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Abstract
In this paper, we build a compactification by a strictly pseudoconvex CR structure for a
complete and non-compact Kähler manifold whose curvature tensor is asymptotic to that of
the complex hyperbolic space. To do so, we study in depth the evolution of various geometric
objects that are defined on the leaves of some foliation of the complement of a suitable convex
subset, called an essential subset, whose leaves are the equidistant hypersurfaces above this
latter subset.With a suitable renormalizationwhich is closely related to the anisotropic nature
of the ambient geometry, the above mentioned geometric objects converge near infinity,
inducing the claimed structure on the boundary at infinity.

Keywords Complex hyperbolic space · Asymptotic geometry · Asymptotically symmetric
space · CR structure

Mathematics Subject Classification 53C21 · 53C35 · 53C55 · 58J60

1 Introduction

The study of the asymptotic geometry of complete non-compact Riemannian manifolds
have proven to be fruitful in the understanding of the geometry of complex domains, driven
by the following remark. By endowing the interior of a bounded domain with a complete
metric, which then sends its boundary to infinity, one can read much information on the
geometry of the boundary in the asymptotic development of the metric, see [14, 15, 21]. The
induced geometric structure on the boundary leads to geometric invariants of the domain.
The Bergman metric and the Kähler-Einstein metric are examples of such metrics, and have
been at the centre of complex geometry for decades. On the unit ball of Cn , these two latter
metrics are equal up to a multiplicative constant. This example is particularly interesting,
and is called the complex hyperbolic space: it is the unique simply connected and complete
Kähler manifold with constant holomorphic sectional curvature equal to −1. In that sense, it
is the complex counterpart of the real hyperbolic space. In polar coordinates in an exponential
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chart, the complex hyperbolic metric is given by the following expression

dr2 + 4 sinh2(r)θ ⊗ θ + 4 sinh
( r

2

)
γ,

where θ is the standard contact form of the unit sphere of Cn , and γ = dθ(·, i ·) is the
Levi form induced on the contact distribution ker θ . This form of the metric reveals the
geometric structure of the odd dimensional sphere, which is a strictly pseudoconvex Cauchy–
Riemann (CR) manifold. We say that the CR sphere is the sphere at infinity of the complex
hyperbolic sphere. This example is a particular case of the more general non-compact rank
one symmetric spaces, namely the real hyperbolic spaces, the complex hyperbolic spaces,
the quaternionic hyperbolic spaces and the octonionic hyperbolic plane. They all admit a
sphere at infinity, which is endowed with a particular geometric structure closely related to
the Riemannian metric of these spaces; they are called conformal infinities. Asymptotically
hyperbolic Einstein metrics with prescribed conformal infinity have been built by Graham
and Lee [19, 23]. The general case of asymptotically symmetric metrics have been covered
by Biquard [6]. Similar results, yet unpublished, have been obtained simultaneously by Roth
in his Ph.D thesis for the complex hyperbolic case [25].

In a series of papers [2–4, 18], Bahuaud et al. have studied a converse problem in the real
hyperbolic setting. They give therein intrinsic geometric conditions under which a complete
non-compact Riemannian manifold whose sectional curvature decays sufficiently fast to −1
near infinity have a conformal boundary at infinity, modelled on that of the hyperbolic space.
This generalizes a work of Anderson and Schoen [1]. These geometric conditions are the
existence of a convex core, called essential subset, and the convergence near infinity of the
sectional curvature to−1, and of some covariant derivatives of the curvature tensor to 0, with
exponential decays.

By trying to determine which complete Kähler manifolds arise as bounded submanifolds
of some Hermitian space CN , Bland has studied an analogous problem in the Kähler case,
and has built a compactification by a CR structure for some complete non-compact mani-
folds whose curvature tensor is asymptotic to that of the complex hyperbolic space in some
particular coordinates [9, 10]. Nonetheless, his assumptions appear to be rather restrictive,
and not completely geometric: roughly, it is asked that the curvature tensor, with a suitable
renormalization, extends up to the boundary in some already compactified coordinates, with
high regularity. They imply, in particular, the a posteriori estimates R = R0 + O(e−3r ) and
∇ R = O(e−4r ), where R0 is the constant−1 holomorphic sectional curvature tensor, and r is
the distance function to some compact subset. However, Biquard and Herzlich have shown in
[7] that, in real dimension 4, the curvature tensor R of an asymptotically complex hyperbolic
Einstein metric has the following asymptotic development

R = R0 + Ce−2r + O(e−2r ),

where C turns out to be a (non-zero) multiple of the Cartan tensor of the CR structure at
infinity. Since the Cartan tensor of a CR structure vanishes exactly when the CR structure is
spherical (that is, if it is locally CR diffeomorphic to the unit sphere), it seems that Bland’s
results only hold for a few examples of asymptotically complex hyperbolic metrics, at least
in real dimension 4 and in the Einstein setting.

More recently, it has been shown byBracci et al. that a convex domain inCn with boundary
of class at least C2,α (α > 0) is strictly pseudoconvex if and only if one can endow this
domain with a complete Kähler metric whose holomorphic sectional curvature has range
in [−1 − ε,−1 + ε] near the boundary [11, 28]. Here, the constant ε only depends on
the dimension and the regularity of the boundary. In this case, the holomorphic sectional
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curvature has the form −1+O(e−ar ) for some a > 0, where r is the distance function from
a compact subset. Let us mention that this result has been proven to be false if the regularity
of the boundary is only C2 [16].

Inspired by the work of Bahuaud et al., we give in this paper a geometric characterization
of complete non-compact Kähler manifolds admitting a compactification by a strictly pseu-
doconvex CR structure. The study is more intricate in the complex hyperbolic setting than
in the real hyperbolic one, due to the anisotropic nature of complex hyperbolic geometry.
In contrast with Bland’s results, our study only relies on purely geometric assumptions, and
requires a control of the curvature and its first covariant derivative to an order strictly less
than O(e−2r ). We consider a complete non-compact Kähler manifold (M, g, J ) whose Rie-
mann curvature tensor R is asymptotic to R0, the curvature tensor of constant holomorphic
sectional curvature −1. We first prove that if R is exponentially close to R0 near infinity,
then the metric tensor has an asymptotic development at infinity that is similar to that of the
complex hyperbolic space.

Theorem A Let (M, g, J ) be a complete non-compact Kähler manifold with an essential
subset K . Assume that the sectional curvature of M \ K is negative and that there exists
a > 1 such that ‖R − R0‖g = O(e−ar ). Then ∂K is endowed with a nowhere vanishing
continuous differential 1-form η and a continuous field of symmetric positive semi-definite
bilinear forms γH , positive definite on the distribution H = ker η, such that the metric reads
in an exponential chart

dr2 + e2rη ⊗ η + erγH + lower order terms.

See Sect. 4.7 for a precise statement. In view of the computations, and due to the charac-
terization of strictly pseudoconvex domains by Bracci et al., the decay rate of the curvature
is a reasonable assumption. Such a Kähler manifold will be referred to as an asymptotically
locally complex hyperbolic manifold. The local condition on the curvature tensor is thus a
sufficient condition to recover a development of the metric similar to that of the model space.
The differential form η is called the canonical 1-form at infinity, and the field of symmet-
ric bilinear forms γH is called the Carnot–Carathéodory metric at infinity. Under the extra
condition that the metric is asymptotically locally symmetric, we can moreover prove the
following.

Theorem B Let (M, g, J )be a complete non-compact Kähler manifold satisfying the assump-
tions of Theorem A. Assume furthermore that there exists b > 1 such that ‖∇ R‖g = O(e−br ).
Then the canonical 1-form at infinity η is a contact form of class C1.

Under higher exponential decays, the Carnot–Carathéodory metric also gains one order
of regularity.

Theorem C Let (M, g, J ) be a complete non-compact Kähler manifold satisfying the assump-
tions of Theorem B. Assume furthermore thatmin{a, b} > 3

2 . Then the Carnot–Carathéodory
metric at infinity γH is of class C1.

We then show that under the assumptions of Theorem C, the contact distribution H is
endowedwith a canonical integrable almost complex structure JH having the same properties
as that of the model space.

Theorem D Let (M, g, J ) be a complete non-compact Kähler manifold satisfying the
assumptions of Theorem C. Then the contact distribution at infinity H = ker η is endowed
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with an integrable almost complex structure JH at infinity of class C1 such that the Carnot–
Carathéodory metric at infinity is given by γH = dη(·, JH ·). In particular, (∂K , H , JH ) is a
strictly pseudoconvex CR manifold of class C1.

Structure of the paper

In Sect. 2, we detail the notations and the setting. In Sect. 3, we define the asymptotically
locally complex hyperbolic (ALCH) and asymptotically locally symmetric (ALS) conditions
and give a lower bound on the volume growth. In Sect. 4, we study the asymptotic behaviour
of normal Jacobi fields, and then prove Theorem A. Section5 is devoted to the proof of
Theorems B and C. Section6 is finally dedicated to the definition of the almost complex
structure at infinity and to the proof of Theorem D. Useful curvature computations can be
found in the Appendix A.

2 Preliminaries

2.1 Notations

Let (M2n+2, g, J ) be a complete, non-compact Kähler manifold of real dimension 2n + 2,
n ≥ 1. We denote by ∇ its Levi-Civita connection. We recall that (M, g, J ) is Kähler if the
almost complex structure J is parallel and satisfies g(J X , JY ) = g(X , Y ) for all tangent
vectors X and Y . The Riemann curvature tensor R is defined by

R(X , Y )Z = ∇[X ,Y ] Z − (∇X (∇Y Z) − ∇Y (∇X Z)
)
. (2.1.1)

By abuse of notation, its four times covariant version is still denoted by R, that is
R(X , Y , Z , T ) = g(R(X , Y )Z , T ). Please note that our convention is that of [5, 17], which
is opposite to that of [13, 24]. In our case, the sectional curvature of a linear plane P with
orthonormal basis {X , Y } is sec(P) = sec(X , Y ) = R(X , Y , X , Y ) and the holomorphic
sectional curvature is given by R(X , J X , X , J X).

Let K ⊂ M be a compact codimension 0 submanifold with hypersurface boundary ∂K
oriented by a unit normal ν. The associated outward normal exponential map E : R+×∂K →
M is defined by E(r , p) = γp(r), where γp is the unit speed geodesic with initial data
γp(0) = 0 and γ ′

p(0) = ν(p). Following [4], the submanifold K is called an essential subset
if ∂K is convex with respect to ν, meaning that its shape operator is non-negative, and if
E : R+ × ∂K → M\K is a diffeomorphism. If K is totally convex and if the sectional
curvature outside of K is negative, then K is an essential subset (see [4, Theorem 3.1]).
Moreover, the visual boundary of (M, g) is homeomorphic to the boundary of K .

Assume that K ⊂ M is an essential subset. The radial vector field ∂r is the vector field
on M \ K defined by ∂r (γp(r)) = E(r , p)∗ d

dr = γ ′
p(r). A tensor defined on M \ K is said

to be radially parallel if its covariant derivative in the ∂r direction vanishes. Since (γp)p∈∂K

are geodesics, ∂r is radially parallel. The shape operator S and the Jacobi operator R∂r are
the fields of symmetric endomorphisms defined by SX = ∇X∂r and R∂r X = R(∂r , X)∂r .
They are related by the Riccati equation

L∂r S = ∇∂r S = −S2 − R∂r . (2.1.2)
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They both vanish on ∂r and take values in {∂r }⊥. From the Riccati equation we derive the
following: if ∂K is convex and the sectional curvature of M \ K is non-positive, then the
level hypersurfaces above ∂K are convex.

If v ∈ Tp∂K is a tangent vector, the associated normal Jacobi field along γp is defined
as Yv(r) = E(r , p)∗v. If v is a (local) vector field on ∂K , we write Yv(γp(r)) = Yv(p)(r),
which is still called a normal Jacobi field.

Lemma 2.1 If v is a (local) vector field on ∂K , then:

1. The vector fields Yv and ∂r commute.
2. ∇∂r Yv = SYv .
3. Yv is everywhere orthogonal to ∂r .
4. The restriction of Yv along any radial geodesic γp is a Jacobi field.

Proof 1. Since E is a diffeomorphism onto its image, the naturality of the Lie bracket yields
[∂r , Yv] = E∗[ d

dr , v] = E∗0 = 0.
2. The Levi-Civita connection is torsion-free, hence SYv − ∇∂r Yv = [∂r , Yv]. The result

follows by the first point.
3. The equation of geodesics∇∂r ∂r = 0 together with the second point give ∂r (g(Yv, ∂r )) =

g(SYv, ∂r ). This last expression identically vanishes since S has range in {∂r }⊥. Hence,
the function g(Yv, ∂r ) is constant along radial geodesics, and the result follows from the
initial condition g(v, ν) = 0.

4. From the second point, it holds that ∇∂r Yv = SYv . One thus obtains the equality
∇∂r (∇∂r Yv) = ∇∂r (SYv) = (∇∂r S)Yv + S∇∂r Yv , and the result follows from the Riccati
equation.

�
Recall that (M, g, J ) is assumed to be Kähler. We define the constant −1 holomorphic

sectional curvature tensor R0 by

R0(X , Y , Z , T ) = 1

4

(
g(X , T )g(Y , Z) − g(X , Z)g(Y , T )

+ g(X , J T )g(Y , J Z) − g(X , J Z)g(Y , J T )

+ 2g(X , JY )g(T , J Z)
)
.

It is a parallel tensor having the symmetries of a curvature tensor. In case (M, g, J ) is
the complex hyperbolic space, then R = R0. Note that this definition differs from that
of [22, IX.7] by its sign: the reason is that we require for R0 to have −1 holomorphic
sectional curvature. For any orthonormal pair of vectors fields {X , Y }, R0(X , Y , X , Y ) =
− 1

4 (1 + 3g(J X , Y )2), from which is deduced the fundamental pinching

−1 ≤ R0(X , Y , X , Y ) ≤ −1

4
.

If P = span{X , Y }, the lower bound is achieved exactly when P = J P (we say that P is a
complex line) while the upper bound is achieved exactly when P ⊥ J P (we say that P is a
totally real plane).

2.2 Contact and CRmanifolds

A contact form on an (2n + 1)-dimensional manifold M is a differential form of degree one
α such that α ∧ dαn �= 0 everywhere. The associated contact structure is H = ker α. We say
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that (M, H) is a contact manifold, and that α calibrates H . Note that for H fixed, α is not
unique. The Reeb vector field of α is the unique vector field Xα such that α(Xα) = 1 and
dα(Xα, ·) = 0.

An almost complex structure J on (M, H) is a section of the bundle End(H) such that
J 2 = − IdH . The complexified bundle H ⊗ C splits as H ⊗ C = H1,0 ⊕ H0,1 into the
eigenspaces of the complex linear extension of J , where H1,0 = {X − i J X | X ∈ H} and
H0,1 = {X + i J X | X ∈ H}. The almost complex structure J is said to be integrable if
the sections of H1,0 form a linear subalgebra of the sections of T M ⊗ C, that is if [X , Y ] ∈
	(H1,0) whenever X , Y ∈ 	(H1,0).

A CR manifold (M, H , J ) is a contact manifold (M, H) endowed with an integrable
almost complex structure on H . When H = ker α and dα(·, J ·) is positive definite on
H , (M, α, J ) is called a strictly pseudoconvex CR manifold. CR geometry is the natural
geometry of real hypersurfaces in complex manifolds. The toy model is S, the unit sphere of
C

n , with contact distribution H = TS ∩ (iTS) and with almost complex structure J given
by the multiplication by i in the fibres. Endowed with its natural contact form, it is a strictly
pseudoconvex CR manifold.

2.3 Some analysis results

Throughout the paper, we will use the following two theorems from real analysis several
times.

