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Abstract
We provide the Alexandroff–Bakelman–Pucci estimate and globalC1,α-regularity for a class
of singular/degenerate fully nonlinear elliptic equations. We also derive the existence of a
viscosity solution to the Dirichlet problem with the associated operator.
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1 Introduction

In this paper, we are concerned with the existence and global regularity results for viscosity
solutions of a class of singular/degenerate fully nonlinear equations of the form{

�(x, |Du|)F(D2u) = f (x) in �

u(x) = g(x) on ∂�,
(1.1)

where F : S(n) → R is a uniformly (λ,�)-elliptic operator in the sense of (A1), � :
� × [0,∞) → [0,∞) is a continuous map featuring degeneracy and singularity for the
gradient described as in (A2), f (·) and g(·) are suitable regular functions in the sense of
(A3), and � is a C2-domain as in (A4). We recall that, as a consequence of Krylov-Safonov
theory [32, 33], viscosity solutions to the homogeneous equation

F(D2u) = 0 in B1, where F is uniformly (λ,�) -elliptic,

belong to C1,α
loc (B1) for a universal constant α ≡ α(n, λ,�) ∈ (0, 1).

Some special cases of (1.1), which are singular or degenerate PDEs in non-divergence
structure, have been widely studied in the past years. To be precise, the local C1,α-regularity
results for degenerate fully nonlinear equations were developed in [2, 26] for �(x, t) = t p

with p ≥ 0, in [15, 20] for�(x, t) = t p +a(x)tq with 0 ≤ p ≤ q , in [11] for�(x, t) = t p(x)

with inf p(·) > −1, and in [6, 22] for �(x, t) = t p(x) + a(x)tq(x) with 0 ≤ p(·) ≤ q(·). On
the other hand, comparison principle, Liouville type results, and the ABP estimate are found
mostly for�(x, t) = t p with−1 < p < 0; we refer to [8, 9, 18, 19, 25] for details. Recently,
the ABP estimate for fully nonlinear models with unbalanced degeneracy was established in
[6, 7]. Finally, for both singular and degenerate general operators which are considered in
this paper, the local C1,α-regularity with the optimality was shown by the authors [5]. Global
counterpart of such local regularity results can be found in [10] for �(x, t) = t p with p ≥ 0
and in [6] for �(x, t) = t p(x) + a(x)tq(x) with 0 ≤ p(·) ≤ q(·). It is noteworthy that the
regularity theory for viscosity solutions to (1.1) plays a crucial role in the investigation of the
free boundary problems of singular perturbation type [3, 7], of obstacle type [16, 17], and of
one-phase Bernoulli type [14].

The goal of this paper is to investigate the global regularity, involving the ABP estimate
andC1,α-estimate up to the boundary, for both singular and degenerate fully nonlinear elliptic
equations in a unified way. To begin with, the ABP estimate in our setting reads as follows:

Theorem 1.1 (Alexandroff–Bakelman–Pucci estimate) Suppose that u ∈ C(�) is a viscosity
subsolution (resp. supersolution) of (1.1) in {x ∈ � : u(x) > 0} (resp. {x ∈ � : u(x) < 0})
under the assumptions (A1)–(A2) (to be stated in Sect.2). Suppose that f ∈ Ln(�)∩ C(�).
Then there exists a constant c ≡ c(n, λ, i(�), s(�), L, ν0) such that

sup
�

u ≤ sup
∂�

g+ + c diam(�)

(
max

{∥∥ f −∥∥ 1
i(�)+1

Ln(	+(u+))
,
∥∥ f −∥∥ 1

s(�)+1

Ln(	+(u+))

}
+ 1

)
, (1.2)

(resp.

sup
�

u− ≤ sup
∂�

g− + c diam(�)

(
max

{∥∥ f +∥∥ 1
i(�)+1

Ln(	+(u−))
,
∥∥ f +∥∥ 1

s(�)+1

Ln(	+(u−))

}
+ 1

)
.

)
(1.3)

In particular, we have

‖u‖L∞(�) ≤ ‖g‖L∞(∂�) + c diam(�)

(
max

{
‖ f ‖

1
i(�)+1
Ln(�) , ‖ f ‖

1
s(�)+1
Ln(�)

}
+ 1

)
(1.4)
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for some constant c ≡ c(n, λ, i(�), s(�), L, ν0) > 0.

We next establish the global C1,α-regularity result for viscosity solutions of Dirichlet
problems.

Theorem 1.2 (Global C1,α-regularity) Suppose the assumptions (A1)–(A4) (to be stated in
Sect.2) are in force. Let α be chosen to satisfy

α ∈
⎧⎨
⎩

(0, α) ∩
(
0, 1

1+s(�)

]
∩ (0, βg) if i(�) ≥ 0

(0, α) ∩
(
0, 1

1+s(�)−i(�)

]
∩ (0, βg) if − 1 < i(�) < 0.

(1.5)

For any viscosity solution u of{
�(x, |Du|)F(D2u) = f in �,

u = g on ∂�,

there exists a constant c ≡ c(n, λ,�, i(�), L, α) such that u ∈ C1,α(�) and

‖u‖C1,α(�) ≤ c

(
1 + ‖u‖L∞(�) + ‖g‖C1,βg (∂�) + ‖ f /ν0‖

1
1+i(�)

L∞(�)

)
.

Corollary 1.3 Suppose the assumptions of Theorem 1.2 are in force. Suppose further that F
is convex (or concave) and g ∈ C1,1(∂�). Then u ∈ C1,α(�), where

α =
{

1
1+s(�)

if i(�) ≥ 0
1

1+s(�)−i(�)
if − 1 < i(�) < 0.

Corollary 1.3 immediately follows from Theorem 1.2, since viscosity solutions to con-
vex/concave equations belong to C1,1

loc (�) by Evans–Krylov theory [21, 30, 31]. We refer
to [2, Corollary 3.2] and [6, Corollary 1.2] for similar results to Corollary 1.3.

The last main theorem concerning the solvability of the Dirichlet problem follows from
Theorem 1.2 together with Perron’s method.

Theorem 1.4 (Existence of a viscosity solution) Suppose the assumptions (A1)–(A4) and
(A5) (to be stated in Sect.6) are in force. Then there exists a viscosity solution u ∈ C(�) of
(1.1).

Our strategy is to improve the global regularity of a viscosity solution u gradually. For this
purpose, we begin with the ABP estimate to show the global boundedness of solutions. Then,
by constructing an appropriate barrier function near the boundary, we capture the boundary
behavior of solutions in terms of a distance function. The comparisonwith a distance function
allows us to achieve a global Lipschitz estimate. In the end, we prove the approximation
lemma by employing the compactness argument and then determine approximating linear
functions in an iterative manner.

Themain difficulty arises due to different behaviors of solutions relying on the sign of i(�)

defined in (A2). To overcome such a challenge,wefirst discuss the degenerate case (i(�) ≥ 0)
in Sect. 4 and then transport the regular properties to a viscosity solution of the singular case
(−1 < i(�) < 0) along with a suitable modification of equations in Sect. 5. In addition, the
degenerate or singular character of PDEs leads to the lack of the comparison principle in
general settings. Therefore, we formulate special types of the comparison principle: one is
Lemma 4.2, where we exploit the smooth feature of barrier functions, and the other is Lemma
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1 Page 4 of 26 S. Baasandorj et al.

6.3, in which we approximate the equations to have a monotone property with respect to
viscosity solution u of (1.1),

The paper is organized as follows. In Sect. 2, we present the assumptions (A1)–(A4) on the
equation (1.1) and data to be used throughout the paper, and then collect preliminary results
related to our main theorems. Section3 is devoted to the proof of ABP estimate. The proofs
for global C0,1-estimate and C1,α-estimate of viscosity solutions u of (1.1) are provided
in Sects. 4 and 5, respectively. Finally, in Sect. 6, we prove the comparison principle under
an additional assumption (A5) to deduce the existence of a viscosity solution by Perron’s
method.

2 Preliminaries

Throughout the paper, we denote by Br (x0) := {x ∈ R
n : |x − x0| < r} the open ball of Rn

with n ≥ 2 centered at x0 with positive radius r . If the center is clear in the context, we shall
omit the center point by writing Br ≡ Br (x0). Moreover, B1 ≡ B1(0) ⊂ R

n denote the unit
ball. We shall always denote by c a generic positive constant, possibly varying line to line,
having dependencies on parameters using brackets, that is, for example c ≡ c(n, i(�), ν0)

means that c depends only on n, i(�), and ν0. For two positive functions f , g, we write
f � g when there exists a universal constant c > 0 such that f ≤ cg.
For a measurable map h : � → R

n with γ ∈ (0, 1] being a given number, we shall use
the following notation for the Hölder semi-norm:

[h]C0,γ (�) := sup
x,y∈�
x �=y

|h(x) − h(y)|
|x − y|γ .

As in [24, Definition 2.1.1], we say that a function h : (0,∞) → R is almost non-decreasing
with constant L ≥ 1 if

h(s) ≤ Lh(t) for all 0 < s ≤ t .

