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Abstract
We give a description of the cohomology groups of the structure sheaf on smooth com-
pactifications X(w) of Deligne–Lusztig varieties X(w) for GLn , for all elements w in the
Weyl group. As a consequence, we obtain the mod pm and integral p-adic étale cohomol-
ogy of X(w). Moreover, using our result for X(w) and a spectral sequence associated to a
stratification of X(w), we deduce the mod pm and integral p-adic étale cohomology with
compact support of X(w). In our proof of the main theorem, in addition to considering the
Demazure–Hansen smooth compactifications of X(w), we show that a similar class of con-
structions provide smooth compactifications of X(w) in the case of GLn . Furthermore, we
show in the appendix that the Zariski closure of X(w), for any connected reductive group G
and any w, has pseudo-rational singularities.
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1 Introduction

Let G/Fp be a connected reductive group defined over a finite field Fq and let F be the
Frobenius endomorphism. Deligne–Lusztig varieties were introduced in [9] for studying
irreducible representations of G(Fq). The aim of this paper is to describe the cohomology
groups of the structure sheaf for Deligne–Lusztig varieties for GLn and their interpretations
as GLn(Fq)-representations.
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1.1 General background

Fix a maximal torus T ∗ and a Borel subgroup B∗ containing T ∗ in G. A Deligne–Lusztig
variety X(w) is a locally closed subscheme of G/B∗ consisting of Borel subgroups B whose
relative position with FB is given by an element w of the Weyl group W . As Fp-schemes,
Deligne–Lusztig varieties are quasi-projective and smooth of dimension l(w), which is the
Bruhat length of w.

Deligne and Lusztig considered the virtual representations arising from the �-adic coho-
mology with compact support of X(w) and their étale coverings for � �= p. They showed
that any irreducible representation of GLn(Fq) is contained in one of such virtual represen-
tations [9, §7]. In the same paper, they constructed smooth compactifications X(w) of X(w)

for each reduced expression of w [9, §9], which are analogous to the Demazure–Hansen
desingularization of Schubert varieties.

A prominent example ofDeligne–Lusztig varieties in the case ofG = GLn is X(w), where
w corresponds to the standard Coxeter element. It is isomorphic to the complement of all
Fq -rational hyperplanes in the projective space P

n−1
Fp

(resp. Pn−1
Fq

), which we denote byX n−1
Fp

(resp. X n−1
Fq

.). This example was defined by Deligne and Lusztig [9], which first appeared
in [36, Example 1]. In [18], Große-Klönne gave a vanishing result for the cohomology of
sheaves of logarithmic differential forms on a smooth compactification of X n−1

Fq
.

For K a nonarchimedean local field, one may take the complement X n−1
Cp

(resp. X n−1
K ) of

all K -rational hyperplanes in the rigid analytic projective spaceP
n−1
Cp

(resp.Pn−1
K ). This space

is preserved under GLn(K )-action and is an admissible open of the rigid analytic projective
space. It was introduced by Drinfeld [13, §6] and often referred to as the p-adic Drinfeld half
space when K is a finite extension of Qp .

The p-adic Drinfeld half space admits a semistable weak formal model whose generic
fibre recovers the p-adic Drinfeld half space. Moreover, a smooth compactification of X n−1

Fq

lives in the special fibre of this weak formal model as an irreducible component cf. [6, 18].
The cohomology theories for certain coherent sheaves of the p-adic Drinfeld half space have
been studied by Schneider and Stuhler [45], Schneider and Teitelbaum [46], Große-Klönne
[18], Orlik [43], and many others.

1.2 The individual �-adic cohomology for Deligne–Lusztig varieties

In [44], Orlik provided a strategy for computing the �-adic cohomology groups with compact
support of Deligne–Lusztig varieties for G = GLn . We briefly recall the methods of loc. cit.
which are relevant to us.

Let F+ be the free monoid generated by a fixed set of standard generators of W . The
generalized Deligne–Lusztig variety attached to w ∈ F+ were introduced in [37]. It is a
subscheme of (G/B∗)r+1 with relative positions of successive pairs of Borel subgroups
determined by the standard generators in the expression of w. For the precise definition see
Sect. 3.

Orlik studied the association between cohomology groups of X(w) and X(w′), where
w,w′ ∈ F+ and w′ is obtained via replacing a reduced subexpression of w by another
according to a relation in the group presentation of W or via shifting the first standard
generator in the expression of w to the end. In particular, he constructed three operators
C, K , R on elements of F+. As the construction of the operators is related to the relations in
the group presentation of W cf. Sect. 5, one can always use finitely many of these operators
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to transform w into either a standard Coxeter element in a standard Levi subgroup of G, or
of the form svs, when G = GLn [15].

If we have svs ∈ F+, then X(svs) → X(vs) is a P
1-fibration. This let one relate the

cohomologygroupof X(svs)with the one for X(vs),which is of dimension dim
Fp

(X(svs))−
1.

Orlik then establishes a double induction procedure with respect to the length of w and
the number of operators applied. The base case is the cohomology of X(w) with w ∈ F+
having no repeating terms in its expression. As X(w) is universally homeomorphic to a finite
disjoint union of products of smooth compactifications of X j

Fp
with j ≤ n − 1, its �-adic

étale cohomology can be determined.

1.3 Statement of results

We adapt Orlik’s method of double induction to the cohomology of the structure sheaf on
X(w),w ∈ F+. The cohomology of the structure sheaf for the smooth compactification
X(s1 . . . sn−1) of X(w) follows from a result of Große-Klönne for the smooth compactifica-
tion of X n−1

Fq
after base changing to Fp [18, Theorem 2.3]:

Theorem (Große-Klönne) Let G = GLn and w = s1 . . . sn−1 the standard Coxeter element.
Then

Hk
(
X(s1 . . . sn−1),OX(s1...sn−1)

)
=
{

Fp, k = 0,
0, k > 0.

Our base cases are X(w), when w is a standard Coxeter element for a standard Levi sub-
group L of GLn . If L is a proper standard Levi subgroup, then X(w) is a finite disjoint union,
with each irreducible component isomorphic to the product of smooth compactifications of
X j

Fp
of dimensions j < n − 1. In particular, the number of irreducible components X(w) is

given by the number of Fq -rational points on G/P , where P is the standard parabolic sub-
group associated to L . The cohomology of X(w) then also follows from the above theorem.

The double induction strategy then allows us to deduce the following result:

Theorem 1.1 Let G = GLn and w ∈ F+ with w = si1 . . . sir . Let I = {si1 , . . . , sir } and
PI = B∗WI B∗ be the standard parabolic subgroup associated to I , then

Hk
(
X(w),OX(w)

)
=
{
ind

GLn(Fq )

PI (Fq )
1

Fp
, k = 0,

0, k > 0,

where 1
Fp

is the trivial PI (Fq)-representation with coefficients in Fp.

If w = svs, we construct maps X(svs) → X(sv) and X(svs) → X(vs) and show that
they give isomorphisms of cohomology groups with respect to the structure sheaf. These
isomorphisms are GLn(Fq)-equivariant. Consequently, they also induce isomorphisms on
cohomology groups in the case of the cyclic shift operator C cf. Definition 5.1. The con-
struction of these maps only relies on the fact that GLn is split reductive, so this step applies
to any split reductive connected groups defined over Fq .

For the operators K and R corresponding to relations in the symmetric group cf. Def-
inition 5.3, we first construct an intermediate proper smooth scheme such that both X(w)

and X(K (w)) (resp. X(R(w))) have birational morphisms to it, then we use a theorem of
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Chatzistamatiou and Rülling to get the isomorphism of cohomology groups. The theorem
[5, Theorem 3.2.8] shows that for proper smooth schemes over a perfect field, birational
morphisms induce cohomological equivalence for the structure sheaf and the canonical bun-
dle. In Appendix A, we show that X(w) has pseudo-rational singularities. For schemes with
such singularities, there is a generalization of Chatzistamatiou–Rülling’s result by Kovács
[32, Theorem 8.13]. Hence the statements on the operators K and R follows from this and it
generalizes to arbitrary connected reductive groups whenever there is an operator replacing
a reduced subexpression of w according to relation in the group presentation of W that does
not reduce the Bruhat length.

Since all steps in our version of the double induction induce isomorphisms on the coho-
mology groups as Fp-vector spaces, and we have higher vanishing for the base case, we
may analyze the GLn(Fq)-action after we obtain the cohomology. In particular, the global
sections of the irreducible components are isomorphic to the base field, so they have to be
trivial representations of their corresponding P(Fq).

If we consider the sheaf of Witt vectors Wm

(
OX(w)

)
of length m on X(w), our theorem

implies that

H0
(
X(w),Wm

(
OX(w)

))
= ind

GLn(Fq )

PI (Fq )
Wm

(
Fp

)
.

Using the Artin–Schreier–Witt sequence we obtain the cohomology of the constant sheaves
Z/pmZ and Zp on X(w)ét, shown in Proposition 7.2 and Corollary 7.3 below.

Corollary 1.2 Let G = GLn, and w ∈ F+ with w = si1 . . . sir . Let R be Z/pmZ,m ≥ 1, or
Zp. Then

Hk
ét

(
X(w), R

) =
{
ind

GLn(Fq )

PI (Fq )
1R, k = 0,

0, k > 0,

where 1R is the trivial PI (Fq)-representation with coefficients in R.

The higher vanishing of these cohomology groups are obtained inductively via the long
exact sequence associated to the mod p short exact sequence for Z/pmZ. The result for
Zp-coefficients follows after verifying the Mittag–Leffler condition.

There is a spectral sequence associated to a stratification of X(w):

Ei, j
1 =

⊕
u	w

�(u)=�(w)−i

H j
ét

(
X(u), Z/pmZ

)⇒ Hi+ j
ét,c

(
X(w), Z/pmZ

)
.

The corollary above implies that this spectral sequence degenerates at the E2-page. In par-
ticular, except at the 0th term, E•,0

1 is quasi-isomorphic to the Solomon–Tits complex mod
p cf. [44]. The Solomon–Tits complex is a simplicial complex constructed from the group
GLn(Fq), whose 0th homology is Z and highest non-vanishing homology realizes the Stein-
berg representation over Z. This method has been used to study the compactly supported
�-adic cohomology of X(w) [44, §5, §7], c.f. [8, Ch VII]. Using this method, we obtain
the following results on the compactly supported cohomology for X(w)ét with Z/pmZ and
Zp-coefficients in Theorem 8.4 and Corollary 8.5.

123



Cohomology and Geometry of Deligne–Lusztig varieties for GLn Page 5 of 43 69

Theorem 1.3 Let G = GLn andw ∈ F+. Let L I ⊇ T ∗ be the standard Levi subgroup ofGLn

such that PI = UI � L I , where UI is the unipotent radical of PI . Let R be Z/pmZ,m ≥ 1
or Zp. Then

Hk
ét,c (X(w), R) =

{
0, k �= �(w),

ind
GLn(Fq )

PI (Fq )
StL I , k = �(w),

where StL I is the Steinberg representation for L I with coefficients in R. In particular, when

I = S, we have H �(w)

ét,c (X(w), R) = StGLn .

Appendix A provides some insights on the geometry of X(w) for arbitrary connected
reductive group G defined over Fq . We show that they are strongly F-regular and thus have
pseudo-rational singularities. This result is achieved using the fact that X(w) are associated
to Zariski closure of Bruhat cells (resp. Schubert varieties) via the Lang map. Thus X(w) are
F-regular because the the Zariski closure of Bruhat cells are F-regular [4]. It then follows
from Kovács’ theorem that the cohomology of X(w) is isomorphic to that of X(w) for the
structure sheaf and the canonical bundle [32].

In fact, Lauritzen, Raben-Pedersen and Thomsen showed that Schubert varieties are not
only strongly F-regular, but also globally F-regular [33]. A natural question to ask in this
direction is that whether X(w) have globally defined singularities.

1.4 Structure of the paper

In Sects. 2 and 3 we recall basic definitions and properties of (generalized) Deligne–Lusztig
varieties. Section 4 treats the cases used for the induction on the length of w. The cases used
for the induction on the presentation ofw are studied in Sect. 5. Section 6 establishes the base
case of our induction in the case of GLn . Section 7 contains the proof of the main theorem
1.1 and corollaries for the mod pm and Zp-cohomology groups. In Sect. 8, we give the proof
for Theorem 8.4 and Corollary 8.5 on the compactly supported mod pm andZp-cohomology
of X(w). Appendix A examines the locally defined singularities of X(w) for any connected
reducitve group G and an application of a theorem in [32].

2 Deligne–Lusztig varieties

In this section we fix notations and conventions for Deligne–Lusztig varieties in general, and
then specifically for the case of G = GLn in Sect. 2.7. We will conclude this section with
some examples of Deligne–Lusztig varieties for GLn .

2.1 Notations

Let p be a prime number, and q = pr , r ≥ 1. Fix an algebraic closure Fp of the finite field
Fp that contains the finite field Fq . Here we recall some basic notions from the theory of
reductive groups. The standard references we have used are [10, 16, 28, 31].

LetG be a reductive algebraic Fp-group defined via base change by a connected reductive
Fq -group G0. Let F denote the Frobenius endomorphism on G, obtained by extension from
the Frobenius endomorphism of G0. Denote with GF the fixed points of G by the Frobenius.
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Note that the datum of a maximal torus, a Borel subgroup, and the Weyl group is unique
up to unique isomorphism (cf. [9, §1.1]). Fix an F-stable Borel subgroup B∗ of G and an
F-stable maximal torus T ∗ such that T ∗ ⊆ B∗.

Let W := N (T ∗)/T ∗ be the Weyl group, where N (T ∗) is the normalizer of T ∗ in G.
At the same time, W is the Weyl group of the root system of T ∗, which contains a set of
simple roots that is in bijection with a set S of generators of W . In the literature, elements of
S are sometimes called elementary reflections or simple reflections. We denote by �(w) the
Bruhat length ofw ∈ W . It is the minimal number r such thatw can be written as the product
w = si1 . . . sir , where si j ∈ S, j = 1, . . . , r . Here we call si1 . . . sir a reduced expression
of w. The Bruhat order ≤ on W is defined by: w ≤ v whenever w, v ∈ W have reduced
expressions w = si1 . . . sir and v = t1 . . . tk, t1, . . . , tk ∈ S such that 1 ≤ i1 ≤ · · · ≤ ir ≤ k,
and si j = ti j for all j = 1, . . . , r cf. [15, §1.2.4].

