

Pseudolocality and completeness for nonnegative Ricci curvature limits of 3D singular Ricci flows

Albert Chau¹ · Adam Martens¹

Received: 28 July 2023 / Accepted: 2 May 2024 / Published online: 27 June 2024 © Crown 2024

Abstract

Lai (Geom Topol 25:3629–3690, 2021) used singular Ricci flows, introduced by Kleiner and Lott (Acta Math 219(1):65–134, 2017), to construct a nonnegative Ricci curvature Ricci flow $g(t)$ emerging from an arbitrary 3D complete noncompact Riemannian manifold (M^3, g_0) with nonnegative Ricci curvature. We show $g(t)$ is complete for positive times provided *g*⁰ satisfies a volume ratio lower bound that approaches zero at spatial infinity. Our proof combines a pseudolocality result of Lai (2021) for singular flows, together with a pseudolocality result of Hochard (Short-time existence of the Ricci flow on complete, non-collapsed 3-manifolds with Ricci curvature bounded from below, 2016. [arXiv:1603.08726\)](http://arxiv.org/abs/1603.08726) and Simon and Topping (J Differ Geom 122(3):467–518, 2022) for nonsingular flows. We also show that the construction of complete nonnegative complex sectional curvature flows by Cabezas-Rivas and Wilking (J Eur Math Soc (JEMS) 17(12):3153–3194, 2015) can be adapted here to show $g(t)$ is complete for positive times provided g_0 is a compactly supported perturbation of a nonnegative sectional curvature metric.

Keywords Ricci flow · Noncompact manifolds · Unbounded curvature

Mathematics Subject Classification 53E20

1 Introduction

In the seminal work [\[9](#page-11-0)], Hamilton introduced the Ricci flow which is the following evolution equation for a family of Riemannian metrics $g(t)$ starting from an initial smooth *n* dimensional Riemannian manifold (M^n, g_0) :

Albert Chau: Research partially supported by NSERC Grant No. #327637-06.

 \boxtimes Albert Chau chau@math.ubc.ca Adam Martens martens@math.ubc.ca

¹ Department of Mathematics, The University of British Columbia, 1984 Mathematics Road, Vancouver, BC V6T 1Z2, Canada

$$
\begin{cases}\n\frac{\partial g}{\partial t} = -2\text{Ric}(g), \\
g(0) = g_0.\n\end{cases}
$$
\n(1.1)

It was proved in [\[9\]](#page-11-0) that when $Mⁿ$ is compact, the Ricci flow [\(1.1\)](#page-1-0) admits a unique smooth solution $g(t)$ on $M^n \times [0, T)$ for a maximal time $T > 0$ bounded below depending only on the dimension *n* and the initial bounds on the sectional curvatures of g_0 . Moreover, when g_0 has nonnegative Ricci curvature and $n = 3$. Hamilton's collective results in [\[9](#page-11-0)[–11\]](#page-11-1) imply that $g(t)$ has nonnegative Ricci curvature for all $t > 0$ and is either Ricci flat for all times or else converges, after appropriate scaling and pulling back to the universal cover, to the standard metric on either \mathbb{S}^3 or $\mathbb{S}^2 \times \mathbb{R}$ as $t \to T$.

It is natural to wonder about the extent to which similar results hold when $Mⁿ$ is noncompact. This was initiated by Shi in [\[24\]](#page-11-2) who proved the existence of a complete bounded curvature solution $g(t)$ in any dimension assuming g_0 is also complete with bounded cur-vature. Shi also showed [\[23\]](#page-11-3) that when g_0 has nonnegative Ricci curvature and $n = 3$, the solution actually converges, after appropriate scaling and pulling back to the universal cover, towards the standard metric on \mathbb{R}^3 or else $\mathbb{S}^2 \times \mathbb{R}$. When g_0 is complete with possibly unbounded curvature, one cannot expect a solution to (1.1) in general. In fact, given any $\alpha > 0$, it is expected that there exists a complete metric g_0 on $\mathbb{S}^2 \times \mathbb{R}$ with Ric(g_0) > $-\alpha$ which exhibits no complete solution to (1.1) (see example 4 in [\[27\]](#page-11-4)). On the other hand, the following conjecture has been considered for a long time and is a special case of a conjecture by Topping for dimensions $n > 3$ [\[20,](#page-11-5) Conjecture 1.1].

Conjecture 1.1 *Let* (*M*3, *g*0) *be a complete noncompact* 3*-dimensional Riemannian manifold with nonnegative (possibly unbounded) Ricci curvature* $Ric(g_0) \geq 0$ *. Then [\(1.1\)](#page-1-0)* has a *corresponding smooth solution g(t) on* $M^3 \times [0, T)$ *for some T > 0, and g(t) is complete and has nonnegative Ricci curvature for each* $t \in [0, T)$ *.*

The theory of (1.1) for complete unbounded curvature metrics g_0 has seen significant developments since the above mentioned works. Those developments which support Conjecture [1.1](#page-1-1) include the following: Cabezas-Rivas and Wilking [\[2\]](#page-11-6) showed Conjecture [1.1](#page-1-1) holds when "nonnegative Ricci curvature" is replaced by "nonnegative sectional curvature". Hochard $[13, 14]$ $[13, 14]$ $[13, 14]$ showed that if g_0 is complete with Ricci curvature bounded below (not necessarily by zero), and there exists a uniform positive lower bound on the volume of initial unit balls, then (1.1) has a short-time complete solution $g(t)$. On the other hand, Chen *et al*. [\[5](#page-11-9)] showed that the hypothesis of nonnegative Ricci curvature is preserved along any 3D complete solution to [\(1.1\)](#page-1-0). Combining these shows that Conjecture [1.1](#page-1-1) holds under the assumption of a uniform lower bound on volume of initial unit balls. Lai [\[17\]](#page-11-10) proved that Conjecture [1.1](#page-1-1) holds provided we remove the condition of completeness of the solution $g(t)$ for each $t \in (0, T)$. In other words, there exists a nonnegative Ricci curvature, but possibly instantaneously incomplete, solution $g(t)$ to (1.1) emerging from any complete nonnegative Ricci curvature metric *g*0. Lee and Topping [\[18\]](#page-11-11) showed that Conjecture [1.1](#page-1-1) holds provided the pinching condition $\text{Ric}(g_0) \ge \epsilon R(g_0) \ge 0$ holds for some $\epsilon > 0$ (where R is scalar curvature), and that the solution $g(t)$ has bounded sectional curvatures and likewise pinched Ricci curvature for all *t* > 0. Combining this with earlier results of Deruelle *et al*. [\[7\]](#page-11-12) and Lott [\[19\]](#page-11-13), they were able to conclude that (M^3, g_0) must in fact be either compact or else flat thus proving Hamilton's pinching conjecture.