An almost non-increasing function with constant L ≥ 1 can be defined in an analogous way.
We now state the main assumptions in the paper.

(A1) The operator F : S(n) → R is continuous and uniformly (λ,�)-elliptic in the sense
that

λtr(N ) ≤ F(M + N ) − F(M) ≤ �tr(N )

holds with some constants 0 < λ ≤ � and F(0) = 0, whenever M, N ∈ S(n) with
N ≥ 0, where we denote by S(n) the set of n × n real symmetric matrices.

(A2) � : � × [0,∞) → [0,∞) is a continuous map satisfying the following properties:

1. There exist constants s(�) ≥ i(�) > −1 such that the map t �→ �(x, t)/t i(�)

is almost non-decreasing with constant L ≥ 1 in (0,∞) and the map t �→
�(x, t)/t s(�) is almost non-increasing with constant L ≥ 1 in (0,∞) for all
x ∈ �.

2. There exists constants 0 < ν0 ≤ ν1 such that ν0 ≤ �(x, 1) ≤ ν1 for all x ∈ �.

(A3) f ∈ C(�) ∩ L∞(�) and g ∈ C1,βg (∂�) for some βg ∈ (0, 1).
(A4) � ⊂ R

n is a bounded C2-domain.
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Before we proceed, we provide several remarks on the assumptions. To begin with, the
Pucci extremal operators P±

λ,� : S(n) → R are defined as

P+
λ,�(M) := �

∑
ek>0

ek + λ
∑
ek<0

ek

and

P−
λ,�(M) := λ

∑
ek>0

ek + �
∑
ek<0

ek,

where {ek}n
k=1 are the eigenvalues of the matrix M . The (λ,�)-ellipticity of the operator F

via the Pucci extremal operators can be formulated as

P−
λ,�(N ) ≤ F(M + N ) − F(M) ≤ P+

λ,�(N )

for all M, N ∈ S(n).
Moreover, let us present some concrete examples of �(x, ξ) satisfying assumption (A2),

together with their respective exponents i(�) and s(�):

(i) �(x, ξ) = |ξ |p for p > −1: i(�) = s(�) = p.
(ii) �(x, ξ) = |ξ |p + a(x)|ξ |q for −1 < p < q < ∞ and 0 ≤ a ∈ C(�): i(�) = p

and s(�) = q .
(iii) �(x, ξ) = |ξ |p(x) for p ∈ C(�) and −1 < inf� p(x) ≤ sup� p(x) < ∞: i(�) =

inf� p(x) and s(�) = sup� p(x).
(iv) �(x, ξ) = |ξ |p(x) + a(x)|ξ |q(x) for p, q ∈ C(�) with −1 < inf�{p(x), q(x)} ≤

sup�{p(x), q(x)} < ∞ and 0 ≤ a ∈ C(�): i(�) = inf�{p(x), q(x)} and s(�) =
sup�{p(x), q(x)}.

Finally, the assumption (A4) was motivated by the approach developed in [10]. More
precisely, we may assume that 0 ∈ ∂�, and there exist a ball B = BR(0) in R

n and
φ ∈ C2(Rn−1) such that φ(0) = 0,∇φ(0) = 0, and

� ∩ B ⊂ {y ∈ B : yn > φ(y′)}, ∂� ∩ B = {y ∈ B : yn = φ(y′)}.
Definition 2.1 (The ball condition, [1, Definition 2.1]) Let � be a bounded domain in R

n .
We say that D satisfies the exterior ball condition (with radius r ) if there exists r > 0
satisfying the following condition: for every x ∈ ∂�, there exists a point xe ∈ R

n\� such
that Br (xe) ⊂ R

n\� and x ∈ ∂ Br (xe). Similarly, we can define the interior ball condition.
Finally, we say that� satisfies the ball condition (with radius r ) if� satisfies both the exterior
and the interior ball condition (with radius r ).

Lemma 2.2 [1, Lemma 2.2] Let � ⊂ R
n be a bounded domain. Then � is a C1,1-domain if

and only if � satisfies the ball condition.

On the other hand, for any vector ξ ∈ R
n , we consider a map Gξ : � ×R

n × S(n) → R

defined by

Gξ (x, p, M) := �(x, |ξ + p|)F(M) − f (x)

under the assumptions prescribed in (A1)–(A3). In Sects. 4 and 5, we shall focus on viscosity
solutions of the equation

G(x, Du, D2u) := �(x, |Du|)F(D2u) − f (x) = 0 in � (2.1)

123



1 Page 6 of 26 S. Baasandorj et al.

or

Gξ (x, Du, D2u) = 0 in �. (2.2)

We now provide the following definition of a viscosity solution u of the Eq. (2.1), which was
introduced in [8, Definition 2.7] and [9, Definition 2.1].

Definition 2.3 A lower semicontinuous function v is called a viscosity supersolution of (2.1)
if for any x0 ∈ �:

• either there exists δ > 0 such that v is constant in Bδ(x0) and 0 ≤ f (x) for all x ∈ Bδ(x0),
• or for all ϕ ∈ C2(�) such that v − ϕ has a local minimum at x0 and Dϕ(x0) �= 0, one

has

G(x0, Dϕ(x0), D2ϕ(x0)) ≤ 0.

In a similar way, an upper semicontinuous function w is called is a viscosity subsolution of
(2.1) if for any x0 ∈ �:

• either there exists δ > 0 such thatw is constant in Bδ(x0) and 0 ≥ f (x) for all x ∈ Bδ(x0),
• or for all ϕ ∈ C2(�) such that w − ϕ has a local maximum at x0 and Dϕ(x0) �= 0, one

has

G(x0, Dϕ(x0), D2ϕ(x0)) ≥ 0.

We say that u ∈ C(�) is a viscosity solution of (2.1) if u is a viscosity supersolution and a
subsolution simultaneously.

Remark 2.4 It is noteworthy that Definition 2.3 is necessary only for the case−1 < i(�) < 0,
due to the fact that�(x, |Du|)may not be defined when the gradient is zero.When i(�) ≥ 0,
the classical definition of viscosity solutions coincides with Definition 2.3; see [12, 13] for
example. Moreover, a viscosity solution of (2.2) can be understood as a viscosity solution of
(2.1) by considering u(x) = u(x) + ξ · x .

We also recall a concept of superjet and subjet introduced in [13, Section 2].

Definition 2.5 Let v : � → R be an upper semicontinuos function and w : � → R be a
lower semicontinuous function. For every x0 ∈ �, we define the second order superjet of v

at x0 by

J 2,+v(x0) := {
(p, M) ∈ R

n × S(n) : v(x) ≤ v(x0) + 〈p, x − x0〉
+ 1

2 〈M(x − x0), x − x0〉 + o(|x − x0|2) as x → x0
}

and the second order subjet of w at x0 by

J 2,−w(x0) := {
(p, M) ∈ R

n × S(n) : w(x) ≥ w(x0) + 〈p, x − x0〉
+ 1

2 〈M(x − x0), x − x0〉 + o(|x − x0|2) as x → x0
}
.

(i) A couple (p, M) ∈ R
n × S(n) is a limiting superjet of v at x0 ∈ � if there exists

a sequence {xk, pk , Mk} → {x, p, M} as k → ∞ in such a way that (pk, Mk) ∈
J 2,+v(xk) and limk→∞ v(xk) = v(x0).

(ii) A couple (p, M) ∈ R
n × S(n) is a limiting subjet of w at x ∈ B1 if there exists

a sequence {xk, pk , Mk} → {x, p, M} as k → ∞ in such a way that (pk, Mk) ∈
J 2,−w(xk) and limk→∞ w(xk) = w(x0).
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The following lemma is a consequence of stability results and ‘cutting lemma’. To prove
this, one can follow the lines of proof of [5, Theorem 4.1] or [22, Lemma 3.2].

Lemma 2.6 Let {gk}k be a sequence of Lipschitz continuous functions such that gk → g∞.
Suppose that {uk}k is a sequence of uniformly bounded continuous viscosity solutions of{

�k(y, |ξk + Duk |)Fk(D2uk) = fk(y) in B1 ∩ {yn > φ(y′)}
uk(y) = gk(y) on B1 ∩ {yn = φ(y′)},

where {ξk}k ⊂ R
n, { fk}k ⊂ C(B1 ∩ {yn > φ(y′)}), and {Fk}k ⊂ C(S(n),R) is uni-

formly (λ,�)-elliptic. Suppose further that ξk → ξ∞, fk → 0 (uniformly), and Fk → F∞.
Then one can extract a subsequence from {uk}k which converges uniformly to u∞ on
B1 ∩ {yn > φ(y′)}. Moreover, such a limit u∞ satisfies{

F∞(D2u∞) = 0 in B1 ∩ {yn > φ(y′)}
u∞(y) = g∞(y) on B1 ∩ {yn = φ(y′)}.

We finish this section by providing the interior regularity results shown in [5].

