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Abstract
A well-known theorem of Buchweitz provides equivalences between three categories: the
stable category of Gorenstein projective modules over a Gorenstein algebra, the homotopy
category of acyclic complexes of projectives, and the singularity category. To adapt this
result to N -complexes, one must find an appropriate candidate for the N -analogue of the
stable category. We identify this “N -stable category” via the monomorphism category and
prove Buchweitz’s theorem for N -complexes over a Grothendieck abelian category. We also
compute the Serre functor on the N -stable category over a self-injective algebra and study
the resultant fractional Calabi–Yau properties.

1 Introduction

The notion of N -complexes, which goes back to Mayer [22] and was first studied from a
homological point of view byKapranov [16] andDubois-Violette [8], has received significant
interest in recent years. As well as having applications in physics via spin gauge fields (see
e.g. [9]), they are homologically interesting in their own right (see e.g. [23]. In addition,
they provide the simplest examples of N-differential graded categories, which, for N a prime
number, play an important role in categorification at roots of unity, see e.g. [10–12, 19, 20].

In the classical case of N = 2, which recovers the usual notion of homological algebra,
there are numerous deep and important theorems connecting various categories obtained
from complexes. One such example is a celebrated theorem by Buchweitz [4, Theorem
4.4.1],which, adapted to the setting of aGorenstein abelian categoryA, provides equivalences
between a) K ac(Proj(A)), the homotopy category of acyclic complexes of projective objects;
b) Ds(A), the singularity category of A (i.e., the Verdier quotient of the bounded derived
category by the thick subcategory of perfect complexes); and c) stab(Gproj(A)), the stable
category of Gorenstein projective objects in A. The equivalence between b) and c) was
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independently proved by Rickard [25, Theorem 2.1] in the special case of Frobenius exact
abelian categories.

There are obvious N -complex analogues of categories a) and b), and an equivalence
K ac

N (Proj(A)) ∼= Ds
N (A) generalizing Buchweitz was discovered by Bahiraei et al. [1].

This raises a question: is there an “N -stable” category which completes the missing link
in Buchweitz’s theorem? In this paper, we determine the correct object by investigating the
monomorphism category, MMorN−2(A), whose objects are diagrams of N − 2 successive
monomorphisms in A. The monomorphism category has been intensively studied, particu-
larly for N = 3 [26, 27], but also for general N [29]. Monomorphism categories associated
to arbitrary species have also recently been studied by [13].

If E is an exact category, then MMorN−2(E) can be given the structure of an exact
category (Proposition 3.5). If E is Frobenius, then MMorN−2(E) inherits this property
(Theorem 3.12); in this case, we define the N -stable category, stabN (E) to be the stable
category of MMorN−2(E). For a Gorenstein abelian category A, we construct equiva-
lences of triangulated categories K ac

N (Proj(A))
∼−→ stabN (Gproj(A)) (Theorem 4.12) and

stabN (Gproj(A))
∼−→ Ds

N (A) (Theorem 5.3) generalizing Buchweitz, demonstrating that the
N -stable category merits the name.

Classically, the stable category of a finite-dimensional self-injective algebra A provides
a rich source of examples of negative or fractional Calabi–Yau categories, a topic of major
interest in homological representation theorywith connections tomany areas ofmathematics,
see e.g. [6, 7, 17, 18]. One might hope the N -stable category enjoys similar properties, and
in Corollary 6.11 we prove that if the Nakayama automorphism of A has finite order, then
stabN (A) is fractional Calabi–Yau with the denominator parametrized by N .

To prove result, we provide an explicit description of the Serre functor on stabN (A) in
Theorem 6.10. The effect of the Auslander-Reiten translation (from which the Serre functor
can easily be derived) on the objects of the stable monomorphism category has already been
computed by Ringel and Schmidmeier [26] for N = 3 and Xiong et al. [28] for general
N . However, utilizing the connection with N -complexes, we are able to provide a simpler
version of their construction which is also functorial.

The structure of the paper is as follows: In Sect. 2, we briefly summarize relevant back-
ground material while establishing our terminology and notational conventions. Section 3
develops the theory of the monomorphism category, culminating in the definition of the N -
stable category. The two relevant equivalences of Buchweitz’s theorem are generalized in
Sects. 4 and 5. In Sect. 6, we describe the Serre functor of the N -stable category, discuss its
Calabi–Yau properties, and provide a worked example.

2 Definitions and notation

2.1 Triangulated categories

We shall assume the reader is familiar with the basic theory of triangulated categories. In lieu
of a detailed explanation, we give a quick overview of the relevant topics and terminology;
for more details, the reader may consult Neeman [24] or Gelfand-Manin [14].

Let T be an additive category, and let � : T ∼−→ T be an additive automorphism of T .
We shall call � the suspension functor on T . A triangle in T is any diagram of the form

X
f−→ Y

g−→ Z
h−→ �X . A triangulated category is the data of T , �, and a collection of

triangles (called the distinguished triangles), satisfying certain axioms.

123



The N-stable category Page 3 of 43 64

If (T1, �1) and (T2, �2) are triangulated categories, a triangulated functor F : T1 → T2
is the data of an additive functor F and an isomorphism φ : F�1

∼−→ �2F , such that F
(together with φ) maps distinguished triangles in T1 to distinguished triangles in T2.

Anymorphism f : X → Y in a triangulated category T can be extended to a distinguished

triangle X
f−→ Y

g−→ Z
h−→ �X . We refer to Z as the cone of f ; it is unique up to (non-

canoncial) isomorphism. Similarly, we refer to X as the cocone of g.
A full, replete, additive subcategory S ⊆ T is said to be a triangulated subcategory

if S is closed under �±1 and the cone of any morphism in S lies in S. A triangulated
subcategory S is said to be thick if it is closed under direct summands. In this case, we can
form a new triangulated category T /S, called the Verdier quotient, with the same objects
and suspension functor as T . There is a natural triangulated functor T → T /S which is the
identity on objects andwhose kernel is preciselyS.T /S can also be viewed as the localization
of T with respect to the multiplicative set of morphisms with cone in S, hence morphisms
in T /S can be expressed in terms of a calculus of left and right fractions. A triangle in T /S
is distinguished if and only if it is isomorphic (in T /S) to a distinguished triangle in T .

2.2 Serre duality and Calabi–Yau categories

Let F be a field and let (T , �) be an F-linear,Hom-finite triangulated category.ASerre func-
tor on T is an equivalence of triangulated categories S : T ∼−→ T together with isomorphisms
HomT (X , Y ) ∼= D HomT (Y , SX) which are natural in X and Y . Here D := HomF (−, F)

is the F-linear duality.
Let m, l ∈ Z. We say that T is (weakly) (m, l)-Calabi–Yau if T has a Serre functor S

and there is an isomorphism of functors Sl ∼= �m . (Elsewhere in the literature, this is often
written using the “fraction” m

l .) Note that a triangulated category may be (m, l)-Calabi–Yau
for many different integer pairs (m, l). If l = 1, then we shall simply say that T is (weakly)
m-Calabi–Yau. There is a stronger notion of the Calabi–Yau property, due to Keller [17],
which requires the isomorphism be compatible with the triangulated structure, but our focus
will be on the weaker notion.

2.3 Exact categories

We recall some basic definitions and terminology regarding exact categories. For a more
comprehensive overview, we refer to Bühler [5].

Let E be an additive category. A kernel-cokernel pair in E is a diagram X
i−→ Y

p−→ Z
such that i is the kernel of p and p is the cokernel of i . LetS be a collection of kernel-cokernel
pairs which is closed under isomorphisms; its elements will be called the admissible short
exact sequences. The kernels in S are called admissiblemonomorphisms and the cokernels
are called admissible epimorphisms. If the class of admissible monomorphisms (resp.,
admissible epimorphisms) contains all identity morphisms, is closed under composition, and
is stable under pushouts (resp., pullbacks), we say that the pair (E,S) is an exact category.
For a more precise statement of the axioms, see [5, Definition 2.1]. Note that (E,S) is exact if
and only if (Eop,Sop) is exact. If (E,S) and (E ′,S ′) are exact categories, we say an additive
functor F : E → E ′ is exact if F(S) ⊆ S ′.

If E is an exact category, we say that a subcategory E ′ of E is closed under extensions if
whenever X � Y � Z is an admissible short exact sequence in E with X , Z ∈ E ′, then Y is
isomorphic to an object in E ′. If E ′ is a full, additive subcategory of E which is closed under
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extensions, then E ′ inherits the structure of an exact category: a kernel-cokernel pair in E ′ is
admissible if and only if it is admissible in E . (See [5, Lemma 10.20].) With this inherited
structure, we say E ′ is a fully exact subcategory of E .

Any additive category can be given the structure of an exact category by defining the split
exact sequences to be admissible. Any abelian category can be given the structure of an exact
category by defining every short exact sequence to be admissible. A small exact category E
can be embedded as a fully exact subcategory of an abelian category [5, Theorem A.1].

An object P in an exact category E is projective if, for every admissible epimorphism
p : Y � Z and every morphism f : P → Z , there exists a lift g : P → Y satisfying
f = pg. Injective objects are defined dually. We let Proj(E) (resp., Inj(E)) denote the full
subcategory of E consisting of the projective (resp., injective) objects. We say E has enough
projectives if for every object X ∈ E there exists an admissible epimorphism P � X with
P projective; likewise E has enough injectives if for every object X there is an admissible
monomorphism X � I with I injective.

We define the projectively stable category of E to be the category E whose objects are
those of E and whose morphisms are given by HomE (X , Y ) := HomE (X , Y )/P(X , Y ),
where P(X , Y ) is the additive subgroup of morphisms which factor through a projective
object. Dually, we can quotient out by morphisms factoring through injective objects to
form the injectively stable category E . If Proj(E) = Inj(E) and E has enough projectives
and injectives, we say E is a Frobenius exact category. In this case, both stable cate-
gories coincide and can be given the structure of a triangulated category, which we shall
denote by (stab(E),�−1). The suspension functor �−1 is defined by choosing for each
object X an admissible monomorphism X � IX into an injective object; �−1X is then

defined to be the cokernel of this map. An admissible short exact sequence X Y Z
f g

in E induces a natural map h : Z → �−1X in stab(E), which gives rise to a triangle

X Y Z �−1X
f g h . The distinguished triangles in stab(E) are those isomorphic to

triangles arising in this way.

2.4 N-complexes

For a comprehensive introduction to N -complexes, we refer the reader to the work of Iyama,
Kato, and Miyachi [15]. Let A be an additive category, and let N ≥ 2 be an integer.

An N -complex over A is a sequence of objects of Xn ∈ A, together with a sequence
of morphisms (called differentials) dn

X : Xn → Xn+1 such that the composition of any N
successive differentials is zero. Amorphism f • : X• → Y • of N -complexes is a sequence of
morphisms f n : Xn → Y n which commute with the differentials. We denote the category of
N -complexes over A by CN (A). As with complexes, we say an N -complex X• is bounded
(resp., bounded above, bounded below) if Xn = 0 for |n| � 0 (resp., n � 0, n 	 0). We
write Cb

N (A) (resp., C−
N (A), C+

N (A)) for the full subcategory of CN (A) consisting of the
bounded (resp., bounded above, and bounded below) N -complexes. In the classical case of
N = 2, we shall always omit the subscript.

As an abbreviation, we shall write dn,r
X for the composition dn+r−1

X . . . dn
X of r successive

differentials, beginning with dn
X . We shall interpret dn,0

X as the identity map on X . To improve
readability, in complex formulae we shall sometimes write d◦,r

X when the value of n is clear
from context.

For � ∈ {nothing, b,+,−}, C�
N (A) carries the structure of a Frobenius exact category, in

which the admissible exact sequences are precisely the chainwise split exact sequences of
complexes. For i ∈ Z, 1 ≤ k ≤ N and X ∈ A, let μi

k(X) be the N -complex
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· · · → 0 → X
idX−−→ · · · idX−−→ X → 0 → · · ·

with k terms equal to X , in positions i − k + 1 through i . For any i ∈ Z and any X ∈ A,
μi

N (X) is projective-injective in C�
N (A), and every projective-injective object is a direct

sum of complexes of this form. [15, Theorem 2.1] The stable category of C�
N (A) is denoted

K �
N (A) and is called the homotopy category of N -complexes over A.

A morphism f : X• → Y • in C�
N (A) is null-homotopic if there exists a sequence of

morphisms hi : Xi → Y i−N+1 satisfying

f i =
N∑

j=1

di+ j−N ,N− j
Y ◦ hi+ j−1 ◦ di, j−1

X

Thenull-homotopicmorphisms are precisely thosewhich factor through aprojective-injective
object [15, Theorem 2.3], hence two morphisms of complexes are equal in K �

N (A) if and
only if their difference is null-homotopic.

The suspension functor for the triangulated structure on K �
N (A) will be denoted by �.

While� is induced by the Frobenius structure onC�
N (A), there is a useful explicit description.

Given any N -complex X•, for each n ∈ Z, there are natural morphisms X• → μn
N (Xn) and

μn+N−1
N (Xn) → X•. By taking direct sums of these morphisms, we obtain chainwise split

exact sequences

0 X• ⊕
n∈Z μn

N (Xn) �X• 0

0 �−1X• ⊕
n∈Z μn+N−1

N (Xn) X• 0

whosemiddle terms are projective-injective. These sequences are functorial in X• and define
� and �−1 on C�

N (A). (Despite the notation, these functors only become mutually inverse

on K �
N (A).)

Let [n] : C�
N (A) → C�

N (A) denote the standard shift of complexes, with (X [n])i = Xn+i .

For N > 2, � does not agree with [1]; however, we have the relation �2 ∼= [N ] in K �
N (A)

[15, Theorem 2.4].

2.5 Derived category of N-complexes

In this section, let A be an abelian (not merely additive) category. Let N ≥ 2 be an integer.
Let n ∈ Z, 1 ≤ r < N , and X• ∈ CN (A). Define the r -th cycle (resp., boundary,

homology) group at n to be

Zn
r (X•) := ker(dn,r

X )

Bn
r (X•) := im(dn−N+r ,N−r

X )

Hn
r (X•) := Zn

r (X•)/Bn
r (X•)

It is clear that Bn
r (X•) is a subobject of Zn

r (X•). Note that our notation convention for Bn
r (X•)

differs from that of [15].
For � ∈ {nothing, b,+,−}, C�

N (A) is an abelian category, with all limits and colimits

computed component-wise. Given any short exact sequence X• Y • Z•f • g•
of N -
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64 Page 6 of 43 J. R. B. Brightbill, V. Miemietz

complexes, there are long exact sequences in homology

· · · → Hn
r (X•) f∗−→ Hn

r (Y •) g∗−→ Hn
r (Z•) δ−→ Hn+r

N−r (X•) → · · ·
for all 1 ≤ r < N . [8, Section 3]

We say that X• ∈ CN (A) is acyclic if Hn
r (X•) = 0 for all n ∈ Z and 1 ≤ r < N .

