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Abstract
We revisit the localmetaplectic correspondence previously constructed and studied by Flicker
andKazhdan. After restoring and generalizing some of their results, we get several interesting
applications to the representation theory of aKazhdan–Patterson covering group over a p-adic
field, including a full criterion of the irreducibility of the Bernstein–Zelevinsky product of
two cuspidal representations, the classification of essentially square integrable and tempered
representations, and more interestingly, the calculation of the Whittaker dimension of an
irreducible representation based on a conjecture.
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1 Introduction

Motivated by the famous program of Robert Langlands, a main topic in the representation
theory is the study of the category of smooth representations of a p-adic reductive group,
and functorial maps between such categories for different p-adic reductive groups over a
fixed base field. We leave [8] for an expository introduction. Still motivated by the hope of
generalizing Langlands’ philosophy to larger classes of p-adic groups, the representation
theory of finite central covering groups of p-adic reductive groups gradually became shining
in the past decades. Correspondingly, we leave [19] for a historical introduction.

The main focus of this article is more concrete: we study a certain functorial map, called
the local metaplectic correspondence, from the set of (certain) representations of a Kazhdan-
Patterson covering group of a p-adic general linear group, to that of a p-adic general linear
group. Our goal is, on the one hand, to restore and slightly generalize the existing theory, and
on the other hand, to dig out interesting applications of this fascinating map.

We give a brief introduction of the above theory. Let F be a p-adic field and assume that
the subgroup of F× of n-th roots of unity, denoted by μn , is of order n. We consider a certain
n-fold covering group ˜Gr as a central extension of Gr := GLr (F) by μn , constructed by
Kazhdan-Patterson in their seminal work [32] (see §2.2 for more details). In particular when
r = 1 we get a central extension of F× by μn twisted by a power of the n-th Hilbert symbol,
and when r = 2 we get the cover considered by Kubota [34] (which is for SL2(F) but can
be extended to GL2(F)).

The (local) metaplectic correspondence (for essentially square integrable representations)
is a map from the set of genuine essentially square integrable representations of ˜Gr to the
set of essentially square integrable representations of Gr that are trivial on μn Ir ⊂ Gr .
Such a map is determined by a formula of Harish-Chandra characters of representations
and constructed using a trace formula comparison. Historically, in the case r = n = 2 it
first occurred as a map between two different classes of modular forms and is called the
“Shimura correspondence” [45]. Using a trace formula comparison, Flicker [17] constructed
themetaplectic correspondence for r = 2 andgeneraln andFlicker-Kazhdan [18] generalized
the above theory to general r and n.

Our starting point is the metaplectic correspondence for essentially square integrable rep-
resentations of ˜Gr and Gr constructed in [18]. The first result of this article is to construct
the metaplectic correspondence for essentially square integrable representations of Levi sub-
groups of ˜Gr and Gr as well (cf. §3.1). After that, we study its compatibility with parabolic
induction and Jacquet module (cf. §3.3).

In the rest of Sect. 3, we focus on following applications of metaplectic correspondence,
including:

• (cf. Proposition 3.14) For a cuspidal representation ρ̃ of ˜Gr , we determine the exact value
of the positive real number s(ρ̃) (which is unique) such that (ρ̃˜×ρ̃νs(ρ̃))ω̃ is reducible.
Here ˜× denotes the Bernstein-Zelevinsky product, ν(·) := |det(·)|F is an unramified
character of Gr and ω̃ is a compatible genuine character of Z(˜G2r ).

• (cf. Proposition 3.16) We classify all the essentially square integrable representations
of ˜Gr as well as their image under the metaplectic correspondence, in the sense of the
Zelevinsky classification (cf. [31]).

• (cf. Proposition 3.17, Proposition 3.20) We classify all the essentially tempered repre-
sentations of ˜Gr via the Zelevinsky classification, and we study a possible metaplectic
correspondence for essentially tempered representations.
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The above applications serve well as “appetizers”, and in Sect. 4 our “main dish” is to
calculate the dimension of theWhittaker space of an irreducible representation of ˜Gr . Unlike
the linear case, in general for a covering group such a Whittaker space does not satisfy
the multiplicity one theorem. This causes additional difficulties in studying automorphic
representations and local–global compatiblities, since usually the construction of a global
L-function, in particular its factorization as an Euler product, is based on the uniqueness of
Whittaker model (cf. [27] for the Rankin-Selberg integral for instance).

To achieve a reasonable theory of global automorphic representations, it is important to
understand the dimension of a Whittaker space. This is illustrated in the work of Kaplan (cf.
[29, Appendix A], [30]), using generalized doubling method to study the L-function of a
pair of representations of a covering group of Gr

1. A key idea in his argument is that, one
need to pick a certain generalized Speh representation whose Whittaker dimension is one
(cf. [30, Conjecture 14]). The consideration of such a generalized Speh representation dates
back to the work of Suzuki [46] of distinguished representations. Then the Euler product
factorization of the related generalized doubling integral follows from this multiplicity one
fact.

We explain our idea of calculating the Whittaker dimension of an irreducible represen-
tation for a Kazhdan-Patterson covering group. In our case, the Whittaker functor is exact
and compatible with the Bernstein-Zelevinsky product (cf. Proposition 4.2). Then using the
Zelevinsky classification essentially we only need to calculate the Whittaker dimension of
an essentially square integrable representation π̃ of ˜Gr (cf. Remark 4.14). The Whittaker
dimension of π̃ can be re-explained by the Harish-Chandra germ function cπ̃ of π̃ evaluated
at the identity, which is a well-known result in the linear case [41, 43] and also generalized
to the covering group case [42]. Let π be the metaplectic lift of π̃ , then using the metaplec-
tic correspondence the above question is reduced to calculating the Harish-Chandra germ
function cπ of π evaluated at diagonal elements of order dividing n in Gr (cf. Corollary 4.3).

Let π ′ = Z(ρ, [a, b]) be the unique irreducible subrepresentation of the Bernstein-
Zelevinsky product ρνa × ρνa+1 × · · · × ρνb, where ρ is a cuspidal representation of
Gr0 and a ≤ b are two integers. We propose a general conjecture (cf. Conjecture 4.6) about
the value of cπ ′ at a diagonal element of order dividing n. Our conjecture has its own inter-
est, which dates back to the classical but difficult question of calculating special values of
a Harish-Chandra germ function (cf. [26, Introduction]). Using this conjecture and Tadic’s
determinantal formula, we are able to calculate the value of cπ at a diagonal element of order
n, and thus the Whittaker dimension of π̃ (cf. Theorem 4.7). Our dimensional formula seems
to be neat enough.

We verify Conjecture 4.6 for the following two cases (cf. §4.4):

• r0 = 1 and ρ is a character of F×;
• a = b and π ′ is cuspidal.

The first case is rather direct, since π ′ itself is a character. The proof of the second case
is based on a rudiment usage of the simple type theory of Bushnell-Kutzko [12]. Hope-
fully our argument for the second case can be used to other groups and their supercuspidal
representations.

Finally, in Sect. 5 we explain how our results could be used to study an analogue of [30,
Conjecture 14] for a Kazhdan-Patterson covering group.

We end the introduction by comparing our result with other work of calculating the
Whittaker dimension of an irreducible representation of a covering group. For a Kazhdan-

1 We should warn the readers that in loc. cit. a different covering group of Gr is considered. But hopefully a
similar theory could be established for a Kazhdan-Patterson covering group.
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Patterson covering group, to the knowledge of the author, the only known cases2 are principal
series and their subquotients [32, 33, 46], as well as depth 0 cuspidal representations [7].
For general covering groups, still the known cases are confined to principal series and their
subquotients, and depth 0 cuspidal representations. We refer to the work of F. Gao and his
collaborators for more details, cf. [20–24].

The authorwould like to thankNingGuo,MaxGurevich, EyalKaplan, Erez Lapid, Caihua
Luo, Vincent Sécherre and Chuijia Wang for helpful correspondences or discussions, and
the anonymous referees for their pertinent advice. This research was supported by the Israel
Science Foundation (grant No. 737/20).