Theorem 2.7 [5, Theorem 1.1] Let u ∈ C(B1) be a viscosity solution of

�(x, |Du|)F(D2u) = f (x) in B1,

under the assumptions (A1) and (A2) with f ∈ L∞(B1). Then u ∈ C1,β
loc (B1) for all β > 0

satisfying

β ∈
⎧⎨
⎩

(0, α) ∩
(

1
1+s(�)

]
if i(�) ≥ 0

(0, α) ∩
(

1
1+s(�)−i(�)

]
if − 1 < i(�) < 0.

(2.3)

Moreover, for every β in (2.3), there exists a constant c ≡ c(n, λ,�, i(�), L, β) such that

‖u‖L∞(B1/2) + sup
x,y∈B1/2

x �=y

|Du(x) − Du(y)|
|x − y|β ≤ c

(
1 + ‖u‖L∞(B1) + ‖ f /ν0‖

1
1+i(�)

L∞(B1)

)
.

3 Alexandroff–Bakelman–Pucci estimate

Before we develop C0,1-regularity in Sect. 4 and C1,α-regularity in Sect. 5, our study on the
global regularity starts with the Alexandroff–Bakelman–Pucci (ABP) estimate. In short, the
ABP estimate controls the supremum of u over � in terms of the supremum of u on ∂� and
the Ln-norm of f . In this section, we deduce an appropriate version of the ABP estimate
for a viscosity subsolution of (1.1). We refer to [18, Theorem 1], [27, Theorem 1.1], [25,
Theorem 1], [7, Theorem 8.6], and [6, Theorem 2.1] for ABP estimates in different settings.

To prove ABP estimates, we need to define the notion of upper contact set of a function
u:

Definition 3.1 For v : � → R and R > 0, the upper contact set is defined by

	+(v,�) = {
x ∈ � : ∃p ∈ R

n such that u(y) ≤ u(x) + 〈p, y − x〉 for all y ∈ �
}
,

	+
R (v,�) =

{
x ∈ � : ∃p ∈ BR(0) such that u(y) ≤ u(x) + 〈p, y − x〉 for all y ∈ �

}
.

We are now ready to prove the ABP estimate.
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1 Page 8 of 26 S. Baasandorj et al.

Proof of Theorem 1.1 The proof consists of two parts. In the first part, we prove the above
theorem for the viscosity subsolution u ∈ C2(�) ∩ C(�). In the second part, we consider
u ∈ C(�) via approximation based on the sup convolutions.

Part 1. Suppose that the subsolution u belongs to C2(�) ∩ C(�). Let us define

R0 ≡ R0(u) := 1

diam(�)

(
sup
x∈�

u(x) − sup
x∈∂�

u+
)

.

The purpose is to obtain a certain estimate on R0 in terms of
∥∥ f −∥∥

Ln(	+(u+))
and data, from

which the estimate (1.2) follows. Applying [27, Lemma 3.1], for all R < R0, we find∫
BR(0)

g(z) dz ≤
∫

	+
R (u+)

g(Du)
∣∣det (D2u

)∣∣ dx (∀g ∈ C(Rn), g ≥ 0) (3.1)

and

D2u ≤ 0 on 	+
R (u+) ⊂ {x ∈ � : u(x) > 0}. (3.2)

Let us now discuss the behavior of Du in the set 	+
R (u+). Let x0 ∈ 	+

R (u+) be any point.
If Du(x0) �= 0, then we are able to take u as a test function in the definition of viscosity
subsolution. In turn, we have

�(x0, |Du(x0)|)F(D2u(x0)) ≥ f (x0).

Then we observe that

− f −(x0) ≤ f (x0) ≤ �(x0, |Du(x0)|)F(D2u(x0)) ≤ �(x0, |Du(x0)|)P+
λ,�(D2u(x0)).

Recalling D2u(x0) ≤ 0 by (3.2), we find P+
λ,�(D2u(x0)) = λ tr(D2u(x0)) and

(− tr(D2u(x0))

n

)n

≤
(

f −(x0)

nλ�(x0, |Du(x0)|)
)n

. (3.3)

If Du(x0) = 0 and D2u(x0) �= 0, then x0 is a critical point of u. On the other hand, recalling
again (3.2), we have D2u(x0) < 0, which means that x0 is a non-degenerate critical point of
u. However, the set of non-degenerate critical points of u is countable since u ∈ C2(�).

Let us recall also the following classical inequality,

det(A) det(B) ≤
(
tr(AB)

n

)n

for all A, B ∈ S(n) with A, B ≥ 0.

In turn, the last display together with (3.2) and (3.3) yields

∣∣det D2u(x)
∣∣ ≤

(
f −(x)

nλ�(x, |Du(x)|)
)n

(3.4)

for all x ∈ 	+
R (u+)\U , where U = {x ∈ 	+

R (u+) : Du(x) = 0}. We now consider two steps
depending on the sign of i(�).

Step 1: i(�) ≥ 0. Let us select g(z) = min
{|z|i(�)n, |z|s(�)n

}
in (3.1). In turn, recalling

(3.4), we find
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I1 :=
∫

BR(0)

min
{
|z|i(�)n, |z|s(�)n

}
dz

≤
∫

	+
R (u+)\U

min
{
|Du|i(�)n, |Du|s(�)n

}(
f −

nλ�(x, |Du|)
)n

dx

≤ Ln

nnλnνn
0

∫

	+
R (u+)

( f −)n dx,

where we have used (A2). On the other hand, by co-area formula, we have

I1 =
R∫

0

min
{

t i(�)n, t s(�)n
} ∫
∂ Bt (0)

d Sdt = nωn

R∫
0

min
{

t i(�)n, t s(�)n
}

tn−1 dt

=
{

ωn R(i(�)+1)n

i(�)+1 − ωn(s(�)−i(�))
(i(�)+1)(s(�)+1) if R ≥ 1

ωn R(s(�)+1)n

s(�)+1 if R < 1.

Combining the last two displays, we arrive at (1.2).
Step 2: −1 < i(�) < 0. In this case, we select

g(z) =
( |z|

|z| + δ

)−i(�)n

min
{
|z|i(�)n, |z|s(�)n

}

for an arbitrary number δ > 0. Clearly, g ∈ C(Rn) and so we have

I2(δ) :=
∫

BR(0)

( |z|
|z| + δ

)−i(�)n

min
{
|z|i(�)n, |z|s(�)n

}
dz

≤
∫

	+
R (u+)\U

( |Du|
|Du| + δ

)−i(�)n

min
{
|Du|i(�)n, |Du|s(�)n

} (
f −

nλ�(x, |Du|)
)n

dx

≤ Ln

nnλnνn
0

∫

	+
R (u+)

( f −)n dx,

where we have used again (A2) and the fact that i(�) < 0. By using co-area formula and
recalling that −1 < i(�) < 0, we get

I2(δ) = nωn

R∫
0

(
t

t + δ

)−i(�)n

min
{

t i(�)n, t s(�)n
}

tn−1 dt .

By applying Lebesgue’s dominated convergence theorem, we conclude

lim
δ→0+ I2(δ) = = nωn

R∫
0

min
{

t i(�)n, t s(�)n
}

tn−1 dt

=
{

ωn R(i(�)+1)n

i(�)+1 − ωn(s(�)−i(�))
(i(�)+1)(s(�)+1) if R ≥ 1,

ωn R(s(�)+1)n

s(�)+1 if R < 1.
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Combining the last two displays, we get (1.2).
Part 2.Let u ∈ C(�). Sincewe haveABP estimates for u ∈ C2(�)∩C(�), the remainder

of the proof can be argued similarly as in the proof of [27, Theorem 1.1] or [18, Theorem 1].
��

4 Local Lipschitz estimates up to the boundary

By Theorem 1.1, any viscosity solution of (1.1) is bounded in L∞(�) under the assumptions
(A1)–(A3). In this section, to derive further Lipschitz estimates up to the boundary as in [6,
10], we consider a bounded viscosity solution of{

�(y, |Du|)F(D2u) = f (y) in B ∩ {yn > φ(y′)}
u(y) = g(y) on B ∩ {yn = φ(y′)}, (4.1)

where the function φ is introduced in Sect. 2.

Remark 4.1 [Smallness regime] Here we verify that, for a bounded viscosity solution u of{
�(y, |ξ + Du|)F(D2u) = f (y) in B ∩ {yn > φ(y′)}
u(y) = g(y) on B ∩ {yn = φ(y′)}, (4.2)

we are able to assume

‖u‖L∞(B1∩{yn>φ(y′)}) ≤ 1, ‖g‖C1,βg (B1∩{yn=φ(y′)}) ≤ 1, and ‖ f ‖L∞(B1∩{yn>φ(y′)}) ≤ ε0

(4.3)

for some constant ε0 ∈ (0, 1) small enough, and also ν0 = ν1 = 1 in (A2). In order to
consider the problem in a smallness regime as in (4.3), for a fixed ball Br (x) ⊂ B, we define
ū : B1 ∩ {yn > φ̄(y′)} → R by

ū(y) := u(ry + x)

K

for a function φ̄ and positive constants K ≥ 1 ≥ r to be determined later. It can be seen that
ū is a viscosity solution of{

�̄(y, |ξ̄ + Dū|)F̄(D2ū) = f̄ (y) in B1 ∩ {yn > φ̄(y′)}
ū(y) = ḡ(y) on B1 ∩ {yn = φ̄(y′)}, (4.4)

where

F̄(M) := r2

K
F

(
K

r2
M

)
, �̄(y, t) := �

(
r y + x, K

r t
)

�
(
r y + x, K

r

) , f̄ (y) := r2

�
(
r y + x, K

r

)
K

f (r y + x),

ξ̄ := r

K
ξ, φ̄(y′) := φ(r y′ + x ′) − xn

r
, and ḡ(y) := g(r y + x)

K
.