For � ∈ {nothing, b,+,−}, we let C�,ac
N (A) ⊆ C�

N (A) and K �,ac
N (A) ⊆ K �

N (A) denote the

full subcategories of acyclic N -complexes. K �,ac
N (A) is a thick subcategory of K �

N (A) [15,
Proposition 3.2]. We define the derived category of N -complexes to be the Verdier quotient
D�

N (A) := K �
N (A)/K �,ac

N (A). Aswith ordinary complexes, a short exact sequence inCN (A)

induces a triangle in DN (A) [15, Proposition 3.7].
A morphism s• in K �

N (A) is a quasi-isomorphism if its cone is acyclic. This occurs if
and only if Hn

r (s•) is an isomorphism for every n ∈ Z and all 1 ≤ r < N .
Given an N -complex X• and n ∈ N , define the homological truncation of X• at n to be

the complex σ≤n X• given by

σ≤n Xi =

⎧
⎪⎨

⎪⎩

0 i > n

Zi
n+1−i (X•) n − N + 2 ≤ i ≤ n

Xi i < n − N + 2

with the differential induced by d•
X . Clearly Hi

r (σ≤n X•) = 0 for all i > n. There is a
natural inclusion of complexes σ≤n X• ↪→ X• which induces an isomorphism Hi

r (σ≤n X•) ∼=
Hi

r (X•) for all r and all i ≤ n [15, Lemma 3.9]. We define σ>n X• to be the cokernel of this
morphism.

We also define the sharp truncation of X• at n to be the complex τ≤n X• which is zero
in degrees greater than n and agrees with X• in degrees less than or equal to n. We define
τ≥n X• analogously.

We say X• ∈ Db
N (A) is perfect if it is isomorphic to a bounded complex of projective

objects; let D per f
N (A) denote the full subcategory of such objects. In other words, D per f

N (A)

is the essential image of K b
N (Proj(A)) in Db

N (A). It is easily verified that D per f
N (A) is a thick

subcategory of Db
N (A); we define the N -singularity category to be the Verdier quotient

Ds
N (A) := Db

N (A)/D per f
N (A).

2.6 Gorenstein algebras

For a self-contained treatment of the theory of Gorenstein algebras, we refer to the upcoming
book by Krause [21, Chapter 6]. Let A be a finite-dimensional associative algebra over a field
F . We shall assume that A is a Gorenstein algebra; that is, A has finite injective dimension
as both a left and right A-module. In this case, both the left and right injective dimension
of A coincide [21, Lemma 6.2.1]. If this number is zero, i.e. A is injective as a right and
left A-module, then we say that A is self-injective; in this case the projective and injective
A-modules coincide.

We shall write mod-A and A-mod for the category of finitely-generated right and left
A-modules, respectively; when we speak of an “A-module”, we shall always mean an object
of mod-A unless otherwise specified. We shall identify A-mod with mod-(Aop) when con-
venient. Given X ∈ mod-A and a ∈ A, define ra : X → X to be the F-linear map given
by right multiplication by a; for X ∈ A-mod, we similarly define la : X → X to be left
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multiplication by a. If φ : A
∼−→ A is an F-algebra automorphism and X ∈ mod-A, define

Xφ ∈ mod-A by x · a := xφ(a), where the right-hand multiplication is done in X .
We shall abbreviate Proj(mod-A) by proj-A, and Inj(mod-A) by inj-A; for left modules

we use the abbreviations A-proj and A-inj.We say that X ∈ mod-A isGorenstein projective
(resp., Gorenstein injective) if ExtiA(X , A) = 0 (resp., ExtiA(D A, X) = 0) for all i > 0,
where D = HomF (−, F) is the F-linear duality. We denote the full subcategory of all
Gorenstein projective (resp., Gorenstein injective) modules by Gproj(A) (resp., Ginj(A)).

Gproj(A) forms a fully exact subcategory of the abelian categorymod-A. In fact, Gproj(A)

is a Frobenius category whose projective-injective objects are precisely proj-A [21, Theorem
6.2.5]. D restricts to an equivalence Gproj(A)op ∼−→ Ginj(Aop), hence Ginj(A) is also Frobe-
nius exact and its projective-injective objects are precisely inj-A. When A is self-injective,
note that Gproj(A) = mod-A = Ginj(A).

The Nakayama functor νA : mod-A → mod-A is the composition νA :=
D HomA(−, A) ∼= − ⊗A D A. The functor HomA(−, A) restricts to an exact duality
Gproj(A)

∼−→ Gproj(Aop) [21, Lemma 6.2.2], hence νA defines an exact equivalence
Gproj(A)

∼−→ Ginj(A) which descends to a triangulated equivalence of the respective stable
categories.

If A is self-injective, then νA is an exact autoequivalence of both mod-A and A-mod
and preserves projective-injectives; in this case, νA lifts to Db

N (A) and descends to Ds
N (A).

There is an F-algebra automorphism φA, called the Nakayama automorphism, such that
νA(X) = XφA . TheNakayama automorphism is unique up to a choice of inner automorphism.

2.7 Gorenstein Abelian categories

Just as a Frobenius exact abelian category serves as a useful categorical model for the module
category of a self-injective algebra, a Gorenstein abelian category generalizes the module
category of a Gorenstein algebra. For a detailed introduction to such categories, the interested
reader may consult Beligiannis and Reiten [2]; we shall summarize the needed facts and
definitions below.

Let A be an abelian category with enough projectives and injectives. We say that A is
Gorenstein if the projective objects have bounded injective dimension and the injective
objects have bounded projective dimension. An object X ∈ A is said to be Gorenstein
projective if ExtiA(X , P) = 0 for all i > 0 and every P ∈ Proj(A). We define Gproj(A)

to be the full subcategory of A consisting of the Gorenstein projective objects. (Beligiannis
and Reiten refer to this as the subcategory CM(P) of Cohen-Macaulay objects using an
equivalent definition.) It is easy to verify that Gproj(A) is a fully exact subcategory of A
containing Proj(A). We also define P<∞(A) to be the full subcategory of A consisting of
the objects with finite projective dimension.

Let X ,Y ⊆ A be full subcategories, closed under isomorphisms and direct summands.
Define the Ext-orthogonal subcategories

X⊥ := {M ∈ A | ∀X ∈ X ,Ext1A(X , M) = 0}
X⊥ := {M ∈ A | ∀X ∈ X ,Ext1A(M, X) = 0}

We say (X ,Y) is a cotorsion pair if:

i) X ⊆ Y⊥ .
ii) For all M ∈ A, there exists a short exact sequence Y ↪→ X � M with X ∈ X , Y ∈ Y .
iii) For all M ∈ A, there exists a short exact sequence M ↪→ Y � X with X ∈ X , Y ∈ Y .
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64 Page 8 of 43 J. R. B. Brightbill, V. Miemietz

We shall need the following three facts about Gorenstein abelian categories.

Theorem 2.1 (Beligiannis and Reiten, [2], Chapter 7.2, Theorem 2.2; Chapter 7.1, Theorem
1.4; and Chapter 5.3, Lemma 3.3) Let A be a Gorenstein abelian category. Then:

1) (Gproj(A),P<∞(A)) is a cotorsion pair.
2) Gproj(A)⊥ = P<∞(A) and P<∞(A)⊥ = Gproj(A).
3) Gproj(A) ∩ P<∞(A) = Proj(A).

Though Beligiannis and Reiten describe Gorenstein abelian categories using the language
of cotorsion pairs, we shall not. The following corollary translates the above results into our
preferred language of Frobenius exact categories.

Corollary 2.2 Let A be a Gorenstein abelian category. Then Gproj(A) is a Frobenius exact
category.

Proof Note that Proj(A) ⊆ Gproj(A). It follows immediately that Proj(A) ⊆ Proj(Gproj(A)).
Also, if P ∈ Proj(A), thenExt1A(X , P) = 0 for all X ∈ Gproj(A). Therefore P is an injective
object in Gproj(A) and so Proj(A) ⊆ Inj(Gproj(A)).

If I ∈ Inj(Gproj(A)), then Ext1A(M, I ) = 0 for all M ∈ Gproj(A), so I ∈ Gproj(A)⊥ =
P<∞(A). Thus I ∈ Gproj(A) ∩ P<∞(A) = Proj(A), and so Inj(Gproj(A)) = Proj(A).

Let P ∈ Proj(Gproj(A)) and let M ∈ A; it is enough to show that Ext1A(P, M) = 0.
There is a short exact sequence Y ↪→ X � M with X ∈ Gproj(A) and Y ∈ P<∞(A).
Note that ExtnA(P, X) = 0 for all n ≥ 1; it follows from the long exact sequence in Ext that
Ext1A(P, M) ∼= Ext2A(P, Y ). Y has finite projective dimension and therefore finite injective
dimension, so let I • be a finite injective resolution for Y . Define Y ′ := Z1(I •). Clearly
Y ′ ∈ P<∞(A) = Gproj(A)⊥, hence Ext2A(P, Y ) = Ext1A(P, Y ′) = 0. Thus P ∈ Proj(A)

and so Proj(A) = Proj(Gproj(A)).
Since A has enough projectives, so does Gproj(A). If X ∈ Gproj(A), we obtain a short

exact sequence X ↪→ I � X ′ for some I ∈ P<∞(A) and X ′ ∈ Gproj(A). Then I is
an extension of Gorenstein projective objects, so I ∈ Gproj(A). Thus I ∈ Gproj(A) ∩
P<∞(A) = Proj(A) = Inj(Gproj(A)). Therefore Gproj(A) has enough injectives, and so is
a Frobenius exact category. ��

3 The N-stable category

3.1 Themonomorphism category

Throughout this section, let (E,S) be an exact category.
For any integer k ≥ 1, let [[k]] denote the category corresponding to the poset {1 <

· · · < k}. For any k ≥ 0, let Mork(E) denote the category E [[k+1]] of functors from [[k + 1]]
to E . Namely, the objects of Mork(E) are diagrams (X•, f•) = X1

f1−→ · · · fk−→ Xk+1 of
k composable morphisms in E . Mork(E) carries a natural structure of an exact category,
in which the class of admissible exact sequences is S[[k+1]]. That is, X• � Y• � Z• is
admissible if and only if Xi � Yi � Zi is admissible in E for each 1 ≤ i ≤ k + 1.
(See Bühler, [5, Example 13.11].) As in all diagram categories, small limits and colimits in
Mork(E) are computed component-wise and exist if and only if the component-wise limits
and colimits exist (see, for instance, [3, Proposition 2.15.1]). Note that Mor0(E) recovers E
as an exact category.
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Mimicking our notation for N -complexes, given (X•, f•) ∈ Mork(E)wewill write f j
i :=

fi+ j−1 · · · fi for the composition of j successive maps in f•, beginning with fi . We shall let
f 0i denote the identity map on Xi .

Definition 3.1 Let (E,S) be an exact category. Let k ≥ 0. Let the monomorphism subcat-
egory MMork(E) be the full subcategory of Mork(E) consisting of objects of the form

X1 �ι1 X2 �ι2 · · · �ιk Xk+1

where each ι j is an admissible monomorphism in E .
An admissible short exact sequence in MMork(E) is any short exact sequence X• �

Y• � Z• which is admissible in Mork(E). Write MMork(S) for the class of admissible short
exact sequences in MMork(E).

Remark We could also define the epimorphism subcategory EMork(E) to be the analogous
subcategory of Mork(E) in which every morphism appearing in the diagram is an admissible
epimorphism in E . By again declaring all component-wise admissible exact sequences to
be admissible, we obtain a candidate structure of exact category on EMork(E). There is a
natural equivalence of categories between EMork(E) andMMork(Eop)which preserves their
candidate exact structures. Thus dual versions of all results in this section apply to EMork(E);
the reader can easily formulate the precise statements.

Our goal is to show that the above definitions give MMork(E) the structure of an exact
category. The result is straightforward in the case of abelian categories.

Proposition 3.2 Let A be an abelian category. Then MMork(A) is closed under extensions
in Mork(A). In particular, MMork(A) is a fully exact subcategory of Mork(A).

Proof Suppose we have a short exact sequence X• ↪→ Y• � Z•, where (X•, α•), (Z•, β•) ∈
MMork(A) and (Y•, β•) ∈ Mork(A). By the Snake Lemma, for each 1 ≤ i ≤ k we have a
short exact sequence

0 ker(αi ) ker(βi ) ker(γi )

Since ker(αi ) = ker(γi ) = 0, it follows that ker(βi ) = 0 and βi is a monomorphism for
all i . Thus (Y•, β•) ∈ MMork(A), and so MMork(A) is closed under extensions.

It is clear MMork(A) is a full additive subcategory of Mork(A), and that the candidate
exact structure on MMork(A) agrees with that inherited from Mork(A). Thus MMork(A) is
a fully exact subcategory of Mork(A). ��
Proposition 3.3 Let E be a small exact category. Then MMork(E) is exact.

Proof Since E is small, by [5, Theorem A.1], there exists an abelian category A and a fully
faithful exact functor ι : E → A such that ι reflects exactness and E is closed under extensions
in A. It is clear that ι induces an additive functor ι∗ : Mork(E) → Mork(A), which remains
fully faithful and sends objects of MMork(E) to MMork(A). Thus we may view MMork(E)

as a full, additive subcategory of MMork(A); accordingly, we will suppress mention of the
functor ι in our notation going forward.

We claim that MMork(E) is closed under extensions in MMork(A), hence is a fully exact

subcategory. Let X• Y• Z•
f• g• be a short exact sequence in MMork(A), with

(X•, α•), (Z•, γ•) ∈ MMork(E). We must show that (Y•, β•) ∈ MMork(E).
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For each i , we have a short exact sequence Xi Yi Zi
fi gi in A. Thus Yi ∈ E ,

since E is closed under extensions. Since the inclusion functor ι : E → A reflects exactness,
the above short exact sequence is admissible in E .

It remains to show that the monomorphisms βi are admissible in E . Consider the diagram

Xi Xi+1 coker(αi )

Yi Yi+1 coker(βi )

Zi Zi+1 coker(γi )

fi

αi

fi+1 φ

gi

βi

gi+1 ψ

γi

The first two columns are admissible and exact in E by the above remarks; we construct the
third column by applying the Snake Lemma and deduce that it is a short exact sequence inA.
The monomorphisms αi and γi are admissible in E , hence coker(αi ), coker(γi ) ∈ E . Since
E is closed under extensions and ι reflects exactness, coker(βi ) ∈ E and the third column is
an admissible short exact sequence in E . Thus all the objects in the second row lie in E , hence
the second row is an admissible short exact sequence in E . In particular, βi is an admissible
monomorphism in E . Thus (Y•, β•) ∈ MMork(E).

It remains to show that the structure of exact category which MMork(E) inherits from
MMork(A) agrees with the original exact structure, i.e. that which it inherited fromMork(E).
This follows immediately from the fact that ι is exact and reflects exactness. ��

Since verifying the axioms of an exact category only involves working with finitely many
objects at a time, the smallness hypothesis in the previous proposition can be removed.

Lemma 3.4 Let (E,S) be an exact category, and let E ⊆ Ob(E) be a set of objects. Then
there exists a small full subcategory E ′ of E containing E, such that (E ′,S ′) is an exact
category, where S ′ is the set of all kernel-cokernel pairs in S whose objects lie in E ′.

