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Abstract

A well-known theorem of Buchweitz provides equivalences between three categories: the
stable category of Gorenstein projective modules over a Gorenstein algebra, the homotopy
category of acyclic complexes of projectives, and the singularity category. To adapt this
result to N-complexes, one must find an appropriate candidate for the N-analogue of the
stable category. We identify this “/N-stable category” via the monomorphism category and
prove Buchweitz’s theorem for N-complexes over a Grothendieck abelian category. We also
compute the Serre functor on the N-stable category over a self-injective algebra and study
the resultant fractional Calabi—Yau properties.

1 Introduction

The notion of N-complexes, which goes back to Mayer [22] and was first studied from a
homological point of view by Kapranov [16] and Dubois-Violette [8], has received significant
interest in recent years. As well as having applications in physics via spin gauge fields (see
e.g. [9]), they are homologically interesting in their own right (see e.g. [23]. In addition,
they provide the simplest examples of N-differential graded categories, which, for N a prime
number, play an important role in categorification at roots of unity, see e.g. [10-12, 19, 20].

In the classical case of N = 2, which recovers the usual notion of homological algebra,
there are numerous deep and important theorems connecting various categories obtained
from complexes. One such example is a celebrated theorem by Buchweitz [4, Theorem
4.4.1], which, adapted to the setting of a Gorenstein abelian category .A, provides equivalences
between a) K ““(Proj(A)), the homotopy category of acyclic complexes of projective objects;
b) D*(A), the singularity category of A (i.e., the Verdier quotient of the bounded derived
category by the thick subcategory of perfect complexes); and c) stab(Gproj(.A)), the stable
category of Gorenstein projective objects in A. The equivalence between b) and c) was
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independently proved by Rickard [25, Theorem 2.1] in the special case of Frobenius exact
abelian categories.

There are obvious N-complex analogues of categories a) and b), and an equivalence
K§f (Proj(A)) = Dy (A) generalizing Buchweitz was discovered by Bahiraei et al. [1].
This raises a question: is there an “N-stable” category which completes the missing link
in Buchweitz’s theorem? In this paper, we determine the correct object by investigating the
monomorphism category, MMor y_;(.A), whose objects are diagrams of N — 2 successive
monomorphisms in 4. The monomorphism category has been intensively studied, particu-
larly for N = 3 [26, 27], but also for general N [29]. Monomorphism categories associated
to arbitrary species have also recently been studied by [13].

If £ is an exact category, then MMory_>(£) can be given the structure of an exact
category (Proposition 3.5). If £ is Frobenius, then MMory_»(€) inherits this property
(Theorem 3.12); in this case, we define the N-stable category, staby (€) to be the stable
category of MMory_2(€). For a Gorenstein abelian category .4, we construct equiva-

lences of triangulated categories K ,‘f,C(Proj (A)) = staby (Gproj(A)) (Theorem 4.12) and

staby (Gproj(A)) 5 Dy, (A) (Theorem 5.3) generalizing Buchweitz, demonstrating that the
N-stable category merits the name.

Classically, the stable category of a finite-dimensional self-injective algebra A provides
a rich source of examples of negative or fractional Calabi—Yau categories, a topic of major
interest in homological representation theory with connections to many areas of mathematics,
see e.g. [6, 7, 17, 18]. One might hope the N-stable category enjoys similar properties, and
in Corollary 6.11 we prove that if the Nakayama automorphism of A has finite order, then
staby (A) is fractional Calabi—Yau with the denominator parametrized by N.

To prove result, we provide an explicit description of the Serre functor on staby (A) in
Theorem 6.10. The effect of the Auslander-Reiten translation (from which the Serre functor
can easily be derived) on the objects of the stable monomorphism category has already been
computed by Ringel and Schmidmeier [26] for N = 3 and Xiong et al. [28] for general
N. However, utilizing the connection with N-complexes, we are able to provide a simpler
version of their construction which is also functorial.

The structure of the paper is as follows: In Sect. 2, we briefly summarize relevant back-
ground material while establishing our terminology and notational conventions. Section 3
develops the theory of the monomorphism category, culminating in the definition of the N-
stable category. The two relevant equivalences of Buchweitz’s theorem are generalized in
Sects. 4 and 5. In Sect. 6, we describe the Serre functor of the N-stable category, discuss its
Calabi—Yau properties, and provide a worked example.

2 Definitions and notation
2.1 Triangulated categories

We shall assume the reader is familiar with the basic theory of triangulated categories. In lieu
of a detailed explanation, we give a quick overview of the relevant topics and terminology;
for more details, the reader may consult Neeman [24] or Gelfand-Manin [14].

Let 7 be an additive category, and let ¥ : 7 5 T be an additive automorphism of 7.

We shall call ¥ the suspension functor on 7. A triangle in 7 is any diagram of the form

X —f> y 5z i) ¥ X. A triangulated category is the data of 7, X, and a collection of

triangles (called the distinguished triangles), satisfying certain axioms.
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If (71, ¥1) and (7>, X,) are triangulated categories, a triangulated functor F : 7| — 7,
is the data of an additive functor F and an isomorphism ¢ : FX; = >» F, such that F
(together with ¢) maps distinguished triangles in 77 to distinguished triangles in 75.

Any morphism f : X — Y inatriangulated category 7 can be extended to a distinguished

triangle X EA vy & Z % £X. We refer to Z as the cone of f; it is unique up to (non-
canoncial) isomorphism. Similarly, we refer to X as the cocone of g.

A full, replete, additive subcategory S C 7 is said to be a triangulated subcategory
if S is closed under £*! and the cone of any morphism in S lies in S. A triangulated
subcategory S is said to be thick if it is closed under direct summands. In this case, we can
form a new triangulated category 7 /S, called the Verdier quotient, with the same objects
and suspension functor as 7. There is a natural triangulated functor 7 — 7 /S which is the
identity on objects and whose kernel is precisely S. 7' /S can also be viewed as the localization
of 7 with respect to the multiplicative set of morphisms with cone in S, hence morphisms
in 7' /S can be expressed in terms of a calculus of left and right fractions. A triangle in 7 /S
is distinguished if and only if it is isomorphic (in 7 /S) to a distinguished triangle in 7.

2.2 Serre duality and Calabi-Yau categories

Let F beafieldandlet (7, X) be an F-linear, Hom-finite triangulated category. A Serre func-
tor on 7 is an equivalence of triangulated categories S : 7 57T together with isomorphisms
Hom7 (X, Y) = D Hom7 (Y, $X) which are natural in X and Y. Here D := Hompg(—, F)
is the F'-linear duality.

Let m,l € Z. We say that 7 is (weakly) (m, [)-Calabi-Yau if 7 has a Serre functor S
and there is an isomorphism of functors Sl = ym, (Elsewhere in the literature, this is often
written using the “fraction” %.) Note that a triangulated category may be (m, [)-Calabi—Yau
for many different integer pairs (m, [). If I = 1, then we shall simply say that 7 is (weakly)
m-Calabi—Yau. There is a stronger notion of the Calabi—Yau property, due to Keller [17],
which requires the isomorphism be compatible with the triangulated structure, but our focus
will be on the weaker notion.

2.3 Exact categories

We recall some basic definitions and terminology regarding exact categories. For a more
comprehensive overview, we refer to Biihler [5].

Let £ be an additive category. A kernel-cokernel pair in £ is a diagram X LyZz
such that i is the kernel of p and p is the cokernel of i. Let S be a collection of kernel-cokernel
pairs which is closed under isomorphisms; its elements will be called the admissible short
exact sequences. The kernels in S are called admissible monomorphisms and the cokernels
are called admissible epimorphisms. If the class of admissible monomorphisms (resp.,
admissible epimorphisms) contains all identity morphisms, is closed under composition, and
is stable under pushouts (resp., pullbacks), we say that the pair (£, S) is an exact category.
For a more precise statement of the axioms, see [5, Definition 2.1]. Note that (£, S) is exact if
and only if (£°P, §°) is exact. If (£, S) and (€', 8’) are exact categories, we say an additive
functor F : £ — £ is exact if F(S) C S'.

If £ is an exact category, we say that a subcategory £ of £ is closed under extensions if
whenever X — Y —» Z is an admissible short exact sequence in £ with X, Z € £, then Y is
isomorphic to an object in &'. If £’ is a full, additive subcategory of £ which is closed under

@ Springer



64 Page4of43 J. R. B. Brightbill, V. Miemietz

extensions, then & inherits the structure of an exact category: a kernel-cokernel pair in &’ is
admissible if and only if it is admissible in £. (See [5, Lemma 10.20].) With this inherited
structure, we say £’ is a fully exact subcategory of £.

Any additive category can be given the structure of an exact category by defining the split
exact sequences to be admissible. Any abelian category can be given the structure of an exact
category by defining every short exact sequence to be admissible. A small exact category £
can be embedded as a fully exact subcategory of an abelian category [5, Theorem A.1].

An object P in an exact category £ is projective if, for every admissible epimorphism
p : Y — Z and every morphism f : P — Z, there exists a lift g : P — Y satisfying
f = pg. Injective objects are defined dually. We let Proj(€) (resp., Inj(£)) denote the full
subcategory of £ consisting of the projective (resp., injective) objects. We say £ has enough
projectives if for every object X € £ there exists an admissible epimorphism P — X with
P projective; likewise £ has enough injectives if for every object X there is an admissible
monomorphism X »— [ with I injective.

We define the projectively stable category of £ to be the category £ whose objects are
those of £ and whose morphisms are given by Homg (X, Y) := Homg (X, Y)/P(X,Y),
where P(X, Y) is the additive subgroup of morphisms which factor through a projective
object. Dually, we can quotient out by morphisms factoring through injective objects to
form the injectively stable category £. If Proj(£) = Inj(£) and £ has enough projectives
and injectives, we say £ is a Frobenius exact category. In this case, both stable cate-
gories coincide and can be given the structure of a triangulated category, which we shall
denote by (stab(€), 2 !). The suspension functor Q! is defined by choosing for each
object X an admissible monomorphism X — Iy into an injective object; 27! X is then

defined to be the cokernel of this map. An admissible short exact sequence X >f% vy %z

in £ induces a natural map i : Z — Q!X in stab(£), which gives rise to a triangle

X Q Y 5z % Q71X . The distinguished triangles in stab(E) are those isomorphic to

triangles arising in this way.

2.4 N-complexes

For a comprehensive introduction to N-complexes, we refer the reader to the work of Iyama,
Kato, and Miyachi [15]. Let A be an additive category, and let N > 2 be an integer.

An N-complex over A is a sequence of objects of X" € A, together with a sequence
of morphisms (called differentials) dy : X" — X n+1 guch that the composition of any N
successive differentials is zero. A morphism f*® : X* — Y* of N-complexes is a sequence of
morphisms f" : X" — Y" which commute with the differentials. We denote the category of
N-complexes over A by Cy (A). As with complexes, we say an N-complex X* is bounded
(resp., bounded above, bounded below) if X" = 0 for |n| > 0 (resp., n > 0, n < 0). We
write C Ib\, (A) (resp., Cy(A), C ,J\; (A)) for the full subcategory of Cy (A) consisting of the
bounded (resp., bounded above, and bounded below) N-complexes. In the classical case of
N = 2, we shall always omit the subscript.

As an abbreviation, we shall write d;’(’r for the composition d;’(” - d;'( of r successive
differentials, beginning with d . We shall interpret d;'(’o as the identity map on X. To improve
readability, in complex formulae we shall sometimes write dy” when the value of n is clear
from context.

For fj € {nothing, b, 4+, —}, C /uv (A) carries the structure of a Frobenius exact category, in
which the admissible exact sequences are precisely the chainwise split exact sequences of
complexes. Fori € Z,1 <k < Nand X € A, let /;L;.((X) be the N-complex
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~-~—>0—>Xid—x>~~~id—X>X—>0—>-~-
with k terms equal to X, in positions i — k + 1 through i. For any i € Z and any X € A,
[,Lé\, (X) is projective-injective in Cltv (A), and every projective-injective object is a direct
sum of complexes of this form. [15, Theorem 2.1] The stable category of C]u\, (A) is denoted
K E\, (A) and is called the homotopy category of N-complexes over A.

A morphism f : X* — Y*®in C?\, (A) is null-homotopic if there exists a sequence of
morphisms 4! : X! — YI=N+1 satisfying

fi= XN:d;ﬂ—NqN—j o piti—l Od;‘éj—l
j=1

The null-homotopic morphisms are precisely those which factor through a projective-injective
object [15, Theorem 2.3], hence two morphisms of complexes are equal in K]u\, (A) if and
only if their difference is null-homotopic.

The suspension functor for the triangulated structure on K /uv (A) will be denoted by X.
While ¥ is induced by the Frobenius structure on C Iu\, (A), there is a useful explicit description.
Given any N-complex X*, for each n € Z, there are natural morphisms X*® — u/y, (X") and

[Ll]1\,+N “Lxmy - xe. By taking direct sums of these morphisms, we obtain chainwise split
exact sequences

0 xe Bz 14 (X") —— TX* — 0

0— 27X v @ ™V X) — X* —— 0

whose middle terms are projective-injective. These sequences are functorial in X *® and define
S and 7! on C]u\, (A). (Despite the notation, these functors only become mutually inverse
on K5, (A).)

Let[n]: C E\, (A - C IDV (A) denote the standard shift of complexes, with (X [n])! = X"+,

For N > 2, ¥ does not agree with [1]; however, we have the relation 2~ [N]inK 1jv (A)
[15, Theorem 2.4].