Note that F̄ is still a uniformly (λ,�)-elliptic operator, the map t �→ �̄(y, t)/t i(�) is almost
non-decreasing and the map t �→ �̄(y, t)/t s(�) is almost non-increasing with the same
constants L ≥ 1 and s(�) ≥ i(�) > −1 as in (A2), and �̄(y, 1) = 1 for all y ∈ B1. It is
immediate from the choice of r that ‖D2φ̄‖∞ ≤ ‖D2φ‖∞ and

‖ḡ‖C1,βg (B1∩{yn=φ̄(y′)}) ≤ 1

K
‖g‖C1,βg (∂�).
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Moreover, the assumption (A2) implies

∥∥ f̄
∥∥

L∞(B1∩{yn>φ̄(y′)}) ≤ Lr2+i(�)

ν0K 1+i(�)
‖ f ‖L∞(�) .

By recalling i(�) > −1 and setting

K := 2

(
1 + ‖u‖L∞(�) + ‖g‖C1,βg (∂�) +

[
L

ν0
‖ f ‖L∞(�)

] 1
1+i(�)

)

and

r := ε
1

2+i(�)

0 ,

we see that ū solves the Eq. (4.4) under the smallness regime in (4.3).

If we have special conditions on a viscosity supersolution (or subsolution), then we can
apply the comparison principle without an additional structure condition such as (A5) in
Sect. 6. See Sect. 6 for more comments on the comparison principle.

Lemma 4.2 (Comparison principle I) Let f1, f2 ∈ C(�) with f1 > f2 and v ∈ C(�) be a
viscosity subsolution of �(y, |Du|)F(D2u) = f1(y) in �. Moreover, let w ∈ C(�)∩C2(�)

be a viscosity supersolution of �(y, |Du|)F(D2u) = f2(y). If v ≤ w on ∂�, then v ≤ w in
�.

Proof By contradiction, we suppose that

max
x∈�

(v(x) − w(x)) > 0

and themaximum is achieved at a point x̂ ∈ �. Since v is a viscosity subsolution,w ∈ C2(�)

and v − w has a local maximum at x̂ , the definition of viscosity subsolutions yields

�(x̂, |Dw(x̂)|)F(D2w(x̂)) ≥ f1(x̂).

On the other hand, since w is a viscosity supersolution, we have

�(x̂, |Dw(x̂)|)F(D2w(x̂)) ≤ f2(x̂),

which leads to the contradiction. ��
The following lemma describes the boundary behavior of a viscosity solution u in terms

of a distance function d . Indeed, our approach to obtain the boundary regularity (without
utilizing a change of variables) was strongly inspired by [10].

Lemma 4.3 Let g ∈ C1,βg (∂�). Let d be the distance to the hypersurface {yn = φ(y′)}.
Then for every r ∈ (0, 1) and γ ∈ (0, 1), there exists δ0 > 0 depending on
‖ f ‖L∞(B1∩{yn>φ(y′)}), λ, �, �, r , L, ν0, and Lipg(∂�) such that for every 0 < δ < δ0,
if u is a viscosity solution of (4.1) with ‖u‖L∞(B1∩{yn>φ(y′)}) ≤ 1, then

|u(y′, yn) − g(y′)| ≤ 6

δ

d(y)

1 + d(y)γ
in Br (0) ∩ {yn > φ(y′)}.

Proof We separate two cases: (i) g ≡ 0, (ii) g is not identically zero.
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(i) (g ≡ 0) In this case, we have

|u(y′, yn) − g(y′)| ≤ ‖u‖∞ ≤ 1

and so we will only consider the smaller set �δ := {y ∈ � : d(y) < δ}. Moreover,
we choose δ1 > 0 such that if d(y) < δ1, then d belongs to C2 and |D2d| ≤ K for
some universal constant K > 0.
The proof relies on the construction of upper and lower barriers. For this purpose,
we define a function w ∈ C2(�δ) by

w(y) =
{

2
δ

d(y)
1+dγ (y)

for |y| < r
2
δ

d(y)
1+dγ (y)

+ 1
(1−r)3

(|y| − r)3 for |y| ≥ r .

By following the argument in [10, Lemma 2.2], we have w ≥ u on ∂(B1 ∩
{yn > φ(y′)} ∩ �δ). Moreover, it is easily checked that |Dw| ≥ 1/(4δ) when
δ ≤ (1 − r)/12 and so if we choose δ < 1/4, then |Dw| ≥ 1. Moreover, we can
calculate

P+
λ,�(D2w) ≤ −2γ δγ−2λ

1 + γ

(1 + δγ )3
+ 2

δ
nK� + 6n�

(1 − r)2
� −δγ−2 + δ−1.

Since γ − 2 < −1 < 0, we can further choose δ ∈ (0, 1) small enough so that
P+

λ,�(D2w) < 0. Then, by recalling (A2),

�(x, |Dw|)P+
λ,�(D2w) � −Lν0|Dw|i(�)(δγ−2 − δ−1) ≤ −Lν0(δ

γ−i(�)−2 − δ−1−i(�)).

Since γ − i(�) − 2 < −1 − i(�) < 0, we finally choose δ ∈ (0, 1) small enough
so that

�(x, |Dw|)P+
λ,�(D2w) < −‖ f ‖∞ − 1.

By applying Lemma 4.2, we conclude that

u ≤ w = 2

δ

d(y)

1 + dγ (y)
in Br (0) ∩ {yn > φ(y′)}.

The lower bound for u can be obtained in a similar argument.
(ii) (g is not identically zero) This case follows from the same argument as in [10,

Lemma 2.2].

��
The main result in this section is the following boundary Lipschitz estimate, whose proof

relies on Lemma 4.3 and the Ishii–Jensen Lemma [13, Theorem 3.2].

Theorem 4.4 (Lipschitz estimates for ξ = 0) Let g be a Lipschitz continuous function.
Suppose that u satisfies (4.1) with ‖u‖L∞(B1∩{yn>φ(y′)}) ≤ 1. Then for every r ∈ (0, 1), we
have u ∈ C0,1(Br ∩ {yn > φ(y′)}) and

‖u‖C0,1(Br ∩{yn>φ(y′)}) ≤ C(n, λ,�, i(�), s(�), r , L,Lipg(∂�), ‖ f ‖L∞(�)). (4.5)

Proof Let r1 ∈ (r , 1) be fixed. For x0 ∈ Br ∩ {yn > φ(y′)}, we define
�(x, y) := u(x) − u(y) − Mω(|x − y|) − L

(|x − x0|2 + |y − x0|2
)
,
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where

ω(s) :=
{

s − ω0s3/2 if s ≤ s0 := (2/(3ω0))
2

ω(s0) if s ≥ s0.

We claim that for L, M � 1 large enough,

�(x, y) ≤ 0 for all (x, y) ∈ (Br1 ∩ �) × (Br1 ∩ �). (4.6)

Note that this inequality implies the desired Lipschitz estimate.
First of all, suppose that y ∈ Br1 ∩ {yn = φ(y′)}. Then by Lemma 4.3, there exists a

constant K0 > 0 such that

|u(z) − g(z′)| ≤ K0d(z, ∂�) for z ∈ Br1 ∩ {yn > φ(y′)},
which implies that

|u(x) − u(y)| ≤ |u(x ′, xn) − u(x ′, φ(x ′))| + |u(x ′, φ(x ′)) − u(y′, φ(y′))|
≤ K0d(x, ∂�) + Lipg(∂�)|x ′ − y′| ≤ (K0 + Lipg(∂�))|x − y|.

Therefore, if we choose M/3 ≥ K0 + Lipg(∂�), then

�(x, y) ≤ M

( |x − y|
3

− ω(|x − y|)
)

− L
(|x − x0|2 + |y − x0|2

) ≤ 0.

We now prove (4.6) by contradiction; suppose that there exists some point (x̂, ŷ) ∈ (Br1 ∩
�) × (Br1 ∩ �) such that

�(x̂, ŷ) = max
(Br1∩�)×(Br1∩�)

�(x, y) > 0.

Here, we also choose L > max
{
8/(r1 − r)2, 1/(2(r + r1))

}
. Then we can easily check that

(i) x̂ �= ŷ;
(ii) x̂, ŷ ∈ Br1 ∩ {yn > φ(y′)};
(iii) x̂, ŷ ∈ B(r1+r)/2.