We say that G is split when the maximal torus T ∗ fixed above is a split maximal torus
and is defined over Fq . In this case the map F : W → W induced by the Frobenius is the
identity [11, §7.1.3, §4.3.1].

Denote the opposite Borel subgroup by B+, recall that we have decompositions

B∗ = U∗T ∗ = U∗
� T ∗ B+ = U+T ∗ = U+

� T ∗,

where U∗ and U+ are the unipotent radicals of B∗ and B+ respectively.
Recall that the quotient G/B∗ exists in the category of Fp-schemes [10, III §3.5.4],

and that G/B∗ is an integral, projective and smooth scheme [31, §II.13.3]. Since Fp is
algebraically closed, the Fp-rational points on G/B∗ correspond bijectively to the elements

inG
(
Fp

)
/B∗

(
Fp

)
. Thus byBorel fixedpoint theorem,weknow that theBorel subgroups of

G correspond to theFp-rational points onG/B∗ and they are all conjugate to B∗. Throughout
this text, let X be the set of all Borel subgroups of G on which G acts by conjugation. In
particular, via the set theoretic identification betweenG/B∗ and X given by gB∗ 
→ gB∗g−1,
one obtains aFp-scheme structure on X with anG-action such that the identificationG/B∗ ∼=
X is G-equivariant. By abuse of notation, we write gB∗ ∈ G/B∗, B ∈ X or x ∈ X for Fp-
rational points on G/B∗ and X respectively, when there is no ambiguity.

2.2 Basic constructions

There is a left G-action on the product X × X given by the diagonal action:

G × (X × X) −→ X × X
(g, (B1, B2)) 
−→ (

gB1g−1, gB2g−1
)
.

The quotient G\ (X × X) is in bijection with the Weyl group W as a result of the Bruhat
decomposition [3, §2.11]. For eachw ∈ W , the orbit O(w) is of the formG.

(
B∗, ẇB∗ẇ−1

)
,

where ẇ ∈ N (T ∗) is a representative of w. In particular, the orbit corresponding to the
identity e ∈ W is O(e) ∼= X . We refer to [9, §1] for basic properties of the orbits O(w).
Since F : G → G induces an automorphism on X = G/B, let �F ⊆ X × X be the graph
of F : X → X .

Definition 2.1 The Deligne–Lusztig variety X(w) for G corresponding to w ∈ W is defined
as the intersection in X × X of O(w) and the graph of F .

X(w) := O(w) ×(X×X) �F .
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Remark 1 Note that this intersection is transverse [9, p. 107]. Moreover, the set of (rational)
points of X(w) corresponds to the subset of Borel subgroups B in X such that B and F(B)

are in relative position w, i.e.,

X(w) = {B ∈ X |(B, F(B)) ∈ O(w)}.
Additionally, X(w) is a subscheme of X of dimension �(w) that is locally closed and smooth.
Considered as a subscheme of X , the Deligne–Lusztig variety X(w) is stable under the GF -
action. Thus we have a GF -action on X(w).

Deligne–Lusztig varieties may alternatively be defined as follows cf. [37, Example 3.10
(c)].

Definition 2.2 Let w ∈ W and w = si1 . . . sir with si j ∈ S be a reduced expression. The
Deligne–Lusztig variety associated to this reduced expression is defined as:

X(si1 , . . . , sir ) := {(B0, . . . , Br ) ∈ Xr+1|(Bj−1, Bj ) ∈ O(si j ), j = 1, . . . , r , FB0 = Br
}
.

Remark 2 The definition above is independent of the reduced expression ofw up to canonical
isomorphisms [37, Example 3.10 (c)] cf. [12, p. 759].

2.3 Smooth compactifications

In general, theZariski closure X(w)of X(w) in X is not smooth. For each reduced decomposi-
tionw = si1 . . . sir ofw ∈ W with si j ∈ S, j = 1, . . . , r , we have a smooth compactification

X(w) of X(w) with a normal crossing divisor at infinity [9, §9.10] defined as follows:

Definition 2.3 Let w ∈ W , and let w = si1 · · · sir be a reduced expression with si j ∈ S,
j = 1, . . . , r . We define

O(si1 , . . . , sir ) :=
{
(B0, . . . , Br ) ∈ Xr+1|(Bj−1, Bj ) ∈ O(si j ), j = 1, . . . , r

}
,

where O(si j ) = O(si j )∪̇O(e), and

X(si1 , . . . , sir ) := O(si1 , . . . , sir ) ×(X×X) �F ,

where O(si1 , . . . , sir ) → X × X is the projection map (B0, . . . , Br ) 
→ (B0, Br ).
We also use the notation X(w) for X(si1 , . . . , sir ) when the reduced expression w =

si1 · · · sir is specified.
Remark 3 We may alternatively write

X(si1 , . . . , sir )

=
{
(B0, . . . , Br ) ∈ Xr+1|(Bj−1, Bj ) ∈ O(si j ), j = 1, . . . , r , FB0 = Br

}
.

2.4 Affiness and irreducibility

Affineness

(i) Let G/Fp be any connected reductive group that is defined over Fq . Let h be the Coxeter
number of G, which is the Bruhat length of any Coxeter element of W . If q > h, then
X(w) is affine for any w ∈ W [9, Theorem 9.7].

(ii) If w ∈ W is a Coxeter element, then X(w) is affine [35, Corollary 2.8].
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Irreducibility

Whether a Deligne–Lusztig variety is irreducible is completely dependent on the support of
the corresponding Weyl group element.

(i) When w ∈ W is a Coxeter element, then X(w) is irreducible [35, Proposition 4.8]. For
the non-split groups, we say that w is a Coxeter element if w is a product of elements of S
which come from distinct F-orbits.

(ii) Forw ∈ W , X(w) is irreducible ifw is not contained in any proper F-stable parabolic
subgroup of W . There are many proofs for this statement. Here we refer to [2, 17]. Note that
for split reductive groups G, this equivalent of saying that X(w) is irreducible if the support
of w is S (cf. Definition 3.5).

In addition, X(w) has the same number of irreducible components as its smooth compact-
ification X(w) (when one fixes a reduced expression of w).

(iii) Let v,w ∈ W such that

supp(v) = supp(w),

then X(w) and X(v) have the same number of irreducible components. By [12, Proposition
2.3.8], one may write down the irreducible components, as well as the number of irreducible
components.

2.5 Fibrations over X

We recall basic constructions and observations from [9, 1.2(b)]. In this section we use the
notations from Sect. 2.1. We say a morphism of Fp-schemes f : Y1 → Y2 is a bundle with
fibre E , if Y2 admits an open covering with respect to a (Grothendieck) topology τ (e.g.
Zariski open covering, fppf open covering) such that all (closed) fibres of f are isomorphic
to E and f is locally trivial with respect to this covering.

Let π : G → G/B∗ be the canonical projection map. The Zariski open covering
{ẇU+B∗}w∈W of G gives a Zariski open covering {π(ẇU+B∗)}w∈W of G/B cf. [31, II
§1.10].

Lemma 2.4 Let s ∈ W bea simple reflection. The projectionmappri : O(s) → X , i = 1, 2 is
an (Zariski) A

1-bundle with respect to the open covering {π(ẇU+B∗)}w∈W of X. Moreover,
O(s) is isomorphic to the homogeneous G-space G/(B∗ ∩ ṡ B∗ṡ) over G/B∗, whose fibres
are isomorphic to B∗/(B∗ ∩ ṡ B∗ṡ) ∼= A

1.

Remark 4 In the situation of the lemma above, the fibre B∗/(B∗ ∩ ṡ B∗ṡ) has a natural group
action coming from StabG(B∗) = B∗. Since the automorphism group of A

1 is the affine
group Ga � Gm , there is a morphism of group schemes B∗ → Ga � Gm . This morphism is
in fact surjective.

The Zariski closure O(s) of O(s) in X × X admits a decomposition into the union of
O(s) and O(e):

O(s) = {(B0, B1) ∈ X × X |(B0, B1) ∈ O(s), or (B0, B1) ∈ O(e)} .

Note that we have an identity section of the projection maps pri : O(s) → X , i = 1, 2,
given by X ∼= O(e) → O(s). The complement of this section gives us pri : O(s) → X . We
recall the following lemma.
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Lemma 2.5 Let s ∈ W be a simple reflection. The projection maps pri : O(s) → X , i =
1, 2, are a P

1-bundles and they are locally trivial with respect to the Zariski open covering
{π(ẇU+B∗)}w∈W of X.

Proof Let P∗ := B∗sB∗ ∪ B∗. We have a cartesian diagram of Fp-schemes:

O(s) G/B∗

G/B∗ G/P∗,

pr2

pr1 πP

πP

(1)

where πP : G/B∗ → G/P∗ is the projection map. All maps in this diagram are G-
equivariant. Recall that πP is locally trivial with respect to the the (Zariski) open cover
{π ′(ẇU+B∗)}w∈W of G/P∗ [31, §II.1.10 (5)], where π ′ : G → G/P∗ is the canonical
projection map. Since pri , i = 1, 2, is the base change of πP , it is a Zariski locally trivial
fibre bundle. In particular, the fibres of pri are isomorphic to P∗/B∗ ∼= P

1. ��

2.6 The induced finite group action on the cohomology groups

For this section, let � be a finite group and let Y be a Fp-scheme with �-action. Following
[42, Definition 1.6], we explain how � acts on the cohomology groups of �-equivariant
OY -modules.

Definition 2.6 Let Y be aFp-schemewith�-action σ : �×Y → Y , and letV be an invertible
sheaf ofOY -modules. Denote by μ : � × � → � the multiplication. A �-linearization of V
constists of the datum of an isomorphism of sheaves of O�×Y -modules,

φ : σ ∗V ∼−→ pr∗2V,

such that φ|{1}×Y is the identity and the cocycle condition on � × � × Y
(
pr∗2,3φ

) ◦ ((id� × σ)∗φ
) = (μ × idY )∗φ

is satisfied.

We say that V is �-equivariant if it possesses a �-linearization.

Example 1 (i) For V = OY , we naturally have σ ∗OY ∼= O�×Y and pr∗2OY ∼= O�×Y . Thus
φ is given by the composition of these two isomorphisms. The cocycle condition follows
because the pullback of the structure sheaf is the structure sheaf. Thus OY is �-equivariant.

(ii) There is a natural morphism of sheaves of O�×Y -modules:

σ ∗�1
Y −→ �1

�×Y .

Note that the projection map induces a projection map of sheaves of O�×Y -modules:

�1
�×Y −→ pr∗2�1

Y .

The composition yields a morphism of O�×Y -modules φ : σ ∗�1
Y → pr∗2�1

Y . By checking
on the level of stalks, one sees that φ is an isomorphism and the cocycle condition is satisfied.

(iii) Let r be an integer with 0 < r ≤ dim
Fp

Y . One shows that �r
Y is �-equivariant by

following the steps above and taking r th exterior powers. Note that exterior powers commute
with taking the inverse image.
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We conclude this subsection with an observation that we will use later. Suppose
H0(Y ,OY ) = Fp . Then H0(Y ,OY ) is the trivial �-representation. Indeed, for g ∈ �,

we have an isomorphism OY
∼→ g∗OY . Let ϕ ∈ OY (Y ), for all y ∈ Y ,

g.ϕ(y) = ϕ(g−1.y).

As we have OY (Y ) = Fp , any ϕ ∈ OY (Y ) is constant, and so g.ϕ = ϕ. Therefore � acts on
H0(Y ,OY ) trivially.

2.7 Conventions for G = GLn

In the following, we will specifically consider the case G = GLn . In this case, we have
GF = GLn(Fq). Let T ∗ ⊆ GLn be the maximal torus such that T ∗(Fp) corresponds to the
diagonal matrices and let B∗ ⊆ GLn be the Borel subgroup such that B∗(Fp) corresponds
to the upper triangular matrices. Thus the T ∗ ⊆ B∗ we fixed are F-stable, so the Frobenius
F acts as the identity on W cf. [11, §4.2].

There is a canonical isomorphism between the Weyl group W associated to T ∗ ⊆ B∗ as
above and the symmetric group Sn , in the sense that the elements of W acts on T ∗(Fp) by
permuting the diagonal entries. We fix a set of generators S := {s1, . . . , sn−1} ofW such that
si acts on the elements of T ∗(Fp) by permuting the i th and (i + 1)th entries. Any product
of the si ’s in W such that each si shows up exactly once is called a Coxeter element. In
particular, we call the product s1 . . . sn−1 the standard Coxeter element, which we denote
by w. Let {α1, . . . , αn−1} be the (positive) simple roots with each αi corresponding to si .
The the unipotent subgroup U−αi has Fp-rational points consisting of matrices whose only
nonzero entries lie on the diagonal and the (i + 1, i)th entry, with the entries on the diagonal
all 1’s. Moreover, each U−αi is isomorphic to the additive group Ga .

For any subset I ⊆ S, denote WI the subgroup of W generated by I . We define the
associated standard parabolic subgroup cf. [28, Theorem 29.2]:

PI = B∗WI B
∗ :=

⋃
w∈WI

B∗ẇB∗.

Let L I be the standard Levi subgroup containing T ∗ such that we have a Levi decomposition

PI
∼−→ UI � L I ,

where UI is the unipotent radical of PI .

2.8 Examples of Deligne–Lusztig varieties for GLn

LetG = GLn . Note that the standardCoxeter elementw corresponds to the n-cycle (1, . . . , n)

in the symmetric group on n-elements. Recall from [9, §2] that X(w) can be identified with
the following subspace of the complete flag variety X :
⎧⎨
⎩D•

∣∣∣∣ dimFp
Di = i, D0 = {0}, Di =

i⊕
j=1

F j−1D1, i = 1, . . . , n − 1, Dn = F
n
p

⎫⎬
⎭ .

Via the projection D• 
→ D1, one obtains an embedding of X(w) into P
n−1
Fp

. In the notation

of algebraic groups, this embedding is obtained from the projection G/B∗ → G/PI , where
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I = {s2, . . . , sn−1}. Note thatG/PI is isomorphic to P
n−1
Fp

. In the former notation, one easily

sees that there is an GLn(Fq)-equivariant isomorphism

X(w) = X(s1 . . . sn−1)
∼−→ P

n−1
Fp

− H,

where H is the union of all Fq -rational hyperplanes in P
n−1
Fp

. We denote the scheme on the

right hand side by X n−1
Fp

.