Theorem (Grönwall’s inequality) Let I = [t0, T ) ⊂ R be an interval with T ∈ (t0,+∞]
and let ϕ, α and β : I → R be respectively continuous, non-decreasing, and non-negative
continuous functions. Assume that

∀t ∈ I , ϕ(t) ≤ α(t) +
∫ t

t0
β(s)ϕ(s) ds. (2.3.1)

Then it holds that

∀t ∈ I , ϕ(t) ≤ α(t) exp

(∫ t

t0
β(s) ds

)
.

An inequality of the form (2.3.1) will be referred to as a “Grönwall-like inequality".

Theorem (Rademacher’s Theorem) Let ϕ : I → R be a locally Lipschitz function defined
on an interval I , and let t0 ∈ I be fixed. Then ϕ is almost everywhere differentiable, and it
holds that

∀t ∈ I , ϕ(t) = ϕ(t0) +
∫ t

t0
ϕ′(s) ds,

where the latter integral is the Lebesgue integral of the almost everywhere defined function
ϕ′.

Rademacher’s Theorem will be applied to the restriction of the norm of tensors restricted
along radial geodesics γp .

The following Lemma will be useful in order to estimate the growth of normal Jacobi
fields.
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Lemma 2.2 Let f : R+ → R be aC2 function. Assume that there exist three positive constants
α, β and γ such that

∀t ≥ 0, | f ′′(t) + α f ′(t)| ≤ γ e−βt .

Then f has a limit f∞ ∈ R when t → +∞ and it holds that

∀t ≥ 0, | f ′(t)| ≤

⎧
⎪⎪⎨
⎪⎪⎩

(
| f ′(0)| + γ

β−α

)
e−βt if β < α,(| f ′(0)| + γ t

)
e−αt if β = α,(

| f ′(0)| + γ
β−α

)
e−αt if β > α,

∀t ≥ 0, | f (t) − f∞| ≤

⎧
⎪⎪⎨
⎪⎪⎩

(
| f ′(0)| + γ

β−α

)
e−βt

β
if β < α,

α| f ′(0)|+γ (αt+1)
α2 e−αt if β = α,(

| f ′(0)| + γ
β−α

)
e−αt

α
if β > α.

Proof Write eαt ( f ′′(t) + α f ′(t)) = (
eαt f ′(t)

)′. Integrating on [0, t] and using the assump-
tion yields

∀t ≥ 0, | f ′(t)| ≤ e−αt | f ′(0)| + γ e−αt
∫ t

0
e(α−β)x dx . (2.3.2)

There are three cases to consider depending on β < α, β = α or β > α. In any case, equation
(2.3.2) shows that f ′ is integrable and hence that f converges. The result follows from a
straightforward integration. �

We finally give a Lemma that will be applied to give a uniform bound on the norm of the
shape operator.

Lemma 2.3 Let σ : R+ → R be a locally Lipschitz function. Let C and a be positive constants
such that the following inequality holds almost everywhere

σ ′ ≤ −σ 2 + 1 + Ce−at .

Then there exists a constant C ′ > 0 depending only on C and a such that

∀t ≥ 0, σ (t) ≤ 1 + (σ (0) + C ′)

⎧⎪⎨
⎪⎩

e−at if 0 < a < 2,

(t + 1)e−2t if a = 2,

e−2t if a > 2.

Proof Let ς = σ − 1. Then ς is locally Lipschitz and almost everywhere differentiable, and
it follows from the assumption on σ and from the fact that ς2 ≥ 0, that

ς ′(t) ≤ −2ς + Ce−at a.e.

Thus, it holds that

(ς(t)e2t )′ ≤ Ce(2−a)t a.e.

Integrating this last inequality yields

∀t ≥ 0, ς(t) ≤ ς(0)e−2t + C

⎧⎪⎨
⎪⎩

e−at −e−2t

2−a if 0 < a < 2,

te−2t if a = 2,
e−2t −e−at

a−2 if a > 2.

The result now follows from comparing the exponents. �
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3 Asymptotically locally complex hyperbolic manifolds

3.1 The ALCH and ALS conditions

We define the two following asymptotic conditions.

Definition 3.1 ((ALCH) and (ALS) manifolds) Let (M, g, J ) be a complete non-compact
Kähler manifold, K ⊂ M be a compact subset and r = dg(·, K ) be the distance function to
K .

1. (M, g, J ) is said to be asymptotically locally complex hyperbolic, (ALCH) in short, of
order a > 0, if there exists a constant C0 > 0 such that

‖R − R0‖g ≤ C0e−ar .

2. (M, g) is said to be asymptotically locally symmetric, (ALS) in short, of order b > 0, if
there exists a constant C1 > 0 such that

‖∇ R‖g ≤ C1e−br .

Remark 3.2 These two definitions do not depend on the choice of the compact subset K ⊂ M .

In practice, K will refer to an essential subset. The complex hyperbolic space is of course
(ALCH) and (ALS) of any order since in that case, R = R0 and ∇ R = 0.

3.2 First consequences

We fix (M, g, J ) an (ALCH) manifold of order a > 0. The following Lemmas are direct
consequences of the definition of R0.

Lemma 3.3 The norm of the Riemann curvature tensor of an (ALCH) manifold of order a > 0
is uniformly bounded.

Lemma 3.4 Let p ∈ M and P ⊂ Tp M be a tangent plane. Then

−1 − C0e−ar(p) ≤ sec(P) ≤ −1

4
+ C0e−ar(p).

We now assume that K ⊂ M is an essential subset and that the sectional curvature of
M \ K is non-positive. In that case, the shape operator S is positive semi-definite on M \ K ,
and its operator norm at a point γp(r) ∈ M \ K is given by its largest eigenvalue.

Proposition 3.5 There exists a constant C > 0 independent of (r , p) such that

‖Sγp(r)‖g ≤ 1 + C

⎧⎪⎨
⎪⎩

e−ar if 0 < a < 2,

(r + 1)e−2r if a = 2,

e−2r if a > 2.

In particular, ‖S‖g is uniformly bounded on M\K , and ‖S‖g − 1 is bounded above by an
integrable function on M \ K .

Proof Let p ∈ ∂K and σ : R → R be defined by σ(r) = ‖Sγp(r)‖g . Since S is pos-
itive semi-definite, σ(r) is the largest eigenvalue of Sγp(r). Identify all tangent spaces
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along γp using parallel transport, and let (Sr )r≥0 and (Rr )r≥0 be the associated endo-
morphisms of Tp∂K obtained from S and R∂r . Therefore, σ is given by the expression
σ(r) = supX∈Tp∂K ,‖X‖g=1 g(Sr X , X). In this identification, the Riccati equation reads

S′
r = −S2

r − Rr . Let X ∈ Tp∂K be a unit vector, r ≥ 0 and h > 0. Then

g(Sr+h X , X) = g
(
(Sr + hS′

r + o(h))X , X
)

= g
(
(Sr − hS2

r )X , X
) + h(−g(Rr X , X) + o(1)

)
.

For small enough h > 0, Sr −hS2
r is positive semi-definite and its largest eigenvalue is given

by σ(r) − hσ(r)2. In addition, g(Rr X , X) is the sectional curvature of the tangent plane
spanned by ∂r and the parallel transport of X along γp evaluated at γp(r), which is bounded
below by −1 − C0e−ar (Lemma 3.4). It then follows that

g(Sr+h X , X) ≤ σ(r) − hσ(r)2 + h
(
1 + C0e−ar + o(1)

)
.

Taking the supremum over all unit vectors X of this last inequality yields

σ(r + h) ≤ σ(r) − hσ(r)2 + h
(
1 + C0e−ar + o(1)

)
,

from which is deduced the inequality

lim sup
h→0

σ(r + h) − σ(r)

h
≤ −σ(r)2 + 1 + C0e−ar . (3.2.1)

Since S is smooth and ‖·‖ is Lipschitz, σ is locally Lipschitz, and by Rademacher’s Theorem,
σ is almost everywhere differentiable. It then follows from Eq. (3.2.1) that

σ ′ ≤ −σ 2 + 1 + C0e−ar a.e.

According to Lemma 2.3, there exists C ′ > 0 depending only on C0 and a such that

‖Sγp(r)‖g ≤ 1 + (‖Sp‖g + C ′)

⎧⎪⎨
⎪⎩

e−ar if 0 < a < 2,

(r + 1)e−2r if a = 2,

e−2r if a > 2.

The result now follows by defining C = C ′ + supp∈∂K ‖Sp‖g which is finite by compactness
of ∂K . �

3.3 A volume growth lower bound

The (ALCH) assumption implies two bounds on the sectional curvature. The lower bound
sec ≥ −1+O(e−ar ) forces the largest eigenvalue of the shape operator, and thus its operator
norm, to be uniformly bounded.We shall now show that the upper bound sec ≤ − 1

4+O(e−ar )

forces the trace of the shape operator to be bounded from below.We then derive a lower bound
on the volume density function using Eq. (3.3.5). Our study is inspired by [12, 20].

We first show the following general Lemma from geometric comparison analysis. It is
very similar to different results stated in [20]. The author could not find a precise proof of the
exact formulation given below and therefore decided to give one, relying on classical Jacobi
field techniques.

Lemma 3.6 Let (Mm+1, g) be a complete Riemannian manifold, N ⊂ M be a hypersurface
co-oriented by a unit normal ν, p ∈ ∂K , and κ > 0 such that
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1. N is convex with respect to ν,
2. there exists R > 0 such that the normal exponential map E is a diffeomorphism from

[0, R) × N onto its image,
3. the sectional curvature on this image is non-positive,
4. there exists r0 ∈ [0, R) such for all r ∈ [r0, R), the sectional curvature of any linear

plane tangent at γp(r) is bounded above by −κ2.

Then it holds that

∀r ∈ [r0, R), trace(Sγp(r)) ≥ mκ tanh
(
κ(r − r0)

)
.

Proof The proof is quite long and goes in two steps. We first bound from below the trace of
S by an integral related to the norm of some Jacobi fields. Then, we compare the situation
with its counterpart in the hyperbolic space of dimension m +1 and sectional curvature−κ2,
where N is replaced by an isometrically embedded m dimensional hyperbolic space of the
same sectional curvature.

Let {∂r , E1, . . . , Em} be an orthonormal frame along γp obtained using the parallel
transport of an orthonormal basis {ν, e1, . . . , em} of Tp M . Let r ∈ [r0, R) be fixed. For
j ∈ {1, . . . , m}, let Y j be the unique Jacobi field along γp such that Y j (r) = E j (r) and
∇∂r Y j (r) = Sγp(r)E j (r). It is shown similarly to the proof of Lemma 2.1 that the equality
∇∂r Y j = SY j holds all along γp . By assumptions 2. and 3. and by the convexity of N , S is a
positive definite operator and it follows that, for j ∈ {1, . . . , m}

g(SY j (r), Y j (r)) ≥ g(SY j (r), Y j (r)) − g(SY j (r0), Y j (r0)) =
∫ r

r0

d

dt
g(SY j , Y j ).

The Jacobi field equation yields the equality

d

dt
g(SY j , Y j ) = ‖∇∂r Y j‖2g − sec(∂r , Y j )‖Y j‖2g.

Since trace
(
Sγp(r)

) = ∑m
j=1 g(SE j (r), E j (r)), the initial conditions for the Jacobi fields

Y j and the assumption 4. now gives

trace
(
Sγp(r)

) ≥
m∑

j=1

∫ r

r0
‖∇∂r Y j‖2g + κ2‖Y j‖2g. (3.3.1)

We now compare the right-hand side of (3.3.1) with a similar situation in the space form of
curvature−κ2. Let (M, g) = RHm+1(−κ2) be that space form,∇ its Levi-Civita connection,
N = RHm(−κ2) ↪→ M be isometrically embedded, for instance as the equatorial hyperplane
in the ball model, with a unit normal ν, and shape operator S. Let {∂r , E1, . . . , Em} be an
orthonormal frame along a radial geodesic γ p obtained using the parallel transport of an

orthonormal basis {ν, e1, . . . , em} of Tp M . For j ∈ {1, . . . , m}, let Y j be the unique Jacobi
field along γ p such that ∇∂r

Y j = SY j and Y j (r − r0) = E j (r − r0). Finally, let X j be
defined by

∀t ∈ [0, r − r0], X j (t) =
m∑

k=1

g
(
Y j (r0 + t), Ek(r0 + t)

)
Ek(t),

so that the following equalities hold

∀t ∈ [0, r − r0], ‖X j (t)‖g = ‖Y j (r0 + t)‖g,

‖∇∂r
X j (t)‖g = ‖∇∂r Y j (r0 + t)‖g.

(3.3.2)
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Expanding the inequality ‖∇∂r
(Y j − X j )‖2g + κ2‖Y j − X j‖g ≥ 0, and integrating the

developed expression on [0, r − r0] yields
∫ r−r0

0
‖∇∂r

X j‖2g + κ2‖X j‖2g ≥ 2
∫ r−r0

0
g(∇∂r

Y j ,∇∂r
X j ) + κ2g(Y j , X j )

−
∫ r−r0

0
‖∇∂r

Y j‖2g + κ2‖Y j‖2g.
(3.3.3)

Since Y j is a Jacobi field, the integrands of the right-hand side satisfy

g(∇∂r
Y j ,∇∂r

X j ) + κ2g(Y j , X j ) = d

dt
g(∇∂r

Y j , X j ), and

‖∇∂r
Y j‖2g + κ2‖Y j‖2g = d

dt
g(∇∂r

Yj , Yj ).

Recall that ∇∂r
Y j = SY j . Since N is isometrically embedded, it holds that S p = 0. Also,

recall that at r − r0, Y j (r − r0) = X j (r − r0). Hence, (3.3.3) yields
∫ r−r0

0
‖∇∂r

X j‖2g + κ2‖X j‖2g ≥ g(SE j (r − r0), E j (r − r0)). (3.3.4)

It now follows from equations (3.3.1), (3.3.2) and (3.3.4) that we have the inequality
trace

(
Sγp(r)

) ≥ trace
(
Sγ p(r−r0)

)
. Note that �γ p(t) = κ tanh(κt) Id{γ p(t)}⊥ satisfies the

Riccati equation

∇∂r
� = −�2 − R∂r

,

with initial data �p = 0, so that S = �. This concludes the proof. �
We now return to the setting of this paper and consider a Kähler manifold (M, g, J ) with

an essential subset K . It is canonically oriented, and so is the co-oriented hypersurface ∂K .
Let vg and vg|∂K be the Riemannian volume forms induced by the metrics g and g|∂K . Since
E is a diffeomorphism, E∗vg and dr ∧vg|∂K are two volume forms onR+ ×∂K , and they are
proportional. The volume density function λ is the unique positive function λ : R+×∂K → R

such that E∗vg = λ dr ∧ vg|∂K . It is clear that λ|{0}×∂K = 1. The volume density function
and the shape operator are related by the following differential equation

∂λ(r , p)

∂r
= λ(r , p) trace(Sγp(r)). (3.3.5)

We shall now derive from Lemma 3.6 a lower bound on the volume density function.

Proposition 3.7 Let (M2n+2, g, J ) be an (ALCH) manifold of order a > 0 with an essential
subset K , such that the sectional curvature of M \ K is negative. Let ε ∈ (0, n + 1

2 ) be fixed.
Then there exist r0 = r0(ε) > 0 and �− = �−(ε) > 0 such that the volume density function
λ satisfies

∀(r , p) ∈ [r0,+∞) × ∂K , λ(r , p) ≥ �−e(n+ 1
2−ε)r .

Proof Let κ = 1
2 − ε

2n+1 > 0 and r0 = max

{
1
a ln

( 1
4−κ2

C0

)
, 1

}
> 0. By definition of r0,

∀r ≥ r0, −1

4
+ C0e−ar ≤ −κ2 < 0.
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According to Lemma 3.4, the sectional curvature of linear planes based at points γp(r),
with r ≥ r0, have sectional curvature bounded above by −κ2. Hence, Lemma 3.6 yields the
inequality

∀(r , p) ∈ [r0,+∞) × ∂K , trace
(
Sγp(r)

) ≥ (2n + 1)κ tanh(κ(r − r0)).