Thus, by applying Ishii–Jensen Lemma [13, Theorem 3.2], we see that, for every ε > 0
sufficiently small, there exist X , Y ∈ S(n) such that

(Mω′(|x̂ − ŷ|)â + 2L(x̂ − x0), X) ∈ J
2,+

u(x̂),

(Mω′(|x̂ − ŷ|)â − 2L(ŷ − x0),−Y ) ∈ J
2,−

u(ŷ),(
X 0
0 Y

)
≤ M

(
Z −Z

−Z Z

)
+ (2L + ε)

(
I 0
0 I

)
, (4.7)

where

Z = ω′′(|x̂ − ŷ|)â ⊗ â + ω′(|x̂ − ŷ|)
|x̂ − ŷ| (I − â ⊗ â) for â := x̂ − ŷ

|x̂ − ŷ| .

For simplicity, we write qx := Mω′(|x̂ − ŷ|)â + 2 L(x̂ − x0) and qy := Mω′(|x̂ −
ŷ|)â − 2 L(ŷ − x0). We first choose ω0 > 0 small enough so that s0 ≥ 2 > r + r1. Note
that t �→ ω′(t) is decreasing on t ∈ [0, s0]. If we choose M > 0 large enough so that
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2 L(r + r1) ≤ Mω′(r + r1)/2, then we have 2 L|x̂ − x0|, 2 L|ŷ − x0| ≤ Mω′(|x̂ − ŷ|)/2. In
particular, we obtain

M

2
ω′(|x̂ − ŷ|) ≤ |qx |, |qy | ≤ 2Mω′(|x̂ − ŷ|), (4.8)

and by the choice of L , we also know that |qx |, |qy | ≥ 1.
On the other hand, for X and Y , we will use thematrix inequality (4.7). First, by evaluating

a vector of the form (ξ, ξ) for any ξ ∈ R
n , we have

(X + Y )ξ · ξ ≤ 6L|ξ |2,
which implies that any eigenvalues of X + Y are less than 6L . Moreover, by applying the
matrix inequality (4.7) for (â,−â), we observe

(X + Y )â · â ≤ 4Mω′′(|x̂ − ŷ|) + 6L = −3Mω0|x̂ − ŷ|−1/2 + 6L.

In other words, at least one eigenvalue of X + Y is less than −3Mω0|x̂ − ŷ|−1/2 + 6L .
Therefore, by the definition of the Pucci operator, we have

P+
λ,�(X + Y ) ≤ λ(−3Mω0|x̂ − ŷ|−1/2 + 6L) + 6�(n − 1)L

= −3λMω0|x̂ − ŷ|−1/2 + 6[�(n − 1) + λ]L.

We now employ the definition of limiting superjet and limiting subjet:

�(x̂, |qx |)F(X) ≥ f (x̂) ≥ −‖ f ‖∞,

�(ŷ, |qy |)F(−Y ) ≤ f (ŷ) ≤ ‖ f ‖∞.

Since |qx |, |qy | ≥ 1, an application of (A2) and (4.8) yields that

�(x̂, |qx |) ≥ Lν0|qx |i(�), �(ŷ, |qy |) ≥ Lν0|qy |i(�).

Moreover, (A1) shows that

F(X) − F(−Y ) ≤ P+
λ,�(X + Y ) ≤ −3λMω0|x̂ − ŷ|−1/2 + 6[�(n − 1) + λ]L.

Combining these results, we have

−‖ f ‖∞
(
|qx |−i(�) + |qy |−i(�)

)
≤ −3λMω0|x̂ − ŷ|−1/2 + 6[�(n − 1) + λ]L.

We now split into two cases depending on the sign of i(�):

(i) (i(�) ≥ 0) Since |qx |, |qy | ≥ 1 and |x̂ − ŷ| ≤ 1, we conclude that

3λMω0 ≤ 2‖ f ‖∞ + 6[�(n − 1) + λ]L,

which does not hold for sufficiently large M > 0.
(ii) (−1 < i(�) < 0) Recalling that |qx |, |qy | ≤ 2Mω′(|x̂ − ŷ|) ≤ 2M , we derive

3λMω0 ≤ 2‖ f ‖∞(2M)−i(�) + 6[�(n − 1) + λ]L.

Since −i(�) < 1, this inequality does not hold for sufficiently large M > 0.

This finishes the proof of (4.6). ��
On the other hand, for a modified Eq. (2.2), we can prove the boundary Lipschitz estimate,

provided that |ξ | is large. In short, the boundary Lipschitz estimates hold when either
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(i) ξ = 0 with i(�) > −1 (Lemma 4.3 and Theorem 4.4) or
(ii) |ξ | is large with i(�) ≥ 0 (Lemma 4.5 and Theorem 4.6).

Lemma 4.5 Let g be Lipschitz continuous on ∂� and ξ ∈ R
n with |ξ | = 1. Then for every

r ∈ (0, 1) and γ ∈ (0, 1), there exists δ > 0 depending on λ, �, s(�), r , and Lipg(∂�) such
that for 0 ≤ b < δ/6, any viscosity solution u of{

�(y, |ξ + bDu|)F(D2u) = f (y) in B1 ∩ {yn > φ(y′)}
u(y) = g(y) on B1 ∩ {yn = φ(y′)} (4.9)

with

‖u‖L∞(B1∩{yn>φ(y′)}) ≤ 1 and ‖ f ‖L∞(B1∩{yn>φ(y′)}) ≤ ε0

satisfies

|u(y′, yn) − g(y′)| ≤ 6

δ

d(y)

1 + d(y)γ
in Br ∩ {yn > φ(y′)}.

Proof As in the proof of Lemma 4.3, we may suppose that g ≡ 0 and construct a barrier
function in a local domain �δ := {y ∈ � : d(y) < δ}. If b = 0, then there is no degeneracy
with respect to the gradient Du and so the result holds. Thus, we may assume that b > 0.

We now define a function w ∈ C2(�δ) by

w(y) =
{

2
δ

d(y)
1+dγ (y)

for |y| < r
2
δ

d(y)
1+dγ (y)

+ 1
(1−r)3

(|y| − r)3 for |y| ≥ r .

We recall that w ≥ u on ∂(B ∩ {yn > φ(y′)} ∩ �δ) and

P+
λ,�(D2w) ≤ −2γ δγ−2λ

1 + γ

(1 + δγ )3
+ 2

δ
nK� + 6n�

(1 − r)2
� −δγ−2 + δ−1.

On the other hand, since

Dw(y) =
{

2
δ
1+(1−γ )dγ

(1+dγ )2
Dd for |y| < r

2
δ
1+(1−γ )dγ

(1+dγ )2
Dd + y

|y|
3

(1−r)3
(|y| − r)2 for |y| ≥ r ,

we have |Dw| ≤ 3/δ provided that δ ≤ (1 − r)/3. As a consequence, we derive

1

2
≤ |ξ + bDw| ≤ 3

2
for 0 < b <

δ

6
,

and so we conclude that

�(y, |ξ + bDw|)F(D2w) < −‖ f ‖∞ − 1 for sufficiently small δ > 0.

Lemma 4.2 yields the upper bound for u, and the remaining part can be done as in Lemma
4.3. ��

Note that Lemma 4.5 holds for any i(�) > −1, while Theorem 4.6 holds only for the
degenerate case, i(�) ≥ 0.

Theorem 4.6 (Lipschitz estimates for large |ξ |; degenerate case)Let g be Lipschitz continuous
on ∂� and ξ ∈ R

n. Assume that u is a viscosity solution of{
�(y, |ξ + Du|)F(D2u) = f (y) in B1 ∩ {yn > φ(y′)}
u(y) = g(y) on B1 ∩ {yn = φ(y′)} (4.10)
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with

‖u‖L∞(B1∩{yn>φ(y′)}) ≤ 1 and ‖ f ‖L∞(B1∩{yn>φ(y′)}) ≤ ε0.

Then for all r ∈ (0, 1), there exists p0 = p0(λ,�, n, i(�), s(�), r , ε0,Lipg(∂�)) > 0,

such that if |ξ | > p0, then u ∈ C0,1(Br ∩ {yn > φ(y′)}) and we have the estimate

‖u‖C0,1(Br ∩{yn>φ(y′)}) ≤ C(λ,�, n, i(�), s(�), r , ε0,Lipg(∂�)).

Proof Since the proof is similar to the one of Theorem 4.4, here we concentrate on the
differences.

(i) We first need to show that if x or y belongs to Br1 ∩{yn = φ(y′)}, then�(x, y) ≤ 0.
In the case of Theorem 4.4, this result immediately followed from Lemma 4.3. In a
similar manner, it is enough to apply Lemma 4.5 for a solution u. More precisely, if
u is a solution of (4.10), then u solves{

�̃ (y, |ξ/|ξ | + bDu|) F(D2u) = f̃ (y) in B1 ∩ {yn > φ(y′)}
u(y) = g(y) on B1 ∩ {yn = φ(y′)},

where �̃(y, t) := �(y, |ξ |t)/�(y, |ξ |), f̃ (y) := f (y)/�(y, |ξ |) and b := 1/|ξ |.
Thus, if we choose p0 > max{1, 6/δ}, then we can apply Lemma 4.5 for u.

