Corollary 4.9 For k = 3, the following relation in degree m = 2t − 3 holds for all n ≤ m
and i = m − n:

qiqn + qi+1qn−1 + w3qi−1qn−2 = 0 (4.7)

This is a relation between the relations (qn, qn−1, qn−2) defining the characteristic subring
C3(n).
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Proof For k = 3, by Fukaya’s theorem (Proposition 4.7), q2t−3 = 0 is a relation. We set
α0
0 = 1 = q0, α0

1 = α0
2 = 0, α<0

0 = 0. The recursion (4.4) is αi
0 = w3α

i−3
0 + w2α

i−2
0 . The

same recursion defines (qi ), cf. (4.2), so that αi
0 = qi for all i . Then by (4.5),

αi
1 = w3α

i−2
0 + w2α

i−1
0 = w3qi−2 + w2qi−1 = qi+1,

and

αi
2 = w3α

i−1
0 = w3qi−1

Therefore the relation (4.3) is of the form (4.7). ��
Corollary 4.10 For k = 4, the following relation in degree m = 2t − 3 holds for all n ≤ m
and i = m − n:

qiqn + qi+1qn−1 + (qi+2 + w2qi )qn−2 + (qi+3 + w2qi+1 + w3qi )qn−3 = 0 (4.8)

This is a relation between the relations (qn, qn−1, qn−2, qn−3) defining the characteristic
subring C4(n).

Proof For k = 4, by Proposition 4.7, q2t−3 = 0 is a relation, so set α0
0 = 1 = q0, α0

1 =
α0
2 = α0

3 = 0, α<0
0 = 0. The recursion (4.4) is αi

0 = w4α
i−4
0 + w3α

i−3
0 + w2α

i−2
0 . Again,

the same recursion defines (qi ), cf. (4.2), so that αi
0 = qi for all i . By (4.5)

αi
1 = w4α

i−3
0 + w3α

i−2
0 + w2α

i−1
0 = w4qi−3 + w3qi−2 + w2qi−1 = qi+1,

αi
2 = w4α

i−2
0 + w3α

i−1
0 = w4qi−2 + w3qi−1 = qi+2 + w2qi ,

and

αi
3 = w4α

i−1
0 = qi+3 + w2qi+1 + w3qi .

Therefore the relation (4.3) is of the form (4.8). ��

4.4 Ascending relations

Given a relation between (qn−k+1, . . . , qn), we can also get a relation between (qn−k+2, . . . ,

qn+1) from the recursion qi = ∑k
j=2 w j qi− j , as the following proposition describes. Again,

for our application, the qi ’s are the relations defining the characteristic subrings Ck(n) and
Ck(n + 1).

Proposition 4.11 If (qi ) satisfies (4.2) and

k−1
∑

j=0

β0
j qn− j = 0

is a homogeneous relation in degree D between (qn−k+1, . . . , qn), then

k−1
∑

j=0

β i
j qn+i− j = 0 (4.9)

is a homogeneous relation in degree D + ki between (qn+i−k+1, . . . , qn+i ), where the
sequence of doubly-indexed polynomials (β i

j ) is defined by a double recursion starting with
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β<0
j = 0 for all j :

β i+1
j =

j
∑

r=0

w j−rw
r
kβ

i−r
k−1 (4.10)

Note that w1 = 0 and that (4.10) for j = k − 1 is a recursive definition of (β i
k−1):

β i+1
k−1 =

k−1
∑

r=0

wk−1−rw
r
kβ

i−r
k−1

Proof We multiply the given relation with wk , and use the recursion (4.2) in the form
wkqn−k+1 = ∑k−1

j=0 w j qn+1− j (with w1 = 0 and w0 = 1) to get

0 = wk

k−1
∑

j=0

β0
j qn− j = β0

k−1

⎛

⎝

k−1
∑

j=0

w j qn+1− j

⎞

⎠ + wk

k−1
∑

j=1

β0
j−1qn+1− j

=
k−1
∑

j=0

(

β0
k−1w j + wkβ

0
j−1

)

qn+1− j

with w1 = 0 and β0−1 = 0. By induction, setting

β i+1
j = w jβ

i
k−1 + wkβ

i
j−1 (4.11)

for j = 0, 1, . . . , k − 1 and β i+1
−1 = 0 we get a relation between (qn+i−k+1, . . . , qn+i ):

k−1
∑

j=0

β i
j qn+i− j = 0.

Using (4.11), the coefficients β i
j can also be expressed recursively from the sequence (β i

0),
starting with

β i+1
0 = β i

k−1, β i+1
1 = w1β

i
k−1 + wkβ

i−1
k−1.

By induction on j , we obtain (4.10). ��
Applying this to Fukaya’s relations q2t−3 = 0 in the case k = 3, we directly get the

following syzygy between the relations (qn, qn−1, qn−2) defining the characteristic subring
C3(n). To alleviate notation, for k = 3 we introduce

r j = β
j
2 . (4.12)

Corollary 4.12 For k = 3, let d = 2t − 1, n ≥ d and j = n − d. Then we have the following
relation between (qn, qn−1, qn−2) in degree (d − 2) + 3 j :

r j−1qn + w3r j−2qn−1 + r j qn−2 = 0 (4.13)

where ri satisfy the recursion

ri+1 = w2ri + w2
3ri−2. (4.14)

with r0 = 1, r<0 = 0.
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Proof We first check the degrees in the statement. Assuming the recursion, we see that the
degree of r j is 2 j , and then the relation has degree 2 j −2+n = 2n−2d−2 = (d−2)+3 j .

Nowwe prove the statement by induction. The induction start is n = d , j = 0. In this case,
r−1qn+w3r−2qn−1+r0qn−2 = 0 holds because r<0 = 0 andq2t−3 = 0 fromProposition 4.7.
The recursion ri+1 = w2ri + w2

3ri−2 is exactly the last recursion from Proposition 4.11. To
see that the claim follows by induction, there is some reindexing necessary so that we can
write the starting relation as β0

0qn + w3β
0
1qn−1 + β0

2qn−2 = 0 and use Proposition 4.11. In

particular, we start with β0
0 = β0

1 = 0 and β0
2 = 1. From (4.10), we get β j

0 = w0w
0
3r j−1 and

β
j
1 = w0w3r j−2 (using w1 = 0). In particular, we find

β
j
0qn + β

j
1qn−1 + β

j
2qn−2 = r j−1qn + w3r j−2qn−1 + r j qn−2.

This finishes the proof. ��
We remark that from the recursion (4.13), via a standard computation, r j can also be given

in a closed form as follows:

r j =
∑

2 j=2b2+6b3

(

b2 + b3
b2

)

w
b2
2 w

2b3
3 (4.15)

Similarly, for k = 4, we get the following syzygy between the relations (qn, . . . , qn−3)

defining the characteristic subring C4(n).

Corollary 4.13 For k = 4, let d = 2r , n ≥ d and i = n − d. Then we have the following
relation between (qn, qn−1, qn−2, qn−3) in degree (d − 3) + 4i :

β i−1
3 qn + w4β

i−2
3 qn−1 +

(

w2β
i−1
3 + w2

4β
i−3
3

)

qn−2 + β i
3qn−3 = 0 (4.16)

where β i
3 satisfy the recursion

β i+1
3 = w3β

i
3 + w2w4β

i−1
3 + w3

4β
i−3
3

with β0
3 = 1 and β<0

3 = 0.

Proof Wefirst consider the degrees of the relation in the statement. From the recursion for β i
3,

we find that the degree of β i
3 is 3i . The relation then has degree 3i − 3+ n = 2n − 3d − 3 =

d − 3 + 4i .
We start with the base case n = d , i = 0. In this case, the first three terms have β<0

3 = 0
while the last term is q2n−3, so the relation holds.

For general n = d + i , Proposition 4.11 implies a relation of the form

β i
0qn + β i

1qn−1 + β i
2qn−2 + β i

3qn−3 = 0.

Now we can rewrite the coefficients using the recursions from Proposition 4.11, omitting the
terms containing w1 = 0:

β i
0 = w0w

0
4β

i−1
3

β i
1 = w0w

1
4β

i−2
3

β i
2 = w2w

0
4β

i−1
3 + w0w

2
4β

i−3
3

Writing out the last recursion in Proposition 4.11 produces β i+1
3 = w3w

0
4β

i
3 + w2w

1
4β

i−1
3 +

w0w
3
4β

i−3
3 . The claims follow from this. ��
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5 Generalities on Koszul homology and the anomalousmodule

In this section, we prepare for the computation of the C-module presentation of K by inter-
preting K as first Koszul homology for the sequence (qn−k+1, . . . , qn) in W2. That Koszul
homology should play a role for the computation is already apparent in Baum’s computation
of cohomology of homogeneous spaces in [2].

5.1 Recollections on Koszul homology

Definition 5.1 For a commutative ring R, and an R-linear map f : Rn → R, the associated
Koszul complex K( f ) is the complex

∧n Rn ∧n f ∧n−1 Rn ∧n−1 f · · · ∧2 f ∧1 Rn ∧1 f ∧0 Rn ∼= R

with boundary maps

∧ j f (α1 ∧ · · · ∧ α j ) =
j

∑

i=1

(−1)i+1 f (αi ) · α1 ∧ · · · ∧ α̂i ∧ · · · ∧ α j . (5.1)

If Q = (Q1, . . . , Qn) ∈ R is a sequence of elements in R, then the associated Koszul
complex K(Q) is the Koszul complex of the R-linear map (r1, . . . , rn) �→ ∑n

i=1 Qiri .
For an R-module M , we then define theKoszul homology as the homology of the complex

KM ( f ) := K( f ) ⊗R M . Below, we will only consider the situation where f is given by a
sequence Q = (Q1, . . . , Qn), and the Koszul homology will be denoted by Hi (Q, M).