2.5 Derived category of N-complexes

In this section, let A be an abelian (not merely additive) category. Let N > 2 be an integer.
Letn € Z,1 < r < N, and X* € Cy(A). Define the r-th cycle (resp., boundary,
homology) group at n to be

ZN(X®) == ker(dy")
B;l(Xo) = im(d;_N_H’N_r)
H!'(X®) == Z!(X*)/B}(X*)

Itis clear that B (X*®) is a subobject of Z}! (X*®). Note that our notation convention for B (X *)
differs from that of [15].
For fj € {nothing, b, +, -}, C ,tv (A) is an abelian category, with all limits and colimits

computed component-wise. Given any short exact sequence X* (f—> Y* %% Z* of N-
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complexes, there are long exact sequences in homology

> H' (X)L Hr ) 5 HN 2 S B (x>

forall 1 <r < N.[8, Section 3]

We say that X* € Cy(A) is acyclic if H'(X®) = Oforalln € Zand 1 <r < N.
For 1 € {nothing, b, 4, —}, we let C5*(A) C cu (A) and K5 (A) € K5 (A) denote the
full subcategories of acyclic N-complexes. K5 N ““(A) is a thick subcategory of K 1uv (A) [15,
Proposition 3. 2] We define the derived category of N-complexes to be the Verdier quotient
DE\, (A) = K’ NA/Ky bac (A). As with ordinary complexes, a short exact sequence in Cy (A)
induces a triangle in DN (A) [15, Proposition 3.7].

A morphism s°® in K 1uv (A) is a quasi-isomorphism if its cone is acyclic. This occurs if
and only if H'(s*®) is an isomorphism forevery n € Z andall 1 <r < N.

Given an N-complex X*® and n € N, define the homological truncation of X* at n to be
the complex o<, X*® given by

O i>n
ocnX'=1Z | (X)) n—-N+2<i<n
X! i<n—N+2

with the differential induced by d%. Clearly H,i (0<nX®) = 0 for alli > n. There is a
natural inclusion of complexes o<, X* < X*® which induces an isomorphism H/ (o<, X*) =
Hri (X®)forall r and all i < n [15, Lemma 3.9]. We define 0., X* to be the cokernel of this
morphism.

We also define the sharp truncation of X* at n to be the complex 7<, X*® which is zero
in degrees greater than n and agrees with X* in degrees less than or equal to n. We define
7>, X * analogously.

We say X°® € Df’\, (A) is perfect if it is isomorphic to a bounded complex of projective
objects; let Dl’\’,”f (A) denote the full subcategory of such objects. In other words, Dz’\',”f (A)
is the essential image of K Ib\, (Proj(A)) in lev (A). Itis easily verified that D,’:,”f (A) is a thick
subcategory of Dﬁ, (A); we define the N-singularity category to be the Verdier quotient

D, (A) := Db (4)/DE (A).

2.6 Gorenstein algebras

For a self-contained treatment of the theory of Gorenstein algebras, we refer to the upcoming
book by Krause [21, Chapter 6]. Let A be a finite-dimensional associative algebra over a field
F. We shall assume that A is a Gorenstein algebra; that is, A has finite injective dimension
as both a left and right A-module. In this case, both the left and right injective dimension
of A coincide [21, Lemma 6.2.1]. If this number is zero, i.e. A is injective as a right and
left A-module, then we say that A is self-injective; in this case the projective and injective
A-modules coincide.

We shall write mod-A and A-mod for the category of finitely-generated right and left
A-modules, respectively; when we speak of an “A-module”, we shall always mean an object
of mod-A unless otherwise specified. We shall identify A-mod with mod-(A°’) when con-
venient. Given X € mod-A and a € A, define r, : X — X to be the F-linear map given
by right multiplication by a; for X € A-mod, we similarly define [, : X — X to be left
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multiplication by a. If ¢ : A S Aisan F -algebra automorphism and X € mod-A, define
Xy € mod-A by x - a := x¢(a), where the right-hand multiplication is done in X.

We shall abbreviate Proj(mod-A) by proj-A, and Inj(mod-A) by inj-A; for left modules
we use the abbreviations A -proj and A-inj. We say that X € mod-A is Gorenstein projective
(resp., Gorenstein injective) if Ext), (X, A) = 0 (tesp., Ext}, (DA, X) = 0) forall i > 0,
where D = Homp(—, F) is the F-linear duality. We denote the full subcategory of all
Gorenstein projective (resp., Gorenstein injective) modules by Gproj(A) (resp., Ginj(A)).

Gproj(A) forms a fully exact subcategory of the abelian category mod- A. In fact, Gproj(A)
is a Frobenius category whose projective-injective objects are precisely proj-A [21, Theorem
6.2.5]. D restricts to an equivalence Gproj(A)°? = Ginj(A°?), hence Ginj(A) is also Frobe-
nius exact and its projective-injective objects are precisely inj-A. When A is self-injective,
note that Gproj(A) = mod-A = Ginj(A).

The Nakayama functor v4 : mod-A — mod-A is the composition vy :=
DHomy(—,A) £ — ®4 DA. The functor Homy(—, A) restricts to an exact duality
Gproj(A) = Gproj(A°?) [21, Lemma 6.2.2], hence v4 defines an exact equivalence
Gproj(A) = Ginj(A) which descends to a triangulated equivalence of the respective stable
categories.

If A is self-injective, then v,4 is an exact autoequivalence of both mod-A and A-mod
and preserves projective-injectives; in this case, v4 lifts to lev (A) and descends to D}, (A).
There is an F-algebra automorphism ¢4, called the Nakayama automorphism, such that
vA(X) = Xy, . The Nakayama automorphism is unique up to a choice of inner automorphism.

2.7 Gorenstein Abelian categories

Just as a Frobenius exact abelian category serves as a useful categorical model for the module
category of a self-injective algebra, a Gorenstein abelian category generalizes the module
category of a Gorenstein algebra. For a detailed introduction to such categories, the interested
reader may consult Beligiannis and Reiten [2]; we shall summarize the needed facts and
definitions below.

Let A be an abelian category with enough projectives and injectives. We say that A is
Gorenstein if the projective objects have bounded injective dimension and the injective
objects have bounded projective dimension. An object X € A is said to be Gorenstein
projective if Ext’A(X ,P) =0foralli > 0and every P € Proj(A). We define Gproj(A)
to be the full subcategory of A consisting of the Gorenstein projective objects. (Beligiannis
and Reiten refer to this as the subcategory CM(P) of Cohen-Macaulay objects using an
equivalent definition.) It is easy to verify that Gproj(.A) is a fully exact subcategory of A
containing Proj(A). We also define P<°°(A) to be the full subcategory of A consisting of
the objects with finite projective dimension.

Let X', Y C A be full subcategories, closed under isomorphisms and direct summands.
Define the Ext-orthogonal subcategories

Xt = (M e A| VX € X,Extl (X, M) = 0}
LX = (M e A| VX € X,Ext\y(M, X) = 0}
We say (X, )) is a cotorsion pair if:

) xcty.
ii) For all M € A, there exists a short exact sequence ¥ < X — M with X e X, Y € ).
iii) For all M € A, there exists a short exact sequence M <— Y — X with X € X, Y € ).
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We shall need the following three facts about Gorenstein abelian categories.

Theorem 2.1 (Beligiannis and Reiten, [2], Chapter 7.2, Theorem 2.2; Chapter 7.1, Theorem
1.4; and Chapter 5.3, Lemma 3.3) Let A be a Gorenstein abelian category. Then:

1) (Gproj(A), P=%°(A)) is a cotorsion pair.
2) Gproj(A)t = P<*®(A) and +P=<*(A) = Gproj(A).
3) Gproj(A) N P<>*(A) = Proj(A).

Though Beligiannis and Reiten describe Gorenstein abelian categories using the language
of cotorsion pairs, we shall not. The following corollary translates the above results into our
preferred language of Frobenius exact categories.

Corollary 2.2 Let A be a Gorenstein abelian category. Then Gproj(A) is a Frobenius exact
category.

Proof Note thatProj(A4) C Gproj(.A). It follows immediately that Proj(A) € Proj(Gproj(.A)).
Also, if P € Proj(A), then ExtL\(X , P) = 0forall X € Gproj(A). Therefore P is aninjective
object in Gproj(A) and so Proj(A) € Inj(Gproj(A)).

If I € Inj(Gproj(A)), then Extf‘l(M, 1) = 0 for all M € Gproj(A), so I € Gproj(A)* =
P<>°(A). Thus I € Gproj(A) N P=<°(A) = Proj(A), and so Inj(Gproj(A)) = Proj(A).

Let P € Proj(Gproj(A)) and let M € A; it is enough to show that Exth(P, M) = 0.
There is a short exact sequence ¥ < X —» M with X € Gproj(A) and Y € P<®(A).
Note that Ext”A(P, X) = 0 forall n > 1; it follows from the long exact sequence in Ext that
ExtL‘(P, M) = Exti‘(P, Y). Y has finite projective dimension and therefore finite injective
dimension, so let /*® be a finite injective resolution for Y. Define Y’ := Z!(I*). Clearly
Y' € P<*(A) = Gproj(A)*, hence Ext} (P, Y) = Ext!, (P, Y) = 0. Thus P € Proj(A)
and so Proj(A) = Proj(Gproj(A)).

Since A has enough projectives, so does Gproj(A). If X € Gproj(A), we obtain a short
exact sequence X <> I —» X’ for some I € P=*(A) and X’ € Gproj(A). Then [ is
an extension of Gorenstein projective objects, so I € Gproj(A). Thus I € Gproj(A4) N
P=<*(A) = Proj(A) = Inj(Gproj(.A)). Therefore Gproj(.A) has enough injectives, and so is
a Frobenius exact category. O

3 The N-stable category
3.1 The monomorphism category

Throughout this section, let (£, S) be an exact category.

For any integer k > 1, let [[k]] denote the category corresponding to the poset {1 <

- < k}. For any k > 0, let Mory (€) denote the category UL+ of functors from [[k + 1]]
to £. Namely, the objects of Mor (€) are diagrams (X, fo) = X1 £> ﬁ) Xiy1 of
k composable morphisms in £. Morg (€) carries a natural structure of an exact category,
in which the class of admissible exact sequences is SI¢+!1. That is, X, — Y, — Z, is
admissible if and only if X; — Y; — Z; is admissible in £ foreach 1 < i < k + 1.
(See Biihler, [5, Example 13.11].) As in all diagram categories, small limits and colimits in
Mory (€) are computed component-wise and exist if and only if the component-wise limits
and colimits exist (see, for instance, [3, Proposition 2.15.1]). Note that Morg (&) recovers £
as an exact category.
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Mimicking our notation for N-complexes, given (X,, fo) € Mor (£) we will write f,] =
fi+j—1--- fi for the composition of j successive maps in f,, beginning with f;. We shall let
fio denote the identity map on X;.

Definition 3.1 Let (£, S) be an exact category. Let k > 0. Let the monomorphism subcat-
egory MMory (£) be the full subcategory of Morg (€) consisting of objects of the form

3 (2 Lk
X1 — Xo 5 o> Xgg

where each ¢; is an admissible monomorphism in &.

An admissible short exact sequence in MMory (€) is any short exact sequence X, —
Ye — Z, which is admissible in Mory (£). Write MMory (S) for the class of admissible short
exact sequences in MMory (£).

Remark We could also define the epimorphism subcategory EMory (€) to be the analogous
subcategory of Mory (£) in which every morphism appearing in the diagram is an admissible
epimorphism in £. By again declaring all component-wise admissible exact sequences to
be admissible, we obtain a candidate structure of exact category on EMory (€). There is a
natural equivalence of categories between EMory (£) and MMory (£°P) which preserves their
candidate exact structures. Thus dual versions of all results in this section apply to EMor (£);
the reader can easily formulate the precise statements.

Our goal is to show that the above definitions give MMory (€) the structure of an exact
category. The result is straightforward in the case of abelian categories.

Proposition 3.2 Let A be an abelian category. Then MMory (A) is closed under extensions
in Mory (A). In particular, MMory (A) is a fully exact subcategory of Mory (A).

Proof Suppose we have a short exact sequence X, < Y, —» Z,, Where (X,, @), (Zo, Be) €
MMory (A) and (Y,, Be) € Mory(A). By the Snake Lemma, for each 1 <i < k we have a
short exact sequence

0 — ker(a;) —> ker(Bi) — ker(y;)

Since ker(c«j) = ker(y;) = 0, it follows that ker(f;) = 0 and §; is a monomorphism for
all i. Thus (Y,, Bs) € MMory(A), and so MMorg (A) is closed under extensions.

It is clear MMory (A) is a full additive subcategory of Mor (A), and that the candidate
exact structure on MMory (A) agrees with that inherited from Mory (A). Thus MMory (A) is
a fully exact subcategory of Mory (A). O

Proposition 3.3 Let £ be a small exact category. Then MMory (£) is exact.

Proof Since £ is small, by [5, Theorem A.1], there exists an abelian category .4 and a fully
faithful exact functor ¢ : £ — A such that reflects exactness and £ is closed under extensions
in A. It is clear that ¢ induces an additive functor ¢, : Mor(£) — Mory (A), which remains
fully faithful and sends objects of MMory () to MMory (A). Thus we may view MMory (£)
as a full, additive subcategory of MMory (.A); accordingly, we will suppress mention of the
functor ¢ in our notation going forward.

We claim that MMor (€) is closed under extensions in MMory (A), hence is a fully exact

subcategory. Let X, >f—> Yo U Z, be a short exact sequence in MMor (A), with

(Xe, 0e), (Ze, o) € MMor (). We must show that (Y,, Bs) € MMor (E).
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For each i, we have a short exact sequence X; (f—'> Y; Sy Z; in A. Thus Y; € &,
since £ is closed under extensions. Since the inclusion functor ¢ : £ — A reflects exactness,
the above short exact sequence is admissible in £.

It remains to show that the monomorphisms f; are admissible in £. Consider the diagram

Xi by Xiy1 —» coker(a;)

1s Tin o

Yi <P Yip —» coker(8)

i&’i igw 1 Jy

Z; NN Ziy1 —» coker(y;)

The first two columns are admissible and exact in £ by the above remarks; we construct the
third column by applying the Snake Lemma and deduce that it is a short exact sequence in .A.
The monomorphisms «; and y; are admissible in &, hence coker («;), coker(y;) € £. Since
£ is closed under extensions and ¢ reflects exactness, coker(8;) € £ and the third column is
an admissible short exact sequence in £. Thus all the objects in the second row lie in £, hence
the second row is an admissible short exact sequence in £. In particular, 8; is an admissible
monomorphism in £. Thus (Y,, B.) € MMor (£).