Conjecture [1.1](#page-1-1) can thus be reduced to showing the completeness of the specific solution constructed in [\[17](#page-11-10)] which is the approach we adopt in this article. The construction in [\[17\]](#page-11-10)

in turn, is based on studying the singular Ricci flows N_k emerging from each member of an arbitrary sequence of compact Riemannian manifolds without boundaries $\{(N_k, g_k)\}\$ approximating (M^3, g_0) . Singular 3-dimensional Ricci flows, introduced by Kleiner and Lott [\[15\]](#page-11-14), are 4-dimensional Ricci flow space-times emerging from a given compact 3-dimensional manifold (M^3, g_0) and satisfying certain asymptotic conditions. In many cases, the "classical" maximal solution ($M^3 \times [0, T_{g_0})$, *g*₀) will be strictly contained within the corresponding singular Ricci flow. The reason for using singular flows is because the classical solutions to (1.1) emerging from g_k may not exist up to a time which is uniform in k , in which case one could not use these to obtain a limit solution on $M^3 \times [0, T)$ for any $T > 0$. By combining the construction in [\[17\]](#page-11-10) with the 3D pseudolocality of Simon and Topping [\[22](#page-11-15)] we prove

Theorem 1.1 *There exists a function* $f(R) : \mathbb{R}^+ \to \mathbb{R}^+$ *with* $\lim_{R\to\infty} f(R) = 0$ *such that if* (*M*3, *g*0) *is a complete 3-dimensional Riemannian manifold with nonnegative Ricci curvature and*

$$
\text{Vol}_{g_0}(B_{g_0}(p, R)) \ge f(R)R^3 \tag{1.2}
$$

for some $p \in M^3$ *and all R sufficiently large, then the Ricci flow* [\(1.1\)](#page-1-0) *admits a smooth short-time solution g*(*t*) *that starts from g*0*, is complete and has nonnegative Ricci curvature for every t* > 0 *.*

Any complete 3-dimensional Riemannian manifold with nonnegative Ricci curvature has at least linear volume growth [\[28](#page-11-16)] in the sense that [\(1.2\)](#page-2-0) holds for $f(R) = C_p/R^2$ for some C_p . On the other hand, Euclidean volume growth corresponds to when (1.2) holds for $f(R) = C$ for some constant *C*, and in this case Bishop–Gromov volume comparison implies a uniform lower bound on volume of unit balls in which case our results follows from [\[5](#page-11-9), [13\]](#page-11-7) as mentioned above. In general, the function *f* provides a lower bound on the volume of a unit ball at any $q \in M^3$ as

$$
V(q, 1) \ge \frac{V(q, 2d(p, q))}{(2d(p, q))^3} \ge \frac{V(p, d(p, q))}{8(d(p, q))^3} \ge \frac{1}{8} f(d(p, q))
$$

where we have used Bishop–Gromov volume comparison for the first inequality, the triangle inequality for the second, and [\(1.2\)](#page-2-0) for the last, and we have abbreviated $Vol_{g_0}(B_{g_0}(x, r))$ with $V(x, r)$.

The proof of Theorem [1.1](#page-2-1) is presented in Sect. [3](#page-6-0) though we provide the following outline. Let (M^3, g_0) be complete noncompact with nonnegative Ricci curvature Ric(g_0) > 0, and assume that M^3 is orientable. Then we can find an exhaustion of M^3 by connected compact sets V_k with smooth boundaries, corresponding smooth compact Riemannian manifolds without boundaries (N_k, h_k) where N_k is the topological double of V_k , and maps ϕ_k : (V_k , g_0) \rightarrow (N_k , h_k) which are isometries when restricted to V_{k-1} . In particular, we obtain a sequence of compact Ricci flows $\{(N_k, h_k(t)), t \in [0, T_k)\}\$ with $h_k(0) = h_k$. It is possible here that $T_k \to 0$ as $k \to \infty$. However, by analyzing the corresponding singular Ricci flows, Lai [\[17](#page-11-10), Theorems 7.14 and 8.4] showed that for each V_k , there exists l_k such that $h_{l_k}(t)$ can be extended to $\phi_{l_k}(V_k) \times [0, T)$ for a uniform $T > 0$ and that the pullbacks ${V_k \times [0, T), g_k(t) := \phi_{l_k}^*(h_{l_k}(t))}$ smoothly locally converges to a nonnegative Ricci curvature (possibly incomplete) Ricci flow $(M^3, g(t))$, $t \in [0, T)$ with $g(0) = g$. Moreover, if (M^3, g_0) is the oriented double cover of a nonorientable (M', g') , then $g(t)$ pushes down to a solution $g'(t)$ on $M' \times [0, T)$. The above logic is summarized in Theorem [2.1.](#page-3-0)

It was also proved by Lai [\[17,](#page-11-10) Theorem 6.1] that Perelman's original pseudolocality statement [\[21](#page-11-17), Theorem 10.1] still holds for the incomplete flows $(V_k \times [0, T), g_k(t))$

(see Theorem [2.3\)](#page-4-0). In Theorem [2.4,](#page-5-0) we modify this to one analogous to Perelman's second pseudolocality theorem [\[21](#page-11-17), Theorem 10.3]. Armed with this, we are finally able to prove completeness of the solution $g(t)$ constructed above as follows. The idea is to apply a pseudolocality result by Hochard [\[13,](#page-11-7) Theorem 2.4] and Simon and Topping [\[22,](#page-11-15) Theorem 1.1] which, a priori applies only to complete bounded curvature flows, and concludes a rough curvature bound $\sup_{B_{g(0)}(x_0,1)} |Rm|_{g(t)} \leq c(v)/t$ from weak volume control Vol $B_{\varrho(0)}(x_0, 1) \ge v$. Upon close examination of the proof however, for example in [\[22\]](#page-11-15), the only place where complete bounded curvature flows are assumed is in the application of Perelman's second pseudolocality theorem, and in view of its modification in Theorem [2.4,](#page-5-0) we can extend this pseudolocality result to the incomplete flows $(V_k \times [0 \lt T), g_k(t))$ (see Theorem [2.2\)](#page-4-1). After appropriate scaling, this allows us to conclude the following curvature bounds for $g(t)$ from the condition (1.2) :

$$
|\operatorname{Rm}|(x,t) \le \frac{A(x)}{t}
$$

where the function $A(x)$ grows at some controlled rate (relative to g_0) on M^3 in terms of the function *f* . The Shrinking Balls Lemma [\[22,](#page-11-15) Corollary 3.3] is then used to control distances relative to $g(t)$ in terms of distances relative to g_0 and the function $A(x)$, which by our choice of *f* and hence $A(x)$, implies the completeness of $g(t)$.