Actually, for what follows, we will consider the Koszul complex in a graded setting. If R
is a Z-graded ring and f : ⊕n

i=1 R[di ] → R a linear map of graded R-modules, there is a
Koszul complex of free graded R-modules, of the form given above. The only change is that
we replace

∧ j Rn by its graded version

j
∧

(

n
⊕

i=1

R[di ]
)

∼=
⊕

1≤i1≤···≤i j≤n

R[di1 + · · · + di j ].

The boundary maps (5.1) then preserve the grading. Moreover, for a sequence of homoge-
neous elements Q = (Q1, . . . , Qn) ∈ R, we get a graded Koszul complex K(Q) associated
to the map

n
⊕

i=1

R[− deg Qi ] → R : (r1, . . . , rn) �→
n

∑

i=1

Qiri .

Here R[− deg Qi ] is the free rank one R-module shifted in such a way that R[− deg Qi ] j =
R− deg Qi+ j , i.e., the degree 0 component of R is shifted to lie in degree deg Qi of
R[− deg Qi ]. The linear map above is then a degree 0 map. Some explicit examples of
the graded Koszul complexes can be found in the Betti number computation in Appendix c.

5.2 Relation of Koszul homology to K

Let W1 := F2[w1, . . . , wk] and W2 := F2[w2, . . . , wk]. We consider both rings with a
grading given by degwi = i . Then W2 is naturally a graded W1-module (where w1 acts by
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0) and there is a short exact sequence of W1-modules:

0 W1[−1] w1
W1 W2 0. (5.2)

The first entry is shifted to account for multiplication with w1 being a degree 1 map on W1.
Let H := H∗(Grk(n);F2), which has the presentation H = W1/(Q) with Q =

(Qn−k+1, . . . , Qn). Since Q is a regular sequence of homogeneous elements in W1, all
Koszul homologies Hi (Q,W1) vanish for i > 0. In general, for a graded W1-module M ,

H0(Q, M) = M/(Q)M

(this is one of the defining properties of Koszul homology). Therefore

H0(Q,W2) = W2/(Q)W2 = C, H0(Q,W1) = W1/(Q)W1 = H

The short exact sequence ofW1-modules (5.2) induces a long exact sequence ofW1-modules
in Koszul homology:

0 0 H1(Q,W2)

H [−1] H C 0
w1

(5.3)

Therefore

K [−1] = ker(w1 : H [−1] → H) ∼= δ(H1(Q,W2)),

and the exactness of the sequence also proves that Hi (Q,W2) = 0 for i > 1.
In particular, the identification of zeroth and first Koszul homologywith characteristic sub-

ringC and the anomalous module K , respectively, respects the gradings from cohomological
degree. Taking the grading into account as above alsomakes explicit the shift appearing when
translating between Koszul homology H1(Q,W2) and K = ker(w1).

Remark 5.2 In fact, Hi (Q,W2) = TorW1
i (H ,W2), see e.g. [20, Corollary 4.5.5.] and (5.3) is

the long exact sequence of TorW1
i (H , ·) associated to (5.2).

The way to unravel the boundary map δ is via the snake lemma: take a relation
ri ∈ H1(Q,W2) (between qi ), and represent it by some 1-chain Ri in the Koszul com-
plex (KW1(Q))1. Then take its boundary d1(Ri ) ∈ (KW1(Q))0 = W1, take a preimage inW1

via w1 (i.e., divide by w1) and take its reduction to H = W1/(Q). Since the sequence (5.3)
is exact, the resulting element is in the kernel of w1.

This procedure gives explicit W1-generators of K in terms of the syzygies (relations
between relations) in C . Also, the presentation of K as a W1-module provides a presen-
tation as a C-module, by base extension. Indeed, K ⊗W1 C ∼= K , since AnnW1(K ) =
(w1, Qn−k+1, . . . , Qn) – in other words, this is just the statement that K is a C-module.

Remark 5.3 We can make this boundary map even more explicit. For ease of notation, we
are omitting full documentation of the relevant degrees. Let Qi ∈ W1 be the relations (the
complete homogeneous symmetric polynomials expressed in terms of elementary symmetric
ones) and let

qi := Qi |w1=0 ∈ W2, Pi := Qi + qi ∈ (w1).
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Since Pi ∈ (w1) ⊆ W1, it has a unique preimage pi via w1, i.e., w1 pi = Pi . That is,

W1
w1

W1 W2

pi Pi
Qi qi

If
∑

fi qi = 0 ∈ W2 is a relation, then since Qi = 0 in H , we have the following equality
in H :

∑

fi Pi =
∑

fi qi = 0,

since
∑

fi qi = 0 ∈ W2 ⊆ W1, and using that H is a quotient of W1. The boundary map in
the long exact sequence (5.3) maps such a relation

∑

fi qi in the Koszul complex to

δ
(
∑

fi qi
)

=
∑

fi pi ∈ H . (5.4)

Note that since w1 pi = Pi ,
∑

fi pi is an element in kerw1 ⊆ H . Also note that δ decreases
the degrees by one; deg δ(ξ) = deg ξ − 1 for ξ ∈ ker(d1).

The classes Pi and pi also satisfy recursive identities: since Qi = ∑k
r=1 wr Qi−r and

qi = ∑k
r=2 wr qi−r ,

Pi = Qi + qi = w1Qi−1 +
k

∑

r=2

wr Pi−r

and since Qi−1 = Pi−1 + qi−1:

Pi = w1qi−1 +
k

∑

r=1

wr Pi−r (5.5)

So

pi = qi−1 +
k

∑

r=1

wr pi−r (5.6)

Remark 5.4 The Koszul homology of (qn−2, qn−1, qn) ⊆ W2 = F2[w2, w3] is the same as
the Koszul homology of (w1, Qn−2, Qn−1, Qn) ⊆ W1 = F2[w1, w2, w3].
Remark 5.5 The Koszul homology description generalizes to the cohomology of the sphere
bundle S of a rank n vector bundle E → X , whenever H∗(X) is a complete intersection ring
F2[x1, . . . , xr ]/(Q1, . . . , Qp) for some regular sequence Qi . Then the first homology of the
Koszul complex of (wn(E), Q1, . . . , Qp) over F2[x1, . . . , xr ] is kerwn(E) ⊆ H∗(X).

5.3 The characteristic rank of ˜Grk(2t)

The characteristic rank of a vector bundle E → X over an n-dimensional manifold X , is
the maximal degree 0 ≤ r ≤ n, such that H≤r (X;F2) is generated by the Stiefel–Whitney
classes of E . Then for the tautological bundle S → ˜Grk(n), crk(S) is the maximal degree
r such that the inclusion C≤r ⊂ H≤r (˜Grk(n);F2) is an isomorphism. So a nonzero class
in the Koszul homology H1(Q,W2) in degree d gives the upper bound crk(S) ≤ d − 2.
The characteristic ranks crk(S) for k = 3 and k = 4 have been determined in [16, Theorem
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1] and [17, Theorem 6.6]. The characteristic rank crk(S) is not known besides these cases,
though upper and lower bounds have been developed in the literature, see the discussion
below. Using Theorem 4.6 we can give a new upper bound for crk(S) when n = 2t .

Theorem 5.6 Assume 2t − 5 ≥ k ≥ 5. The characteristic rank of the tautological bundle
S → ˜Grk(n) for n = 2t satisfies

crk(S) ≤ 2t − 2.

In other words, there is a nonzero anomalous class in the cohomology H2t−1(˜Grk(2t );F2)

of the oriented Grassmannian.

Proof We can assume k ≤ 2t−1 by the duality ˜Grk(2t ) ∼= ˜Gr2t−k(2t ). Since n = 2t , the
following relation from Theorem 4.6 holds:

�k/2�−1
∑

i=1

qn−2i−1w2i+1 = 0,

which gives a generator of ker(d1) in the Koszul complex:

v = (0, 0, 0, w3, 0, w5, 0, . . .) ∈ ∧1W⊕k
2 .

We claim that this is not in the image of the differential d2 which has the following form:

∧2(W⊕k
2 ) � A =

⎛

⎜

⎜

⎜

⎝

0 λ12 λ13 . . . λ1k
λ12 0 λ23 . . . λ2k
...

...
. . . . . .

...

λ1k λ2k λ3k . . . 0

⎞

⎟

⎟

⎟

⎠

�→ A

⎛

⎜

⎜

⎜

⎝

qn−k+1

qn−k+2
...

qn

⎞

⎟

⎟

⎟

⎠

∈ ∧1(W⊕k
2 )

Since all entries of Aq are homogeneous and the lowest degree nonzero term in q is of
degree n − k + 1 ≥ 2t − 2t−1 + 1 ≥ 3, this implies that v ∈ ker(d1) is not in Im(d2),
and defines a nontrivial element in the Koszul homology H1(Q,W2). Via the long exact
sequence (5.3), this defines a nonzero element of K , which in turn lifts to an anomalous class
in H2t−1(˜Grk(2t );F2). Therefore the characteristic rank is at most 2t − 2, by definition. ��
Remark 5.7 The nonzero element of K in the above proof can be identified more explicitly,
it is the highest nonzero power of w1, cf. the discussion in Section 6 of [14]. The proof uses
exactly the translation between Koszul homology and K outlined above.

This anomalous class in˜Grk(2t ) provides further anomalous classes for˜Grk(n) by ascend-
ing and descending the relation of Theorem 4.6. Sometimes these ascended and descended
relations vanish in Koszul homology, as they fall into the image of the Koszul boundary, as
we illustrate in Sect. 6.4. However, these classes always seem to be responsible for the char-
acteristic rank of S → ˜Grk(n), cf. Sect. 9. We formulate our observations in the following
conjecture:

Conjecture 5.8 The characteristic rank of the tautological bundle S → ˜Grk(n) is equal to

crk(S) = min(2t − 2, k(n − 2t−1) + 2t−1 − 2). (5.7)

for 5 ≤ k ≤ 2t−1 < n ≤ 2t and t ≥ 5.