2 Preliminaries

2.1 Notation

Throughout this article F will be a non-archimedean locally compact field of residue char-
acteristic p, and beginning from Sect. 3 we will also assume F to be of characteristic 0. Let
oF be its ring of integers, let pF be the maximal ideal of oF and let Fq be its residue field.
Let |·|F be the normalized absolute value of F .

We consider �-groups in the sense of Bernstein-Zelevinsky [4]. The �-groups we are
considering in this paper will be the F-points of reductive groups as well as their finite
central extensions. For an �-group G and its closed subgroup H , we denote by Z(G) the
center of G and by ZG(H) the centralizer of H in G. In particular, we let Gr = GLr (F) for
a positive integer r .

By representations of an �-group G, we always mean complex smooth representations.
Similarly by characters we mean one-dimensional representations. We denote by Rep(G),
Irr(G), Temp(G), Sqrt(G), Cusp(G) the sets of equivalence classes of finite length rep-
resentations, irreducible representations, irreducible essentially tempered representations,
irreducible essentially square integrable representations and irreducible cuspidal representa-
tions respectively. For a closed subgroup Z of Z(G) and a character ω of Z , we denote by
Irrω(G), Tempω(G), Sqrtω(G), Cuspω(G) the corresponding subsets of those equivalence
classes of representations with central character restricted to Z being ω. For a representation
π of H and a positive integer m, we let m · π be the direct sum of m-copies of π . If π is
irreducible, then we let ωπ be its central character.

If G is a finite central extension of a reductive group over F (or even an open finite index
subgroup of such a group), we let θπ be the Harish-Chandra character of π as a locally
integrable function on G, that is smooth on the semi-simple regular locus of G. This notation
can also be generalized to any finite length representations of G by considering the sum
of the Harish-Chandra characters of each irreducible subquotient. We also remark that if
π ∈ Irr(G), then π is determined by θπ . Moreover if π ∈ Sqrt(G), then π is determined by
the restriction of θπ to the elliptic locus (cf. for instance [16]).

For a non-negative integer m and an integer k, we denote by
(m
k

)

the binomial coefficient
of xk in (1 + x)m , and by m! the factorial of m.

2 Here, by “known” we mean that a concrete value could theoretically be obtained, although sometimes there
exist combinatorial difficulties. Also see Remark 4.10.
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2.2 Kazhdan-Patterson covering group

Fix a positive integer n. Let μn := μn(F) be the group of n-th roots of unity in F . From
now on we further assume that the cardinality of μn is n. We let F×n := {xn | x ∈ F×} be
an open finite index subgroup of F×. We denote by

(·, ·)n : F× × F× → μn

the n-th order Hilbert symbol. It is a bimultiplicative antisymmetric pairing that defines a
non-degenerate bimultiplicative pairing on F×/F×n × F×/F×n (cf. [52, XIII.§5]).

For a (connected) reductive group G over F (we use G to denote its F-points by abuse of
notation), we consider its central extension of �-groups

0 μn ˜G
p

G 0 ,

which is called an n-fold covering group. The set of equivalence classes of such central
extensions is in bijectionwith the continuous cohomology group H2(G, μn). More precisely,
we fix a continuous section s : G → ˜G, that is, p ◦ s = id. Then the central extension ˜G
corresponds to the cohomology class of the 2-cocycle σ : G × G → μn satisfying

s(g1)s(g2) = s(g1g2)σ (g1, g2), g1, g2 ∈ G.

In particular, we consider the case G = Gr . Let σSLr+1 be the special 2-cocycle of
SLr+1(F) considered by Matsumoto [37] with respect to the Steinberg symbol (·, ·)−1

n . Let
σ (0) be the pull-back of σSLr+1 via

Gr → SLr+1(F), g �→ diag(det(g)−1, g).

The explicit construction and calculation of σ (0) has been done in [3]. Finally for any c ∈
Z/nZ let σ (c) be the 2-cocycle satisfying

σ (c)(g1, g2) = σ (0)(g1, g2) · (det(g1), det(g2))
c
n, g1, g2 ∈ Gr .

From now on we fix c ∈ Z, and we call the n-fold cover ˜Gr corresponding to σ (c) aKazhdan-
Patterson covering group of Gr . In particular ˜F× will denote the n-fold cover of F× with
respect to the 2-cocycle (·, ·)cn .

For a closed subgroup H of Gr , let p−1(H) or ˜H be the preimage of H in ˜G and let
H (n) = {h ∈ H | det(h) ∈ F×n} be an open normal subgroup of H of finite index.

Let β be a composition of r . It means that β = (r1, . . . , rk) for certain k and positive
integers ri such that r = r1 + · · · + rk . Let Gβ be the standard Levi subgroup of Gr with
respect to β. So Gβ 	 Gr1 × · · · × Grk with each Gri being regarded as a subgroup of Gr

via the embedding gi �→ diag(Ir1 , . . . , Iri−1 , gi , Iri+1 , . . . , Irk ).
We recall the following properties concerning a Kazhdan-Patterson covering group.

1. When r = 1, we have σ (c)(x, y) = (x, y)cn for x, y ∈ F×.
2. ([3, Theorem 11]) The restriction of σ (c) to Gβ × Gβ is given by

σ (c)(diag(x1, . . . , xk), diag(y1, . . . , yk))

=
k
∏

i=1

σ (c)(xi , yi ) ·
∏

1≤i< j≤k

(det(xi ), det(y j ))
c+1
n (det(x j ), det(yi ))

c
n, xi , yi ∈ Gri .

(2.1)
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43 Page 6 of 33 J. Zou

3. ([15, §2.1, Lemma 1]) The center of ˜Gr is given by

Z(˜Gr ) = p−1({λIr | λ2rc+r−1 ∈ F×n}). (2.2)

4. By a direct calculation,

G(n)
β ∩ p(Z(˜Gr )) = G(n)

r ∩ p(Z(˜Gr )) = F×n Ir . (2.3)

We fix a faithful character ε : μn → C

×. For a closed subgroup H ofGr , a representation
π̃ of ˜H is called ε-genuine (or simply genuine if ε is clear) if the restriction of π̃ to μn

acts by ε. Notice that if a representation of ˜H is not genuine, then it factors through an
n′-fold covering group with n′ dividing n. So essentially we only need to stick to ε-genuine
representations. We also remark that the H -conjugation on ˜H and π̃ , as well as the twist
π̃ · χ for χ being a character of H are well-defined in the usual sense.

2.3 Metaplectic tensor product

In this subsection, we rephrase the construction of metaplectic tensor product for irreducible
representations in [31, §4]. Our presentation here is rather down-to-earth, which in particular
generalizes the previous works of Kable [28], Mezo [39] and Takeda [48, 49].

We keep the notations of the last subsection. Let Hi be a closed subgroup of Gri for
each i = 1, . . . , k and let H = H1 × · · · × Hk be a closed subgroup of Gβ . Such an H is
called block compatible if the groups ˜Hi are pairwise commutative as subgroups in ˜H for
i = 1, . . . , k. In this case, the group ˜H is isomorphic to ˜H1 × · · · × ˜Hk/
 with


 = {(ζ1, . . . , ζk) ∈ μn × · · · × μn | ζ1 · · · ζk = 1}.
If H is block compatible, then for each i and a genuine representation π̃i of ˜Hi , the tensor
product

π̃1 ⊗ · · · ⊗ π̃k

defines a representation of ˜H1 × · · · × ˜Hk that descends to a representation of ˜H , which we
denote by

π̃1˜⊗ · · · ˜⊗π̃k .

We remark that in general H is usually not block compatible, but the group H (n)
1 ×· · ·×H (n)

k
is block compatible by (2.1).