The differential equation (3.3.5) satisfied by λ and S now yields

∀(r , p) ∈ [r0,+∞) × ∂K ,
∂rλ(r , p)

λ(r , p)
≥ (2n + 1)κ tanh(κ(r − r0)).

Integrating this last inequality yields

∀(r , p) ∈ [r0,+∞) × ∂K , λ(r , p) ≥ λ(r0, p) cosh2n+1(κ(r − r0)).

The result now follows by setting �− = e−(2n+1)κr0

22n+1 minp∈∂K λ(r0, p), which exists and is
positive since ∂K is compact and λ positive and continuous, and by noticing that (2n +1)κ =
n + 1

2 − ε. �

4 Normal Jacobi fields estimates

In this section, we consider (M2n+2, g, J ) a fixed (ALCH) manifold of order a > 0 with an
essential subset K , and we study the asymptotic behaviour of its normal Jacobi fields. The
geometric structure we wish to highlight being of contact nature, we choose not to work in
coordinates. Instead, we define some natural moving frames, which we call radially parallel
orthonormal frames, in which the computations are convenient.

4.1 Radially parallel orthonormal frame

To the radial vector field ∂r is naturally associated the vector field J∂r . Since the metric is
Kähler, J∂r is radially parallel. It can be obtained using the parallel transport of Jν along the
radial geodesics (γp)p∈∂K .

Definition 4.1 (Radially parallel orthonormal frame) Let {Jν, e1, . . . , e2n} be an orthonor-
mal frame defined on an open subset U ⊂ ∂K . For j ∈ {1, . . . , 2n}, let E j be vector
fields obtained by the parallel transport of e j along radial geodesics. The orthonormal frame
{∂r , J∂r , E1, . . . , E2n} on the cylinder E(R+×U ) is called the radially parallel orthonormal
frame associated to {Jν, e1, . . . , e2n}.

A radially parallel orthonormal frame is composed of radially parallel vector fields. It is
worth noting that {∂r , J∂r } spans a complex line while {∂r , E j } spans a totally real plane
if j ∈ {1, . . . , 2n}. Moreover, {E1, . . . , E2n} is an orthonormal frame of the J -invariant
subbundle {∂r , J∂r }⊥ of T M .

Lemma 4.2 Let {∂r , J∂r , E1, . . . , E2n} be a radially parallel orthonormal frame. Then the
following holds

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

| sec(∂r , J∂r ) + 1| ≤ C0e−ar ,

|R(∂r , J∂r , ∂r , E j )| ≤ C0e−ar , ∀ j ∈ {1, . . . , 2n},
| sec(∂r , E j ) + 1

4 | ≤ C0e−ar , ∀ j ∈ {1, . . . , 2n},
|R(∂r , Ei , ∂r , E j )| ≤ C0e−ar , ∀i, j ∈ {1, . . . , 2n}, i �= j .
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Proof Let X and Y be unit vector fields. The (ALCH) condition gives

|R(∂r , X , ∂r , Y ) − R0(∂r , X , ∂r , Y )| ≤ C0e−ar .

The result follows from a direct computation of R0(∂r , X , ∂r , Y ) for the different values of
X and Y in {J∂r , E j } and their orthogonal properties. �

4.2 The Jacobi system

Since K is an essential subset, for r ≥ 0, E(r , ·) is a diffeomorphism between ∂K and the
level hypersurface at distance r above ∂K .

Definition 4.3 (Local 1-forms) Let {∂r , J∂r , E1, . . . , E2n} be a radially parallel orthonormal
frame on the cylinder E(R+ × U ). We define on U the family of 1-forms {ηr , η

1
r . . . , η2n

r }
by

∀r ≥ 0, ηr = e−r E(r , ·)∗
(

g(·, J∂r )|∂r
⊥
)

,

∀ j ∈ {1, . . . , 2n},∀r ≥ 0, η
j
r = e− r

2 E(r , ·)∗
(

g(·, E j )|∂r
⊥
)

.

In otherwords, ηr (v) = e−r g(Yv, J∂r ) and η
j
r (v) = e− r

2 g(Yv, E j ). Note that ηr is defined
on all of ∂K and does not depend on the choice of a radially parallel orthonormal frame.With
these notations, a normal Jacobi field Yv = E∗v along a radial geodesic γp reads

Yv = ηr (v)er J∂r +
2n∑
j=1

η
j
r (v)e

r
2 E j . (4.2.1)

On the cylinder E(R+ ×U ), we also define the following (2n +1)2 functions {ui
k}i,k∈{0,...,2n}

by

ui
k = −

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

sec(∂r , J∂r ) + 1 if i = k = 0,

e− r
2 R(∂r , J∂r , ∂r , Ek) if i = 0, k ∈ {1, . . . , 2n},

e
r
2 R(∂r , Ei , ∂r , J∂r ) if i ∈ {1, . . . , 2n}, k = 0,

R(∂r , Ei , ∂r , Ek) if i, k ∈ {1, . . . , 2n}, i �= k,

sec(∂r , Ei ) + 1
4 if i = k ∈ {1, . . . , 2n}.

(4.2.2)

For the rest of this subsection, we shall fix the vector v and henceforth drop out the variable
v: we will write ηr and η

j
r instead of ηr (v) and η

j
r (v). In addition, when a summation is

involved, we set η0r = ηr for the sake of compactness.

Lemma 4.4 The functions {ηi
r (v)}i∈{0,...,2n} are solutions of the linear second order differen-

tial system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂2r ηr + 2∂rηr =
2n∑

k=0

u0
kη

k
r ,

∂2r η
j
r + ∂rη

j
r =

2n∑
k=0

u j
kη

k
r , ∀ j ∈ {1, . . . , 2n}.

(4.2.3)
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Proof Since the vectors of the radially parallel orthonormal frame are radially parallel, it
follows that

∇∂r (∇∂r Yv) = (∂2r ηr + 2∂rηr + ηr )e
r J∂r +

2n∑
j=1

(
∂2r η

j
r + ∂rη

j
r + 1

4
η

j
r

)
e

r
2 E j .

Since Yv is a Jacobi field along γp , it holds that

∇∂r (∇∂r Yv) = −ηr er R(∂r , J∂r )∂r −
2n∑
j=1

η
j
r e

r
2 R(∂r , E j )∂r .

The result then follows from an identification of the coefficients in the orthonormal frame
{∂r , J∂r , E1, . . . , E2n}. �

We now give a reformulation of the Jacobi system (4.2.3) with integrals.

Lemma 4.5 The functions {ηi
r }i∈{0,...,2n} are solutions of the integral system

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ηr = η0 + ∂rη0
1 − e−2r

2
+

∫ r

0

2n∑
k=0

u0
k(γp(s))η

k
s s

1 − e−2(r−s)

2
ds,

η
j
r = η

j
0 + ∂rη

j
0(1 − e−r ) +

∫ r

0

2n∑
k=0

u j
k (γp(s))η

k
s (1 − e−(r−s)) ds,

∀ j ∈ {1, . . . , 2n}.

(4.2.4)

Proof We give details for the first equation, the other ones being proven similarly. The
differential equation satisfied by ηr (v) (see equation (4.2.3)) reads

∂r
(
e2r∂rηr

) =
2n∑

k=0

e2r u0
kη

k
r ,

which integrates as

ηr = ∂rη0e−2r +
∫ r

0

2n∑
k=0

u0
k(γp(s))η

k
s e−2(r−s) ds.

A second integration now gives

ηr = η0 + ∂rη0
1 − e−2r

2
+

2n∑
k=0

∫ r

0

∫ t

0
u0

k(γp(s))η
k
s e−2(t−s) ds dt .

The function (s, t) ∈ [0, r ]2 �→ u0
k(γp(s))ηk

s e−2(t−s)1{s≤t} is measurable and bounded on
a compact domain, and hence integrable. It now follows from Fubini’s Theorem that for
k ∈ {0, . . . , 2n}, it holds that
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∫ r

0

∫ t

0
u0

k(γp(s))η
k
s e−2(t−s) ds dt =

∫

[0,r ]2
u0

k(γp(s))η
k
s e−2(t−s)1{s≤t} ds dt

=
∫

[0,r ]2
u0

k(γp(s))η
k
s e−2(t−s)1{s≤t} dt ds

=
∫ r

0
u0

k(γp(s))η
k
s e2s

(∫ r

s
e−2t dt

)
ds

=
∫ r

0
u0

k(γp(s))η
k
s
1 − e−2(r−s)

2
ds.

The proof is now complete. �
Let u : R+ → R+ be defined by u(r) = maxi,k∈{0,...,2n}

∣∣ui
k

(
γp(r)

)∣∣.
Lemma 4.6 The following upper bound holds

∀r ≥ 0,
2n∑

i=0

|ηi
r | ≤ (

(2n + 1)‖Sp‖ + n + 1
)‖v‖ exp

(
(2n + 1)

∫ r

0
u(s) ds

)
.

Proof First, note that for 0 ≤ r ≤ s, it holds that

max

{∣∣∣∣
1 − e−2r

2

∣∣∣∣ , |1 − e−r |,
∣∣∣∣∣
1 − e−2(r−s)

2

∣∣∣∣∣ ,
∣∣∣1 − e−(r−s)

∣∣∣
}

≤ 1.

The triangle inequality applied to the integral system (4.2.4) thus yields
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|ηr | ≤ |η0| + |∂rη0| +
∫ r

0
u(s)

2n∑
i=0

|ηi
s | ds,

|η j
r | ≤ |η j

0 | + |∂rη
j
0 | +

∫ r

0
u(s)

2n∑
i=0

|ηi
s | ds, ∀ j ∈ {1, . . . , 2n}.

Summing all these inequalities now yields the Grönwall-like inequality

2n∑
i=0

|ηi
r | ≤

(
2n∑

i=0

|ηi
0| + |∂rη

i
0|

)
+

∫ r

0
(2n + 1)u(s)

2n∑
i=0

|ηi
s | ds.

Applying Grönwall’s inequality to
∑2n

i=0 |ηi
r | thus shows that

2n∑
i=0

|ηi
r | ≤

(
2n∑

i=0

|ηi
0| + |∂rη

i
0|

)
exp

(
(2n + 1)

∫ r

0
u(s) ds

)
.

Recall that J∂r |∂K = Jν, and that Ek(0) = ek for k ∈ {1, . . . , 2n}. Hence, η0 = g(v, Jν),
∂rη0 = g(Spv − v, Jν), ηk

0 = g(v, ek), and ∂rη
k
0 = g(Sv − 1

2v, ek) for k ∈ {1, . . . , 2n}, and
the result directly follows from Cauchy-Schwarz inequality. �

We shall now show that if M is (ALCH) of order a > 1
2 , then the components

{η j
r (v)} j∈{0,...,2n} converge as r → +∞ with a well understood decay.

Proposition 4.7 Let (M2n+2, g, J ) be an (ALCH) manifold of order a > 1
2 with an essential

subset K . Let {∂r , J∂r , E1, . . . , E2n} be a radially parallel orthonormal frame on a cylinder
E(R+ × U ), p ∈ U and v ∈ Tp∂K . Let Yv = E∗v be the normal Jacobi field along γp
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associated to v. If ηr and {η j
r } j∈{1,...,2n} are the component functions of Yv defined by equation

(4.2.1), then there exists a constant C > 0 depending only on C0 and a, and constants η∞
and {η j∞} j∈{1,...,2n} such that

max{|∂rηr |, |ηr − η∞|} ≤ C‖v‖g

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

e−ar if 1
2 < a < 3

2 ,

(r + 1)e− 3
2 r if a = 3

2 ,

e− 3
2 r if a > 3

2 ,

max{|∂rη
j
r |, |η j

r − η
j∞|} ≤ C‖v‖g

⎧⎪⎪⎨
⎪⎪⎩

e−(a− 1
2 )r if 1

2 < a < 3
2 ,

(r + 1)e−r if a = 3
2 ,

e−r if a > 3
2 ,

∀ j ∈ {1, . . . , 2n}.

(4.2.5)

Proof According to Lemma 4.2, the definition of the functions {ui
k}i,k∈{0,...,2n} (see

Eq. (4.2.2)) yields 0 ≤ u(r) ≤ C0e−(a− 1
2 )r for all r ≥ 0. Therefore, u is integrable on

R+ and one has
∫
R+ u ≤ 2C0

2a−1 . Since ∂K is compact, supp∈∂K ‖Sp‖g < +∞. It follows
from Lemma 4.6 that

∀r ≥ 0,
2n∑

i=0

|ηi
r | ≤ c‖v‖g, (4.2.6)

with c = (
(2n + 1) supp∈∂K ‖Sp‖g + n + 1

)
exp

(
(4n+2)C0
2a−1

)
, which only depends on a and

C0. Putting this upper bound in the Jacobi system (4.2.3) yields

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|∂2r ηr + 2∂rηr | ≤ c‖v‖g

2n∑
k=0

|u0
k |,

|∂2r η
j
r + ∂rη

j
r )| ≤ c‖v‖g

2n∑
k=0

|u j
k |, ∀ j ∈ {1, . . . , 2n}.

Looking back at the definitions of the functions {ui
k}i,k∈{0,...,2n} (see Eq. (4.2.2)), Lemma 4.2

gives

{
|∂2r ηr + 2∂rηr | ≤ c′‖v‖ge−ar ,

|∂2r η
j
r + ∂rη

j
r | ≤ c′‖v‖ge−(a− 1

2 )r , ∀ j ∈ {1, . . . , 2n}, (4.2.7)

with c′ = (2n + 1)C0c, which only depends on C0 and a. The result now follows from
applying Lemma 2.2 to each inequality of the decoupled system (4.2.7), and recalling that
we have upper bounds on the initial data |ηi

0| and |∂rη
i
0| that are linear in ‖v‖g . Notice that a

uniform constant C > 0 in (4.2.5) can be obtained by taking the maximum of the (2n + 1)
constants given by Lemma 2.2, which depends only on a and C0. �

Proposition 4.7 yields a pointwise convergence of the coefficients of normal Jacobi fields
with a sharp estimate on their asymptotic behaviour. The following subsection focuses on
their dependence with respect to the vector v.
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4.3 The local 1-forms

We now consider again the dependence in v of the coefficients ηr (v) and {η j
r (v)} j∈{1,...,2n}.

The limits given by Proposition 4.7 are simply denoted by η(v) and η j (v). In these terms,
Proposition 4.7 becomes the following.

Proposition 4.8 Let (M2n+2, g, J ) be an (ALCH) manifold of order a > 1
2 , with an essential

subset K . Then there exists a continuous 1-form η on ∂K and a constant C > 0 depending
only on C0 and a such that ∀r ∈ R+,∀(p, v) ∈ T ∂K

max {|∂rηr (v)| , |ηr (v) − η(v)|} ≤ C‖v‖g

⎧
⎪⎨
⎪⎩

e−ar if 1
2 < a < 3

2 ,

(r + 1)e− 3
2 r if a = 3

2 ,

e− 3
2 r if a > 3

2 .

(4.3.1)

Moreover, if {∂r , J∂r , E1, . . . , E2n} is a radially parallel orthonormal frame on the cylinder
E(R+ × U ), for all j ∈ {1, . . . , 2n}, there exists a continuous 1-form η j on U such that
∀r ∈ R+,∀(p, v) ∈ T U

max
{∣∣∣∂rη

j
r (v)

∣∣∣ , |η j
r (v) − η j (v)|

}
≤ C‖v‖g

⎧
⎪⎨
⎪⎩

e−(a− 1
2 )r if 1

2 < a < 3
2 ,

(r + 1)e−r if a = 3
2 ,

e−r if a > 3
2 .

(4.3.2)

Proof Let η(v) = η∞ and η j (v) = η
j∞ for j ∈ {1, . . . , 2n} be defined pointwise, where η∞

and {η j∞} j∈{1,...,2n} are given by Proposition 4.7. The claimed estimates (4.3.1) and (4.3.2)
are obtained as a straightforward translation of Proposition 4.7.