It remains to show that the structure of exact category which MMory (€) inherits from
MMory (A) agrees with the original exact structure, i.e. that which it inherited from Mory (£).
This follows immediately from the fact that ¢ is exact and reflects exactness. O

Since verifying the axioms of an exact category only involves working with finitely many
objects at a time, the smallness hypothesis in the previous proposition can be removed.

Lemma3.4 Let (£,S) be an exact category, and let E € Ob(E) be a set of objects. Then
there exists a small full subcategory &' of € containing E, such that (€', S’) is an exact
category, where S’ is the set of all kernel-cokernel pairs in S whose objects lie in £'.

Proof Given any full subcategory T of £, let C(T) (resp., K (T')) be the full subcategory of £
consisting of the objects coker (f) (resp., ker(f)), where f ranges over all morphisms in T
which are admissible monomorphisms (resp., epimorphisms) in £. In this definition we make
a single choice of coker (f) or ker (f) for each morphism f, hence C(T') and K (T) are small
if T is. For each X € Ob(T), we choose X to be the representative of both ker (X — 0) and
coker(0 — X), so that T is a full subcategory of both K(7T') and C(T). Finally, it is easily
checked that if 7 is an additive subcategory of &, then so are C(7T') and K (T).

For any finite sequence X1, - - - , X,, of objects in E, choose one object of £ isomorphic
to @7_, X;, and let Ey be full subcategory of £ consisting of all chosen objects. Then Eg
is a small additive subcategory of £ which can be chosen to contain E. For each i > 0,
inductively define E; := K(C(E;—1)), and let &' := [ J72, E;. It is clear that £ is a small
additive subcategory of £ containing E.

It remains to show that (£, §’) is an exact category. It is immediate that all identity mor-
phisms are admissible epimorphisms and monomorphisms. If f and g are two composable
admissible monomorphisms in E;, then cok(f o g) € E;y1 hence f o g is an admissible
monomorphism in £’; by a dual argument, composition of admissible epimorphisms in &’
also remain admissible. Similarly, if f : X >~ Y and g : X — Z are morphisms in E; with
f an admissible monomorphism, then by [5, Proposition 2.12] the pushout P of f along g
in £ fits into admissible exact sequences
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HE

X—=Y®Z —» P

Zvl s P s coker(f)
The first sequence shows that, up to isomorphism, P € E; 1. Since coker(f) € E;+1, we
have that f” is an admissible monomorphism in £’. By a dual argument, pull-backs preserve
admissible epimorphisms in £’. ]

Proposition 3.5 Let £ be an exact category. Then MMory (€) is exact.

Proof We let S denote the class of admissible exact sequences in £. If E C & is any finite
set of objects, let (£/, S’) be the small exact category containing E constructed in Propo-
sition 3.4. Then the inclusion functor £’ < £ is exact and induces a fully faithful functor
MMor (£") < MMor(€) which maps MMory (S’) into MMory (S). By Proposition 3.3,
(MMory (), MMor (S”)) is an exact category.

To verify the exact category axioms, we need work only with finitely many objects of £ ata
time, hence exactness of MMory (€) can be verified inside MMory (£7). For instance, to verify
that the push-out of the admissible monomorphism f, : X, »— Y, along g, : X¢ — Z, is
an admissible monomorphism, let £ = {X;, Y;, Z; | 1 <i < k + 1}. Then the pushout of
f. along g, exists and is an admissible monomorphism in MMor (£”), hence in MMory (€).
Verification of the other axioms is analogous. O

We close this section by providing a convenient intrinsic description of the admissible
monomorphisms and epimorphisms in the monomorphism category of an abelian category.

Proposition 3.6 Let A be an abelian category and let fo : (Xo,e) — (Yo, Be) be a
morphism in MMory (A). fe is an admissible epimorphism if and only if each f; is an
epimorphism. f, is an admissible monomorphism if and only if each f; is a monomorphism
and each sub-diagram

Xi <5 Xip

\[fi \Efi-%—l
Y; LN Yiri

forms a pullback square in A.

Proof If f, is an admissible epimorphism, it follows immediately that each f; is epic.
Conversely, if each f; is an epimorphism, then f, is an epimorphism in Mor (A), hence
it has a kernel (K,, t,). To prove that f, is an admissible epimorphism, we must show
K, € MMory (A). We have a commutative diagram

Ki — Kin1

[

X;i — Xiy1
from which it is clear that ¢; is a monomorphism. Thus K, € MMory (A).

If fo is an admissible monomorphism, then we have a short exact sequence

Xo <5 v, 5% Z. with (Zs, 7i) € MMorg(A). It follows immediately that each f;
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is a monomorphism. To show X; is a pullback, consider the commutative diagram with exact
columns

Xi <95 Xip

\[fi Lfi+1
Y; LN Yiq1

i&’i igiJrl

Yi
Zi —— Ziy

where 1 and ¢ satisfy fi;119 = Bi¢. Postcomposing this equation with g; 1, we see that
0=git+1fi+1¥ = gi+1B8id = yigid. Since y; is a monomorphism, g;¢ = 0. By exactness
of the first column there exists a unique n : 7 — X; such that ¢ = f;n. An easy diagram
chase yields fi11¥ = fit1a;n. Since f;4+ is a monomorphism, we have ¢ = «;n, hence
the top square is a pullback.

Conversely, assume each f; is a monomorphism and each square in f, is a pullback. Let
(Z,, vs) be the cokernel of f, in Morg(A). We must show that Z, € MMory (A), i.e that
each y; is monic. We shall construct the following commutative diagram:

P .
Prd N
y
’ o
id X[ ? Xi+1
/ n A 1
] [
= Bi

We start with the rightmost two squares, which are commutative with exact columns. To show
y; is a monomorphism, consider ¢ : T — Z; such that ;¢ = 0. Let T’ be the pullback of
¢ along g;; since g; is an epimorphism, so is g’. We have that g;+18;¢' = y;¢g’ = 0, so by
exactness of the right column B;¢’ = fi 1y for some ¥ : T’ — X;4. Since the top right
square is a pullback, we obtain a morphism n : 7’ — X; making the diagram commute. It
follows that ¢ g’ = g; fin = 0, hence ¢ = 0. Thus y; is a monomorphism, Z, € MMory (A),
and f, is an admissible monomorphism. O

Remark Both of the above criteria can fail when A is not abelian.

1) Let A be the path algebra of the A3 Dynkin quiver 1 <— 2 — 3, and let S; be the simple
module corresponding to vertex i. Let £ be the full subcategory of mod-A obtained by
removing all objects isomorphic to S3. £ is a full additive subcategory of mod-A which
is closed under extensions and is therefore a fully exact subcategory of mod-A.
Consider the objects Xy = S| — S2 S and Yy = 0 — S in MMor (£). There

1 3
is an obvious component-wise epimorphism f, : X, — Y, with kernel K, = S| —

@ Springer



The N-stable category Page 130f43 64

S1 @ S3. Since S3 is not an object of £, the monomorphism defining K, has no cokernel
in &, hence is not admissible. Thus K, ¢ MMor (&), and so f, is not a distinguished
epimorphism in this category.

An additive category is weakly idempotent complete if every split monomorphism
has a cokernel (or, equivalently, every split epimorphism has a kernel). Using the dual
of [5, Corollary 7.7], one can show that if £ is weakly idempotent complete, then the
epimorphism criterion in the above proposition holds.

2) Let B be the path algebra of the D4 Dynkin quiver ! \ i % 3 , and let S; be the simple
4
module corresponding to vertex i. Let £ be the full subcategory of mod-B obtained
by removing all objects isomorphic to S3. As before, £ is a fully exact subcategory of
mod-B.
Let Xe = S4 <> S1 and ¥, = 52 <> 81 5253 in MMor;(€). The natural
S4 S4 S4

inclusions f; : X; < Y; induce a monomorphism f, : X, < Y, in MMor(£), and
it is clear that the commutative square defined by f, is a pullback. The cokernel of
fois Zg = So — S2 @ S3. Once again, S3 ¢ £, hence the monomorphism defining
Z, is not admissible in £ and so Z, ¢ MMor(£). Therefore f, is not an admissible
monomorphism in MMor (£).
If every monomorphism in £ is admissible, then the proof of monomorphism criterion
in the above proposition holds with minimal changes. This is a very strong hypothesis;
we do not know if there is a weaker one.

3.2 Projective and injective objects

We shall classify the projective and injective objects of MMory (£). It will be convenient to
introduce some notation.

Definition3.7 For X e Eand 1 <i <k+1,let x;(X)s € Mori(€) be givenby 0 — -+ - —
id id . . ..
0— X 5 ... Z5 X, where the firsti — 1 objects are 0, and the first X is in position i.

The following lemma, adapted from the proof of [5, Proposition 2.12], will be useful.

Lemma 3.8 (Biihler [5]) Let v : X »— Y be an admissible monomorphism in £, and let
L

f
Dually, if p : Y — W is an admissible epimorphism and g : Z — W is any morphism, then

[p g] 1Y @& Z — W is an admissible epimorphism.

f : X — Z be any morphism. Then ] : X — Y ® Z is an admissible monomorphism.

L

f

idy idy 0O
0 fidg

X XeZ

Proof We can factor [ :| as the composition

¢ 0
0 idy

]XEBZ>—>Y€BZ

Split monomorphisms and isomorphisms are admissible monomorphisms, as is the direct

L. o
:| is the composition

f

sum of two admissible monomorphisms [5, Proposition 2.9]. Thus |:

of three admissible monomorphisms.
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The proof of the second statement is dual. O

Proposition 3.9 Let £ be an exact category. Then (1o, ts) € MMory (£) is injective (resp.,
projective) if and only if each I; is injective (resp., projective) in € and each (; is split.

Proof Take (I,,ts) € MMory(E) with each I; injective and each ¢; split. Then we have
I, = @é‘;l Xi(I])e, where I| = Iy and I} = coker(t;—1) for i > 1. Thus it suffices to show
that x; (1), is injective for every injective object / andeach 1 <i <k + 1.

Fix I and i and suppose fo : xi (I)e — (X, ®6) is an admissible monomorphism; we shall
define a retraction r,. We shall construct the following commutative diagram with admissible
exact rows and columns:

idy

0 1 1

L
lfz—l e Ifk+1 of A
Xio1 = Xpy1 ——» coker(a}{*?)

ooy :
¥

Xi—1 >L> coker(fr+1) —» coker(B)

In the case where i = 1, we define Xo = 0. The first two rows and columns are clearly
exact. Since f, is an admissible monomorphism, coker(f,) € MMor(£), hence B is an
admissible monomorphism and the third row is exact.

By [5, Exercise 3.7], the induced maps forming the third column are uniquely defined
and form an admissible short exact sequence. By injectivity of I, f admits a retraction
r: coker(af:f+2) — I.For1 < j < k+1,definer; : X; — I to be the composition

rj = rpozﬁ'H_j . By the above diagram, r; = 0 for j < i — I; for such j we shall therefore

view r; as a morphism X ; — 0. Furthermore, foreach 1 < j <k +1,7; =rjy1a;, hence
re : Xo = Xi(I)e is @ morphism in MMory (€). The verification that r, is a retraction of f,
is straightforward. Thus x; (1), is injective.

Conversely, suppose (/,, te) is injective. To show each /; is injective, consider the diagram
iné&

I;
1
Xy

Wemustfind% : Y — [; making the diagram commute. Note that g induces an admissible
monomorphism g, : xi(X)e  Xi(Y)e. f also induces a morphism f, : x;i(X)e — I,

where f; =0forj <i, f = f,and f; = X EA I; = 1; for j > i. By injectivity of I,, we
obtain an induced map %, : x; (Y)e — I, such that f, = heg,. Setting i = h;, we have that
f = hg, hence I; is injective. It follows immediately that the ¢; are split.

We turn to the classification of the projective objects. To show that (P,, t,), with P;
projective and ¢; split, is projective in MMorg (€), it suffices to show that y; (P), is projective
for any i and any projective P. In fact, something stronger is true; we shall prove that x; (P),
is projective in Mor (€).

Let pe : (Xo, fo) = Xi(P)e be an admissible epimorphism in Mory (£); we shall construct
a section s,. Since P is projective, p; : X; — P admits a section s;. For j < ilets; =0 —

J—t
Xj,and for j > ilets; = P 2 X; AN X ;. Itis easy to verify that s, : x;(P)e — X, is
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a morphism in MMory (€) and a section of p,. Thus y;(P), is projective in Mor (£), hence
also in MMorg (£).

Conversely, let (P,, ts) be projective in MMory (£). To show that P; is projective, consider
the diagram in £

P;
i
g
Yy — X
We must find 4 : P; — Y making the diagram commute.

We shall define objects (X,, ¢te), (Yo, Be) € MMor(€) and morphisms f, : Py — X,,
e 1 Yo & Xqsuchthat X; = X, Y; =Y, f; = f,and gi = g. We start by defining (X,, ae)
and f,.Forall 1 < j <i,let X; = X and f; = ftlj_/.Foralll < Jj < ileta; be the
identity map on X. For j > i we inductively define X1, fj+1, and a; via the pushout

L
P; — Pj+1
|
lf_ j " Win
X; I X j+1
Admissible monomorphisms are stable under pushouts, hence «; is an admissible monomor-

phism and f, : P, — X, is @a morphism in MMory (£).
Forj <i,letY; =Yandg; =g.Forj >i,letY; =Y ® X;andg; : ¥; - X;

be given by [0 idxj]. For j < i, let B; = idy. Let §; = [;dy] and, for j > i, let
L
Bj = w(l)y 0?' . The direct sum of admissible monomorphisms is admissible, hence ; is

an admissible monomorphism for j > i. §; is an admissible monomorphism by Lemma 3.8,
therefore Y, € MMory (€). It is clear that g, : Yo — X, is a morphism, that each g; is an
admissible epimorphism, and that g, has kernel

ker(g) 2% - M ker(g) — ¥ 4% ... Y € MMorg(€)
Thus g, is an admissible epimorphism.