Proof Given any full subcategory T of E , let C(T ) (resp., K (T )) be the full subcategory of E
consisting of the objects coker( f ) (resp., ker( f )), where f ranges over all morphisms in T
which are admissible monomorphisms (resp., epimorphisms) in E . In this definition wemake
a single choice of coker( f ) or ker( f ) for eachmorphism f , henceC(T ) and K (T ) are small
if T is. For each X ∈ Ob(T ), we choose X to be the representative of both ker(X → 0) and
coker(0 → X), so that T is a full subcategory of both K (T ) and C(T ). Finally, it is easily
checked that if T is an additive subcategory of E , then so are C(T ) and K (T ).

For any finite sequence X1, · · · , Xn of objects in E , choose one object of E isomorphic
to

⊕n
i=1 Xi , and let E0 be full subcategory of E consisting of all chosen objects. Then E0

is a small additive subcategory of E which can be chosen to contain E . For each i > 0,
inductively define Ei := K (C(Ei−1)), and let E ′ := ⋃∞

i=0 Ei . It is clear that E ′ is a small
additive subcategory of E containing E .

It remains to show that (E ′,S ′) is an exact category. It is immediate that all identity mor-
phisms are admissible epimorphisms and monomorphisms. If f and g are two composable
admissible monomorphisms in Ei , then cok( f ◦ g) ∈ Ei+1 hence f ◦ g is an admissible
monomorphism in E ′; by a dual argument, composition of admissible epimorphisms in E ′
also remain admissible. Similarly, if f : X � Y and g : X → Z are morphisms in Ei with
f an admissible monomorphism, then by [5, Proposition 2.12] the pushout P of f along g
in E fits into admissible exact sequences
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X Y ⊕ Z P

Z P coker( f )

[
f

g

]
[
g′ f ′

]

f ′

The first sequence shows that, up to isomorphism, P ∈ Ei+1. Since coker( f ) ∈ Ei+1, we
have that f ′ is an admissible monomorphism in E ′. By a dual argument, pull-backs preserve
admissible epimorphisms in E ′. ��
Proposition 3.5 Let E be an exact category. Then MMork(E) is exact.

Proof We let S denote the class of admissible exact sequences in E . If E ⊆ E is any finite
set of objects, let (E ′,S ′) be the small exact category containing E constructed in Propo-
sition 3.4. Then the inclusion functor E ′ ↪→ E is exact and induces a fully faithful functor
MMork(E ′) ↪→ MMork(E) which maps MMork(S ′) into MMork(S). By Proposition 3.3,
(MMork(E ′),MMork(S ′)) is an exact category.

To verify the exact category axioms, we needwork onlywith finitelymany objects of E at a
time, hence exactness ofMMork(E) can be verified insideMMork(E ′). For instance, to verify
that the push-out of the admissible monomorphism f• : X• � Y• along g• : X• → Z• is
an admissible monomorphism, let E = {Xi , Yi , Zi | 1 ≤ i ≤ k + 1}. Then the pushout of
f• along g• exists and is an admissible monomorphism in MMork(E ′), hence in MMork(E).
Verification of the other axioms is analogous. ��

We close this section by providing a convenient intrinsic description of the admissible
monomorphisms and epimorphisms in the monomorphism category of an abelian category.

Proposition 3.6 Let A be an abelian category and let f• : (X•, α•) → (Y•, β•) be a
morphism in MMork(A). f• is an admissible epimorphism if and only if each fi is an
epimorphism. f• is an admissible monomorphism if and only if each fi is a monomorphism
and each sub-diagram

Xi Xi+1

Yi Yi+1

αi

fi fi+1
βi

forms a pullback square in A.

Proof If f• is an admissible epimorphism, it follows immediately that each fi is epic.
Conversely, if each fi is an epimorphism, then f• is an epimorphism in Mork(A), hence
it has a kernel (K•, ι•). To prove that f• is an admissible epimorphism, we must show
K• ∈ MMork(A). We have a commutative diagram

Ki Ki+1

Xi Xi+1

ιi

αi

from which it is clear that ιi is a monomorphism. Thus K• ∈ MMork(A).
If f• is an admissible monomorphism, then we have a short exact sequence

X• Y• Z•
f• g• with (Z•, γi ) ∈ MMork(A). It follows immediately that each fi
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is a monomorphism. To show Xi is a pullback, consider the commutative diagram with exact
columns

T

Xi Xi+1

Yi Yi+1

Zi Zi+1

ψ

φ

η

αi

fi fi+1
βi

gi gi+1

γi

where ψ and φ satisfy fi+1ψ = βiφ. Postcomposing this equation with gi+1, we see that
0 = gi+1 fi+1ψ = gi+1βiφ = γi giφ. Since γi is a monomorphism, giφ = 0. By exactness
of the first column there exists a unique η : T → Xi such that φ = fiη. An easy diagram
chase yields fi+1ψ = fi+1αiη. Since fi+1 is a monomorphism, we have ψ = αiη, hence
the top square is a pullback.

Conversely, assume each fi is a monomorphism and each square in f• is a pullback. Let
(Z•, γ•) be the cokernel of f• in Mork(A). We must show that Z• ∈ MMork(A), i.e that
each γi is monic. We shall construct the following commutative diagram:

Xi Xi+1

T ′ Yi Yi+1

T Zi Zi+1

αi

fi
�

fi+1

g′

φ′

�

ψ

η

βi

gi gi+1

φ

0

γi

We start with the rightmost two squares, which are commutative with exact columns. To show
γi is a monomorphism, consider φ : T → Zi such that γiφ = 0. Let T ′ be the pullback of
φ along gi ; since gi is an epimorphism, so is g′. We have that gi+1βiφ

′ = γiφg′ = 0, so by
exactness of the right column βiφ

′ = fi+1ψ for some ψ : T ′ → Xi+1. Since the top right
square is a pullback, we obtain a morphism η : T ′ → Xi making the diagram commute. It
follows that φg′ = gi fiη = 0, hence φ = 0. Thus γi is a monomorphism, Z• ∈ MMork(A),
and f• is an admissible monomorphism. ��
Remark Both of the above criteria can fail when A is not abelian.

1) Let A be the path algebra of the A3 Dynkin quiver 1 ← 2 → 3, and let Si be the simple
module corresponding to vertex i . Let E be the full subcategory of mod-A obtained by
removing all objects isomorphic to S3. E is a full additive subcategory of mod-A which
is closed under extensions and is therefore a fully exact subcategory of mod-A.

Consider the objects X• = S1 ↪→ S2
S1 S3

and Y• = 0 ↪→ S2 in MMor1(E). There

is an obvious component-wise epimorphism f• : X• → Y• with kernel K• = S1 ↪→
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S1 ⊕ S3. Since S3 is not an object of E , the monomorphism defining K• has no cokernel
in E , hence is not admissible. Thus K• /∈ MMor1(E), and so f• is not a distinguished
epimorphism in this category.
An additive category is weakly idempotent complete if every split monomorphism
has a cokernel (or, equivalently, every split epimorphism has a kernel). Using the dual
of [5, Corollary 7.7], one can show that if E is weakly idempotent complete, then the
epimorphism criterion in the above proposition holds.

2) Let B be the path algebra of the D4 Dynkin quiver
1 2 3

4
, and let Si be the simple

module corresponding to vertex i . Let E be the full subcategory of mod-B obtained
by removing all objects isomorphic to S3. As before, E is a fully exact subcategory of
mod-B.

Let X• = S4 ↪→ S1
S4

and Y• = S2
S4

↪→ S1 S2 S3
S4

in MMor1(E). The natural

inclusions fi : Xi ↪→ Yi induce a monomorphism f• : X• ↪→ Y• in MMor1(E), and
it is clear that the commutative square defined by f• is a pullback. The cokernel of
f• is Z• = S2 ↪→ S2 ⊕ S3. Once again, S3 /∈ E , hence the monomorphism defining
Z• is not admissible in E and so Z• /∈ MMor1(E). Therefore f• is not an admissible
monomorphism in MMor1(E).
If every monomorphism in E is admissible, then the proof of monomorphism criterion
in the above proposition holds with minimal changes. This is a very strong hypothesis;
we do not know if there is a weaker one.

3.2 Projective and injective objects

We shall classify the projective and injective objects of MMork(E). It will be convenient to
introduce some notation.

Definition 3.7 For X ∈ E and 1 ≤ i ≤ k +1, let χi (X)• ∈ Mork(E) be given by 0 → · · · →
0 → X

idX−−→ · · · idX−−→ X , where the first i − 1 objects are 0, and the first X is in position i .

The following lemma, adapted from the proof of [5, Proposition 2.12], will be useful.

Lemma 3.8 (Bühler [5]) Let ι : X � Y be an admissible monomorphism in E , and let

f : X → Z be any morphism. Then

[
ι

f

]
: X � Y ⊕ Z is an admissible monomorphism.

Dually, if p : Y � W is an admissible epimorphism and g : Z → W is any morphism, then[
p g

] : Y ⊕ Z � W is an admissible epimorphism.

Proof We can factor

[
ι

f

]
as the composition

X X ⊕ Z X ⊕ Z Y ⊕ Z

[
idX

0

]

∼

[
idX 0

f idZ

] [
ι 0

0 idZ

]

Split monomorphisms and isomorphisms are admissible monomorphisms, as is the direct

sum of two admissible monomorphisms [5, Proposition 2.9]. Thus

[
ι

f

]
is the composition

of three admissible monomorphisms.
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The proof of the second statement is dual. ��
Proposition 3.9 Let E be an exact category. Then (I•, ι•) ∈ MMork(E) is injective (resp.,
projective) if and only if each Ii is injective (resp., projective) in E and each ιi is split.

Proof Take (I•, ι•) ∈ MMork(E) with each Ii injective and each ιi split. Then we have
I• ∼= ⊕k+1

i=1 χi (I ′
i )•, where I ′

1 = I1 and I ′
i = coker(ιi−1) for i > 1. Thus it suffices to show

that χi (I )• is injective for every injective object I and each 1 ≤ i ≤ k + 1.
Fix I and i and suppose f• : χi (I )• � (X•, α•) is an admissiblemonomorphism;we shall

define a retraction r•. We shall construct the following commutative diagramwith admissible
exact rows and columns:

0 I I

Xi−1 Xk+1 coker(αk−i+2
i−1 )

Xi−1 coker( fk+1) coker(β)

fi−1

idI

fk+1 f
αk−i+2

i−1

idXi−1

p

β

In the case where i = 1, we define X0 = 0. The first two rows and columns are clearly
exact. Since f• is an admissible monomorphism, coker( f•) ∈ MMork(E), hence β is an
admissible monomorphism and the third row is exact.

By [5, Exercise 3.7], the induced maps forming the third column are uniquely defined
and form an admissible short exact sequence. By injectivity of I , f admits a retraction
r : coker(αk−i+2

i−1 ) � I . For 1 ≤ j ≤ k + 1, define r j : X j → I to be the composition

r j = r pα
k+1− j
j . By the above diagram, r j = 0 for j ≤ i − 1; for such j we shall therefore

view r j as a morphism X j → 0. Furthermore, for each 1 ≤ j < k + 1, r j = r j+1α j , hence
r• : X• → χi (I )• is a morphism in MMork(E). The verification that r• is a retraction of f•
is straightforward. Thus χi (I )• is injective.

Conversely, suppose (I•, ι•) is injective. To show each Ii is injective, consider the diagram
in E

Ii

X Y
g

f

Wemust find h : Y → Ii making the diagram commute. Note that g induces an admissible
monomorphism g• : χi (X)• � χi (Y )•. f also induces a morphism f• : χi (X)• → I•,
where f j = 0 for j < i , fi = f , and f j = X

f−→ Ii � I j for j > i . By injectivity of I•, we
obtain an induced map h• : χi (Y )• → I• such that f• = h•g•. Setting h = hi , we have that
f = hg, hence Ii is injective. It follows immediately that the ιi are split.
We turn to the classification of the projective objects. To show that (P•, ι•), with Pi

projective and ιi split, is projective in MMork(E), it suffices to show that χi (P)• is projective
for any i and any projective P . In fact, something stronger is true; we shall prove that χi (P)•
is projective in Mork(E).

Let p• : (X•, f•) � χi (P)• be an admissible epimorphism inMork(E); we shall construct
a section s•. Since P is projective, pi : Xi � P admits a section si . For j < i let s j = 0 →
X j , and for j > i let s j = P �si Xi

f j−i
i−−→ X j . It is easy to verify that s• : χi (P)• → X• is

123



The N-stable category Page 15 of 43 64

a morphism in MMork(E) and a section of p•. Thus χi (P)• is projective in Mork(E), hence
also in MMork(E).

Conversely, let (P•, ι•) be projective inMMork(E). To show that Pi is projective, consider
the diagram in E

Pi

Y X

f
g

We must find h : Pi → Y making the diagram commute.
We shall define objects (X•, α•), (Y•, β•) ∈ MMork(E) and morphisms f• : P• → X•,

g• : Y• � X• such that Xi = X , Yi = Y , fi = f , and gi = g. We start by defining (X•, α•)
and f•. For all 1 ≤ j ≤ i , let X j = X and f j = f ι

i− j
j . For all 1 ≤ j < i let α j be the

identity map on X . For j ≥ i we inductively define X j+1, f j+1, and α j via the pushout

Pj Pj+1

X j X j+1

f j

ι j

f j+1
α j

Admissible monomorphisms are stable under pushouts, hence αi is an admissible monomor-
phism and f• : P• → X• is a morphism in MMork(E).

For j ≤ i , let Y j = Y and g j = g. For j > i , let Y j = Y ⊕ X j and g j : Y j � X j

be given by
[
0 idX j

]
. For j < i , let β j = idY . Let βi =

[
idY

αi g

]
and, for j > i , let

β j =
[

idY 0
0 α j

]
. The direct sum of admissible monomorphisms is admissible, hence β j is

an admissible monomorphism for j > i . βi is an admissible monomorphism by Lemma 3.8,
therefore Y• ∈ MMork(E). It is clear that g• : Y• → X• is a morphism, that each gi is an
admissible epimorphism, and that g• has kernel

ker(g) �id · · · �id ker(g) � Y �id · · · �id Y ∈ MMork(E)

Thus g• is an admissible epimorphism.
By projectivity of P•, we obtain a morphism h• : P• → Y• such that f• = g•h•. Letting

h = hi , we have that f = gh, hence Pi is projective.
It remains to show that the ιi are split. For any two indices j > l, denote Pj/Pl :=

coker(ι
j−l
l ). It suffices to show that each of the compositions Pi Pk+1

ιk+1−i
i is split; this

follows immediately if we show that Pk+1/Pi is projective for each 1 ≤ i ≤ k.
Suppose we have an admissible epimorphism g : Y � X and any morphism f :

Pk+1/Pi → X ; we shall construct a lift h : Pk+1/Pi → Y . Define P•/Pi to be the object
in MMork(E) given by 0 → · · · → 0 → Pi+1/Pi � · · · � Pk+1/Pi , with the morphisms
induced by the ι j . There is a natural morphism π• : P• � P•/Pi with kernel

P1 � · · · � Pi−1 � Pi �id · · · �id Pi ∈ MMork(E)

Thus π• is an admissible epimorphism. Moreover, f and g induce obvious morphisms f• :
P•/Pi → χi+1(X)•, and g• : χi+1(Y )• � χi+1(X)•.