We verified this conjecture by computer calculations for k = 5, n ≤ 32 and k = 6, n ≤ 23,
cf. Sect. 9. Further cases of the conjecture are established in [14].
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Remark 5.9 We comment on the assumptions made in this conjecture.
In the k ≤ 4 cases the syzygies follow a different pattern than in the k ≥ 5 cases, which

gives rise to different characteristic ranks, cf. Proposition 4.7 and Corollaries 4.9 to 4.13,
which is why we make the k ≥ 5 assumption. This different behaviour also influences the
characteristic ranks via the duality˜Grk(n) ∼= ˜Grn−k(n) in the range 8 < n ≤ 16 for k = 5, 6,
which is why we make the t ≥ 5 assumption. The explicit examples not satisfying (5.7)
with 5 ≤ k ≤ 8 < n ≤ 16 are crk(S → ˜Gr5(10)) = 10, crk(S → ˜Gr5(11)) = 13 and
crk(S → ˜Gr6(12)) = 13, see Sect. 9.

Remark 5.10 We briefly summarize what else is known about the characteristic rank of S →
˜Grk(n). There is a simple lower bound crk(S) ≥ n − k − 1; this amounts to the obvious
statement that there cannot be a W2-relation between (qn−k+1, . . . , qn) in degree n − k. The
best known lower bounds have been obtained in [17] using Gröbner basis techniques; for
k ≥ 6:

crk(S) ≥ (n − k) + �k/3� − 1,

as well as some stronger estimates for certain pairs (k, n). The authors also note [17, Remark
6.8] that “there are reasons to believe that for k ≥ 5, there is some n such that crk(S) >

2(n − k) − 1”.3 From the tables in Sect. 9, we see that

crk(S → ˜Gr6(18)) = 2(n − k) + 4, crk(S → ˜Gr6(19)) = 2(n − k) + 6.

More generally, Conjecture 5.8 would imply that for any r , there is a choice of k and n, such
that crk(S → ˜Grk(n)) > 2(n − k) + r .

Remark 5.11 In the literature, often the characteristic rank of a manifold is considered,
which is the characteristic rank of its tangent bundle crk(T M). Whenever the total Stiefel–
Whitney class of the tangent bundle w(T M) can be expressed in terms of w(E), there is
an obvious upper bound crk(T M) ≤ crk(E). In general, these are not equal; for example
crk(TRP2r+1) = 0, but crk(S → RP2r+1) = 2r + 1. On the other hand, crk(TRP2r ) =
crk(S → RP2r ) = 2r . By a result of Korbaš [10, p. 72], crk(T˜Grk(2n + 1)) = crk(S →
˜Grk(2n + 1)) — this is due to the fact that w(S) can also be expressed from w(T˜Grk(2n)).

6 Presentation of the anomalousmodule for k = 3

For k = 3, we exhibited certain W2-relations between (qn−2, qn−1, qn) in Corollaries 4.9
and 4.12. These involved the polynomials qi themselves and the polynomials rl of degree
2l defined by the recursion rl+1 = w2rl + w2

3rl−2. The goal of this section is to prove the
following Theorem:

Theorem 6.1 For t ≥ 4, let 2t−1 < n ≤ 2t −4, and set i = 2t −3−n and j = n−2t−1 +1.
Then the anomalous module K ⊆ H∗(Gr3(n);F2) is isomorphic (as a graded C-module) to

K = C〈An, Dn〉/(qi An + r j−1Dn, qi+1An + w3r j−2Dn, w3qi−1An + r j Dn), (6.1)

where An and Dn are explicit elements (6.3), (6.2) of K of degrees deg An = 3n − 2t − 1
and deg Dn = 2t − 4.

3 The notation is adapted to comply with the notation of the present paper.
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Fig. 1 Notations

Wewill derive this presentation of K using its identificationwith the firstKoszul homology
of the ideal (qn−2, qn−1, qn) ⊆ W2 = F2[w2, w3] described in Sect. 5.2. Throughout this
section, given t ≥ 4 and 2t−1 − 1 ≤ n ≤ 2t − 3, we will use the notation j = n− (2t−1 − 1)
and i = 2t − 3 − n, cf. Fig. 1.

6.1 Relations between ql and rl

The following equalities connect the coefficients of the ascended and descended relations,
and will play a crucial role for the proofs in this section:

Lemma 6.2 With the indexing conventions set up above, the following equations hold in
W2 = F2[w2, w3] for all 2t−1 − 1 ≤ n ≤ 2t − 3:

w3r j−2qi + r j−1qi+1 = qn−2

r j qi + w3r j−1qi−1 = qn−1

r j qi+1 + w2
3r j−2qi−1 = qn

Proof The start of the induction is the case n = 2t−1 − 1, j = 0 and i = 2t−1 − 2, where we
can make use of r<0 = 0 and r0 = 1. In this case, the first equality reduces to q2t−1−3 = 0
from Proposition 4.7. The second and third equality both reduce to qi = qn−1 which follows
from the i = n − 1 of the assumption.

For the induction step, assume that the three equations are satisfied for n, with i = 2t−n−3
and j = n − 2t−1 − 1. We want to show that the equations for n + 1, i − 1 and j + 1 are
also satisfied.

We first show r j+1qi + w2
3r j−1qi−2 = qn+1:

qn+1 = w2r j qi + w2w3r j−1qi−1 + w2
3r j−2qi + w3r j−1qi+1

= r j+1qi + w2w3r j−1qi−1 + w3r j−1qi+1

= r j+1qi + w2w3r j−1qi−1 + w2w3r j−1qi−1 + w2
3r j−1qi−2

= r j+1qi + w2
3r j−1qi−2

The first equality uses the recursion qn+1 = w2qn−1+w3qn−2, combined with the equations
for the inductive assumption. The second equality combines the first and third summand using
the recursion for r j+1, and the third equality uses the recursion qi+1 = w2qi−1 + w3qi−2.
The two middle terms cancel and we have established the claim.

Next, we show r j+1qi−1 + w3r j qi−2 = qn :

qn = r j qi+1 + w2
3r j−2qi−1

= w2r j qi−1 + w3r j qi−2 + w2
3r j−2qi−1

= r j+1qi−1 + w3r j qi−2
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The first equality is the inductive assumption, the second uses the recursion qi+1 = w2qi−1+
w3qi−2, and the third uses the recursion for r j+1, on the first and third summand in the second
line. So the second equation is established.

Finally, the relation w3r j−1qi−1 + r j qi = qn−1 is one of the equations in the inductive
assumptions. ��

6.2 The kernel of the Koszul differential d1

In this part we show that ker(d1) is a free W2-module of rank 2 and explicitly identify a
W2-basis.

Proposition 6.3 For ˜Gr3(n) with 2t−1 < n ≤ 2t − 4, i = 2t − 3− n and j = n − 2t−1 + 1,
the following equality holds in W2 = F2[w2, w3] for x, y, z ∈ W2:

(

qn−2 qn−1 qn
)

⎛

⎝

x
y
z

⎞

⎠ = det

⎛

⎝

x r j w3qi−1

y w3r j−2 qi+1

z r j−1 qi

⎞

⎠

In particular, the 2nd and 3rd column vectors on the right-hand side form a basis for the
kernel ker(d1) in the Koszul complex, and so ker(d1) is a free graded W2-module of rank 2.

Proof Before we embark on the proof, we recall from Sect. 5 that the Koszul complex is a
complex of gradedmodules. In particular, kernels of differentials as well as homology groups
will inherit a grading, and all linear algebra arguments below will be with homogeneous
elements.

(1) The matrix equation claimed in the proposition is equivalent to the following three
equations, which follow from Lemma 6.2:

qn−2 = det

(

w3r j−2 qi+1

r j−1 qi

)

qn−1 = det

(

r j w3qi−1

r j−1 qi

)

qn = det

(

r j w3qi−1

w3r j−2 qi+1

)

For ease of reference in the next two steps, we denote the 2nd and 3rd column vectors on
the right-hand side by u = (r j , w3r j−2, r j−1)

t and v = (w3qi−1, qi+1, qi )t .
(2) Now we consider the graded W2-submodule span〈u, v〉 ⊆ W⊕3

2 . For a homogeneous
prime ideal p ⊆ W2 not containing the irrelevant ideal, denote byF the fraction field ofW2/p.
Our goal in this step is to show that the F-submodule of F⊕3 = W⊕3

2 ⊗W2 F generated by (the
images of) u and v is of rank 2. This shows, in particular, that u and v are independent and
that span〈u, v〉 is a free W2-submodule of W⊕3

2 .4 To prove the claim, it is enough to show
that at least one of the minors qn−2, qn−1, qn does not vanish in F. But if all three minors
vanished in F, then they would already vanish in W2/p, i.e., (qn−2, qn−1, qn) ⊆ p. Since
√

(qn−2, qn−1, qn) = (w2, w3), cf. Proposition 3.1, this implies that p contains the irrelevant
ideal, a contradiction, showing that the images of u and v are linearly indepedent over F.

(3) Finally, we need to show that u and v actually span ker(d1). It is easy to check that
span〈u, v〉 ⊆ ker(d1). As submodules of the finitely generated graded W2-module W⊕3

2 ,

4 Note that the statement is significantly stronger than that. It states that the free rank 2 claim is true over all
residue fields of the homogeneous prime spectrum.
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they both are finitely generated graded W2-modules. We want to show that the inclusion
ι : span〈u, v〉 ↪→ ker(d1) is in fact surjective, i.e., that the quotient module coker(ι) vanishes.
It suffices to check the vanishing locally at points of the homogeneous prime spectrum. By
the graded Nakayama lemma, it suffices to check vanishing at residue fields of homogeneous
prime ideals.

