
Mathematische Zeitschrift (2024) 307:63
https://doi.org/10.1007/s00209-024-03524-6 Mathematische Zeitschrift

Pseudolocality and completeness for nonnegative Ricci
curvature limits of 3D singular Ricci flows

Albert Chau1 · Adam Martens1

Received: 28 July 2023 / Accepted: 2 May 2024 / Published online: 27 June 2024
© Crown 2024

Abstract
Lai (Geom Topol 25:3629–3690, 2021) used singular Ricci flows, introduced by Kleiner and
Lott (ActaMath 219(1):65–134, 2017), to construct a nonnegative Ricci curvature Ricci flow
g(t) emerging from an arbitrary 3D complete noncompact Riemannian manifold (M3, g0)
with nonnegative Ricci curvature. We show g(t) is complete for positive times provided
g0 satisfies a volume ratio lower bound that approaches zero at spatial infinity. Our proof
combines a pseudolocality result of Lai (2021) for singular flows, together with a pseudolo-
cality result of Hochard (Short-time existence of the Ricci flow on complete, non-collapsed
3-manifolds with Ricci curvature bounded from below, 2016. arXiv:1603.08726) and Simon
and Topping (J Differ Geom 122(3):467–518, 2022) for nonsingular flows. We also show
that the construction of complete nonnegative complex sectional curvature flows by Cabezas-
Rivas andWilking (J Eur Math Soc (JEMS) 17(12):3153–3194, 2015) can be adapted here to
show g(t) is complete for positive times provided g0 is a compactly supported perturbation
of a nonnegative sectional curvature metric.
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1 Introduction

In the seminal work [9], Hamilton introduced the Ricci flow which is the following evolution
equation for a family ofRiemannianmetrics g(t) starting froman initial smoothn dimensional
Riemannian manifold (Mn, g0):
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⎧
⎨

⎩

∂g

∂t
= −2Ric(g),

g(0) = g0.
(1.1)

It was proved in [9] that when Mn is compact, the Ricci flow (1.1) admits a unique smooth
solution g(t) on Mn × [0, T ) for a maximal time T > 0 bounded below depending only on
the dimension n and the initial bounds on the sectional curvatures of g0. Moreover, when g0
has nonnegative Ricci curvature and n = 3, Hamilton’s collective results in [9–11] imply
that g(t) has nonnegative Ricci curvature for all t > 0 and is either Ricci flat for all times
or else converges, after appropriate scaling and pulling back to the universal cover, to the
standard metric on either S3 or S2 × R as t → T .

It is natural to wonder about the extent to which similar results hold when Mn is non-
compact. This was initiated by Shi in [24] who proved the existence of a complete bounded
curvature solution g(t) in any dimension assuming g0 is also complete with bounded cur-
vature. Shi also showed [23] that when g0 has nonnegative Ricci curvature and n = 3,
the solution actually converges, after appropriate scaling and pulling back to the universal
cover, towards the standard metric on R3 or else S2 ×R. When g0 is complete with possibly
unbounded curvature, one cannot expect a solution to (1.1) in general. In fact, given any
α > 0, it is expected that there exists a complete metric g0 on S

2 × R with Ric(g0) ≥ −α

which exhibits no complete solution to (1.1) (see example 4 in [27]). On the other hand, the
following conjecture has been considered for a long time and is a special case of a conjecture
by Topping for dimensions n ≥ 3 [20, Conjecture 1.1].

Conjecture 1.1 Let (M3, g0) be a complete noncompact 3-dimensional Riemannian mani-
fold with nonnegative (possibly unbounded) Ricci curvature Ric(g0) ≥ 0. Then (1.1) has a
corresponding smooth solution g(t) on M3 × [0, T ) for some T > 0, and g(t) is complete
and has nonnegative Ricci curvature for each t ∈ [0, T ).

The theory of (1.1) for complete unbounded curvature metrics g0 has seen significant
developments since the above mentioned works. Those developments which support Con-
jecture 1.1 include the following: Cabezas-Rivas and Wilking [2] showed Conjecture 1.1
holds when “nonnegative Ricci curvature” is replaced by “nonnegative sectional curvature”.
Hochard [13, 14] showed that if g0 is complete with Ricci curvature bounded below (not
necessarily by zero), and there exists a uniform positive lower bound on the volume of initial
unit balls, then (1.1) has a short-time complete solution g(t). On the other hand, Chen et
al. [5] showed that the hypothesis of nonnegative Ricci curvature is preserved along any
3D complete solution to (1.1). Combining these shows that Conjecture 1.1 holds under the
assumption of a uniform lower bound on volume of initial unit balls. Lai [17] proved that
Conjecture 1.1 holds provided we remove the condition of completeness of the solution g(t)
for each t ∈ (0, T ). In other words, there exists a nonnegative Ricci curvature, but possibly
instantaneously incomplete, solution g(t) to (1.1) emerging from any complete nonnegative
Ricci curvature metric g0. Lee and Topping [18] showed that Conjecture 1.1 holds provided
the pinching condition Ric(g0) ≥ εR(g0) ≥ 0 holds for some ε > 0 (where R is scalar
curvature), and that the solution g(t) has bounded sectional curvatures and likewise pinched
Ricci curvature for all t > 0. Combining this with earlier results of Deruelle et al. [7] and
Lott [19], they were able to conclude that (M3, g0) must in fact be either compact or else flat
thus proving Hamilton’s pinching conjecture.