123



64 Page 16 of 43 J. R. B. Brightbill, V. Miemietz

Consider the following diagram:

P•

P•/Pi

χi+1(Y )• χi+1(X)•

h• π•

f•
h•

g•

By projectivity of P•, we can lift f•π• to h• : P• → χi+1(Y )•. Furthermore, since

χi+1(Y )i = 0, the composition Pi � Pj
h j−→ Y is zero for all j > i , hence h j factors

through h j : Pj/Pi → Y . Defining h j = 0 for j ≤ i , it follows that h• = h•π•, hence
f•π• = g•h•π•. Since π• is an epimorphism, we obtain f• = g•h•, so the above diagram
commutes. In particular, hk+1 : Pk+1/Pi → Y is a lift of fk+1 = f , so Pk+1/Pi is projective,
as claimed. ��

It will also be helpful to have the following characterization of projectives and injectives
in Mork(E).

Proposition 3.10 Let E be an exact category. The object (P•, ι•) ∈ Mork(E) is projective
if and only if each Pi is projective in E and each ιi is a split monomorphism. The object
(I•, π•) ∈ Mork(E) is injective if and only if each Ii is injective in E and each πi is a split
epimorphism.

Proof Let (P•, ι•) be projective inMork(E). To show that Pi is projective, choose any admis-
sible epimorphism g : Y � X in E and any morphism f : Pi → X ; we must construct
h : Pi → Y such that f = gh. Define ωi (X)• ∈ Mork(E) to be

X
id−→ · · · id−→ X → 0 → · · · 0

where X appears in the first i positions, and similarly for ωi (Y )•. We can extend f to a
morphism f• : P• → ωi (X)• by setting f j := f ι

i− j
j for j ≤ i and f j = 0 for j > i ;

g extends to an admissible epimorphism g• : ωi (X)• � ωi (Y )• in the obvious way. By
projectivity of P•, we obtain a lift h• : P• → Y• such that f• = g•h•. It follows that
f = hi g, hence Pi is projective.
To show that ιi is a split monomorphism, define

P≤i• =P1 · · · Pi 0 0 · · · 0

̂P≤i• =P1 · · · Pi Pi 0 · · · 0

ι1 ιi−1

ι1 ιi−1 id

There are natural morphisms f• : P• � P≤i• and g• : ̂P≤i• � P≤i• , both of which are

admissible epimorphisms. By projectivity of P•, we obtain a map r• : P• → ̂P≤i• such that
f• = g•r•. For all j ≤ i , we have that f j = idPj = g j , hence r j = idPj . From the diagram

Pi Pi+1

Pi Pi

ιi

ri ri+1
idPi
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we deduce that ri+1ιi = idPi , hence ιi is a split monomorphism.
For the reverse direction, it suffices to prove that χi (P)• is projective in Mork(E) for

1 ≤ i ≤ k + 1 and each P ∈ Proj(E). This claim was proved explicitly in our proof of
Proposition 3.9.

Note that there is an equivalence of categories Mork(E)op ∼−→ Mork(Eop) given by
(X•, f•) �→ (Xk+2−•, f op

k+1−•). The characterization of injective objects thus follows from
the characterization of projective objects. ��

Remark Note that the projective objects of MMork(E) are precisely the projective objects
of Mork(E). Dually, the injective objects of EMork(E) are precisely the injective objects of
Mork(E).

If an exact category has enough injectives or projectives, so does its monomorphism
category.

Proposition 3.11 Let E be an exact category. If E has enough projectives (resp., injectives),
then so does MMork(E).

Proof Let (X•, α•) ∈ MMork(E), and suppose E has enough projectives. Then there exist
projective objects Pi and admissible epimorphisms pi : Pi � Xi for each 1 ≤ i ≤ k +1. Let
P ′

i = ⊕i
j=1 Pj = P ′

i−1 ⊕ Pi and let ιi : P ′
i � P ′

i+1 denote the canonical monomorphism.
Then (P ′•, ι•) is projective in MMork(E) by Proposition 3.9. Define f• : P ′• → X• by
fi := [

αi−1
1 p1 · · · αi−1 pi−1 pi

] = [
αi−1 fi−1 pi

]
. Since pi is an admissible epimorphism

in E , by Lemma 3.8 so is fi , hence f• is an admissible epimorphism in Mork(E). Let g• :
(K•, β•) � (P ′•, ι•) be the kernel of f•. To show that f• is admissible in MMork(E), we
must show that (K•, β•) lies in MMork(E).

Write the admissible monomorphism gi : Ki � P ′
i = P ′

i−1 ⊕ Pi as gi =
[

ψi

−ϕi

]
. We

have an admissible short exact sequence

Ki P ′
i−1 ⊕ Pi Xi

[
ψi

−ϕi

]
[
αi−1 fi−1 pi

]

which gives rise to the bicartesian square:

Ki P ′
i−1

Pi Xi

ϕi

ψi

αi−1 fi−1
pi

Since pi is an admissible epimorphism, so is ψi . By projectivity of P ′
i−1, the top row is

split exact, hence Ki ∼= P ′
i−1 ⊕ ker(ψi ). Identifying the two, we can express ψi as

[
id 0

]

and ϕi as
[
τi θi

]
for some τi : P ′

i−1 → Pi and θi : ker(ψi ) → Pi . In particular, we can

express gi : Ki → P ′
i as the matrix

[
id 0
−τi −θi

]
.

Let us express βi−1 : Ki−1 → Ki = P ′
i−1 ⊕ ker(ψi ) as

[
δi−1

γi−1

]
. We can then rewrite the

identity giβi−1 = ιi−1gi−1 as the commutative diagram
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Ki−1 P ′
i−1 ⊕ ker(ψi )

P ′
i−1 P ′

i−1 ⊕ Pi

[
δi−1

γi−1

]

gi−1

[
id 0

−τi −θi

][
id

0

]

It follows that δi−1 = gi−1. Since gi−1 is an admissiblemonomorphism, so isβi−1 =
[

gi−1

γi−1

]
.

Thus (K•, β•) ∈ MMork(E), and so f• is an admissible epimorphism. Therefore MMork(E)

has enough projectives.
Suppose now that E has enough injectives. Let (X•, α•) ∈ MMork(E); we shall construct

an admissible monomorphism g• : (X•, α•) � (I•, ι•) for some injective object (I•, ι•).
Let g1 : X1 � I1 be an admissible morphism from X1 to an injective object in I1 ∈ E ;

we shall define the remaining admissible monomorphsims gi , injective objects Ii , and split
monomorphisms ιi inductively. Suppose we have constructed gi : Xi � Ii . Since αi : Xi �
Xi+1 is an admissible monomorphism, we can lift gi to a morphism ĝi : Xi+1 → Ii . Since E
has enough injectives, there exists an admissible monomorphism hi+1 : coker(αi ) � I ′

i+1
for some injective object I ′

i+1.We define Ii+1 := Ii ⊕ I ′
i+1 and gi+1 = [

ĝi hi+1πi+1
]
, where

πi+1 : Xi+1 � coker(αi ) is the canonical map. Let ιi : Ii � Ii+1 be the inclusion of Ii as
a direct summand of Ii+1. Since Ii and I ′

i+1 are injective, so is Ii+1. It is clear that ιi is split;
it remains to check that gi+1 is an admissible monomorphism.

We have a commutative diagram with exact rows

Xi Xi+1 coker(αi )

Ii Ii+1 I ′
i+1

αi

gi

πi+1

gi+1 hi+1

ιi

It follows from the Five Lemma [5, Corollary 3.2] that gi+1 is an admissible monomorphism,
hence g•, I•, and ι• are defined, and g• is an admissible morphism in Mork(E).

To see that g• is an admissible monomorphism in MMork(E), we must show that its
cokernel (Q•, ψ•) lies in MMork(E). We have a commutative diagram with exact columns:

Xi Xi+1 coker(αi )

Ii Ii+1 I ′
i

coker(gi ) coker(gi+1) coker(hi+1)

αi

gi gi+1 hi+1

ιi

ψi

Since the first two rows are exact, by the 3 × 3 Lemma [5, Corollary 3.6] the third row is
also an admissible short exact sequence. In particular, ψi is an admissible monomorphism,
hence coker(g•) ∈ MMork(E). Thus g• is an admissible monomorphism. I• is injective by
Proposition 3.9, hence MMork(E) has enough injectives. ��

We have arrived at the main result of this section:

Theorem 3.12 Let E be a Frobenius exact category. Then MMork(E) is Frobenius exact.
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Proof Since Proj(E) = Inj(E), it follows immediately from Proposition 3.9 that
Proj(MMork(E)) = Inj(MMork(E)). Since E has enough projectives and injectives, by
Proposition 3.11 so does MMork(E). ��
Definition 3.13 LetE be aFrobenius exact category. For N ≥ 2, define the N -stable category
of E , denoted stabN (E), to be the stable category of MMorN−2(E).

Note that when N = 2, we obtain the stable category of E .

4 Acyclic projective-injective N-complexes

Throughout this section, letAdenote aGorenstein abelian category and letE denote theFrobe-
nius exact subcategory Gproj(A). Consider the functor F : Cac

N (Proj(A)) → MMorN−2(E)

given by

F(P•) = Z0
1(P•) ↪→ · · · ↪→ Z0

N−1(P•)

In this section, we shall prove that F induces an equivalence F between K ac
N (Proj(A))

and stabN (E).

4.1 Properties of F

Since a priori F is only a functor into MorN−2(A), we must first prove that F actually takes
values in MMorN−2(E).

Proposition 4.1 Let (P•, d•
P ) ∈ Cac

N (Proj(A)). Then for all k ∈ Z and 1 ≤ i < N, Zk
i (P•) ∈

E . The natural inclusion maps Z0
i (P•) ↪→ Z0

i+1(P•) are admissible monomorphisms in E ,
hence F(P•) ∈ MMorN−2(E).

Proof Fix 1 ≤ i < N . To show that Z0
i (P•) ∈ E , let Q ∈ Proj(A) and n > 0. Note that

Q has finite injective dimension m ≥ 0, hence Extm+1
A (M, Q) = 0 for all M ∈ A. We can

convert P• into a 2-complex (P̃•, d•
P̃
) by arranging the differentials into groups of i and

N − i . More precisely, define

P̃s =
{

P Nk s = 2k

P Nk+i s = 2k + 1
, ds

P̃
=

{
d Nk,i

P s = 2k

d Nk+i,N−i
P s = 2k + 1

Note that P̃• is acyclic and Z0(P̃•) = Z0
i (P•). Since, for all k ∈ Z, τ≤0(P̃•[k − 1]) is a

projective resolution of Zk(P̃•), we have that

HomDb(A)(Z0
i (P•), Q[n]) = HomK −(A)(τ≤0(P̃•[−1]), Q[n])

= HomK (A)(P̃•[−1], Q[n])
= HomK (A)(P̃•[m − n], Q[m + 1])
= HomK −(A)(τ≤0(P̃•[m − n]), Q[m + 1])
= HomDb(A)(Zm−n+1(P̃•), Q[m + 1])
= Extm+1

A (Zm−n+1(P̃•), Q)

= 0
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Thus Z0
i (P•) ∈ E for all 1 ≤ i < N . Applying the same argument to P•[k] shows that

Zk
i (P•) ∈ E for all k ∈ Z.
A morphism in E is an admissible monomorphism if and only if it is a monomorphism in

A with cokernel in E . The map ι : Z0
i (P•) ↪→ Z0

i+1(P•) is a monomorphism in A since it

is the kernel of the restriction of d0,i
P to Z0

i+1(P•). Since Z0
i+1(P•) = B0

i+1(P•), we obtain

a short exact sequence Z0
i (P•) B0

i+1(P•) Bi
1(P•)ι d0,i

P . Since Bi
1(P•) = Zi

1(P•) ∈ E ,
ι is an admissible monomorphism in E , and therefore F(P•) ∈ MMorN−2(E). ��

To prove that F is full, we introduce the following terminology.

Definition 4.2 Let P•, Q• ∈ CN (A). Let n ∈ Z and let f n : Pn → Qn be any morphism.
We say f n preserves cycles if the restriction of f n to Zn

i (P•) has image in Zn
i (Q•) for each

1 ≤ i ≤ N − 1.
Similarly, we say f n preserves boundaries if the restriction of f n to Bn

i (P•) has image
in Bn

i (Q•) for each 1 ≤ i ≤ N − 1.

Note that when P• and Q• are acyclic, the two notions are equivalent.

Proposition 4.3 F is full.

Proof Take P•, Q• ∈ Cac
N (Proj(A)) and f• : F(P•) → F(Q•). Using the injectivity of Q0,

lift the map Z0
N−1(P•) fN−1−−−→ Z0

N−1(Q•) ↪→ Q0 along the monomorphism Z0
N−1(P•) ↪→

P0 to obtain a morphism f 0 : P0 → Q0. Clearly, the restriction of f 0 to Z0
i (P•) is fi ,

hence f 0 preserves cycles.
It thus suffices to extend f 0 to a morphism of complexes f • : P• → Q•. We claim

that, given a morphism f n : Pn → Qn which preserves cycles, we can construct maps
f n±1 : Pn±1 → Qn±1, both preserving cycles, such that di

Q f i = f i+1di
P for i = n − 1, n.

Once this claim established, we can extend f 0 to f • by induction, proving fullness.
Since f n preserves cycles, we obtain an induced map on the images f n : Bn+1

N−1(P•) →
Bn+1

N−1(Q•), which, by injectivity of Qn+1, lifts to a map f n+1 : Pn+1 → Qn+1. It follows
immediately that f n+1dn

P = dn
Q f n . For 1 ≤ i ≤ N − 2, if we restrict both sides of this

equation to Bn
i+1(P•) and use the fact that f n preserves boundaries, we see that f n+1 maps

Bn+1
i (P•) into Bn+1

i (Q•). For i = N − 1, note that by construction the restriction of f n+1

to Bn+1
N−1(P•) is f n . Thus f n+1 preserves boundaries and therefore cycles.

Since f n preserves boundaries, it restricts to a map from Bn
N−1(P•) to Bn

N−1(Q•). Using
projectivity of Pn−1, we can lift this restriction to f n−1 : Pn−1 → Qn−1. It follows that
f ndn−1

P = dn−1
Q f n−1, hence f n−1 maps Zn−1

1 (P•) into Zn−1
1 (Q•). For 2 ≤ i ≤ N −1, note

that since f n preserves cycles, the left side of this equation maps Zn−1
i (P•) into Zn

i−1(Q•).
Postcomposing with dn,i−1

Q , we get dn,i−1
Q f ndn−1

P = dn−1,i
Q f n−1, hence the left side maps

Zn−1
i (P•) to 0. The right side then shows that f n−1 maps Zn−1

i (P•) into Zn−1
i (Q•), hence

f n−1 preserves cycles. ��
To show that F is essentially surjective, it will be convenient to introduce the following

terminology.

Definition 4.4 An N -acyclic array in E is the data of:

• objects Xn
j ; n ∈ Z, 0 ≤ j ≤ N
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• monomorphisms ιnj : Xn
j ↪→ Xn

j+1; n ∈ Z, 0 ≤ j < N

• epimorphisms pn
j : Xn

j � Xn+1
j−1; n ∈ Z, 0 < j ≤ N

We shall write ι
n,k
j : Xn

j ↪→ Xn
j+k for the composition ιnj+k−1 · · · ιnj of k successive ιn• ,

beginning at ιnj , and similarly for pn,k
j : Xn

j � Xn+k
j−k .