This means the following. For a homogeneous prime ideal p ⊆ W2 not containing
the irrelevant ideal, denote by F the fraction field of W2/p. Then we want to show that
spanF〈u, v〉 ⊇ ker(d1 ⊗ F). For s = (x, y, z)t ∈ ker(d1 ⊗ F), the matrix equation estab-
lished in step (1) shows that {s, u, v} is linearly dependent, i.e., there are α, λ, μ ∈ F such
that αs + λu + μv = 0. From step (2), we have that u and v are linearly independent over
F, i.e., at least one of the determinants of the (2 × 2)-minors is nonzero in F. In particular,
we get α �= 0, meaning that s ∈ spanF〈u, v〉. This finishes the proof. ��

Remark 6.4 The proof actually shows that all the coefficients r≥0 appearing in the relation
are in fact nonzero. If one of them was zero, the basis u, v would not span the kernel. But
then some u would be divisible by w3, leading to a linear expression w3s + u = 0. The last
step in the proof shows that this is not possible, and we in fact do get all the elements in the
kernel.

6.3 Presentation of the anomalousmodule

Using Proposition 6.3, we can name explicit elements An, Dn ∈ K3(n) via the boundary
map δ of the long exact sequence of Koszul homologies (5.3), as described in Remark 5.3,
in particular (5.4). The first generator of ker(d1) is the descended relation:

qiqn + qi+1qn−1 + w3qi−1qn−2 = 0.

Denote by Dn ∈ W1 the image of this relation via δ:

Dn = qi pn + qi+1 pn−1 + w3qi−1 pn−2. (6.2)

Similarly, denote by An ∈ W1 the image of the ascended relation via δ:

An = r j−1 pn + w3r j−2 pn−1 + r j pn−2. (6.3)

In order not to overburden notation, we will also denote by An, Dn the reductions of these
classes from W1 to H∗(Gr3(n);F2) = W1/(Qn−2, Qn−1, Qn). From Proposition 6.3 and
the long exact sequence (5.3) it follows that K3(n) is generated by these two elements as a
C-module, however so far one of these elements could just as well be 0. In this section, we
will show that this is not the case, and compute the relations between these elements.

Proposition 6.5 The graded W2-module K has a presentation by 2 generators An and Dn in
degrees deg An = 3n−2t −1 and deg Dn = 2t −4. These two generators satisfy 3 relations
of degrees 2n − 4, 2n − 3 and 2n − 2, respectively, given as follows:

qi An + r j−1Dn, qi+1An + w3r j−2Dn, w3qi−1An + r j Dn .

A similar presentation holds for K as graded C-module.

Proof We first note that the degrees actually are as claimed: this follows from (6.2), (6.3),
deg(pl) = deg(ql) − 1 = l − 1 and deg(rl) = 2 l.
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The differential d2 for the Koszul complex is given by the following matrix, cf. Defini-
tion 5.1:

⎛

⎝

qn−1 qn 0
qn−2 0 qn
0 qn−2 qn−1

⎞

⎠

From Proposition 6.3, we know that ker d1 is a free rank 2 module. A presentation of K , as
the first homology of the Koszul complex, can thus be obtained by writing the columns of
the above matrix in terms of the basis vectors given in Proposition 6.3. We thus need to solve
the following system of W2-linear equations:

⎛

⎝

qn−1 qn 0
qn−2 0 qn
0 qn−2 qn−1

⎞

⎠ =
⎛

⎝

r j w3qi−1

w3r j−2 qi+1

r j−1 qi

⎞

⎠ ·
(

λ11 λ12 λ13
λ21 λ22 λ23

)

The columns in the right-most matrix will then describe the coefficients of the three relations
between the two generators.

The claim in the proposition is that the following matrix is a solution of the system:
(

λ11 λ12 λ13
λ21 λ22 λ23

)

=
(

qi qi+1 w3qi−1

r j−1 w3r j−2 r j

)

One easily checks that the product has the symmetric structure required for the d2-differential
of the Koszul complex. It remains to check the following three equations, which are estab-
lished in Lemma 6.2:

w3r j−2qi + r j−1qi+1 = qn−2

r j qi + w3r j−1qi−1 = qn−1

r j qi+1 + w2
3r j−2qi−1 = qn

��
This concludes the proof of Theorem 6.1.

6.4 Koszul boundary

In this section we show how at the boundary of the interval 2t−1 < n < 2t − 3 the ascended
and descended relations fall into the image of the Koszul boundary d2. In other words we
explain why there is only one generator in these cases.

Proposition 6.6 For n = 2t−1 and the corresponding i = 2t−1 − 3, the vector
(qi , qi+1, w3qi−1) ∈ W⊕3

2 corresponding to the descended relation (4.7)

qiqn + qi+1qn−1 + w3qi−1qn−2 = 0

is in the image of the Koszul boundary d2.
For n = 2t −3 and the corresponding j = 2t−1−2, the vector (r j−1, w3r j−2, r j ) ∈ W⊕3

2
corresponding to the ascended relation (4.13)

r j−1qn + w3r j−2qn−1 + r j qn−2 = 0

is in the image of the Koszul boundary d2.
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Proof The descended relation is

q2t−1−3q2t−1 + q2t−1−2q2t−1−1 + w3q2t−1−4q2t−1−2 = 0.

Using w3q2t−1−4 = q2t−1−1 and q2t−1−3 = 0, we can rewrite this as

q2t−1−2q2t−1−1 + q2t−1−1q2t−1−2 = 0,

which is clearly an element in the image of d2. The ascended relation is the following (using
q2t−3 = 0):

w3r2t−1−4q2t−4 + r2t−1−2q2t−5 = 0

We can conclude, since the coefficients are q2t−5 and q2t−4, by the following lemma. ��
Lemma 6.7 For all t ≥ 2, the following relations hold in W2:

r2t−1−2 = q2t−4, w3r2t−1−4 = q2t−5.

The recursion on rn also implies r2t−1−1 = q2t−2.

Proof Using the recursion (3.4), one can show that the q j satisfy [11, (2.6)]

q j = w2s
2 q j−2·2s + w2s

3 q j−3·2s ,

for all s such that j ≥ 1 + 3 · 2s . By a similar inductive argument on s using the recursion
(4.14), one can show

r j = w2s
2 r j−2s + w2s+1

3 r j−3·2s

and similarly

r3·2t−2 = w2t
2 r2t+1−2. (6.4)

Using this, we can show the first equality r2t−1−2 = q2t−4 by induction. The first step for
t = 2, 3 states that r0 = q0 = 1 and r2 = q4 = w2

2. Using the recursions (3.4), (4.14) and
(6.4), the induction step is

q2t−4 = w2t−2

2 q2t−1−4 + w2t−2

3 q2t−2−4 = w2t−3

2 w2t−3

2 r2t−2−2
︸ ︷︷ ︸

r3·2t−3−2

+w2t−2

3 r2t−3−2 = r2t−1−2.

The other case can be obtained by an entirely analogous argument. ��

7 Vanishing of Ext-groups for k = 3

Given the presentation of K as a C-module established in Sect. 6, we will now show that
the Ext-group Ext1C (K ,C) always vanishes in the k = 3 case, basically for degree reasons.
This implies, in particular, that the extension (1.1) always splits, and H∗(˜Grk(n),F2) is, as a
C-module, simply isomorphic to K ⊕C . Some basics on Ext-groups, how to compute them
and how they relate to extensions can be found in Appendix B. Note that we are interested in
graded degree 0 extensions, i.e., extensions of gradedC-modules where all the maps preserve
degrees.

Proposition 7.1 For all n ≥ 3, we have that Ext1C (K ,C) = 0 (the graded, degree zero part
is trivial).
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Proof In the cases n = 2t − 3, . . . , 2t , K is a cyclic C-module by [1, Theorem A], and
therefore free by the Corollary 2.6. This implies the triviality of the Ext-group.

We can thus focus on the cases 2t−1 < n ≤ 2t − 4. In these cases, K is generated by
two elements of degrees 3n − 2t − 1 and 2t − 4, again by [1, Theorem A] or Theorem 6.1.
The smallest-degree anomalous generator is Poincaré dual to the top degree class of C . The
dimension of ˜Gr3(n) being 3n − 9, the top degree of C is therefore the maximum of 2t − 8
and 3n − 2t − 5.

On the other hand, K has 3 relations in degrees 2l + 2 = 2n − 4, 2l + 3, 2l + 4, by
Proposition 6.5. If we can show that the degrees of the relations are always bigger than the
top degree of C , the Ext-group is trivial for degree reasons, cf. the discussion in Appendix B.
But the assumption n > 2t−1 implies 2n − 4 > 2t − 4 > 2t − 8, and the assumption
n ≤ 2t − 4 < 2t + 1 implies 2n − 4 > 3n − 2t − 5. So we are done. ��

8 Removing remaining ambiguities

Using the splitting of Proposition 7.1, we know that H∗(˜Gr3(n),F2) in the range 2t−1 <

n ≤ 2t − 4 is a C-module generated by lifts an and dn of the elements An and Dn , and we
have computed the C-module relations in Theorem 6.1. This determines the cohomology
H∗(˜Grk(n),F2) ∼= C ⊕ K as a C-module. To determine the complete ring structure, the only
ambiguities left are the products a2n , d

2
n and andn . We prove:

Proposition 8.1 Let an, dn ∈H∗(˜Gr3(n);F2)be lifts of the elements An, Dn ∈ H∗(Gr3(n);F2)

defined in (6.3) and (6.2), i.e. δ(an) = An and δ(dn) = Dn. Then

a2n = d2n = andn = 0.

Proof The product andn vanishes for degree reasons:

deg(andn) = (3n − 2t − 1) + (2t − 4) = 3n − 5 > 3n − 9 = dim˜Gr3(n).