Now for each i = 1, . . . , k let γi be a composition of ri and let γ = γ1 + · · · + γk be
a composition of r as a refinement of β. Given π̃i ∈ Irrε(˜Gγi ) for each i , our goal is to
construct a representation in Irrε(˜Gγ ) as some kind of “tensor product” of π̃i . This cannot
be achieved directly, since Gγ = Gγ1 × · · · × Gγk is not block compatible. But instead, its
open and finite index subgroup

G(n)
γ,β := G(n)

γ1
× · · · × G(n)

γk

is block compatible. In particular this notation is valid for γ = β. So we may first restrict

each π̃i to
˜

G(n)
γi , which we denote by π̃

(n)
i . Then we take the tensor product π̃ (n)

1
˜⊗ · · · ˜⊗π̃

(n)
k

as a representation of
˜

G(n)
γ,β . Finally we consider the induction Ind

˜Gγ

˜

G(n)
γ,β

(π̃
(n)
1

˜⊗ · · · ˜⊗π̃
(n)
k ) and

take one of its irreducible component as the “tensor product” we want. Bootstrapping the
above procedure gives us as the following theorem.
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Theorem 2.1 [31, Proposition 3.10 and §4.2]
Let π̃ ∈ Irrε(˜Gγ ) and let π̃i ∈ Irrε(˜Gγi ) for each i = 1, . . . , k.

1. The center of ˜Z(Gβ) is Z(˜Gr )
˜

Z(G(n)
β,β), and [ ˜Z(Gβ) : Z(˜Gr )

˜

Z(G(n)
β,β)] is the square of

a positive integer nβ .
2. Let τ̃ be any irreducible component of π̃ (n) := π̃ |

˜

G(n)
γ,β

, then we have

π̃ (n) 	 nβ ·
⊕

g∈˜Gγ /˜Z(Gβ )
˜

G(n)
γ,β

τ̃ g, (2.4)

where those τ̃ g on the right-hand side are pairwise inequivalent. We let mβ := nβ · [˜Gγ :
˜Z(Gβ)

˜

G(n)
γ,β ] which is the total multiplicity of π̃ (n).

3. We call a character ω̃ of Z(˜Gr ) compatible (with respect to (π̃1, . . . , π̃k)) if the following
compatibility condition is satisfied

k
∏

i=1

ωπ̃i (s(λIri )) = ω̃(s(λIr )) for any λ ∈ F×n . (2.5)

Then we have

Ind
˜Gγ

˜

G(n)
γ,β

(π̃
(n)
1

˜⊗ · · · ˜⊗π̃
(n)
k ) 	 Mβ ·

⊕

ω̃

(π̃1˜⊗ · · · ˜⊗π̃k)ω̃, (2.6)

where ω̃ ranges over all the characters of Z(˜Gr ) satisfying (2.5), and (π̃1˜⊗ · · · ˜⊗π̃k)ω̃
is an irreducible representation of ˜Gγ whose central character restricted to Z(˜Gr ) is

ω̃, and Mβ := nβ · ∏k
i=1 m(ri ). Here each m(ri ) is defined as in (2) by taking β = (ri )

correspondingly.
4. • For two genuine characters ω̃, ω̃′ of Z(˜Gr ) satisfying (2.5), there exists a character

χ of Gγ /G(n)
γ such that

(π̃1˜⊗ · · · ˜⊗π̃k)ω̃′ 	 (π̃1˜⊗ · · · ˜⊗π̃k)ω̃ · χ.

• Let π̃ ′
i ∈ Irrε(˜Gγi ) for i = 1, . . . , k such that (π̃1, . . . , π̃k; ω̃) and (π̃ ′

1, . . . , π̃
′
k; ω̃)

satisfy (2.5), then

(π̃ ′
1˜⊗ · · · ˜⊗π̃ ′

k)ω̃ 	 (π̃1˜⊗ · · · ˜⊗π̃k)ω̃

if and only if π̃ ′
i 	 π̃iχi for a certain character χi of Gγi /G

(n)
γi for each i .

• Every π̃ ∈ Irrε(˜Gγ ) is of the form (π̃1˜⊗ · · · ˜⊗π̃k)ω̃ for certain π̃i ∈ Irrε(˜Gγi ) for
each i and a compatible genuine character ω̃ of Z(˜Gr ).

Thus for π̃i ∈ Irrε(˜Gγi ) and a character ω̃ of Z(˜Gr ) satisfying (2.5), we define
(π̃1˜⊗ · · · ˜⊗π̃k)ω̃ the metaplectic tensor product with respect to (π̃1, . . . , π̃k; ω̃) as in the
theorem. It is clear that (π̃1˜⊗ · · · ˜⊗π̃k)ω̃ ∈ Cε(˜Gγ ) if and only if π̃i ∈ Cε(˜Gγi ) for each
i = 1, . . . , k, where C could be Temp, Sqrt and Cusp.

For any positive integer m we define dF (m) := m · |m|−1/2
F . So dF : Z>0 → Q>0 is a

multiplicative function. In particular dF (m) = m if gcd(m, p) = 1.
For a positive integer r0, we define d ′

r0 = gcd(n, r0) and dr0 = gcd(n, 2r0c+ r0 − 1). We
emphasize that dr0 depends on n, r0 as well as c.

We have the following basic lemma.
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Lemma 2.2 [52, Corollary of Proposition II.9, Proposition XIII.6]
Assume m divides n. Then we have [F× : F×m] = dF (m)2, and moreover dF (m) is an

integer.

In practice, it is useful to know the exact value of the multiplicities nβ ,mβ , Mβ considered
in the theorem.

Proposition 2.3 1.

nβ =
∏k

i=1[F× : F×n/d ′
ri ]1/2

[F×n/dr : F×n]1/2 = dF (nk)

dF (dr · ∏k
i=1 d

′
ri )

.

2.

mβ = [F× : F×n]k/2 · ∏k
i=1[F× : F×d ′

ri ]1/2
[F×n/dr : F×n]1/2 = dF (nk · ∏k

i=1 d
′
ri )

dF (dr )
.

3.

Mβ = [F× : F×n]k
[F×n/dr : F×n]1/2 · ∏k

i=1[F×n/dri : F×n]1/2 = dF (n2k)

dF (dr · ∏k
i=1 dri )

.

Proof Using Lemma 2.2 we only need to prove the left part of each equation. We have

n2β = [ ˜Z(Gβ) : Z(˜Gr )
˜

Z(G(n)
β,β)] = [ ˜Z(Gβ) : ˜

Z(G(n)
β,β)]/[Z(˜Gr ) : Z(˜Gr ) ∩ ˜

Z(G(n)
β,β)].

By definition,

[ ˜Z(Gβ) : ˜

Z(G(n)
β,β)] = [Z(Gβ) : Z(G(n)

β,β)] =
k
∏

i=1

[F× : F×n/d ′
ri ],

and by (2.2) and (2.3) we have

[Z(˜Gr ) : Z(˜Gr ) ∩ ˜

Z(G(n)
β,β)] = [F×n/dr : F×n].

So indeed we proved (1). By definition

[˜Gγ : ˜Z(Gβ)
˜

G(n)
γ,β ] = [Gγ : Z(Gβ)G(n)

γ,β ] =
k
∏

i=1

[Gγi : Z(Gri )G
(n)
γi

] =
k
∏

i=1

[F× : F×d ′
ri ],

so using (1) we also proved (2). Finally (3) follows from (1) and (2). �


Finally the following corollary will be used later on.

Corollary 2.4 Let π̃i ∈ Irrε(˜Gγi ) for i = 1, . . . , k and let ω̃ be a character of Z(˜Gr ) satisfying
(2.5), then

k
∏

i=1

dF (dri ) · (π̃
(n)
1

˜⊗ · · · ˜⊗π̃
(n)
k ) 	 dF (dr ) · (π̃1˜⊗ · · · ˜⊗π̃k)

(n)
ω̃ .
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Proof First we notice that the restriction (π̃1˜⊗ · · · ˜⊗π̃k)
(n)
ω̃ does not depend on the choice of

ω̃, which follows from Theorem 2.1.(4). Then restricting (2.6) to
˜

G(n)
γ,β and using the Mackey

formula, we have

[˜Gγ : ˜

G(n)
γ,β ] · (π̃

(n)
1

˜⊗ · · · ˜⊗π̃
(n)
k ) 	 Mβ · [F×n/dr : F×n] · (π̃1˜⊗ · · · ˜⊗π̃k)

(n)
ω̃ .