(ii) We next follow the contradiction argument of Theorem 4.4 and the difference occurs
when we employ the definition of limiting superjet and subjet:

�(x̂, |ξ + qx |)F(X) ≥ −‖ f ‖∞,

�(ŷ, |ξ + qy |)F(−Y ) ≤ ‖ f ‖∞.

This is due to the difference between Eqs. (4.1) and (4.10), but we are still able to
derive a contradiction. Recalling that |qx |, |qy | ≤ 2 Mω′(|x̂ − ŷ|) ≤ 2 M , if we
choose p0 > 3 M , then we have

|ξ + qx |, |ξ + qy | ≥ M .

Combining this estimate with

−‖ f ‖∞
(
|ξ + qx |−i(�) + |ξ + qy |−i(�)

)
≤ −3λMω0|x̂ − ŷ|−1/2 + 6[�(n − 1) + λ]L,

we conclude that

3λMω0 ≤ 2‖ f ‖∞M−i(�) + 6[�(n − 1) + λ]L,

which is a contradiction. In this step, we have exploited the condition i(�) ≥ 0.

��

5 Global C1,˛-regularity

We start this section with several reductions of the proof of Theorem 1.2. First of all, by
recalling Theorem 2.7 which provides the interior C1,α-estimate of viscosity solutions, it is
enough to develop the pointwise boundary C1,α′

-estimate. Next, by following the proof of
[5, Theorem 1.1], we shall consider the degenerate case (i(�) ≥ 0) first, and then utilize this
result for the singular case (−1 < i(�) < 0).
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We would like to emphasize that the optimal exponent α′ (given by (5.1)), which appears
in the pointwise boundary estimate, does not depend on α from the Krylov–Safonov theory.
Moreover, we can observe that the optimal exponent β (given by (2.3)) for interior estimates
is independent of the choice of βg . In the end, the optimal exponent α = min{α′, β} for the
global estimate should satisfy a stronger condition (1.5), which is a combination of interior
and boundary estimates. A similar consequence can be found in [4, Theorem 1.1].

Lemma 5.1 (Pointwise boundary C1,α′
-estimate; degenerate case) Suppose the assumptions

(A1)–(A4) are in force with i(�) ≥ 0. Let α′ be chosen to satisfy

α′ ∈
(
0,

1

1 + s(�)

]
∩ (0, βg). (5.1)

Then there exist constants ε0 ∈ (0, 1), ρ ∈ (0, 1/2), and C0 > 0 depending on α′, n, λ, �,
‖D2φ‖L∞(�), ‖g‖C1,βg (∂�), i(�), and s(�) such that for any ξ ∈ R

n and a viscosity solution
u of {

�(y, |Du|)F(D2u) = f (y) in B1(x) ∩ {yn > φ(y′)}
u(y) = g(y) on B1(x) ∩ {yn = φ(y′)},

the following holds: if

‖u‖L∞(B1(x)∩{yn>φ(y′)}) ≤ 1 and ‖ f ‖L∞(B1(x)∩{yn>φ(y′)}) ≤ ε0,

then there exists an affine function l(y) = a + b · (y − x) with |a| + |b| ≤ C0 such that for
each 0 < r ≤ ρ,

‖u − l‖L∞(Br (x)∩{yn>φ(y′)}) ≤ Cr1+α′

for some universal constant C > 0.

Before we prove Lemma 5.1 by using the induction, we first show the approximation
lemma.

Lemma 5.2 (Approximation lemma; degenerate case) Suppose (A1)–(A4) hold true with
i(�) ≥ 0 and ν0 = ν1 = 1. Let ξ ∈ R

n be an arbitrary vector and u ∈ C(B1(x) ∩ {yn >

φ(y′)}) be a viscosity solution of{
�(y, |ξ + Du|)F(D2u) = f (y) in B1(x) ∩ {yn > φ(y′)}
u(y) = g(y) on B1(x) ∩ {yn = φ(y′)}, (5.2)

satisfying ‖u‖L∞(B1(x)∩{yn>φ(y′)}) ≤ 1 and ‖g‖C1,βg (B1(x)∩{yn=φ(y′)}) ≤ 1. Then for any
μ > 0, there exists a constant ε0 = ε0(n, λ,�, i(�), L, μ) > 0 such that if

‖ f ‖L∞(B1(x)∩{yn>φ(y′)}) ≤ ε0,

then one can find a viscosity solution h of an uniformly (λ,�)-elliptic equation{
F(D2h) = 0 in B3/4(x) ∩ {yn > φ(y′)}
h = g on B3/4(x) ∩ {yn = φ(y′)} (5.3)

such that

‖u − h‖L∞(B1/2(x)∩{yn>φ(y′)}) ≤ μ.
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Proof By contradiction, we suppose the conclusion of the lemma fails. Therefore, there exist
μ0 > 0 and sequences of functions {Fk}∞k=1, {�k}∞k=1, { fk}∞k=1, {gk}∞k=1, {uk}∞k=1, and a
sequence of vectors {ξk}∞k=1 such that

(C1) Fk ∈ C(S(n),R) is uniformly (λ,�)-elliptic;
(C2) for �k ∈ C(B1 × [0,∞), [0,∞)), the map t �→ �k(x, t)/t i(�) is almost non-

decreasing and the map t �→ �k(x, t)/t s(�) is almost non-increasing with constant
L ≥ 1, and �k(y, 1) = 1 for all y ∈ B1(x) ∩ {yn > φ(y′)};

(C3) fk ∈ C(B1(x) ∩ {yn > φ(y′)}) with ‖ fk‖L∞(B1(x)∩{yn>φ(y′)}) ≤ 1/k;
(C4) uk ∈ C(B1(x) ∩ {yn > φ(y′)}) with ‖u‖L∞(B1(x)∩{yn>φ(y′)}) ≤ 1 solves the equation{

�k(y, |ξk + Duk |)Fk(D2uk) = fk(y) in B1(x) ∩ {yn > φ(y′)}
uk(y) = gk(y) on B1(x) ∩ {yn = φ(y′)}

with ‖gk‖C1,βg (B1(x)∩{yn=φ(y′)}) ≤ 1, but

‖uk − h‖L∞(B1/2(x)∩{yn>φ(y′)}) > μ0 for any k ∈ N, (5.4)

for any h satisfying (5.3).

The condition (C1) implies that Fk converges to some uniformly (λ,�)-elliptic operator
F∞ ∈ C(S(n),R). Similarly, the condition (C4) implies that gk converges to g∞ uniformly.
For a further discussion, we consider two cases:

(i) ({ξk}∞k=1 is bounded) Upto a subsequence, ξk converges to some vector ξ∞. Then
we consider a sequence {ũk}∞k=1 := {uk + x · ξk}∞k=1 satisfying{

�k(y, |Dũk |)F(D2ũk) = fk(y) in B1(x) ∩ {yn > φ(y′)}
ũk(y) = g̃k(y) on B1(x) ∩ {yn = φ(y′)}

for g̃k(x) := gk(x) + x · ξk . Therefore, we can apply Theorem 4.4 for ũk and so by
Arzela–Ascoli theorem, we conclude that uk → u∞ uniformly in Br (x) ∩ {yn >

φ(y′)} for any 0 < r < 1. Then by Lemma 2.6, u∞ satisfies{
F∞(D2u∞) = 0 in B3/4(x) ∩ {yn > φ(y′)}
u∞(y) = g∞(y) onB3/4(x) ∩ {yn = φ(y′)},

which leads to the contradictionwith (5.4) (choose h = u∞, g = g∞, andF = F∞).
(ii) ({ξk}∞k=1 is unbounded) In this case, for the constant p0 > 0 chosen in Theorem 4.6,

we may assume |ξk | > p0 and |ξk | → ∞ (up to a subsequence). Thus, we can apply
Theorem 4.6 for uk and so by Arzela-Ascoli theorem, we conclude that uk → u∞
uniformly in Br (x) ∩ {yn > φ(y′)} for any 0 < r < 1. Again by Lemma 2.6, we
conclude that {

F∞(D2u∞) = 0 in B3/4(x) ∩ {yn > φ(y′)}
u∞(y) = g∞(y) on B3/4(x) ∩ {yn = φ(y′)},

which leads to the contradictionwith (5.4) (choose h = u∞, g = g∞, andF = F∞).

��
Remark 5.3 Let us summarize the boundary regularity results for uniformly elliptic fully
nonlinear equations with Dirichlet boundary conditions. To be precise, suppose that h is a
viscosity solution of an uniformly (λ,�)-elliptic equation{

F(D2h) = 0 in B+
1

h = g on B ′
1,
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where g ∈ C1,βg (B ′
1). Then h enjoys the boundary local C1,β ′

-estimate for some β ′ ∈ (0, 1),
due to Milakis and Silvestre in [34, Proposition 2.2], and Winter in [35, Theorem 3.1].
However, we cannot guarantee that the Hölder exponent β ′ coincides with βg . Recently,
[4, Theorem 2.1] derived the boundary local C1,β ′′

-estimate for β ′′ = min{α, βg}, and the
pointwise boundary C1,βg -estimate in the sense that there exists a linear function l which
approximates h in C1,βg -manner.