Producing noncompact Ricci flows using compact approximations obtained through doubling an exhaustion was first done in $[2]$ in the case (M^n, g_0) is complete with nonnegative complex sectional curvature. Using splitting theorems on the universal cover, their proof reduced to the case when the soul is a single point and hence $M^n = \mathbb{R}^n$. In this case, using an exhaustion via the convex sublevel sets of the Busemann function, they were able to costruct the approximating compact manifolds without boundary $\{(N_k, h_k)\}\$ to have positive complex sectional curvature and showed the corresponding Ricci flows $h_k(t)$ exist up to a uniform time $T > 0$ and converge locally uniformly to a smooth, complete, nonnegative complex sectional curvature solution $g(t)$ on $M^n \times [0, T)$.

We observe that the above construction in [\[2\]](#page-11-6) can be combined with the above construction from [\[17\]](#page-11-10) to give the following

Theorem 1.2 *Let* (M^3, g_0) *be a 3-dimensional Riemannian manifold with nonnegative Ricci curvature, where g*⁰ *is a compactly supported perturbation of a complete nonnegative sectional curvature metric. Then the Ricci flow* (1.1) *admits a smooth short-time solution g(t) that starts from g₀, and is complete and has nonnegative Ricci curvature for every t* > 0 .

2 Preliminaries

We begin with the following main existence result from [\[17\]](#page-11-10).

Theorem 2.1 *(Convergence of 3D singular Ricci flows* [\[17](#page-11-10)]*) Let* (M^3, g_0) *be a complete 3-dimensional Riemannian manifold with nonnegative Ricci curvature,* {*Vk* } *an exhaustion of* M^3 *by relatively compact connected open sets, and* (N_k, h_k) *a sequence of compact Riemannian manifolds without boundaries with diffeomorphisms onto their images* ϕ_k : $V_k \rightarrow N_k$ *satisfying*

$$
\phi_k^*(h_k) \xrightarrow[C_{loc}^{\infty}(M^3)]{} g_0.
$$

Then for each V_l there exists an incomplete solution $h_{k_l}(t)$ *<i>to* [\(1.1\)](#page-1-0) *on* $\phi_{k_l}(V_l) \times [0, T)$ *for some* $k_l \geq l$ *with* $h_{k_l}(0) = h_{k_l}$ *and T independent of l such that*

- 1. *Each* { $\phi_{k_1}(V_l) \times [0, T)$, $h_{k_1}(t)$ } is embedded within a singular Ricci flow \mathcal{N}_{k_l} emerging *from* (N_k, h_k) *.*
- 2. *We have the convergence*

$$
\phi_{k_l}^*(h_{k_l}(t)) \xrightarrow[C^\infty_{loc}(M^3\times[0,T))]{} g(t)
$$

where $g(t)$ *is a nonnegative Ricci curvature (but possibly incomplete for all* $t > 0$ *) solution to* [\(1.1\)](#page-1-0) *on* $M^3 \times [0, T)$ *with* $g(0) = g_0$.

3. *If* (M^3, g_0) *is the Riemannian double cover of* (M', g'_0) *, then* $g(t)$ *pushes down to a solution* $g'(t)$ *to* (1.1) *on* $M' \times [0, T)$ *.*

We refer to [\[15,](#page-11-14) [17\]](#page-11-10) for the definition and properties of 3D singular Ricci flows.

Pseudolocality results for 3D Ricci flows were established by Hochard [\[13](#page-11-7), Theorem 2.4] and extended by Simon and Topping [\[22,](#page-11-15) Theorem 1.1]. The key feature in these results were that they applied to Ricci flows starting from arbitrary initial domains, whereas previous results required a sufficiently Euclidean initial domain. This feature will be crucial for our application and proof of Theorem [1.1.](#page-2-1) The results from $[13, 22]$ $[13, 22]$ $[13, 22]$ $[13, 22]$ were stated for local Ricci flows contained in some complete bounded curvature Ricci flow, and so do not directly apply to our setting. However, what was actually proved in [\[22\]](#page-11-15) for example, was that the results hold for any Ricci flow $(N \times [0, T), g(t))$ for which [\[22](#page-11-15), Theorem 6.2] can be assumed (after removing the complete bounded curvature assumption there). This assumption is possible in our setting due to Lai's extension of Perelman's pseudolocalicty to 3D singular Ricci flows [\[17,](#page-11-10) Theorem 6.1]. We may thus conclude

Theorem 2.2 *(Extension of* [\[22](#page-11-15), *Theorem 1.1] to 3D singular Ricci flows) Let* $\{N \times N\}$ [0, *T*), *g*(*t*)} *be a smooth (possibly incomplete) solution to* [\(1.1\)](#page-1-0) *embedded within some 3D singular Ricci flow M, and let* $p \in N$ *. Suppose that* $B_{g(0)}(p, 1 + \sigma) \subset\subset N$ for some $\sigma > 0$, that

$$
\text{Vol } B_{g(0)}(p, 1) \ge v_0 > 0 \tag{2.1}
$$

and

$$
Ric (g(0)) \ge -K < 0 \text{ on } B_{g(0)}(p, 1 + \sigma). \tag{2.2}
$$

Then there exist $T = T(v_0, K, \sigma) > 0$, $\tilde{v}_0 = \tilde{v}_0(v_0, K, \sigma) > 0$, $K = K(v_0, K, \sigma) > 0$ and $c_0 = c_0(v_0, K, \sigma) < \infty$ *such that for all t* ∈ [0, *T*) ∩ (0, *T*) *we have* $B_{g(t)}(p, 1) \subset\subset N$, *and on* $B_{g(t)}(p, 1)$ *we have*

1. Vol $B_{\varrho(t)}(p, 1) \geq \tilde{v}_0 > 0$, 2. Ric $(g(t)) \geq -\tilde{K}$, 3. $|\text{Rm}|_{g(t)} \leq \frac{c_0}{t}$.

Remark 2.1 The Theorem coincides with [\[22](#page-11-15), Theorem 1.1] when $(N \times [0, T), g(t))$ is contained in some complete bounded curvature Ricci flow. In this case, conclusion (3) was established independently in [\[13,](#page-11-7) Theorem 2.4]. We will actually only need conclusion (3) for our later purposes.