In addition, (4.3.1) shows that (ηr )r≥0 uniformly converges to η on any compact subset
of T ∂K as r → +∞. Therefore, η is continuous. It is furthermore linear in the fibres as
a pointwise limit of 1-forms. It follows that η is a continuous 1-form on ∂K . The exact
same proof shows that if j ∈ {1, . . . , 2n}, then (η

j
r )r≥0 uniformly converges to η j on every

compact subset of T U as r → +∞. Therefore, η j is a continuous 1-form on U . The proof
is now complete. �

Corollary 4.9 Under the assumptions of Proposition 4.8, there exists c > 0 depending only
on a and C0 such that

∀(p, v) ∈ T ∂K , |η(v)| ≤ c‖v‖g,

and

∀ j ∈ {1, . . . , 2n},∀(p, v) ∈ T U , |η j (v)| ≤ c‖v‖g.

Proof Equation (4.2.6) gives the existence of c depending only on a and C0 such that

∀r ≥ 0,∀(p, v) ∈ T U , |ηr (v)| +
2n∑
j=1

|η j
r (v)| ≤ c‖v‖g.

The result follows by taking the limit as r → +∞. Note that c does not depend on p or U ,
so that the upper bound is true on all of ∂K for η. �
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4.4 Normal Jacobi estimates

Regarding Proposition 4.8, we henceforth assume a > 1
2 . Consider a radially parallel

orthonormal frame {∂r , J∂r , E1, . . . , E2n} on a cylinder E(R+ × U ), and let η, η1, . . . , η2n

be the continuous 1-forms given by Proposition 4.8.

Definition 4.10 (Asymptotic vector fields) For (r , p) ∈ R+ × U , v ∈ Tp∂K , define the
vectors Zv(γp(r)), Z ′

v(γp(r)) ∈ Tγp(r)M by

Zv(γp(r)) = η(v)er J∂r +
2n∑
j=1

η j (v)e
r
2 E j ,

Z ′
v(γp(r)) = η(v)er J∂r + 1

2

2n∑
j=1

η j (v)e
r
2 E j .

If v is a vector field on U , we refer to Zv and Z ′
v as the asymptotic vector fields related to the

vector fields Yv and SYv .

Proposition 4.11 Assume that a > 1
2 . Let {∂r , J∂r , E1, . . . , E2n} be a radially parallel

orthonormal frame on a cylinder E(R+ × U ). Then there exists C > 0 depending only
on a and C0 such that for any vector field v on U,

max{‖Yv − Zv‖g, ‖SYv − Z ′
v‖g} ≤ C‖v‖g

⎧
⎪⎨
⎪⎩

e−(a−1)r if 1
2 < a < 3

2 ,

(r + 1)e− r
2 if a = 3

2 ,

e− r
2 if a > 3

2 .

Proof By their very definition, it holds that

Yv − Zv = (ηr (v) − η(v))er J∂r +
2n∑
j=1

(η
j
r (v) − η j (v))e

r
2 E j .

Since SYv = ∇∂r Yv , it also holds that

SYv − Z ′
v = (∂rηr (v) + ηr (v) − η(v))er J∂r +

2n∑
j=1

(
∂rη

j
r (v) + 1

2
(η

j
r (v) − η j (v))

)
e

r
2 E j .

The result follows from the triangle inequality and from Proposition 4.8. �
We conclude this section by stating an important upper bound on the growth of normal

Jacobi fields.

Lemma 4.12 There exists a constant c > 0 depending only on a and C0 such that for any
local vector fields v on ∂K , it holds that

∀r ≥ 0,∀p, max
{‖Yv(γp(r))‖g, ‖SYv(γp(r))‖g

} ≤ c‖v‖ger .

If moreover, η|p(v) = 0, then

∀r ≥ 0, max{‖Yv(γp(r))‖g, ‖SYv(γp(r))‖g} ≤ c‖v‖ge
r
2 .

Proof By the triangle inequality, ‖Yv‖g ≤ ‖Zv‖g +‖Yv − Zv‖g , and the result follows from
Corollary 4.9 and Proposition 4.11. The same proof applies for SYv . �
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4.5 A volume growth upper bound

In this section, we compute a pointwise upper bound on the volume density function λ

defined in Sect. 3.3 using the normal Jacobi fields estimates derived earlier. The proof relies
on an adapted choice for a basis of the tangent space Tp∂K and on Hadamard’s inequality
on determinants.

Proposition 4.13 Let (M, g, J ) be an (ALCH) manifold of order a > 1
2 with an essential

subset K . Let {η, η1, . . . , η2n} be the local continuous 1-forms associated to a radially
parallel orthonormal frame {∂r , J∂r , E1, . . . , E2n} on a cylinder E(R+ × U ). Let p ∈ U
and kp be the rank of the family {η|p, η

1|p . . . , η2n |p} as linear forms on Tp∂K .

• If η|p = 0, then there exists a constant �+ = �+(p) > 0 independent of r such that

∀r ≥ 0, λ(r , p) ≤ �+

⎧
⎪⎪⎨
⎪⎪⎩

e(
k p
2 −(a−1)(2n+1−kp))r if 1

2 < a < 3
2

(r + 1)2n+1−kp e(kp−n− 1
2 )r if a = 3

2 ,

e(kp−n− 1
2 )r if a > 3

2 .

(4.5.1)

• If η|p �= 0, then there exists a constant �+ = �+(p) > 0 independent of r such that

∀r ≥ 0, λ(r , p) ≤ �+

⎧⎪⎨
⎪⎩

e(
k p+1
2 −(a−1)(2n+1−kp))r if 1

2 < a < 3
2

(r + 1)2n+1−kp e(kp−n)r if a = 3
2 ,

e(kp−n)r if a > 3
2 .

Proof We first show the case where η|p = 0. Without loss of generality, one can assume
that {η1|p, . . . , η

kp |p} generates the family {η|p, η
1|p, . . . , η

2n |p}. Let {v1, . . . , v2n+1} be a
basis of Tp∂K such that ηi |p(v j ) = δi

j for (i, j) ∈ {1, . . . , kp}2, and vkp+1, . . . , v2n+1 ∈
∩kp

i=1 ker η
i |p . The volume density function is given by the relation

∀(r , p) ∈ R+ × ∂K , λ(r , p) = | det dE(r , p)|,
where the determinant is taken in any orthonormal bases. It follows that

∀r ≥ 0, λ(r , p) = | det(∂r , Y1, . . . , Y2n+1)|
| det(ν, v1, . . . , v2n+1)| ,

where Y j = Yv j (γp(r)), and all determinants are taken in orthonormal bases. Hadamard’s
inequality on determinants now yields

∀r ≥ 0, λ(r , p) ≤ 1

| det(ν, v1, . . . , v2n+1)|
2n+1∏
i=1

‖Yi‖g.

According to Proposition 4.11, there exists C > 0 such that

∀i ∈ {kp + 1, . . . , 2n + 1}, ‖Yi‖g ≤ C‖vi‖g

⎧⎪⎨
⎪⎩

e−(a−1)r if 1
2 < a < 3

2 ,

(r + 1)e− r
2 if a = 3

2 ,

e− r
2 if a > 3

2 ,

while Lemma 4.12 provides the existence of c > 0 such that

∀i ∈ {1, . . . , kp}, ‖Yi‖g ≤ c‖vi‖ge
r
2 .
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The claimed upper bound (4.5.1) now holds with �+ = C2n+1−kp ckp

∏2n+1
i=1 ‖vi ‖g

| det(v1,...,v2n+1)| .
In case η|p �= 0, the proof is similar. Without loss of generality, one can assume that

{η|p, η
1|p, . . . , η

kp−1|p} generates the whole family. In that case, the first vector of the
considered basis will have growth of order at most er , hence the extra r

2 term in the exponent
of the upper bound. �

4.6 The local coframe

We shall now compare the two bounds on the volume growth given by Propositions 3.7 and
4.13. Note that these two bounds have been derived from considerations on the curvature of
different nature.

Proposition 4.14 Let (M2n+2, g, J ) be an (ALCH) manifold of order a > 1, with an essen-
tial subset K ⊂ M, such that the sectional curvature of M \ K is non-positive. Then the
continuous 1-form η is non-vanishing. Furthermore, if {∂r , J∂r , E1, . . . , E2n} is a radially
parallel orthonormal frame on a cylinder E(R+ × U ), then {η, η1, . . . , η2n} is a continuous
coframe on U.

Proof Let p ∈ ∂K and let {∂r , J∂r , E1, . . . , E2n} be a radially parallel orthonormal frame
on a cylinder E(R+ × U ), with p ∈ U ⊂ ∂K . Let {η, η1, . . . , η2n} be the continuous
local 1-forms on U given by Proposition 4.8, and kp be the rank of this family as linear
forms on Tp∂K . Let ε ∈ (0,min{a − 1, 1

2 }). Propositions 3.7 and 4.13 yield the existence of
r0 = r0(ε, a, C0) > 0, �− = �−(ε, a, C0) > 0 and �+ = �+(a, C0, p) > 0 such that

• If η|p = 0, then for r ≥ r0, we get

�−e(n+ 1
2−ε)r ≤ λ(r , p) ≤ �+

⎧⎪⎪⎨
⎪⎪⎩

e(
k p
2 −(a−1)(2n+1−kp))r if 1 < a < 3

2 ,

(r + 1)2n+1−kp e(kp−n− 1
2 )r if a = 3

2 ,

e(kp−n− 1
2 )r if a > 3

2 .

(4.6.1)

• If η|p �= 0, then for r ≥ r0, we get

�−e(n+ 1
2−ε)r ≤ λ(r , p) ≤ �+

⎧
⎪⎨
⎪⎩

e(
k p+1
2 −(a−1)(2n+1−kp))r if 1 < a < 3

2 ,

(r + 1)2n+1−kp e(kp−n)r if a = 3
2 ,

e(kp−n)r if a > 3
2 .

(4.6.2)

By contradiction, assume that kp < 2n + 1. Then if η|p = 0, a straightforward asymptotic
comparison of the lower and upper bounds of (4.6.1) yields

n + 1

2
− ε ≤

{
n − (a − 1) if 1 < a < 3

2 ,

n − 1
2 if a ≥ 3

2 ,

whereas if η|p �= 0, the same study in (4.6.2) yields

n + 1

2
− ε ≤

{
n + 1

2 − (a − 1) if 1 < a < 3
2 ,

n if a ≥ 3
2 .

Since ε ∈ (0,min{a − 1, 1
2 }), all cases lead to a contradiction. It follows that kp = 2n + 1.

Thus, {η|p, η
1|p, . . . , η

2n |p} is a linearly independent family. This being true for all p ∈ U ,
{η, η1, . . . , η2n} is a coframe, and in particular, η does not vanish on U . The result follows.

�
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Remark 4.15 Notice that our technique would not have allowed us to draw a conclusion in
the limit case a = 1 when η|p �= 0.

Corollary 4.16 Under the assumptions of Proposition 4.14, there exists a constant c > 0 such
that

∀(p, v) ∈ T ∂K ,∀r ≥ 0, ‖Yv‖g ≥ c‖v‖ge
r
2 .

Proof For r ≥ 0, we define a field of quadratic forms Qr on ∂K by the relation

Qr (v) = e−2r g(Yv, J∂r )
2 + e−r‖Y ⊥

v ‖2g,
where Y ⊥

v denotes the orthogonal projection of Yv onto {∂r , J∂r }⊥. In a radially parallel

orthonormal frame, Qr reads Qr = ηr
2 + ∑2n

j=1 (η
j
r )

2
. It follows from Proposition 4.8 that

Qr locally uniformly converges on ∂K , to a field of quadratic forms Q∞. Since ∂K is compact,
the convergence is uniform. The limit locally reads Q∞ = η ⊗ η + ∑2n

j=1 η j ⊗ η j , which is
then positive definite by Proposition 4.14. Let U∂K ⊂ T ∂K be the unit sphere bundle. Then
(r , u) ∈ [0,+∞] × U∂K �→ Qr (u) is continuous on the compact set [0,+∞] × U∂K and
achieves its minimum at a point (rmin, umin). Since Qrmin is positive definite, this minimum
is positive. It follows by homogeneity that for any tangent vector v on ∂K , it holds

‖Yv‖2g ≥ er Qr (v) ≥ er‖v‖2g Qrmin (umin).

The result then follows. �
In particular, if (gr )r≥0 denotes the family of Riemannian metrics induced by the normal

exponential chart on ∂K and if (M, g, J ) is (ALCH) of order a > 1, then there exists c, C > 0
such that cer g0 ≤ gr ≤ Ce2r g0.

4.7 Asymptotic development of themetric

We are now able to state again our first Theorem.

Theorem A Let (M2n+2, g, J ) be an (ALCH) manifold of order a > 1with an essential subset
K , such that the sectional curvature of M \ K is negative. Then there exist a continuous non-
vanishing 1-form η and a continuous Carnot-Carathéodory metric γH on ∂K , such that

E∗g = dr2 + e2rη ⊗ η + erγH + hr ,

where (hr )r≥0 is a smooth family of symmetric bilinear forms on ∂K such that there exists
C > 0 with

∀r ≥ 0,∀u, v, |hr (u, v)| ≤ C‖u‖g‖v‖g

⎧⎪⎨
⎪⎩

e(2−a)r if 1 < a < 3
2 ,

(r + 1)e
r
2 if a = 3

2 ,

e
r
2 if a > 3

2 .

Moreover, γH is a continuous positive-definite metric on H = ker η.

Proof Let us first notice that Gauss Lemma yields the existence of a smooth family of metrics
(gr )r≥0 on ∂K such that in the normal exponential chart, the metric reads E∗g = dr2 + gr .
Let us fix p ∈ ∂K . Let U ⊂ ∂K be an open neighbourhood of p on which is defined the local
coframe {η, η1, . . . , η2n} given by Proposition 4.14. Let u and v be two tangent vectors at p.
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First, notice that gr (u, v) = g(Yu, Yv), where Yu and Yv are defined in Sect. 2.1. Second,
notice that

g(Zu, Zv) = e2rη(u)η(v) + er
2n∑
j=1

η j (u)η j (v),

where Zu and Zv are defined in Definition 4.10. Define hr by the relation

hr (u, v) = g(Zu, Yv − Zv) + g(Yu − Zu, Zv) + g(Yu − Zu, Yv − Zv),

It follows from the triangle inequality, Cauchy-Schwarz inequality, Proposition 4.11 and
Lemma 4.12, that there exists a constant C > 0 independent of r , p, u and v such that

|hr (u, v)| ≤ C‖u‖g‖v‖g

⎧⎪⎨
⎪⎩

e(2−a)r if 1 < a < 3
2 ,

(r + 1)e
r
2 if a = 3

2 ,

e
r
2 if a > 3

2 .

(4.7.1)

Let γH be defined by the relation γH = limr→+∞ e−r
(
gr − e2rη ⊗ η

)
. Notice that

gr = e2rη ⊗ η + er
2n∑
j=1

η j ⊗ η j + hr ,

so that it follows from (4.7.1) that γH locally reads γH = ∑2n
j=1 η j ⊗ η j , and γH is hence

continuous and positive semi-definite. Since {η, η1, . . . , η2n} is a local coframe, γH is thus
non-degenerate on H = ker η. This concludes the proof. �

Corollary 4.17 Under the assumptions of Theorem A, there exists a unique continuous vector
field ξ on ∂K such that

1. η(ξ) = 1,
2. γH (ξ, ·) = 0.

Proof Let us locally define the vector field ξ as the first vector of the dual basis of the local
coframe {η, η1, . . . , η2n}. Then ξ is uniquely characterized by 1. and 2., so that ξ does not
depend on the choice of the radially parallel orthonormal frame defining the coframe, and is
defined on all of ∂K . Since the local coframe is continuous, so is ξ . This concludes the proof.