By projectivity of P,, we obtain a morphism %, : P — Y, such that f, = ge/,. Letting
h = h;, we have that f = gh, hence P; is projective.

It remains to show that the ¢; are split. For any two indices j > [, denote P;/P; :=

) k1
coker(tlj 71). It suffices to show that each of the compositions P; l>‘—> Pryq is split; this
follows immediately if we show that P/ P; is projective foreach 1 <i < k.

Suppose we have an admissible epimorphism g : ¥ — X and any morphism f :
Pry1/P; — X; we shall construct a lift 4 : Pyy1/P; — Y. Define P,/ P; to be the object
in MMorg (€) givenby 0 — -+ — 0 — Piyy/P; — --- — Pr41/P;, with the morphisms
induced by the ¢;. There is a natural morphism 7, : P, — P,/P; with kernel

id id
Pi— - Pi_1— Pi— - — P; € MMory(€)
Thus 7, is an admissible epimorphism. Moreover, f and g induce obvious morphisms f, :
Po/P; — Xit1(X)e, and g : Xi+1(¥)e = Xit1(X)e.
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Consider the following diagram:

e P.
he /// iﬂ.
S PP

/ he _-~ .
A k//g/ lf'
Xi—H(Y)o —» Xi—H(X)o

By projectivity of P,, we can lift fome to he : Py — xit+1(Y)e. Furthermore, since

Xxi+1(Y); = 0, the composition P; — P; ﬁ) Y is zero for all j > i, hence h; factors
through ; : P;/P; — Y. Defining h; = 0 for j < i, it follows that h, = he7,, hence
foTle = goheT,. Since 7, is an epimorphism, we obtain f, = g./., so the above diagram
commutes. In particular, hg 41 : Prt1/P; — Yisaliftof fyy1 = f,s0 Pry1/P; is projective,

as claimed. O

It will also be helpful to have the following characterization of projectives and injectives
in Morg (£).

Proposition 3.10 Let £ be an exact category. The object (P,, ts) € Mor(£) is projective
if and only if each P; is projective in £ and each i; is a split monomorphism. The object
(1o, s) € Mory (€) is injective if and only if each I; is injective in £ and each m; is a split
epimorphism.

Proof Let (P,, o) be projective in Mor (€). To show that P; is projective, choose any admis-
sible epimorphism g : ¥ — X in £ and any morphism f : P; — X; we must construct
h : P; — Y such that f = gh. Define w;(X)o, € Mory(€) to be
Xﬁ---ix->0->---0

where X appears in the first i positions, and similarly for ;(Y),. We can extend f to a
morphism f, : Py — ;(X). by setting f; = ft’jﬁ for j <iand f; = 0for j > i
g extends to an admissible epimorphism g, : w;(X)e — w;(Y), in the obvious way. By
projectivity of P,, we obtain a lift 7, : Py — Y, such that f, = ge/,. It follows that
f = h;g, hence P; is projective.

To show that ¢; is a split monomorphism, define
PE=p S .5 0—50—5 -0

PP S S p M p 05 o500

There are natural morphisms f, : Py — P.Si and g, : P.fi —» P.Si, both of which are

admissible epimorphisms. By projectivity of P,, we obtain a map r, : P — PE' such that
Jo = gere. Forall j <i,wehavethat fj =idp, = g, hencer; = idp;. From the diagram

4
P — Py
Ti Tit+1
by, 4
P — P
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we deduce that r;1t; = idp,, hence (; is a split monomorphism.

For the reverse direction, it suffices to prove that x; (P), is projective in Morg (€) for
1 <i <k+1andeach P € Proj(£). This claim was proved explicitly in our proof of
Proposition 3.9.

Note that there is an equivalence of categories Mor ()P = Morg (E°7) given by
(Xe, fo) = (Xk42—0, fko fl_.). The characterization of injective objects thus follows from
the characterization of projective objects. O

Remark Note that the projective objects of MMory (£) are precisely the projective objects
of Mory (£). Dually, the injective objects of EMory (£) are precisely the injective objects of
Mot (E).

If an exact category has enough injectives or projectives, so does its monomorphism
category.

Proposition 3.11 Let € be an exact category. If € has enough projectives (resp., injectives),
then so does MMory (€).

Proof Let (X,, ®s) € MMor (), and suppose £ has enough projectives. Then there exist
projective objects P; and admissible epimorphisms p; : P; — X; foreach1 <i < k+1.Let
P = @’j:] P; = P/ | @ P;and let; : P/ — P/ ; denote the canonical monomorphism.
Then (P.f, te) is projective in MMor(€) by Proposition 3.9. Define f, : P, — X, by
fi =" p1 - @i_1pi—1 pi] = [eti—1fi—1 pi]- Since p; is an admissible epimorphism
in £, by Lemma 3.8 so is f;, hence f, is an admissible epimorphism in Mory (E). Let g, :
(Ke, Bs) — (P[, ts) be the kernel of f,. To show that f, is admissible in MMor (€), we
must show that (K,, B,) lies in MMory (£).

Write the admissible monomorphism g; : K; — P/ = P/ @ P;as g = |: 1#(/:‘) ] We

—i

have an admissible short exact sequence

)
—@i |:0¢i—1f[—l P[]

K; — Pi/—l eP —X;

which gives rise to the bicartesian square:

K Uy Pl

il laz 1fi—1

P s X

Since p; is an admissible epimorphism, so is ;. By projectivity of P/_,, the top row is
split exact, hence K; = P/_, @ ker(3;). Identifying the two, we can express ¥/; as [i d 0]
and ¢; as [‘L’,’ 9,-] for some 7; : PILI — P; and 6; : ker(y;) — P;. In particular, we can

express g; : K; — P/ as the matrix |: “_1[ 00:|
-7 —b;

Letus express i1 : Ki—1 — K; = Pi’_1 @ ker(Y;) as |:;S/’_1:| We can then rewrite the

identity g; B;—1 = ti—18i—1 as the commutative diagram
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o

— P_| & ker(y)

i—1
a1 |id I id 0
) 0 -7 —0;

Py > » P @ P

K

8i—1
Vi1
Thus (K,, Be) € MMori (€), and so f, is an admissible epimorphism. Therefore MMory (€)
has enough projectives.

Suppose now that £ has enough injectives. Let (X,, ote) € MMor (€); we shall construct
an admissible monomorphism g, : (X,, &) m— (I, L) for some injective object (I, L,).

Let g1 : X1 »— I; be an admissible morphism from X; to an injective objectin I] € &;
we shall define the remaining admissible monomorphsims g;, injective objects /;, and split
monomorphisms ¢; inductively. Suppose we have constructed g; : X; — I;. Since; : X; —
X; 41 is an admissible monomorphism, we can lift g; to a morphism g; : X; 4+ — I;. Since £
has enough injectives, there exists an admissible monomorphism h; 41 : coker(a;) — I/ 41
for some injective object I/, . We define I 1 := I; ® 1/, and gi1 = [gi hiy17i41]. where
i1 : Xit1 — coker(a;) is the canonical map. Let ¢; : I; — I; 11 be the inclusion of /; as
a direct summand of /; 4. Since I; and /]| are injective, so is /; 1. It is clear that 1; is split;
it remains to check that g; 1 is an admissible monomorphism.

We have a commutative diagram with exact rows

Itfollows thatd; 1 = g;—1.Since g;_1 is an admissible monomorphism, sois i_; =

X N Xit1 ikaN coker(a;)

Igi lgiﬂ Ihi-H

L 7
I; li+1 I

It follows from the Five Lemma [5, Corollary 3.2] that g;  is an admissible monomorphism,
hence g,, /o, and ¢, are defined, and g, is an admissible morphism in Mor (£).

To see that g, is an admissible monomorphism in MMor (£), we must show that its
cokernel (Q,, V) lies in MMorg (£). We have a commutative diagram with exact columns:

o

X Xit1 coker(a;)
8i 8i+1 hit1

BT I

I; it I

! l l

coker(gi) —ﬂ> coker(gi+1) ---% coker(hjy1)

Since the first two rows are exact, by the 3 x 3 Lemma [5, Corollary 3.6] the third row is
also an admissible short exact sequence. In particular, ¥; is an admissible monomorphism,
hence coker(ge,) € MMor (£). Thus g, is an admissible monomorphism. /, is injective by
Proposition 3.9, hence MMory () has enough injectives. O

‘We have arrived at the main result of this section:

Theorem 3.12 Let € be a Frobenius exact category. Then MMory (€) is Frobenius exact.
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Proof Since Proj(£) = Inj(&€), it follows immediately from Proposition 3.9 that
Proj(MMory(£)) = Inj(MMorg(£)). Since £ has enough projectives and injectives, by
Proposition 3.11 so does MMor (E). O

Definition 3.13 Let & be a Frobenius exact category. For N > 2, define the N -stable category
of &, denoted staby (£), to be the stable category of MMory_2(E).

Note that when N = 2, we obtain the stable category of £.

4 Acyclic projective-injective N-complexes

Throughout this section, let A denote a Gorenstein abelian category and let £ denote the Frobe-
nius exact subcategory Gproj(A). Consider the functor F : C§f (Proj(A)) — MMory_»(&)
given by

F(P*) =Z)(P*) — - — Z% [ (P*)

In this section, we shall prove that F induces an equivalence F between K & (Proj(A))
and staby (£).

4.1 Properties of F

Since a priori F is only a functor into Mor y_»(.A), we must first prove that F actually takes
values in MMor y_3(E).

Proposition 4.1 Let (P*,d}) € Cif (Proj(A)). Thenforallk € Zand1 <i < N, lef(P‘) €
E. The natural inclusion maps Z?(P’) — Z?—H (P*®) are admissible monomorphisms in &,
hence F(P°®) € MMory_»(€E).

Proof Fix 1 < i < N. To show that Z?(P') € &, let QO € Proj(A) and n > 0. Note that
Q has finite injective dimension m > 0, hence ExtﬁJrl (M, Q) =0 forall M € A. We can

convert P* into a 2-complex (P*, dI.S) by arranging the differentials into groups of i and
N — i. More precisely, define

~ PNk s =2k

N

3 o Japt s =2k
PV s =2k 417 P |dy TN s =2k 41
Note that P* is acyclic and ZO(P®) = Z?(P*). Since, for all k € Z, <o(P*[k — 1]) is a
projective resolution of Z¥ (P*), we have that
Hom s 4)(Z) (P*®), Q[n]) = Homg-(4)(t<0(P*[—1]), Q[n])
= Homg (4)(P*[—1], QIn])
= Homg (4)(P*[m — nl, Qlm + 11)
= Homg - (4 (t<0(P*[m — n), Qlm + 11)
= Hom o4 (Z""1(P*®), Qlm + 1))
— Extﬁ"—l(zm_"ﬂ(ﬁ'), 0)
=0
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Thus Z?(P') e Eforall 1 <i < N. Applying the same argument to P°®[k] shows that
ZK(P*) € Eforall k € Z.

A morphism in £ is an admissible monomorphism if and only if it is a monomorphism in
A with cokernel in £. The map ¢ : Zl.O(P') — ZI.OJrl (P*) is a monomorphism in A since it

is the kernel of the restriction of d%i to Z9 . (P*). Since ZiOJrl (P*) = B?Jr] (P*®), we obtain

i+1
a0 : .
a short exact sequence Z?(P') < Bl.()H(P') ES B{(P*®) . Since B{(P*) = Z{(P*) € &,
¢ is an admissible monomorphism in &, and therefore F'(P*®) € MMory_> (). m}

To prove that F' is full, we introduce the following terminology.

Definition 4.2 Let P°®, Q°® € Cny(A).Letn € Z and let f : P" — Q" be any morphism.
We say f" preserves cycles if the restriction of f” to Z' (P*®) has image in Z} (Q*®) for each
l<i<N-1.

Similarly, we say f" preserves boundaries if the restriction of f” to B/'(P*®) has image
in B]'(Q®) foreach1 <i <N — 1.

Note that when P*® and Q° are acyclic, the two notions are equivalent.
Proposition 4.3 F is full.

Proof Take P°®, Q° € C4f (Proj(A)) and f, : F(P*) — F(Q®). Using the injectivity of 0°,

lift the map Z?V_I(P‘) E) ZON_I(Q’) < QY along the monomorphism Z?\,_l(P‘) —

P to obtain a morphism f© : PO — Q9. Clearly, the restriction of f° to Z?(P') is fi,
hence f° preserves cycles.

It thus suffices to extend f° to a morphism of complexes f® : P* — Q°. We claim
that, given a morphism f" : P" — Q" which preserves cycles, we can construct maps
frEL L prEl o gnEl poth preserving cycles, such that d'Qf’ = f"Hd}, fori=n—-1,n.
Once this claim established, we can extend f 0 to f* by induction, proviﬁ fullness.

Since f”" preserves cycles, we obtain an induced map on the images f” : BI'\‘,tll (P®) —
B]'\l,tll (Q*), which, by injectivity of Q"*!, lifts to amap f*+! : PP+l — Q"+ It follows
immediately that f"‘Hd;‘, = d’é f". Forl <i < N — 2, if we restrict both sides of this
equation to B}, ; (P*) and use the fact that f" preserves boundaries, we see that f m+1 maps
B (P*) into B"™(Q*). Fori = N — 1, note that by construction the restriction of f”*!
to B;‘,tll (P*)is f". Thus f"*! preserves boundaries and therefore cycles.