The above data should satisfy the following three properties:

1) Xn
0

∼= 0.
2) Xn

N is projective-injective.
3) For all 1 ≤ j ≤ N − 1, the diagram

Xn
j+1

Xn
j Xn+1

j

Xn+1
j−1

pn
j+1ιnj

pn
j ιn+1

j−1

commutes and forms a bicartesian square.
Given X• ∈ MMorN−2(E), we say that the N -acyclic array (Xn

j , ι
n
j , pn

j ) extends X• if

X• = (X0•, ι0•).

Given P• ∈ Cac
N (Proj(A)), it is easily verified that we obtain an N -cyclic array by defining

Xn
j = Zn

j (P•) (here we take Zn
0 (P•) = 0 and Zn

N (P•) = Pn), ιnj to be the inclusion of
kernels, and pn

j to be the morphism on kernels induced by dn
P .

Proposition 4.5 F is essentially surjective.

Proof Let (X•, ι•) ∈ MMorN−2(E). The proof proceeds in two steps. First we prove that,
given an N -acyclic array (Xn

j , ι
n
j , pn

j ) extending X•, there exists P• ∈ Cac
N (Proj(A)) such

that F(P•) = X•. In the second step, we shall construct such an N -acyclic array.
Given an N -acyclic array (Xn

j , ι
n
j , pn

j ) extending X•, define maps

dn := ιn+1
N−1 pn

N : Xn
N → Xn+1

N

We claim that (X•
N , d•) ∈ Cac

N (Proj(A)). By assumption, all p and ι commute, so we have

that dn, j = ι
n+ j, j
N− j pn, j

N for all 1 ≤ j ≤ N . In particular, dn,N factors through Xn+N
0 = 0,

hence X•
N ∈ CN (A). Each Xn

N is projective-injective by assumption.
To show that X•

N is acyclic, note that

Zn
j (X•

N ) = ker(dn, j ) = ker(ι
n+ j, j
N− j pn, j

N )

= ker(pn, j
N )

Bn
j (X•

N ) = im(dn−N+ j,N− j ) = im(ι
n,N− j
j pn−N+ j,N− j

N )

= Xn
j
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Thus we must show that Xn
j = ker(pn, j

N ). Since the composition of bicartesian squares is
bicartesian, the commutative square

Xn
j+k

Xn
j Xn+ j

k

Xn+ j
0 = 0

pn, j
j+kι

n,k
j

pn, j
j ι

n+ j,k
0

is bicartesian for all 1 ≤ j ≤ N − 1, 1 ≤ k ≤ N − j . This yields an exact sequence

0 Xn
j Xn

j+k Xn+ j
k 0

ι
n,k
j pn, j

j+k

Taking k = N − j , we obtain that Xn
j = ker(pn, j

N ), as desired. Therefore X•
N is acyclic.

Taking n = 0 and k = 1 in the above exact sequence, we see that the morphism

Z0
j (X•

N ) ↪→ Z0
j+1(X•

N ) is precisely X0
j

ι0j
↪−→ X0

j+1. Thus F(X•
N ) = X•. Thus P• := X•

N
satisfies the desired properties.

We must now construct an N -acyclic array extending (X•, ι•). For 1 ≤ j ≤ N − 1, let
X0

j = X j and let X0
0 = 0. For 1 ≤ j ≤ N − 2, let ι0j = ι j and let ι00 : 0 ↪→ X1 be the zero

map. Define ι0N−1 : X0
N−1 ↪→ X0

N to be the inclusion of X0
N−1 into a projective-injective

object X0
N .

Suppose for some n ≥ 0 we have constructed, for all j , Xn
j and ιnj . Define Xn+1

0 = 0 and

pn
1 : Xn

1 � 0. Next, inductively define Xn+1
j , in+1

j−1 , and pn
j+1 for 1 ≤ j ≤ N − 1 via iterated

pushouts

Xn
j+1

Xn
j Xn+1

j

Xn+1
j−1

pn
j+1ιnj

pn
j ιn+1

j

(1)

Since E is an exact category, it follows immediately that the newly defined maps ι are
admissible monomorphisms, and the maps p are admissible epimorphisms by the dual of [5,
Proposition 2.15]. Finally, define ιn+1

N−1 : Xn+1
N−1 ↪→ Xn+1

N to be an inclusion of Xn+1
N−1 into a

projective-injective object Xn+1
N . Note that we have now constructed Xn+1

j , ιn+1
j , and pn

j for
all j . Proceeding inductively, we can define Xn

j , ι
n
j , and pn

j for all n ≥ 0 and for all j .

For n ≤ 0, the construction is dual. Having defined Xn
j and ιnj for all j , define pn−1

N :
Xn−1

N � Xn
N−1 to be a surjection from a projective-injective object Xn−1

N . Then Xn−1
j , in−1

j ,

and pn−1
j are defined via iterated pullbacks for N − 1 ≥ j ≥ 1. Finally, define Xn−1

0 = 0

and ιn−1
0 to be the zero map.

It is immediate that (Xn
j , ι

n
j , pn

j ) satisfies properties 1 and 2 of Definition 4.4. To see
that property 3 holds, note that each commutative square in (1) is, by construction, either a
pullback (n < 0) or pushout (n ≥ 0). But since the ι are admissible monomorphisms and
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the p are admissible epimorphisms, any such pullback or pushout square is automatically
bicartesian, for instance by [5, Proposition 2.12]. Thus the data we have constructed form an
N -acyclic array which extends (X•, ι•). ��

The category Cac
N (Proj(A)) inherits the structure of an exact category from CN (A).

Proposition 4.6 Cac
N (Proj(A)) is a fully exact subcategory of CN (A). An object P• ∈

Cac
N (Proj(A)) is projective (resp., injective) if and only if it is projective (resp., injective)

in CN (A). Thus Cac
N (Proj(A)) is Frobenius exact.

Proof Cac
N (Proj(A)) is clearly a full, additive subcategory ofCN (A). Given a chainwise-split

short exact sequence X• � Y • � Z• with X•, Z• ∈ Cac
N (Proj(A)) and Y • ∈ CN (A), it is

clear that Y n ∈ Proj(A) for all n ∈ Z. Since X• and Z• are acyclic, it follows immediately
from the long exact sequence in homology that Y • is acyclic. Thus Cac

N (Proj(A)), together
with the class of all chainwise split exact sequences, is a fully exact subcategory of CN (A).
The proof of [15, Theorem 2.1] applies without change toCac

N (Proj(A)), hence the projective
and injective objects are direct sums of complexes of the form μn

N (P), where P ∈ Proj(A).
The second and third statements follow immediately. ��
Proposition 4.7 F : Cac

N (Proj(A)) → MMorN−2(E) preserves short exact sequences.

Proof Consider a chainwise split exact sequence P• Q• R•f • g•
in Cac

N (Proj(A)).
Applying the Snake Lemma to

0 P0 Q0 R0 0

0 P j Q j R j 0

d0, j
P

f 0

d0, j
Q

g0

d0, j
R

f j g j

we obtain an exact sequence

0 → Z0
j (P•) ↪→ Z0

j (Q•) → Z0
j (R•) φ−→ coker(d0, j

P )

It remains to show that the connecting morphism φ is zero.
We briefly recall the construction of φ. Let X be the pullback

X Z0
j (R•)

Q0 R0

ι

p

g0

From this diagram we see that g j ◦ d0, j
Q ι = 0, hence d0, j

Q ι factors through ker(g j ) = f j .

Write d0, j
Q ι as X

α−→ P j f j

↪−→ Q j for a unique map α. Then φ is given by the induced map on
cokernels

0 ker(p) X Z0
j (R•) 0

P0 P j coker(d0, j
P ) 0

∼ α

p

φ

d0, j
P

Thus for φ to be zero, we must show that α factors through im(d0, j
P ).
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Since P• � Q• � R• is chainwise split exact, for each n we can write Qn ∼= Pn ⊕ Rn ,
with f n and gn becoming the canonical inclusion and projection maps, respectively. Using
this decomposition, we can express

ι =
[
ι1
ι2

]

d0, j
Q =

[
d0, j

P β

0 d0, j
R

]

d j,N− j
Q =

[
d j,N− j

P γ

0 d j,N− j
R

]

Note that d0, j
R ι2 = d0, j

R g0ι = d0, j
R p = 0. It follows that

d0, j
Q ι =

[
d0, j

P β

0 d0, j
R

][
ι1
ι2

]
=

[
d0, j

P ι1 + βι2
0

]

hence α = d0, j
P ι1 + βι2. Furthermore,

0 = d j,N− j
Q ◦ d0, j

Q ι =
[

d j,N− j
P γ

0 d j,N− j
R

] [
d0, j

P ι1 + βι2
0

]
=

[
d j,N− j

P βι2
0

]

We have that βι2 factors through Z j
N− j (P•) = im(d0, j

P ), hence so does α = d0, j
P ι1 + βι2.

Thus φ = 0 and so 0 → Z0
j (P•) → Z0

j (Q•) → Z0
j (R•) → 0 is exact for each j . ��

Corollary 4.8 F descends to a functor F : K ac
N (Proj(A)) → stabN (E) of triangulated cate-

gories.

Proof By Proposition 3.9, for any i ∈ Z, F(μi
N (P)) is projective-injective in MMorN−2(E).

Thus F preserves projective-injective objects and so descends to a functor F between the
stable categories. Since F preserves exact sequences and projective-injective objects, it fol-
lows immediately that F preserves distinguished triangles and the suspension functor, hence
is a functor of triangulated categories. ��

4.2 Properties of F

In this section, we shall prove that F is an equivalence of categories. Most of our work will
be to show that F is faithful. The following terminology will be convenient for the proof.

Definition 4.9 Let f • : P• → Q• be a morphism in K ac
N (Proj(A)). Given a family of

morphisms hi : Pi → Qi−N+1, we define the sum

Sh(n, j, k) :=
n+k−1∑

i=n+ j

d◦,n−i+N−1
Q hi dn,i−n

P : Pn → Qn

whenever the hi appearing in the formula are defined. To understand this expression, note
that f • is null-homotopic if and only if hi is defined for all i ∈ Z and f n = Sh(n, 0, N ) for
each n ∈ Z. Increasing the second parameter removes terms from the start of the sum, and
decreasing the third parameter removes terms from the end of the sum.
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We define a homotopy (of f •) at n to be a sequence of N maps (hn, hn+1, . . . , hn+N−1)

such that f n = Sh(n, 0, N ). We define a seed (of f •) at n to be a sequence of N − 1 maps
(hn, hn+1, . . . , hn+N−2) such that f n |Zn

N−1(P•) = Sh(n, 0, N − 1)|Zn
N−1(P•).

The following lemma is trivial when N = 2.

Lemma 4.10 Let f • : P• → Q• be a morphism in K ac
N (Proj(A)). If F( f ) = 0, then there

exists a seed of f • at 0.

Proof Since F( f ) = 0, we have a diagram in E

Z0
1(P•) Z0

2(P•) · · · Z0
N−1(P•)

I1 I1 ⊕ I2 · · · ⊕N−1
j=1 I j

Z0
1(Q•) Z0

2(Q•) · · · Z0
N−1(Q•)

where the horizontal maps are canonical inclusions, the I j are projective-injective, and the
j th pair of verticalmaps composes to f 0|Z0

j (P•). For 1 ≤ j ≤ N −1, let a j : Z0
N−1(P•) → I j

and b j : I j → Z0
N−1(Q•) denote the components of the rightmost vertical maps, so that we

have f 0|Z0
N−1(P•) = ∑N−1

j=1 b j a j .

For each 1 ≤ i ≤ N −1, by commutativity of the top rows we have that ai factors through
Z0

N−1(P•)/Z0
i−1(P•). (For the degenerate case i = 1 we let Z0

0(P•) = 0.) By injectivity of
Ii , we obtain a commutative diagram

Z0
N−1(P•) Z0

N−1(P•)/Z0
i−1(P•) Pi−1

Ii

ai
ai

d0,i−1
P

αi−1

Thus ai = αi−1d0,i−1
P |Z0

N−1(P•) for 1 ≤ i ≤ N − 1.

Dually, by commutativity of the bottom rows,bi factors through Z0
i (Q•),which by acyclic-

ity of Q• is equal to B0
i (Q•). By projectivity of Ii , we obtain a map β i−1 : Ii → Qi−N such

that bi = di−N ,−i+N
Q β i−1.

Define hi = β iαi : Pi → Qi−N+1 for 0 ≤ i ≤ N − 2. Then we have

f 0|Z0
N−1(P•) =

N−2∑

i=0

bi+1ai+1 =
N−2∑

i=0

d◦,−i+N−1
Q hi d0,i

P |Z0
N−1(P•)

= Sh(0, 0, N − 1)|Z0
N−1(P•)

Thus (h0, . . . , hN−2) is a seed of f • at 0. ��
If (hn, . . . , hn+N−1) is a homotopy of f • : P• → Q• at n, it is clear that the shortened

tuple (hn, . . . , hn+N−2) is a seed at n, since the last term of f n = Sh(n, 0, N ) vanishes on
Zn

N−1(P•). The next lemma establishes a converse.

Lemma 4.11 Let f • : P• → Q• be a morphism in K ac
N (Proj(A)). Suppose there exists a

seed (hn, . . . , hn+N−2) of f • at n. Then there exists hn+N−1 such that:
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• (hn, . . . , hn+N−1) is a homotopy at n.
• (hn+1, . . . , hn+N−1) is a seed at n + 1.

There also exists hn−1 such that:

• (hn−1, hn, . . . , hn+N−2) is a homotopy at n − 1.
• (hn−1, hn, . . . , hn+N−3) is a seed at n − 1.

Proof Let ψ = f n − Sh(n, 0, N − 1). Since (hn, . . . , hn+N−2) is a seed at n, we have
ψ |Zn

N−1(P•)= 0, hence ψ factors through Pn/Zn
N−1(P•). Note that Pn/Zn

N−1(P•) ∼=
Bn+N−1
1 (P•) = Zn+N−1

1 (P•) ∈ E . By injectivity of Qn , we obtain

Pn Pn/Zn
N−1(P•) Pn+N−1

Qn
ψ

ψ

dn,N−1
P

hn+N−1

Thus

f n = Sh(n, 0, N − 1) + ψ = Sh(n, 0, N − 1) + hn+N−1dn,N−1
P

= Sh(n, 0, N )

so (hn, . . . , hn+N−1) is a homotopy at n.
To see that (hn+1, . . . , hn+N−1) is a seed at n + 1, note that

f n+1dn
P = dn

Q f n = dn
Q Sh(n, 0, N ) = Sh(n + 1, 0, N − 1)dn

P

Since dn
P : Pn � Zn+1

N−1(P•) is an epimorphism, we can cancel it on the right to obtain
f n+1|Zn+1

N−1(P•) = Sh(n + 1, 0, N − 1)|Zn+1
N−1(P•), as desired.