We will show that δ(an)2 = A2
n = 0 and δ(dn)2 = D2

n = 0 in H∗(Gr3(n);F2) in Proposi-
tions 8.7 and 8.4. Then we can conclude by the following Lemma 8.2. ��
Lemma 8.2 a2n = d2n = 0 in H∗(˜Gr3(n);F2) if and only if A2

n = D2
n = 0 in H∗(Gr3(n);F2).

Proof Boundarymorphisms commutewith Steenrod squares by Proposition 2.3. For the other
direction, it is enough to show that deg(A2

n) and deg(D
2
n) are above the top degree ofC . As in

Proposition 7.1, the top degree ofC is max{2t −8, 3n−2t −5}. In the following lines, wewill
check that (under the standing assumptions) the degrees of the squares are always bigger than
the top degree ofC , so we are done. The inequality deg(D2

n) = 2(2t −4) = 2t+1−8 > 2t −8
is straightforward. To show deg(D2

n) = 2(2t − 4) = 2t+1 − 8 > 3n − 2t − 5, we use

2t+1 + 2t − 3 = 3 · 2t − 3 > 3(2t − 4) ≥ 3n.

Next, deg(A2
n) = 2(3n − 2t − 1) > 3n − 2t − 5 follows from

3n − 2t+1 + 2t + 3 > 3 · 2t−1 − 2t+1 + 2t + 3 = 2t−1 + 3 > 0.

Similarly, deg(A2
n) = 2(3n−2t−1) > 2t−8 follows from3n−2t−1 > 2t−1−1 > 2t−1−4.

��
In the remainder of this section, we complete the proof of Proposition 8.1 by showing that

the squares of the An and Dn vanish in H∗(Gr3(n);F2).
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8.1 The descended square

Recall that Pi = Qi + qi and Pi = w1 pi , and that they satisfy the following recursive
formulas in W1 = F2[w1, . . . , wk]:

Pi = w1qi−1 +
k

∑

r=1

wr Pi−r , pi = qi−1 +
k

∑

r=1

wr pi−r . (8.1)

To prove D2
n = 0 in H∗(Gr3(n);F2), we will use the following recursive identity for Dn :

Lemma 8.3 The Dn satisfy the following recursion in W1:

Dn−1 = qi Qn−1 + Dn,

with the usual notation i = 2t − 3 − n.

Proof Recall from (6.2) that

Dn = qi pn + qi+1 pn−1 + w3qi−1 pn−2.

Using the recursion on ql and w2 pn−2 + w3 pn−3 = w1 pn−1 + qn−1 + pn – see (5.6) – we
have

Dn−1 = qi+1 pn−1 + qi+2 pn−2 + w3qi pn−3

= qi+1 pn−1 + (w2qi + qi−1w3)pn−2 + w3qi pn−3

= qi pn + qi+1 pn−1 + qi−1w3 pn−2
︸ ︷︷ ︸

Dn

+qi (w1 pn−1 + qn−1
︸ ︷︷ ︸

Qn−1

).

��
Wenow show that the square of the descended generator is always zero in H∗(Gr3(n);F2).

Proposition 8.4 For 2t−1 < n ≤ 2t − 3,

D2
n ∈ (Qn, Qn−1, Qn−2) ⊆ W1.

Proof We prove this by downwards induction on n. For n = 2t −3, the reduction of D2
n ∈ W1

to

H∗(Gr3(2t − 3);F2) = W1/(Q2t−3, Q2t−4, Q2t−5)

vanishes by the results of [9, Theorem 1.1. (c)]. Indeed, H∗(˜Gr3(2t − 3);F2) = C[dn]/d2n
and since δ(dn) = Dn and δ is a Sq-module homomorphism by Proposition 2.3, it follows
that

D2
n = Sqdeg dn δ(dn) = δ(d2n ) = 0.

Therefore

D2
2t−3 ∈ (Q2t−3, Q2t−4, Q2t−5).

The induction step is then stated in the following lemma. ��
Lemma 8.5 If D2

n ∈ (Qn, Qn−1, Qn−2) ⊆ W1, then D2
n−1 ∈ (Qn−1, Qn−2, Qn−3) ⊆ W1.
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Proof Write for some coefficients d0, d1, d2 ∈ W1,

D2
n = d2Qn−2 + d1Qn−1 + d0Qn .

We would like to show that there exist d ′
0, d

′
1, d

′
2 ∈ W1, such that

D2
n−1 = d ′

2Qn−3 + d ′
1Qn−2 + d ′

0Qn−1.

By Lemma 8.3, the induction hypothesis and the recursion for Qn analogous to (3.4), we
have

D2
n−1 = D2

n + q2i Q
2
n−1 = d2Qn−2 + (d1 + q2i Qn−1)Qn−1 + d0Qn

= d0w3Qn−3 + (d0w2 + d2)Qn−2 + (d1 + q2i Qn−1 + w1d0)Qn−1

which tells us the coefficients d ′
i . ��

8.2 The ascended square

Similarly, set p = 2t−1 − 1 and j = n − p = n − 2t−1 + 1. Recall that the r j are defined
by the recursion

r j+1 = w2r j + w2
3r j−2.

The An’s also satisfy a recursion:

Lemma 8.6 The An satisfy the following recursion in W1:

An+1 = w3An + r j Qn,

with the usual notation j = n − 2t−1 + 1.

Proof By definition (6.3),

An = r j−1 pn + w3r j−2 pn−1 + r j pn−2,

Since Qn = w1 pn + qn (see Remark 5.3), the recursion (5.6) can be written as pn+1 =
Qn + w2 pn−1 + w3 pn−2, and we have

An+1 = r j pn+1 + w3r j−1 pn + r j+1 pn−1

= r j (Qn + w2 pn−1 + w3 pn−2) + w3r j−1 pn + (w2r j + w2
3r j−2)pn−1

= w3 (r j−1 pn + w3r j−2 pn−1 + r j pn−2)
︸ ︷︷ ︸

An

+r j Qn

��
Proposition 8.7 For 2t−1 ≤ n < 2t − 3,

A2
n ∈ (Qn, Qn−1, Qn−2) ⊆ W1.

Proof We prove this by induction on n. For n = 2t−1, the reduction of A2
n ∈ W1 to

H∗(Gr3(2t−1);F2) = W1/(Q2t−1 , Q2t−1−1, Q2t−1−2)

vanishes by the results of [4, Theorem 1.1.] and the same arguments as in Proposition 8.4.
The induction step is contained in the following lemma. ��
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Lemma 8.8 If A2
n ∈ (Qn, Qn−1, Qn−2) ⊆ W1, then A2

n+1 ∈ (Qn+1, Qn, Qn−1) ⊆ W1.

Proof Assume that in W1 we can write

A2
n = a2Qn−2 + a1Qn−1 + a0Qn .

Then we want to show that increasing n and j , there exist a′
0, a

′
1, a

′
2, such that

A2
n+1 = a′

2Qn−1 + a′
1Qn + a′

0Qn+1.

By Lemma 8.6, Qn+1 = w1Qn + w2Qn−1 + w3Qn−2 and the induction hypothesis:

A2
n+1 = w2

3 A
2
n + (r j Qn)

2 = w2
3(a2Qn−2 + a1Qn−1 + a0Qn) + (r j Qn)

2

= w3a2(Qn+1 + w1Qn + w2Qn−1) + w2
3(a1Qn−1 + a0Qn) + (r j Qn)

2

= (w2w3a2 + w2
3a1)Qn−1 + (

r2j Qn + w2
3a0 + w1w3a2

)

Qn + (w3a2)Qn+1

which tell us the coefficients a′
i . ��

This concludes the proof of Proposition 8.1 and thus the proof of Theorem 1.1.

9 Discussion of the k > 3 cases

In this final section, we want to outline some of the issues that arise when we go beyond the
k = 3 case. Some of these issues are well-known, but some haven’t been noticed because
the module structure over the characteristic subring hasn’t been investigated much.

9.1 Ascending and descending relations

The technique of ascending and descending relations works rather generally, as we discussed
in Sect. 4. However, starting from k = 4, there are many further syzygies besides the ones
obtained from Theorem 4.6. For now, it is not clear what to expect. As a first glance, we
can use the Macaulay2 code in Appendix A to check the degrees of generators of the
anomalous module K for k = 5, starting with n = 10:

n Degrees n Degrees n Degrees n Degrees

10 11, 13 16 15 22 31, 39, 40, 41, 42, 45 28 31, 48, 51
11 14, 15, 16 17 20, 24 23 31, 40, 42, 42, 50 29 31, 48
12 15, 16, 19 18 25, 27, 29 24 31, 40, 42, 47, 55 30 31, 53
13 15, 16 19 30, 30, 31, 32 25 31, 40, 42 31 31, 54
14 15, 21 20 31, 33, 35, 35, 40 26 31, 43, 45 32 31
15 15, 22 21 31, 36, 38, 40, 40 27 31, 46, 48 33 36, 56

We make some observations:

• In the two cases n = 16 and n = 32, the module K is free of rank 1 on the generator
described in Theorem 5.6 (which subsequently implies that H∗(˜Gr5(2t ),F2) is a free
C-module of rank 2 for t = 4 and t = 5).
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• These generators provide generators for other values of n as predicted by the ascending
and descending relations. Between n = 16, . . . , 24, the ascending generators live in the
following degrees: (15, 20, 25, . . . , 55). The situation is similar as the one described
for k = 3: the ascended relation for n = 25 in degree 60 is in the image of the Koszul
boundary, and therefore represents 0, which is why it is not visible in this table. Similarly,
we have descending generators for n = 32, 31, . . . , 18 in degree 31. However, these
generators describe only a small portion of all the generators of the anomalous module.