Since f" preserves boundaries, it restricts to a map from By, _; (P*) to BY,_,(Q°®). Using
projectivity of P"~!, we can lift this restriction to f*~! : P"~!1 — Q"1 It follows that
f”dg_1 = d'é_lf"_l,hence £7~1 maps Z'I’_l(P') into Z?_I(Q').ForZ <i < N-—1,note
that since f” preserves cycles, the left side of this equation maps Z; -1 (P*)into Z!'_,(Q*).
Postcomposing with dg’i_l , we get dgi_l frant = d'é_l’if"_l, hence the left side maps

-1 . H : -1 -1 e -1 .
Z!7'(P*) to 0. The right side then shows that f"~" maps Z!'~ (P*®) into Z!'~ " (Q*), hence
7"~ preserves cycles. O

To show that F is essentially surjective, it will be convenient to introduce the following
terminology.

Definition 4.4 An N-acyclic array in & is the data of:
. objectsX;f;n €Z,0<j<N
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e monomorphisms % : X} < X, in€Z0<j <N

e epimorphisms p X” —» X;H'}, neZ0<j<N

We shall write L;’k X” — X" . for the composition ¢} ’f of k successive (],

J+k
beginning at ("} i and s1m11arly for p? o X;’ —» X’;f,/:
The above data should satisfy the following three properties:

k=1~

1) X5 =0.
2) XY is projective-injective.
3) Forall1 < j < N — 1, the diagram

n
Xj+1 R
I P;
/ J+l1
1
X" X"+
J " S+ J
J j—1
n+1
inl

commutes and forms a bicartesian square.
Given X, € MMory_»(£), we say that the N-acyclic array (X"}, L’;, p’;) extends X, if

X, (XO 0) ’

Given P* € C§f (Proj(A)), itis easily verified that we obtain an N-cyclic array by defining
X;l = Z?(P’) (here we take Z;j(P®) = 0 and Z}, (P®) = P"), L;? to be the inclusion of
kernels, and p;‘ to be the morphism on kernels induced by d’y.

Proposition 4.5 F is essentially surjective.

Proof Let (X,,ts) € MMory_»(E). The proof proceeds in two steps. First we prove that,
given an N-acyclic array (X", ;‘ p ') extending X,, there exists P* € C{7(Proj(.A)) such
that F(P*) = X,. In the second step, we shall construct such an N-acyclic array.

Given an N-acyclic array (X'}, (, p’}) extending X,, define maps
4" = Lrllv+11 pN XN Xrli/-H

We claim that (X}, d®) € C}f (Proj(A)). By assumption, all p and ¢ commute, so we have

that "/ = L"+’ /p"N/ forall 1 < j < N.In particular, d>" factors through X"+N =0,
hence X3, € C N (A) Each X% is projective-injective by assumption.
To show that X3 is acyclic, note that

ZU(X3) = ker(d™]) = ker(ly pii?)

= ker(py’)

BI(X3) = im(@NHINT) = i (N NN
_ yn
= Xj

@ Springer



64 Page 22 of43 J. R. B. Brightbill, V. Miemietz

Thus we must show that X ;’ = ker( p;’\,’] ). Since the composition of bicartesian squares is
bicartesian, the commutative square

X"
ik Jj+k nj
V N—k
+J
X" _ X
J n,j ik k
\pf‘ gﬂ/
X; =0

is bicartesian forall 1 < j < N — 1,1 <k < N — j. This yields an exact sequence

[nk
J+1< n+j

OHX”<—>X/+,<*»X —0

Taking k = N — j, we obtain that X;l = ker( pﬁ,‘j ), as desired. Therefore X3, is acyclic.

Taking n = 0 and k = 1 in the above exact sequence, we see that the morphism
()

ZO(X ) ZO 1 (X3 is precisely XO N X° . Thus F(X}) = X,. Thus P* := X%
satlsﬁes the desued properties.

We must now construct an N-acyclic array extending (X,, ts). For 1 < j < N — 1, let
X(} =X; andleth =0.Forl <j<N-2, letLO = andlettg : 0 — X be the zero
map. Define L(})V_l Xy 0 = x9 W to be the mcluswn of X9 w1 1nto a projective-injective
object X 9\/'

Suppose for some n > 0 we have constructed, for all j, X ;’ and L;'». Define X6‘+1 = 0and
P @ X — 0.Next, inductively define X”Jrl 7+11, and p}, for1 < j < N — 1 viaiterated
pushouts

X"
j+l1 .

n
G s~ Pis
\\
A

X" xntl e))

Xl?+l

Since £ is an exact category, it follows immediately that the newly defined maps ¢ are
admissible monomorphisms, and the maps p are admissible epimorphisms by the dual of [5,

Proposition 2.15]. Finally, define L’hLl t X X,tll — X ”N“ to be an inclusion of X X,“l into a

projective-injective object X' n+1 Note that we have now constructed X '/’+] "+l and p} for

all j. Proceeding 1nduct1ve1y, we can define X7, " and p for all n > 0 and for all j.
For n < 0, the construction is dual. Havmg deﬁned X” and t for all j, define pjy,~ L.

Xy I, xn v to be a surjection from a projective-injective object Xy ! Then X” ! 7 h

and p" ! are defined via iterated pullbacks for N — 1 > j > 1. Finally, define X(')‘ y =0

and LO ! to be the zero map.

It is immediate that (X’/l I . P ") satisfies properties 1 and 2 of Definition 4.4. To see
that property 3 holds, note that each commutative square in (1) is, by construction, either a
pullback (n < 0) or pushout (» > 0). But since the ¢ are admissible monomorphisms and
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the p are admissible epimorphisms, any such pullback or pushout square is automatically
bicartesian, for instance by [5, Proposition 2.12]. Thus the data we have constructed form an
N-acyclic array which extends (X, t,)- O

The category C§f (Proj(A)) inherits the structure of an exact category from Cy (A).

Proposition 4.6 C}/ (Proj(A)) is a fully exact subcategory of Cn(A). An object P* €
Cy/ (Proj(A)) is projective (resp., injective) if and only if it is projective (resp., injective)
in Cn(A). Thus C5f (Proj(A)) is Frobenius exact.

Proof C{ (Proj(.A)) is clearly a full, additive subcategory of Cy (A). Given a chainwise-split
short exact sequence X*® — Y* — Z*® with X*, Z* € C{f (Proj(A)) and Y'* € Cy(A), it is
clear that Y" € Proj(A) for all n € Z. Since X*® and Z* are acyclic, it follows immediately
from the long exact sequence in homology that Y'* is acyclic. Thus C4f (Proj(A)), together
with the class of all chainwise split exact sequences, is a fully exact subcategory of Cy (A).
The proof of [15, Theorem 2.1] applies without change to C}f (Proj(.A)), hence the projective
and injective objects are direct sums of complexes of the form u, (P), where P € Proj(A).
The second and third statements follow immediately. O

Proposition 4.7 F : C§f (Proj(A)) — MMory_2 (&) preserves short exact sequences.
Proof Consider a chainwise split exact sequence P* >f—> [0 £ R* in Cy (Proj(A)).
Applying the Snake Lemma to

0 0
00— PO Ly g0 S5 R0 4o
b Ly
. J . J .
0— Pl L5 0l £y BRI —50
we obtain an exact sequence
0 — Z9(P*) = 29(0%) — Z0R*) & coker(dy’)

It remains to show that the connecting morphism ¢ is zero.
We briefly recall the construction of ¢. Let X be the pullback

x —L Z9(R*)
L
[
QO g $ RO
From this diagram we see that g/ o dOQ’jt = 0, hence d%’jt factors through ker(g/) = f7.

. Lf .
Write dOQ’J ras X 5 Pl fi> Q/ for a unique map «. Then ¢ is given by the induced map on
cokernels

0 —> ker(p) — X —2—» Z?(R‘) —0

Lol i

PO L> P — coker(d?;j) — 0

Thus for ¢ to be zero, we must show that « factors through i m(a'g’j ).
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~

Since P* — Q°® — R°® is chainwise split exact, for each n we can write Q" = P" @ R",
with /" and g" becoming the canonical inclusion and projection maps, respectively. Using
this decomposition, we can express

r 0.
2= |4 B
Q 0 d%]

-
NI = g™y }

Note that dy/ 1 = d%/ g% = dy’ p = 0. It follows that

%9, = d?;j B||ul_ dg’jtl-i—ﬁtg
o 0 dyl|le 0

hence o = dg"’ t1 + Btp. Furthermore,

 N—j 4 .
0=dN "7 od> = d;’ : K/ i d%J“ +thu_ d;”N "Bu
@ e 0 dp"’ 0 0

We have that S, factors through Z',{,_j(P') = im(d?;j), hence so does o = d?;jtl + Bu.
Thus ¢ = 0 and so 0 — ZE.)(P') — Z?(Q') — Z?(R‘) — 0 is exact for each j. ]

Corollary 4.8 F descends to a functor F : K§/ (Proj(A)) — staby (€) of triangulated cate-
gories.

Proof By Proposition 3.9, forany i € Z, F(Mﬂ\, (P)) is projective-injective in MMor y_2(£).
Thus F preserves projective-injective objects and so descends to a functor F between the
stable categories. Since F preserves exact sequences and projective-injective objects, it fol-
lows immediately that F preserves distinguished triangles and the suspension functor, hence
is a functor of triangulated categories. O

4.2 Properties of F

In this section, we shall prove that F is an equivalence of categories. Most of our work will
be to show that F is faithful. The following terminology will be convenient for the proof.

Definition 4.9 Let f* : P* — Q° be a morphism in K} (Proj(A)). Given a family of
morphisms 4! : P — Q'"N*! we define the sum
n+k—1
Sw(n, j. k)= dg" N Widp " P 0
i=n+j
whenever the i appearing in the formula are defined. To understand this expression, note
that f* is null-homotopic if and only if 4* is defined for all i € Z and f" = S, (n, 0, N) for

each n € Z. Increasing the second parameter removes terms from the start of the sum, and
decreasing the third parameter removes terms from the end of the sum.
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We define a homotopy (of f°) at n to be a sequence of N maps (h”, prtlo o N
such that f"* = Sy(n, 0, N). We define a seed (of f*) at n to be a sequence of N — 1 maps
(", B N2y such that £ zn ey = Sp(n, 0, N = Dzt (pe).

The following lemma is trivial when N = 2.

Lemma4.10 Let f* : P* — Q° be a morphism in K7 (Proj(A)). IfF(f) = 0, then there
exists a seed of f* at 0.

Proof Since F(f) = 0, we have a diagram in £

Z)(P*) — ZY(P*) — -+ — Z%_|(P%)

| | !

L —— LH & —> --- ‘—>@§V;III]‘

l l l

ZUQ%) — Z3(Q%) — -+ — Z{_ (0%
where the horizontal maps are canonical inclusions, the I; are projective-injective, and the
Jjth pair of vertical maps composes to f0|Zq(P.).For1 <Jj=<N-lleta;: Z(,]\,_l(P') - I
J
andb; : I; — Z%_l (Q°*) denote the components of the rightmost vertical maps, so that we
0 N—-1

have f |Z0N71(P') = Zj:l bja;.

Foreach 1 <i < N —1, by commutativity of the top rows we have that a; factors through

ZON_1 (P‘)/Zl(.)_1 (P*). (For the degenerate case i = 1 we let Z8(P') = 0.) By injectivity of
I;, we obtain a commutative diagram

0,i—1
ZO p* ZU pP* ZO pe dp Pi71
0L (P*) —» Z_ (P20 (P*) T

x }%air B /’;;_/1

Thus a; = ai’ld%i_llzzovil(f,.) forl <i<N-—1.

Dually, by commutativity of the bottom rows, b; factors through Z? (Q°*), whichby acyclic-
ity of Q° is equal to BIQ(Q'). By projectivity of I;, we obtain amap g1 ~! : I; = Q'~" such
that by = dgy "V i1,

Define hi = ﬂiai ) LN Q"_N'H for0 <i < N — 2. Then we have

N-2 N=2
o,—i+N—1;i ;0,i
POl ypmy = D bivicier = 3 dg T TR 1 ey
i=0 i=0
= 5,(0,0, N — l)llﬁ,,,(P')

Thus (A°, ..., h"V=2) is a seed of f* at 0. o
If (B", ..., K" 1isa homotopy of f*®: P®* — Q¢ atn, it is clear that the shortened
tuple (A", ..., h”+N—2) is a seed at n, since the last term of f” = S;,(n, 0, N) vanishes on

Zy_,(P*). The next lemma establishes a converse.

Lemma4.11 Let f* : P* — Q° be a morphism in K5f (Proj(A)). Suppose there exists a
seed (0", ..., W"tN=2) of £* at n. Then there exists K" tN=1 such that:
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o (W, ..., h"tN-1yisq homotopy at n.

o (WL, .. "Ny s seed atn + 1.
There also exists "~ such that:

o (WL mn, ..., h”+N—2) is a homotopy atn — 1.

o (WL ont . h"TN=3Y s aseedatn — 1.
Proof Let v = f" — S,(n,0, N — 1). Since (1", .. . BTN =2y s a seed at n, we have
Y |Z”N71(P'): 0, hence ¥ factors through P"/Z%_,(P*®). Note that P"/Z},_,(P®) =
BItN=I(pey = V=1 (P*) € £. By injectivity of Q", we obtain

“N—T
P $ Pn/ZX/—l(P.) L s Pn+N—l
v lﬁ //’//;lr:-%—N—l
o "
Thus
N—1 m.N—1
f"=8yn,0,N—1D+¢ =S,n,0,N—1)+nr""d}
= Sy(n,0, N)
so (h", ..., W"tN=1) is a homotopy at .
To see that (h"*!, ... W"tN=1)isaseed atn + 1, note that

i = of" =dySp(n,0,N) = Sy(n+1,0, N — )dp
Since df : P" — Z"Nf'l(P‘) is an epimorphism, we can cancel it on the right to obtain
fn+1|ZX,+,11(P') =S,(n+1,0,N — DIZ;’\I'.(P‘)’ as desired.
To construct A", let 0= f”_l — Sp(n — 1,1, N). Note that
dy 'l =dy ' " —dy S —1,1,N)
= (f" = Sp(n,0,N — 1))y ' =0

where the last equality holds because (4", . .., B"TN=1) is a seed at n. Thus ¢ factors through
Z’I’_1 (Q*), and by projectivity of P"~! we obtain

Pn—]
hn—l -
o @
!
"N — Z17H (@) — 0!
dOQ‘ -
Thus
=+ S =1L LNy =dg" T T 4 S = 1,1, N)
= S,(n—1,0,N)
hence (h"~1, ..., h”+N—2) is a homotopy at n — 1. It follows immediately that (h" 1,
htN=3)isaseedatn — 1. O

We are now ready to prove the main theorem of this section.