The smooth compactification X(w) associated to the expression w = s1 . . . sn−1 is iso-
morphic to the successive blow up X̃ n−1

Fp
of P

n−1
Fp

along all Fq -rational linear subschemes

[30, §4.1], [53, §4.1.2], cf. [34, §2.5]:

X̃ n−1
Fp

:= Yn−1 −→ Yn−2 −→ · · · −→ Y−1 = P
n−1
Fp

,

where Yi → Yi−1 is the blow up of Yi−1 along the strict transform of all Fq -rational linear
subschemes H ⊆ P

n−1
Fp

with dim H = i . The maps Yi → Yi−1 are GLn(Fq)-equivariant, so

the map X̃ n−1
Fp

→ P
n−1
Fp

is equivariant under GLn(Fq)-action.

Let w ∈ W such that w < w. Then XGLn (w) is isomorphic to a disjoint union of

products of X j
Fp

with j < n − 1. This isomorphism extends to the corresponding smooth

compactifications. We will discuss this example in more detail in Sect. 6.2.

3 TheWeyl group and generalized Deligne–Lusztig varieties

Assume G to be split. The goal of this section is to recall some constructions related to the
Weyl groupW , and to give the definition of generalized Deligne–Lusztig varieties associated
to an element of the free monoid F+ (resp. F̂+).

3.1 Conjugacy classes and cyclic shifting

We start with reviewing some definitions and theorems from [15, §3].

Definition 3.1 We sayw,w′ ∈ W are conjugate by cyclic shiftswhen there exists a sequence
of elements v0, . . . , vm ∈ W such that v0 = w, vm = w′ and for all i = 1, . . . ,m, we have
xi , yi ∈ W such that vi−1 = xi yi , vi = yi xi , and �(vi−1) = �(xi ) + �(yi ) = �(vi ).

Remark 5 Note that if w,w′ ∈ W are conjugate by cyclic shifts, then �(w) = �(w′).

The following theorem is from [15, Theorem 3.1.4].

Theorem 3.2 (Geck–Pfeiffer) Any two Coxeter elements of W are conjugate by cyclic shifts.

Let C be a conjugacy class of W . We write Cmin for the subset of C that consists of
elements with the shortest Bruhat length:

Cmin := {v ∈ C |�(v) ≤ �(w) for all w ∈ C}.
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Definition 3.3 Let w, v ∈ W . We write w → v if and only if there exists elements w =
w0, w1, w2, . . . , wm = v ∈ W , such that wi = tiwi−1ti and �(wi ) ≤ �(wi−1) for i =
1, . . . ,m, where ti ∈ S.

Nowwemay present a special case of the theorem from [15, Theorem 3.2.9], with wording
adapted to our situation.

Theorem 3.4 (Geck-Pfeifer) (i) Let w ∈ W, and let C be a conjugacy class of W containing
w. Then there exists w′ ∈ Cmin such that w → w′.

(ii) Let w1, w2 ∈ W be two Coxeter elements, then w1 → w2 and w2 → w1.

3.2 Support

Definition 3.5 Let w ∈ W . The support of w is the following set:

supp(w) := {s ∈ S|s ≤ w}.
Note that |supp(w)| ≤ �(w) and that the equality holds when w has a reduced expression

w = si1 . . . sir with si j ∈ S all distinct.
Let G = GLn and w ∈ W . Set I := supp(w), and let C be the conjugacy class of w in

W . Let WI ⊆ W be the subgroup generated by I . Then there exists w′ ∈ Cmin such that
w → w′ and w′ is a Coxeter element in WI .

3.3 The freemonoid associated to theWeyl group

Let us introduce the free monoid F+, cf. [12] and [44, §2].

Definition 3.6 We define F+ as the free monoid generated by the set of standard generators
S ⊆ W .

Remark 6 (i) There is a natural surjective morphism of monoids:

α : F+ −→ W

with kernel generated by the relations in the group presentation of W .
(ii) There is a partial order � on F+ defined by: w′ � w whenever w′ = si1 . . . sir

and w = t1 . . . tk, t1, . . . , tk ∈ S such that 1 ≤ i1 ≤ · · · ≤ ir ≤ k, and si j = ti j for all
j = 1, . . . , r . We call this the Bruhat order on F+. Note that this is not entirely compatible
with the Bruhat order on W .

(iii) There is a Bruhat length function on F+, not compatible with the Bruhat length on
W . When w = si1 . . . sir ∈ F+, we have �(w) = r .

(iv) For w, v ∈ F+, we always have �(wv) = �(w) + �(v).

There is also a variant of F+ defined in [44, p. 22].

Definition 3.7 Let Ŵ be a copy of W . Define F̂+ as the free monoid generated by S∪̇T ′,
where

T ′ := { ŝts ∈ Ŵ
∣∣ st �= ts in W , s, t ∈ S

}
.

Remark 7 Note that T ′ and W are forced to be disjoint in F̂+.
We define the Bruhat length function on F̂+ as the function counting the number of

elements of S and Ŝ showing up in the expression, where Ŝ is the set of generators in Ŵ
corresponding to S, instead of counting the number of generators.
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3.4 Constructing generalized Deligne–Lusztig varieties

As in Sect. 2, we define generalized Deligne–Lusztig varieties for elements of the free
monoids F+ and F̂+. They are introduced in [37, Example 3.10 (c)], and one may refer
to [12, §2.2.11] and [44, end of §3] for more discussions. We only recall the definitions and
properties here.

Definition 3.8 For s ∈ F+ with α(s) ∈ S. We set O(s) := O(α(s)). For each w =
si1 · · · sir ∈ F+, define

O(si1 , . . . , sir ) := {(B0, . . . , Br ) ∈ Xr+1|(Bj−1, Bj ) ∈ O(si j ), j = 1, . . . , r
}
,

and the corresponding Deligne–Lusztig variety

X(w) := O(si1 , . . . , sir ) ×(X×X) �F ,

where O(si1 , . . . , sir ) → X × X is the projection map (B0, . . . , Br ) 
→ (B0, Br ). We may
alternatively write

X(w) :=
{(B0, . . . , Br ) ∈ Xr+1|(Bj−1, Bj ) ∈ O(si j ),∀ j = 1, . . . , r , Br = F(B0)}.

Remark 8 The scheme X(w) is a quasi-projective smooth Fp-scheme of dimension r with a
left GF -action. For any t1, . . . , tk ∈ W , the scheme O(t1, . . . , tk) is defined analogously as
in Definition 3.8. In particular, the isomorphism O(t1) ×X · · · ×X O(tk)

∼−→ O(t1, . . . , tk)
reflects the structure of F+ as a free monoid [12, Definition 2.2.12].

Letw = si1 . . . sir ∈ F+. If �(w) = �(α(w)), then there is aGF -equivariant isomorphism

X(w)
∼−→ X(α(w))

(B0, . . . , Br ) 
−→ B0

of Fp-schemes [37, Example 3.10 (c)] cf. [12, p. 759]. Note that if we consider w ∈ W , then
for each reduced expression si1 · · · sir of w with si j ∈ S, we get an element of F+ and a
corresponding generalized Deligne–Lusztig variety.

Similarly, we define the generalized Deligne–Lusztig variety corresponding to elements
in F̂+. After post composing with the isomorphism W ∼= Ŵ , we may extend the surjective
map α to α̂ : F̂+ → W .

Definition 3.9 For ŝts ∈ F̂+, we set O(ŝts) := O(α̂(ŝts)). For each w = t1 · · · tr ∈ F̂+,
define the corresponding Deligne–Lusztig variety

X(w) := O(t1, . . . , tr ) ×(X×X) �F .

We may alternatively write

X(w)

:= { (B0, . . . , Br ) ∈ Xr+1
∣∣ (Bj−1, Bj ) ∈ O(t j ),∀ j = 1, . . . , r , Br = F(B0)

}
.

Remark 9 This is a quasi–projective smooth Fp-scheme with a left GF -action. As before,

we have for all a, b ∈ F̂+, we have O(a) ×X O(b)
∼→ O(a, b). Thus X(w) has dimension

�(w) ≥ r .
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3.5 Smooth compactifications of generalized Deligne–Lusztig varieties

We write down the smooth compactifications for Deligne–Lusztig varieties corresponding
to w ∈ F+ and w ∈ F̂+. They are the same as the construction in [9, §9] when w ∈ F+ or
w ∈ F̂+ is the reduced expression for some w′ ∈ W .

Definition 3.10 Let w = si1 . . . sir ∈ F+. Define the following Fp-scheme:

X(w)

:=
{

(B0, . . . , Br ) ∈ Xr+1
∣∣ (Bj−1, Bj ) ∈ O(si j ),∀ j = 1, . . . , r , Br = F(B0)

}
.

Remark 10 The Fp-scheme X(w) is smooth projective with a left GF -action cf. [9, §9], [12,
§2.3.1]. It is a smooth compactification of X(w).

Let w = si1 . . . sir be an element in F+ such that it corresponds to a reduced expression
of α(w) ∈ W . Then X(w) is the same as X(α(w)), corresponding to the reduced expression
si1 . . . sir , constructed in Definition 2.3.

Similarly, we have the following definition for w ∈ F̂+.

Definition 3.11 For ŝts ∈ F̂+, we set O(ŝts) := O(α̂(ŝts)). Let w = t1 . . . tr ∈ F̂+. We
define the following Fp-scheme containing X(w):

X(w)

:=
{

(B0, . . . , Br ) ∈ Xr+1
∣∣ (Bj−1, Bj ) ∈ O(t j ),∀ j = 1, . . . , r , Br = F(B0)

}
.

Remark 11 As before, the Fp-scheme X(w) has a left GF -action.

Lemma 3.12 Let w = t1 . . . tr ∈ F̂+, then X(w) is projective and smooth.

Proof Since O(t j ) is projective for all j = 1, . . . , r , it follows from [12, Proposition 2.3.6
(iv)] that X(w) is projective.

Note that O(t) are smooth for all t ∈ S. We may have t j , j = 1, . . . , r to be of the form
t j = ŝts, where st �= ts, s, t,∈ W . Since st �= ts, we see that s and t do not correspond to
non-adjacent simple reflections in Sn . Now let I = {s, t}, the parabolic subgroup WI of the
Weyl group W is thus isomorphic to the symmetric group S3. In particular, sts is a reduced
expression of the longest element in WI . Observe that the projection maps O(sts) → X are
both Zariski locally trivial fibre bundles with fibres isomorphic to the flag variety of GL3.
Thus O(sts) is a smooth Fp-scheme cf. [12, Corollary 2.2.10].

Hence for all j = 1, . . . , r , O(t j ) is smooth. By [12, Proposition 2.3.5], we may conclude
that X(w) is smooth. ��

3.6 Stratifications of X(w) and X(w)

Let w1, w2 ∈ W such that �(w1w2) = �(w1) + �(w2), recall that we have an isomorphism
of schemes O(w1) ×X O(w2)

∼−→ O(w1w2). Hence for w,w′ ∈ W , w′ ≤ w if and only if
O(w′) ⊆ O(w). This implies that we have a stratification as follows for any w ∈ W , cf. [9,
§1.2], [31, §II.13.7],

O(w) =
⋃

w′≤w

O(w′). (2)
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The intersection of the graph of the Frobenius�F and any of strata O(w′) above is transversal.
For any w ∈ W , the intersection of (2) and �F yields a similar stratification of X(w),

X(w) =
⋃

w′≤w

X(w′).

Let w ∈ F+ or F̂+, with the expression si1 . . . sir , then for all w′ 	 w a subword, we know
that X(w′) is isomorphic to a locally closed subscheme of X(w), thus we have the following
stratification, cf. [44, §3],

X(w) =
⋃

w′	w

X(w′).

Example 2 Let G = GLn . Let m ≤ n − 1 be a positive integer and w ∈ W with a reduced
expression si1 . . . sim such that all si j , j = 1, . . . ,m, are distinct. Recall from [9, Lemma
9.11] that

D =
⋃

w′≺w

X(w′),

with eachw′ ≺ w considered as a subword of si1 . . . sim ∈ F+, is the normal crossing divisor
of X(w) at infinity.

Note that the projection map

Xm −→ X
(B0, . . . , Bm−1) 
−→ B0

induces an isomorphism on the open subschemes

X(w)\D −→ X(w).

This map extends to the Zariski closure of X(w) in X , and so we have a surjective morphism

X(w) −→ X(w).

Since w = si1 . . . sim with all si j distinct, X(w) and X(w) have stratifications indexed by
the same set, and each corresponding strata is isomorphic. In fact, they are isomorphic as
Fp-schemes [23, Lemma 1.9].

4 Geometry of Deligne–Lusztig varieties via P
1-bundles

Assume G to be split. In this section, we consider P
1-bunldes π1 : X(sws) → X(ws) and

π2 : X(sws) → X(sw) constructed from the morphism O(s) → X from Sect. 2.5.

4.1 The structure of certain morphisms as P
1-bundles

Let w = t1 . . . tr ∈ F̂+ and s ∈ S. We fix the notations for the smooth compactifications of
the Deligne–Lusztig varieties X(sws), X(ws):

X(sws)

=
{
(B0, . . . , Br+2) ∈ Xr+3

∣∣∣∣
(Bj , Bj+1) ∈ O(t j ), j = 1, . . . , r ,
(B0, B1) ∈ O(s), (Br+1, Br+2) ∈ O(s), Br+2 = FB0

}
,

123



69 Page 16 of 43 Y. Wang

X(ws) =
{

(B ′
0, . . . , B

′
r+1) ∈ Xr+2

∣∣∣∣∣
(B ′

j−1, B
′
j ) ∈ O(t j ), j = 1, . . . , r ,

(B ′
r , B

′
r+1) ∈ O(s), B ′

r+1 = FB ′
0

}
.

Lemma 4.1 The map π1 : X(sws) → X(ws) defined by

(B0, B1, . . . , Br+1, FB0) 
→ (B1, B2, . . . , Br+1, FB1)

is a P
1-bundle over X(ws) locally trivial with respect to a Zariski covering of X(ws).

Furthermore, π1 has a section σ : X(ws) → X(sws) defined by
(
B ′
0, . . . , B

′
r , FB

′
0

) 
→ (
B ′
0, B

′
0, . . . , B

′
r , FB

′
0

)

with π1 ◦ σ = idX(ws).