�

Definition 4.18 (Canonical elements at infinity) Under the assumptions of Theorem A, we
call η the canonical 1-form at infinity, H = ker η the canonical distribution at infinity, γH the
canonical Carnot-Carathéodory metric at infinity and ξ the canonical vector field at infinity.

We call these elements canonical because they are global and do not depend on the choice
of any radially parallel orthonormal frame. The analogy with the model case is obvious: η

corresponds to the contact form θ , γH corresponds to the Levi form γ and ξ corresponds
to the Reeb vector field of θ . Notice that no assumption on ∇ R has been made yet. In the
following section, we shall pursue the study of this analogy, and show that under stronger
assumptions on R and ∇ R, the canonical elements at infinity have C1 regularity, and that η

is indeed a contact form.
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5 The contact structure

Let (M, g, J ) be an (ALCH) manifold of order a > 1, with an essential subset K , such that
the sectional curvature of M\K is non-positive. We aim to show that the canonical 1-form η

is a contact form of class C1. To do so, we show that the family of 1-forms {ηr }r≥0 defined
in Definition 4.3 converges to η in C1 topology.

Let us first show the following Lemma.

Lemma 5.1 If u and v are vector fields on ∂K , then

∀r ≥ 0, (Luηr )(v) = e−r (g(∇Yv Yu, J∂r ) + g(Yv,∇Yu J∂r )
)
.

Proof By basic properties of the Lie derivative, it holds that

(Luηr )(v) = u · ηr (v) − ηr ([u, v]).
Hence, the equalities Yu = E∗u and Yv = E∗v together with the naturality of the Lie bracket
yield

(Luηr )(v) = Yu · e−r g(Yv, J∂r ) − er g([Yu, Yv], J∂r ).

Recall that Yu and ∂r are orthogonal. Since ∂r is the gradient of the distance function r , it
follows that Yu ·er g(Yv, J∂r ) = er Yu ·g(Yv, J∂r ). The torsion-free property of the Levi-Civita
connection concludes the proof. �

Computations show that in order to estimate the asymptotic behaviour of the Lie derivative
(Luηr )(v), an upper-bound on the norm of ∇Yv Yu is needed. This upper bound in itself is
obtained by controlling the norm of (∇Yv S)Yu . The following subsection takes on the tedious
task of providing such upper bounds.

5.1 Order one estimates

In this subsection, u and v are fixed vector fields on ∂K .

Lemma 5.2 The following holds

1

2
∂r‖(∇Yv S)Yu‖2g = R(∂r , Yv, SYu, S(∇Yv S)Yu) − R(∂r , SYv, Yu, (∇Yv S)Yu)

− R(SYv, Yu, ∂r , (∇Yv S)Yu) − R(∂r , Yu, SYv, (∇Yv S)Yu)

− (∇Yv R)(∂r , Yu, ∂r , (∇Yv S)Yu) − g(S(∇Yv S)Yu, (∇Yv S)Yu).

Proof The extension of the covariant derivative to the whole tensor algebra gives the equality
(∇Yv S)Yu = ∇Yv (SYu) − S∇Yv Yu . It then follows that

∇∂r ((∇Yv S)Yu)) = ∇∂r

(∇Yv (SYu)
) − (∇∂r S)∇Yv Yu − S∇∂r (∇Yv Yu). (5.1.1)

From Lemma 2.1, [∂r , Yv] = 0, ∇∂r Yu = SYu and ∇∂r (SYu) = −R∂r Yu . It follows from our
convention on the Riemann curvature tensor (see (2.1.1)) that

∇∂r

(∇Yv (SYu)
) = −R(∂r , Yv)SYu + ∇Yv (−R∂r Yu)

= −R(∂r , Yv)SYu − (∇Yv R)(∂r , Yu)∂r

− R(SYv, Yu)∂r − R(∂r ,∇Yv Yu)∂r

− R(∂r , Yu)SYv,

(5.1.2)
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as well as

S∇∂r (∇Yv Yu) = −S R(∂r , Yv)Yu + S∇Yv (SYu)

= −S R(∂r , Yv)Yu + S2∇Yv Yu + S
(∇Yv S)Yu

)
.

(5.1.3)

The Riccati equation (2.1.2) for S yields

(∇∂r S)∇Yv Yu = −S2∇Yy Yu − R(∂r ,∇Yv Yu)∂r . (5.1.4)

Inserting (5.1.2), (5.1.3) and (5.1.4) into (5.1.1) now gives

∇∂r ((∇Yv S)Yu)) = S R(∂r , Yv)Yu − R(∂r , Yv)SYu

− R(SYv, Yu)∂r − R(∂r , Yu)SYv

− (∇Yv R)(∂r , Yu)∂r − S(∇Yv S)Yu .

The result now follows from the symmetry of S and the equality

1

2
∂r‖(∇Yv S)Yu‖2g = g(∇∂r ((∇Yv S)Yu)), (∇Yv S)Yu).

�

Proposition 5.3 If in addition (M, g, J ) has (ALS) property of order b > 0, then there exists
c > 0 such that

‖(∇Yv S)Yu‖g ≤ c‖u‖g‖v‖ge2r .

Proof Let p ∈ ∂K . Define F(r) = ‖((∇Yv S)Yu)(γp(r))‖g . Since the norm is Lipschitz and
the entries are smooth, F is locally Lipschitz. It follows from Rademacher’s Theorem that F
is almost everywhere differentiable, and Lemma 5.2 yields the almost everywhere equality

F ′F = R(∂r , Yv, SYu, S(∇Yv S)Yu) − R(∂r , SYv, Yu, (∇Yv S)Yu)

− R(SYv, Yu, ∂r , (∇Yv S)Yu) − R(∂r , Yu, SYv, (∇Yv S)Yu)

− (∇Yv R)(∂r , Yu, ∂r , (∇Yv S)Yu) − g(S(∇Yv S)Yu, (∇Yv S)Yu).

Since S is positive, g(S(∇Yv S)Yu, (∇Yv S)Yu) ≥ 0. Therefore, it follows that

F ′F ≤ +(4‖R‖g‖S‖g + ‖∇ R‖g)‖Yv‖g‖Yu‖g F a.e.

Recall that ‖R‖g (Lemma 3.3), ‖∇ R‖g ((ALS) assumption) and ‖S‖g (Lemma 3.5) are
uniformly bounded. In addition, recall that there exists a constant c1 > 0 such that ‖Yu‖g ≤
c1‖u‖ger and ‖Yv‖g ≤ c1‖v‖ger (Lemma 4.12). Hence, there exists a constant c > 0 such
that

F ′F ≤ c‖u‖g‖v‖ge2r F a.e,

and therefore,

F ′ ≤ c‖u‖g‖v‖ge2r a.e,

which is true even at points where F vanishes since at those points, it achieves a minimum
and its derivative thus vanishes. The result now follows from a straightforward integration.

�
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Remark 5.4 This bound is sharp, since g((∇Yv S)Yu, ∂r ) = −g(SYv, SYu) is equivalent to
−η(u)η(v)e2r . It is however worth noticing that it can be proven that the normal component
(∇Yv S)Y ⊥

u = (∇Yv S)Yu − g((∇Yv S)Yu, ∂r )∂r can be bounded, if min{a, b} > 1
2 , as follows

‖(∇Yv S)Y ⊥
u ‖g ≤ c̃‖u‖g‖v‖ge

3
2 r .

The proof is more intricate, and relies on the study of the curvature terms. For example, the
terms in R0(∂r , Yv, SYu, S(∇Yv S)Yu) are products of the form g(X , J∂r )g(Y , J Z) with X ,
Y , Z normal to ∂r , which kills the ∂r direction.

We shall now give a bound on the growth of ∇Yv Yu . The proof is slightly different from
that of Proposition 5.3 as it requires the use of Grönwall’s inequality.

Proposition 5.5 Assume that a > 1
2 and b > 0. Then there exists a constant c > 0 such that

‖(∇Yv Yu)(γp(r))‖g ≤ c(‖(∇Yv Yu)(p)‖g + ‖u‖g‖v‖g)e
2r .

Proof First, notice that ∇∂r (∇Yv Yu) = −R(∂r , Yv)Yu + ∇Yv (SYu) and moreover that
∇Yv (SYu) = (∇Yv S)Yu + S∇Yv Yu . Hence

1

2
∂r‖∇Yv Yu‖2g = −R(∂r , Yv, Yu,∇Yv Yu) + g((∇Yv S)Yu,∇Yv Yu)

+ g(S∇Yv Yu,∇Yv Yu).

(5.1.5)

Let p ∈ ∂K be fixed and let G(r) = ‖(∇Yv Yu)(γp(r))‖g . Then G is almost everywhere
differentiable and the triangle inequality together with Cauchy-Schwarz inequality applied
to (5.1.5) yields the almost everywhere inequality

G ′G ≤ ‖R‖g‖Yu‖g‖Yv‖gG + ‖(∇Yv S)Yu‖gG + ‖S‖gG2 a.e,

from which is deduced the following almost everywhere inequality

G ′ ≤ ‖R‖g‖Yu‖g‖Yv‖g + ‖(∇Yv S)Yu‖g + ‖S‖gG a.e,

which is true even at points where G vanishes since at those points, it achieves aminimum and
its derivative thus vanishes. Estimates on the growth of normal Jacobi fields (Lemma 4.12),
a uniform bound on ‖R‖g (Lemma 3.3) together with Proposition 5.3 give the existence of
a constant C > 0 such that

G ′ − G ≤ C‖u‖g‖v‖ge2r + (‖S‖g − 1)G a.e.

Multiplying both sides by e−r and integrating gives the Grönwall-like inequality

∀r ≥ 0, G(r)e−r ≤ G(0) + C‖u‖g‖v‖g(e
r − 1) +

∫ r

0
(‖S‖g − 1)(G(s)e−s) ds.

Finally, recall from Proposition 3.5 that

‖S‖g − 1 ≤ εa(r) = C ′

⎧
⎪⎨
⎪⎩

e−ar if 1
2 < a < 2,

(r + 1)e−2r if a = 2,

e−2r if a > 2,

for some constant C ′ independent of (r , p, u, v). Hence, Grönwall’s inequality yields

∀r ≥ 0, G(r)e−r ≤ (G(0) + C‖u‖g‖v‖ger ) exp

(∫ r

0
εa(s) ds

)
.
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It follows that there exists c > 0 such that

‖(∇Yv Yu)(γp(r))‖g ≤ c(‖(∇Yv Yu)(p)‖g + ‖u‖g‖v‖g)e
2r .

�

Remark 5.6 • This bound is sharp since g(∇Yv Yu, ∂r ) = −g(SYv, Yu) is equivalent to
−η(u)η(v)e2r . Similarly to Proposition 5.3, it is possible to give a sharper bound on the

normal component, of order e
3
2 r .

• Since∇Yv Yu is not tensorial in u, one cannot hope to find a constant c > 0 independent of
u such that ‖∇Yv Yu‖g ≤ c‖u‖g‖v‖ge2r . However, when u and v are fixed vector fields,
the constant in front of the exponential term is continuous with respect to p, and hence
uniformly bounded on all compact subsets on which it is defined.

5.2 The contact form

From now on, we assume that (M, g, J ) is (ALCH) and (ALS) of orders a > 1 and b > 0,
and also that the sectional curvature of M \ K is negative. In this section, we prove that
the canonical 1-form at infinity is of class C1 and is contact. We first show the following
computational Proposition.

Proposition 5.7 Assume that min{a, b} > 1. Let u and v be local tangent vector fields on
∂K . Define

f (r , p) = g(∇Yv Yu, J∂r ) + g(∇Yu J∂r , Yv).

Then there exists a constant c > 0 independent of (r , p, u, v) and a continuous function
α(p) such that

| f (r , p) − erα(p)| ≤ c(‖u‖g‖v‖g + ‖∇Yv Yu‖g)

⎧⎪⎨
⎪⎩

e(2−min{a,b})r if 1 < min{a, b} < 3,

(r + 1)e−r if min{a, b} = 3,

e−r if min{a, b} > 3.

Proof Our convention on the curvature yields∇∂r (∇Yv Yu) = −R(∂r , Yv)Yu +∇Yv (SYu) and
∇∂r (∇Yu J∂r ) = −R(∂r , Yu)J∂r . Therefore,

∂r f = −R(∂r , Yv, Yu, J∂r ) + g(∇Yv (SYu), J∂r )

− R(∂r , Yu, J∂r , Yv) + g(∇Yu J∂r , SYv),

which turns out, by the Bianchi identity, to be equal to the following

∂r f = R(∂r , J∂r , Yv, Yu) + g(∇Yv (SYu), J∂r ) + g(∇Yu J∂r , SYv). (5.2.1)

Notice that

∇∂r (∇Yv (SYu)) = −R(∂r , Yv)SYu + ∇Yv (∇∂r (SYu))

= −R(∂r , Yv)SYu + ∇Yv (−R∂r Yu)

= −R(∂r , Yv)SYu − (∇Yv R)(∂r , Yu)∂r − R(SYv, Yu)∂r

− R(∂r ,∇Yv Yu)∂r − R(∂r , Yu)SYv.
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It then follows that

∂r∂r f = (∇∂r R)(∂r , J∂r , Yv, Yu) + R(∂r , J∂r , SYv, Yu)

+ R(∂r , J∂r , Yv, SYu) − R(∂r , Yv, SYu, J∂r )

− (∇Yv R)(∂r , Yu, ∂r , J∂r ) − R(SYv, Yu, ∂r , J∂r )

− R(∂r ,∇Yv Yu, ∂r , J∂r ) − R(∂r , Yu, SYv, J∂r )

− R(∂r , Yu, J∂r , SYv) − R(∂r , Yv, ∂r ,∇Yu J∂r ).

(5.2.2)

Note that R(∂r , J∂r , SYv, Yu) − R(SYv, Yu, ∂r , J∂r ) = 0 because of the symmetry of R.
Similarly, notice that −R(∂r , Yu, SYv, J∂r ) − R(∂r , Yu, J∂r , SYv) = 0. Hence, equation
(5.2.2) becomes

∂r∂r f = (∇∂r R)(∂r , J∂r , Yv, Yu) − (∇Yv R)(∂r , Yu, ∂r , J∂r )

+ R(∂r , J∂r , Yv, SYu) − R(∂r , Yv, SYu, J∂r )

− R(∂r ,∇Yv Yu, ∂r , J∂r ) − R(∂r , Yv, ∂r ,∇Yu J∂r ).

Let k0 be defined as

k0 = R0(∂r , J∂r , Yv, SYu) − R0(∂r , Yv, SYu, J∂r )

− R0(∂r ,∇Yv Yu, ∂r , J∂r ) − R0(∂r , Yv, ∂r ,∇Yu J∂r ).

From Lemma A.1 in the Appendix, it holds that

k0 = −1

2
g(SYu, JYv) − 1

4
g(SYu, JYv) + g(∇Yv Yu, J∂r ) + 1

4
g(Yv,∇Yu J∂r )

= −3

4
g(SYu, JYv) + 1

4
g(Yv,∇Yu J∂r ) + g(∇Yv Yu, J∂r ).

Note that g(SYu, JYv) = g(∇Yu ∂r , JYv) = −g(J∇Yu ∂r , Yv) = −g(∇Yu J∂r , Yv). It surpris-
ingly turns out that

k0 = g(∇Yv Yu, J∂r ) + g(∇Yu J∂r , J∂r ) = f .

Hence, f a is solution to the second order linear differential equation

∂r∂r f − f = h,

where h is given by

h = (∇∂r R)(∂r , J∂r , Yv, Yu) − (∇Yv R)(∂r , Yu, ∂r , J∂r )

+ (R − R0)(∂r , J∂r , Yv, SYu) − (R − R0)(∂r , Yv, SYu, J∂r )

− (R − R0)(∂r ,∇Yv Yu, ∂r , J∂r ) − (R − R0)(∂r , Yv, ∂r ,∇Yu J∂r ).

(5.2.3)

By classical ODE theory, f reads

f = er

2

(
f (0) + ∂r f (0) +

∫ r

0
e−sh(s) ds

) + e−r

2

(
f (0) − ∂r f (0) −

∫ r

0
esh(s) ds

)
.