Theorem4.12 F : K§ (Proj(A)) — staby (€) is an equivalence.
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Proof Let f* : P* — (Q° be a morphism in KaC(PI‘OJ(.A)) such that F(f) = 0. By Lem-
mas 4.10 and 4.11, we can inductively define maps 4’ : P! — Q=N+l foralli € Z such
that (h", ..., W"™tN=1) is a homotopy at n for every n € Z. Thus f is null-homotopic, and
so F is faithful.

F is defined via a commutative diagram of functors

C4¢(Proj(A)) —+ MMory_2(€)

l |

K4 (Proj(A)) —— staby (€)

By Propositions 4.3 and 4.5, F is full and essentially surjective, and the same is clearly
true for the projection MMory_2(E) — staby (£). It follows immediately that F is full and
essentially surjective, hence an equivalence. O

5 The N-singularity category

Throughout this section, let .4 be a Gorenstein abelian category and let £ = Gproj(A).
There is a fully faithful additive functor G : Mory_»(A) <— C j‘(, (A) given by interpreting

the object (X, o) € Mory_2(.A) as an N-complex concentrated in degrees 1 through N —1.

In this section, we shall show that G induces an equivalence G between staby (£) and D5, v (A.

Proposition 5.1 G induces a functor G : staby (£) — D5, v (A) of triangulated categories.

Proof Let G’ denote the composition

MMory_2(€) <> MMory_2(A) <> € (A) — DL (A) — D% (A)

Recall that the projective-injective objects of £ are precisely the projective objects
of A. By Proposition 3.9, G maps projective objects in MMory_»(£) to perfect com-
plexes, hence G’ sends projective objects to zero. Thus G’ induces an additive functor
G : staby (£) — D3, (A).

If Xe — Y, — Z, is admissible in MMory_2(€), apply G to obtain a short exact
sequence in C (A). By [15, Proposition 3.7], there is a corresponding distinguished triangle
G(X,) — G(Y ) —> G(Z,) —> XG(X,) in D” (A), hence in D}, (A).

Consider an admissible exact sequence X, — I Xo —* Q’IX., with Iy, injective. This

induces a triangle G(X,) — 0 — G(Q2~ Iy ) YG(X,) in DS (A), which defines a

natural isomorphism ¢ : GQ ™! 5 ¥G. Since every distinguished triangle in staby (&)
is isomorphic to one arising from an admissible short exact sequence in MMory_» (), it
follows easily that (G, ¢) is a triangulated functor. O

The functor G also gives a canonical embedding of Mory_»(A) into Dt v (A). With some
extra hypotheses on A, this is a corollary of [15, Theorem 4.2]; however, the proof below is
valid for an arbitrary abelian category (which need not be Gorenstein).

G
Proposition 5.2 The composition Mory_»(A) < C%(A) — D& (A) is fully faithful. In
particular, the restriction of this functor to Mory 2 (E) is fully faithful.

Proof Let (X, ®ts), (Yo, Be) € Mory_»(A).
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To prove fullness, take a morphism % : G(X,) — G(Y,) in Df(, (A). Write & as the span

G(X,) By Y CRLIN G (Y,), where s°® is a quasi-isomorphism. Since G (X,) is concentrated in
degrees 1 through N —1, the natural map ¢* : o<y—1 M*® < M?* is also a quasi-isomorphism;
thus 2 can be written as G (X,) <1—L— O<N—1M*® LI G(Y,). Let f, : Xo — Y, be given by
fi=Hi_;(g%) o Hy_;(s)™".

To see that f, defines a morphism in Mory_»(A), consider foreach 1 <i < N — 1 the
commutative diagrams

Zi (M*) —"— Hi .(M*) Zi (M*) " Hi .(M*)

lsiti Hy_; “’LLN ’ Lgi‘i H’i\’*"(‘g.)l @

Zy_(G(XJ) » Hy_(G(X.)  Zy_;(G(Y.) » Hy_;(G(Y.))

Note that Zév,i(G(X-)) = H}Q,i(G(X-)) = X;, and similarly for Y;. Thus the lower
morphisms in both diagrams are just the identity maps on X; and Y;. In particular, s/ is an
epimorphism. We also have that

fi osit = H/i\,_,-(g')H/"V_i(s')_1 osit = H,iv_i(g')ﬂi = giti 3)
It follows that, for 1 <i < N — 1,
fira osif — ﬁ+lsi+1li+1d§w _ gi+lti+1d;'u _ ﬂigiti —Bi f osiy

Since s'i! is an epimorphism, we conclude that f;jo; = f; f*, hence f, is a morphism.
From Equation (3) it follows immediately that z = G(f,) in va (A). Thus the functor is
full.

To prove faithfulness, let f, : Xo — Y, be such that G(f,) = 0in Dﬁ’v (A). Then there is
a quasi-isomorphism s°® : M* — G(X,) such that G(f,)s® = 0in Klbv (A). Define as above
the quasi-isomorphism (* : o<y_1M®* — M?*; it follows that G(f,)s®®* = 0 in Kﬁ\’,(A).
Since G(Y,) is concentrated in degrees 1 through N — 1, it is easily checked that the only
null-homotopic morphism of complexes from o<y_1M*® to G(Y,) is the zero map. Thus
G(f)s** = 0in C% (A); thatis, fis'’ =0forall 1 <i <N —1.

Note that the left square in (2) remains valid for all 1 < i < N — 1. In particular,
sii s Zf\,_i(M‘) — X; is an epimorphism. Thus f; = 0 for all i. Since f, = 0, the functor
is faithful. O

We shall prove the following theorem via a sequence of lemmas.
Theorem 5.3 G : staby (£) — Dy, (A) is an equivalence.

First, it will be helpful to more easily express morphisms in Dy (A). The following
proposition is completely analogous to the known result for N = 2. It holds for any abelian
category and does not require the Gorenstein hypothesis.

Lemma5.4 Let X°* € Ky(A), P* € Ky (Proj(A)), I° € Ky(nj(A). Let f : P* — X*
and g : X* — I°® be morphisms in Dy (A). Then f and g can be represented by morphisms
in Ky(A).

Proof Express f as the span P*® Z o° LN X*, where p*® is a quasi-isomorphism. Then

p* fits into a triangle =~'C* — Q° 2, P* = C*in Kn(A), where C*® is an acyclic
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N-complex. By [15, Lemma 3.3], Homg, (4)(P*®, C®) = 0. Since the last map in the above
triangle is zero, the map p*® admits a section s® : P* — Q° in Ky (A). It follows that the

span representing f is equivalent to P*® il p* h—s> X*, hence f is equal to the morphism
of complexes h°®s®

Similarly, express g as a cospan. X * 5, J* & I°, where i®isa quasi-isomorphism.

Extend i® to the triangle D* — I°® > J* — ©D* in Ky (A), for some acyclic D®. Again
by [15, Lemma 3.3], there are no nonzero morphisms from D*® to I°, hence i® admits a

retraction r® in K (A). Thus g is equal to the span X*® = “ I° hence g =r®e®. O

Lemma5.5 Let X* € K} (Gproj(A), P* € K} (Proj(A)). Let n € Z, and suppose that
X' =0foralli <nand P! =0 forall j > n. (That is, P® is entirely to the left of X°.)
Then Homp, 4)(X®, P*) =0.

Proof Let us first consider the case where both complexes are concentrated in a single degree:
we must show that Home’V(A)(X’ P[m]) = 0 for any X € Gproj(A), P € Proj(A),m > 0.

Let Q° be a projective resolution of X (as a 2-complex). Define an N-complex (0°, d.é) by

2k i=0
QkN+J {Q J , forany k € Z

0¥+l 0<j<N
with differential
gy ji=0
={idpun 1=<j<N-—1, foranyk €Z
dytt j=N-1

kN+j
o

It is straightforward to check that 0° is quasi-isomorphic to X (viewed as an N-complex
concentrated in degree 0), and

Ext kX, P) m = Nk for some k > 0
Homg ,(4)(Q°, P[m]) = Extzk Y(X, P) m = Nk —1forsome k > 0
0 otherwise

Since X € Gproj(A), Ext’ '4(X, P) = 0foralli > 0, hence we have that HomKN(A)(Q
P[m]) = 0 forallm > 0. It follows from Lemma 5.4 that Homp,, (4)(X, P[m]) = 0 for all
m > 0.
The full result follows immediately, since every bounded N-complex is a finite iterated
extension of single-term complexes. O

Lemma5.6 G is faithful.

Proof Let (X,, ®te), (Yo, Be) € stabﬂ (€),and let f, : Xo — Y, be a fixed representative of
a morphism in staby (£). Suppose G(f,) = 0.

We first show that G ( f,) factors in C (A)as G(X,) e —> G (Y,) for some bounded
complex of projectives I*. Since G(f,) = 0in D5, v (A), there exists a morphism with perfect
cones : G(Y,) = M*®in D?V(A) such that s o G(f.) = 0. Let P*® denote the cocone of s°;
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we obtain a morphism of triangles in DII’V (A):

0 — G(Xs) —4 G(Xy) —> 0

| La lew l

sIMe — 5 pe b L Gry) s M

Changing the bottom row up to isomorphism, we may assume that P® is a bounded
complex of projectives. Note that for each i € Z, we have a chainwise split exact sequence
7>; P®* — P°®* — 1<;_1 P*, where t denotes the sharp truncation. We obtain the following
morphisms of triangles in D;’v (A):

0 — G(X.) 4 G(x.) G(Xs) —45 G(Xs) —> 0
| Ja Je i Je |
>y P® — P* —% tny_1P°® T>1T<N—1P* & T<ny_1P* » T<0P°*
| IZ i In Ja !

0 — G(Y.) 24 G(v.) G(Yy) —4 s G(¥) — 0

The lower left square of the left diagram clearly commutes in K K, (A), hence also in
Dﬁ’v (A) by Lemma 5.4. This induces the morphism . The upper right square of the right
diagram commutes by Lemma 5.5 and thus induces the map g. The maps ¢ and & are defined
in the obvious ways, and the commutativity of the remaining squares in both diagrams is
immediate. Consequently, G(f,) = ba = dc = hg, so G(f,) factors through the complex
I°® := t>17<y—1 P°*. I*® has projective terms and is concentrated in degrees 1 through N — 1,
hence G(X,), G(Y,), and I°* all lie in the image of Mory_>(A), which by Proposition 5.2
is a full subcategory of D% (A). Thus the morphisms g = g°®, h = h*® can be expressed as
morphisms of complexes and G(f,) = h®g*® in Clb\, (A).

. . .. G he
Itremains to construct (1], t,) € Proj(MMory_(€)) and a factorization X, 1LY I, >7Y,

of f,. Define I := EB;-ZI =1 _,@®I' andlety; : I] < I/ ® I'"! be given by [dl;i}
where 7; : Ii’ — I is the canonical projection. It is clear that (I}, ts) € Proj(MMory_2(£)),
since each I is projective-injective in £ and each (; is a (necessarily split) monomorphism.
Define fz. 2 I, > Y, by ﬁi = him;itis straightforward to check that fz. is @ morphism in
MMory_>(E).

We shall inductively construct a family g; : X; — I/ such that 7;g; = gl forall 1 <
i < N—1andy_18—1 = gioj_y forall2 < i < N — 1. Let g = g'; note that
mo Ip > 1 1 is the identity map, so the desired equation holds. Next, suppose that g;_1
has been constructed; by injectivity of I/_, we may lift &1 to ¢; : X; — I/_, such that

8i—1 = ¢jaj_1. Define g; : X; — I!_| @ I' to be I:?], it easy to verify that g; satisfies

both of the desired equations. Thus the morphism g, : Xo — I, is defined. Furthermore, we
have that h;8; = him;8; = h'g' = f;, hence fo = he@. Thus f, = 0 in staby () and G is
faithful. o

To prove fullness, we need a better understanding of how to express morphisms in Dy, (A).
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Lemma 5.7 Let (X,, ), (Yo, Be) € MMory_2(E). Then the natural map HomDZ(A)
(G(X,),G(Y,)) — Homev(A) (G(XJ), G(Ys)) is surjective. That is, any morphism
G(X.) = G(Yy) in D3, (A) can be represented by a span of the form

Gx.) L Gxy) S G

where g is a morphism in Dﬁ’\, (A).

Proof Any morphism in Hom D3, (A) (G(X,), G(Y,)) can be represented by a span G (X,) <

M*® i> G(Y,), where s and f are morphisms in D,bv(A) and s fits into a triangle M*® N
G(X.) > I* = TM* with I* € D,’\’,erf (A). Since each projective object in A has finite
injective dimension, by changing /*® up to isomorphism in D;’v (A), we may assume without
loss of generality thatitis abounded N-complex of injectives. By Lemma 5.4 we can represent
t by a morphism of complexes #*. Changing M*® up to isomorphism in Df’v (A), we can also

assume that M*® is the cocone of ¢°® in KIZ(,(A), hence M*® S—.> G(X,) t—.> I* — XM*is
a triangle in K]l(,(A). Note that if I* = 0, then s® : M* > G(X,) is an isomorphism in
K Ib\, (A) and we are done; we thus assume that /° is nonzero.