Proof of Theorem [2.2](#page-4-1) We begin with the following statement of [\[17,](#page-11-10) Theorem 6.1] which extends Perelman's first pseudolocality Theorem to 3D singular Ricci flows.

Theorem 2.3 *(Extension of* [\[21](#page-11-17), *Theorem 10.1] to 3D singular Ricci flows) For every* $\alpha > 0$ *, there exists* δ , $\epsilon > 0$ *with the following property.*

Let $\{N \times [0, T), g(t)\}$ *be a smooth (possibly incomplete) solution to* [\(1.1\)](#page-1-0) *embedded within some 3D singular Ricci flow M and let* $p \in N$ *. Suppose* $B_{g(0)}(p, r_0) \subset\subset N$ *and*

- 1. $R(g(0)) \geq -r_0^{-2}$ on $B_{g(0)}(p, r_0)$, $(R(g(0))$ denotes scalar curvature of $g(0)$),
- 2. Vol $(\partial \Omega)^3 \ge (1 \delta)c_3$ Vol $(\Omega)^2$ for all $\Omega \subset B_{g(0)}(p, r_0)$ where c_3 is the Euclidean *isoperimetric constant at dimension 3.*

Then $B_{g(t)}(p, \epsilon r_0) \subset \subset N$ *and*

$$
|\operatorname{Rm}|(x,t) < \alpha t^{-1} + (\epsilon r_0)^{-2}
$$

holds on B_{g(t)}($p, \epsilon r_0$) *for all* $t \in [0, min(T, (\epsilon r_0)^2)]$.

We use this now to extend [\[22](#page-11-15), Theorem 6.2] (a modification of Perelman's second pseudolocality Theorem [\[21,](#page-11-17) Theorem 10.3]) to 3D singular Ricci flows.

Theorem 2.4 *(Extension of* [\[22,](#page-11-15) *Theorem 6.2] to 3D singular Ricci flows) Given* $v_0 > 0$ *, there exists* $\epsilon > 0$ *with the following property: Let* $\{N \times [0, T), g(t)\}$ *be a smooth (possibly incomplete) solution to* [\(1.1\)](#page-1-0) *embedded within some 3D singular Ricci flow* M *and let* $p \in N$. *Suppose* $B_{g(0)}(p, r_0)$ ⊂⊂ *N* and

- 1. $|\text{Rm}|_{g(0)} \leq r_0^{-2}$ *on* $B_{g(0)}(p, r_0)$,
- 2. Vol $B_{g(0)}(p, r_0) \ge v_0 r_0^3$.

Then $B_{g(t)}(p, \epsilon r_0) \subset \subset N$ *and*

 $|\text{Rm }|(x, t) < (\epsilon r_0)^{-2}$

holds on $B_{g(t)}(p, \epsilon r_0)$ *for all t* $\in [0, min(\epsilon r_0, T))$ *.*

Proof of Theorem [2.4](#page-5-0) By scaling, we may assume $r_0 = 1$. By the results in [\[3](#page-11-18)], conditions (1) and (2) imply a uniform lower bound on the injectivity radius at p depending only on v_0 . From this and the bound on curvature (actually we only need a lower bound on Ricci curvature), we may find harmonic coordinates **x** around *p* in which we have $c(\|\mathbf{x}\|)^{-1}\delta_{ij} \leq$ $g_{ii}(\mathbf{x}) \leq c(||\mathbf{x}||)\delta_{ii}$ for all $||\mathbf{x}|| \leq d$ for some $d > 0$, where the function $c(\rho)$ depends only on v_0 , and $c \to 1$ as $\rho \to 0$. In particular, if δ', ϵ' correspond to $\alpha = 1$ in Theorem [2.3,](#page-4-0) then conditions (1) and (2) in that theorem will hold on $B_{g(0)}(p, r)$ for some *r* depending on v_0 and δ' , and we conclude that $B_{g(t)}(p, \epsilon' r) \subset \subset N$ and

$$
|\operatorname{Rm}|(x,t) \le t^{-1} + \epsilon'^{-2}
$$

holds on $B_{g(t)}(p, \epsilon' r)$ for all $t \in [0, \min(T, \epsilon'^2 r)]$. In particular, since $r \le 1$ we have $|\text{Rm }|(x, t)| \leq 2t^{-1}$ on $B_{g(t)}(p, \epsilon' r)$ for all $t \in [0, \min(\epsilon'^2 r, T)]$ and it follows from [\[4,](#page-11-19) Theorem 3.1] that we may have

$$
|\operatorname{Rm}|(x) < C(\epsilon' r)^{-2}
$$

for a universal constant *C* (depending only on dimension), and on $B_{g(t)}(p, \frac{\epsilon' r}{2})$ for all $t \in$ [0, min($\frac{\epsilon' r}{2}$, *T*)]. This completes the proof of the Theorem [2.4.](#page-5-0)

Theorem [2.2](#page-4-1) now follows, as described above, by combining Theorem [2.4](#page-5-0) with the proof of $[22,$ $[22,$ Theorem 1.1].

Finally, we will make use of the following result which holds for any solution (possibly incomplete) to (1.1) in all dimensions.

Proposition 2.1 (Shrinking Ball Corollary 3.3 in [\[22\]](#page-11-15)) *There exists a dimensional constant* $\beta = \beta(n) > 1$ *such that the following holds.*

Suppose $(M^n \times [0, T], g(t))$ *is a (possibly incomplete) Ricci flow on an n-dimensional manifold* M^n *such that* $B_{g(0)}(x_0, r)$ ⊂⊂ M^n *for some* $x_0 \in M^n$ *and* $r > 0$ *, and* $Ric(g(t)) \le$ $(n-1)c_0/t$ on $B_{g(0)}(x_0,r) \cap B_{g(t)}(x_0,r - \beta \sqrt{c_0t})$ for each $t \in (0, T]$ and some $c_0 > 0$. *Then* $B_{g(0)}(x_0, r) \supset B_{g(t)}(x_0, r - \beta \sqrt{c_0 t})$ *for all t* ∈ [0, *T*]*.*