Conjecture 1.1 can thus be reduced to showing the completeness of the specific solution
constructed in [17] which is the approach we adopt in this article. The construction in [17]
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in turn, is based on studying the singular Ricci flows Nk emerging from each member of an
arbitrary sequence of compact Riemannian manifolds without boundaries {(Nk, gk)} approx-
imating (M3, g0). Singular 3-dimensional Ricci flows, introduced by Kleiner and Lott [15],
are 4-dimensional Ricci flow space-times emerging from a given compact 3-dimensional
manifold (M3, g0) and satisfying certain asymptotic conditions. In many cases, the “classi-
cal” maximal solution (M3×[0, Tg0), g0)will be strictly contained within the corresponding
singular Ricci flow. The reason for using singular flows is because the classical solutions to
(1.1) emerging from gk may not exist up to a time which is uniform in k, in which case one
could not use these to obtain a limit solution on M3 × [0, T ) for any T > 0. By combining
the construction in [17] with the 3D pseudolocality of Simon and Topping [22] we prove

Theorem 1.1 There exists a function f (R) : R
+ → R

+ with limR→∞ f (R) = 0 such
that if (M3, g0) is a complete 3-dimensional Riemannian manifold with nonnegative Ricci
curvature and

Volg0(Bg0(p, R)) ≥ f (R)R3 (1.2)

for some p ∈ M3 and all R sufficiently large, then the Ricci flow (1.1) admits a smooth
short-time solution g(t) that starts from g0, is complete and has nonnegative Ricci curvature
for every t > 0.

Any complete 3-dimensional Riemannian manifold with nonnegative Ricci curvature has
at least linear volume growth [28] in the sense that (1.2) holds for f (R) = Cp/R2 for
some Cp . On the other hand, Euclidean volume growth corresponds to when (1.2) holds
for f (R) = C for some constant C , and in this case Bishop–Gromov volume comparison
implies a uniform lower bound on volume of unit balls in which case our results follows from
[5, 13] as mentioned above. In general, the function f provides a lower bound on the volume
of a unit ball at any q ∈ M3 as

V (q, 1) ≥ V (q, 2d(p, q))

(2d(p, q))3
≥ V (p, d(p, q))

8(d(p, q))3
≥ 1

8
f (d(p, q))

where we have used Bishop–Gromov volume comparison for the first inequality, the triangle
inequality for the second, and (1.2) for the last, and we have abbreviated Volg0(Bg0(x, r))
with V (x, r).

The proof of Theorem 1.1 is presented in Sect. 3 though we provide the following out-
line. Let (M3, g0) be complete noncompact with nonnegative Ricci curvature Ric(g0) ≥ 0,
and assume that M3 is orientable. Then we can find an exhaustion of M3 by connected
compact sets Vk with smooth boundaries, corresponding smooth compact Riemannian man-
ifolds without boundaries (Nk, hk) where Nk is the topological double of Vk , and maps
φk : (Vk, g0) → (Nk, hk) which are isometries when restricted to Vk−1. In particular, we
obtain a sequence of compact Ricci flows {(Nk, hk(t)), t ∈ [0, Tk)} with hk(0) = hk . It is
possible here that Tk → 0 as k → ∞. However, by analyzing the corresponding singular
Ricci flows, Lai [17, Theorems 7.14 and 8.4] showed that for each Vk , there exists lk such
that hlk (t) can be extended to φlk (Vk) × [0, T ) for a uniform T > 0 and that the pullbacks
{Vk × [0, T ), gk(t) := φ∗

lk
(hlk (t))} smoothly locally converges to a nonnegative Ricci cur-

vature (possibly incomplete) Ricci flow (M3, g(t)), t ∈ [0, T ) with g(0) = g. Moreover, if
(M3, g0) is the oriented double cover of a nonorientable (M ′, g′), then g(t) pushes down to
a solution g′(t) on M ′ × [0, T ). The above logic is summarized in Theorem 2.1.