To construct hn−1, let ϕ = f n−1 − Sh(n − 1, 1, N ). Note that

dn−1
Q ϕ = dn−1

Q f n−1 − dn−1
Q Sh(n − 1, 1, N )

= ( f n − Sh(n, 0, N − 1))dn−1
P = 0

where the last equality holds because (hn, . . . , hn+N−1) is a seed at n. Thus ϕ factors through
Zn−1
1 (Q•), and by projectivity of Pn−1 we obtain

Pn−1

Qn−N Zn−1
1 (Q•) Qn−1

hn−1
ϕ

d◦,N−1
Q

Thus

f n−1 = ϕ + Sh(n − 1, 1, N ) = d◦,N−1
Q hn−1 + Sh(n − 1, 1, N )

= Sh(n − 1, 0, N )

hence (hn−1, . . . , hn+N−2) is a homotopy at n − 1. It follows immediately that (hn−1, . . . ,

hn+N−3) is a seed at n − 1. ��
We are now ready to prove the main theorem of this section.

Theorem 4.12 F : K ac
N (Proj(A)) → stabN (E) is an equivalence.
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Proof Let f • : P• → Q• be a morphism in K ac
N (Proj(A)) such that F( f ) = 0. By Lem-

mas 4.10 and 4.11, we can inductively define maps hi : Pi → Qi−N+1 for all i ∈ Z such
that (hn, . . . , hn+N−1) is a homotopy at n for every n ∈ Z. Thus f is null-homotopic, and
so F is faithful.

F is defined via a commutative diagram of functors

Cac
N (Proj(A)) MMorN−2(E)

K ac
N (Proj(A)) stabN (E)

F

F

By Propositions 4.3 and 4.5, F is full and essentially surjective, and the same is clearly
true for the projection MMorN−2(E) → stabN (E). It follows immediately that F is full and
essentially surjective, hence an equivalence. ��

5 The N-singularity category

Throughout this section, let A be a Gorenstein abelian category and let E = Gproj(A).
There is a fully faithful additive functor G : MorN−2(A) ↪→ Cb

N (A) given by interpreting
the object (X•, α•) ∈ MorN−2(A) as an N -complex concentrated in degrees 1 through N −1.
In this section, we shall show thatG induces an equivalenceG between stabN (E) and Ds

N (A).

Proposition 5.1 G induces a functor G : stabN (E) → Ds
N (A) of triangulated categories.

Proof Let G ′ denote the composition

MMorN−2(E) ↪→ MMorN−2(A)
G

↪−→ Cb
N (A) → Db

N (A) → Ds
N (A)

Recall that the projective-injective objects of E are precisely the projective objects
of A. By Proposition 3.9, G maps projective objects in MMorN−2(E) to perfect com-
plexes, hence G ′ sends projective objects to zero. Thus G ′ induces an additive functor
G : stabN (E) → Ds

N (A).
If X• � Y• � Z• is admissible in MMorN−2(E), apply G to obtain a short exact

sequence in Cb
N (A). By [15, Proposition 3.7], there is a corresponding distinguished triangle

G(X•) → G(Y•) → G(Z•) → �G(X•) in Db
N (A), hence in Ds

N (A).
Consider an admissible exact sequence X• � IX• � �−1X•, with IX• injective. This

induces a triangle G(X•) → 0 → G(�−1X•)
φX−→ �G(X•) in Ds

N (A), which defines a

natural isomorphism φ : G�−1 ∼−→ �G. Since every distinguished triangle in stabN (E)

is isomorphic to one arising from an admissible short exact sequence in MMorN−2(E), it
follows easily that (G, φ) is a triangulated functor. ��

The functor G also gives a canonical embedding of MorN−2(A) into Db
N (A). With some

extra hypotheses on A, this is a corollary of [15, Theorem 4.2]; however, the proof below is
valid for an arbitrary abelian category (which need not be Gorenstein).

Proposition 5.2 The composition MorN−2(A)
G

↪−→ Cb
N (A) → Db

N (A) is fully faithful. In
particular, the restriction of this functor to MorN−2(E) is fully faithful.

Proof Let (X•, α•), (Y•, β•) ∈ MorN−2(A).
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To prove fullness, take a morphism h : G(X•) → G(Y•) in Db
N (A). Write h as the span

G(X•)
s•←− M• g•

−→ G(Y•), where s• is a quasi-isomorphism. Since G(X•) is concentrated in
degrees 1 through N −1, the natural map ι• : σ≤N−1M• ↪→ M• is also a quasi-isomorphism;

thus h can be written as G(X•)
s•ι•←−− σ≤N−1M• g•ι•−−→ G(Y•). Let f• : X• → Y• be given by

fi = Hi
N−i (g

•) ◦ Hi
N−i (s

•)−1.
To see that f• defines a morphism in MorN−2(A), consider for each 1 ≤ i ≤ N − 1 the

commutative diagrams

Zi
N−i (M•) Hi

N−i (M•)

Zi
N−i (G(X•)) Hi

N−i (G(X•))
si ιi

π i

H i
N−i (s

•) ∼ ,

Zi
N−i (M•) Hi

N−i (M•)

Zi
N−i (G(Y•)) Hi

N−i (G(Y•))
gi ιi

π i

H i
N−i (g

•) (2)

Note that Zi
N−i (G(X•)) = Hi

N−i (G(X•)) = Xi , and similarly for Yi . Thus the lower
morphisms in both diagrams are just the identity maps on Xi and Yi . In particular, si ιi is an
epimorphism. We also have that

fi ◦ si ιi = Hi
N−i (g

•)Hi
N−i (s

•)−1 ◦ si ιi = Hi
N−i (g

•)π i = gi ιi (3)

It follows that, for 1 ≤ i < N − 1,

fi+1αi ◦ si ιi = fi+1si+1ιi+1di
M = gi+1ιi+1di

M = βi g
i ιi = βi fi ◦ si ιi

Since si ιi is an epimorphism, we conclude that fi+1αi = βi f i , hence f• is a morphism.
From Equation (3) it follows immediately that h = G( f•) in Db

N (A). Thus the functor is
full.

To prove faithfulness, let f• : X• → Y• be such that G( f•) = 0 in Db
N (A). Then there is

a quasi-isomorphism s• : M• → G(X•) such that G( f•)s• = 0 in K b
N (A). Define as above

the quasi-isomorphism ι• : σ≤N−1M• ↪→ M•; it follows that G( f•)s•ι• = 0 in K b
N (A).

Since G(Y•) is concentrated in degrees 1 through N − 1, it is easily checked that the only
null-homotopic morphism of complexes from σ≤N−1M• to G(Y•) is the zero map. Thus
G( f•)s•ι• = 0 in Cb

N (A); that is, fi si ιi = 0 for all 1 ≤ i ≤ N − 1.
Note that the left square in (2) remains valid for all 1 ≤ i ≤ N − 1. In particular,

si ιi : Zi
N−i (M•) � Xi is an epimorphism. Thus fi = 0 for all i . Since f• = 0, the functor

is faithful. ��
We shall prove the following theorem via a sequence of lemmas.

Theorem 5.3 G : stabN (E) → Ds
N (A) is an equivalence.

First, it will be helpful to more easily express morphisms in DN (A). The following
proposition is completely analogous to the known result for N = 2. It holds for any abelian
category and does not require the Gorenstein hypothesis.

Lemma 5.4 Let X• ∈ KN (A), P• ∈ K −
N (Proj(A)), I • ∈ K +

N (Inj(A)). Let f : P• → X•
and g : X• → I • be morphisms in DN (A). Then f and g can be represented by morphisms
in KN (A).

Proof Express f as the span P• p•
←− Q• h•−→ X•, where p• is a quasi-isomorphism. Then

p• fits into a triangle �−1C• → Q• p•
−→ P• → C• in KN (A), where C• is an acyclic
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N -complex. By [15, Lemma 3.3], HomKN (A)(P•, C•) = 0. Since the last map in the above
triangle is zero, the map p• admits a section s• : P• → Q• in KN (A). It follows that the

span representing f is equivalent to P• id←− P• h•s•−−→ X•, hence f is equal to the morphism
of complexes h•s•.

Similarly, express g as a cospan X• e•−→ J • i•←− I •, where i• is a quasi-isomorphism.

Extend i• to the triangle D• → I • i•−→ J • → �D• in KN (A), for some acyclic D•. Again
by [15, Lemma 3.3], there are no nonzero morphisms from D• to I •, hence i• admits a

retraction r• in KN (A). Thus g is equal to the span X• r•e•−−→ I • id←− I •, hence g = r•e•. ��

Lemma 5.5 Let X• ∈ K b
N (Gproj(A)), P• ∈ K b

N (Proj(A)). Let n ∈ Z, and suppose that
Xi = 0 for all i ≤ n and P j = 0 for all j > n. (That is, P• is entirely to the left of X•.)
Then HomDN (A)(X•, P•) = 0.

Proof Let us first consider the case where both complexes are concentrated in a single degree:
we must show that HomDb

N (A)(X , P[m]) = 0 for any X ∈ Gproj(A), P ∈ Proj(A), m > 0.

Let Q• be a projective resolution of X (as a 2-complex). Define an N -complex (Q̃•, d •̃
Q
) by

Q̃k N+ j =
{

Q2k j = 0

Q2k+1 0 < j < N
, for any k ∈ Z

with differential

dk N+ j
Q̃

=

⎧
⎪⎨

⎪⎩

d2k
Q j = 0

idQ2k+1 1 ≤ j < N − 1

d2k+1
Q j = N − 1

, for any k ∈ Z

It is straightforward to check that Q̃• is quasi-isomorphic to X (viewed as an N -complex
concentrated in degree 0), and

HomKN (A)(Q̃•, P[m]) =

⎧
⎪⎨

⎪⎩

Ext2k
A (X , P) m = Nk for some k > 0

Ext2k−1
A (X , P) m = Nk − 1 for some k > 0

0 otherwise

Since X ∈ Gproj(A), ExtiA(X , P) = 0 for all i > 0, hence we have that HomKN (A)(Q̃•,
P[m]) = 0 for all m > 0. It follows from Lemma 5.4 that HomDN (A)(X , P[m]) = 0 for all
m > 0.

The full result follows immediately, since every bounded N -complex is a finite iterated
extension of single-term complexes. ��

Lemma 5.6 G is faithful.

Proof Let (X•, α•), (Y•, β•) ∈ stabN (E), and let f• : X• → Y• be a fixed representative of
a morphism in stabN (E). Suppose G( f•) = 0.

We first show that G( f•) factors in Cb
N (A) as G(X•)

g•
−→ I • h•−→ G(Y•) for some bounded

complex of projectives I •. Since G( f•) = 0 in Ds
N (A), there exists a morphism with perfect

cone s : G(Y•) → M• in Db
N (A) such that s ◦ G( f•) = 0. Let P• denote the cocone of s•;
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we obtain a morphism of triangles in Db
N (A):

0 G(X•) G(X•) 0

�−1M• P• G(Y•) M•

id

a G( f•)
b s

Changing the bottom row up to isomorphism, we may assume that P• is a bounded
complex of projectives. Note that for each i ∈ Z, we have a chainwise split exact sequence
τ≥i P• ↪→ P• � τ≤i−1P•, where τ denotes the sharp truncation. We obtain the following
morphisms of triangles in Db

N (A):

0 G(X•) G(X•)

τ≥N P• P• τ≤N−1P•

0 G(Y•) G(Y•)

id

a c

b d

id

G(X•) G(X•) 0

τ≥1τ≤N−1P• τ≤N−1P• τ≤0P•

G(Y•) G(Y•) 0

id

g c

h d

id

The lower left square of the left diagram clearly commutes in K b
N (A), hence also in

Db
N (A) by Lemma 5.4. This induces the morphism d . The upper right square of the right

diagram commutes by Lemma 5.5 and thus induces the map g. The maps c and h are defined
in the obvious ways, and the commutativity of the remaining squares in both diagrams is
immediate. Consequently, G( f•) = ba = dc = hg, so G( f•) factors through the complex
I • := τ≥1τ≤N−1P•. I • has projective terms and is concentrated in degrees 1 through N −1,
hence G(X•), G(Y•), and I • all lie in the image of MorN−2(A), which by Proposition 5.2
is a full subcategory of Db

N (A). Thus the morphisms g = g•, h = h• can be expressed as
morphisms of complexes and G( f•) = h•g• in Cb

N (A).

It remains to construct (I ′•, ι•) ∈ Proj(MMorN−2(E)) and a factorization X•
ĝ•−→ I ′•

ĥ•−→ Y•
of f•. Define I ′

i := ⊕i
j=1 I j = I ′

i−1 ⊕ I i , and let ιi : I ′
i ↪→ I ′

i ⊕ I i+1 be given by

[
id

di
I πi

]
,

where πi : I ′
i � I i is the canonical projection. It is clear that (I ′•, ι•) ∈ Proj(MMorN−2(E)),

since each I ′
i is projective-injective in E and each ιi is a (necessarily split) monomorphism.

Define ĥ• : I ′• → Y• by ĥi := hiπi ; it is straightforward to check that ĥ• is a morphism in
MMorN−2(E).

We shall inductively construct a family ĝi : Xi → I ′
i such that πi ĝi = gi for all 1 ≤

i ≤ N − 1 and ιi−1 ĝi−1 = ĝiαi−1 for all 2 ≤ i ≤ N − 1. Let ĝ1 = g1; note that
π1 : I ′

1 � I 1 is the identity map, so the desired equation holds. Next, suppose that ĝi−1

has been constructed; by injectivity of I ′
i−1 we may lift ĝi−1 to φi : Xi → I ′

i−1 such that

ĝi−1 = φiαi−1. Define ĝi : Xi → I ′
i−1 ⊕ I i to be

[
φi

gi

]
; it easy to verify that ĝi satisfies

both of the desired equations. Thus the morphism ĝ• : X• → I ′• is defined. Furthermore, we
have that ĥi ĝi = hiπi ĝi = hi gi = fi , hence f• = ĥ•ĝ•. Thus f• = 0 in stabN (E) and G is
faithful. ��

To prove fullness, we need a better understanding of how to express morphisms in Ds
N (A).
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Lemma 5.7 Let (X•, α•), (Y•, β•) ∈ MMorN−2(E). Then the natural map HomDb
N (A)

(G(X•), G(Y•)) → HomDs
N (A)(G(X•), G(Y•)) is surjective. That is, any morphism

G(X•) → G(Y•) in Ds
N (A) can be represented by a span of the form

G(X•)
id←− G(X•)

g−→ G(Y•)

where g is a morphism in Db
N (A).