Proof Let us first check the well-definedness of π1. Take (B0, B1, . . . , Br+1, FB0) ∈
X(sws). Since (B0, B1) ∈ O(s), and F fixes any s ∈ S, we know that (FB0, FB1) ∈ O(s).
As we also have (Br+1, FB0) ∈ O(s), by [9, §1.2 (b1)], we have (Br+1, FB1) ∈ O(s). Thus
(B1, B2, . . . , Br+1, FB1) ∈ X(ws).

To see thatπ1 gives aP
1-bundle, take any (B ′

0, . . . , B
′
r , FB

′
0) ∈ X(ws), and take any B0 ∈

X such that (B0, B ′
0) ∈ O(s). Since F fixes s, we have (FB0, FB ′

0) ∈ O(s). As (B ′
r , FB

′
0) ∈

O(s), we know by [9, §1.2 (b1)] that (FB0, B ′
r ) ∈ O(s). Thus (B0, B ′

0, . . . , B
′
r , FB0) ∈

X(sws), and the preimage of (B ′
0, . . . , B

′
r , FB

′
0) under π1 is

{(
B0, B

′
0, . . . , B

′
r , FB0

) ∈ X(sws)
∣∣∣(B0, B

′
0) ∈ O(s)

}
.

Thus the fibre of π1 at any (B ′
0, . . . , B

′
r , FB

′
0) is isomorphic to the fibre of O(s) → X at B ′

0.
Let pr2,...,r+3 : O(s) × Xr+1 → Xr+2 be the projection map to the 2nd to (r + 3)th

component. If we take the embedding of X(ws) into Xr+2, we find that X(sws) is isomorphic
to the fibre product of X(ws) ↪→ Xr+2 and pr2,...,r+3.

X(sws) O(s) × Xr+1

X(ws) Xr+2.

π1 pr2,...,r+3

Let πG : G → G/B∗ be the canonical projection map for X = G/B∗. By Lemma
2.5, we know that pr2 : O(s) → X is locally trivial with respect to the Zariski covering
{πG(ẇU+B∗)}w∈W of X . Thus pr2,...,r+3 is locally trivial with respect to the Zariski covering
{πG(ẇU+B∗) × Xr+1}w∈W of Xr+2. Via embedding X(ws) into Xr+2, we see that π1 is
locally trivial with respect to a Zariski open covering of X(ws). Therefore X(sws) is a
P
1-bundle over X(ws).
Finally, the statement π1 ◦ σ = idX(ws) can be easily verified. ��

We also have a smooth compactification of the Deligne–Lusztig variety X(sw):

X(sw) =
{

(B ′
0, . . . , B

′
r+1) ∈ Xr+2

∣∣∣∣∣
(B ′

j , B
′
j+1) ∈ O(t j ), j = 1, . . . , r ,

(B ′
0, B

′
1) ∈ O(s), B ′

r+1 = FB ′
0

}
.
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Lemma 4.2 The map π2 : X(sws) → X(sw) defined by

(B0, B1, . . . , Br+1, FB0) 
→ (Br+1, FB1, . . . , FBr+1)

is a P
1-bundle over X(sw) locally trivial with respect to an fppf-covering of X(sw).

Proof We first check the well-definedness of π2. Take (B0, B1, . . . , Br+1, FB0) ∈ X(sws).
Since (Br+1, FB0) ∈ O(s) and (FB0, FB1) ∈ O(s), we know that (Br+1, FB1) ∈ O(s).
Thus (Br+1, FB1, . . . , FBr+1) ∈ X(sw).

Note that F : X(sw) → X(sw) is a flat and finite morphism. Via flat base change by
F : X(sw) → X(sw), X(sws) becomes a fppf P

1-bundle over X(sw). More precisely, we
have a cartesian square:

Y X(sws)

X(sw) X(sw),

pr′1

π ′
2 π2

F

(3)

where

Y := {(B, B ′) ∈ X(sws) × X(sw)|FB ′ = π2(B)},
and π ′

2 is projection to the second component cf. [9, Theorem 1.6]. Moreover, π ′
2 fits into

another cartesian square:

Y O(s)

X(sw) X .

ι

π ′
2 pr2

pr0

Let B = (B0, . . . , Br+1, FB0) and B ′ = (B ′
0, B

′
1, . . . , B

′
r , FB

′
0) such that (B, B ′) ∈ Y .

The map pr0 is given by

(B ′
0, B

′
1, . . . , B

′
r , FB

′
0) 
→ B ′

0.

Also note that ι is the map defined by
(
(B0, . . . , Br+1, FB0), (B

′
0, B

′
1, . . . , B

′
r , FB

′
0)
) 
→ (B0, B

′
0).

Since F(s) = s, we know that (B0, B ′
0) and (FB0, FB ′

0) must belong to the same orbit in
X × X . The condition FB ′

0 = Br+1 implies that (FB0, FB ′
0) ∈ O(s), so (B0, B ′

0) ∈ O(s).
For all B ′ = (B ′

0, B
′
1, . . . , B

′
r , FB

′
0) ∈ X(sw), we have by the condition FB ′ = π2(B)

that π ′−1
2 (B ′) = (B, B ′) where B = (B0, . . . , Br+1, FB0) such that FB ′

0 = Br+1. In
particular, (B0, B ′

1) ∈ O(s). Conversely, for any B0 ∈ X such that (B0, B ′
0) ∈ O(s), we have

(FB0, FB ′
0) ∈ O(s) and (B0, B ′

1) ∈ O(s). Thus (B0, B ′
1, . . . , B

′
r , FB

′
0, FB0) ∈ X(sws).

In particular,
(
(B0, B

′
1, . . . , B

′
r , FB

′
0, FB0), (B

′
0, B

′
1, . . . , B

′
r , FB

′
0)
) ∈ π ′−1

2 (B ′
0, B

′
1, . . . , B

′
r , FB

′
0)

Hence via this cartesian square, we know thatπ ′
2 is aP

1-bundle over X(sw). The argument
that π ′

2 is locally trivial with respect to the Zariski topology is analogous to the one used in
Lemma 4.1.

Finally, we return to the cartesian diagram (3). Since X(sw) is a Fp-scheme of finite
type, we know that the Frobenius endomorphism F : X(sw) → X(sw) is flat, and is a
universal homeomorphism. Thus the base change pr′1 of F is also flat, and is a universal
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homeomorphism. Since π ′
2 gives a Zariski locally trivial P

1-bundle, and the fppf topology is
finer than the Zariski topology, there exists a fppf open covering U := { fi : Ui → X(sw)}i
such that π ′

2 is locally trivial with respect to π ′
2. We get a composition of cartesian diagrams

for each i :

Ui × P
1 Y X(sws)

Ui X(sw) X(sw).

pr′1

π ′
2 π2

fi F

Since F is flat and surjective, we see that the composition morphism F ◦ fi is flat, locally
of finite presentation for all i and

⋃
i

(F ◦ fi (Ui )) = X(sws).

Thus U ′ := {F ◦ fi : Ui → X(sw)} gives a fppf covering for X(sw) such that π2 is locally
trivial with respect to U ′. ��

Remark 12 Recall that proper morphisms are preserved under fpqc (hence fppf) base change
and descent [19, Exposé VIII, Corollary 4.8]. We see that the map π1 and π2 in Lemma 4.1
and 4.2 are also proper morphisms of Fp-schemes.

Note that the constructions of π1 and π2 in Lemma 4.1 and 4.2 use the fact that F(s) = s.

Lemma 4.3 The maps π1 : X(sws) → X(ws) and π2 : X(sws) → X(sw) defined above
are G(Fq)-equivariant.

Proof Take (B0, B1, . . . , Br+1, FB0) ∈ X(sws). Recall that G(Fq) acts on X(sws) via
conjugation in each component. Let g ∈ G(Fq).

π1
(
gB0g

−1, . . . , gBr+1g
−1, g(FB0)g

−1) = (gB1g
−1, . . . , gBr+1g

−1, F(gB1g
−1)
)

Since any g ∈ G(Fq) is fixed by F , we have F(gB1g−1) = g(FB1)g−1 and thus

π1
(
gB0g

−1, . . . , gBr+1g
−1, g(FB0)g

−1) = g.π1 (B0, B1, . . . , Br+1, FB0) .

For π2, let (B0, B1, . . . , Br+1, FB0) ∈ X(sws), and g ∈ G(Fq). Consider the following:

π2
(
gB0g

−1, gB1g
−1, . . . , g(FB0)g

−1)

= (gBr+1g
−1, F(gB1g

−1), . . . , F(gBr+1g
−1)
)
.

Since F fixes g and g−1, we have F(g−1Bi g) = Bi for all i . Thus

π2
(
gB0g

−1, gB1g
−1, . . . , g(FB0)g

−1) = g.π2 (B0, B1, . . . , Br+1, FB0) .

��

4.2 Cohomology of the structure sheaf of the P
1-bundles

Recall that the smooth compactifications of Deligne–Lusztig varieties are smooth, separated
schemes of finite type over Fp .
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Proposition 4.4 Let w ∈ F̂+, s ∈ S. Then for all k ≥ 0, there are G(Fq)-equivariant
isomorphisms of Fp-vector spaces:

Hk
(
X(ws),OX(ws)

) ∼−→ Hk
(
X(sws),OX(sws)

)

and

Hk
(
X(sw),OX(sw)

) ∼−→ Hk
(
X(sws),OX(sws)

)
.

Proof To simplify our notations, we use X := X(sws), Y := X(ws) (resp. Y := X(sw)).
Let π be π1 as in Lemma 4.1 (resp. be π2 as in Lemma 4.2), and consider the Leray spectral
sequence for OX :

Ei, j
2 = Hi

(
Y , R jπ∗OX

)
�⇒ Hi+ j (X ,OX ) . (4)

Note that X , Y are smooth schemes of finite type over Fp . Since the (closed) fibres of π are
equidimentional and dim

Fp
X = dim

Fp
Y + dim

Fp
P
1
Fp
, by miracle flatness [39, Theorem

23.1], we know that π : X → Y is a flat morphism. Since the fibres are isomorphic to P
1
Fp
,

they are geometrically connected and geometrically reduced. By [14, §9.3.11], we know that
π∗OX ∼= OY .

Note that X is geometrically reduced and π has connected fibres. By [22, Prop 1.4.10], we
know that for j > 0, R jπ∗(OX ) are coherentOY -modules. We shall show that R jπ∗OX = 0
for all j > 0. For all y ∈ Y , we have X ×Y y ∼= P

1, so H j (X ×Y y,OX×Y y) = 0 for all
j > 0. Since in addition π is proper and flat, it follows from [52, §25.1.5, §25.1.6] that
ψ∗
y R

jπ∗(OX ) = 0 for all j > 0, where ψy : y → Y is the inclusion map. This implies that

R jπ∗(OX ) has trivial stalks for all y ∈ Y and j > 0. Hence R jπ∗(OX ) = 0 for all j > 0.
Therefore the Leray spectral sequence (4) degenerates and we have

Hi (Y ,OY )
∼−→ Hi (X ,OX )

for all i ≥ 0. Since π is a G(Fq)-equivariant morphism, these isomorphisms are G(Fq)-
equivariant. ��

5 Towards induction steps

Let G = GLn as in Sect. 2.7. We now set the stage for the (double) induction. Our goal is to
reduce the problem of computing the cohomology groups of coherent sheaves on the smooth
compactifications of Deligne–Lusztig varieties to those corresponding to a Coxeter element
of W or a Coxeter element corresponding to a standard parabolic subgroup P ⊆ GLn .

In loose terms, we may describe the strategy as follows: Let w be an element of the free
monoid F+ or F̂+. Its expression may contain a repeating s ∈ S. We introduce operations
C, K , R on F+ and F̂+ so that after applying finitely many such operations on w, we obtain
a word of the form sw′s. The operations C, K , R preserve the length of w, so we will still
have �(w) = �(sw′s) = �(w′) + 2. Then Sect. 4 helps us to reduce this to the case of sw′
and thus removing one of the repeating s. This process has finitely many steps and we will
eventually reduce it to the case of v ∈ W being a product of non-repeating simple reflections
with �(v) = |supp(w)|.

We will introduce each of the operations C, K , R and discuss how they affect the coho-
mology groups of the corresponding smooth compactifications of Deligne–Lusztig varieties.
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One can find the original definitions of these operations and the double induction strategy
in [44, before Proposition 7.9] for the case of �-adic cohomology with compact support.

5.1 The cyclic shifting operation

The elements sw′, w′s ∈ W are conjugated by s ∈ S. Recall from Definitions 3.1 and 3.3
that this can be generalized to elements of W being conjugate by cyclic shift. The following
operator is constructed to impose the concept of elements being conjugate by cyclic shift on
F+ and F̂+.

Definition 5.1 Let w ∈ F+ (resp. F̂+). If w = sw′, where w′ ∈ F+ (resp. F̂+) and s ∈ S,
we define the operator C on F+ (resp. F̂+) by C(w) := w′s.

Proposition 5.2 Let w ∈ F̂+, such that w = sw′ with s ∈ S. Then we have isomorphisms of
Fp-vector spaces for all k ≥ 0:

Hk
(
X(w),OX(w)

) ∼−→ Hk
(
X(C(w)),OX(C(w))

)
.

Furthermore, the isomorphism are GLn(Fq)-equivariant.

Proof Let w ∈ F̂+, such that w = sw′ with s ∈ S and w′ ∈ F̂+.
Consider the product ws = sw′s in F̂+. We consider from Sect. 4.1 the surjective mor-

phisms π1 : X(sw′s) → X(w′s) and π2 : X(sw′s) → X(sw′) that make X(sw′s) a fppf
P
1-bundle over X(w′s) and X(sw′) respectively.
By Proposition 4.4, we have GLn(Fq)-equivariant isomorphisms for all k ≥ 0,

Hk
(
X(sw′),OX(sw′)

) ∼= Hk
(
X(sw′s),OX(sw′s)

) ∼= Hk
(
X(w′s),OX(w′s)

)
.

Thus

Hk
(
X(w),OX(w)

) ∼= Hk
(
X(C(w)),OX(C(w))

)
,

and this concludes the proof. ��

5.2 Operations corresponding to relations

Recall from Definition 3.7 that F̂+ is generated by S∪̇T ′.

Definition 5.3 Let w ∈ F̂+, such that w = w1stw2 with w1, w2 ∈ F̂+, s, t ∈ S. Define the
operator K on this expression by

K (w;w1, w2) =
{

w1tsw2, if st = ts nontrivial in W ,

w, otherwise.