Proof of Lemma 5.1 By the smallness regime in Remark 4.1, we may assume that u ∈ C(�)

is a viscosity solution with

‖u‖L∞(B1∩{yn>φ(y′)}) ≤ 1, ‖g‖C1,βg (B1∩{yn=φ(y′)}) ≤ 1, ‖ f ‖L∞(B1∩{yn>φ(y′)}) ≤ ε0,

and ν0 = ν1 = 1. As in [5, 6, 11], the proof is based on the induction argument: we claim
that there exist universal constants 0 < ρ � 1, C0 > 1 and a sequence of affine functions

lk(y) := ak + bk · (y − x),

where {ak}∞k=1 ⊂ R and {bk}∞k=1 ⊂ R
n satisfy, for every k ∈ N,

(E1) supy∈B
ρk (x)∩{yn>φ(y′)} |u(y) − lk(y)| ≤ ρk(1+α′);

(E2) |ak − ak−1| ≤ C0ρ
(k−1)(1+α′) and |bk − bk−1| ≤ C0ρ

(k−1)α′
.

(i) (Initial step) Without loss of generality, we may assume x = 0. Let h be the approx-
imation function coming from Lemma 5.2 for a constant μ > 0 to be determined
later. Then, by the pointwise boundary estimate for uniformly elliptic fully nonlinear
operators obtained in [4, Theorem 2.1], there exist an affine function l1 and a universal
constant C0 > 0 such that

sup
y∈Bρ∩{yn>φ(y′)}

|h(y) − l1(y)| ≤ C0ρ
1+βg for every 0 < ρ ≤ 1/2,

and

|l1(0)| + |Dl1(0)| ≤ C0.

Then the triangle inequality yields that

sup
y∈Bρ∩{yn>φ(y′)}

|u(y) − l1(y)| ≤ C0ρ
1+βg + μ.

We now select a universal constant 0 < ρ � 1 small enough so that

C0ρ
βg ≤ 1

2
ρα′

and ρ1−α′(1+s(�)) ≤ 1, (5.5)

which is possible due to the choice of α′. In a sequel, we choose a constant μ :=
ρ1+α′

/2 and set a0 = 0, b0 = 0, a1 = l1(0), and b1 = Dl1(0), which completes the
proof of the initial step.

(ii) (Iterative procedure) We now suppose that (E1) and (E2) hold true for k ≥ 1. We then
verify (E1) and (E2) for k + 1. For this purpose, we define a rescaled function

uk(y) := u(ρk y) − lk(ρk y)

ρk(1+α′) .

Then uk satisfies{
�k(y, |ξk + Duk |)F(D2uk) = fk(y) in B1 ∩ {yn > φk(y′)}
uk(y) = gk(y) onB1 ∩ {yn = φk(y′)},
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where

Fk(M) := ρk(1−α′)F(ρk(α′−1)M), �k(y, t) := �(ρk y, ρkα′
t)

�(ρk y, ρkα′
)

,

fk(y) := ρk(1−α′)

�(ρk y, ρkα′
)

f (ρk y), gk(y) := g(ρk y) − lk(ρk y)

ρk(1+α′) ,

φk(y′) := ρ−kφ(ρk y′), and ξk := ρ−kα′
bk .

It can be easily checked that

(a) Fk satisfies (A1) with the same constants (λ,�);
(b) �k satisfies (A2) with the same constants (i(�), s(�)) and �k(y, 1) ≡ 1;
(c) ‖uk‖L∞(B1∩{yn>φk (y′)}) ≤ 1 by the induction hypothesis;
(d) ‖ fk‖L∞(B1∩{yn>φk (y′)}) ≤ Lε0ρ

k(1−α′(1+s(�))) ≤ Lε0 by (5.5);
(e) ‖D2φk‖L∞(B1∩{yn>φk (y′)}) ≤ ρk‖D2φ‖L∞(B1∩{yn>φ(y′)}) ≤ ‖D2φ‖L∞(B1∩{yn>φ(y′)}).

Moreover, for gk , we can compute

|Dgk(y) − Dgk(z)| = ρ−kα′ |Dg(ρk y) − Dg(ρk z)| ≤ ‖g‖C1,βg (∂�) · ρ−kα′ |ρk(y − z)|βg

≤ ‖g‖C1,βg (∂�) · |y − z|βg .

By recalling the fact that u = g on ∂� together with the induction hypothesis, we
observe that

‖gk‖C1,βg (B1∩{yn>φk (y′)}) ≤ ‖g‖C1,βg (∂�) ≤ 1.

Hence, we now apply Lemma 5.2 for uk and then follow the argument in the initial
step to ensure the existence of an affince function l(y) := a + b · y such that

sup
y∈Bρ∩{yn>φk (y′)}

|uk(y) − l(y)| ≤ ρ1+α′
and |a|, |b| ≤ C0.

By scaling back, we conclude that

sup
y∈B

ρk+1∩{yn>φ(y′)}
|u(y) − lk+1(y)| ≤ ρ(k+1)(1+α′),

where

lk+1(y) := lk(y) + ρk(1+α′) · l(ρ−k y).

Here note that

|ak+1 − ak | = ρk(1+α′)|a| ≤ C0ρ
k(1+α′),

|bk+1 − bk | = ρkα′ |b| ≤ C0ρ
kα′

.

Therefore, (E1) and (E2) hold for k + 1.

��
Proof of Theorem 1.2 We first consider the degenerate case, i.e., i(�) ≥ 0. We note that, by
applying Lemma 5.1, a viscosity solution can be approximated by an affine function with
an error of order r1+α′

at boundary points. By following the argument in the proof of [4,
Theorem 1.1], we can derive the desired global C1,α-estimate with α satisfying (1.5).
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On the other hand, for the singular case (i(�) < 0), we employ the idea of [5, Theorem
1.1]. Indeed,we claim thatLemma5.1 still holds for the singular case. Theorem4.4 guarantees
that

‖u‖C0,1(B3/4∩{yn>φ(y′)}) ≤ c,

for a universal constant c > 0. Then u is a viscosity solution of
{

�̃(y, |Du|)F(D2u) = f̃ (y) in B3/4 ∩ {yn > φ(y′)}
u(y) = g(y) on B3/4 ∩ {yn = φ(y′)},

where

�̃(y, t) := t−i(�)�(y, t) and f̃ (y) := |Du|−i(�) f (y).

Here �̃ satisfies the condition (A2) with i(�̃) = 0, s(�̃) = s(�) − i(�), and

‖ f̃ ‖L∞(�) ≤ c−i(�)ε0.

Thus, one can repeat the argument in the proof of Lemma 5.1 to obtain the global C1,α-
estimate. ��

6 Comparison principle and Perron’s method

The purpose of this section is to study the classical result of comparison principle and as a
consequence, to deduce the existence of a viscosity solution to (1.1) by Perron’smethod. Nev-
ertheless, the assumptions (A1)–(A4) are not sufficient to obtain the aforementioned results.
Therefore, we require an additional assumption (A5) which guarantees the comparison prin-
ciple for approximated Dirichlet problems. Before we precisely state this new assumption,
we summarize known results regarding the comparison principle.

Remark 6.1 (Comparison principle) Let H : Rn × R × R
n × S(n) → R be a proper map.

In other words, H satisfies

H(x, r , p, X) ≤ H(x, r , p, Y ) whenever X ≤ Y , (6.1)

H(x, r , p, X) ≤ H(x, s, p, X) whenever s ≤ r . (6.2)

Then we say that H satisfies the comparison principle if the following holds:
Let v ∈ USC(�) [resp. w ∈ LSC(�)] be a subsolution [resp. supersolution] of H = 0 in

� and v ≤ w on ∂�. Then v ≤ w in �.
We refer to [8, 13, 23, 28, 29] for several sufficient conditions of the comparison principle.

In short, H satisfies the comparison principle if H(x, r , p, X) is independent of x , and one
of the following conditions holds:

(i) H(x, r , p, X) is strictly decreasing in r and H is degenerate elliptic (i.e., H satisfies
(6.1)), or

(ii) H(x, r , p, X) is non-increasing in r and H is uniformly elliptic.

It is noteworthy that the condition that H is independent of x can be relaxed to some extra
structural conditions on H , which display a kind of smoothness on H with respect to x-
variable; see [13, 23, 28] for details.
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We now consider a proper map

H(x, u, Du, D2u) := �(x, |Du|)F(D2u) − f (x).

It is easily checked that H is degenerate elliptic, nonincreasing in r , and H depends on
x . In view of the previous remark, we cannot expect the comparison principle for H and
Perron’s method for the associated Dirichlet problem. To overcome this challenge, we will
impose an additional structure condition on H and approximate the map H to ensure the
strict monotonicity with respect to r -variable:

(i)(A5) There exists a continuous function ω : [0,∞) → [0,∞) such that ω(0) = 0
and

�(x, θ |x − y|)F(X) − �(y, θ |x − y|)F(−Y ) ≤ ω(θ |x − y|2 + |x − y|),
whenever θ > 0, x, y ∈ �, X , Y ∈ S(n) and

−3θ

(
I 0
0 I

)
≤

(
X 0
0 Y

)
≤ 3θ

(
I −I

−I I

)
. (6.3)

(ii) Let us consider the approximated problem given by

Hε(x, u, Du, D2u) := �(x, |Du|)F(D2u) − f (x) − εu = 0 in � (6.4)

for ε > 0. Clearly, Hε is strictly decreasing in r .