Proof Anymorphism in HomDs
N (A)(G(X•), G(Y•)) can be represented by a span G(X•)

s←−
M• f−→ G(Y•), where s and f are morphisms in Db

N (A) and s fits into a triangle M• s−→
G(X•)

t−→ I • → �M• with I • ∈ D per f
N (A). Since each projective object in A has finite

injective dimension, by changing I • up to isomorphism in Db
N (A), we may assume without

loss of generality that it is a bounded N -complex of injectives.ByLemma5.4we can represent
t by a morphism of complexes t•. Changing M• up to isomorphism in Db

N (A), we can also

assume that M• is the cocone of t• in K b
N (A), hence M• s•−→ G(X•)

t•−→ I • → �M• is

a triangle in K b
N (A). Note that if I • = 0, then s• : M• ∼−→ G(X•) is an isomorphism in

K b
N (A) and we are done; we thus assume that I • is nonzero.
By Theorem 4.12, there exists an acyclic N -complex P• of projectives such that X• =

Z0•(P•). Let X̂• be the N -complex

X̂• = 0 → X1 ↪→ X2 ↪→ · · · ↪→ X N−1 ↪→ P0 → P1 → · · ·
where X1 is in degree 1. It is straightforward to check that X̂• is acyclic. For any integer
m ≥ N , there is a natural morphism of N -complexes p• : τ≤m X̂• � G(X•). We claim
that for sufficiently large m ≥ N , there is a morphism of N -complexes r• : τ≤m X̂• → M•
satisfying p• = s•r•, and an equivalence of morphisms in Ds

N (A):

G(X•)
s•←− M• f−→ G(Y•) = G(X•)

p•
←− τ≤m X̂• f r•

−−→ G(Y•)

Let k be the maximum integer such that I k is nonzero, and choose m ≥ max(N , k + N ).
We have a triangle in K +

N (A)

τ>m X̂• → X̂• → τ≤m X̂• → �τ>m X̂•

arising from the chain-wise split exact sequence of complexes. All nonzero terms of
τ>m X̂• and �τ>m X̂• occur in degrees greater than k, hence HomK +

N (A)(τ>m X̂•, I •) =
0 = HomK +

N (A)(�τ>m X̂•, I •). Since X̂• is acyclic, HomK +
N (A)(X̂•, I •) = 0 by

[15, Lemma 3.3]. Applying the functor HomK +
N (A)(−, I •) to the triangle, we see that

HomK b
N (A)(τ≤m X̂•, I •) = 0.

The kernel of p• is J • := τ≤m((τ≥0P•)[−N ]) ∈ K b
N (Proj(A)); the chainwise

split exact sequence J • τ≤m X̂• G(X•)
p•

induces a triangle in K b
N (A). Since

HomK b
N (A)(τ≤m X̂•, I •) = 0, we obtain a morphism of triangles in K b

N (A):

J • τ≤m X̂• G(X•) � J •

�−1 I • 0 I • I •
�−1q•

p•

t• q•

id
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which in turn yields

J • τ≤m X̂• G(X•) � J •

�−1 I • M• G(X•) I •
�−1q•

p•

r• id q•

s• t•

Since s• and p• = s•r• both have perfect cones, it follows from the octahedron axiom that
r• does as well. The desired equivalence of roofs f (s•)−1 = ( f r•)(s•r•)−1 = ( f r•)(p•)−1

follows immediately.
Furthermore, since J • ∈ K b

N (Proj(A)) is concentrated in degrees N throughm and G(Y•)
is concentrated in degrees 1 through N − 1,
HomK b

N (A)(J •, G(Y•)) = 0 = HomDb
N (A)(J •, G(Y•)). We obtain a morphism of triangles

in Db
N (A):

J • τ≤m X̂• G(X•) � J •

0 G(Y•) G(Y•) 0

p•

f r• g

id

Therefore we have an equivalence of morphisms

G(X•)
p•

←− τ≤m X̂• f r•
−−→ G(Y•) = G(X•)

id←− G(X•)
g−→ G(Y•)

��
Corollary 5.8 G is full.

Proof Let X•, Y• ∈ stabN (E), and let g : G(X•) → G(Y•) be a morphism in Ds
N (A). By

Lemma 5.7, g can be taken to be a morphism in Db
N (A), and by Proposition 5.2, g = G( f•)

for some f• : X• → Y• in MMorN−2(E). Let f • denote the image of f• in stabN (E). By the
construction of G, G( f •) = G( f•) = g. Thus G is full. ��

It remains to show that G is essentially surjective. Recall the objects χi (X)• ∈
MMorN−2(E) of Definition 3.7. We shall also use the formula in [15, Lemma 2.6] describing
the action of � on the complexes μs

r (X) in the homotopy category.

Lemma 5.9 G is essentially surjective, hence an equivalence of triangulated categories.

Proof By Proposition 5.1, Lemma 5.6 and Corollary 5.8, G is a fully faithful functor of
triangulated categories, hence its essential image I m(G) is a triangulated subcategory of
Ds

N (A).
Let S = {μk

i (X) | k ∈ Z, 1 ≤ i ≤ N − 1, X ∈ E}, and let T denote the smallest
isomorphism-closed triangulated subcategory of Ds

N (A) containing S. We claim that T =
Ds

N (A).
By Theorem 2.1, for any Y ∈ A, there is a short exact sequence P ↪→ X � Y where

P ∈ A has finite projective dimension and X ∈ E . Interpreting these objects as N -complexes
in degree 0 induces a distinguished triangle in Db

N (A) and thus in Ds
N (A), where P becomes

0. Therefore in Ds
N (A), Y ∼= X ∈ S. It follows that any N -complex of length 1 lies in T .

Now, suppose for a contradiction that X• ∈ Ds
N (A) is a bounded N -complex of minimum

possible length such that X• /∈ T . Clearly X• �= 0; suppose m is the largest integer such
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that Xm �= 0. Then we have a triangle μm
1 (Xm) → X• → τ<m X• → �μm

1 (Xm) in Ds
N (A)

arising from the natural short exact sequence of complexes. But μm
1 (Xm) ∈ T since it

has length 1 and τ<m X• ∈ T since it has length less than X•. It follows that X• ∈ T , a
contradiction. Thus T = Ds

N (A).
We now claim S is contained in I m(G); once this is proved, it follows immediately that

I m(G) = T = Ds
N (A), hence G is an equivalence.

We first show that S ′ = {μk
i (X) | 1 ≤ i ≤ k ≤ N − 1, X ∈ E}, consisting of all elements

of S which are concentrated in degrees 1 through N −1, is contained in I m(G). Fix X ∈ E . It
is immediate that μN−1

i (X) = G(χi (X)•) for each 1 ≤ i ≤ N − 1. For 1 ≤ i ≤ k ≤ N − 1,
we have a short exact sequence of N -complexes μN−1

N−1−k(X) ↪→ μN−1
N−1−k+i (X) � μk

i (X)

which induces a triangle in Ds
N (A). Since the first two members of this triangle lie in I m(G),

so does μk
i (X). Thus S ′ ⊆ I m(G).

For any μk
i (X) ∈ S, there is a unique x ∈ Z such k = x N + r , where 0 ≤ r < N . Then

�2xμk
i (X) ∼= μk

i (X)[x N ] = μr
i (X). If i ≤ r , then μr

i (X) ∈ S ′. Otherwise, 0 ≤ r < i ,

hence�−1(μr
i (X)) = μ

N−(i−r)
N−i (X) ∈ S ′. In either case,�yμk

i (X) ∈ I m(G) for some value
of y, hence μk

i (X) ∈ I m(G). Thus S ⊆ I m(G), hence G is essentially surjective. ��

6 Calabi–Yau properties of stabN(mod-A)

In this section we let A be an associative algebra over a field F . We shall assume that A
is finite-dimensional and self-injective. Fix an integer N ≥ 2. Under these hypotheses, the
categorymod-A is Frobenius exact, hence stabN (mod-A) (hereafter abbreviated as stabN (A))
is a triangulated category by Theorem 3.12.

It is known that stabN (A) possesses a Serre functor. (See [26] for case N = 3 and [28]
for general N .) The goal of this section is to obtain a sufficient condition for stabN (A) to
be fractionally Calabi–Yau. In order to obtain a useful description of the Serre functor on
stabN (A), we must first introduce several other functors.

6.1 Theminimal monomorphism functor

The minimal monomorphism construction was introduced in [26] for N = 3 and [29] for
general N . To simplify notation in this section, we shall let k = N − 2.

Definition 6.1 Let (X•, α•) ∈ Mork(A). Define (Mimo•(X), m•(X)) ∈ MMork(A) as fol-
lows. For 1 ≤ i ≤ k, let ker(αi ) ↪→ Ji+1(X) denote the injective hull of ker(αi ), and
choose a lift ωi : Xi → Ji+1(X) of this map. Let J1(X) = 0. For 1 ≤ i ≤ k + 1,
let Ii (X) := ⊕i

j=1 J j (X), so that I1(X) = 0 and Ii (X) = Ji (X) ⊕ Ii−1(X). Define
Mimoi (X) := Xi ⊕ Ii (X) and let mi (X) : Mimoi (X) → Mimoi+1(X) be given by

mi (X) :=
⎡

⎣
αi 0
ωi 0
0 1

⎤

⎦ : Xi ⊕ Ii (X) ↪→ Xi+1 ⊕ Ji+1(X) ⊕ Ii (X)

Given f• : X• → Y•, define Mimo•( f ) : Mimo•(X) → Mimo•(Y ) inductively as
follows. Define Mimo1( f ) := f1 : X1 → Y1. Suppose that we have defined Mimoi−1( f ) :
Xi−1 ⊕ Ii−1(X) → Yi−1 ⊕ Ii−1(Y ) to be of the form

[
fi−1 0
φi−1 ψi−1

]
. Define

[
φi ψi

] :
Xi ⊕ Ii (X) → Ii (Y ) to be a lift of the map
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Xi−1 ⊕ Ii−1(X) Yi−1 ⊕ Ii−1(Y ) Yi ⊕ Ii (Y ) Ii (Y )
Mimoi−1( f ) mi−1(Y )

along the injection mi−1(X) : Xi−1 ⊕ Ii−1(X) ↪→ Xi ⊕ Ii (X). Then define Mimoi ( f ) :
Xi ⊕ Ii (X) → Yi ⊕ Ii (Y ) by the matrix

[
fi 0
φi ψi

]
.

In the above definition, it is clear that each mi (X) is a monomorphism, and that the map
Mimo•( f ) is a morphism in MMork(A). Note also that we have a morphism Mimo•(X) �
X• given by component-wise projection onto X•. We now state some basic properties of this
construction.

Proposition 6.2 1) For any object X• ∈ Mork(A), Mimo•(X) is independent, up to iso-
morphism in MMork(A), of the choice of the maps ωi .

2) For any morphism f• : X• → Y• in Mork(A), the image of Mimo•( f ) in stabN (A) is
independent of the choice of maps φi and ψi .

3) Mimo acts as the identity on both objects and morphisms in MMork(A).
4) Mimodefines a functorMork(A) → stabN (A)which descends to functorsMork(A) → stabN (A)

and Mork(A) → stabN (A).
5) Mimo : Mork(A) → stabN (A) is right adjoint to the inclusion functor.

Proof 1) It is proved in [29, Lemma 2.3] that the projection Mimo•(X) � X• is a
right minimal approximation of X• in MMork(A), hence is unique up to isomorphism
in MMork(A). In particular, any two choices of the maps ωi in the construction of
Mimo•(X•) yield isomorphic objects.

2) Given f• : X• → Y• and two different choices in the construction of Mimo•( f ),
it is easy to check that their difference factors through the projective-injective object
I1(Y ) ↪→ I2(Y ) ↪→ · · · ↪→ Ik+1(Y ).

3) If X• ∈ MMork(A), then ker(αi ) = 0 for all i . Thus Ii (X) = 0 and Mimo•(X) = X•.
The statement about morphisms is immediate.

4) The first statement is easily verified. For the second statement, note that by Propo-
sitions 3.9 and 3.10 the projective objects of Mork(A) are precisely the projective-
injective objects of MMork(A), hence are preserved by Mimo. Thus the functor
Mimo : Mork(A) → stabN (A) kills projectives and so descends to Mork(A). Similarly,
the injective objects in Mork(A) are component-wise projective-injective with all maps
split epimorphisms; such objects are mapped to projective-injective objects by Mimo,
hence Mimo also descends to Mork(A).

5) Let ι : stabN (A) ↪→ Mork(A)denote the inclusion functor. Let X• ∈ Mork(A), Y• ∈ stabN (A).
Define natural transformations

ε : ι ◦ Mimo → 1Mork (A) η : 1stabN (A) → Mimo ◦ι

as follows. Let εX• : Mimo•(X) → X• be the component-wise projection onto X•, and let
ηY• : Y• → Mimo•(Y ) = Y• be the identity map. It follows immediately from definitions
that ε and η are indeed natural transformations; it remains to verify that they satisfy the
triangle identities.

That (ει) ◦ (ιη) = idι is immediate. To see that (Mimo ε) ◦ (ηMimo) = idMimo, evaluate
at X• and note that the left-hand side simplifies to Mimo•(εX ) : Mimo•(X) → Mimo•(X).
We can choose this map to be the identity map. Thus the pair (ι,Mimo) is an adjunction. ��
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6.2 Cokernel and rotation functors

Throughout this section, we shall let k = N − 2 to simplify notation.

Definition 6.3 For (X•, α•) ∈ MMork(A), define

Cok•(X) := Xk+1 � coker(αk
1) � coker(αk−1

2 ) � · · · � coker(αk)

For f• : X• → Y•, let Cok•( f ) : Cok•(X) → Cok•(Y ) be given by the component-wise
induced maps on the cokernels.

It is clear that Cok defines a functor MMork(A) → Mork(A) which sends projective-
injective objects to injective objects. Thus Cok descends to a functor stabN (A) → Mork(A).
Though we shall not need this fact, we note that Cok also defines an exact equivalence
between MMork(A) and EMork(A) which descends to a triangulated equivalence between
the respective stable categories.

Definition 6.4 Define the rotation functor to be the composition

R = Mimo ◦Cok : stabN (A) → Mork(A) → stabN (A)

The rotation construction was first defined in [26] for N = 3 and later generalized to
arbitrary N in [28]. Our formulation differs slightly in that it is defined on stabN (A) rather
than MorN−2(stab(A)). On stabN (A), the rotation functor can be somewhat difficult to work
with, but it simplifies considerably when expressed in terms of complexes.

Recall the triangulated equivalence G : stabN (A) → Ds
N (A) defined in Proposition 5.1.

Note that G extends to a functor Mork(A) → Ds
N (A).

Proposition 6.5 There is an isomorphism�[−1]◦G ∼= G◦R of functors stabN (A) → Ds
N (A).

Proof Let (X•, α•) ∈ stabN (A). The short exact sequence in Cb
N (A)

G(X•) ↪→ μN−1
N (X N−1) � G(Cok•(X))[1]

induces a triangle in Ds
N (A). The middle term is null-homotopic, so we have an isomorphism

G(Cok•(X))[1] ∼−→ �(G(X•)) in Ds
N (A); since the above exact sequence is natural in X•,

so is this isomorphism. Applying [−1] yields a natural isomorphism G ◦Cok ∼= �[−1] ◦ G.
Applying G to the short exact sequence in MMork(A)

I•(Cok(X)) � Mimo•(Cok(X)) � Cok•(X)

we obtain a triangle in Ds
N (A). The left term is mapped to D per f

N (A), hence vanishes;
we obtain an isomorphism G R(X•) ∼= G(Cok•(X)) which is clearly natural in X•. Thus
G ◦ R ∼= G ◦ Cok ∼= �[−1] ◦ G. ��

6.3 Upper triangular matrices

Throughout this section, we shall let n = N − 1 to simplify notation.
Let B = Tn(A) denote the F-algebra of n × n upper-triangular matrices with entries in

A. We write Ei, j for the matrix with 1A in the (i, j)-th position (that is, row i and column
j) and 0’s everywhere else.
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Given X ∈ mod-B, we can create the following object in Morn−1(A):

X E1,1 X E2,2 · · · X En,n
rE1,2 rE2,3 rEn−1,n

More explicitly, there is an equivalence Mr : mod-B
∼−→ Morn−1(A) given by Mr (X) =

(X E•,•, rE•,•+1) [29, Lemma 1.3]. The inverse of Mr is given by M−1
r (X•, f•) = ⊕n

i=1 Xi ,

where Ei,i acts as projection onto the i-th coordinate and Ei,i+ j acts as f j
i .