Notice that

[˜Gγ : ˜

G(n)
γ,β ] = [Gγ : G(n)

γ,β ] = [F : F×n]k,
then our result follows from the Krull-Schmidt theorem and Proposition 2.3.(3). �


3 Metaplectic correspondence

In this section we recall and update the metaplectic correspondence studied by Flicker and
Kazhdan [18].

3.1 Definition

Fix a character ω : Z(Gr ) → C

× and a genuine character ω̃ : Z(˜Gr ) → C

× such that

ω̃(s(zn)) = ω(z) for every z ∈ Z(Gr ). (3.1)

Notice that the existence of such ω̃ is equivalent to ω|μn= 1, and conversely ω is totally
determined by ω̃. Consider the map

Gr → ˜Gr , x �→ x∗ = u(x)s(x)n,

where u(x) = ±1 is defined exactly as in [18, §4]. The key point is that this “star” map is
equivariant under Gr -conjugacy (cf. [33, Theorem 4.1]), thus it induces a map from the set
of conjugacy classes of ˜Gr to that of Gr .

Let β = (r1, . . . , rk) be a composition of r . An element g ∈ Gβ is called

• semi-simple if it is diagonalizable as a matrix in GLr (F) with F being the algebraic
closure of F ;

• semi-simple regular if the roots of its characteristic polynomial are pairwise different;
• elliptic if F[X ]/(Pg(X)) is a field of degree r over F , where Pg(X) denotes the charac-

teristic polynomial of g.

For g = diag(g1, . . . , gk) ∈ Gβ semi-simple and αi1, . . . , αiri the roots of the characteristic
polynomial of gi for each i , we define

DGβ (g) =
k
∏

i=1

∏

1≤ j<l≤ri ,
αi j �=αil

∣

∣αi j − αil
∣

∣

2
F

∣

∣αi jαil
∣

∣

F

the Weyl discriminant of g, and �Gβ (g) = DGβ (g)1/2.
For π ∈ Irr(Gβ) and π̃ ∈ Irrε(˜Gβ), we say that π̃ lifts to π (or π is a lift of π̃) if the

following relation is satisfied:

�Gβ (xn) · θπ̃ (x∗) = 1

dF (dr ) |n|r/2F

∑

{t∈Gβ |tn=xn}
�Gβ (t) · θπ (t) · ε(x∗/t∗), (3.2)

123
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where θπ̃ and θπ denote the corresponding Harish-Chandra characters, and x ∈ Gβ such that
xn is semi-simple regular.

Remark 3.1 We mention the difference between (3.2) and that in [18]. In ibid. they assume
the restriction of ωπ̃ to Z(˜Gr ) to be ω̃ and the restriction of ωπ to Z(Gr ) to be ω, whereas
we release this restriction. Moreover the relation of Harish-Chandra characters in ibid. is of
the following form

�Gβ (xn) · θπ̃ (x∗) = n

dF (dr ) |n|r/2F

∑

t ,̃z

�Gβ (t) · θπ (t) · ω̃(̃z),

where the sum ranges over {t ∈ Gβ/Z(Gr ), z̃ ∈ Z(˜Gr ) | t ∗̃z = x∗}. To verify that the

two formulae coincide, we notice that for such a pair (t, z̃) we have z̃ ∈ Z(˜Gr ) ∩ ˜

G(n)
β .

Thus by (2.3), we may choose a representative t such that tn = xn and the corresponding
z̃ ∈ μn . Or in other words, the above set is in bijection with {t ∈ Gβ/μn Ir | tn = xn}. Since
ω̃(̃z) = ω̃(x∗/t∗) = ε(x∗/t∗) and ωπ is trivial on μn Ir , the two expressions coincide.

Remark 3.2 Using [18, Proposition 3], theHarish-Chandra character θπ̃ has support contained

in Z(˜Gr )
⋃

T⊂Gβ

˜T (n), where T in the union ranges over all the maximal torus of Gβ and

T (n) := {xn | x ∈ T }. So once we know π̃ |Z(˜Gr )
, the Harish-Chandra character of π̃ , or even

π̃ itself, is determined by π via (3.2).

We write Sqrtω̃(˜Gβ) and Sqrtω(Gβ) as in §2.1. We denote by Sqrt(n)
ω (Gβ) the subset of

Sqrtω(Gβ) consisting of representations whose central character restricted to
∏k

i=1 μn is
trivial. Here

∏k
i=1 μn is realized as a subgroup of Z(Gβ) = diag(F× Ir1 , . . . , F

× Irk ) via the
block-diagonal embedding.

Remark 3.3 Consider x = diag(x1, . . . , xk) ∈ Gβ such that xn is elliptic, then the t in (3.2)

ranges over diag(x1ζ1, . . . , xkζk) with ζi ∈ μn . In this case for π ∈ Sqrt(n)
ω (Gβ) the right

hand side of (3.2) becomes

nk

dF (dr ) |n|r/2F

· �Gβ (x) · θπ (x).

Since such x’s form a dense subset of the locus of elliptic elements in Gβ , such π is uniquely
determined by π̃ via (3.2).

Let γi be a composition of ri for each i and let γ = γ1 + · · · + γk be a refinement of β as
before.

Proposition 3.4 Assume π̃i ∈ Irrε(˜Gγi ) and πi ∈ Irr(Gγi ) to be a lift of π̃i for each i =
1, . . . , k. Let π = π1 ⊗ · · · ⊗ πk ∈ Irr(Gγ ) and let π̃ = (π̃1˜⊗ · · · ˜⊗π̃k)ω̃ ∈ Irrε(˜Gγ ) with a
compatible character ω̃ of Z(˜Gr ) satisfying (2.5), then π̃ lifts to π .

Proof First by Corollary 2.4, we have

dF (dr ) · π̃ (n) 	
k
∏

i=1

dF (dri ) · (π̃
(n)
1

˜⊗ · · · ˜⊗π̃
(n)
k ).
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In addition for x = diag(x1, . . . , xk), t = diag(t1, . . . , tk) ∈ Gβ = Gγ1 × · · · × Gγk , we
have

DGγ (xn) =
k
∏

i=1

DGγi (xni ) and DGγ (t) =
k
∏

i=1

DGγi (ti ).

By definition we have x∗, t∗ ∈ ˜

G(n)
γ,β and x∗

i , t∗i ∈ ˜

G(n)
γi for each i . We also regard each x∗

i

and t∗i as elements in ˜Gγ via the corresponding block-diagonal embedding. �

Lemma 3.5 We have x∗ = x∗

1 x
∗
2 · · · x∗

k and t∗ = t∗1 t∗2 · · · t∗k .

Proof We only need to prove the first equation and to consider the k = 2 and γ = β case.
By definition and (2.1) we have

s(x) = s(diag(x1, x2)) = s(x2)s(x1) = s(x1)s(x2)(det(x1), det(x2))−1
n .

Thus by direct calculation

x∗ = s(diag(x1, x2))nu(x) = s(x1)n s(x2)n(det(x1), det(x2))
−n(n+1)/2
n u(x)

= x∗
1 x

∗
2 (det(x1), det(x2))

−n(n+1)/2
n u(x)/u(x1)u(x2) = x∗

1 x
∗
2 .

where for the last step we use the formula

u(x)/u(x1)u(x2) =
{

1 if n is odd;
(det(x1), det(x2))2 if n is even.

given in [18, Sect. 4].
Using the facts above, we have

�Gγ (xn) · θπ̃ (x∗) =
∏k

i=1 dF (dri )

dF (dr )

k
∏

i=1

�Gγi (xni ) · θπ̃i (x
∗
i )

=
∏k

i=1 dF (dri )

dF (dr )

k
∏

i=1

1

dF (dri ) |n|ri /2F

∑

{ti∈Gγi |tni =xni }
�Gγi (ti ) · θπi (ti ) · ε(x∗

i /t∗i )

= 1

dF (dr ) |n|r/2F

∑

{t∈Gγ |tn=xn}
�Gγ (t) · θπ (t) · ε(x∗/t∗).