The proof is based on Proposition [2.1](#page-5-1) and the corollary to Theorem [2.2](#page-4-1) below. Let us use *T*(*v*) and *c*(*v*) to denote the positive functions *T*(*v*, −1, 1) and *c*₀(*v*, −1, 1) for $0 \le v \le$
V(2, −1, 1) for Theorem 2.2, where *V*(2, −1, 1) denotes the volume of the unit hell in the *V*(3, $-1/2$) from Theorem [2.2,](#page-4-1) where *V*(3, $-1/2$) denotes the volume of the unit ball in the 3-dimensional space form of constant curvature $-1/2$. Note that we may increase the given function $c_0(v, -1, 1)$ and decrease the function $T(v, -1, 1)$ as we like without changing the statement of Theorem [2.2,](#page-4-1) and so we may assume that $c(v)$ is strictly decreasing in v and that

$$
c(v) = 1/\widetilde{T}(v) \tag{3.1}
$$

for all $v > 0$. We also note that by the example of the solution to Ricci flow emanating from arbitrarily sharp cones (see [\[6,](#page-11-20) Sect. 4 of Chapter 5] for more detail), it must be that

$$
\lim_{v \to 0} c(v) = \infty.
$$

Corollary 3.1 (Corollary to Theorem [2.2\)](#page-4-1) Let $\{N \times [0, T), g(t)\}$ for $T \leq 1$ be a smooth *(possibly incomplete) solution to [\(1.1\)](#page-1-0) embedded within some 3D singular Ricci flow M. Suppose for some* $x_0 \in N$ *and* $v > 0$ *we have* $B_{g(0)}(x_0, 2\sqrt{c(v)}) \subset N$ *and*

$$
\frac{\text{Vol } B_{g(0)}(x_0, \sqrt{c(v)})}{(\sqrt{c(v)})^3} \ge v,
$$
\n(3.2)

and

$$
Ric (g(0)) \ge -1/c(v) \text{ on } B_{g(0)}(x_0, 2\sqrt{c(v)}).
$$
 (3.3)

Then for all t $\in (0, T)$ *we have* $B_{g(t)}(x_0, \sqrt{c(v)}) \subset\subset N$ *and*

$$
|\operatorname{Rm}|_{g(t)} \le \frac{c(v)}{t} \text{ on } B_{g(t)}(x_0, \sqrt{c(v)}).
$$

Proof Let $g(t)$ on $N \times [0, T)$ be as in the Theorem. Write $\lambda = 1/c(v)$ and consider the rescaled solution to (1.1) given by

$$
g_{\lambda}(s) := \lambda g(s/\lambda) \text{ on } N \times [0, \lambda T). \tag{3.4}
$$

Then we have

$$
Ric (g\lambda(0)) \ge -1 on Bg\lambda(0)(x0, 2), \qquad (3.5)
$$

and

$$
\text{Vol}_{g_{\lambda}(0)} B_{g_{\lambda}(0)}(x_0, 1) = \frac{\text{Vol}_{g_0} B_{g_0}(x_0, 1/\sqrt{\lambda})}{(1/\sqrt{\lambda})^3} \ge v \tag{3.6}
$$

where we have used the definition of g_{λ} and [\(3.2\)](#page-6-1). Thus by conclusion (3) in Theorem [2.2](#page-4-1) and (3.1) we have

$$
|\operatorname{Rm}|_{g_{\lambda}(s)} \leq \frac{c(v)}{s} \text{ on } B_{g_{\lambda}(s)}(x_0, 1) \text{ for } s \in [0, \lambda T = \tilde{T}(v)T).
$$

This in turn gives

$$
|\operatorname{Rm}|_{g(t)} = \lambda |\operatorname{Rm}|_{g_{\lambda}(\lambda t)} \le \lambda \frac{c(v)}{\lambda t} = \frac{c(v)}{t} \text{ on } B_{g(t)}(x_0, \sqrt{c(v)}) \tag{3.7}
$$

for $t \in (0, T)$. This concludes the proof of the Corollary.

$\circled{2}$ Springer

We now finish the proof of Theorem [1.1.](#page-2-1) Let (M^3, g_0) be a complete 3-manifold with $Ric(g_0) \ge 0$ that satisfies the volume decay assumption [\(1.2\)](#page-2-0) for the function

$$
f(r) := 2c^{-1}(r^2),
$$

where c^{-1} is the inverse of the function $c(v)$ discussed above. By the properties of $c(v)$, the function *f* (*r*) is positive and defined on [*L*, ∞) for some *L* > 0 and satisfies $\lim_{r\to\infty} f(r)$ = 0.

Assume first that (M^3, g_0) is orientable. Then we may find an exhaustion of M^3 by relatively compact connected sets V_k with smooth boundaries, and a sequence of smooth compact Riemannian manifolds without boundaries (N_k, h_k) and diffeomorphisms onto their images $\phi_k : V_k \to N_k$ converging to (M^3, g_0) as in the hypothesis of Theorem [2.1.](#page-3-0) We conclude by Theorem [2.1](#page-3-0) the existence of corresponding local solutions $(\phi_{k}(V_l) \times [0, T), h_{k}(t))$ converging to a possibly incomplete solution ($M^3 \times [0, T)$, $g(t)$) to [\(1.1\)](#page-1-0) with $g(0) = g_0$ and $\text{Ric}(g(t)) > 0$ for all $t \in [0, T)$. We may also apply Corollary [3.1](#page-6-3) to each local solution $h_{k_l}(t)$ by Theorem [2.1](#page-3-0) (1).

For simplicity, we will denote the sequence $(\phi_{k_l}(V_l) \times [0, T), h_{k_l}(t))$ by $(W_l \times$ $[0, T), H₁(t)$). Let $T' = min(T, 1, \beta^{-1})$ where $\beta = \beta(3) > 0$ is the constant from Propo-sition [2.1.](#page-5-1) The assumed volume bound [\(1.2\)](#page-2-0) and the definition of *f* ensure that (M^3, g_0) satisfies:

$$
\frac{\text{Vol }B_{g(0)}(x_0,\sqrt{c(v)})}{(\sqrt{c(v)})^3} \ge 2v
$$

for all sufficiently small $v > 0$. The local smooth convergence of the $(W_l \times [0, T'), H_l(t))$'s to $(M^3 \times [0, T'), g(t))$ implies: for each $v > 0$ there exists m_v such that for each $l \geq m_v$, the incomplete solution ($W_l \times [0, T')$, $H_l(t)$) satisfies the hypothesis of Corollary [3.1](#page-6-3) with $x_0 = p_l := \phi_{k_l}(p)$ and hence

$$
|\text{Rm}|_{H_l(t)} \le \frac{c(v)}{t}
$$
 on $B_{H_l(t)}(p_l, \sqrt{c(v)})$ for all $t \in [0, T').$