We can make a similar table for k = 6, recording the degrees of the generators of K for
n = 12 to n = 21:

n Degrees n Degrees

12 14, 15, 16 17 21, 26, 28
13 15, 16 18 27, 28, 30, 32, 36
14 15, 16 19 31, 33, 34, 34, 36, 38, 38, 40, 42
15 15, 22 20 31, 38, 38, 38, 39, 40, 40, 40, 42, 42
16 15, 22 21 31, 40, 42, 42, 44, 44, 44, 45, 46, 46

The previous phenomenon of a single generator for the case n = 2t seems to disappear
beyond k = 5. The number of generators seems to grow. Some stabilization patterns (both
for varying n with fixed k and with varying k) are discernible, but the rules of the game seem
unclear for now. Nevertheless, the prevalence of one generator in degree 2t − 1 seems to
persist and the picture supports Conjecture 5.8.

The ascending relations would move k steps each time. One family of such generators for
k = 5 is visible, starting with the degree 20 generator for n = 17, another one for k = 6
starting with degree 21 in n = 17. But most of the degrees do not seem to follow easy patterns
compatible with ascending and descending relations.

9.2 The kernel of the differential

For our results in the case ˜Gr3(n), one of the key steps was that the kernel of d1 in the Koszul
complex was a free W2-module, cf. Proposition 6.3. For k ≥ 4, it is no longer the case that
ker(d1) is a free W2-module, but we can compute a resolution for ker(d1) as W2-module
using the Macaulay2 code from Appendix A, simply by running the line (after specifying
k and n):

resolution kernel kosz(k,n).dd_1

Again, we can record a couple of observations:

• Computing this for a number of examples with k = 4, 5, 6, suggests that in general
ker(d1) has a free resolution of length k − 2.

• The ranks of the free modules in the resolution seem to be fairly complicated for k > 4,
but for k = 4, most of the time, the resolution has the form 0 → W⊕n

2 → W⊕(n+3)
2 →

ker(d1) → 0 for n = 1, 2, 3.

It seems conceivable that the techniques of Sect. 6 could possibly be adapted (in the case
k = 4) to provide a general formula for the resolution of ker(d1) in the Koszul complex,
as a W2-module. To get an idea of what we could possibly expect, we compute the degrees
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n Degrees n Degrees

17 17, 29, 30, 31 25 29, 41, 46, 47, 49
18 21, 29, 31, 33, 34 26 29, 45, 47, 49, 50
19 25, 29, 33, 34, 35 27 29, 49, 49, 50, 51
20 29, 29, 33, 37, 38, 39 28 29, 49, 53, 54, 55
21 29, 33, 37, 37, 38, 39 29 29, 53, 54, 55
22 29, 37, 37, 39, 41, 42 30 29, 55, 57, 57
23 29, 37, 41, 42, 43 31 29, 58, 59, 61
24 29, 37, 45, 46, 47 32 29, 61, 62, 63

of generators for ker(d1) using presentation kernel kosz(4,n).dd_1, for n =
17, . . . , 32:

Compared to the previous table, here we consider ker(d1) instead of K . We also record
here the degrees of elements in the Koszul complex, where in the previous subsection, we
considered the degrees of generators of K . These two things differ by a shift of 1, i.e., the
degrees for K are the Koszul degrees minus 1, see the discussion in Sect. 5.

By Corollary 4.10, the descended relation for this stretch has degree 29, and that is promi-
nently visible. By Corollary 4.13, the ascended relation for given n would have degree
(d − 3) + 4i for d = 16 and i = n − d . The sequence starts with degree 17 for n = 17,
degree 21 for n = 18, and so on. The stretch, however, ends prematurely at n = 25, as there
is no degree 53 generator for ker(d1) in the case n = 26.

However, another phenomenon is observable. The last three degrees of generators of
ker(d1) appearing in the above table are always degrees appearing in degree 2 of the Koszul
complex, making it likely that these are coming from the image of d2. But then there are some
additional degrees not appearing from ascended/descended relations or the Koszul complex:
degree 33 for n = 20, one of the degree 37 relations for n = 21, . . . , 24, degree 41 for
n = 25, degree 45 for n = 26, degree 49 for n = 27, 28. Currently there is no explanation
for the appearance of these relations.

9.3 The presentation of K

After discussing the presentation or the resolution of ker(d1) in the Koszul complex, we now
come to the presentation of K as a C-module for the case k = 4. The following table collects
the degrees of the generators of K for ˜Gr4(n) with n = 17, . . . , 28.

n Degrees n Degrees n Degrees

17 17 23 29, 37 29 29
18 21, 29 24 29, 37 30 29
19 25, 29 25 29, 41 31 29
20 29, 29, 33 26 29, 45 32 29
21 29, 33, 37 27 29, 49
22 29, 37, 37 28 29, 49
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Again, we can make some observations:

• The generators whose degree we identified as appearing in the degree 2 part of the Koszul
complex have vanished. This supports the previously formulated assumption that these
generators of ker(d1) are also already in the image of d2.

• Contrary to the case k = 3, not all relations are ascended or descended from the relations
q2t−3 = 0. There is an ascending relation between n = 17, . . . , 22 and the descending
relation persists between n = 18, . . . , 32. There is a new relation appearing between
n = 20, . . . , 28, which also follows an ascending pattern, but this pattern is broken;
sometimes the relation stays in the same degree, possibly due to the vanishing of some
coefficients (to compare with k = 3, cf. Remark 6.4).

We also include onemore experiment concerning the degrees of the relations in the presen-
tation of K . We check degrees relations prune K where K has been constructed
as anomalous module from the Koszul complex, using the code from Appendix A. The
following table collects the degrees of relations in the presentation for K , for ˜Gr4(n) with
n = 17, . . . , 28.

n Degrees n Degrees

17 – 23 43, 44, 45
18 32, 33, 35 24 43, 44, 45
19 35, 36, 37 25 45, 47, 48
20 35, 36, 37, 41, 45, 45 26 48, 49, 51
21 39, 40, 41, 41, 45, 49 27 51, 52, 53
22 40, 41, 43, 45, 45, 53 28 51, 52, 53

To state the observation here, we note that the Koszul complex for k = 4 always has the
form

0 → W2 → W⊕4
2 → W⊕6

2
d2−→ W⊕4

2
d1−→ W2.

The middle degree always has six generators. The observation we record here is that three of
those appeared in the presentation of ker(d1) before, and the other three appear now in the
above table, as the first three degrees.

As a final observation, checking resolution prune HH_1 kosz(4,n) suggests
that it is possible to get a fairly reasonably-looking and small free resolution of K as a
W2-module by modifying the Koszul complex with the short free resolution of ker(d1).

The study of the presentation of K asC-module for˜Gr4(n)will be subject of future study.

9.4 Nontrivial Ext groups

We now come to one of the bigger problems when going beyond the k = 3 case. What
simplified the presentation of H∗(˜Gr3(n),F2) as a C-module significantly, was the triviality
of the Ext-group as discussed in Proposition 7.1. This is no longer true for k ≥ 4, and we
will discuss a couple of examples where the Ext-group is nontrivial below, making again use
of the Macaulay2-code from Appendix A.

Above, we made an observation about getting a resolution of K as a W2-module from a
modification of the Koszul complex by the free resolution of ker(d1). This could be a more
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conceptual way to determine the Ext-group Ext1C (K ,C) for ˜Gr4(n) generally. But even with
that, it remains a significant challenge to actually determine the class of the extension

0 C H∗(˜Gr4(n),F2) K 0

as an element in Ext1C (K ,C) (or even the triviality or nontriviality of this element). We also
hope to return to this question in future investigations. Lifts of generators and relations of K
to integral cohomology could potentially prove helpful.

In the following, we list the examples of non-trivial Ext-groups for k = 4, 5, 6 and small
n. Here, “small” is essentially determined by patience vs running time of the Macaulay2-
computation. More computational power or patience can easily extend the list.

• For k = 4 and n ≤ 36, the following examples have non-trivial Ext-group: n = 18 of
rank 1, n = 24 of rank 2, n = 25 of rank 1, n = 34 of rank 1, n = 35 of rank 2, n = 36
of rank 4.

• For k = 5 and n ≤ 21, the following examples have nontrivial Ext-group: n = 13 of
rank 1, n = 14 of rank 1, n = 15 of rank 1, n = 17 of rank 3, and n = 18 of rank 5.

• For k = 6, and n ≤ 18, the following examples have nontrivial Ext-group: n = 12 of
rank 1, n = 13 of rank 1, n = 14 of rank 1, n = 15 of rank 1, n = 16 of rank 1, n = 17
of rank 10, and n = 18 of rank 26.

For examples that fall within the scope (k, n) listed above but have trivial Ext-group, i.e.,
are notmentioned in the above list, a presentation ofH∗(˜Grk(n),F2) can be obtained using our
Macaulay2-code: simply get a presentation of K asC-module, and then H∗(˜Grk(n),F2) ∼=
C ⊕ K as C-module. Note, however, that even if the Ext-group is non-trivial, it could still
be possible that the cohomology of ˜Grk(n) splits as C ⊕ K ; for now, we cannot make any
more definite statements on nontriviality of the Ext-class.

To conclude, we discuss what the Ext-group calculation by hand could look like in two
specific cases:

Example 9.1 We consider the case ˜Gr4(18) in which there is a nontrivial Ext-group. The
module K = kerw1 is generated by two elements a20 and a28 with three relations

w4
2w3a20 + w3a28, (w6

2 + w4
3 + w4

2w4)a20 + w4a28, w5
2w4a20 + (w2

3 + w2w4)a28

There are six relations between relations in degrees 35, 37, 38, 43, 45 and 46, whereC35 = 0
and all of the remaining degrees are above the top degree of C . In particular, the Ext-group
is the quotient of the differential d0 : C20 × C28 → C31 × C32 × C34 given by the above
relations. Note that the F2-dimensions of C31 and C34 are one and the F2-dimension of C32

is two, i.e., the target of d0 has F2-dimension 4. Using the diffrank-function from the
appendix, we can compute that the differential has rank 3, with a basis for the image given
by

d0(0, w
3
2w

6
3w4) = (0, w2w

2
3w

6
4, 0),

d0(0, w
3
2w

2
3w

4
4) = (0, w2

2w
7
4, w

2
3w

7
4),

d0(0, w
7
4) = (w3w

7
4, 0, w

2
3w

7
4).