Let w ∈ F̂+, such that w = w1stsw2 with w1, w2 ∈ F̂+, s, t ∈ S. Define the operator R
on this expression by

R(w;w1, w2) =
{

w1tstw2, if sts = tst nontrivial in W ,

w, otherwise.

When an expression of w is specified as above and there is no ambiguity, we would use the
notations K (w) for K (w;w1, w2) and R(w) for R(w;w1, w2).
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Remark 13 We clearly have K (w), R(w) ∈ F̂+. Also observe that the operators K and R
are analogous to two of the relations in the presentation of the symmetric group Sn .

Proposition 5.4 (i) Let w = w1stw2 such that w1, w2 ∈ F̂+ and s, t ∈ S with st = ts in
W. Then for all i ≥ 0, we have isomorphisms of Fp-vector spaces:

Hi
(
X(w),OX(w)

) ∼−→ Hi
(
X(K (w)),OX(K (w))

)
.

(ii) Let w = w1stsw2 such that w1, w2 ∈ F̂+ and s, t ∈ S with sts = tst in W. For all
i ≥ 0, we have isomorphisms of Fp-vector spaces:

Hi
(
X(w),OX(w)

) ∼−→ Hi
(
X(R(w)),OX(R(w))

)
.

Proof Let w be as in the assumption of (ii). Recall that X(w) is smooth and projective over
Fp . Recall from Definition 3.7 that we have ŝts ∈ T ′ because st �= ts. The Fp-scheme
X(w1ŝtsw2) is projective and smooth by Lemma 3.12. In particular, points of X(w1ŝtsw2)

are of the form (B ′
0, . . . , B

′
j , B

′
j+1, . . . , FB

′
0), where (B ′

j , B
′
j+1) ∈ O(sts) for some j . Now

we have a cartesian square:

X(w) O(s, t, s)

X(w1ŝtsw2) O(sts),

f

where the horizontal maps are projections, and the vertical map on the right is the resolution
of singularities from [9, §9.1]. Thus the projection map f is proper.

Observe that the open subscheme X(w) of X(w) is also contained in X(w1ŝtsw2) such
that the restriction of f to X(w) is the identity. Hence f is a birational morphism. By [5,
Theorem 3.2.8], we have for all i ≥ 0, an isomorphism of Fp-vector spaces:

Hi
(
X(w),OX(w)

) ∼−→ Hi
(
X(w1ŝtsw2),OX(w1 ŝtsw2)

)
.

For t̂ st ∈ T ′, we use the same argument as above to construct a proper birationalmorphism
f ′ : X(R(w)) → X(w1ŝtsw2). The key observation is that as sts = tst in W , st �= ts,
the scheme O(t, s, t) gives a smooth compactification of O(sts). By [5, Theorem 3.2.8], we
have for all i ≥ 0, an isomorphism of Fp-vector spaces:

Hi
(
X(w1ŝtsw2),OX(w1 ŝtsw2)

) ∼−→ Hi
(
X(R(w)),OX(R(w))

)
.

This concludes (ii).
Let w be as in the assumption of (i), and set �(w1) = r1 and �(w2) = r2. For this proof,

we define the following projective Fp-scheme:

Y :=
{
(B ′

0, . . . , B
′
r1 , B

′
r1+1, . . . , B

′
r1+r2 , FB

′
0) ∈ Xr1+r2+2

∣∣∣(B ′
r1 , B

′
r1+1) ∈ O(st),

(B ′
0, . . . , B

′
r1) ∈ O(w1), (B

′
r1+1, . . . , B

′
r1+r2 , FB0) ∈ O(w2),

}
.

If s = t , then the statement is clear. Assume s �= t in the following. Since st = ts, we
see that they are associated to non-adjacent simple reflections. By [12, Proposition 2.2.16
(iii), (iv)], there exists an isomorphism O(s, t) → O(st) such that the restriction to the open
subschemes O(s, t) → O(st) remains an isomorphism. Then O(st) is smooth and thus Y
is smooth.
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We have an cartesian square:

X(w) O(s, t)

Y O(st).

f

Thus the projection map f on the left is proper. As the restriction of f to X(w) is the
identity morphism, we see that f is birational. By [5, Theorem 3.2.8], for all i ≥ 0, there is
an isomorphism of Fp-vector spaces:

Hi
(
X(w),OX(w)

) ∼−→ Hi (Y ,OY ) .

On the other hand, since st = ts, we have O(st) = O(ts) and thus O(st) = O(ts). As
in [9, §9.1], there is a resolution of singularity O(t, s) → O(ts). Hence we have a proper
birational morphism O(t, s) → O(st). We have a cartesian square with horizontal maps
being projections:

X(K (w)) O(t, s)

Y O(st).

f ′

Thus f ′ is proper. Note that the restriction of f ′ to X(w1tsw2) gives an isomorphismbetween
the respective open subschemes X(w1tsw2) and X(w1stw2) of X(K (w)) and Y . So f ′ is
birational. By [5, Theorem 3.2.8], for all i ≥ 0, there is an isomorphism of Fp-vector spaces:

Hi (Y ,OY )
∼−→ Hi

(
X(K (w)),OX(K (w))

)
.

This concludes the proof of (i). ��

Remark 14 In order to apply [5, Theorem 3.2.8], we require both schemes in the birational
morphism to be smooth over a perfect field. In fact, this theorem has been generalized to
the case where the schemes are allowed to have pseudo-rational singularities [32, Theorem
8.13]. In Appendix A we shall see how to use this generalization to show that in the case
of arbitrary G as in Sect. 2.1, the cohomology groups of X(w) and X(w) for the structure
sheaves (resp. canonical bundles) are isomorphic. The proposition above then follows from
Corollary A.7.

Since we will only encounter representations induced from the trivial representation for
the proofs of our main results (see Corollary 6.2 and Proposition 7.2), we do not need the
statement that the isomorphisms in Proposition 5.4 are GF -equivariant.

6 The base case

Let G = GLn . Sections 4 and 5 have reduced the study of Hk
(
X(w),OX(w)

)
to the case in

which w is a Coxeter element or a Coxeter element corresponding to a standard parabolic
subgroup P ⊆ GLn . We shall now treat these cases.
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6.1 Cohomology of X(w) forw a Coxeter element

Weuse the notations of Sects. 2.7 and 2.8. Recall thatw denotes the standard Coxeter element
s1 . . . sn−1.

Proposition 6.1 For k > 0, we have Hk
(
X(w),OX(w)

) = 0. Then the space of global
sections

H0
(
X(w),OX(w)

)
= Fp

is the trivial GLn(Fq)-representation.

Proof Recall that X(w) is isomorphic to the successive blow up Ỹ of P
n−1
Fp

along all Fq -

rational linear subschemes [30, §4.1], [53, §4.1.2]. Thus there exists a birational morphism
of Fp-schemes X(w) → P

n−1
Fp

. By [5, Theorem 3.2.8], for all k ≥ 0, there is an isomorphism

of Fp-vector spaces:

Hk
(
X(w),OX(w)

) ∼−→ Hk
(

P
n−1
Fp

,OX(w)

)
.

Hence we have

Hk
(
X(w),OX(w)

)
=
{

Fp, k = 0
0, k > 0.

Therefore it follows that GLn(Fq) acts on H0
(
X(w),OX(w)

)
trivially cf. Sect. 2.6. ��

Remark 15 The above proposition also follows from [18, Theorem 2.3] after base change
from Fq to Fp .

Corollary 6.2 Let w ∈ F+ be an arbitrary Coxeter element. Then the cohomology of X(w)

is as follows:

Hk
(
X(w),OX(w)

)
=
{

Fp, k = 0
0, k > 0.

In particular, H0
(
X(w),OX(w)

)
is the trivial GLn(Fq)-representation.

Proof By [15, Theorem3.2.9], for any twoCoxeter elementsw1, w2 ∈ W , we havew1 → w2

andw2 → w1 cf. Definition 3.3. Thus we haveCk(w′) = w for some integer k ≥ 0. We may
apply Proposition 5.2 to reduce to the case whenw is a standard Coxeter element. Use Propo-
sition 6.1 to get the result on the cohomology groups, and it follows that H0

(
X(w),OX(w)

)
is a trivial GLn(Fq)-representation. ��

6.2 Cohomology of XLI(w) forw ≤ w and LI ⊆ GLn

Lemma 6.3 Let w = si1 . . . sim ∈ F+ and I = supp(w). Then there is an isomorphism of
Fp-schemes compatible with L I (Fq)-action:

XL I (w)
∼−→ XGLn1

(w1) × · · · × XGLnr
(wr ),

where wa is an element in the free monoid associated to the Weyl group of GLna , L I ∼=∏r
a=1 GLna and n =∑r

a=1 na.
When the si j ’s do not repeat, wa is a Coxeter element in the Weyl group of GLna for all

a. In particular, when w ≤ w, w1 . . . wr = w.
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Proof For a = 1, . . . , r , denote the Weyl group of GLna by Wa . The intersection L I ∩ B∗ is
a Borel subgroup of L I , and it is a product B1 × · · · × Br , where Ba is a Borel subgroup of
GLna . Then we have the homogeneous spaces Xa := GLna/Ba , and the orbit of v ∈ Wa in
Xa × Xa is Oa(v).

Note that the Weyl group WI of L I is isomorphic to the product of symmetric groups
Sn1 × · · · × Snr . Hence the Bruhat decomposition of L I is compatible with the Bruhat
decomposition of eachGLna , and thus the orbit OLI (w) is the product O1(w1)×· · ·×Or (wr )

over Spec Fp . Thus by construction, when si j are all distinct, they will each show up exactly
once in wa for exactly one a. When w ≤ w, we have w1 . . . wr = w.

The restriction of the Frobenius endomorphism from GLn to L I respects the product as
well. To finish the proof, it suffices to go through the definitions of Deligne–Lusztig varieties
with respect to products over Spec Fp . ��
The same applies to the corresponding smooth compactifications with respect to the expres-
sion w = si1 . . . sim .

Lemma 6.4 Using notations as in Lemma 6.3, we have an isomorphism ofFp-schemes equiv-
ariant under L I (Fq)-action.

X L I (w)
∼−→ XGLn1

(w1) × · · · × XGLnr (wr ).

Proof It suffices check the definitions of smooth compactifications for Deligne–Lusztig vari-
eties with respect to the product of reductive groups. ��
Remark 16 If supp(w) is a proper subset of S, then sometimes we could have GLna = GL1

for some a, thus XGLna
(e) is the point corresponding to the only Borel subgroup.

Proposition 6.5 Let w ≤ w and I = supp(w). Then

Hk
(
XLI (w),OXLI (w)

)
= 0,

for k > 0, and

H0
(
XLI (w),OXLI (w)

)
= Fp

is the trivial L I (Fq)-representation.

Proof By Lemma 6.4, we may compute the cohomology for XGLn1
(w1)×· · ·× XGLnr

(wr ),
with notations as before. To simplify the notation, set

Vj := XGLn1
(w1) × · · · × XGLn j

(w j ).

By applying induction on the Künneth formula for coherent sheaves [21, Theorem 6.7.8], we
have

Hk (Vj ,OVj

) =
⊕

p+q=k

H p (Vj−1,OVj−1

)⊗
Fp

Hq
(
XGLn j

(w j ),OXGLn j
(w j )

)
.

By Proposition 6.1, we know that for all j = 1, . . . , r ,

Hk
(
XGLn j

(w j ),OXGLn j
(w j )

)
=
{

Fp, k = 0
0, k > 0.
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Thus,

Hk (Vj ,OVj

) = Hk (Vj−1,OVj−1

)⊗
Fp

Fp.

Hence by induction on j we know that for any j ,

Hk (Vj ,OVj

) =
{

Fp, k = 0
0, k > 0.

The case j = r yields the desired result. It follows from

H0
(
XLI (w),OXLI (w)

)
= Fp,

that H0
(
XLI (w),OXLI (w)

)
is the trivial L I (Fq)-representation cf. Sect. 2.6. ��

Corollary 6.6 Let w = si1 . . . sim ∈ F+ and I = supp(w), such that the si j ’s are all distinct.
Then

Hk
(
XLI (w),OXLI (w)

)
=
{

Fp, k = 0
0, k > 0.

Furthermore, H0
(
XLI (w),OXLI (w)

)
is the trivial L I (Fq)-representation.

Proof This is analogous to the proof of Proposition 6.5 and uses Corollary 6.2. ��
We conclude this section by recalling the following lemma.

Lemma 6.7 Let w = si1 . . . sim ∈ F+ and I = supp(w). Then the irreducible components
of X(w) (resp. X(w)) are |G(Fq)/PI (Fq)| isomorphic copies of XL I (si1 , . . . , sim ) (resp.
X L I (si1 , . . . , sim )).

Remark 17 We see from this lemma that for any w ∈ F+, after fixing a reduced expression,
the number of irreducible components of X(w) (resp. X(w)) depends only on supp(w).

7 Themain theorem

7.1 Cohomology of the structure sheaf on X(w)

We now prove our main theorem.

Proof of Theorem 1.1 After fixing a support of w, we may apply the induction steps. First,
suppose that supp(w) = S. If w = si1 . . . sim ∈ F+ and the si j ’s are not all distinct,
then we apply Propositions 5.2 and 5.4 to transform w into the shape sw′s with s ∈ S.
We use Proposition 4.4 to reduce its length. After repeating this procedure of changing the
presentation of w and reducing the length finitely many times, we have for all k ≥ 0, an
isomorphism of Fp-vector spaces:

Hk
(
X(w),OX(w)

) ∼−→ Hk
(
X(v),OX(v)

)
,

where v ∈ F+ corresponds to a Coxeter element and supp(v) = supp(w). By Corollary 6.2,
we know that for k > 0, Hk

(
X(w),OX(w)

)
vanish, and

H0
(
X(w),OX(w)

)
= Fp.
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Thus we know that H0
(
X(w),OX(w)

)
is the trivial GLn(Fq)-representation cf. Sect. 2.6.