�

Using the above proposition, we may consider the metaplectic correspondence for essen-

tially square integrable representations of ˜Gβ and Gβ .

Proposition 3.6 For any π ∈ Sqrt(n)
ω (Gβ), there exists a unique π̃ ∈ Sqrtω̃(˜Gβ) which lifts

to π , and conversely any π̃ ∈ Sqrtω̃(˜Gβ) lifts to a unique π ∈ Sqrt(n)
ω (Gβ).

Proof The k = 1 case is studied by Flicker-Kazhdan based on the simple trace formula ([18,
Theorem 26.1]), which will be our starting point. Now we consider the general case.

For π ∈ Sqrt(n)
ω (Gβ), there exists a unique πi ∈ Sqrt(Gri ) for each i such that π =

π1 ⊗ · · · ⊗ πk . Similarly for π̃ ∈ Sqrtω̃(˜Gβ), there exists π̃i ∈ Sqrtε(˜Gri ) for each i such
that π̃ = (π̃1 ⊗ · · · ⊗ π̃k)ω̃, where ω̃ is a character of Z(˜Gr ) satisfying (2.5).

123
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So ifπ = π1⊗· · ·⊗πk ∈ Sqrt(n)
ω (Gβ) is given, then for each i we choose π̃i ∈ Sqrtε(˜Gri )

that lifts to πi . Using Proposition 3.4 the metaplectic tensor product π̃ = (π̃1˜⊗ · · · ˜⊗π̃k)ω̃
lifts to π . Conversely for any given π̃ = (π̃1˜⊗ · · · ˜⊗π̃k)ω̃, we let πi be the lift of π̃i . Still
by Proposition 3.4 π = π1 ⊗ · · · ⊗ πk is a lift of π̃ . Finally the uniqueness follows from
the formula (3.2) and the linear independence of Harish-Chandra characters, see Remark 3.2
and Remark 3.3. �

Definition 3.7 By the above proposition, we define the metaplectic correspondence

MC : Sqrtω̃(˜Gβ) −→ Sqrtω(Gβ)

as an injection mapping each representation to its lift, whose image is Sqrt(n)
ω (Gβ).

Remark 3.8 Wenote that the generalization of metaplectic correspondence to Levi subgroups
could have been done in [18, §26.2]. However there exists a mistake in their study of meta-
plectic tensor product during the construction, as already been pointed out by other authors.
In [38] and [39],Mezo somehowmanaged to fix themistake of Flicker andKazhdan, however
at least for general r and n he didn’t write down all the details, especially it is unclear to the
author why the scalar (i.e. 1/(dF (dr ) |n|r/2F )) in the formula (3.2) of Harish-Chandra charac-
ters should be the correct one. Thus, our contribution here is to use the refined “metaplectic
tensor product” studied in [31] to fix the mistake above, which in particular gives the correct
scalar in (3.2).

3.2 The case of amaximal split torus

We digress for a moment to study an important example. Hopefully it provides a better
understanding of (3.2) and Proposition 3.6. This subsection is independent, so the readers
are free to skip it.

In this subsectionwe assume β = (1, 1, . . . , 1), or in other words,Gβ is the diagonal torus

ofGr .We notice that in this special casewe have Z(Gβ) = Gβ andG(n)
β,β = F×n×· · ·×F×n .

In particular, both Gβ and
˜

G(n)
β,β are abelian.

By definition every irreducible representation χ of Gβ is indeed a character. Correspond-
ingly, let χ̃ be an irreducible genuine representation of ˜Gβ . By Proposition 2.1.(2), we have

χ̃ (n) := χ̃ |
˜

G(n)
β,β

= nβ · τ̃ , where τ̃ is a genuine character of
˜

G(n)
β,β .

Proposition 3.9 Let χ ∈ Irr(Gβ) and let χ̃ ∈ Irrε(˜Gβ). Then χ̃ lifts to χ if and only if

1. χ is trivial on
∏r

i=1 μn ⊂ Gβ (via the diagonal embedding).
2. τ̃ is the genuine character satisfying τ̃ (x∗) = χ(x) for x ∈ Gβ .

Proof Taking π̃ = χ̃ and π = χ , the left-hand side of (3.2) becomes

nβ · τ̃ (x∗).

Taking π = χ , the right-hand side of (3.2) becomes

1

dF (dr ) |n|r/2F

∑

{t∈Gβ |tn=xn}
χ(t) · ε(x∗/t∗) = 1

dF (dr ) |n|r/2F

∑

ζ∈∏r
i=1 μn

χ(xζ ).

123
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So it equals 0 unless χ is trivial on
∏r

i=1 μn , and in this case it equals

dF (nr )

dF (dr )
· χ(x).

Finally using Proposition 2.3.(2) we have nβ = dF (nr )/dF (dr ), which finishes the proof.
�


Thus for χ ∈ Irr(Gβ) trivial on
∏r

i=1 μn and χ̃ ∈ Irrε(˜Gβ), we have χ̃ lifts to χ if and
only if χ̃ (n) contains τ̃ as in the proposition. If we also fix ω̃ as the central character of χ̃

restricted to Z(˜Gr ), then χ̃ itself is uniquely determined by τ̃ and ω̃ (cf. Theorem 2.1). This
justifies Proposition 3.6 in this special case.

3.3 Compatibility with parabolic induction and Jacquet module

As before we let β, γ be compositions of r , such that γ is a refinement of β. Let Pβ,γ be a
parabolic subgroup of Gβ having the Levi subgroup Gγ , and let Nβ,γ be the corresponding
unipotent radical. By [40,Appendix I] there exists a canonical splitting sNβ,γ : Nβ,γ → ˜Gβ as
a group homomorphism that is Pβ,γ -equivariant. Using this splitting we also realize Nβ,γ as
a subgroup of ˜Gβ . We consider the following normalized parabolic induction and normalized

Jacquet module with respect to the decomposition Pβ,γ = Gγ Nβ,γ and ˜Pβ,γ = ˜Gγ Nβ,γ :

iγ,β := iNβ,γ ,1 : Rep(Gγ ) → Rep(Gβ) (or Rep(˜Gγ ) → Rep(˜Gβ))

rβ,γ := rNβ,γ ,1 : Rep(Gβ) → Rep(Gγ ) (or Rep(˜Gβ) → Rep(˜Gγ ))

in the sense of [5, §2.3].
The metaplectic correspondence is compatible with the parabolic induction and Jacquet

functor in the following sense.

Proposition 3.10 1. For ρ ∈ Irr(Gγ ) as a lift of ρ̃ ∈ Irrε(˜Gγ ), we have that iγ,β(ρ̃) and
iγ,β(ρ) satisfy the Eq. (3.2). In other words, iγ,β(ρ̃) lifts to iγ,β(ρ) in the general sense
(without sticking to irreducible representations).

2. Let π̃ ∈ Sqrtω̃(˜Gβ) and let π ∈ Sqrt(n)
ω (Gβ) be a lift of π̃ . If rβ,γ (π) ∈ Sqrt(n)

ω (Gγ ), then
rβ,γ (π̃) ∈ Sqrt(˜Gγ ) (thus in particular it is irreducible) which lifts to rβ,γ (π); otherwise
rβ,γ (π̃) = 0.

Proof The statement (1) has already been used in [18, Proposition 26.2] with a one-sentence
explanation, and here we give a rather detailed proof for completeness. For x ∈ Gβ such that
xn is semi-simple regular, we have

�Gβ (xn) · θiβ,η(ρ̃)(x
∗)

=
∑

{g̃∈˜Gβ/˜Pβ,γ |̃g−1x∗ g̃∈˜Gγ }
�Gγ (g−1xng) · θρ̃(g̃−1x∗ g̃)

=
∑

{g∈Gβ/Pβ,γ |g−1xng∈Gγ }
�Gγ (g−1xng) · θρ̃((g−1xg)∗)

= 1

dF (dr ) |n|r/2F

∑

{g∈Gβ/Pβ,γ |g−1xng∈Gγ }

∑

{t |tn=xn }
�Gγ (g−1tg) · θρ(g−1tg) · ε((g−1xg)∗/(g−1tg)∗)

= 1

dF (dr ) |n|r/2F

∑

{t |tn=xn }

∑

{g∈Gβ/Pβ,γ |g−1tg∈Gγ }
�Gγ (g−1tg) · θρ(g−1tg) · ε(x∗/t∗)
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= 1

dF (dr ) |n|r/2F

∑

{t |tn=xn }
�Gβ (t) · θiγ,β (ρ)(t) · ε(x∗/t∗).