Thus by Proposition [2.1](#page-5-1) we conclude that for each $v > 0$ sufficiently small we have

$$
B_{H_l(t)}(p_l, \sqrt{c(v)} - \beta \sqrt{c(v)t}) \subset B_{H_l(0)}(p_l, \sqrt{c(v)})
$$

in *W_l* for all $l \geq m_v$ and $t \in [0, T')$. Thus in the limit we have

$$
B_{g(t)}(p, \sqrt{c(v)} - \beta \sqrt{c(v)t}) \subset B_{g(0)}(p, \sqrt{c(v)})
$$

in M^3 for all for all $v > 0$ sufficiently small and $t \in [0, T')$. It follows by the completeness of *g*₀ and the fact that $\lim_{v\to 0} c(v) = \infty$, that $(M^3, g(t))$ is complete for all $t < T'$. This concludes the proof of Theorem [1.1](#page-2-1) assuming (M^3, g_0) is orientable. If it is not orientable, we repeat the argument to obtain a solution $\tilde{g}(t)$ to [\(1.1\)](#page-1-0) on the Riemannian double cover (\tilde{M}, \tilde{g}_0) , then by Theorem [2.1](#page-3-0) (3) we can push this down to a solution $g(t)$ on M^3 having the desired properties.

This completes the proof of Theorem [1.1.](#page-2-1)

4 Proof of Theorem [1.2](#page-3-1)

By Liu's classification [\[16](#page-11-21)], either $M^3 = \mathbb{R}^3$ or else the Riemannian universal cover of (M^3, g_0) is a Riemannian product. By the results for Ricci flow on surfaces by Topping [\[25\]](#page-11-22) and Giesen and Topping [\[8](#page-11-23)], we may thus assume that $M^3 = \mathbb{R}^3$.

$$
\phi_k: V_k \to N_k; \qquad \psi_k: N_k \to N_k
$$

all together satisfying the following:

- 1. Each $(N_k, h_{k,l})$ has strictly positive complex sectional curvature, volume uniformly bounded from below, and diameter bounded above depending on *k* but not on *l*.
- 2. Each ψ_k is an isometry relative to every $h_{k,l}$ and satisfies

$$
\psi_k^2 = \text{Id} \neq \psi_k; \quad \psi_k(q) = q \text{ iff } q \in \partial(\phi_k V_k).
$$

3. For all $q \in V_k$ we have

$$
dist_g(q, \partial V_k) \geq dist_{\phi^*(h_{kl})}(q, \partial V_k)) - C
$$

for some *C* independent of *k*,*l*.

4. Given any compact set *S* ⊂⊂ M^n , there exists k_0 such that for every $k > k_0$ we have the smooth convergence

$$
\phi_k^*(h_{k,l}) \xrightarrow[l \to \infty]{} g \text{ on } S
$$

where the convergence is uniform over *k*.

It was then proved that the corresponding Ricci flows $h_{k,l}(t)$ exist on N_k up to a uniform time $T > 0$ independent of *k* and *l*, and that a diagonal subsequence of $\phi_k^*(h_{k,l}(t))$ converges smoothly uniformly on compact subsets on $M^n \times [0, T)$ to a solution $g(t)$ to Ricci flow which has nonnegative complex sectional curvature and is complete for all $t \in [0, T)$.

Now assume that $n = 3$ above, in which case g will in fact have nonnegative sectional curvature on $M^3 = \mathbb{R}^3$. Let \tilde{g} be a compactly supported symmetric 2-tensor on M^3 such that $g_0 := g + \tilde{g}$ is a complete Riemannian metric with nonnegative Ricci curvature. In other words, there is a compact set $K \subset\subset M^3$ for which

$$
\operatorname{Ric}(g + \tilde{g}) \ge 0 \text{ on } M^3, \text{ and } \tilde{g} = 0 \text{ on } M^3 \backslash K. \tag{4.1}
$$

From now on, consider *k* sufficiently large so that $K \subset \subset V_k$. Define the smooth metrics $\tilde{h}_{k,l}$ on N_k as

$$
\begin{cases} \tilde{h}_{k,l} := h_{k,l} + (\phi_k^{-1})^* \tilde{g} & \text{on } \phi_k(V_k) \\ \tilde{h}_{k,l} := \psi_k^* (h_{k,l} + (\phi_k^{-1})^* \tilde{g}) & \text{on } \psi_k(\phi_k V_k). \end{cases}
$$
\n
$$
(4.2)
$$

Though the $\tilde{h}_{k,l}$ may not be positive definite a priori, we may assume that they are by taking *k*,*l* sufficiently large and using property (4) as well as the fact that

$$
\inf \{ \|v\|_{g+\tilde{g}} \ : \ v \in T_p M^3 \text{ where } p \in K \text{ and } \|v\|_g = 1 \} > 0,
$$

where the positivity is to due the compactness of *K*.

Then by property (1) above, each $(N_k, \tilde{h}_{k,l})$ will satisfy:

$$
\text{Vol}_{k,l} \ge v; \quad \text{Diam}_{k,l} \le C_k; \quad \text{Ric}(\tilde{h}_{k,l}) \ge -c_l \tag{4.3}
$$

for positive constants v, C_k , c_l depending only on their subscripts (if any) and where $c_l \rightarrow 0$ as $l \rightarrow \infty$. It follows from Corollary 3 in [\[1\]](#page-11-24) that for each *l* sufficiently large depending on k , there exists a nonnegative Ricci curvature metric on N_k , and that these can be taken to converge on N_k as $l \to \infty$ as we now describe. In particular, the proof there showed that for each fixed *k* and all sufficiently large *l* the Ricci flow $\tilde{h}_{k,l}(t)$ starting from $\tilde{h}_{k,l}$ on N_k exists up to a uniform time $T_k > 0$ depending only on k and (by Theorem 2 in [\[1](#page-11-24)]) satisfies the curvature bound

$$
|\operatorname{Rm}_{k,l}(t)| \le C'/t \tag{4.4}
$$

for some $C' > 0$ independent of k, l. Moreover, it was shown that the solutions $\{(N_k \times$ $[0, T_k)$, $\tilde{h}_{k,l}(t)$ } $|_{l \in \mathbb{N}}$ subconverges, as in Hamilton's Compactness Theorem [\[12](#page-11-25)], to a limit solution $(N_k \times (0, T_k), \tilde{h}_{k,\infty}(t))$ having everywhere nonnegative Ricci curvature. The nonnegativity of Ricci curvature can also be seen for example, from the bounds [\(4.3\)](#page-8-0), [\(4.4\)](#page-9-0) and [\[22,](#page-11-15) Lemma 2.2]) which in particular imply a uniform lower bound on

$$
Rc(h_{kl}(t)) \ge -100c_lC'
$$
\n
$$
(4.5)
$$

for $t \in [0, T_k)$ provided T_k is sufficiently small depending only on C' .