By Theorem 4.12, there exists an acyclic N-complex P* of projectives such that X, =
Z(.)(P’). Let X*® be the N-complex

)A('=O—>X1;>X2;>-~-<—>XN_1<—>P0—>P1_>...

where X is in degree 1. It is straightforward to check that X*is acyclic. For any integer
m > N, there is a natural morphism of N-complexes p*® : rimfP — G(X,). We claim
that for sufficiently large m > N, there is a morphism of N-complexes r® : Tfmf( - M*
satisfying p® = s°r®, and an equivalence of morphisms in D}, (A):

Xy &M LGy =Gxy) & ekt L5 Gv

Let k be the maximum integer such that / k is nonzero, and choose m > max(N,k+ N).

We have a triangle in K I'V" (A)
o X® > X* > rSm)A(‘ - St X®

arising from the chain-wise split exact sequence of complexes. All nonzero terms of
T-mX® and ¥7-,, X*® occur in degrees greater than k, hence HomK;;(A)(BmX', 1°) =
0 = HomK;(A)(ngX', I°®). Since X°* is acyclic, HomK;(A)(X', I*) = 0 by
[15, Lemma 3.3]. Applying the functor Hom K A)(—, I1°®) to the triangle, we see that
HomK[/Z,(A)(ISm)A(', 1°) = 0.

The kernel of p® is J* = 1<, ((r=0P°*)[-N]) € Kf{,(Proj(A)); the chainwise
split exact sequence J°® < rimf(' L G(X,) induces a triangle in K Ib\,(.A). Since

Hoka](A) (rimf(‘, I°) = 0, we obtain a morphism of triangles in Klb\, (A):

stk L G(X) — xIe

! !
lz—lqo l lt. }CI.
e v

x-le 0 o4y e
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which in turn yields

J—— X L5 G(Xy) — I

lZ"q' \L,- lid lq‘

sl s mr s Gxy) s e

Since s® and p*® = s°r*® both have perfect cones, it follows from the octahedron axiom that
r* does as well. The desired equivalence of roofs f(s*) ™' = (fr*)(s*r®)~! = (fr*)(p*)~!
follows immediately.

Furthermore, since J* € K ,[i, (Proj(A)) is concentrated in degrees N through m and G(Y,)
is concentrated in degrees 1 through N - 1,
HomKIbv(A)(P, G(Y,)) =0= Home’v(A)(J.’ G(Y,)). We obtain a morphism of triangles

in D% (A):

J*— top X 25 G(X,) — BJ°

T

0 —— G(Ys) —45 G(¥) —— 0

Therefore we have an equivalence of morphisms

E(Xo) i fﬁm)?. ﬂ) E(Y-) = E(Xl) ﬂ E(Xo) i E(Yo)

Corollary 5.8 G is full.

Proof Let X,, Y, € staby(£), and let g : G(X,) — G(¥,) be a morphism in Dy (A). By
Lemma 5.7, g can be taken to be a morphism in Dﬁ, (A), and by Proposition 5.2, g = G(f,)
for some f, : X, — Y, in MMory_»(€). Let f, denote the image of f, in staby (£). By the

construction of G, G(f,) = G(f,) = g. Thus G is full. ]

It remains to show that G is essentially surjective. Recall the objects x;(X)s €
MMor y_2(€) of Definition 3.7. We shall also use the formula in [15, Lemma 2.6] describing
the action of ¥ on the complexes ) (X) in the homotopy category.

Lemma5.9 G is essentially surjective, hence an equivalence of triangulated categories.

Proof By Proposition 5.1, Lemma 5.6 and Corollary 5.8, G is a fully faithful functor of
triangulated categories, hence its essential image Im(G) is a triangulated subcategory of
Dy, (A).

Let S = {,uf?(X) | ke Z,1 <i < N—1,X € &}, and let 7 denote the smallest
isomorphism-closed triangulated subcategory of Dy, (A) containing S. We claim that 7 =
Dy, (A).

By Theorem 2.1, for any Y € A, there is a short exact sequence P — X —» Y where
P € Ahas finite projective dimension and X € £. Interpreting these objects as N-complexes
in degree 0 induces a distinguished triangle in le\, (A) and thus in Dy, (A), where P becomes
0. Therefore in D} (A), Y = X € S. It follows that any N-complex of length 1 lies in 7.

Now, suppose for a contradiction that X* € D}, (A) is a bounded N-complex of minimum
possible length such that X® ¢ 7. Clearly X* # 0; suppose m is the largest integer such
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that X" # 0. Then we have a triangle u]' (X"") — X* — 1., X* — Zuf"(X™) in D}, (A)
arising from the natural short exact sequence of complexes. But uj'(X™) € T since it
has length 1 and 7_,, X*® € 7 since it has length less than X°. It follows that X* € 7, a
contradiction. Thus T = D}, (A).

We now claim S is contained in /m(G); once this is proved, it follows immediately that
Im(G) = T = Dy (A), hence G is an equivalence.

We first show that S’ = {uf X)|1<i<k<N-—1,X €&}, consisting of all elements
of S which are concentrated in degrees 1 through N — 1, is contained in Im(G).Fix X € £.1t
is immediate that ;Lfv_](X) =G(xi(X)e) foreachl <i <N—1.Forl <i<k<N-—1,
we have a short exact sequence of N-complexes /L%:{_k (X) — M%:l_k+i(X) —» /,Lf?(X)
which induces a triangle in D7}, (A). Since the first two members of this triangle lie in /m (G),
so does /Lf.‘(X). Thus 8’ € Im(G).

For any uf?(X) € S, there is aunique x € Z suchk = xN + r, where 0 < r < N. Then
SR ukX) = pFXONT = wI(X). If i < r, then p/(X) € S'. Otherwise, 0 < r < i,
hence =1 (uf (X)) = ,ux:gi_r) (X) € 8'.Ineither case, ¥ ¥ (X) € Im(G) for some value
of y, hence u¥ (X) € Im(G). Thus S € Im(G), hence G is essentially surjective. o

6 Calabi-Yau properties of staby(mod-A)

In this section we let A be an associative algebra over a field F. We shall assume that A
is finite-dimensional and self-injective. Fix an integer N > 2. Under these hypotheses, the
category mod- A is Frobenius exact, hence staby (mod-A) (hereafter abbreviated as staby (A))
is a triangulated category by Theorem 3.12.

It is known that staby (A) possesses a Serre functor. (See [26] for case N = 3 and [28]
for general N.) The goal of this section is to obtain a sufficient condition for staby (A) to
be fractionally Calabi—Yau. In order to obtain a useful description of the Serre functor on
staby (A), we must first introduce several other functors.

6.1 The minimal monomorphism functor

The minimal monomorphism construction was introduced in [26] for N = 3 and [29] for
general N. To simplify notation in this section, we shall let k = N — 2.

Definition 6.1 Let (X,, o) € Morg(A). Define (Mimoe(X), m4(X)) € MMory(A) as fol-
lows. For 1 < i < k, let ker(a;) < Ji+1(X) denote the injective hull of ker(«;), and
choose a lift w; : X; — Ji+1(X) of this map. Let J1(X) = 0. For 1 < i < k+1,
let [;(X) := @3:1 Jj(X), so that I1(X) = 0 and [;(X) = J;(X) @ [;_1(X). Define
Mimo; (X) := X; & I;(X) and let m; (X) : Mimo; (X) — Mimo;1(X) be given by

o 0

mi(X) = | 0|:X;® (X)) > Xiy1 ® Jit1(X) ® [(X)
01

Given f, : X, — Y,, define Mimo,(f) : Mimoe(X) — Mimo,(Y) inductively as
follows. Define Mimo; (f) := f1 : X1 — Y1. Suppose that we have defined Mimo; _1(f) :

Xi1®Li1(X) — Yi—1 & [;_1(Y) to be of the form |:4J:i_l 1/,0 :| Define [qbi wi] :
i—1 Wi—1
X; & [;(X) — [;(Y) to be a lift of the map
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Mimo; i—1(Y
X1 ® L0 2y e )"y @ L) » L)

along the injection m;_1(X) : X;j_1 & I;_1(X) — X; & I;(X). Then define Mimo; (f) :

X; ® [;(X) — Y; & I;(Y) by the matrix |:£ 1/(f) .
1 1

In the above definition, it is clear that each m; (X) is a monomorphism, and that the map
Mimo, (f) is a morphism in MMor (A). Note also that we have a morphism Mimoe (X) —»
X, given by component-wise projection onto X,. We now state some basic properties of this
construction.

Proposition 6.2 1) For any object X, € Mori(A), Mimo, (X) is independent, up to iso-
morphism in MMory (A), of the choice of the maps w;.

2) For any morphism fy : Xq — Y, in Mori(A), the image of Mimo,(f) in staby (A) is
independent of the choice of maps ¢; and ;.

3) Mimo acts as the identity on both objects and morphisms in MMory (A).

4) Mimo defines afunctor Mory(A) — staby (A) which descends to functors Mory (A) — staby (A)
and Mory (A) — staby (A).

5) Mimo : Morg(A) — staby (A) is right adjoint to the inclusion functor.

Proof 1) It is proved in [29, Lemma 2.3] that the projection Mimos(X) —» X, is a
right minimal approximation of X, in MMory (A), hence is unique up to isomorphism
in MMorg(A). In particular, any two choices of the maps w; in the construction of
Mimo, (X,) yield isomorphic objects.

2) Given f, : X, — Y, and two different choices in the construction of Mimo,(f),
it is easy to check that their difference factors through the projective-injective object
L(Y) = DLY) = - = L (Y).

3) If X, € MMorg(A), then ker(«;) = O for all i. Thus [;(X) = 0 and Mimo,(X) = X,.
The statement about morphisms is immediate.

4) The first statement is easily verified. For the second statement, note that by Propo-
sitions 3.9 and 3.10 the projective objects of Morg(A) are precisely the projective-
injective objects of MMor(A), hence are preserved by Mimo. Thus the functor
Mimo : Mory (A) — staby (A) kills projectives and so descends to Mory (A). Similarly,
the injective objects in Mory (A) are component-wise projective-injective with all maps
split epimorphisms; such objects are mapped to projective-injective objects by Mimo,
hence Mimo also descends to Mory (A).

5) Lett : staby (A) < Morg (A) denote the inclusion functor. Let X, € Mor(A), Y, € staby(A).
Define natural transformations -

€ :toMimo — 1Mork(A) n: lslabN(A) — Mimo ot

as follows. Let ex, : Mimo,(X) — X, be the component-wise projection onto X,, and let
Ny, : Yo — Mimo(Y) = Y, be the identity map. It follows immediately from definitions
that € and n are indeed natural transformations; it remains to verify that they satisfy the
triangle identities.

That (€t) o (1tn) = id, is immediate. To see that (Mimo €) o () Mimo) = idmimo, evaluate
at X, and note that the left-hand side simplifies to Mimo, (€x) : Mimoe (X) — Mimo, (X).
We can choose this map to be the identity map. Thus the pair (¢, Mimo) is an adjunction. O
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6.2 Cokernel and rotation functors

Throughout this section, we shall let k = N — 2 to simplify notation.

Definition 6.3 For (X,, a,) € MMor(A), define
Coke(X) 1= Xp41 — coker(oz/f) —» coker(alz‘_l) — -+« —» coker (o)

For fo : Xe — Yo, let Coke(f) : Coke(X) — Coke(Y) be given by the component-wise
induced maps on the cokernels.

It is clear that Cok defines a functor MMor; (A) — Mory(A) which sends projective-
injective objects to injective objects. Thus Cok descends to a functor staby (A) — Mory (A).
Though we shall not need this fact, we note that Cok also defines an exact equivalence
between MMory (A) and EMor, (A) which descends to a triangulated equivalence between
the respective stable categories.

Definition 6.4 Define the rotation functor to be the composition

R = Mimo o Cok : staby (A) — Mor(A) — staby(A)

The rotation construction was first defined in [26] for N = 3 and later generalized to
arbitrary N in [28]. Our formulation differs slightly in that it is defined on staby (A) rather
than Mor y_>(stab(A)). On staby (A), the rotation functor can be somewhat difficult to work
with, but it simplifies considerably when expressed in terms of complexes.

Recall the triangulated equivalence G : staby(A) — Df\,(A) defined in Proposition 5.1.
Note that G extends to a functor Morg(4) — Df\, (A).

Proposition 6.5 There is anisomorphism X[— 110G = GoR of functors staby (A) — Df\, (A).

Proof Let (X,, oe) € staby (A). The short exact sequence in C ]'i, (A)
G(Xa) = py ' (Xn-1) = G(Coky(X)I1]

induces a triangle in D7, (A). The middle term is null-homotopic, so we have an isomorphism

G(Coko(X)[1] 5 >(G(X,)) in Dy, (A); since the above exact sequence is natural in X,,

so is this isomorphism. Applying [—1] yields a natural isomorphism GoCok = X[-1]0G.
Applying G to the short exact sequence in MMory (A)

1, (Cok (X)) = Mimo, (Cok(X)) — Coke(X)

we obtain a triangle in D} (A). The left term is mapped to Df\’,"f (A), hence vanishes;
we obtain an isomorphism GR(X,) = G(Cok,(X)) which is clearly natural in X,. Thus
GoR=EGoCok = X[-1]0G. [m}

6.3 Upper triangular matrices

Throughout this section, we shall let n = N — 1 to simplify notation.

Let B = T,(A) denote the F-algebra of n x n upper-triangular matrices with entries in
A. We write E; ; for the matrix with 14 in the (i, j)-th position (that is, row i and column
j) and 0’s everywhere else.
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Given X € mod-B, we can create the following object in Mor,,_{(A):

TEp—1n

TEy TEy 3
XE1 1 — XEyp — - — XE,,

More explicitly, there is an equivalence M, : mod-B 5 Mor,_1(A) given by M, (X) =
(XEee, rE,,.;) [29, Lemma 1.3]. The inverse of M, is given by M,_I(X., fo) = @:’:1 Xi,
where E; ; acts as projection onto the i-th coordinate and E; ;4 ; acts as fij .