Since ∇Yu J∂r = J SYu , it holds that ‖J SYu‖g = ‖SYu‖g ≤ ‖S‖g‖Yu‖g , and Eq. (5.2.3)
yields the following upper bound on h

|h| ≤ (3‖R − R0‖g‖S‖g + 2‖∇ R‖g)‖Yu‖g‖Yv‖g + ‖R − R0‖g‖∇Yv Yu‖g.
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From the normal Jacobi estimates, the uniform bound on ‖S‖g , the (ALCH) and (ALS) con-
ditions and Proposition 5.5, it finally holds that there exists c > 0 such that

|h| ≤ c(‖u‖g‖v‖g + ‖(∇Yv Yu)(p)‖g)e
(2−min{a,b})r . (5.2.4)

Let α(p) be defined as α(p) = 1
2

(
f (0, p)+ ∂r f (0, p)+ ∫ +∞

0 e−sh(s, p) ds
)
, which is well

defined by (5.2.4), and is continuous by the dominated convergence theorem applied on all
compact subset where u and v are defined. Hence,

| f (r , p) − α(p)er | ≤ er

2

∫ +∞

r
e−s |h(s, p)| ds

+ e−r

2
(| f (0, p)| + |∂r f (0, p)| +

∫ r

0
es |h(s, p)| ds).

Finally, notice that | f (0, p)| = |g((∇Yv Yu)(p), J∂r )| ≤ ‖(∇Yv Yu)(p)‖g . It now follows
from (5.2.1) that

|∂r f (0, p)| = |R(ν(p), Jν(p), v, u) + g(((∇Yv S)p)u, J∂r )

+ g(S(∇Yv Yu)(p), J∂r ) + g(J Su, Sv)|
≤ ‖R‖g‖v‖g‖u‖g + ‖(∇S)p‖g‖u‖g‖v‖g

+ ‖S‖g‖(∇Yv Yu)(p)‖g + ‖S‖g‖u‖g‖v‖g.

The quantities ‖R‖g , ‖S‖g , and ‖∇S‖g are uniformly bounded on the compact set ∂K .
Moreover, (5.2.4) yields

∫ +∞

r
e−s |h(s, p)| ds ≤ c(‖u‖g‖v‖g + ‖(∇Yv Yu)(p)‖g)

e(1−min{a,b})r

min{a, b} − 1
,

and
∫ r

0
es |h(s, p)| ds ≤ c(‖u‖g‖v‖g + ‖(∇Yv Yu)(p)‖g)

{
e(3−min{a,b})r −1
3−min{a,b} if min{a, b} �= 3,

r otherwise.

The result then follows. �
We shall now prove our second Theorem, which we restate for the reader’s convenience.

Theorem B Let (M, g, J ) be an (ALCH) and (ALS) manifold of order a and b, with an
essential subset K , such that the sectional curvature of M \ K is negative. If min{a, b} > 1,
then the canonical 1-form at infinity η is a contact form of class C1, with Reeb vector field ξ .

Proof To show that η is of class C1, it suffices to fix a chart U ⊂ ∂K and to show that η is of
class C1 on U . Let m = 2n + 1 = dim ∂K , {x1, . . . , xm} be coordinates on U ⊂ ∂K , and let
{∂1, . . . , ∂m} and {dx1, . . . , dxm} be the associated tangent frame and coframe. For r ≥ 0,
the 1-form ηr and its partial derivatives locally read

ηr =
m∑

j=1

(ηr ) j dx j and ∂i (ηr ) =
m∑

i=1

∂i (ηr ) j dx j ,

with ∂i (ηr ) j = (L∂i ηr )(∂ j ). Write Yi = Y∂i and Y j = Y∂ j . Lemma 5.1 then states that

∀i, j ∈ {1, . . . , m}, ∂i (ηr ) j = e−r (g(∇Y j Yi , J∂r ) + g(∇Yi J∂r , Y j )
)
.
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Proposition 5.7 now yields the existence of continuous functions αi j : U → R and a constant
c > 0 such that if i, j ∈ {1, . . . , m}, then

|∂i (ηr ) j − αi j | ≤ c(‖∂i‖g‖∂ j‖g + ‖∇∂ j ∂i‖g)

⎧⎪⎨
⎪⎩

e(1−min{a,b})r if 1 < min{a, b} < 3,

(r + 1)e−2r if min{a, b} = 3,

e−2r if min{a, b} > 3.

The family (∂i (ηr ) j )r≥0 then locally uniformly converges to the continuous function αi j on
U , and it follows that the canonical 1-form η is of class C1 on U , and hence on ∂K .

We shall now show that η is a contact 1-form. Since (ηr )r≥0 locally converges to η in C1
topology, it holds that

∀p ∈ ∂K ,∀u, v ∈ Tp∂K , dη|p(u, v) = lim
r→+∞ dηr |p(u, v).

Let r ≥ 0, p ∈ ∂K and u, v ∈ Tp∂K . Consider smooth local extensions of u and v that are
still denoted the same way. Then

dηr (u, v) = u · ηr (v) − v · ηr (u) − ηr ([u, v])
= e−r (Yu · g(Yv, J∂r ) − Yv · g(Yu, J∂r ) − g([Yu, Yv], J∂r ))

= e−r g(∇Yu Yv − ∇Yv Yu − [Yu, Yv], J∂r )

+ e−r (g(Yv,∇Yu J∂r ) − g(Yu,∇Yv J∂r ))

= e−r (g(Yv, J SYu) − g(Yu, J SYv)).

(5.2.5)

Let {J∂r , ∂r , E1, . . . , E2n} be a radially parallel orthonormal frame on a cylinder E(R+ ×U )

with p ∈ U . Since e−r g(Yv, J SYu) −→
r→+∞

1
2

∑2n
i, j=1 ηi (v)η j (u)g(Ei , JEi ), it follows that

dη(u, v) = 1

2

2n∑
i, j=1

(ηi (v)η j (u) − ηi (u)η j (v))g(Ei , JE j ).

Setting ωi j = g(Ei , JE j ) = g(ei , Je j ), which are constants, the latter expression reads

dη = −1

2

2n∑
i, j=1

ωi j ηi ∧ η j . (5.2.6)

Assume furthermore that the local orthonormal frame {ν, e1, . . . , e2n} on U is chosen such
that we have Je2k−1 = e2k for k ∈ {1, . . . , n}. In that case, the constants ωi j are given by

ωi j =

⎧
⎪⎨
⎪⎩

−1 if i = 2k − 1, j = 2k,

1 if i = 2k, j = 2k − 1,

0 otherwise.

Equation (5.2.6) then yields the equality

dη =
n∑

k=1

η2k−1 ∧ η2k . (5.2.7)

From this last expression we derive the equality (dη)n = (n!) η1 ∧ · · · ∧ η2n , and hence
the equality η ∧ (dη)n = (n!) η ∧ η1 ∧ · · · ∧ η2n . Since {η, η1, . . . , η2n} is a local coframe,
η ∧ (dη)n is a volume form on U . It follows that η is a contact form. Since dη is a linear
combination of wedge products of the local 1-forms (ηi ), it follows by the very definition of

123



8 Page 30 of 44 A. Pinoy

ξ that η(ξ) = 1 and dη(ξ, ·) = 0, hence ξ is the Reeb vector field of η. The proof is now
complete. �

5.3 Regularity of the Carnot–Carathéodorymetric

We shall now study the regularity of the Carnot–Carathéodory metric γH . To do so, we show
that the local differential forms η1, . . . , η2n , defined using a radially parallel orthonormal
frame, have such regularity. The condition min{a, b} > 1 is too weak to ensure that it is of
class C1, since the renormalization of η j is of order e− r

2 while that of η is of order e−r . We
shall now show that the condition min{a, b} > 3

2 is sufficient. The proof is very similar to
that of Theorem B. We first give a bound on the growth of ∇Yu E j .

Lemma 5.8 Let (M, g, J ) be an (ALCH) manifold of order a > 1
2 with an essential subset

K . Let X be a radially parallel vector field on M \ K , that is such that ∇∂r X = 0 and assume
that ‖X‖g = 1. Then there exists a constant c > 0 such that

‖∇Yu X‖g ≤ c‖u‖ger .

Proof Let L = ‖∇Yu X‖g , which is locally Lipschitz and hence almost everywhere differen-
tiable. Since ∇∂r X = 0, it holds that ∇∂r (∇Yu X) = −R(∂r , Yu)X , and therefore, applying
∂r to 1

2 L2 gives the almost everywhere inequality

L ′L = −R(∂r , Yu, X ,∇Yu X) a.e.

Recall that ‖R‖g is uniformly bounded (Lemma 3.3), and that since a > 1
2 , there exists

c1 > 0 such that ‖Yv‖g ≤ c1‖u‖ger (Lemma 4.12). Hence, there exists c > 0 such that

L ′L ≤ c‖u‖ger‖X‖g L a.e.

Since L is non-positive and ‖X‖g = 1, it follows that

L ′ ≤ c‖u‖ger a.e,

which is true even at points where L vanishes since at those points, it achieves a minimum
and its derivative thus vanishes. The result follows from a straightforward integration. �
In particular, this Lemma applies to the vectors of a radially parallel orthonormal frame.

Proposition 5.9 Let (M, g, J ) be an (ALCH) and (ALS) manifold of order a and b, with
min{a, b} > 3

2 , with an essential subset K . Let {∂r , J∂r , E1, . . . , E2n} be a radially parallel
orthonormal frame on a cylinder E(R+ × U ). Let u and v be local vector fields on ∂K . For
all j ∈ {1, . . . , 2n}, define

f j (r , p) = g(∇Yv Yu, E j ) + g(∇Yu E j , Yv).

Then there exists a constant c > 0 independent of (r , p, u, v) and a continuous function
α j (p) on U such that

| f j (r , p) − e
r
2 α j (p)| ≤ c(‖u‖g‖v‖g + ‖∇Yv Yu‖g)

⎧
⎪⎨
⎪⎩

e(2−min{a,b})r if min{a, b} < 5
2 ,

(r + 1)e− r
2 if min{a, b} = 5

2 ,

e− r
2 if min{a, b} > 5

2 .
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Proof The proof is a strict adaptation of that of Proposition 5.7. The exact same computations
show that

∂r∂r f j = (∇∂r R)(∂r , E j , Yv, Yu) + R(∂r , E j , SYv, Yu)

+ R(∂r , E j , Yv, SYu) − R(∂r , Yv, SYu, E j )

− (∇Yv R)(∂r , Yu, ∂r , E j ) − R(SYv, Yu, ∂r , E j )

− R(∂r ,∇Yv Yu, ∂r , E j ) − R(∂r , Yu, SYv, E j )

− R(∂r , Yu, E j , SYv) − R(∂r , Yv, ∂r ,∇Yu E j ),

and the exact same cancellations due to the symmetries of the Riemann tensor yield

∂r∂r f j = (∇∂r R)(∂r , E j , Yv, Yu) − (∇Yv R)(∂r , Yu, ∂r , E j )

+ R(∂r , E j , Yv, SYu) − R(∂r , Yv, SYu, E j )

− R(∂r ,∇Yv Yu, ∂r , E j ) − R(∂r , Yv, ∂r ,∇Yu E j ).

(5.3.1)

Define k j as

k j = R0(∂r , E j , Yv, SYu) − R0(∂r , Yv, SYu, E j )

− R0(∂r ,∇Yv Yu, ∂r , E j ) − R0(∂r , Yv, ∂r ,∇Yu E j ),

so that Eq. (5.3.1) becomes

∂r∂r f j − k j = (∇∂r R)(∂r , E j , Yv, Yu) − (∇Yv R)(∂r , Yu, ∂r , E j )

+ (R − R0)(∂r , E j , Yv, SYu) − (R − R0)(∂r , Yv, SYu, E j )

− (R − R0)(∂r ,∇Yv Yu, ∂r , E j )

− (R − R0)(∂r , Yv, ∂r ,∇Yu E j ).

(5.3.2)

From the computations of Lemma A.2 in the Appendix, it turns out that

k j = 1

4
g(SYu, J∂r )g(Yv, JE j ) − 1

4
g(SYu, JE j )g(Yv, J∂r )

− 1

4
g(SYu, J∂r )g(Yv, JE j ) − 1

2
g(SYu, JE j )g(Yv, J∂r )

+ 1

4
g(∇Yv Yu, E j )

+ 1

4
g(Yv,∇Yu E j ) + 3

4
g(SYu, JE j )g(Yv, J∂r )

= 1

4
g(∇Yv Yu, E j ) + 1

4
g(Yv,∇Yu E j )

= 1

4
f j .

Thus, f j is a solution to the second order linear ODE

∂r∂r f j − 1

4
f j = h j ,
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with h j being equal to the right-hand side of (5.3.2). From classical second order linear ODE
considerations, f j is given by

f j (r , p) = e
r
2

(
1

2
f j (0, p) + ∂r f j (0, p) +

∫ r

0
e− s

2 h j (s, p) ds

)

+ e− r
2

(
1

2
f j (0, p) − ∂r f j (0, p) −

∫ r

0
e

s
2 h j (s, p) ds

)
.

The following upper bound is straightforward

|h j | ≤ 2(‖R − R0‖g‖S‖g + ‖∇ R‖g)‖Yu‖g‖Yv‖g + ‖R − R0‖g‖∇Yv Yu‖g

+ ‖R − R0‖g‖Yv‖g‖∇Yu E j‖g.

Lemma 5.8 yields the existence of c > 0 such that ‖∇Yu E j‖g ≤ c‖u‖ger . It now follows
from the (ALCH) and (ALS) conditions together with Lemmas 4.12 and 5.5 that there exists
a constant C > 0 such that

|h j | ≤ C(‖u‖g‖v‖g + ‖(∇Yv Yu)(p)‖g)e
(2−min{a,b})r ,

and therefore, we have the following upper bounds

|e− s
2 h j (s, p)| ≤ C(‖u‖g‖v‖g + ‖(∇Yv Yu)(p)‖g)e

( 32−min{a,b})r ,

|e s
2 h j (s, p)| ≤ C(‖u‖g‖v‖g + ‖(∇Yv Yu)(p)‖g)e

( 52−min{a,b})r .

Let α j (p) = 1
2 f j (0, p) + ∂r f j (0, p) + ∫ +∞

0 e− s
2 h(s, p) ds, which is continuous by the

dominated convergence Theorem. The result follows from a strictly similar study than that
of the proof of Proposition 5.7. �

We are now able to prove our third main result, which we restate for the reader’s conve-
nience.

Theorem C Let (M, g, J ) be an (ALCH) and (ALS) manifold of order a and b, with
min{a, b} > 3

2 , with an essential subset K such that the sectional curvature of M \ K is
negative. Then the canonical Carnot-Carathéodory metric γH has C1 regularity.

Proof Let {η, η1, . . . , η2n} be the local coframe associated to a radially parallel orthonor-
mal frame {∂r , J∂r , E1, . . . , E2n} on a cylinder E(R+ × U ). Let k ∈ {1, . . . , 2n} be fixed
and (ηk

r )r≥0 be the local family of 1-forms that locally uniformly converges to ηk in C0
topology. Let {x1, . . . , x2n+1} be local coordinates on an open subset of U , and write
ηk

r = ∑2n+1
j=1 (ηk

r ) j dx j . The partial derivatives of ηk
r in these coordinates are given by

∂i (η
k
r )(∂ j ) = e− r

2
(
g(∇Y j Yi , Ek) + g(∇Yi Ek, Y j )

)
,

and it follows from Proposition 5.9 that they locally uniformly converges. Hence, ηk is of
class C1.