Now the estimate [\(4.4\)](#page-9-0) and [\[4](#page-11-19), Theorem 3.1] imply that $\tilde{h}_{k,\infty}(t)$ converges smoothly as *t* → 0 on a given compact set *S* ⊂⊂ *N_k* provided $\tilde{h}_{k,l}(0)$ likewise converges as $l \to \infty$. On the other hand, for a given compact set and *k* sufficiently large, the latter limit exists and equals $(\phi_k^{-1})^*(g + \tilde{g})$ by condition (4) above. Moreover, by [\(4.5\)](#page-9-1) and the fact $c_l \to 0$, we may still have condition (3) after replacing $h_{k,l}$ there with $\tilde{h}_{k,\infty}(t)$ where the constant *C* there will be independent of *k*, *l* and $t \leq \min(T_k, 1)$.

In summary, we conclude the existence of sequences $l_k \to \infty$ and $t_k \to 0$ for which the metrics $H_k := \tilde{h}_{k,l_k}(t_k)$ on N_k satisfy the following relative to the same maps $\phi_k : V_k \subset$ $M^3 \rightarrow N_k$ and $\psi_k : N_k \rightarrow N_k$ defined above:

- (a) Each (N_k, H_k) has nonnegative Ricci curvature.
- (b) Each ψ_k is an isometry relative to H_k satisfying

$$
\psi_k^2 = \text{Id} \neq \psi_k; \quad \psi_k(q) = q \text{ iff } q \in \partial \phi_k(V_k).
$$

(c) For all $q \in V_k$ we have

$$
dist_g(q, \partial V_k) \geq dist_{\phi^*(H_k)}(q, \partial V_k)) - C
$$

for some *C* independent of *k*.

(d) Given any compact set *S* ⊂ $\subset M^3$, we have the smooth convergence as $k \to \infty$

$$
\phi_k^*(H_k) \xrightarrow[C_{loc}^{\infty}(M^3)]{} (g + \tilde{g}) \text{ on } S. \tag{4.6}
$$

Now let $H_k(t)$ be the corresponding Ricci flow on N_k with $H_k(0) = H_k$. By Hamilton's convergence results for nonnegative Ricci curvature metrics in [\[9\]](#page-11-0) we know that $H_k(t)$ is either stationary/Ricci flat or else exists up to some $0 < T_k < \infty$ with $\text{Vol}_{H_k(t)} N_k \to 0$ as $t \to T_k$. On the other hand, Perelman's pseudolocality [\[21\]](#page-11-17) combined with condition (c) above implies that for any given compact *S* ⊂ $\subset M^3$, there exists *T_S*, *V_S* > 0 such that $Vol_{H_k(t)} \phi_k(S) > V_S$ for all $t \le \min(T_S, T_k)$ and all k. We conclude that $T_k > T > 0$ for all k and some $T > 0$.

Thus from (a)–(c) and Theorem [2.1](#page-3-0) we obtain a nonnegative Ricci curvature (albeit possibly incomplete) solution ($M^3 \times [0, T)$, $g(t)$) to [\(1.1\)](#page-1-0) starting from $g(0) = g + \tilde{g}$ and after possibly shrinking $T > 0$. Moreover, from the proof of Theorem [2.1](#page-3-0) in [\[17\]](#page-11-10), we may actually conclude that $(M^3 \times [0, T), g(t))$ is a local limit of the solutions $\{N_k \times [0, T), H_k(t)\}$ to (1.1) as in Theorem [2.1](#page-3-0) part (2) .

It remains to prove that $g(t)$ is complete for all $t > 0$. This in fact follows from the proof of completeness of the limit solution in [\[2\]](#page-11-6) as we now sketch.

The proof is based on the choice of the exhaustion ${V_k}_{k=1}^{\infty}$ of *M* made in [\[2](#page-11-6)]. Specifically, *V_k* was defined as the *k* sublevel of the Busemann function based at some $p_0 \in M$. In particular, if β denotes the set of geodesic rays on M starting from p_0 then

$$
V_k := \{q \in M : b(q) < k\}
$$

where

$$
b(q) := \sup_{\gamma \in \mathcal{B}} \lim_{t \to \infty} \left(t - \text{dist}_{g}(\gamma(t), q) \right).
$$

In what follows, we fix some $T' < T$ and some $R > 0$. We will use C to denote a positive constant depending only on the solution $g(t)$ on $M \times [0, T']$ and which may differ from line to line. For each *k*, denote

$$
p'_k = \phi_k(p_0) \in N_k; \quad V'_k = \phi_k(V_k) \subset N_k; \quad L_k = \text{dist}_{H_k(0)}(p'_k, \partial V'_k).
$$

In particular, we have that $dist_{H_k(t)}(p'_k, \psi_k(p'_k)) = 2L_k$ by property (b) of the map ψ_k .

By the local convergence of the $\phi_k^*(H_k(t)) \to g(t)$ on *M*, and the fact that ψ_k is an isometry relative to H_k , there are neighborhoods U , V around p'_k , $\psi_k(p'_k)$ (resp.) such that

$$
\sup_{(U \cup V) \times [0, T']} |Rc(H_k(t))| \le C, \tag{4.7}
$$

for *k* sufficiently large. From [\(4.7\)](#page-10-0), the argument in [\[2\]](#page-11-6) using the Ricci flow [\(1.1\)](#page-1-0), and the second variation formula for arc length (see also [\[12](#page-11-25), Theorem 17.4]), we have that

$$
dist_{H_k(t)}(p'_k, \psi_k(p'_k)) \ge 2L_k - C.
$$
 (4.8)

The LHS above equals $2dist_{H_k(t)}(p'_k, \partial V_k)$. Moreover, for *k* sufficiently large we have $B_{H_k(t)}(p_0, R) \subset V_k$. Combining these with [\(4.8\)](#page-10-1) gives

$$
dist_{H_k(t)}(B_{H_k(t)}(p'_k, R), \partial V'_k) \ge L_k - C - R.
$$
\n(4.9)

for *k* sufficiently large and $t \in [0, T']$. On the other hand, we have $H_k(0) \ge H_k(t)$ by [\(1.1\)](#page-1-0) and the fact $R_c(H_k(s)) \ge 0$ for all $s \in [0, t]$. Thus by property (c) above for the metric H_k , we may replace dist_{*H_k*(*t*) in [\(4.9\)](#page-10-2) with dist_{(ϕ^{-1})^{*}*g*} provided we subtract a constant *C* from} the RHS. Next, by the smooth local convergence of the $\phi_k^*(H_k(t))$'s to $g(t)$ on *M*, we may further replace $B_{H_k(t)}(p'_k, R)$ with $B_{g(t)}(p_0, R)$ by futher subtracting a constant *C* from the RHS. Pulling the resulting inequality back to V_k by ϕ^* gives

$$
dist_g(B_{g(t)}(p_0, R), \partial V_k) \ge L_k - C - R,
$$

for all *k* sufficiently large and $t \in [0, T']$. Now we note the following basic propery of the sublevel sets of the Busemann function: for any $s_1 < s_2$ we have

$$
b^{-1}((-\infty, s_1]) = \{q \in b^{-1}((-\infty, s_2]) : \text{dist}_g(q, \partial b^{-1}((-\infty, s_2]) \ge s_2 - s_1) \tag{4.10}
$$