Here we use [50, Theorem 3], which also works for covering groups with the same argu-
ment, for the first and final equations. We use the fact s(g)−1x∗s(g) = (g−1xg)∗ for the
second equation and (3.2) for the third equation. Finally g−1tg ∈ Gβ is equivalent to
g−1tng ∈ Gβ , since tn = xn is semi-simple regular. We use this statement and the fact
that (g−1xg)∗/(g−1tg)∗ = s(g)−1(x∗/t∗)s(g) = x∗/t∗ for the fourth equation.

For the statement (2), we write γ = (r ′
1, . . . , r

′
l ). We first recall a result of Casselman. Let

t = diag(t1, . . . , tl) ∈ Gγ , such that t j is an element in Gr ′
j
with tnj being elliptic for each j ,

and moreover

∣

∣det(t j )
∣

∣

1/r ′
j

F /
∣

∣det(t j+1)
∣

∣

1/r ′
j+1

F > 1 for j = 1, . . . , l − 1. (3.3)

Then we have (cf. [14, Theorem 5.2] and [18, Theorem 14])

�Gβ (tn) · θπ̃ (t∗) = �Gγ (tn) · θrβ,γ (π̃)(t
∗) and �Gβ (t) · θπ (t) = �Gγ (t) · θrβ,γ (π)(t).

(3.4)

To continue, we need the following technical lemma.

Lemma 3.11 Let γ = (r ′
1, . . . , r

′
l ) be a composition of r as above and let τ̃1, . . . , τ̃s′ ∈

Sqrtε(
˜

G(n)
γ,(r)) with G(n)

γ,(r) := G(n)

r ′
1

× · · · × G(n)

r ′
l
. If for certain ci ∈ C the equation

s′
∑

i=1

ci · θτ̃i (t
∗) = 0 (3.5)

holds for any t as above, then we have

s′
∑

i=1

ci · θτ̃i = 0.

Proof First we need the following basic lemma.

Lemma 3.12 Let σ̃1, . . . , σ̃u ∈ Sqrtε(
˜

G(n)

r ′ ) be pairwise non-isomorphic representations and

let N > 0, then there exist elliptic elements g1, . . . , gu ∈ G(n)

r ′ satisfying
∣

∣det(g j )
∣

∣

F < 1/N
for each j = 1, . . . , u, such that the matrix (θσ̃k (ζ j s(g j )))1≤ j,k≤u is invertible for any
ζ j ∈ μn.

Proof The lemma follows from the linear independence of θσ̃k on elliptic locus if we don’t
impose any restriction on

∣

∣det(g j )
∣

∣

F . In general, we just need to replace g j by g j�
m
F for m

large enough. �

We remark that each τ̃i , as an essentially square integrable representation, is deter-

mined by the restriction of its Harish-Chandra character to the elliptic locus. We write

τ̃i = τ̃i1˜⊗ · · · ˜⊗τ̃il , where τ̃i j ∈ Sqrtε(
˜

G(n)

r ′
j
) for j = 1, . . . , l.

We prove Lemma 3.11 by induction on l. The l = 1 case is clear. Assume the lemma
holds for l − 1. We consider the division {1, . . . , s′} = I1 
 · · · 
 Iu , such that τ̃i1l 	 τ̃i2l if
and only if i1, i2 ∈ Ik for some k = 1, . . . , u. And we denote by τ̃Ik l the isomorphism class
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of τ̃il for i ∈ Ik . We write τ̃ ′
i = τ̃i1˜⊗ · · · ˜⊗τ̃il−1 and τ̃i = τ̃ ′

i
˜⊗τ̃il for each i = 1, . . . , s′. For

t = diag(t1, . . . , tl) as above, we write t ′ = diag(t1, . . . , tl−1). By (3.5) we have

u
∑

k=1

θτ̃Ik l
(t∗l )

∑

i∈Ik
ci · θτ̃ ′

i
(t ′∗) = 0. (3.6)

Using Lemma 3.12 for σ̃k = τ̃Ik l , we may choose u’s different tl with the corresponding t∗l
denoted by g̃1, . . . , g̃u , such that the matrix (θτ̃Ik l

(g̃ j ))1≤ j,k≤u is invertible. Plugging t∗l = g̃ j

into (3.6) for j = 1, · · · , u we get

∑

i∈Ik
ci · θτ̃ ′

i
(t ′∗) = 0, k = 1, . . . , u.

Using the induction hypothesis and the definition of Ik , we have

∑

i∈Ik
ci · θτ̃ ′

i
= 0 and

∑

i∈Ik
ci · θτ̃i =

⎛

⎝

∑

i∈Ik
ci · θτ̃ ′

i

⎞

⎠
˜⊗θτ̃Ik l

= 0, k = 1, . . . , u.

Summing over k we finish the proof. �


We finish the proof of Proposition 3.10.(2). We consider π , π̃ as in the statement.
If rβ,γ (π) ∈ Sqrt(n)

ω (Gγ ), then we let π̃ ′ be the unique essentially square integrable rep-
resentation of ˜Gγ satisfyingMC(π̃ ′) = rβ,γ (π) and having the central character ω̃ restricted
to Z(˜Gr ). Then using (3.2) and (3.4) with a similar argument to that in (1), for t as above we
have

θπ̃ ′(t∗) = θrβ,γ (π̃)(t
∗) =

s
∑

i=1

θπ̃ ′
i
(t∗), (3.7)

where π̃ ′
1,…,π̃ ′

s are all the irreducible subquotients of rβ,γ (π̃ ). Considering the restriction

of each π̃ ′
i and π̃ ′ to ˜

G(n)
γ,(r), using Theorem 2.1.(2) and Lemma 3.11, and comparing the

number of irreducible components (notice that the total multiplicities of each π̃ ′
i | ˜

G(n)
γ,(r)

and

π̃ ′|
˜

G(n)
γ,(r)

are the same), we must have s = 1 and π̃ ′|
˜

G(n)
γ,(r)

	 π̃ ′
1| ˜

G(n)
γ,(r)

. Comparing the central

character we also have ωπ̃ ′ |Z(˜Gr )
= ωπ̃ ′

1
|Z(˜Gr )

. By Remark 3.2 or Theorem 2.1 we have
π̃ ′ 	 π̃ ′

1 = rβ,γ (π̃), so MC(rβ,γ (π̃)) = rβ,γ (π).

Finally we consider the case rβ,γ (π) /∈ Sqrt(n)
ω (Gγ ).

Lemma 3.13 Forπ ′ = π ′
1⊗· · ·⊗π ′

l ∈ Sqrtω(Gγ )−Sqrt(n)
ω (Gγ ) and x = diag(x1, . . . , xl) ∈

Gγ such that xni is elliptic for any i = 1, . . . , l, we have

l
∏

i=1

∑

{ti |tni =xni }
�

Gr ′i (ti ) · θπ ′
i
(ti ) · ε(x∗

i /t∗i ) = 0.

As a result π̃ ′ = 0 may be regard as the “null representation” that lifts to π ′.
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Proof Since xi is elliptic for i = 1, . . . , l for each ti in the sum there exists ζi ∈ μn such that

xi = tiζi . Thus D
Gr ′i (xi ) = D

Gr ′i (ti ) and ε(x∗
i /t∗i ) = 1, and we only need to prove that

l
∏

i=1

(

∑

ζi∈μn

ωπ ′
i
(ζi )

)

· θπ ′
i
(xi ) = 0.