It was also proved by Lai [17, Theorem 6.1] that Perelman’s original pseudolocality
statement [21, Theorem 10.1] still holds for the incomplete flows (Vk × [0, T ), gk(t))
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(see Theorem 2.3). In Theorem 2.4, we modify this to one analogous to Perelman’s sec-
ond pseudolocality theorem [21, Theorem 10.3]. Armed with this, we are finally able
to prove completeness of the solution g(t) constructed above as follows. The idea is to
apply a pseudolocality result by Hochard [13, Theorem 2.4] and Simon and Topping [22,
Theorem 1.1] which, a priori applies only to complete bounded curvature flows, and con-
cludes a rough curvature bound supBg(0)(x0,1) |Rm |g(t) ≤ c(v)/t from weak volume control
Vol Bg(0)(x0, 1) ≥ v. Upon close examination of the proof however, for example in [22],
the only place where complete bounded curvature flows are assumed is in the application of
Perelman’s second pseudolocality theorem, and in view of its modification in Theorem 2.4,
we can extend this pseudolocality result to the incomplete flows (Vk × [0 < T ), gk(t)) (see
Theorem 2.2). After appropriate scaling, this allows us to conclude the following curvature
bounds for g(t) from the condition (1.2):

|Rm |(x, t) ≤ A(x)

t

where the function A(x) grows at some controlled rate (relative to g0) on M3 in terms of the
function f . The Shrinking Balls Lemma [22, Corollary 3.3] is then used to control distances
relative to g(t) in terms of distances relative to g0 and the function A(x), which by our choice
of f and hence A(x), implies the completeness of g(t).

Producing noncompact Ricci flows using compact approximations obtained through dou-
bling an exhaustion was first done in [2] in the case (Mn, g0) is complete with nonnegative
complex sectional curvature. Using splitting theorems on the universal cover, their proof
reduced to the case when the soul is a single point and hence Mn = R

n . In this case, using an
exhaustion via the convex sublevel sets of the Busemann function, they were able to costruct
the approximating compact manifolds without boundary {(Nk, hk)} to have positive complex
sectional curvature and showed the corresponding Ricci flows hk(t) exist up to a uniform
time T > 0 and converge locally uniformly to a smooth, complete, nonnegative complex
sectional curvature solution g(t) on Mn × [0, T ).

We observe that the above construction in [2] can be combinedwith the above construction
from [17] to give the following

Theorem 1.2 Let (M3, g0) be a 3-dimensional Riemannian manifold with nonnegative Ricci
curvature, where g0 is a compactly supported perturbation of a complete nonnegative sec-
tional curvature metric. Then the Ricci flow (1.1) admits a smooth short-time solution g(t)
that starts from g0, and is complete and has nonnegative Ricci curvature for every t > 0.

2 Preliminaries

We begin with the following main existence result from [17].

Theorem 2.1 (Convergence of 3D singular Ricci flows [17]) Let (M3, g0) be a complete
3-dimensional Riemannian manifold with nonnegative Ricci curvature, {Vk} an exhaustion
of M3 by relatively compact connected open sets, and (Nk, hk) a sequence of compact
Riemannian manifolds without boundaries with diffeomorphisms onto their images φk :
Vk → Nk satisfying

φ∗
k (hk) −−−−−→

C∞
loc(M

3)
g0.

Then for each Vl there exists an incomplete solution hkl (t) to (1.1) on φkl (Vl) × [0, T )

for some kl ≥ l with hkl (0) = hkl and T independent of l such that
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1. Each {φkl (Vl) × [0, T ), hkl (t)]} is embedded within a singular Ricci flow Nkl emerging
from (Nkl , hkl ).

2. We have the convergence

φ∗
kl (hkl (t)) −−−−−−−−−→

C∞
loc(M

3×[0,T ))
g(t)

where g(t) is a nonnegative Ricci curvature (but possibly incomplete for all t > 0)
solution to (1.1) on M3 × [0, T ) with g(0) = g0.

3. If (M3, g0) is the Riemannian double cover of (M ′, g′
0), then g(t) pushes down to a

solution g′(t) to (1.1) on M ′ × [0, T ).