Similarly, there is an equivalence Ml : B -mod
∼−→ Morn−1(Aop) which is given by

Ml(X) = (En+1−•,n+1−• X , lEn−•,n+1−•). Its inverse is given by M−1
l (X•, f•) = ⊕n

i=1 Xi ,

where Ei,i acts as projection onto Xn+1−i and Ei− j,i acts as f j
n+1−i .

It is easy to check that Mr (B) ∼= ⊕n
i=1 χi (A)• ∼= Ml(B) has injective dimension 1 in

Morn−1(A), hence B is Gorenstein. (Recall the definition of χi (A)• from Sect. 3.2.) The
following proposition allows us to identify the monomorphism and epimorphism categories
of A with the Gorenstein projective and Gorenstein injective B-modules, respectively. (See
Sect. 2.6 for the definition of a Gorenstein injective module.)

Proposition 6.6 ([29, Corollary 4.1, 4.2]) The functors Mr and Ml restrict to the following
exact equivalences:

1) Mr : Gproj(B)
∼−→ MMorn−1(A)

2) Ml : Gproj(Bop)
∼−→ MMorn−1(Aop)

3) Mr : Ginj(B)
∼−→ EMorn−1(A)

4) Ml : Ginj(Bop)
∼−→ EMorn−1(Aop)

Each of the above equivalences descends to a triangulated equivalence between the respective
stable categories.

Proof It is clear that Mr and Ml are exact equivalences. Once 1)-4) have been established,
it is also clear that the functors descend to triangulated equivalences between the stable
categories. All that is needed is to show that each functor has the appropriate image.

1) Let (X•, α•) ∈ Morn−1(A). Since Mr (B) ∼= ⊕n
i=1 χi (A)•, it suffices to prove that

X• ∈ MMorn−1(A) if and only if Ext1(X•, χi (A)•) = 0 for all 1 < i ≤ n. (Since
χ1(A)• is injective, Ext1(X•, χ1(A)•) = 0 for any X•.) Let χ i (A)• denote the cokernel
of the natural inclusion χi (A)• ↪→ χ1(A)•. Define a complex in Cb(Morn−1(A))

I •(i) = · · · 0 χ1(X)• χ i (X)• 0 · · ·
withχ1(X)• in degree0. I •(i) is an injective resolutionofχi (A)•, henceExt1(X•, χi (A)•)
= HomK b(MMorn−1(A))(X•, I •(i)[1]). Note that a morphism of complexes X• →
I •(i)[1] is the same data as a morphism fi−1 : Xi−1 → A; such a morphism is null-
homotopic if and only if fi−1 factors through α

j
i−1 for all 1 ≤ j ≤ n − i + 1.

Suppose X• ∈ MMorn−1(A). Since α
j
i−1 is a monomorphism and A is injective,

any morphism fi−1 : Xi−1 → A admits a factorization fi−1 = gi−1+ jα
j
i−1, hence

Ext1(X•, χi (A)•) = 0. Conversely, if αi−1 is not injective for some 1 < i ≤ n,
then there is a nonzero morphism ker(αi−1) → A which can be lifted to a morphism
fi−1 : Xi−1 → A. Since fi−1 is nonzero on ker(αi−1), it cannot factor through αi−1,
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hence fi−1 defines a nonzero element of Ext1(X•, χi (A)•). Thus Mr identifies Gproj(B)

with MMorn−1(A).
2) Since Ml(B) ∼= ⊕n

i=1 χi (A)•, the proof is identical to 1).
3) By Proposition 6.7 below, Mr ∼= D∗Ml D. The result then follows from 2).
4) The result follows from Proposition 6.7 and 1). ��

6.4 Duality and the Nakayama functor

In this section, we continue to write n = N − 1.
It will be convenient to introduce some notation. If F : mod-A → C is a covariant

functor (into any category C), there is an induced functor F∗ : Morn−1(A) → Morn−1(C)

given by F(X•, α•) = (F(X•), F(α•)). Given a contravariant functor G : (mod-A)op →
C, we likewise obtain a functor G∗ : Morn−1(A)op → Morn−1(C), this time given by
G∗(X•, α•) = (G(Xn+1−•), G(αn−•)).

Recall the Nakayama functor νA, defined in Section 2.6 to be the composition of the
dualities D = HomF (−, F) and HomA(−, A). Note that both of the induced functors
D∗ and HomA(−, A)∗ define dualities Morn−1(A)op ∼−→ Morn−1(Aop) which identify the
monomorphism subcategory with the epimorphism subcategory, and vice versa. It follows
that the equivalence νA∗ = D∗ HomA(−, A)∗ : Morn−1(A)

∼−→ Morn−1(A), preserves both
MMorn−1(A) and EMorn−1(A) and descends to the corresponding stable categories.

In contrast with the behavior of νA∗, recall that νB restricts to an equivalence Gproj(B)
∼−→

Ginj(B); it is therefore worth investigating the relationship between these two functors.
Before we express νB in the language of the monomorphism category, it will be helpful to
first translate the F-linear duality on B.

Proposition 6.7 There is an isomorphism D∗ ◦ Ml ∼= Mr ◦ D of functors (B -mod)op →
Morn−1(A). Similarly, Ml ◦ D ∼= D∗ ◦ Mr .

Proof Let X ∈ B -mod. The left A-module map lEi,i : X � Ei,i X yields a monomorphism
l∗Ei,i

: D(Ei,i X) ↪→ DX whose image is (DX)Ei,i . We have a commutative diagram in
mod-A.

D(Ei−1,i−1X) D(Ei,i X)

(DX)Ei−1,i−1 (DX)Ei,i

l∗Ei−1,i

∼ l∗Ei−1,i−1
l∗Ei,i∼

rEi−1,i

hence l∗E•,• : D∗Ml(X)
∼−→ Mr D(X) is an isomorphism which is easily verified to be natural

in X .
The second isomorphism follows immediately by precomposing with D and postcompos-

ing with D∗. ��
Proposition 6.8 There is an isomorphism Mr ◦ νB ∼= Cok νA∗ ◦ Mr of functors Gproj(B) →
EMorn−1(A).

Proof It is enough to show that D∗MrνB ∼= D∗ Cok νA∗Mr . By Proposition 6.7, we have
that

D∗MrνB ∼= Ml DνB ∼= Ml HomB(−, B)
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Since νA is exact, it is easily verified that Cok νA∗ ∼= νA∗ Cok, hence

D∗ Cok νA∗Mr ∼= D∗νA∗ Cok Mr ∼= HomA(−, A)∗ Cok Mr

It thus suffices to construct ζ : Ml HomB(−, B)
∼−→ HomA(−, A)∗ Cok Mr , an isomorphism

of functors Gproj(B)op → MMorn−1(Aop).
Let X ∈ Gproj(B). Note that Ei,i HomB(X , B) consists of precisely those homomor-

phisms with image in Ei,i B. Thus

Ml HomB(X , B) = (HomB(X , En+1−•,n+1−• B), lEn−•,n+1−•)

A direct computation shows that

HomA(−, A)∗ Cok Mr (X) = (HomA(X En,n/X En−•,n, A), π∗
n−•)

where πi : X En,n/X Ei−1,n � X En,n/X Ei,n is the canonical projection. (Here we define
X E0,n to be 0.)

Given f ∈ HomB(X , Ei,i B), note that the restriction of f to X En,n has image in
Ei,i B En,n = Ei,n B = Ei,n A, which is canonically isomorphic to A as an (A, A)-bimodule.
Furthermore, f (X Ei−1,n) ⊆ Ei,i B Ei−1,n = 0, hence the restriction descends to a map

f |X En,n : X En,n/X Ei−1,n → Ei,n A ∼= A

Let ζX ,i : HomB(X , Ei,i B) → HomA(X En,n/X Ei−1,n, A) be the map sending f to
f |X En,n .
To show that ζX ,i is injective, let f ∈ ker(ζX ,i ) and let x ∈ X . Since ζX ,i ( f ) = 0,

then f (X En,n) = 0 and so f (x)E j,n = f (x E j,n En,n) = 0 for all j ≤ n. The map
rE j,n : B E j, j ↪→ B En,n is injective for all j ≤ n; it follows from the above equation that
f (x)E j, j = 0 for all j ≤ n, hence f (x) = 0. Thus f = 0 and ζX ,i is injective.
To see that ζX ,i is surjective, take any g ∈ HomA(X En,n/X Ei−1,n, A). Define f : X →

Ei,i B by f (x) = ∑n
j=i g(x E j,n)Ei, j . A direct computation shows that for any 1 ≤ r ≤

s ≤ n,

f (x Er ,s) = g(x Er ,n)Ei,s = f (x)Er ,s

It follows that f is a right B-modulemorphism and ζX ,i ( f ) = g. Thus ζX ,i is an isomorphism
for each i .

It is easily checked that ζX ,n+1−• is a morphism in MMorn−1(Aop) and is natural in X ,
hence the two functors are isomorphic. ��

6.5 Serre duality

The inclusion functor Gproj(B) ↪→ mod-B possesses a right adjoint P : mod-B →
Gproj(B) [21, Lemma 6.3.6]. We have already seen that Mimo plays an analogous role
in the monomorphism category, so it is no surprise that the two functors are related.

Proposition 6.9 There is an isomorphism Mr◦P ∼= Mimo ◦Mr of functorsmod-B → stabN (A).

Proof Let ι1 : stabN (A) ↪→ MorN−2(A) and ι2 : Gproj(B) ↪→ mod-B be the inclusion
functors. It is clear that ι1Mr = Mr ι2. By Proposition 6.2, Mimo is right adjoint to ι1; it
follows that both P and M−1

r Mimo Mr are right adjoint to ι2, hence P ∼= M−1
r Mimo Mr .

The result follows. ��
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We are ready to describe the Serre functors on stabN (A) and Ds
N (A). We shall write �A,

�B , and �N to denote the syzygy functors on stab(A), stab(B) and stabN (A), respectively.
Recall that since A is self-injective, νA is exact and so lifts to Ds

N (A).

Theorem 6.10 �N RνA∗ is a Serre functor on stabN (A). [−1]νA is a Serre functor on Ds
N (A).

Proof By [21, Corollary 6.4.10], Gproj(B) has Serre functor S := �B PνB . Thus Mr SM−1
r

is a Serre functor for stabN (A) and G Mr SM−1
r G

−1
is a Serre functor for Ds

N (A). Then

Mr SM−1
r = Mr�B PνB M−1

r

∼= �N Mr PνB M−1
r

∼= �N Mimo MrνB M−1
r Proposition 6.9

∼= �N Mimo Cok νA∗ Proposition 6.8

= �N RνA∗

and

G Mr SM−1
r G

−1 ∼= G�N RνA∗G
−1

∼= �−1G RνA∗G
−1

∼= �−1�[−1]GνA∗G
−1

Proposition 6.5
∼= [−1]νA

where the isomorphism GνA∗ ∼= νAG follows immediately from exactness of νA. ��

When the order of the Nakayama automorphism is known, one obtains a description of
the fractional Calabi–Yau dimension of the N -stable category. (See Sect. 2.2 for definitions.)

Corollary 6.11 Suppose the Nakayama automorphism of A has order r . Let s = lcm(N , r)

and t = s
N . If N > 2, then stabN (A) is (−2t, s)-Calabi–Yau. stab(A) is (−r , r)-Calabi–Yau.

Proof It suffices to check that Ds
N (A) has the appropriate Calabi–Yau property. We have that

νr
A

∼= id , hence νs
A

∼= id . Then

([−1]νA)s ∼= [−s] = [−t N ] ∼= �−2t

For N = 2, we have � = [1], hence ([−1]νA)r ∼= �−r . ��

Corollary 6.12 Suppose A is symmetric. Then stab(A) is (−1)-Calabi–Yau and stabN (A) is
(−2, N )-Calabi–Yau for all N > 2.

Proof Since A is symmetric, νA = id hence r = 1. The statement follows. ��

The above integer pairs need not beminimal. The presence of additional relations between
the functors �, νA∗ and R may allow stabN (A) to be (x, y)-Calabi–Yau for smaller values
of x and y; see below for a concrete example.
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6.6 An example

Let F be any field, let Q be the quiver 1 2
α

β

, and let A = F Q/rad2(F Q). Then A

is self-injective with four indecomposable modules: the simple modules S1 and S2 and their
two-dimensional injective hulls I1 and I2.

[I1] [I2]

S1 S2 S1
The Auslander-Reiten quiver of A.

Vertices in brackets are projective-injective.

Fix some N ≥ 2. For any integers i, j ≥ 0 satisfying 1 ≤ i + j ≤ N − 1, define objects
X(i, j) and Y (i, j) in MMorN−2(A) by

X(i, j) := 0 → · · · → 0 → S1 → · · · → S1 → I1 → · · · → I1

Y (i, j) := 0 → · · · → 0 → S2 → · · · → S2 → I2 → · · · → I2

Here each sequence has exactly i simples and j projective-injectives, and each morphism is
the canonical inclusion.

In mod-A, every monomorphism from an indecomposable module M into a direct sum
Y ⊕ Z factors through either Y or Z , so (M•, α•) ∈ MMorN−2(A) is indecomposable if and
only if each Mi is indecomposable. Thus the indecomposable objects of MMorN−2(A) are
precisely the X(i, j) and Y (i, j). The indecomposable projective-injectives are precisely the
objects X(0, j) and Y (0, j).

The Nakayama automorphism of A has order 2, so by Corollary 6.11, stabN (A) is
(−4, 2N )-Calabi–Yau if N is odd and (−2, N ) if N > 2 is even. However, it is easy to
check that νA∗ ∼= � ∼= �−1 on stabN (A) for any N . It follows from Proposition 6.5 that
R and �−1 commute, since the corresponding functors � and �[−1] commute in Ds

N (A).
Thus stabN (A) has Serre functor S = �RνA∗ ∼= R, and Ds

N (A) has Serre functor �[−1].
In particular,

SN ∼= �−N+2 ∼=
{

�−1 N odd

id N even

Thus for N > 2, stabN (A) is (1, N )-Calabi–Yau for odd N and (0, N )-Calabi–Yau for even
N .

A straightforward computation shows that for any i > 0,

S(X(i, j)) =
{

Y (i, j − 1) j > 0

X(N − i, i − 1) j = 0

S(Y (i, j)) =
{

X(i, j − 1) j > 0

Y (N − i, i − 1) j = 0

�(X(i, j)) = Y (i, j)

�(Y (i, j)) = X(i, j)

It follows immediately that Sn is not isomorphic to any power of � for any 0 < n < N .
Weconcludebyproviding theAuslander-Reiten quiver ofMMorN−2(A) for representative

values of N .
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