We see that by adding suitable degree 28 elements, we can always achieve that the relations
in degrees 31 and 32 are trivial. In such a normal form, the extension is determined by the
relation in degree 34. For example, one representative of the non-trivial extension of K by
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C in this case is the C-module generated by α0, α20 and α28 subject to the relations

w4
2w3α20 + w3α28 = (w6

2 + w4
3 + w4

2w4)α20 + w4α28 = 0, w5
2w4α20 + (w2

3 + w2w4)α28

= w2
3w

7
4α0.

Example 9.2 We consider the case ˜Gr6(12) with a non-trivial Ext-group. The module K =
kerw1 is generated by three elements a14, a15 and a16 with six relations

w3a14, w5a14 + w3a16, w2
2a15 + w3a16,

(w2w4 + w6)a14 + (w2w3 + w5)a15 + w4a16, w2
2a16, w2

3a15 + (w2w3 + w5)a16.

There are 13 relations between relations in degrees between 21 and 27. Of these, only the
two relations

w2
2R17, w5R17 + w3(R19,1 + R19,2)

in degree 21 and 22 matter, all the others are above the top degree of C which is 22. The
differential d1 has rank 1, and the differential d0 has rank 7, and the dimension of the space
of 1-cocycles is 9. The Ext-group therefore is a 1-dimensional F2-vector space.

Appendix A Computing Koszul resolutions, presentations and
Ext-groups with Macaulay2

In this appendix, we include some Macaulay2 code that allows to compute Koszul com-
plexes and presentations for the anomalous module K as well as the relevant Ext-groups for
the oriented Grassmannian computations. We briefly indicate what the code is doing, how it
is used and how to compute one of the examples discussed in Sect. 9.

We start off with a couple of lines containing the preliminary definitions of Giambelli
determinants. The function giambrow produces the rows of the matrix Q j in (3.1) starting
with a number of zeroes zs and the list of Stiefel–Whitney classes ws. Then giambmx puts
together the matrix, and giambdet returns the relevant Giambelli determinant.

zs = (j) -> (return for i from 1 to j list 0)
ws = (j) -> (return {1, 0} | for i from 2 to j list w_i)

giambrow = (d) -> (return zs(d-1) | ws(d))

giambmx = (d) -> (
return for i from 1 to d list take(giambrow(d), {d - i + 1, 2 * d - i})
)

giambdet = (d) -> (return determinant(matrix(giambmx(d))))

Next,wehave a couple lines to construct theKoszul complex for the ideal (qn−k+1, . . . , qn)
inW2. The function q(k,j) encodes the recursive definition of q j inW2 = F2[w2, . . . , wk]
from (3.4), and then kosz constructs the Koszul complex (after turning the qi into a
matrix to be used by the Macaulay2 function constructing the Koszul complex). Note
that kosz(k,l) constructs the Koszul complex relevant for ˜Gr(k, k + l).

q = (k, j) -> (
if j == 0 then return 1;
if j <= k then return giambdet(j);
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return sum(2..k, i -> q(k, j-i) * w_(i)))

kosz = (k, l) -> (
R = GF(2)[w_2..w_k, Degrees => {2..k}];
f=matrix{for i from l+1 to k+l list q(k, i)};
C = koszul f;
return C)

After this, the Koszul homology can be accessed. Aswe discussed in Sect. 5, the character-
istic subring and the anomalous module appear as 0th and 1st Koszul homology, respectively.
Note, however, that HH_i cplx would return the i-th homology of the complex as a W2-
module. The following lines then do some conversion:charsubring takes the presentation
of HH_0 cplx as a W2-module and uses it to actually construct C as a quotient ring of
W2. The function anomalous converts the description of HH_1 cplx as W2-module to
a description as C-module. Using prune everywhere helps cut down the complexity of the
resulting presentations to human-readable size and form.

charsubring = (cplx) -> (
C = prune HH_0 cplx;
I = ideal (flatten entries presentation C);
return R/I)

anomalous = (cplx) -> (
K = prune HH_1 cplx;
return cokernel (C**presentation(K)))

Having C and K , it is now easy to compute the Ext-group (or its rank) as follows. It is
important to note that Extˆ1 would compute a graded Ext-group for K and C as graded
modules over the graded ring C (with the grading coming from the grading of W2 where wi

has degree i). As explained in Sect. 5, K is actually the shift of the first homology of the
Koszul complex by one. The command basis(-1,Extˆ1(trim K,C)) takes that into
account, actually computing a basis of the Ext-group that classifies degree 0 extensions of C
by a shifted copy of K .

rankExt = (k,l) -> (
cplx = kosz(k,l);
C = charsubring(cplx);
K = anomalous(cplx);
return #(transpose(entries basis(-1,Extˆ1(trim K,C)))))

Finally, somemystery code to compute informationpertaining to the rankof the differential
of the Koszul complex in a specified degree:

diffrank = (cplx, deg) -> (
diffmat = cplx.dd_deg;
baselist = apply(fold((a,b)->a**b, apply(degrees cplx#deg,

x->{0}|(flatten entries basis(-x-{1},C)))), deepSplice @@ toList);
basemat = transpose(matrix(baselist));
return basis(image(diffmat*basemat)))

123



The mod 2 cohomology rings of oriented Grassmannians... Page 39 of 44 2

Appendix B Basics on (graded) Ext-groups

In the following section, we recall some basics on Ext-groups and how they relate to exten-
sions. This is to support our discussion in Sect. 7 (where we show triviality of Ext-groups for
k = 3) and Sect. 9 (where we exhibit examples of nontrivial Ext-groups in some k > 3 cases).
For our application to the cohomology of oriented Grassmannians we are actually interested
in Ext-groups and extensions for graded modules over the graded ring C . A discussion of
some of the relevant graded homological algebra can be found e.g. in the rational homotopy
book by Félix, Halperin and Thomas [5, Chapter 20]; for the situation without grading, one
of the standard references is [20].

Fix aZ-graded ring R, for our purposes we can assume R commutative. Recall that for two
graded R-modules A and B, the Ext-groups ExtiR(A, B) = RHomi

R(A, B) can be computed
as the cohomologygroups of the complexHomR(P•, B)where P• → A is a chosenprojective
resolution of A (in the category of graded R-modules). Graded free resolutions of graded
modules exist and behave much like ordinary free resolutions of modules over rings. Since
P• is a graded resolution and B is a graded module, HomR(P•, B) is a complex of graded
modules, and the Ext-groups ExtiR(A, B) therefore inherit a grading.

Remark B.1 For a graded R-module K , the start of a projective graded resolution looks like

· · · → P2 → P1 → P0 → K → 0.

We can choose P0 to be the free graded R-module on a chosen set of homogeneous R-
generators of K , with P0 → K mapping the elements corresponding to the generators to
the respective generators in K . Note that the summand of P0 corresponding to a degree d
generator x of K is R[−d], so that mapping 1 ∈ R[−d]d to x is a degree 0 homomorphism
of graded modules. Similarly, we can then choose P1 to be the free graded R-module on a
chosen set of homogeneous R-relations between the generators, with themorphism P1 → P0
mapping the generator corresponding to a relation in K to “itself”, written out in terms
of the generators of P0 (which correspond to the generators of K ). Again, the summand
corresponding to a relation of degree d has to be shifted appropriately. Then we choose P2
to be the free R-module on relations between relations, and so on. Given the resolution, we
can compute Ext1R(K ,C) as the first cohomology of the complex

0 → HomR(P0,C) → HomR(P1,C) → HomR(P2,C) → · · ·
The differentials for this complex are induced by composition Pi+1 → Pi → C .

In terms of the above description of a resolution in terms of generators and (higher)
relations of K , a class in Ext1(K ,C) is described by a choice of homogeneous elements
r1, . . . , rm of C corresponding to the relations in K . The cycle condition translates into the
requirement that these elements satisfy the “relations between relations” in K . The Ext-class
is a coboundary if there is a choice of homogeneous elements g1, . . . , gn of C corresponding
to the generators of K , such that r1, . . . , rm are actually the relations of K written in terms
of the g1, . . . , gn .

As mentioned above, the Ext-group Ext1(K ,C) inherits a grading. We have that P1 ∼=
⊕

i=1,...,r R[−di ] is a direct sum of shifted copies of R, one for each homogeneous R-relation
in a presentation of K . The summand corresponding to a relation of degree di is shifted so that
it starts in degree di . An element in Ext1(K ,C), represented by a homomorphism P1 → C
is of degree 0 in the Ext-group, if the representing homomorphism is of degree 0, i.e., it maps
a generator of P1 corresponding to a relation of degree i to a degree i element of C . Shifting
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of K and C respectively has the effect of shifting the grading on the Ext-group, i.e.,

Ext1(K [−1],C) ∼= Ext1(K ,C)[1] ∼= Ext1(K ,C[1]).
The degree 0 elements of each of the above groups are represented by degree 1maps P1 → C .

We also briefly recall how Ext1(A, B) classifies equivalence classes of extensions

0 → B → E → A → 0

of R-modules. In the ungraded setting, the class [E] ∈ Ext1(A, B) associated to the extension
is given as the image of idA under the boundary map ∂ : HomR(A, A) → Ext1(A, B) in the
long exact Ext-group sequence associated to the given extension.

In the graded setting, we want to classify extensions 0 → B → E → A → 0 of graded
R-modules where the maps in the extension are degree 0. As in the ungraded setting, an
extension produces a long exact sequence of Ext-groups, and the image of idA under the
boundary map produces a degree 0 element in Ext1(A, B). This induces a bijection between
equivalence classes of graded extensions and degree 0 elements in Ext1(A, B).