We refer to [15, 17] for the definition and properties of 3D singular Ricci flows.
Pseudolocality results for 3D Ricci flows were established by Hochard [13, Theorem 2.4]

and extended by Simon and Topping [22, Theorem 1.1]. The key feature in these results were
that they applied to Ricci flows starting from arbitrary initial domains, whereas previous
results required a sufficiently Euclidean initial domain. This feature will be crucial for our
application and proof of Theorem 1.1. The results from [13, 22] were stated for local Ricci
flows contained in some complete bounded curvature Ricci flow, and so do not directly apply
to our setting. However, what was actually proved in [22] for example, was that the results
hold for any Ricci flow (N ×[0, T ), g(t)) for which [22, Theorem 6.2] can be assumed (after
removing the complete bounded curvature assumption there). This assumption is possible in
our setting due to Lai’s extension of Perelman’s pseudolocalicty to 3D singular Ricci flows
[17, Theorem 6.1]. We may thus conclude

Theorem 2.2 (Extension of [22, Theorem 1.1] to 3D singular Ricci flows) Let {N ×
[0, T ), g(t)} be a smooth (possibly incomplete) solution to (1.1) embedded within some
3D singular Ricci flow M, and let p ∈ N. Suppose that Bg(0)(p, 1 + σ) ⊂⊂ N for some
σ > 0, that

Vol Bg(0)(p, 1) ≥ v0 > 0 (2.1)

and

Ric (g(0)) ≥ −K < 0 on Bg(0)(p, 1 + σ). (2.2)

Then there exist T̃ = T̃ (v0, K , σ ) > 0, ṽ0 = ṽ0(v0, K , σ ) > 0, K̃ = K̃ (v0, K , σ ) > 0 and
c0 = c0(v0, K , σ ) < ∞ such that for all t ∈ [0, T ) ∩ (0, T̃ ) we have Bg(t)(p, 1) ⊂⊂ N,
and on Bg(t)(p, 1) we have

1. Vol Bg(t)(p, 1) ≥ ṽ0 > 0,
2. Ric(g(t)) ≥ −K̃ ,
3. |Rm |g(t) ≤ c0

t .

Remark 2.1 The Theorem coincides with [22, Theorem 1.1] when (N × [0, T ), g(t)) is
contained in some complete bounded curvature Ricci flow. In this case, conclusion (3) was
established independently in [13, Theorem 2.4]. We will actually only need conclusion (3)
for our later purposes.

Proof of Theorem 2.2 We begin with the following statement of [17, Theorem 6.1] which
extends Perelman’s first pseudolocality Theorem to 3D singular Ricci flows.

Theorem 2.3 (Extension of [21, Theorem 10.1] to 3D singular Ricci flows) For every α > 0,
there exists δ, ε > 0 with the following property.

Let {N×[0, T ), g(t)} be a smooth (possibly incomplete) solution to (1.1) embeddedwithin
some 3D singular Ricci flow M and let p ∈ N. Suppose Bg(0)(p, r0) ⊂⊂ N and
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1. R(g(0)) ≥ −r−2
0 on Bg(0)(p, r0), (R(g(0)) denotes scalar curvature of g(0)),

2. Vol(∂�)3 ≥ (1 − δ)c3 Vol(�)2 for all � ⊂ Bg(0)(p, r0) where c3 is the Euclidean
isoperimetric constant at dimension 3.

Then Bg(t)(p, εr0) ⊂⊂ N and

|Rm |(x, t) < αt−1 + (εr0)
−2

holds on Bg(t)(p, εr0) for all t ∈ [0,min(T , (εr0)2)].
We use this now to extend [22, Theorem 6.2] (a modification of Perelman’s second

pseudolocality Theorem [21, Theorem 10.3]) to 3D singular Ricci flows.

Theorem 2.4 (Extension of [22, Theorem 6.2] to 3D singular Ricci flows) Given v0 > 0,
there exists ε > 0 with the following property: Let {N × [0, T ), g(t)} be a smooth (possibly
incomplete) solution to (1.1) embeddedwithin some 3D singular Ricci flowM and let p ∈ N.
Suppose Bg(0)(p, r0) ⊂⊂ N and

1. |Rm |g(0) ≤ r−2
0 on Bg(0)(p, r0),

2. Vol Bg(0)(p, r0) ≥ v0r30 .

Then Bg(t)(p, εr0) ⊂⊂ N and

|Rm |(x, t) < (εr0)
−2

holds on Bg(t)(p, εr0) for all t ∈ [0,min(εr0, T )).