The lemma follows from the fact that ωπ ′
i
|μn is not trivial for some i . �


Using this lemma, (3.2) and (3.4) and a similar argument to the previous case, we have

θrβ,γ (π̃)(t
∗) =

s
∑

i=1

θπ̃ ′
i
(t∗) = 0, (3.8)

where π̃ ′
1,…,π̃ ′

s are all the irreducible subquotients of rβ,γ (π̃) and t is considered as above.

Still considering the restriction of each π̃ ′
i to

˜

G(n)
γ,(r), and using Theorem 2.1.(2) and Lemma

3.11, we have s = 0 and rβ,γ (π̃) = 0. �


3.4 Classification of essentially square integrable representations

In this part we classify Sqrtε(˜Gr ) as well as its image under the metaplectic correspondence.
We let ν = |det(·)|F be a character of Gr ′ for each positive integer r ′. For a composition
β = (r1, · · · , rk)of r , representations π̃i ∈ Irrε(˜Gri ) for i = 1, . . . , k and agenuine character
ω̃ of Z(˜Gr ) satisfying (2.5), we define the following Bernstein-Zelevinsky product

(π̃1˜× · · ·˜×π̃k)ω̃ := iβ,(r)((π̃1˜⊗ · · · ˜⊗π̃k)ω̃).

First we focus on a result which was previously studied in [18, Lemma 27.1]. But unfortu-
nately both the statement and proof in loc. cit. are flawed. So we give a correct one.

Proposition 3.14 1. Let ρ̃1 ∈ Cuspε(
˜Gr1) and ρ̃2 ∈ Cuspε(

˜Gr2). Then (ρ̃1˜×ρ̃2)ω̃ is
reducible only if r1 = r2, and (ρ̃2˜×ρ̃1)ω̃ is isomorphic to (ρ̃1˜×ρ̃2)ω̃ twisted by an
unramified character of Gr1+r2 .

2. Let ρ̃ ∈ Cuspε(
˜Gr0). Then there exists a unique positive real number s(ρ̃) such that

(ρ̃˜×ρ̃νs(ρ̃))ω̃ is not irreducible. Moreover, (ρ̃˜×ρ̃νs)ω̃ is not irreducible for some s ∈ R

if and only if s = ±s(ρ̃).
3. In (2), we let {ρνa, ρνa+1, . . . , ρνb} be the cuspidal support of MC(ρ̃), where m =

b − a + 1 is a positive integer and ρ ∈ Cusp(Gr0/m). Then s(ρ̃) = m/n.

In (1) and (2), ω̃ are compatible genuine characters of Z( ˜Gr1+r2) and Z(˜G2r0) respec-
tively, such that the corresponding metaplectic tensor products make sense.

Proof The statement (1) and (2) have been proved in [31, Proposition 6.10]. So we focus
on statement (3). We let β0 = (r0, r0) be a composition of 2r0. The representation π̃ =
(ρ̃˜×ρ̃νs(ρ̃))ω̃ is reducible and of length 2, and moreover its Jacquet module r(2r0),β0(π̃)

consists of (ρ̃˜⊗ρ̃νs(ρ̃))ω̃ and (ρ̃νs(ρ̃)
˜⊗ρ̃)ω̃ as its subquotient. Using Casselman’s criterion for

discrete series (cf. [1, Theorem 3.4]), there exists an essentially square integrable subquotient
π̃ ′ of π̃ . Thus r(2r0),β0(π̃

′) is isomorphic to (ρ̃˜⊗ρ̃νs(ρ̃))ω̃ or (ρ̃νs(ρ̃)
˜⊗ρ̃)ω̃. We let π ′ =

MC(π̃ ′) ∈ Sqrt(n)(Gr0). Using Proposition 3.10.(2), we have

r(2r0),β0(π
′) 	 r(2r0),β0(MC(π̃ ′)) 	 MC(r(2r0),β0(π̃

′)),
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which is isomorphic to MC(ρ̃) ⊗ MC(ρ̃νs(ρ̃)) or MC(ρ̃νs(ρ̃)) ⊗ MC(ρ̃) by Proposition 3.4.
Thus the cuspidal support of π ′ equals the union of that of MC(ρ̃) andMC(ρ̃νs(ρ̃)) (cf. [53]).
Since MC(ρ̃νs(ρ̃)) 	 MC(ρ̃)νns(ρ̃), the union above is

{ρνa, ρνa+1, . . . , ρνb, ρνa+ns(ρ̃), ρνa+ns(ρ̃)+1, . . . , ρνb+ns(ρ̃)}.
By [53, Sect. 9] the only possibility is a + ns(ρ̃) = b + 1, meaning that s(ρ̃) = m/n.

�

Let m be a positive integer dividing r , let a, b two real numbers such that b− a + 1 = m,

and let ρ ∈ Cusp(Gr/m). Let βm = (r/m, . . . , r/m) be a composition of r , and we consider
Gβm as a Levi subgroup of Gr . We let L(ρ, [a, b]) be the unique irreducible quotient of the
parabolic induction ρνa × ρνa+1 × · · · × ρνb := iβm ,(r)(ρνa ⊗ ρνa+1 ⊗ · · · ⊗ ρνb) as an
essentially square integrable representation of Gr as in [53]. We have a similar theory for ˜Gr

Lemma 3.15 [31, Proposition 7.2] Let ρ̃ ∈ Cuspε(
˜Gr ) and let ω̃ be a compatible character

of Z(˜Gr ) such that (ρ̃νas(ρ̃)
˜⊗ρ̃ν(a+1)s(ρ̃)

˜⊗ · · · ⊗ρ̃νbs(ρ̃))ω̃ makes sense,
1. There exists a unique irreducible subrepresentation (resp. quotient) of

(ρ̃νas(ρ̃)
˜×ρ̃ν(a+1)s(ρ̃)

˜× · · ·˜×ρ̃νbs(ρ̃))ω̃

denoted by Z(ρ̃, [a, b])ω̃, (resp. L(ρ̃, [a, b])ω̃). Moreover, L(ρ̃, [a, b])ω̃ is an essentially
square integrable representation of ˜Gr ;

2. For an integer 0 ≤ l ≤ r , we have

r(r),(l,r−l)(Z(ρ̃, [a, b])ω̃)

=
{

(Z(ρ̃, [a, a + l ′])ω̃1
˜⊗Z(ρ̃, [a + l ′ + 1, b])ω̃2)ω̃ if l ′ = ml/r ∈ Z,

0 if r � ml.

and

r(r),(l,r−l)(L(ρ̃, [a, b])ω̃)

=
{

(L(ρ̃, [b − l ′ + 1, b])ω̃′
1
˜⊗L(ρ̃, [a, b − l ′])ω̃′

2
)ω̃ if l ′ = ml/r ∈ Z,

0 if r � ml.

where ω̃1, ω̃2, ω̃′
1, ω̃

′
2 are compatible genuine characters.

The following proposition classifies the image of the metaplectic correspondence of cus-
pidal and essentially square integrable representations.

Proposition 3.16 Let m be a positive integer dividing r, let ρ ∈ Cusp(Gr/m) and let π =
L(ρ, [a, b]) with m = b − a + 1 satisfying ωπ |μn= 1. Let s be the order of ωρ |μn which
divides m.

1. If π is the lift a certain π̃ ∈ Cuspε(
˜Gr ), then we have s = m. Conversely if s = m, then

any π̃ ∈ Sqrtε(˜Gr ) lifting to π is cuspidal.