Remark B.2 The boundarymap can be computed as usual in the exact sequence of complexes

0 → HomR(P•, B) → HomR(P•, E) → HomR(P•, A) → 0,

where P• → A is a graded free resolution. The class of idA in HomR(A, A) = Ext0R(A, A) is
represented by the map P0 → A in the projective resolution of A. Lift this to HomR(P0, E)

by lifting the generators of A to E (along the degree 0 map E → A). Apply the boundary
map HomR(P0, E) → HomR(P1, E) by writing out the relations in the presentation of A in
terms of the lifts of generators to E . By construction, the composition P1 → E → A will
be 0, so that the morphism P1 → E is in the image of HomR(P1, B) → HomR(P1, E).
The resulting 1-cochain represents [E] ∈ Ext1(A, B), and it is represented by a degree 0
homomorphism P1 → B. In particular, the Ext-class can be computed explicitly from the
R-module structure of E and an R-module presentation of A.

From the class [E] in the degree 0 part of Ext1(A, B), we can indeed completely recover
the extension of A by B. Starting from the extension 0 → M → P0 → A → 0 arising from
a projective resolution of A, we obtain an exact sequence

HomR(P0, B) → HomR(M, B) → Ext1R(A, B) → 0

by applying Ext•R(−, B) (and noting that P0 is projective).We choose a preimage e : M → B
of [E] ∈ Ext1R(A, B) and obtain an extension

0 → B → P0 ∪M B → A → 0

by pushout of M → P0 along e : M → B. Since we started with a degree 0 element in
Ext1(A, B), the morphism e : M → B will have degree 0, and so will the maps in the
extension constructed.

Remark B.3 In the concrete situation of the cohomology rings of oriented Grassmannians,
we can get an explicit presentation for the cohomology ring H ∼= H∗(˜Grk(n),F2) as a C-
module from the Ext-class [H ] ∈ Ext1C (K ,C). We again take the free graded resolutions
startingwith a presentation of K asC-module. This provides an injection P1/P2 = M ↪→ P0,
where M is the submodule of relations in P0. The Ext-class [H ] is represented by a 1-cocycle
e : P1 → C , where the cocycle propertymeans that the 1-cocycle factors through amorphism
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P1/P2 → C . Then H ∼= P0 ∪P1/P2 C . Spelling this out, we can present H as a C-module
generated by 1 and the generators g1, . . . , gm of K , and for each relation R in K , we have a
relation identifying the relation spelled out in terms of the g1, . . . , gm with the image of the
corresponding relation element under the map e : P1 → C . The fact that all of this is built
in a graded setting basically means that we present H as graded C-module, with generators
and relations of appropriate degrees as determined by a homogeneous presentation of K .

Remark B.4 The reason for focusing on graded Ext-groups and in particular their degree 0
part is that we are really only interested in graded degree 0 extensions for the description
of the cohomology of ˜Gr3(n). We only care about extensions 0 → C → H → K → 0
where all maps have degree 0, because this is the situation of the Gysin sequence. We want
to point out that in many of the examples in Sect. 9, the full graded Ext-group Ext1C (K ,C)

is quite non-trivial while the degree 0 part is actually trivial. This means that generally there
are extensions 0 → C → H → K → 0 where the maps C → H or H → K are of
degree different from 0, but these have little relevance for the description of the cohomology
of ˜Gr3(n).

Appendix C Consequences for Betti numbers of oriented
Grassmannians ˜Gr3(n)

As indicated in Sect. 2, information on mod 2 Betti numbers of oriented Grassmannians is
available in the literature, cf. [15].However, the computations basically involve understanding
kernel and cokernel of multiplication with w1 on H∗(Grk(n);F2) and are therefore not easy
to do. In this appendix, we sketch how our results on the k = 3 case, more specifically the
information on the presentation of K in Propositions 6.3 and 6.5, allow to prove significantly
simpler closed formulas for Betti numbers of oriented Grassmannians ˜Gr3(n).

In the following, we will focus on computing the Betti numbers of the anomalous module
K . We’ll outline at the end of the section how to obtain Betti numbers for ˜Gr3(n) from this.
For a Z-graded F2-vector space M∗ such that all Mi are finite dimensional, we consider the
Hilbert–Poincaré series

HP(M∗, T ) =
∑

i∈Z
dimF2 Mi · T i .

The Hilbert–Poincaré series for the ring W2 = F2[w2, w3] is then
HP(W2, T ) = 1

(1 − T 2)(1 − T 3)
= 1 + T 2 + T 3 + T 4 + T 5 + 2T 6 + T 7 + 2T 8 + 2T 9 + · · ·

To compute the Hilbert–Poincaré series for the anomalous module K , we realize it as the
homology of a complex of freeW2-modules, built from the Koszul complex for the sequence
(qn−2, qn−1, qn) in W2. The Koszul complex K∗ has the form

0 → W2[−3n + 3] → W2[−2n + 3, −2n + 2, −2n + 1] → W2[−n + 2, −n + 1,−n] → W2 → 0,

where we denote by W2[−m1, . . . ,−m j ] the free graded W2-module of rank j , where the
i-th summand is shifted to start in degreemi . From this complexK∗, we can already compute
the difference of Betti numbers of C and K by

k
∑

i=0

(−1)iHP(Ki , T ) = HP(C, T ) − THP(K , T ).
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This follows, since the Hilbert–Poincaré series of the complex agrees with the Hilbert–
Poincaré series of its homology, and we have H0(K∗) = C and H1(K∗) = K [−1] (with a
degree shift), cf. Sect. 5.

To isolate the Hilbert–Poincaré series of K , we need to modify the Koszul complex by
truncation: we cut off K0 = W2 and replace K1 = W2[−n + 2,−n + 1,−n] by the kernel
of d1 : K1 → K0. The resulting complex has H1 = K [−1], with all other homology groups
trivial, and it is still a complex of free W2-modules, by Proposition 6.3. Consequently, we
get a free resolution of K of the form

0 → W2[−3n + 3] → W2[−2n + 3, −2n + 2, −2n + 1] → W2[− deg an − 1,− deg dn − 1] → K [−1]→0.

Here an and dn are the ascended and descended generators, with the degrees as elements
of kerw1. This necessitates a shift by 1 to get the correct degrees for the Koszul homology
generators.

From the modified Koszul complex, resp. the free resolution of K [−1] as a W2-module,
we can immediately read off the Hilbert–Poincaré series for K [−1]:

HP(K [−1], T ) = T 3n−3 − T 2n−3 − T 2n−2 − T 2n−1 + T deg an+1 + T deg dn+1

(1 − T 2)(1 − T 3)
(C.1)

where deg an = 3n − 2t − 1 and deg dn = 2t − 4.

Example C.1 For ˜Gr3(19), the resolution of the first Koszul homology asW2-module has the
form

0 → W2[−54] → W2[−35] ⊕ W2[−36] ⊕ W2[−37] → W2[−25] ⊕ W2[−29] → K [−1] → 0

The resulting Hilbert–Poincaré polynomial is

HP(K [−1], T ) = T 54 − T 35 − T 36 − T 37 + T 25 + T 29

(1 − T 2)(1 − T 3)

= T 25 + T 27 + T 28 + 2T 29 + T 30 + 3T 31 + 2T 32 + 3T 33

+ 3T 34 + 3T 35 + 2T 36 + 3T 37 + 2T 38 + 2T 39 + 2T 40

+ 2T 41 + T 42 + 2T 43 + T 44 + T 45 + T 46 + T 47 + T 49

This agrees with an explicit computation of Hilbert–Poincaré polynomial for kerw1, with
the degrees shifted by 1.

Finally, to obtain the Hilbert–Poincaré series encoding the Betti numbers of ˜Gr3(n), we
note that the sequence of Betti numbers of C is just a mirrored version of the one for K ,
suitably shifted. In our usual setting 2t−1 < n ≤ 2t − 4, with d = 3n − 9 denoting the top
non-zero degree of K (equal to the dimension of˜Gr3(n)), we get the Hilbert–Poincaré series

HP(C, T ) = T dHP(K , 1/T ) =

= T 2t−3 + T 3n−2t − T n − T n−1 − T n−2 + 1

(1 − T 2)(1 − T 3)
.

Consequently, the Betti numbers of ˜Gr3(n) for 2t−1 < n ≤ 2t − 4 are

HP(H∗(˜Gr3(n);F2), T )

= HP(C, T ) + HP(K , T )

= 1 − (1 + T n−2)(T n + T n−1 + T n−2) + (1 + T )(T 3n−2t−1 + T 2t−4) + T 3n−4

(1 − T 2)(1 − T 3)
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In the end, we obtain a completely explicit closed-form expression for the Betti numbers
of ˜Gr3(n) that requires only simply numerical input dependent on n and no computations
related to Young diagrams or cohomology of Grassmannians.

Example C.2 For ˜Gr3(19), we get the Hilbert–Poincaré series HP(H∗(˜Gr3(n);F2), T ) as
follows:

1 − T 17 − T 18 − T 19 + T 24 + T 25 + T 28 + T 29 − T 34 − T 35 − T 36 + T 53

(1 − T 2)(1 − T 3)
.
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4. Colović, Uroš A., Prvulović, Branislav I.: Gröbner bases in the mod 2 cohomology of oriented Grassmann

manifolds ˜G2t,3. Mathematica Slovaca, 74(1), 195–208 (2024)
5. Félix, Y., Halperin, S., Thomas, J.-C.: Rational homotopy theory. In: graduate texts in mathematics, p.

205. Springer, New York (2001)
6. Franz, M.: The cohomology rings of homogeneous spaces. J. Topol. 14(4), 1396–1447 (2021)
7. Fukaya, T.: Gröbner bases of oriented Grassmannmanifolds. Homology Homotopy Appl. 10(2), 195–209

(2008)
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