Proof of Theorem 2.4 By scaling, we may assume r0 = 1. By the results in [3], conditions
(1) and (2) imply a uniform lower bound on the injectivity radius at p depending only on
v0. From this and the bound on curvature (actually we only need a lower bound on Ricci
curvature), we may find harmonic coordinates x around p in which we have c(‖x‖)−1δi j ≤
gi j (x) ≤ c(‖x‖)δi j for all ‖x‖ ≤ d for some d > 0, where the function c(ρ) depends only
on v0, and c → 1 as ρ → 0. In particular, if δ′, ε′ correspond to α = 1 in Theorem 2.3, then
conditions (1) and (2) in that theorem will hold on Bg(0)(p, r) for some r depending on v0
and δ′, and we conclude that Bg(t)(p, ε′r) ⊂⊂ N and

|Rm |(x, t) ≤ t−1 + ε′−2

holds on Bg(t)(p, ε′r) for all t ∈ [0,min(T , ε′2r)]. In particular, since r ≤ 1 we have
|Rm |(x, t) ≤ 2t−1 on Bg(t)(p, ε′r) for all t ∈ [0,min(ε′2r , T )] and it follows from [4,
Theorem 3.1] that we may have

|Rm |(x) < C(ε′r)−2

for a universal constant C (depending only on dimension), and on Bg(t)(p,
ε′r
2 ) for all t ∈

[0,min( ε′r
2 , T )]. This completes the proof of the Theorem 2.4. �


Theorem 2.2 now follows, as described above, by combining Theorem 2.4 with the proof
of [22, Theorem 1.1]. �


Finally, we will make use of the following result which holds for any solution (possibly
incomplete) to (1.1) in all dimensions.

Proposition 2.1 (Shrinking Ball Corollary 3.3 in [22]) There exists a dimensional constant
β = β(n) ≥ 1 such that the following holds.

Suppose (Mn × [0, T ], g(t)) is a (possibly incomplete) Ricci flow on an n-dimensional
manifold Mn such that Bg(0)(x0, r) ⊂⊂ Mn for some x0 ∈ Mn and r > 0, and Ric(g(t)) ≤
(n − 1)c0/t on Bg(0)(x0, r) ∩ Bg(t)(x0, r − β

√
c0t) for each t ∈ (0, T ] and some c0 > 0.

Then Bg(0)(x0, r) ⊃ Bg(t)(x0, r − β
√
c0t) for all t ∈ [0, T ].
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3 Proof of Theorem 1.1

The proof is based on Proposition 2.1 and the corollary to Theorem 2.2 below. Let us use
T̃ (v) and c(v) to denote the positive functions T̃ (v,−1, 1) and c0(v,−1, 1) for 0 ≤ v ≤
V (3,−1/2) from Theorem 2.2, where V (3,−1/2) denotes the volume of the unit ball in the
3-dimensional space form of constant curvature −1/2. Note that we may increase the given
function c0(v,−1, 1) and decrease the function T̃ (v,−1, 1) as we like without changing the
statement of Theorem 2.2, and so we may assume that c(v) is strictly decreasing in v and
that

c(v) = 1/T̃ (v) (3.1)

for all v > 0. We also note that by the example of the solution to Ricci flow emanating from
arbitrarily sharp cones (see [6, Sect. 4 of Chapter 5] for more detail), it must be that

lim
v→0

c(v) = ∞.

Corollary 3.1 (Corollary to Theorem 2.2) Let {N × [0, T ), g(t)} for T ≤ 1 be a smooth
(possibly incomplete) solution to (1.1) embedded within some 3D singular Ricci flow M.
Suppose for some x0 ∈ N and v > 0 we have Bg(0)(x0, 2

√
c(v)) ⊂⊂ N and

Vol Bg(0)(x0,
√
c(v))

(
√
c(v))3

≥ v, (3.2)

and

Ric (g(0)) ≥ −1/c(v) on Bg(0)(x0, 2
√
c(v)). (3.3)

Then for all t ∈ (0, T ) we have Bg(t)(x0,
√
c(v)) ⊂⊂ N and

|Rm |g(t) ≤ c(v)

t
on Bg(t)(x0,

√
c(v)).

Proof Let g(t) on N × [0, T ) be as in the Theorem. Write λ = 1/c(v) and consider the
rescaled solution to (1.1) given by

gλ(s) := λg(s/λ) on N × [0, λT ). (3.4)

Then we have

Ric (gλ(0)) ≥ −1 on Bgλ(0)(x0, 2), (3.5)

and

Volgλ(0) Bgλ(0)(x0, 1) = Volg0 Bg0(x0, 1/
√

λ)

(1/
√

λ)3
≥ v (3.6)

where we have used the definition of gλ and (3.2). Thus by conclusion (3) in Theorem 2.2
and (3.1) we have

|Rm |gλ(s) ≤ c(v)

s
on Bgλ(s)(x0, 1) for s ∈ [0, λT = T̃ (v)T ).

This in turn gives

|Rm |g(t) = λ|Rm |gλ(λt) ≤ λ
c(v)

λt
= c(v)

t
on Bg(t)(x0,

√
c(v)) (3.7)

for t ∈ (0, T ). This concludes the proof of the Corollary. �
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We now finish the proof of Theorem 1.1. Let (M3, g0) be a complete 3-manifold with
Ric(g0) ≥ 0 that satisfies the volume decay assumption (1.2) for the function

f (r) := 2c−1(r2),

where c−1 is the inverse of the function c(v) discussed above. By the properties of c(v), the
function f (r) is positive and defined on [L,∞) for some L > 0 and satisfies limr→∞ f (r) =
0.