Remark 6.2 Wewould like to provide a concrete example of (�, F) that satisfies the condition
(A5). Indeed, suppose that F is degenerate elliptic and � is independent of x-variable, that
is, �(x, ξ) ≡ �(ξ). Then for X , Y satisfying the relation (6.3), we have F(X) ≤ F(−Y ).
Therefore, we observe that

�(x, θ |x − y|)F(X) − �(y, θ |x − y|)F(−Y ) = �(|x − y|)(F(X) − F(−Y )) ≤ 0.

We also refer to [8, Condition 2], [13, Condition (3.14)], and [6, Remark 2.2] for the corre-
sponding assumptions in different settings.

We are now ready to present the second version of a comparison principle, which can be
seen as a variant of [6, Theorem 2.3].

Lemma 6.3 (Comparison principle II) Suppose that the assumptions (A1), (A2), (A5) are in
force and f ∈ C(�). Then Hε satisfies the comparison principle:

Let v and w be a viscosity subsolution and a supersolution of (6.4), respectively. If v ≤ w

on ∂�, then v ≤ w in �.

Proof By contradiction, we suppose that

L0 := sup
x∈�

(v(x) − w(x)) > 0.

For any θ > 0, we define

Lθ := sup
x,y∈�

[
v(x) − w(y) − (θ/2)|x − y|2]

and clearly Lθ ≥ L0. Suppose that the maximum Lθ is attained at a point (xθ , yθ ) ∈ �×�.
It implies from [13, Lemma 3.1] that

lim
θ→∞ θ |xθ − yθ |2 = 0.
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This one and the fact that v ≤ w on ∂� yield that xθ , yθ ∈ � for θ > 0 large enough. At this
moment, we are able to apply Ishii–Jensen lemma, [13, Theorem 3.2], to ensure that there
exist a limiting super-jet (θ(xθ − yθ ), Xθ ) of v at xθ and a limiting sub-jet (θ(xθ − yθ ),−Yθ )

of w at yθ so that

−3θ

(
I 0
0 I

)
≤

(
Xθ 0
0 Yθ

)
≤ 3θ

(
I −I

−I I

)

and {
�(xθ , θ |xθ − yθ |) F(Xθ ) − εv(xθ ) ≥ f (xθ )

� (yθ , θ |xθ − yθ |) F(−Yθ ) − εw(yθ ) ≤ f (yθ ).

By using the relation L0 = limθ→∞[v(xθ ) − w(yθ )] and the assumption (A5), we have, for
sufficiently large θ > 0,

εL0

2
≤ ε[v(xθ ) − w(yθ )]
≤ f (yθ ) − f (xθ ) + �(xθ , θ |xθ − yθ |) F(Xθ ) − �(yθ , θ |xθ − yθ |) F(−Yθ )

≤ f (yθ ) − f (xθ ) + ω(θ |xθ − yθ |2 + |xθ − yθ |).
Since f ∈ C(�) and ω(0+) = 0, we arrive at a contradiction when θ → ∞. ��

We now turn our attention to showing the existence of viscosity sub/supersolutions to
(6.4); we refer to [6, Lemma 2.2] for a similar result.

Lemma 6.4 (Existence of sub/supersolutions) Suppose the assumptions (A1)–(A4) are in
force. Then for every ε ∈ (0, 1), there exist a viscosity subsolution vε ∈ C(�) and a viscosity
supersolution wε ∈ C(�) of (6.4)with vε = wε = g on ∂�. Moreover, there exists a positive
constant c ≡ c(n, λ,�, ν0, L, r , diam(�), ‖ f ‖L∞(�), ‖g‖L∞(∂�)) such that

−c ≤ vε ≤ wε ≤ c for any 0 < ε < 1.

Proof Let z ∈ ∂� be a fixed point. There exists a point xz ∈ R
n\� such that Br (xz)∩� = {z}

with r = |z−xz | since� satisfies the exterior ball condition; seeLemma2.2.Wenowconsider
a function vz : � → [0,∞) defined by

vz(x) := K
(
r−κ0 − |x − xz |−κ0

)
for positive constants κ0 := (n�+1)/λ and K ≥ min

{
1, Rκ0+1/κ0

}
to be determined later,

with R := r + diam(�). Note that vz(z) = 0, vz > 0 in �, and direct calculations yield that

Dvz(x) = Kκ0
x − xz

|x − xz |κ0+2

and

D2vz(x) = Kκ0
I

|x − xz |κ0+2 − Kκ0(κ0 + 2)
(x − xz) ⊗ (x − xz)

|x − xz |κ0+4 .

Due to the choice of κ0, we have

F(D2vz(x)) ≤ Kκ0

|x − xz |κ0+2 ((n − 1)� − (κ0 + 1)λ) ≤ − Kκ0

|x − xz |κ0+2 .
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On the other hand, for a fixed δ ∈ (0, 1), we further define

vz,δ(x) := g(z) + δ + Mδvz(x),

where the constant Mδ ≥ 1 can be chosen so that vz,δ ≥ g on ∂�. This is possible because
K ≥ 1 and g is continuous on ∂�. Indeed, Mδ depends only on the modulus of continuity
of g, and is independent of z. Then we see that

�(x, |Dvz,δ(x)|)F(D2vz,δ(x)) − εvz,δ(x)

≤ ν0

L
min

{(
Kκ0

|x − xz |κ0+1

)i(�)

,

(
Kκ0

|x − xz |κ0+1

)s(�)
}

·
(

−Mδ

Kκ0

|x − xz |κ0+2

)
+ ε ‖g‖L∞(∂�) .

Here if we let A := Kκ0/|x − xz |κ0+1, then

min
{

Ai(�), As(�)
}

= A−1 min
{

Ai(�)+1, As(�)+1
}

≥
(

Kκ0

rκ0+1

)−1

min

{(
Kκ0

Rκ0+1

)i(�)+1

,

(
Kκ0

Rκ0+1

)s(�)+1
}

.

Note that we need to select K so that Kκ0 ≥ Rκ0+1. Since 0 < i(�) + 1 ≤ s(�) + 1, we
conclude that

min
{

Ai(�), As(�)
}

≥
( κ0

rκ0+1

)−1 ( κ0

Rκ0+1

)i(�)+1
K i(�).

Hence, we deduce that

�(x, |Dvz,δ(x)|)F(D2vz,δ(x)) − εvz,δ(x)

≤ −ν0

L

( κ0

rκ0+1

)−1 ( κ0

Rκ0+1

)i(�)+1 κ0

Rκ0+2 K i(�)+1 + ‖g‖L∞(∂�) .

Therefore, we can choose K = K (n, λ,�, ν0, L, r , diam(�), ‖ f ‖L∞(�), ‖g‖L∞(∂�)) large
enough so that

�(x, |Dvz,δ(x)|)F(D2vz,δ(x)) − εvz,δ(x) ≤ −‖ f ‖L∞(�) in �,

i.e., vz,δ is a viscosity supersolution to (6.4).
Finally, we define

wε(x) := inf
{
vz,δ(x) : z ∈ ∂� and δ ∈ (0, 1)

}
.

It is easy to check that wε is a viscosity supersolution to (6.4) in � and enjoys the boundary
condition wε = g on ∂�. Moreover, it immediately follows from the construction of wε that

wε ≤ C(n, λ,�, ν0, L, diam(�), ‖ f ‖L∞(�), ‖g‖L∞(∂�)) in �

for any ε ∈ (0, 1). The existence of a viscosity subsolution vε and its lower bound can be
shown in a similar manner. Finally, since vε = wε = g on ∂�, Lemma 6.3 implies that
vε ≤ wε in �. ��
Proof of Theorem 1.4 An application of Perron’s method [13, Theorem 4.1] together with
Lemma 6.3 and Lemma 6.4 yields the existence of a viscosity solution uε to the approximated
equation (6.4) with the boundary condition uε = g.
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We now understand uε as a viscosity solution of

{
�(x, |Duε|)F(D2uε) = fε(x) in �

uε(x) = g(x) on ∂�,

where fε(x) := f (x) + εuε(x). Here note that { fε}ε∈(0,1) is uniformly bounded in L∞(�)

by Lemma 6.4. Then, by applying [5, Lemma 3.1] and Theorem 4.4 (or just by applying the
stronger result Theorem 1.2), we have that {uε}ε∈(0,1) is uniformly bounded in C0,γ (�) for
some γ ∈ (0, 1). Therefore, we can extract a uniformly converging subsequence such that
uε j → u∞ when ε j → 0, and by Lemma 2.6, we conclude that u∞ solves (1.1). ��
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