Similarly, there is an equivalence M; : B-mod = Mor,_ 1(A°P) which is given by
M;(X) = (Enyi1-ent1-eX,IE,_, ,.1_.)- Its inverse is given by‘ MI_I(X" fo) =B, Xi,
where E; ; acts as projection onto X, —; and E;_; ; acts as .f,lj+17i.

It is easy to check that M, (B) = @;’:1 Xxi(A)e = M;(B) has injective dimension 1 in
Mor,,_1(A), hence B is Gorenstein. (Recall the definition of x;(A)e from Sect. 3.2.) The
following proposition allows us to identify the monomorphism and epimorphism categories
of A with the Gorenstein projective and Gorenstein injective B-modules, respectively. (See
Sect. 2.6 for the definition of a Gorenstein injective module.)

Proposition 6.6 ([29, Corollary 4.1, 4.2]) The functors M, and M restrict to the following
exact equivalences:

1) M, : Gproj(B) = MMor,_1(A)
2) Mj : Gproj(B%?) = MMor,_1(A)
3) M, : Ginj(B) — EMor,_i(A)

4) M; : Ginj(B°?) = EMor,_;(A)

Each of the above equivalences descends to a triangulated equivalence between the respective
stable categories.

Proof 1t is clear that M, and M are exact equivalences. Once 1)-4) have been established,
it is also clear that the functors descend to triangulated equivalences between the stable
categories. All that is needed is to show that each functor has the appropriate image.

1) Let (X,,as) € Mor,_1(A). Since M, (B) = @l'.':l Xi(A),, it suffices to prove that
Xo € MMor,_1(A) if and only if Ext!(X,, xi(A)e) = O forall 1 < i < n. (Since
Xx1(A), is injective, Ext! (X., x1(A)s) = 0 for any X,.) Let x;(A). denote the cokernel
of the natural inclusion y;(A)e <> x1(A)e. Define a complex in C?(Mor,_1(A))

I'@y= =02 xuXe » X (X)e >0 -

with x1(X)e indegree 0. I*(i) is an injective resolution of x; (A),, hence Ext!(X., Xi(A)e)
= Homgbswmor,_(a))(Xe, I°(@)[1]). Note that a morphism of complexes Xo —

I°(i)[1] is the same data as a morphism f;_; : X;_; — A; such a morphism is null-

homotopic if and only if f;_; factors through o/ | forall1 < j <n—i+ 1.

Suppose X, € MMor,_1(A). Since aij_l is a monomorphism and A is injective,

any morphism f;_1 : X;—1 — A admits a factorization f;_; = g,-_1+jaij_1, hence
Ext!(X., xi(A)s) = 0. Conversely, if o;_; is not injective for some 1 < i < n,
then there is a nonzero morphism ker(o;—_1) — A which can be lifted to a morphism
fi—1 : Xi—1 — A. Since f;_1 is nonzero on ker(a;_1), it cannot factor through o;_1,
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hence f;_; defines a nonzero element of Ext!(X,, xi(A).). Thus M, identifies Gproj(B)
with MMor,_1(A).

2) Since M;(B) = @}_, xi(A)a., the proof is identical to 1).

3) By Proposition 6.7 below, M, = D, M; D. The result then follows from 2).

4) The result follows from Proposition 6.7 and 1). O

6.4 Duality and the Nakayama functor

In this section, we continue to write n = N — 1.

It will be convenient to introduce some notation. If ' : mod-A — C is a covariant
functor (into any category C), there is an induced functor Fy : Mor,_1(A) — Mor,_(C)
given by F(X,, ®s) = (F(X,), F(a,)). Given a contravariant functor G : (mod-A)?? —
C, we likewise obtain a functor G, : Mor,_1(A)°? — Mor,_1(C), this time given by
G«(Xe, tte) = (G(Xnt1-e), G(otn—s)).

Recall the Nakayama functor v4, defined in Section 2.6 to be the composition of the
dualities D = Hompg(—, F) and Hom4(—, A). Note that both of the induced functors
D, and Hom (—, A)4 define dualities Mor,_1(A)°P = Mor, 1 (A°P) which identify the
monomorphism subcategory with the epimorphism subcategory, and vice versa. It follows
that the equivalence v, = D, Homy(—, A), : Mor,_1(A) = Mor,,—1(A), preserves both
MMor,_1(A) and EMor,_;(A) and descends to the corresponding stable categories.

In contrast with the behavior of v4,, recall that vp restricts to an equivalence Gproj(B) =
Ginj(B); it is therefore worth investigating the relationship between these two functors.
Before we express vp in the language of the monomorphism category, it will be helpful to
first translate the F-linear duality on B.

Proposition 6.7 There is an isomorphism D, o M; = M, o D of functors (B-mod)?? —
Mor,_1(A). Similarly, M; o D = D, o M,.

Proof Let X € B-mod. The left A-module map /g, , : X — E; ;X yields a monomorphism
12“ : D(E;;X) — DX whose image is (DX)E; ;. We have a commutative diagram in
mod-A.

l*
Ei_1i

D(E;i_1,;-1X) — D(E;;X)

~ |13 ~| 13
iEi—l,i—l Eii
PEj_1

(DX)E;—1,i-1 — (DX)E;;

hence lz. L D, M;(X) = M, D(X) is an isomorphism which is easily verified to be natural
in X.

The second isomorphism follows immediately by precomposing with D and postcompos-
ing with D,. O

Proposition 6.8 There is an isomorphism M, ovp = Cok vay o M, of functors Gproj(B) —
EMor, _1(A).

Proof Tt is enough to show that D.M,vp = D, Cok vasM,. By Proposition 6.7, we have
that

D M,vg = M;Dvg = M; Homg(—, B)
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Since v4 is exact, it is easily verified that Cok v4, = v4, Cok, hence
D, Cokvpge M, = Dyvp, Cok M, = Homy (—, A)y Cok M,

It thus suffices to construct { : M; Homp(—, B) = Hom 4 (—, A),. Cok M, an isomorphism
of functors Gproj(B)°? — MMor, _1(A°P).

Let X € Gproj(B). Note that E; ; Hompg (X, B) consists of precisely those homomor-
phisms with image in E; ; B. Thus

M; Hompg (X, B) = (Homp(X, Eyt1-ent1—eB), lE, o 01 )
A direct computation shows that

Homy4(—, A)s Cok M, (X) = (Homup(XEy n/XEn—en, A), 75_,)

’'n—e

where 7r; : XE, ,/XE;_1, - XE, ,/XE; , is the canonical projection. (Here we define
XEp,tobe0.)

Given f € Homp(X, E; ;B), note that the restriction of f to XE, , has image in
E;,;BE,, =E; B = E; ,A, which is canonically isomorphic to A as an (A, A)-bimodule.
Furthermore, f(XE;_1,) € E; ;BE;_1,, = 0, hence the restriction descends to a map

f1xEpn : XEpn/XEiz1y —> EinA= A

Let ¢x; : Homp(X, E; ;B) — Homa(XE, ,/XE;_1,,A) be the map sending f to
S IXE,,-

To show that ¢x ; is injective, let f € ker(¢x,;) and let x € X. Since ¢x;(f) = O,
then f(XE,,) = O andso f(x)E;, = f(xE;,E,,) = 0 for all j < n. The map
FEj, BE; j — BE, , is injective for all j < n; it follows from the above equation that
f(X)Ej j =0forall j <n,hence f(x) =0. Thus f = 0and ¢y ; is injective.

To see that ¢x ; is surjective, take any g € Homa(XE, ,/XE;_1 ,, A). Define f : X —
E;iBby f(x) = Z?:i g(xEj ,)E; j. A direct computation shows that for any 1 < r <
s <n,

f(XEr,s) = g(XEr,n)Ei,s = f(x)Er,s

It follows that f is aright B-module morphism and ¢x ; (f) = g. Thus {x ; is anisomorphism
for each i.

It is easily checked that {x ,41—e is @ morphism in MMor,_;(A°’) and is natural in X,
hence the two functors are isomorphic. O

6.5 Serre duality

The inclusion functor Gproj(B) <> mod-B possesses a right adjoint P : mod-B —
Gproj(B) [21, Lemma 6.3.6]. We have already seen that Mimo plays an analogous role
in the monomorphism category, so it is no surprise that the two functors are related.

Proposition 6.9 Thereisanisomorphism M,o P = Mimo oM, of functors mod-B — staby (A).

Proof Let (1 : staby(A) < Mory_»(A) and 1, : Gproj(B) <> mod-B be the inclusion
functors. It is clear that (1M, = M,t,. By Proposition 6.2, Mimo is right adjoint to ¢1; it
follows that both P and M~ ' Mimo M, are right adjoint to ¢, hence P = M~ ' Mimo M, ..
The result follows. ]
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We are ready to describe the Serre functors on staby (A) and D}, (A). We shall write Q4,
Qp, and Q2 to denote the syzygy functors on stab(A), stab(B) and staby (A), respectively.
Recall that since A is self-injective, v4 is exact and so lifts to D}, (A).

Theorem 6.10 Qy Rvg, isa Serre functor on staby (A). [—1]v, is a Serre functor on DY, (A).

Proof By [21, Corollary 6.4.10], Gproj(B) has Serre functor S := Qp Pvg. Thus M, SM!
is a Serre functor for staby (A) and G M, SM, - 1671 is a Serre functor for D} (A). Then

M, SM; ' = M,QpPvpM,!
= QyM, PvpM !
= Qy Mimo M, vg Mfl Proposition 6.9
= Qy Mimo Cok vy Proposition 6.8
= QN Rvax

and

GM,SM-'G ' = GQyRvALG
~ »'GRvALG

~ 2_12[—1]611,4*671 Proposition 6.5
= [—1]va

where the isomorphism Gy Z v4G follows immediately from exactness of v4. O

When the order of the Nakayama automorphism is known, one obtains a description of
the fractional Calabi—Yau dimension of the N-stable category. (See Sect. 2.2 for definitions.)

Corollary 6.11 Suppose the Nakayama automorphism of A has order r. Let s = lcm(N, r)
andt = % If N > 2, then staby (A) is (—2t, s)-Calabi—Yau. stab(A) is (—r, r)-Calabi-Yau.

Proof 1t suffices to check that D}, (A) has the appropriate Calabi—Yau property. We have that
v =id, hence v} = id. Then

((—1va)* = [—s] = [-tN] ==~
For N =2, we have ¥ = [1], hence ([—1]vg) = X" ]

Corollary 6.12 Suppose A is symmetric. Then stab(A) is (—1)-Calabi—Yau and staby (A) is
(=2, N)-Calabi-Yau for all N > 2.

Proof Since A is symmetric, v4 = id hence r = 1. The statement follows. O

The above integer pairs need not be minimal. The presence of additional relations between
the functors €2, v4, and R may allow staby (A) to be (x, y)-Calabi—Yau for smaller values
of x and y; see below for a concrete example.
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6.6 An example

o

Let F be any field, let Q be the quiver 1 C 2 ,andlet A = FQ/rad*(FQ). Then A

B
is self-injective with four indecomposable modules: the simple modules S; and S, and their

two-dimensional injective hulls /] and I,.
[11] [12]

SN SN
M AY) M

The Auslander-Reiten quiver of A.
Vertices in brackets are projective-injective.
Fix some N > 2. For any integers i, j > 0 satisfying 1 <i 4+ j < N — 1, define objects
X(i, j)and Y (i, j) in MMory_»(A) by

Xi,j)=0—-»-->0->8—>---—>8S>0—>---—1

Yi@,j) =0 - >0->—> >89 —>0L—>--— D

Here each sequence has exactly i simples and j projective-injectives, and each morphism is
the canonical inclusion.

In mod-A, every monomorphism from an indecomposable module M into a direct sum
Y @ Z factors through either Y or Z, so (M,, oe) € MMor y_2(A) is indecomposable if and
only if each M; is indecomposable. Thus the indecomposable objects of MMory_>(A) are
precisely the X (i, j) and Y (i, j). The indecomposable projective-injectives are precisely the
objects X (0, j) and Y (0, j).

The Nakayama automorphism of A has order 2, so by Corollary 6.11, staby(A) is
(—4,2N)-Calabi—Yau if N is odd and (-2, N) if N > 2 is even. However, it is easy to
check that va, = Q = Q! on staby (A) for any N. It follows from Proposition 6.5 that
R and Q! commute, since the corresponding functors ¥ and ¥[—1] commute in Dj'v (A).
Thus staby (A) has Serre functor § = QRva, = R, and Dy (A) has Serre functor X[—1].
In particular,

Q! Nodd

SN = QN2 =
id N even

Thus for N > 2, staby (A) is (1, N)-Calabi—Yau for odd N and (0, N)-Calabi—Yau for even
N.
A straightforward computation shows that for any i > 0,

Y@, j—1 Jj>0

S = [X(N—i,i—l) j=0

X@i,j—1 j>0
Y(N—-i,i—1) j=0
QXGE, J) =Y ))
QG j)=XGa,j
It follows immediately that S” is not isomorphic to any power of Q2 forany 0 < n < N.

We conclude by providing the Auslander-Reiten quiver of MMor > (A) for representative
values of N.

S(Y @, j) = [
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aAnpoa[ur-oanoaloid are sjoyorIq UT SAOTTIA
(V) VIOINIA JO 19AIND uo)ioy-1opue[sny ayJ,

0'DX 0OA <« c'ox]l<- CTDXx <~ [T0oOx]<- DX <-[QOx] < ODX
T4 04X 1ox 0Dx
@DA<-TOA <- T DA <~ [Q°04] - (0'DA 09X «<- (el «<- T'DA

aAnoofur-oanosfold are syoxorIq UT SAOTIIOA
(V) EIONIA JO J9AIND uojioy-1opue[sny ayJ,
1 Dx - [(T'ox] - 0O'DX 04 - [Tox]«- T DXx

NN T ST

ODX - LTWAl <- T DA - [T'WA] - (0 DA

pringer

Qs
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