The local coframe {η, η1, . . . , η2n} has then been shown to be of class C1. Since the
Carnot-Carathéodory metric is locally given by γH = ∑2n

i=1 ηi ⊗ ηi it follows that it has C1
regularity. This concludes the proof. �
Remark 5.10 It is worth noting that in that case, although η is not of class C2, its exterior dif-
ferential dη is of class C1, since it is locally expressed as a combination of {ηi ∧η j }i, j∈{1,...,2n}.
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6 The almost complex structure

6.1 Notations

Throughout this section, the Kählermanifold (M, g, J ) is assumed to satisfy the (ALCH) and
(ALS) conditions of orders a, b > 3

2 , with an essential subset K such that the sectional
curvature of M \ K is negative. From Theorem C, ∂K is endowed with a contact form η of
class C1 with contact structure H = ker η, and with a C1 Carnot-Carathéodory metric γH

which is positive definite on H . Let g0 = g|∂K be the induced metric on ∂K , and recall that if
gr = E(r , ·)∗g|{∂r }⊥ , Corollary 4.16 yields the existence of c0 > 0 such that g0 ≤ c0e−r gr .

For r ≥ 0, we set Sr = E(r , ·)∗S the pull-back of the shape operator thought as a field of
endomorphisms of {∂r }⊥. To any radially parallel orthonormal frame {∂r , J∂r , E1, . . . , E2n}
is associated a local coframe {ηr , η

1
r , . . . , η2n

r } which locally converges in C1 topology to
the local coframe {η, η1, . . . , η2n}. Moreover, there exists a constant c > 0 independent
of the radially parallel orthonormal frame and from r , such that the differential forms
{ηr , η

1
r , . . . , η2n

r } and {η, η1, . . . , η2n} all have g0-norm less than c. By Proposition 4.8,
it holds that

max{er‖ηr − η‖g0 , e
r
2 ‖η1r − η1‖g0 , . . . , e

r
2 ‖η2n

r − η2n‖g0} ≤ ce− r
2 . (6.1.1)

If v is a vector field tangent to ∂K and if Zv and Z ′
v are the vector fields asymptotic to Yv and

SYv , then Proposition 4.11 states that there exists C > 0 such that

max{‖Yv − Zv‖g, ‖SYv − Z ′
v‖g} ≤ C‖v‖ge− r

2 . (6.1.2)

The dual frames of the local coframes {ηr , η
1
r , . . . , η2n

r } and {η, η1, . . . , η2n} are denoted
by {ξ r , ξ r , . . . , ξ r

2n} and {ξ, ξ1, . . . , ξ2n}. Remark that ξ r = E(r , ·)∗ (er J∂r ) and ξ r
j =

E(r , ·)∗
(

e
r
2 E j

)
. Since {ηr , η

1
r , . . . , η2n

r } locally converges in C1 topology, so does

{ξ r , ξ r , . . . , ξ r
2n}. It follows that {ξ, ξ1, . . . , ξ2n} is of class C1.

Let us define a field of endomorphisms on ∂K related to the ambient almost complex
structure J . Since J does not preserve {∂r }⊥, it is not possible to pull it back on ∂K by
E(r , ·). However, the tensor

� = J − g(·, ∂r ) ⊗ J∂r + g(·, J∂r ) ⊗ ∂r ,

stabilizes the distribution {∂r }⊥.
Definition 6.1 For r ≥ 0, let φr be defined by φr = E(r , ·)∗�.

Since� satisfies the two equalities�2 = − Id+g(·, ∂r )⊗∂r +g(·, J∂r )⊗ J∂r and�3 = −�,
we have the immediate Lemma.

Lemma 6.2 For all r ≥ 0, φ2
r = − Id+ηr ⊗ ξ r , and φ3

r = −φr .

Remark 6.3 Lemma 6.2 states that (∂K , φr , ηr , ξ
r ) is an almost contact manifold in the sense

of [8, 26, 27]. The following estimates are worth noting.

Lemma 6.4 There exists c1, c2 > 0 such that for all r ≥ 0, it holds

1. ‖φr‖g0 ≤ 1,
2. ‖φr ξ‖g0 ≤ c1e−r ,
3. ‖η ◦ φr‖g0 ≤ c2e−r .
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Proof 1. Since � = π⊥ ◦ J ◦ π⊥, where π⊥ is the orthogonal projection on ∂r
⊥ and J is

an isometry, � has an operator norm less than or equal to 1. The result follows.
2. Since φr ξ

r = 0, it holds that

‖φr ξ‖g0 = ‖φr (ξ − ξ r )‖g0

≤ ‖φr‖g‖ξ − ξ r‖g0

≤ c0e− r
2 ‖Yξ − er J∂r‖g0

≤ c0C‖ξ‖g0e−r ,

the inequalities being derived from the first point and from Eq. (6.1.2). To conclude,
define c1 = c0C sup∂K ‖ξ‖g < +∞.

3. Since ηr ◦ φr = 0, it holds that

‖η ◦ φr‖g0 = ‖(η − ηr ) ◦ φr‖g0 ≤ ‖η − ηr‖g0‖φr‖g0 ≤ ce− 3
2 r ,

the latter inequality being derived from Eq. (6.1.1) and from the first point. The result is
then true with c2 = c.

�

6.2 Shape operator estimates

We shall now give estimates on the asymptotic behaviour of (Sr )r≥0. We first prove that Sr

is asymptotic to the tensor 1
2 (Id+η ⊗ ξ).

Lemma 6.5 There exists a constant c′ > 0 such that

∀r ≥ 0, ‖Sr − 1

2
(Id+η ⊗ ξ)‖g0 ≤ c′e−r .

Proof Fix v ∈ T ∂K . From Corollary 4.16, there exists c0 > 0 such that

‖Srv − 1

2
(v + η(v)ξ)‖g0 ≤ c0e− r

2 ‖SYv − 1

2
(Yv + η(v)Yξ )‖g0 . (6.2.1)

The local expressions of Zv and Z ′
v in a radially parallel orthonormal frame show that

1
2η(v)er J∂r = Z ′

v − 1
2 Zv . Therefore, it holds that

SYv − 1

2
(Yv + η(v)er J∂r ) = SYv − Z ′

v − 1

2
(Yv − Zv) + 1

2
η(v)(er J∂r − Yξ ).

By definition, η(ξ) = 1, and thus er J∂r = Zξ . It follows from the triangle inequality that

‖SYv − 1

2
(Yv + η(v)er J∂r )‖g ≤ ‖SYv − Z ′

v‖g + 1

2
‖Yv − Zv‖g

+ 1

2
|η(v)|‖Yξ − Zξ‖g.

It now follows from the uniform bound on ‖η‖g0 and from Eq. (6.1.2) that there exists C > 0
such that

‖SYv − 1

2
(Yv + η(v)er J∂r )‖g ≤ C‖v‖g(1 + ‖ξ‖g)e

− r
2 .

Finally, Eq. (6.2.1) yields

‖Srv − 1

2
(v + η(v)ξ)‖g0 ≤ c0C(1 + ‖ξ‖g0)‖v‖ge−r .
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The result follows by setting c′ = c0C(1 + sup∂K ‖ξ‖g0), which is finite since ξ is a global
vector field and ∂K is compact. �
Remark 6.6 In the model setting, the shape operator of concentric spheres is of the form
S = coth r IdRJ∂r + 1

2 coth(
r
2 ) Id{∂r ,J∂r }⊥ .

We shall now show that Sr and φr asymptotically commute.

Lemma 6.7 There exists c′′ > 0 such that

∀r ≥ 0, ‖Srφr − φr Sr‖g0 ≤ c′′e−r .

Proof First, write

Srφr =
(

Sr − 1

2
(Id+η ⊗ ξ)

)
φr + 1

2
φr + 1

2
(η ◦ φr ) ⊗ ξ,

φr Sr = φr

(
Sr − 1

2
(Id+η ⊗ ξ)

)
+ 1

2
φr + 1

2
η ⊗ (φr ξ).

It now follows from the triangle inequality that

‖Srφr − Srφr‖g0 ≤ 2‖φr‖g0‖Sr − 1

2
(Id+η ⊗ ξ)‖g0 + ‖η ◦ φr‖g0‖ξ‖g0 + ‖η‖g0‖φr ξ‖g0 .

The result follows from Lemmas 6.4 and 6.5. �

6.3 Convergence

We now show that (φr )r≥0 converges in C1 topology to some tensor φ, and that the restriction
of this tensor to H is an almost complex structure.

Proposition 6.8 The family (φr )r≥0 converges in C1 topology to a C1 tensor φ satisfying
φ2 = − Id+η ⊗ ξ , φ3 = −φ, η ◦ φ = 0 and ηξ = 0. In particular, φ preserves H = ker η
and (φ|H )2 = − IdH .

Proof Let {∂r , J∂r , E1, . . . , E2n} be a radially parallel orthonormal frame on a cylinder
E(R+ × U ). By the very definition of �, it holds that

� =
2n∑
j=1

g(·, E j ) ⊗ JE j .

Assume that the radially parallel orthonormal frame is a J -frame, that is for any k ∈
{1, . . . , n}, it holds that JE2k−1 = JE2k . Then � has the nice expression

� =
n∑

k=1

g(·, E2k−1) ⊗ E2k − g(·, E2k) ⊗ E2k−1,

from which we deduce the following expression for φr

∀r ≥ 0, φr =
n∑

k=1

η2k−1
r ⊗ ξ r

2k − η2k
r ⊗ ξ r

2k−1.
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From the convergence of the local coframe {ηr , η
1
r , . . . , η2n

r } to {η, η1, . . . , η2n} and of the
local frame {ξ r , ξ r

1 , . . . , ξ r
2n} to {ξ, ξ1, . . . , ξ2n} in C1 topology, it follows that on U , (φr )r≥0

converges in C1 topology to

φ =
n∑

k=1

η2k−1 ⊗ ξ2k − η2k ⊗ ξ2k−1.

Notice that this does not depend on the chosen radially parallel J -orthonormal frame, and
φr → φ in C1 topology on ∂K . Taking the limit as r → +∞ in Lemmas 6.2 and 6.4 concludes
the proof. �
Definition 6.9 The almost complex structure JH on H is defined as the restriction of φ to H .

6.4 Integrability

Since JH is an almost complex structure, the complexified bundle H ⊗C splits as H ⊗C =
H1,0 ⊕ H0,1, where H1,0 = ker{JH − i Id} = {X + i JH X | X ∈ H} and H0,1 =
ker{JH + i Id}. Since H and JH are both of class C1, the Lie bracket of sections of H1,0

makes sense. It is then possible to ask whether JH is integrable, that is, if H1,0 is stable
under the Lie bracket. However, JH is defined as the restriction of the limit of a family of
tensors (φr ), which does not preserve H , and it is not clear what condition on φr |ker ηr would
ensure that JH is integrable. Considering the whole tensor φ is thus more convenient, as the
following study shows.

Recall that φ satisfies φ3 = −φ. The complexified tangent bundle T ∂K ⊗ C then splits
into the direct sum of the eigenspaces of φ as

T ∂K ⊗ C = ker φ ⊕ ker{φ − i Id} ⊕ ker{φ + i Id} = Cξ ⊕ H1,0 ⊕ H0,1.

We still denote byφ and η the complex-linear extensions ofφ and η. Any complex vector field
V ∈ 	(T ∂K )⊗C readsV = η(V )ξ+V 1,0+V 0,1,withφV 1,0 = iV 1,0 andφV 0,1 = −iV 0,1.
Since φξ = 0, it follows that V + iφV = η(V )ξ + 2V 0,1. Hence, a complex vector field
V on ∂K is a section of H1,0 if and only if V + iφV = 0. Finally, it follows that H1,0 is
integrable if and only if

∀u, v ∈ 	(H), [u − iφu, v − iφv] + iφ[u − iφu, v − iφv] = 0.

The Nijenhuis tensor NA of a field of endomorphisms A is defined by

∀X , Y , NA(X , Y ) = −A2[X , Y ] − [AX , AY ] + A[AX , Y ] + A[X , AY ].
The integrability of JH is related to the Nijenhuis tensor of φ by the following Lemma.

Lemma 6.10 For any vector fields u and v on ∂K , setting V = [u − iφu, v − iφv], it holds
that

V + iφV = Nφ(u, v) + η([u, v])ξ + iφNφ(u, v) − i(η([φu, v]) + η([u, φv]))ξ.

Proof Extending the Lie bracket C-linearly, it holds that

V + iφV = [u, v] − [φu, φv] − i[φu, v] − i[u, φv]
+ iφ

([u, v] − [φu, φv] − i[φu, v] − i[u, φv])

= [u, v] − [φu, φv] + φ[φu, v] + φ[u, φv]
+ i

(
φ[u, v] − φ[φu, φv] − [φu, v] − [u, φv]).
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The equalities φ2 = − Id+η ⊗ ξ and φ3 = −φ now yield

V + iφV = (−φ2 + η ⊗ ξ)[u, v] − [φu, φv] + φ[φu, v] + φ[u, φv]
+ i

( − φ3[u, v] − φ[φu, φv] + (φ2 − η ⊗ ξ)[φu, v]
+ (φ2 − η ⊗ ξ)[u, φv])

= −φ2[u, v] − [φu, φv] + φ[φu, v] + φ[u, φv] + η([u, v])ξ
+ iφ

( − φ2[u, v] − [φu, φv] + φ[φu, v] + φ[u, φv])

− i
(
η([φu, v]) + η([u, φv]))ξ.

The result follows from the definition of the Nijenhuis tensor Nφ . �
Proposition 6.11 The almost complex structure JH is integrable if and only if the two fol-
lowing conditions are satisfied:

1. Nφ |H×H = dη|H×H ⊗ ξ ,
2. dη|H×H (JH ·, ·) = − dη|H×H (·, JH ·).
Proof Let u and v be tangent to the distribution H and V = [u − iφu, v − iφv]. Then, V is
tangent to H1,0 if and only if V + iφV = 0. Identifying the real and imaginary parts, Lemma
6.10 then states that V is tangent to H1,0 if and only if

{
0 = Nφ(u, v) + η([u, v])ξ,

0 = φNφ(u, v) − (
η([φu, v]) + η([u, φv]))ξ.

Since φξ = 0, this latter system is equivalent to
{

Nφ(u, v) = −η([u, v])ξ,

η([φu, v]) = −η([u, φv]).
By definition of u and v, η(u) = η(v) = 0. Moreover, since η ◦ φ = 0, it follows that
η(φu) = η(φv) = 0. Therefore, it holds that

⎧⎪⎨
⎪⎩

dη([u, v]) = u · η(v) − v · η(u) − η([u, v] = −η([u, v])),
dη([φu, v]) = (φu) · η(v) − v · η(φu) − η([φu, v]) = −η([φu, v]),
dη([u, φv]) = u · η(φv) − (φv) · η(u) − η([u, φv]) = −η([u, φv]).

Finally, V is tangent to H1,0 if and only if Nφ(u, v) = dη(u, v)ξ and dη(φu, v) =
− dη(u, φv). �
Lemma 6.12 There exists c̃ > 0 such that for all r ≥ 0, p ∈ ∂K and u, v ∈ Tp∂K , we have

| dηr (φr u, v) + dηr (u, φrv)| ≤ c̃‖u‖g‖v‖ge− r
2 .

Proof Recall that Eq. (5.2.5) gives, for all r ≥ 0 and u, v tangent to ∂K

dηr (u, v) = e−r (g(Yv, J SYu) − g(Yu, J SYv)
)
.

Since J is skew-symmetric, it holds that

dηr (u, v) = e−r (g(SYu, JYv) − g(SYv, JYu)
)
.

Notice that since Yu and Yv are normal to ∂r , this latter expression reads

dηr (u, v) = e−r (g(SYu,�Yv) − g(SYv,�Yu)
)
.

123



8 Page 38 of 44 A. Pinoy

It thus holds that

dηr (φr u, v) = e−r (g(S�Yu,�Yv) − g(SYv,�
2Yu)

)
,

dηr (u, φrv) = e−r (g(SYu,�2Yv) − g(S�Yv,�Yu)
)
.

The symmetry of S now yields

dηr (φr u, v) + dηr (u, φrv) = e−r (g(SYu,�2Yv) − g(SYv,�
2Yu)

)
.