Next, let I := supp(w) such that I � S. If w = si1 . . . sim ∈ F+ and the si j ’s are not
all distinct, then we apply Propositions 5.2 and 5.4 to transform w into the shape sw′s with
s ∈ S. We use Proposition 4.4 to reduce its length. After repeating this procedure finitely
many times, we have for all k ≥ 0, an isomorphism of Fp-vector spaces:

Hk
(
X(w),OX(w)

) ∼−→ Hk
(
X(v),OX(v)

)
,

where v ∈ F+ corresponds to a Coxeter element in WI and supp(v) = supp(w). By [12,
Proposition 2.3.8], we have an GLn(Fq)-equivariant isomorphism of Fp-schemes:

X(v)
∼−→ GLF

n /UF
I ×LF

I X L I (v).

Precomposing this with the morphism

πI : GLF
n /UF

I ×LF
I X L I (v) −→ GLF

n /PF
I(

xU F
I , (B0, . . . , Bm′)

) 
−→ π(xU F
I ),

whereπ : GLF
n /UF

I → GLF
n /PF

I is the natural projectionmap, gives aGLn(Fq)-equivariant
morphism X(v) → GLF

n /PF
I such that GLn(Fq) acts on the set of fibres transitively and the

stablizer of each fibre corresponds to a conjugate of PI (Fq) in GLn(Fq). It follows that

Hk
(
X(v),OX(v)

)
= ind

GLn(Fq )

PI (Fq )
Hk
(
XLI (v),OXLI (v)

)
,

for all k ≥ 0. Thus Corollary 6.6 implies the vanishing of Hk
(
X(w),OX(w)

)
for k > 0.

Finally, we analyze the global sections ofOX(w) as a GLn(Fq)-representation. By Lemma
6.4, we know that

XLI (w)
∼−→ XGLn1

(w1) × · · · × XGLnr
(wr ),

is an isomorphism of Fp-schemes equivariant under L I (Fq)-action, where n1+· · ·+nr = n
and wa is an element in the Weyl group of GLna , a = 1, . . . , r . This gives an isomorphism
of GLn(Fq)-modules:

H0
(
XLI (w),OXLI (w)

)

∼−→ H0
(
XGLn1 (w1),OXGLn1 (w1)

)
⊗ · · · ⊗ H0

(
XGLnr

(wr ),OXGLnr (wr )

)
.

Since w has full support inWI , we know that wa has full support inWa for all a = 1, . . . , r ,
where Wa is the Weyl group of GLna . It follows from Corollary 6.2 that

H0
(
XGLna

(wa),OXGLna (wa)

)
= Fp

is the trivial representation for GLna (Fq), so we know that

H0
(
XLI (w),OXLI (w)

)
= Fp

gives the trivial L I (Fq)-representation. Therefore

H0
(
X(w),OX(w)

)
= ind

GLn(Fq )

PI (Fq )
1

Fp
,

where 1
Fp

is the trivial PI (Fq)-representation with coefficients in Fp . ��
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Remark 18 For w ∈ W , if we fix a reduced expression w = si1 . . . sim with si j ∈ S, then

si1 . . . sim can be considered as an element of F+. Theorem 1.1 thus applies to X(w) via the
GLn(Fq)-equivariant isomorphism X(si1 , . . . , sim ) ∼= X(w).

7.2 Themod pm andZp étale cohomology of X(w)

For the rest of this paper, if the finite group H is clear from the context and R is a ring, we
fix the notation 1R for the free 1-dimensional trivial H -module with coefficients in R.

Let X be a k-scheme with k being a field of characteristic p > 0. We have the constant
sheaf Z/pZ on X ét. Note that the associated presheaf of the group scheme Ga is a sheaf on
both X ét and XZar [41, p. 52]. In particular, it gives the structure sheaf on XZar. Recall the
Artin–Schreier sequence [41, p. 67].

Lemma/Definition 7.1 Let X be a k-scheme with k being a field of characteristic p > 0.
Let Fp be the p-Frobenius on OX sending x 
→ x p . There exists a short exact sequence of
sheaves on X ét:

0 → Z/pZ −→ Ga
Fp−1−→ Ga → 0.

We call this the Artin–Schreier sequence.

Note that by [41, p. 114], the cohomology of Ga on X ét and XZar are isomorphic.

Remark 19 Recall that for G = GLn , we have

H0
(
X(w),OX(w)

)
= ind

GLn(Fq )

PI (Fq )
Fp,

where I = supp(w) and PI = B∗WI B∗. Note that p-Frobenius Fp on X(w) is given by the
identity on the topological space and p-power map on sections of OX(w). Thus the p-power

map given by Fp on the global sections H0
(
X(w),OX(w)

)
on the left hand side is induced

by the p-power map on Fp .

Proposition 7.2 Let G = GLn, and w ∈ F+ with I = supp(w) and PI = B∗WI B∗. For
any integer m > 0, we have

Hk
ét

(
X(w), Z/pmZ

) =
{
ind

GLn(Fq )

PI (Fq )
1Z/pmZ, k = 0,

0, k > 0.

Proof Let m = 1, and consider the long exact sequence associated to the Artin–Schreier
sequence on X(w).

0 → H0
ét

(
X(w), Z/pZ

)→ H0
(
X(w),OX(w)

) Fp−1−→ H0
(
X(w),OX(w)

)→
→ H1

ét

(
X(w), Z/pZ

)→ H1
(
X(w),OX(w)

) Fp−1−→ H1
(
X(w),OX(w)

)→ · · · .

By Theorem 1.1, we know that

Hk(X(w),OX(w)

) = 0,

for all k > 0, and

H0(X(w),OX(w)

) = ind
GLn(Fq )

PI (Fq )
Fp.
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As a consequence, the long exact sequence above becomes

0 → H0
ét

(
X(w), Z/pZ

)→ H0(X(w),OX(w)

)

Fp−1−→ H0(X(w),OX(w)

)→ H1
ét

(
X(w), Z/pZ

)→ 0.

Since Fp is algebraically closed, the polynomial x p − x ∈ Fp[x] always splits. Note that
ind

GLn(Fq )

PI (Fq )
Fp is a finite dimensional Fp-vector space, so Fp − 1 is the map x 
→ x p − x on

each coordinate. Hence Fp − 1 is surjective. Therefore H1
ét

(
X(w), Z/pZ

) = 0.
For every integer m ≥ 2, we have the short exact sequence

0 → Z/pm−1
Z

α−→ Z/pmZ
β−→ Z/pZ → 0,

where

α : a mod pm−1 
−→ pa mod pm

β : b mod pm 
−→ b mod p.

We get an induced long exact sequence for every m ≥ 2,

0 → H0
ét

(
X(w), Z/pm−1

Z
)→ H0

ét

(
X(w), Z/pmZ

)→ H0
ét

(
X(w), Z/pZ

)→ · · ·
· · · → Hk

ét

(
X(w), Z/pm−1

Z
)→ Hk

ét

(
X(w), Z/pmZ

)→ Hk
ét

(
X(w), Z/pZ

)→ · · · .

We know that Hk
ét

(
X(w), Z/pZ

) = 0 for all k > 0. By induction on m, assume
that Hk

ét

(
X(w), Z/pm−1

Z
) = 0 for all k > 0, so the long exact sequence yields that

Hk
ét

(
X(w), Z/pmZ

) = 0 for all k > 0. Therefore for any integer m > 0, we have

Hk
ét

(
X(w), Z/pmZ

) = 0

for all k > 0.
For any commutative ring A of characteristic p, denote Wj (A) to be the ring of Witt

vectors of length j with coefficients in A. Recall that Wj (A) is set-theoretically in bijection
with the product A j , but the bijection is not an isomorphism of rings when j > 1. However,
the p-Frobenius Fp onWj (A) is compatible with the p-Frobenius on A, in the sense that Fp

on Wj (A) is the map x 
→ x p on each coordinate. See [29, §0.1] for an introduction on the
ring of Witt vectors.

For any integerm > 0, letWm

(
OX(w)

)
be the sheaf of Witt vectors of lengthm on X(w)

[29, §0.1.5]. The stalk of Wm

(
OX(w)

)
at a point x ∈ X is Wm

(
OX(w),x

)
[29, (01.5.6)].

Note that Wm

(
OX(w)

)
are coherent sheaves on X(w) [47, §2]. Similar to the ring of Witt

vectors, the sections of the coherent sheafWm

(
OX(w)

)
are set-theoretically in bijection with

the corresponding sections of Om
X(w)

, but the bijection is not an isomorphism of rings when

m > 1. The p-Frobenius Fp on Wm

(
OX(w)

)
is compatible with the p-Frobenius onOX(w),

in the sense that it is x 
→ x p on each coordinate.
On X(w)ét, we have the Artin–Schreier–Witt exact sequence, cf. [29, Proposition 3.28],

0 −→ Z/pmZ → Wm

(
OX(w)

) Fp−1−→ Wm

(
OX(w)

)
→ 0.

One attains the long exact sequence

0 −→ H0 (X(w), Z/pmZ
)→ H0

(
X(w),Wm

(
OX(w)

))
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Fp−1−→ H0
(
X(w),Wm

(
OX(w)

))
→ · · · .

We see that H0
(
X(w), Z/p j

Z
) = ker(Fp − 1).

First, let supp(w) = S. Since X(w) is smooth projective over Fp and

H0
(
X(w),OX(w)

)
= Fp,

we know that H0
(
X(w),Wm

(
OX(w)

))
= Wm

(
Fp

)
. Note that the p-Frobenius Fp on

Wm

(
OX(w)

)
is compatible with taking sections, so it is compatible with the Frobenius on

Wm

(
Fp

)
. Thus we have

ker(Fp − 1) = Wm(Fp)

for all m > 0. We know that Wm(Fp) = Z/pmZ for all m > 0. Since GLn(Fq) acts

trivially on H0
(
X(w),OX(w)

)
= Fp and GLn(Fq) acts trivially on each of the coordinate

of Wm

(
Fp

)
, we see that Wm

(
Fp

)
inherits a trivial GLn(Fq)-action.

Now let w ∈ W be an arbitrary element and set I = supp(w). Via [12, Proposition 2.3.8]
(cf. Theorem 1.1) we have a GLn(Fq)-equivariant surjective morphism

X(w) −→ GLF
n /PF

I

such that the fibres are XLI (w). In particular, GLn(Fq) acts on the set of fibres transitively
and the stablizer of each fibre corresponds to a conjugate of PI (Fq) in GLn(Fq).

By definition one has

Wm

(
OX(w)

) (
X(w)

) = Wm

(
OX(w)

(
X(w)

))
,

and since the functor Wm is a finite limit, we have

Wm

(
OX(w)

(
X(w)

)) = ind
GLn(Fq )

PI (Fq )
Wm

(
OXLI (w)

(
XLI (w)

))
.

It follows from theproof ofTheorem1.1 thatOXLI (w)

(
XLI (w)

) = Fp , soOXLI (w)

(
XLI (w)

)

is the trivial PI (Fq)-representation. As before, this makes Wm

(
OXLI (w)

(
XLI (w)

))
the 1-

dimensional trivial PI (Fq)-module. Thus we have

ker(Fp − 1) = ind
GLn(Fq )

PI (Fq )
Wm(Fp) = ind

GLn(Fq )

PI (Fq )
1Z/pmZ

where 1Z/pmZ is the trivial PI (Fq)-representation with coefficients in Z/pmZ. This finishes
the proof. ��

Corollary 7.3 Let G = GLn, and w ∈ F+ with I = supp(w). Let PI = B∗WI B∗. Then one
has

Hk
ét

(
X(w), Zp

) =
{
ind

GLn(Fq )

PI (Fq )
1Zp , k = 0,

0, k > 0.
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Proof By Proposition 7.2, since for all k > 0 and m > 0, we have Hk
ét

(
X(w), Z/pmZ

) = 0,
the tower

{
Hk
ét

(
X(w), Z/pmZ

)}
m

of abelian groups satisfy the Mittag–Leffler condition
trivially. Thus for all k > 0, we have

Hk
ét

(
X(w), Zp

) = lim←−
m

Hk
ét

(
X(w), Z/pmZ

) = 0.

On the other hand, the higher vanishing implies that whenever we have m > l and a mod pl

map

Z/pmZ −→ Z/plZ
b mod pm 
−→ b mod pl ,

Take the induced short exact sequence of sheaves on X(w):

0 → Z/pm−l
Z → Z/pmZ → Z/plZ → 0.

Take the associated long exact sequence of cohomology groups

· · · → H0
ét

(
X(w), Z/pmZ

)→ H0
ét

(
X(w), Z/plZ

)→ H1
ét

(
X(w), Z/pm−l

Z
)→ · · · .

By the higher vanishing from Proposition 7.2, we see that the morphism

H0
ét

(
X(w), Z/pmZ

) −→ H0
ét

(
X(w), Z/plZ

)

is surjective. Therefore the tower {H0
ét

(
X(w), Z/pmZ

)}m of abelian groups satisfies the
Mittag–Leffler condition. Thus we have

H0
ét

(
X(w), Zp

) = lim←−
m

H0
ét

(
X(w), Z/pmZ

)
,

and the identification

H0
ét

(
X(w), Zp

) = ind
GLn(Fq )

PI (Fq )
Zp.

��

7.3 Cohomology ofÄ�(w) on X(w)

Let G = GLn and w ∈ W . Recall that X(w) is smooth projective of dimension �(w). Let
� be the sheaf of differentials on X(w) and write �p = ∧p� for the sheaf of differential
p-forms. In particular, ω := ∧�(w)� = ��(w) is the dualizing sheaf on X(w).

Proposition 7.4 Let G = GLn, w ∈ F+, I = supp(w) and PI = B∗WI B∗, then

Hk
(
X(w),��(w)

)
=
{
ind

GLn(Fq )

PI (Fq )
1

Fp
, k = �(w),

0, k �= �(w).

Proof Since X(w) is a smooth projectiveFp-schemeof dimension �(w), Serre duality implies
that there is an isomorphism of Fp-schemes

Hq(X(w),�p) ∼−→ H �(w)−q(X(w),��(w)−p)∨

for all p, q ≥ 0. Fix p = 0 and we may apply Theorem 1.1 to get

Hk(X(w),��(w)
) = 0,
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when k �= �(w). Setting p = 0 and q = 0, we get by Theorem 1.1 that

H0(X(w),OX(w)

) ∼−→ H �(w)
(
X(w),��(w)

)∨
.