Assume first that (M3, g0) is orientable. Then we may find an exhaustion of M3 by rela-
tively compact connected sets Vk with smooth boundaries, and a sequence of smooth compact
Riemannian manifolds without boundaries (Nk, hk) and diffeomorphisms onto their images
φk : Vk → Nk converging to (M3, g0) as in the hypothesis of Theorem 2.1. We conclude
by Theorem 2.1 the existence of corresponding local solutions (φkl (Vl) × [0, T ), hkl (t))
converging to a possibly incomplete solution (M3 × [0, T ), g(t)) to (1.1) with g(0) = g0
and Ric(g(t)) ≥ 0 for all t ∈ [0, T ). We may also apply Corollary 3.1 to each local solution
hkl (t) by Theorem 2.1 (1).

For simplicity, we will denote the sequence (φkl (Vl) × [0, T ), hkl (t)) by (Wl ×
[0, T ), Hl(t)). Let T ′ = min(T , 1, β−1) where β = β(3) > 0 is the constant from Propo-
sition 2.1. The assumed volume bound (1.2) and the definition of f ensure that (M3, g0)
satisfies:

Vol Bg(0)(x0,
√
c(v))

(
√
c(v))3

≥ 2v

for all sufficiently small v > 0. The local smooth convergence of the (Wl × [0, T ′), Hl(t))’s
to (M3 × [0, T ′), g(t)) implies: for each v > 0 there exists mv such that for each l ≥ mv ,
the incomplete solution (Wl × [0, T ′), Hl(t)) satisfies the hypothesis of Corollary 3.1 with
x0 = pl := φkl (p) and hence

|Rm |Hl (t) ≤ c(v)

t
on BHl (t)(pl ,

√
c(v)) for all t ∈ [0, T ′).

Thus by Proposition 2.1 we conclude that for each v > 0 sufficiently small we have

BHl (t)(pl ,
√
c(v) − β

√
c(v)t) ⊂ BHl (0)(pl ,

√
c(v))

in Wl for all l ≥ mv and t ∈ [0, T ′). Thus in the limit we have

Bg(t)(p,
√
c(v) − β

√
c(v)t) ⊂ Bg(0)(p,

√
c(v))

in M3 for all for all v > 0 sufficiently small and t ∈ [0, T ′). It follows by the completeness
of g0 and the fact that limv→0 c(v) = ∞, that (M3, g(t)) is complete for all t < T ′. This
concludes the proof of Theorem 1.1 assuming (M3, g0) is orientable. If it is not orientable,
we repeat the argument to obtain a solution g̃(t) to (1.1) on the Riemannian double cover
(M̃, g̃0), then by Theorem 2.1 (3) we can push this down to a solution g(t) on M3 having
the desired properties.

This completes the proof of Theorem 1.1.

4 Proof of Theorem 1.2

By Liu’s classification [16], either M3 = R
3 or else the Riemannian universal cover of

(M3, g0) is a Riemannian product. By the results for Ricci flow on surfaces by Topping [25]
and Giesen and Topping [8], we may thus assume that M3 = R

3.
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Let (Mn, g) be a complete Riemannian manifold with nonnegative complex sectional
curvature of arbitrary dimension n. It was proved in [2] that when the soul is a single point,
so that Mn = R

n , there exists an exhausting sequence of relatively compact connected open
sets {Vk ⊂ Mn}, a double sequence of compact Riemannian manifolds without boundaries
{(Nk, hk,l)} and diffeomorphisms onto their images

φk : Vk → Nk; ψk : Nk → Nk

all together satisfying the following:

1. Each (Nk, hk,l) has strictly positive complex sectional curvature, volume uniformly
bounded from below, and diameter bounded above depending on k but not on l.

2. Each ψk is an isometry relative to every hk,l and satisfies

ψ2
k = Id �= ψk; ψk(q) = q iff q ∈ ∂(φkVk).

3. For all q ∈ Vk we have

distg(q, ∂Vk) ≥ distφ∗(hkl )(q, ∂Vk)) − C

for some C independent of k, l.
4. Given any compact set S ⊂⊂ Mn , there exists k0 such that for every k > k0 we have the

smooth convergence

φ∗
k (hk,l) −−−→

l→∞ g on S

where the convergence is uniform over k.