Since �2Yu = −Yu + g(Yu, J∂r ) ⊗ J∂r , and similarly for Yv , it follows that

dηr (φr u, v) + dηr (u, φrv) = e−r (g(SYv, J∂r )g(Yu, J∂r )

− g(SYu, J∂r )g(Yv, J∂r )
)
.

Using the symmetry of S and writing S J∂r = (S J∂r − J∂r ) + J∂r now shows that

dηr (φr u, v) + dηr (u, φrv) = ηr (u)g(Yv, S J∂r − J∂r ) − ηr (v)g(Yu, S J∂r − J∂r ).

Recall that there exist constants c1, c2 > 0 such that ‖ηr‖g ≤ c1 and ‖Yw‖g ≤ c2‖w‖ger

for any w. Thus

| dηr (φr u, v) + dηr (u, φrv)| ≤ c‖u‖g‖v‖g‖Ser J∂r − er J∂r‖g.

To conclude, it suffices to control ‖Ser J∂r − er J∂r‖g . Recall that er J∂r = Zξ = Z ′
ξ . It

now follows from the triangle inequality, the fact that S is uniformly bounded, and equation
(6.1.2) that there exists c3 > 0 such that

‖Ser J∂r − er J∂r‖g = ‖S(Zξ − Yξ ) + SYξ − Z ′
ξ‖g

≤ ‖S‖g‖Yξ − Zξ‖g + ‖SYξ − Z ′
ξ‖g

≤ c3‖ξ‖ge− r
2 .

The proof follows by setting c̃ = c1c2c3 sup∂K ‖ξ‖g < +∞ since ξ is a continuous vector
field on ∂K compact. �

Proposition 6.13 Let u and v be vector fields on ∂K . Then it holds that dη(φu, v) =
− dη(u, φv). In particular, dη|H×H (JH ·, ·) = − dη|H×H (·, JH ·).

Proof Recall that (φr )r≥0 and (dηr )r≥0 locally uniformly converge to φ and dη. The result
follows by taking the limit in Lemma 6.12 as r → +∞. �

Proposition 6.13 shows that the condition 2. of Proposition 6.11 is satisfied. Let us show
that the condition 1. is also satisfied.

Lemma 6.14 For all r ≥ 0, p ∈ ∂K and u, v ∈ Tp∂K , we have

Nφr (u, v) = erηr (v)(φr Sr u − Srφr u) − erηr (v)(φr Srv − Srφrv)

+ dηr (u, v)ξ(r).
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Proof For X and Y vector fields on M \ K , it holds that

−�2[X , Y ] = −�2∇X Y + �2∇Y X ,

−[�X ,�Y ] = −∇�X (�Y ) + ∇�Y (�X)

= −(∇�X�)Y − �∇�X Y + (∇�Y �)X + �∇�Y X ,

�[�X , Y ] = �∇�X Y − �∇Y (�X)

= �∇�X Y − �(∇Y �)X − �2∇X Y , and

�[X ,�Y ] = �∇X (�Y ) − �∇�Y X

= �(∇X�)Y + �2∇X Y − �∇�Y X .

Recall that N�(X , Y ) = −�2[X , Y ] − [�X ,�Y ] + �[�X , Y ] + �[X ,�Y ]. Therefore,
N�(X , Y ) = �(∇X �)Y − (∇�X�)Y + (∇�Y �)X − �(∇Y �)X .

Recall that ∇g = 0, ∇ J = 0, ∇∂r = S and ∇ J∂r = J S. Hence, by the very definition of �,
it holds that

(∇X�)Y = −g(Y , SX)J∂r − g(Y , ∂r )J SX

+ g(Y , J SX)∂r + g(Y , J∂r )SX .

Since �∂r = �J∂r = 0, it holds that

�(∇X �)Y = −g(Y , ∂r )�J SX + g(Y , J∂r )�SX .

Similarly, the following equality holds

(∇�X�)Y = −g(Y , S�X)J∂r − g(Y , ∂r )J S�X

+ g(Y , J S�X)∂r + g(Y , J∂r )S�X .

It follows by the anti-symmetry in X and Y that

N�(X , Y ) = g(Y , J∂r )(�SX − S�X) − g(X , J∂r )(�SY − S�Y )

+ (g(Y , S�X) − g(X , S�Y ))J∂r

+ (g(Y , J S�X) − g(X , J S�Y ))∂r

− g(Y , ∂r )J S�X + g(X , ∂r )J S�Y .

(6.4.1)

Notice that g(X , J S�Y ) = −g(J X , S�Y ). Assume from now that X is orthogonal to ∂r .
Then J X is orthogonal to J∂r . Since S�Y is orthogonal to ∂r , it follows that g(J X , S�Y ) =
g(�X , S�Y ). In particular, if X and Y are both orthogonal to ∂r , the terms in the third and
fourth lines of Eq. (6.4.1) vanish. Hence, if u and v are vector fields on ∂K , it holds that

N�(Yu, Yv) = g(Yv, J∂r )(�SYu − S�Yu) − g(Yu, J∂r )(�SYv − S�Yv)

+ (g(Yv, S�Yu) − g(Yu, S�Yv))J∂r .

Recall from Eq. (5.2.5) that dηr (u, v) = e−r (g(Yv, J SYu) − g(Yu, J SYv)). In addition,
notice that

g(Yv, J SYu) = −g(JYv, SYu) = −g(S JYv, Yu) = −g(S�Yv, Yu).

Hence, g(Yv, S�Yu)−g(Yu, S�Yv) = er dηr (u, v). The result now follows from the equality
E(r , ·)∗er J∂r = ξ(r), the definition of ηr and the properties of the pull-back. �
Proposition 6.15 The restriction Nφ |H×H is equal to the tensor dη ⊗ ξ .
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Proof By the convergence in C1 topology of φr to φ, it follows that for all u, v, tangent to
H , Nφr (u, v) → Nφ(u, v) as r → +∞. Since H = ker η, it follows from Eq. (6.1.1) that
there exists c > 0 such that |erηr (u)| ≤ c‖u‖ge− r

2 and |ηr (v)| ≤ c‖v‖ge− r
2 . It then follows

from Lemma 6.7 that there exists c′ > 0 such that

∀r ≥ 0,∀u, v ∈ 	(H), ‖Nφr (u, v) − dηr (u, v)ξ r‖g ≤ c′‖u‖g‖v‖g0e− 3r
2 .

The result follows by taking the limit as r → +∞. �
We shall now highlight the link between the canonical form η, the Carnot–Carathéodory

metric γH , and the almost-complex structure JH .

Proposition 6.16 The Carnot–Carathéodory metric γH , the exterior differential of the canon-
ical 1-form at infinity η and the tensor φ are related by the equality γH = dη(·, φ·). In
particular, the restriction of γH to H × H is given by dη|H×H (·, JH , ·).
Proof Fix a radially parallel J -orthonormal frame {∂r , J∂r , E1, . . . , E2n}. From equation
(5.2.7), it holds that dη locally reads

dη =
n∑

k=1

η2k−1 ∧ η2k =
n∑

k=1

η2k−1 ⊗ η2k − η2k ⊗ η2k−1,

while γH is locally expressed by

γH =
2n∑
j=1

η j ⊗ η j .

Since the radially parallel orthonormal frame is chosen to be a J -orthonormal frame, it holds
that for all r ≥ 0, and for all k ∈ {1, . . . , n},

{
η2k−1

r ◦ φr = −η2k
r ,

η2k
r ◦ φr = η2k−1

r .

Taking the limit as r → +∞ shows that for all k ∈ {1, . . . , n}, η2k−1 ◦ φ = −η2k and
η2k ◦ φ = η2k−1. It follows that

dη(·, φ·) =
n∑

k=1

η2k−1 ⊗ η2k−1 + η2k ⊗ η2k = γH ,

which concludes the proof. �
We are now able to prove the last of our main Theorems (we restate the hypotheses for

the reader’s convenience).

Theorem D Let (M, g, J ) be a complete non-compact Kähler manifold with an essential sub-
set K , such that the sectional curvature of M \ K is negative. Assume that M is (ALCH) and
(ALS) of order a and b with min{a, b} > 3

2 . Then (∂K , H , JH ) is a strictly pseudoconvex CR
manifold of class C1.

Proof Let η be the canonical form, γH be theCarnot–Carathéodorymetric andφ be defined as
in Definition 6.9. From Proposition 6.8, φ induces a C1 almost complex structure JH = φ|H
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on the distribution H = ker η, which is contact (Theorem B). It follows from propositions
6.13 and 6.15 that φ satisfies

∀u, v ∈ 	(H),

{
Nφ(u, v) = dη(u, v)ξ, and

dη(φu, v) = − dη(u, φv).

It then follows from Proposition 6.11 that JH is integrable, and (∂K , H , JH ) is a CRmanifold
of class C1. From Proposition 6.16, it holds that dη|H×H (·, JH ·) = γH , and since γH is
positive definite on H , it follows that (∂K , H , JH ) is strictly pseudoconvex. This concludes
the proof. �
Remark 6.17 If M has real dimension 4, then the contact structure on the boundary of M is
of rank 2. Since almost complex structures (when they are at least of class C1) are always
integrable in dimension 2, the proof of TheoremD is thus considerably reduced in that specific
case.
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Appendix A: Curvature computations

Lemma A.1 In the context of Proposition 5.7:

R0(∂r , J∂r , Yv, SYu) = −1

2
g(SYu, JYv),

R0(∂r , Yv, SYu, J∂r ) = 1

4
g(SYu, JYv),

R0(∂r ,∇Yv Yu, ∂r , J∂r ) = −g(∇Yv Yu, J∂r ), and

R0(∂r , Yv, ∂r ,∇Yu J∂r ) = −1

4
g(Yv,∇Yu J∂r ).
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Proof Since ∂r ⊥ SYu , ∂r ⊥ Yv , J∂r ⊥ J SYu and J∂r ⊥ JYv , it follows that

R0(∂r , J∂r , Yv, SYu) = 1

4

(
g(∂r , SYu)g(J∂r , Yv) − g(∂r , Yv)g(J∂r , SYu)

+ g(∂r , J SYu)g(J∂r , JYv) − g(∂r , JYv)g(J∂r , J SYu)

+ 2g(∂r , J 2∂r )g(SYu, JYv)
)

= 1

4
(2g(∂r ,−∂r )g(SYu, JYv))

= −1

2
g(SYu, JYv).

Similarly,

R0(∂r , Yv, SYu, J∂r ) = 1

4

(
g(∂r , J∂r )g(Yv, SYu) − g(∂r , SYu)g(Yv, J∂r )

+ g(∂r , J 2∂r )g(Yv, J SYu) − g(∂r , J SYu)g(Yv, J 2∂r )

+ 2g(∂r , JYv)g(J∂r , SYu)
)

= 1

4
(−g(Yv, J SYu))

= 1

4
g(SYu, JYv).

In addition, since J is skew-symmetric,

R0(∂r ,∇Yv Yu, ∂r , J∂r ) = 1

4

(
g(∂r , J∂r )g(∇Yv Yu, ∂r ) − g(∂r , ∂r )g(∇Yv Yu, J∂r )

+ g(∂r , J 2∂r )g(∇Yv Yu, J∂r ) − g(∂r , J∂r )g(∇Yv Yu, J∂r )

+ 2g(∂r , J∇Yv Yu)g(J∂r , J∂r )
)

= 1

4

( − g(∇Yv Yu, J∂r ) − g(∇Yv Yu, J∂r ) − 2g(∇Yv Yu, J∂r )
)

= −g(∇Yv Yu, J∂r ).

Finally, since J is skew-symmetric and parallel, it holds that

R0(∂r , Yv, ∂r ,∇Yu J∂r ) = 1

4

(
g(∂r ,∇Yu J∂r )g(Yv, ∂r ) − g(∂r , ∂r )g(Yv,∇Yu J∂r )

+ g(∂r , J∇Yu J∂r )g(Yv, J∂r ) − g(∂r , J∂r )g(Yv,∇Yu J∂r )

+ 2g(∂r , JYv)g(∇Yu J∂r , J∂r )
)

= −1

4
g(∇Yu J∂r , Yv) + 1

2
g(∂r , JYv)g(∇Yu J∂r , J∂r ).

To conclude, note that since ‖J∂r‖2g = 1 is constant, then g(∇Yu J∂r , J∂r ) = 0. �
Lemma A.2 In the context of Proposition 5.9:

R0(∂r , E j , Yv, SYu) = 1

4
g(SYu, J∂r )g(Yv, JE j ) − 1

4
g(SYu, JE j )g(Yv, J∂r ),

R0(∂r , Yv, SYu, E j ) = 1

4
g(SYu, J∂r )g(Yv, JE j ) + 1

2
g(SYu, JE j )g(Yv, J∂r ),

R0(∂r ,∇Yv Yu, ∂r , E j ) = −1

4
g(∇Yv Yu, E j ), and
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R0(∂r , Yv, ∂r ,∇Yu E j ) = −1

4
g(Yv,∇Yu E j ) − 3

4
g(SYu, JE j )g(Yv, J∂r ).

Proof Since ∂r ⊥ SYu , ∂r ⊥ Yv and ∂r ⊥ JE j , it holds that

R0(∂r , E j , Yv, SYu) = 1

4

(
g(∂r , SYu)g(E j , Yv) − g(∂r , Yv)g(E j , SYu)

+ g(∂r , J SYu)g(E j , JYv) − g(∂r , JYv)g(E j , J SYu)

+ 2g(∂r , JE j )g(SYu, JYv)
)

= 1

4
(g(∂r , J SYu)g(E j , JYv) − g(∂r , Yv)g(E j , J SYu))

= 1

4
g(SYu, J∂r ) − 1

4
g(SYu, JE j ).

Similarly, it holds that

R0(∂r , Yv, SYu, E j ) = 1

4

(
g(∂r , E j )g(Yv, SYu) − g(∂r , SYu)g(Yv, E j )

+ g(∂r , JE j )g(Yv, J SYu) − g(∂r , J SYu)g(Yv, JE j )

+ 2g(∂r , JYv)g(E j , J SYu)
)

= −1

4
g(∂r , J SYu)g(Yv, JE j ) + 1

2
g(∂r , JYv)g(E j , J SYu)

= 1

4
g(SYu, J∂r )g(Yv, JE j ) + 1

2
g(SYu, JE j )g(Yv, JE j ).

Since in addition ∂r ⊥ J∂r , it follows that

R0(∂r ,∇Yv Yu, ∂r , E j ) = 1

4

(
g(∂r , E j )g(∇Yv Yu, ∂r ) − g(∂r , ∂r )g(∇Yv Yu, E j )

+ g(∂r , JE j )g(∇Yv Yu, J∂r ) − g(∂r , J∂r )g(∇Yv Yu, JE j )

+ 2g(∂r , J∇Yv Yu)g(E j , J∂r )
)

= −1

4
g(∇Yv Yu, E j ).

Finally, since J is parallel and g(∇Yu JE j , ∂r ) = −g(SYu, JE j ), it holds that

R0(∂r , Yv, ∂r ,∇Yu E j ) = 1

4

(
g(∂r ,∇Yu E j )g(Yv, ∂r ) − g(∂r , ∂r )g(Yv,∇Yu E j )

+ g(∂r , J∇Yu E j )g(Yv, J∂r ) − g(∂r , J∂r )g(Yv, J∇Yu E j )

+ 2g(∂r , JYv)g(∇Yu E j , J∂r )
)

= −1

4
g(Yv,∇Yu E j ) + 1

4
g(∂r , J∇Yu E j )g(Yv, J∂r )

+ 1

2
g(∂r , JYv)g(∇Yv E j , J∂r )

= −1

4
g(Yv,∇Yu E j ) + 3

4
g(∇Yu JE j , ∂r )g(Yv, J∂r )

= −1

4
g(Yv,∇Yu E j ) − 3

4
g(SYu, JE j )g(Yv, J∂r ).

�
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