Combining this with [\(4.10\)](#page-10-3) and the fact that $\partial V_k = \partial b^{-1}((-\infty, k])$ gives

$$
B_{g(t)}(p_0, R) \subset b^{-1}((-\infty, k - (L_k - C - R)]) \subset b^{-1}((-\infty, C + R])
$$

for all $t \in [0, T']$ where for the last inclusion we have used that $b(p_0) = 0$ and thus $L_k \ge k$ again by the above property of *b*.

 $\circled{2}$ Springer

In particular, we have shown that for all $R > 0$ there is some compact set $K_R \subset\subset M$ such that $B_{g(t)}(p_0, R) \subset K_R$ for all $t \in [0, T']$ and it follows that $g(t)$ is complete on *M* for each $t \in [0, T']$ and thus for each $t \in [0, T)$ as $T' < T$ was arbitrarily chosen. This completes the proof of Theorem [1.2.](#page-3-1)

Acknowledgements The authors would like to thank Peter Topping for helpful comments.

References

- 1. Bamler, R.H., Cabezas-Rivas, E., Wilking, B.: The Ricci flow under almost non-negative curvature conditions. Invent. Math. **217**(1), 95–126 (2019)
- 2. Cabezas-Rivas, E., Wilking, B.: How to produce a Ricci flow via Cheeger–Gromoll exhaustion. J. Eur. Math. Soc. (JEMS) **17**(12), 3153–3194 (2015)
- 3. Cheeger, J., Gromov, M., Taylor, M.: Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds. J. Differ. Geom. **17**(1), 15–53 (1982)
- 4. Chen, B.-L.: Strong uniqueness of the Ricci flow. J. Differ. Geom. **82**(2), 363–382 (2009)
- 5. Chen, B.-L., Xu, G., Zhang, Z.: Local pinching estimates in 3-dim Ricci flow. Math. Re. Lett. **20**(5), 845–855 (2013)
- 6. Chow, B., Knopf, D.: The Ricci flow: an introduction. Math. Surv. Monogr. **110**, 1 (2004)
- 7. Deruelle A., Schulze, F., Simon, M.: Initial stability estimates for Ricci flow and three dimensional Ricci-pinched manifolds. Preprint [arXiv:2203.15313](http://arxiv.org/abs/2203.15313)
- 8. Giesen, G., Topping, P.M.: Existence of Ricci flows of incomplete surfaces. Commun. Partial Differ. Equ. **36**(10), 1860–1880 (2011)
- 9. Hamilton, R.S.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. **17**(2), 255–306 (1982)
- 10. Hamilton, R.S.: Four-manifolds with positive curvature operator. J. Differ. Geom. **24**, 153–179 (1986)
- 11. Hamilton, R.S.: The Ricci flow on surfaces. Contemp. Math. **71**, 237–261 (1988)
- 12. Hamilton, R.S.: The formation of singularities in the Ricci flow. Surv. Differ. Geom. **II**, 7–136 (1993)
- 13. Hochard, R.: Short-time existence of the Ricci flow on complete, non-collapsed 3-manifolds with Ricci curvature bounded from below. Preprint [arXiv:1603.08726](http://arxiv.org/abs/1603.08726) (2016)
- 14. Hochard, R.: Théorèm d'existence en temps court du flot de Ricci pour des variétés non-complètes, non-éffondrées, à courbure minorée. Ph.D. Thesis, University of Bordeaux (2019)
- 15. Kleiner, B., Lott, J.: Singular Ricci flows I. Acta Math. **219**(1), 65–134 (2017)
- 16. Liu, G.: 3-Manifolds with nonnegative Ricci curvature. Invent. Math. **193**(2), 367–375 (2013)
- 17. Lai, Y.: Producing 3D Ricci flows with nonnegative Ricci curvature via singular Ricci flows. Geom. Topol. **25**, 3629–3690 (2021)
- 18. Lee, M.-C., Topping, P.M.: Three-manifolds with non-negatively pinched Ricci curvature. Preprint [arXiv:2204.00504](http://arxiv.org/abs/2204.00504)
- 19. Lott, J.: On 3-manifolds with pointwise pinched nonnegative Ricci curvature. Math. Ann. (2023). [https://](https://doi.org/10.1007/s00208-023-02596-9) doi.org/10.1007/s00208-023-02596-9
- 20. McLeod, A.D., Topping, P.M.: Pyramid Ricci flow in higher dimensions. Math. Z. **296**, 511–523 (2020)
- 21. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. Preprint [arXiv:math/0211159](http://arxiv.org/abs/math/0211159)
- 22. Simon, M., Topping, P.M.: Local control on the geometry in 3D Ricci flow. J. Differ. Geom. **122**(3), 467–518 (2022)
- 23. Shi, W.-X.: Complete noncompact three-manifolds with nonnegative Ricci curvature. J. Differ. Geom. **29**(2), 353–360 (1989)
- 24. Shi, W.-X.: Deforming the metric on complete Riemannian manifolds. J. Differ. Geom. **30**(1), 223–301 (1989)
- 25. Topping, P.M.: Uniqueness of instantaneously complete Ricci flows. Geom. Topol. **19**, 1477–1492 (2015)
- 26. Topping, P.M.: Ricci flows with unbounded curvature. In: Proceedings of the International Congress of Mathematicians-Seoul 2014, vol. II, pp. 1033–1048. Phkyung Moon Sa, Seoul (2014)
- 27. Topping, P.M.: Ricci flow and Ricci limit spaces. [arXiv:1904.11375](http://arxiv.org/abs/1904.11375)
- 28. Yau, S.T.: Some function-theoretic properties of complete Riemannian manifold and their applications to geometry. Indiana Univ. Math. J. **25**(7), 659–670 (1976)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.