It was then proved that the corresponding Ricci flows hk,l(t) exist on Nk up to a uniform
time T > 0 independent of k and l, and that a diagonal subsequence of φ∗

k (hk,l(t)) converges
smoothly uniformly on compact subsets on Mn × [0, T ) to a solution g(t) to Ricci flow
which has nonnegative complex sectional curvature and is complete for all t ∈ [0, T ).

Now assume that n = 3 above, in which case g will in fact have nonnegative sectional
curvature on M3 = R

3. Let g̃ be a compactly supported symmetric 2-tensor on M3 such that
g0 := g + g̃ is a complete Riemannian metric with nonnegative Ricci curvature. In other
words, there is a compact set K ⊂⊂ M3 for which

Ric(g + g̃) ≥ 0 on M3, and g̃ = 0 on M3\K . (4.1)

From now on, consider k sufficiently large so that K ⊂⊂ Vk . Define the smooth metrics
h̃k,l on Nk as

{
h̃k,l := hk,l + (φ−1

k )∗g̃ on φk(Vk)

h̃k,l := ψ∗
k (hk,l + (φ−1

k )∗g̃) on ψk(φkVk).
(4.2)

Though the h̃k,l may not be positive definite a priori, we may assume that they are by
taking k, l sufficiently large and using property (4) as well as the fact that

inf{‖v‖g+g̃ : v ∈ TpM
3 where p ∈ K and ‖v‖g = 1} > 0,

where the positivity is to due the compactness of K .
Then by property (1) above, each (Nk, h̃k,l) will satisfy:

Volk,l ≥ v; Diamk,l ≤ Ck; Ric(h̃k,l) ≥ −cl (4.3)

for positive constants v,Ck, cl depending only on their subscripts (if any) and where cl → 0
as l → ∞. It follows from Corollary 3 in [1] that for each l sufficiently large depending on
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k, there exists a nonnegative Ricci curvature metric on Nk , and that these can be taken to
converge on Nk as l → ∞ as we now describe. In particular, the proof there showed that for
each fixed k and all sufficiently large l the Ricci flow h̃k,l(t) starting from h̃k,l on Nk exists
up to a uniform time Tk > 0 depending only on k and (by Theorem 2 in [1]) satisfies the
curvature bound

|Rmk,l(t)| ≤ C ′/t (4.4)

for some C ′ > 0 independent of k, l. Moreover, it was shown that the solutions {(Nk ×
[0, Tk), h̃k,l(t))}l∈N subconverges, as in Hamilton’s Compactness Theorem [12], to a limit
solution (Nk × (0, Tk), h̃k,∞(t)) having everywhere nonnegative Ricci curvature. The non-
negativity of Ricci curvature can also be seen for example, from the bounds (4.3), (4.4) and
[22, Lemma 2.2]) which in particular imply a uniform lower bound on

Rc(hkl(t)) ≥ −100clC
′ (4.5)

for t ∈ [0, Tk) provided Tk is sufficiently small depending only on C ′.
Now the estimate (4.4) and [4, Theorem 3.1] imply that h̃k,∞(t) converges smoothly as

t → 0 on a given compact set S ⊂⊂ Nk provided h̃k,l(0) likewise converges as l → ∞.
On the other hand, for a given compact set and k sufficiently large, the latter limit exists and
equals (φ−1

k )∗(g + g̃) by condition (4) above. Moreover, by (4.5) and the fact cl → 0, we
may still have condition (3) after replacing hk,l there with h̃k,∞(t)where the constantC there
will be independent of k, l and t ≤ min(Tk, 1).

In summary, we conclude the existence of sequences lk → ∞ and tk → 0 for which the
metrics Hk := h̃k,lk (tk) on Nk satisfy the following relative to the same maps φk : Vk ⊂
M3 → Nk and ψk : Nk → Nk defined above:

(a) Each (Nk, Hk) has nonnegative Ricci curvature.
(b) Each ψk is an isometry relative to Hk satisfying

ψ2
k = Id �= ψk; ψk(q) = q iff q ∈ ∂φk(Vk).

(c) For all q ∈ Vk we have

distg(q, ∂Vk) ≥ distφ∗(Hk )(q, ∂Vk)) − C

for some C independent of k.
(d) Given any compact set S ⊂⊂ M3, we have the smooth convergence as k → ∞

φ∗
k (Hk) −−−−−→

C∞
loc(M

3)
(g + g̃) on S. (4.6)

Now let Hk(t) be the corresponding Ricci flow on Nk with Hk(0) = Hk . By Hamilton’s
convergence results for nonnegative Ricci curvature metrics in [9] we know that Hk(t) is
either stationary/Ricci flat or else exists up to some 0 < Tk < ∞ with VolHk (t)Nk → 0
as t → Tk . On the other hand, Perelman’s pseudolocality [21] combined with condition
(c) above implies that for any given compact S ⊂⊂ M3, there exists TS, VS > 0 such that
VolHk (t)φk(S) > VS for all t ≤ min(TS, Tk) and all k. We conclude that Tk > T > 0 for all
k and some T > 0.