This isomorphism is equivariant under GLn(Fq)-action by [25, Theorem 29.5]. Finally, recall
that since GLn(Fq) is a finite group, the induction functor commutes with taking the dual of
a representation. ��

8 The compactly supportedmod pm and Zp étale cohomology of X(w)

Throughout this section, let G = GLn and w ∈ W as in Sect. 2.7. Fix a reduced expression
w = t1 . . . tr , t j ∈ S. This reduced expression determines a smooth compactification X(w)

for X(w). We also have an isomorphism X (t1, . . . , tr )
∼→ X(w) cf. Remark 8. By [12,

Proposition 3.2.2], we have the following decomposition:

X(w) := X (t1, . . . , tr ) = X (t1, . . . , tr )
·⋃
⎛
⎜⎝

⋃
v≺w

�(v)=�(w)−1

X(v)

⎞
⎟⎠ ,

where≺ is the Bruhat order on F+. Let us denote Y := X(w)
∖
X (t1, . . . , tr ) in this section.

We use this stratification and Proposition 7.2 to obtain the compactly supported Z/pmZ-
cohomology of X(w). In order to do this, we construct an exact sequence similar to Mayer–
Vietoris spectral sequence with respect to the stratification of Y . The method has been used
to compute the compactly supported �-adic cohomology groups of X(w) in [44, §5, §7].

8.1 An acyclic resolution for the Steinberg representation for a Levi subgroup of GLn

Let w ∈ W such that w = t1 . . . tr with t j ∈ S are all distinct from one another. We have the
associated parabolic subgroup PI = B∗WI B∗, where I = supp(w). Set Iu = supp(u) for
u 	 w. Consider the following sequence:

ind
GLn(Fq )

PI (Fq )
1Z/pmZ

d0−→
⊕
u≺w

�(u)=�(w)−1

ind
GLn(Fq )

PIu (Fq )
1Z/pmZ → · · ·

· · · →
⊕
u≺w

�(u)=�(w)−i+1

ind
GLn(Fq )

PIu (Fq )
1Z/pmZ

di−1−→
⊕
u≺w

�(u)=�(w)−i

ind
GLn(Fq )

PIu (Fq )
1Z/pmZ

di−→

di−→
⊕
u≺w

�(u)=�(w)−i−1

ind
GLn(Fq )

PIu (Fq )
1Z/pmZ → · · ·

· · · →
⊕
u≺w

�(u)=1

ind
GLn(Fq )

PIu (Fq )
1Z/pmZ

d�(w)−1−→ ind
GLn(Fq )

B∗(Fq )
1Z/pmZ. (5)

For all ui+1 	 ui 	 w with �(ui+1) = �(ui ) − 1, let

ι
ui+1
ui : indGLn(Fq )

Pui (Fq )
1Z/pmZ → ind

GLn(Fq )

Pui+1 (Fq )
1Z/pmZ

123



69 Page 32 of 43 Y. Wang

be the inclusion map, where Pui := Psupp(ui ). Then the map di is defined by

( fui )ui 
→
(∑

ui

(−1)α(ui→ui+1)ι
ui+1
ui ( fui )

)

ui+1

,

where α(ui → ui+1) is an integer determined as follows: if ui+1 is obtained from ui by
deleting the r th s ∈ S in its product expression, then α(ui → ui+1) = r .

We will see in the following proposition that this sequence is an acyclic complex. In
particular, if w ∈ W is a Coxeter element, then (up to augmentation) the complex (5) gives
a resolution for the Steinberg representation StGLn .

Proposition 8.1 Let w = t1 . . . tr such that t j are all distinct. Let PI = B∗WI B∗, where
I = supp(w). Set Iu = supp(u) for u 	 w. Then the sequence (5) is an acyclic complex.

Furthermore, d0 is injective and the cokernel of d�(w)−1 is ind
GLn(Fq )

PI (Fq )
StL I , where

StL I := ind
L I (Fq )

(B∗∩L I )(Fq )
1Z/pmZ

/ ∑
(P∩L I )�(B∗∩L I )

ind
L I (Fq )

(P∩L I )(Fq )
1Z/pmZ.

Proof We denote ind
G(Fq )

H(Fq )
1Z/pmZ by iGH for any subgroup H of a group G when there is

no ambiguity. Recall that we have PI = L I � UI , where L I is a Levi subgroup of GLn .
In particular, L I is a reductive algebraic group over Fp defined over Fq . Note that the Weyl
group of L I is exactlyWI . Since L I is reductive, by [51, Theorem 1] cf. [7, §7], the following
sequence ⊕

u≺w
�(u)=�(w)−1

i L I
PIu∩L I

d1−→ · · · →
⊕
u≺w

�(u)=1

i L I
PIu∩L I

d�(w)−1−→ i L I
B∗∩L I

(6)

identifies with the combinatorial Tits complex � of L I tensored with Z/pmZ. In particular,

H0(�, Z) = Z and H�(w)(�, Z) = Z
|ULI (Fq )|,

where ULI is a maximal Fq -split unipotent subgroup of L I , and Hj (�, Z) = 0 otherwise.

By the Universal Coefficients Theorem, we know that ker(d1) = i L I
L I

and coker(d�(w)−1) =
StL I .

We have the following identification

ind
PI (Fq )

PIu (Fq )
1Z/pmZ = ind

L I (Fq )

(PIu∩L I )(Fq )
1Z/pmZ

for all u 	 w. Hence may rewrite the acyclic complex (6) as follows:

0 → i PIPI −→
⊕
u≺w

�(u)=�(w)−1

i PIPIu → · · ·

· · · → i PIB∗ → ind
PI (Fq )

B∗(Fq )
1Z/pmZ

/ ∑
P�B∗

ind
PI (Fq )

P(Fq )
1Z/pmZ → 0. (7)

Recall that since PI (Fq) is a finite subgroup of GLn(Fq), the functor ind
GLn(Fq )

PI (Fq )
is exact.

Thus we may apply the functor ind
GLn(Fq )

PI (Fq )
to the acyclic complex (7) and obtain the complex

(5). Therefore the complex (5) is acyclic and d�(w)−1 has the cokernel as desired. ��
We can also prove Proposition 8.1 algebraically.
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Alternative proof Denote the induced representations ind
G(Fq )

H(Fq )
1Q by iGH (Q) when there is

no ambiguity. Set Ak = i L I
Puk ∩L I

(Q) with k = 1, . . . , �(w) such that uk ≺ w, �(uk) =
�(w) − 1 and Puk = Psupp(uk ). It is verified in [8, Theorem 3.2.5] that for any subsets
I , J ⊆ {1, . . . , �(w)},

(∑
i∈I

Ai

)
∩
⎛
⎝⋂

j∈J

A j

⎞
⎠ =

∑
i∈I

⎛
⎝Ai ∩

⎛
⎝⋂

j∈J

A j

⎞
⎠
⎞
⎠ . (8)

Note that loc.cit. proved this for generalized Steinberg representations, but it does apply
for the scenario of the Steinberg representation itself. By [45, Proposition 2.6], one obtains
an acyclic complex:

0 → i L I
L I

(Q) →
⊕
u≺w

�(u)=�(w)−1

i L I
PIu∩L I

(Q) → · · · → i L I
B∗∩L I

(Q) → StL I (Q) → 0, (9)

where StL I (Q) is the Steinberg representation with coefficients inQ. The complex (9) gives a
basis for i L I

B∗∩L I
(Q) such that for all P ⊃ B, the subrepresentation i L I

P∩L I
(Q) is generated by a

subset of this basis.More precisely, one startswith fixing a basis for i L I
L I

(Q) and inductively fix
bases for each constituent of the next term in the complex. This ensures that the intersections
would still be free modules generated by a basis element.

Taking the Z-lattice with respect to this basis yields the sub-representations i L I
P∩L I

(Z). In
particular, the equality (8) holds after intersecting with the Z-lattice and the intersections are
free Z-modules generated by basis elements. Thus we can tensor this Z-lattice with Z/pmZ

to obtain Bk := i L I
Puk ∩L I

(Z/pmZ), such that Bk’s satisfy the condition (8). Thus by [45,

Proposition 2.6], we obtain the acyclic complex as desired. ��

8.2 A spectral sequence associated to the stratification

Let w be as in Sect. 8.1. Denote the category of sheaves on X(w)ét by Sh(X(w)ét). For any
closed subscheme Z of X(w) with the inclusion map ι : Z → X(w), we denote ι∗Z/pmZ

by (Z/pmZ)Z . Again, since ι∗ is exact, we have an isomorphism of Z/pmZ-modules:

Hr
ét

(
Z , Z/pmZ

) ∼−→ Hr
ét

(
X(w),

(
Z/pmZ

)
Z

)
.

In addition, if we assume that Z is stable under GLn(Fq)-action, then the above isomorphism
is GLn(Fq)-equivariant.

Let R = Z/pmZ, for any m > 0. For u 	 w, we denote the constant sheaf R on X(u) by
RX(u). We have a sequence of constant sheaves on X(w)ét:

RX(w) →
⊕
u≺w

�(u)=�(w)−1

RX(u) →
⊕
u≺w

�(u)=�(w)−2

RX(u) → · · ·

· · · →
⊕
u≺w

�(u)=�(w)−i

RX(u) → · · · →
⊕
u≺w

�(u)=1

RX(u) → RX(e). (10)
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Let {Uγ → X(w)}γ be an étale cover of X(w), and consider the i − 1, i, i + 1th terms of
this complex

⊕
u≺w

�(u)=�(w)−i+1

RX(u)(Uγ )
di−1−→

⊕
u≺w

�(u)=�(w)−i

RX(u)(Uγ )
di−→

⊕
u≺w

�(u)=�(w)−i−1

RX(u)(Uγ ).

We now describe the maps di . Label each summand of the i th term in the complex by ui , by
abuse of notation. Let

( fui )ui ∈
⊕
u≺w

�(u)=�(w)−i

RX(u)(Uγ )

be a section, then we have

di
(
( fui )ui

) =
(∑

ui

(−1)α(ui→ui+1) fui
∣∣
X(ui+1)

)

ui+1

,

where α(ui → ui+1) is as defined in Sect. 8.1. Here the restriction of fui to X(ui+1) can be
nonzero if and only if X(ui+1) ⊆ X(ui ).

When we fix ui+1 	 ui−1 	 w, as �(ui−1) = �(ui+1) − 2, there are only two ways to
take restrictions from X(ui−1) to X(ui+1) via X(u′

i ) for some ui−1 	 u′
i 	 ui+1. Thus by

the definition of the function α, we may conclude that di ◦ di−1 = 0. Therefore (10) is a
complex.

Lemma 8.2 Let w = t1 . . . tr such that t j are all distinct. Then the complex (10) of sheaves
on X(w)ét is acyclic.

Proof It suffices to check the acyclicity of the complex (10) on the stalks. Let x ∈ X(w),
then the complex would simplify depending on which closed subscheme x lives in.

⊕
u≺w

�(u)=�(w)−i+1

RX(u),x
di−1−→

⊕
u≺w

�(u)=�(w)−i

RX(u),x
di−→

⊕
u≺w

�(u)=�(w)−i−1

RX(u),x (11)

If we have x ∈ X(ui−1) for some ui−1 ≺ w, �(ui−1) = �(w) − i + 1. Then we know
that x /∈ X(u) for all u 	 w with �(u) ≤ i and thus RX(u),x = 0. Then the complex 11 is
trivially exact at the i th term.

If we have x ∈ X(ui ) for some ui ≺ w, �(ui ) = �(w) − i . Then for all RX(u),x = 0 for
u ≺ w, �(u) ≤ i − 1. The complex 11 becomes

⊕
ui≺u≺w

�(u)=�(w)−i+1

RX(u),x
di−1−→ RX(ui ),x

−→ 0.

Since di−1 is obviously surjective, this complex is exact at the i th term in this case.
If x ∈ X(ui+1), then for any f ∈ Ker(di ), all the summand of di ( f ) are 0. Now if

f = ( ft )t , then for each summand of di ( f ), there exists an even number of nonzero ft ’s
that maps to it. Each such pair of ft , f ′

t would have the property ft = − f ′
t or ft = f ′

t . This
is because all summands of di ( f ) are 0. Now by the definition of di−1, we may build an
element of the i − 1th term of below using the nonzero terms of ft .
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⊕
u≺w

�(u)=�(w)−i+1

RX(u),x
di−1−→

⊕
u≺w

�(u)=�(w)−i

RX(u),x
di−→

⊕
u≺w

�(u)=�(w)−i−1

RX(u),x

��
Corollary 8.3 Let j : X(w) ↪→ X(w) be the open immersion. Then the complex (10) gives a
resolution for j!Z/pmZ.

Proof We need to verify that the following complex is exact at R:

0 → j!R
d−1−→ R

d0−→
⊕
u≺w

�(u)=�(w)−1

RX(u).

We verify on the stalks. When x ∈ X(w), we have j!Rx ∼= Rx . When x ∈ X(w)\X(w), then

Rx
d0−→

⊕
u≺w

�(u)=�(w)−1

RX(u),x

is injective. ��
Since the category Shét(X(w)) has enough injective objects, by Corollary 8.3, the complex

(10) is quasi-isomorphic to an injective resolution of j!Z/pmZ. Take the spectral sequence
associated to the complex (10), we have

Ei, j
1 =

⊕
u≺w

�(u)=�(w)−i

H j
ét

(
X(u), Z/pmZ

)⇒ Hi+ j
ét,c

(
X(w), Z/pmZ

)
. (12)

8.3 The étale cohomology with compact support for X(w)with coefficients in
Z/pmZ andZp

Theorem 8.4 Let G = GLn, and w = t1 . . . tr ∈ W such that t j ∈ S are distinct from
one another. Set I = supp(w), Iu = supp(u) and PI = B∗WI B∗ = UI � L I . Then for
k �= �(w),m > 0,

Hk
ét,c

(
X(w), Z/pmZ

) = 0,

and

H �(w)

ét,c

(
X(w), Z/pmZ

) ∼= ind
GLn(Fq )

B∗(Fq )
1Z/pmZ

/ ∑
u≺w

�(u)=1

ind
GLn(Fq )

PIu (Fq )
1Z/pmZ,

In particular,

H �(w)

ét,c

(
X(w), Z/pmZ

) ∼= ind
GLn(Fq )

PI (Fq )
StL I ,

where StL I is the Steinberg representation for L I (Fq) with coefficients in Z/pmZ.