Thus from (a)–(c) and Theorem 2.1 we obtain a nonnegative Ricci curvature (albeit pos-
sibly incomplete) solution (M3 × [0, T ), g(t)) to (1.1) starting from g(0) = g + g̃ and after
possibly shrinking T > 0. Moreover, from the proof of Theorem 2.1 in [17], we may actually
conclude that (M3 × [0, T ), g(t)) is a local limit of the solutions {Nk × [0, T ), Hk(t)} to
(1.1) as in Theorem 2.1 part (2).
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It remains to prove that g(t) is complete for all t > 0. This in fact follows from the proof
of completeness of the limit solution in [2] as we now sketch.

The proof is based on the choice of the exhaustion {Vk}∞k=1 of M made in [2]. Specifically,
Vk was defined as the k sublevel of the Busemann function based at some p0 ∈ M . In
particular, if B denotes the set of geodesic rays on M starting from p0 then

Vk := {q ∈ M : b(q) < k}
where

b(q) := sup
γ∈B

lim
t→∞

(
t − distg(γ (t), q)

)
.

In what follows, we fix some T ′ < T and some R > 0. We will use C to denote a positive
constant depending only on the solution g(t) on M × [0, T ′] and which may differ from line
to line. For each k, denote

p′
k = φk(p0) ∈ Nk; V ′

k = φk(Vk) ⊂ Nk; Lk = distHk (0)(p
′
k, ∂V

′
k).

In particular, we have that distHk (t)(p
′
k, ψk(p′

k)) = 2Lk by property (b) of the map ψk .
By the local convergence of the φ∗

k (Hk(t)) → g(t) on M , and the fact that ψk is an
isometry relative to Hk , there are neighborhoods U , V around p′

k, ψk(p′
k) (resp.) such that

sup
(U

⋃
V )×[0,T ′]

|Rc(Hk(t))| ≤ C, (4.7)

for k sufficiently large. From (4.7), the argument in [2] using the Ricci flow (1.1), and the
second variation formula for arc length (see also [12, Theorem 17.4]), we have that

distHk (t)(p
′
k, ψk(p

′
k)) ≥ 2Lk − C . (4.8)

The LHS above equals 2distHk (t)(p
′
k, ∂Vk). Moreover, for k sufficiently large we have

BHk (t)(p0, R) ⊂ Vk . Combining these with (4.8) gives

distHk (t)(BHk (t)(p
′
k, R), ∂V ′

k) ≥ Lk − C − R. (4.9)

for k sufficiently large and t ∈ [0, T ′]. On the other hand, we have Hk(0) ≥ Hk(t) by (1.1)
and the fact Rc(Hk(s)) ≥ 0 for all s ∈ [0, t]. Thus by property (c) above for the metric Hk ,
we may replace distHk (t) in (4.9) with dist(φ−1)∗g provided we subtract a constant C from
the RHS. Next, by the smooth local convergence of the φ∗

k (Hk(t))′s to g(t) on M , we may
further replace BHk (t)(p

′
k, R) with Bg(t)(p0, R) by futher subtracting a constant C from the

RHS. Pulling the resulting inequality back to Vk by φ∗ gives

distg(Bg(t)(p0, R), ∂Vk) ≥ Lk − C − R,

for all k sufficiently large and t ∈ [0, T ′]. Now we note the following basic propery of the
sublevel sets of the Busemann function: for any s1 < s2 we have

b−1((−∞, s1]) = {q ∈ b−1((−∞, s2]) : distg(q, ∂b−1((−∞, s2]) ≥ s2 − s1.} (4.10)

Combining this with (4.10) and the fact that ∂Vk = ∂b−1((−∞, k]) gives
Bg(t)(p0, R) ⊂ b−1((−∞, k − (Lk − C − R)]) ⊂ b−1((−∞,C + R])

for all t ∈ [0, T ′] where for the last inclusion we have used that b(p0) = 0 and thus Lk ≥ k
again by the above property of b.
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In particular, we have shown that for all R > 0 there is some compact set KR ⊂⊂ M such
that Bg(t)(p0, R) ⊂ KR for all t ∈ [0, T ′] and it follows that g(t) is complete on M for each
t ∈ [0, T ′] and thus for each t ∈ [0, T ) as T ′ < T was arbitrarily chosen. This completes
the proof of Theorem 1.2.
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