Proof By Proposition 7.2, we know that the Ei,0
1 -terms of the spectral sequence 12 agree

with the sequence 5. In addition, for all j > 0 and u 	 w, we have

H j (X(u), Z/pmZ
) = 0,
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so there is no nonzero terms at Ei, j
1 when j �= 0 and E2 = E∞. It follows from Proposition

8.1 that

E�(w),0
2

∼= ind
GLn(Fq )

B∗(Fq )
1Z/pmZ

/ ∑
u≺w

�(u)=1

ind
GLn(Fq )

PIu (Fq )
1Z/pmZ,

and Ei, j
2 = 0 otherwise. The proof is thus concluded because Ei,0

2
∼= Hi

ét,c (X(w), Z/pmZ).
��

Corollary 8.5 Let G = GLn, and w = t1 . . . tr ∈ W such that the t j ’s are distinct from
one another. Denote I = supp(w), Iu = supp(u), u 	 w and PI = B∗WI B∗. Then for
k �= �(w),m > 0,

Hk
ét,c

(
X(w), Zp

) = 0,

and

H �(w)

ét,c

(
X(w), Zp

) ∼= ind
GLn(Fq )

B∗(Fq )
1Zp

/ ∑
u≺w

�(u)=1

ind
GLn(Fq )

PIu (Fq )
1Zp .

In particular,

H �(w)

ét,c

(
X(w), Zp

) ∼= ind
GLn(Fq )

PI (Fq )
StL I ,

where StL I is the Steinberg representation for L I (Fq) with coefficients in Zp.

Proof By Theorem 8.4, we have for all k �= �(w) and m > 0, Hk
ét,c (X(w), Z/pmZ) =

0. Thus the tower
{
Hk
ét,c (X(w), Z/pmZ)

}
m

of abelian groups satisfy the Mittag–Leffler

condition. Thus for all k �= �(w), we have

Hk
ét,c

(
X(w), Zp

) = lim←−
m

Hk
ét,c

(
X(w), Z/pmZ

) = 0.

On the other hand, whenever we have m > l and a mod pl map

Z/pmZ −→ Z/plZ
b mod pm 
−→ b mod pl ,

there is a short exact sequence of sheaves on X(w)ét:

0 → Z/pm−l
Z → Z/pmZ → Z/plZ → 0.

By [40, Corollary 8.14], since j : X(w) → X(w) is an open immersion, we know that j! is
an exact functor, so there is a short exact sequence

0 → j!Z/pm−l
Z → j!Z/pmZ → j!Z/plZ → 0.

Taking the associated long exact sequence yields

· · · → H �(w)

ét

(
X(w), j!Z/pmZ

)→ H �(w)

ét

(
X(w), j!Z/plZ

)
→

→ H �(w)+1
ét

(
X(w), j!Z/pm−l

Z

)
→ · · · .

The vanishing result for k �= �(w) from Theorem 8.4 implies that

H �(w)

ét,c

(
X(w), Z/pmZ

)→ H �(w)

ét,c

(
X(w), Z/plZ

)
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is surjective. Hence the tower of abelian groups
{
H �(w)

ét,c (X(w), Z/pmZ)
}
m

satisfies the

Mittag–Leffler condition. Therefore

H �(w)

ét,c

(
X(w), Zp

) = lim←−
m

H �(w)

ét,c

(
X(w), Z/pmZ

)
,

and

H �(w)

ét,c

(
X(w), Zp

) ∼= ind
GLn(Fq )

B∗(Fq )
1Zp

/ ∑
u≺w

�(u)=1

ind
GLn(Fq )

PIu (Fq )
1Zp .

��

Corollary 8.6 Let G = GLn and w ∈ F+. Let v ∈ F+ such that supp(v) = supp(w)

and v = sα1 . . . sαr ∈ W with sαt all distinct. Let R = Z/pmZ or Zp, m > 0. Set I =
supp(w), Iu = supp(u), and PI = B∗WI B∗. Then for k �= �(w),

Hk
ét,c (X(w), R) = 0

and

H �(w)

ét,c (X(w), R) ∼= H �(v)

ét,c (X(v), R) ∼= ind
GLn(Fq )

B∗(Fq )
1R

/ ∑
u≺v

�(u)=1

ind
GLn(Fq )

PIu (Fq )
1R .

In particular,

H �(w)

ét,c (X(w), R) ∼= ind
GLn(Fq )

PI (Fq )
StL I ,

where StL I is the Steinberg representation for L I (Fq) with coefficients in R.

Proof Analogous to [44, Proposition 2.11], by induction on �(w)−�(v), the complex (5) we
get forw ∈ F+ is homotopic to the complex (5) for anyv ∈ F+ such that supp(v) = supp(w).
The rest follows from Theorem 8.4 and Corollary 8.5. ��
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Appendix A F-singularities and pseudo-rational singularities of X(w)

In [33, Theorem 2.2], it was shown that Schubert varieties are globally F-regular. As already
seen in [38, §4.3], certain local properties of Schubert varieties can be carried over to local
properties of the Zariski closure of Deligne–Lusztig varieties X(w) via the Lang map. This
allows us to show that X(w) has pseudorational singularities. There is a generalization of
the result of [5, Theorem 3.2.8] relaxing the requirement of smoothness to pseudo-rational
singularity [32, Theorem 8.13]. This allows us to obtain the result in Proposition 5.4 for all
connected reductive G defined over a finite field Fq .

Throughout this section, let G be an arbitrary reductive group as defined in Sect. 2.1.

A.1 Review of definitions

We recall some relevant definitions of F-singularities of commutative rings and schemes
in positive characteristic. More detailed discussions can be found in [48, Chapter 3], for
example.

Definition A.1 [48, p.14, Definition 1.17] Let R be a ring of characteristic p > 0 and F :
R → R be the p-Frobenius morphism. We say that R is F-finite if F is a finite map.

By [48, p. 47], finitely generated algebras over a perfect field as well as their localizations
and completions are always F-finite. Thus if Y is a scheme locally of finite type over a perfect
field, then the local rings OY ,y for all y ∈ Y are F-finite.

Definition A.2 [26, p. 128] Let R be a F-finite ring. If for every r ∈ R not contained in
any minimal prime ideals of R, there exists some positive integer e such that the map of
R-modules R → R1/pe given by 1 
→ r1/p

e
splits, then we say that R is strongly F-regular.

Definition A.3 Let Y be a locally of finite type in characteristic p > 0 with geometric
Frobenius F . We say that Y is strongly F-regular if the local ringOY ,y is strongly F-regular
for all y ∈ Y .

The property of being strongly F-regular is indeed a local condition by [48, p. 56, Propo-
sition 4.12] cf. [27, Theorem 5.5]. Note that in the literature, the strongly F-regular property
for schemes may also be called locally F-regular in order to distinguish from the globally
F-regular property, which is defined via the section ring of an ample line bundle [50].

Definition A.4 Let Y be a locally of finite type in characteristic p > 0 with geometric
Frobenius F . Then Y is said to be F-rational when the local ring OY ,y is F-rational for all
y ∈ Y .
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The definition of F-rationality for a ring of characteristic p > 0 involvesmore definitions,
which we will not directly work with, so we refer to [49, Definition 1.3] for its precise
statement. It then follows from the definitions that strongly F-regular rings are F-rational.

Remark 20 In the literature, the notion of excellent rings and schemes are sometimes used to
make more general statements. We remark that locally of finite type Fp-schemes excellent
schemes by [20, Prop 7.8.6, p. 217]. As localization of local sections of excellent schemes
remain to be excellent rings, all the local ringsweworkwith in this section are in fact excellent
rings.

A.2 Cohomology of X(w)

For anyw ∈ W , the Zariski closure B∗wB∗ of a Bruhat cell inG are large Schubert varieties
in the sense of [4, p. 956]. We shall use this fact to show the Zariski closure of Deligne–
Lusztig varieties have pseudo-rational singularities. As before, we work in the more general
setting with generalized Deligne–Lusztig varieties.

Recall that we have the natural quotient map α : F+ → W . Let w1, w2 ∈ F+ and
v ∈ F+ such that v corresponds to a reduced expression of an element in α(v) ∈ W . Write
w1 = si1 . . . sil(w1)

and w2 = sil(w1)+2 . . . sil(w1)+l(w2)+1 . We may then fix a notation:

X(w1vw2) :=
{
(B0, . . . , Bl(w1)+l(w2)+1) ∈ Xl(w1)+l(w2)+2

∣∣∣
(Bj−1, Bj ) ∈ O(si j ), j = 1, . . . , il(w1),

(Bj−1, Bj ) ∈ O(si j ), j = l(w1) + 2, . . . , l(w1) + l(w2) + 1,

(Bl(w1), Bl(w1+1)) ∈ O(v), Bl(w1)+l(w2)+1 = FB0

}
.

Note that if w1 and w2 are trivial, then X(w1vw2) = X(v).

Definition A.5 For any integer r > 0, define a partial Frobenius endomrophism F1 : Gr+1 →
Gr+1 on the r + 1-fold fibre product of G over Fp by

F1(g0, . . . , gr ) := (g1, . . . , gr , F(g0)).

Observe that Fr+1
1 is the Frobenius endomorphism of Gr+1, and that Gr+1 is again

connected reductive. Denote the associated Lang map of F1 by L1, which is defined by
h 
→ h−1F1(h) for all h ∈ Gr+1(Fp). It follows from the Lang–Steinberg theorem that L1

is surjective. By [12, Proposition 2.3.3], we get an isomorphism

X(w1vw2)
∼−→ {

h ∈ Gr+1
∣∣L1(h) ∈

B∗ṡ1B∗ × · · · × B∗ ˙sil(w1)
B∗ × B∗v̇B∗ × B∗ ˙sl(w1)+2B∗ × · · ·

· · · × B∗ ˙sl(w1)+l(w2)+1B∗} /(B∗)r+1, (A1)

where r = l(w1) + l(w2) + 1.

Proposition A.6 The scheme X(w1vw2) for w1, w2 ∈ F+ and v ∈ F+ being a reduced
expression for an element in W, is strongly F-regular.

Proof By [4, p. 958, Corollary 4.1], for all w ∈ W , B∗ẇB∗ is strongly F-regular. As
strongly F-regularity is preserved under faithfully flat descent [27, Theorem 5.5], we see
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that the product

B∗ṡ1B∗ × · · · × B∗ ˙sil(w1)
B∗ × B∗v̇B∗ × B∗ ˙sl(w1)+2B∗ × · · · × B∗ ˙sl(w1)+l(w2)+1B∗

is again strongly F-regular. Denote this product by Zv , and we have the following diagram

X(w1vw2) L−1
1 (Zv) Zv.

L1π (A2)

Since L1 is étale, the fibres of L1 are smooth. Thus L−1
1 (Zv) is strongly F-regular by [1,

Theorem 3.6]. We apply to π the faithfully flat descent of strong F-regularity [27, Theorem
5.5]. Therefore X(w1vw2) is strongly F-regular. ��
Remark 21 (i) The argument above is analogous to the argument in [38, §4.3]. In particular,
PropositionA.6 implies that X(w1vw2) are normal andCohen–Macaulay cf. [12, Proposition
2.3.5]. The reason is that F-rational excellent local rings are normal and Cohen–Macaulay
[27, Theorem 4.2, Theorem 6.27].

(ii) Instead of using the result that the Zariski closure of Bruhat cells are strongly F-
regular, onemay alternatively use the fact that the Schubert varieties B∗ẇB∗/B∗ are globally
F-regular, which is shown in [33, Theorem 2.2] and [24, Theorem 8].

The global F-regularity of B∗ẇB∗/B∗ implies that it is strongly F-regular [48, p. 75,
Proposition 6.22]. Consider the quotient map π : B∗ẇB∗ → B∗ẇB∗/B∗. Since π is a
Zariski locally trivial fibre bundle with all fibres isomorphic to B∗, it is a faithfully flat
morphism. We may apply faithfully flat descent of strong F-regularity [27, Theorem 5.5]
because B∗ is a smooth Fp-scheme. Thus B∗ẇB∗ is strongly F-regular. The rest of the proof
is the same as the proof of Proposition A.6.

Proposition A.7 For any w ∈ F+ of the form w = w1vw2, where w1, w2, v ∈ F+ and v

has the same expression with a reduced expression of α(v) ∈ W. Let v′ ∈ F+ be another
reduced expression of α(v), then we have the following isomorphisms of cohomology for
structure sheaves and canonical bundles:

Hk
(
X(w1vw2),OX(w1vw2)

) ∼−→ Hk
(
X(w1v

′w2),OX(w1v′w2)

)

and

Hk
(
X(w1vw2), ωX(w1vw2)

) ∼−→ Hk
(
X(w1v

′w2), ωX(w1v′w2)

)
,

for all k ≥ 0.

Proof For schemes locally of finite type over Fp , the local rings being strongly F-regular
implies thembeingpseudo-rational [49,Theorem3.1]. ThenbyPropositionA.6,weknow that
the scheme X(w1vw2) has pseudo-rational singularities cf. [32, Definition 9.4]. Furthermore,
the Fp-schemes X(w1vw2) and X(w1v

′w2) are regular, so they also have pseudo-rational
singularities.

By assumption, we know that v and v′ have expressions corresponding to two different
reduced expressions of α(v). Thus O(v) is isomorphic to O(v′). Furthermore, O(v) and
O(v′) give two smooth compactifications of O(v). Hence we have the following cartesian
squares via projections

X(w1vw2) O(v)

X(w1vw2) O(v),

f

123



Cohomology and Geometry of Deligne–Lusztig varieties for GLn Page 41 of 43 69

and
X(w1v

′w2) O(v′)

X(w1vw2) O(v),

f ′

where f and f ′ are proper birational morphisms of Fp-schemes. Via [32, Theorem 8.13] we
see that X(w1vw2) (resp. X(w1v

′w2)) has isomorphic cohomology groups for the structure
sheaf and the canonical bundle with X(w1vw2) via f (resp. f ′). Therefore we have

Hk
(
X(w1vw2),OX(w1vw2)

) ∼−→ Hk
(
X(w1v

′w2),OX(w1v′w2)

)

and

Hk
(
X(w1vw2), ωX(w1vw2)

) ∼−→ Hk
(
X(w1v

′w2), ωX(w1v′w2)

)
,

for all k ≥ 0. ��
Remark 22 As an upshot, Proposition A.7 implies Proposition 5.4 if we set v = sts and
v′ = tst (resp. v = st and v′ = ts) whenever sts = tst (resp. st = ts) in W . Furthermore,
Proposition A.6 and A.7 work for any connected reductive group G/Fp defined over Fq .
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