2. Letm′ = m/s and let ρ̃ ∈ Cuspε(
˜Gr/m′) such thatMC(ρ̃) = L(ρ, [a, a+s−1]). Then for

ω = ωπ and a genuine character ω̃ of Z(˜Gr ) satisfying (3.1), we haveMC(L(ρ̃, [0,m′−
1])ω̃) = π. Conversely, any π̃ ∈ Sqrtω̃(˜Gr ) is of the form L(ρ̃, [0,m′ − 1])ω̃ for some

m′ dividing r and some ρ̃ ∈ Cuspε(
˜Gr/m′).
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Proof We first prove (1). We choose π̃ ∈ Sqrtε(˜Gr ) such that MC(π̃) = π . First we assume
π̃ to be cuspidal. Then for any l ′ = 1, . . .m − 1 and l = l ′r/m, we have r(r),(l,r−l)(π̃) = 0.
Using a similar argument to the proof of Proposition 3.10.(2) (more precisely, the combination
of (3.2) and (3.4)) we may prove that for any x = diag(x1, x2) ∈ Gl × Gr−l such that xn1
and xn2 are elliptic and |det(x1)|1/lF > |det(x2)|1/(r−l)

F , we have

0 =
⎛

⎝

∑

{t1|tn1 =xn1 }
θL(ρ,[b−l ′+1,b])(t1) · ε(x∗

1/t
∗
1 )

⎞

⎠ ·
∑

{t2|tn2 =xn2 }
θL(ρ,[a,b−l ′])(t2) · ε(x∗

2/t
∗
2 )

= θL(ρ,[b−l ′+1,b])(x1) · θL(ρ,[a,b−l ′])(x2) ·
⎛

⎝

∑

ζ1∈μn

ωρ(ζ1)
l ′
⎞

⎠ ·
⎛

⎝

∑

ζ2∈μn

ωρ(ζ2)
m−l ′

⎞

⎠ ,

where for the second equation we use the fact that xi is elliptic, and thus xi = tiζi for a certain
ζi ∈ μn and x∗

i = t∗i . Since l ′ and x are arbitrary, ωρ |μn must be of order m. Conversely if
ωρ |μn is of order m, then for any 1 ≤ l ≤ r − 1 the representation r(r),(l,r−l)(L(ρ, [a, b]))
is not in Sqrt(n)

ω (Gl × Gr−l), thus using Proposition 3.10.(2) r(r),(l,r−l)(π̃) = 0. So π̃ is
cuspidal.

Nowwe prove (2).We have thatMC(L(ρ̃, [0,m′−1])ω̃) is in Sqrt(Gr ) and by Proposition
3.14, s(ρ̃) = s/n. Using Proposition 3.6, Proposition 3.10.(2) and Lemma 3.15.(2), for the
composition βm′ = (r/m′, · · · , r/m′) of r , we have

r(r),βm′ (MC(L(ρ̃, [0,m′ − 1])ω̃)) = MC(r(r),βm′ (L(ρ̃, [0,m′ − 1])ω̃))

= MC((ρ̃νs(ρ̃)(m′−1)
˜⊗ · · · ˜⊗ρ̃νs(ρ̃)

˜⊗ρ̃)ω̃)

= L(ρ, [a + (m′ − 1)s, b]) ⊗ · · · ⊗ L(ρ, [a + s, a + 2s − 1]) ⊗ L(ρ, [a, a + s − 1]).
Thus the cuspidal support ofMC(L(ρ̃, [0,m′−1])ω̃) is {ρνa, ρνa+1, . . . , ρνb}, implying that
π = MC(L(ρ̃, [0,m′ − 1])ω̃). Finally any π̃ ∈ Sqrtω̃(˜Gr ) lifts to a certain π = L(ρ, [a, b])
as above. By Proposition 3.6 we must have π̃ = L(ρ̃, [0,m′ − 1])ω̃ for m′ = m/s and ρ̃

satisfying MC(ρ̃) = L(ρ, [a, a + s − 1]). �


3.5 Classification of essentially tempered representations

We further study essentially tempered representations.

Proposition 3.17 1. Let π̃i be a genuine irreducible square integrable representation of˜Gri
for each i with r1 + · · · + rk = r and let ω̃ be a genuine character of Z(˜Gr ) satisfying
(2.5), then (π̃1˜× · · ·˜×π̃k)ω̃ is an irreducible and tempered representation of ˜Gr .

2. Conversely every genuine irreducible tempered representation π̃ of ˜Gr is of the form
(π̃1˜× · · ·˜×π̃k)ω̃ as above. Such π̃ correspond in bijection with ˜Gr -conjugacy classes of
the metaplectic tensor product (π̃1˜⊗ · · · ˜⊗π̃k)ω̃ with ri , π̃i , ω̃ as in (1).

Proof This proposition was first noted in [18, Proposition 27, p98], with an essential usage of
the metaplectic correspondence (cf. [18, Lemma 27, p98]) as well as some non-trivial results
in the book of Silberger that are not explicitly written down for a covering group. Here we
give a more elementary proof instead.

Using Proposition 3.16, for each i we may find a certain positive integer mi dividing ri ,

a genuine unitary cuspidal representation ρ̃i of ˜Gri /mi and a genuine character ω̃i of Z(˜Gri )

such that π̃i = L(ρ̃i , [(−mi + 1)/2, (mi − 1)/2])ω̃i .
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Lemma 3.18 For a compatible genuine character ω̃ of Z(˜Gr ), the representation

(L(ρ̃1, [(−m1 + 1)/2, (m1 − 1)/2])ω̃1
˜× · · ·˜×L(ρ̃k, [(−mk + 1)/2, (mk − 1)/2])ω̃k )ω̃

is irreducible.

Proof Write �i for the segment {ρ̃iν(−mi+1)s(ρ̃i )/2, ρ̃iν
(−mi+3)s(ρ̃i )/2, . . . , ρ̃iν

(mi−1)s(ρ̃i )/2},
then the lemma follows from the fact that�i are pairwise weakly unlinked. See [31, Theorem
7.5]. �


Using this lemma and the fact that the parabolic induction of a square integrable represen-
tation is (not necessarily irreducible) tempered (cf. [51, Lemma III.2.3]), (π̃1˜× · · ·˜×π̃k)ω̃ is
tempered. The second statement follows readily from the following lemma.

Lemma 3.19 [51, Proposition III.4.1] Any irreducible tempered representation π̃ is a direct
summand of a certain parabolic induction iβ,(r)(ρ̃), where ρ̃ is an irreducible square inte-
grable representation of a Levi subgroup ˜Gβ of ˜Gr . Such a pair (˜Gβ, ρ̃) is unique up to
˜Gr -conjugacy.

We remark that although the results we cited above are not for covering groups, the same
argument indeedworks for a general finite central extension of a p-adic reductive group. Note
that the argument is based on the definition of square integrable and tempered representations
via exponents, which is known in general [1, Theorem 3.4 and Theorem 3.5]. So the original
proof can also be generalized without difficulty. �


Finally we study the metaplectic correspondence for essentially tempered representations.
Let r ′ = r ′

1 + · · · + r ′
l and π ′ = ρ1 × · · · × ρl ∈ Temp(Gr ′) with ρi ∈ Sqrt(Gr ′

i
). The

representation π ′ is called metic3 if each central character ωρi restricted to μn is trivial. In
general, a representation π = π1 ⊗ · · · ⊗ πk ∈ Temp(Gβ) with each πi ∈ Temp(Gri ) is
called metic if each πi is metic, where β = (r1, . . . , rk) is a composition of r as before.
We denote by Tempω(Gβ) the set of equivalence classes of irreducible essentially tempered

representations whose central character restricted to Z(Gr ) is ω, and by Temp(n)
ω (Gβ) its

subset consisting of metic ones.

Proposition 3.20 For any π ∈ Temp(n)
ω (Gβ), there exists a unique π̃ ∈ Tempω̃(˜Gβ) that lifts

to π , and conversely any such π̃ lifts to some π .

Proof We first consider β = (r) and Gβ = Gr . We write π̃ = (ρ̃1˜× · · ·˜×ρ̃l)ω̃ with ρ̃i
essentially square integrable. We let ρi = MC(ρ̃i ) for each i . By Proposition 3.4 and Propo-
sition 3.10.(1), π̃ lifts to ρ1 × · · · × ρl that is essentially tempered and metic. Conversely
let π = ρ1 × · · · × ρl with each ρi essentially square integrable, such that the restriction of
ωρi to μn is trivial. Using Proposition 3.6 we choose ρ̃i to be an essentially square integrable
representation such that MC(ρ̃i ) = ρi , then (ρ̃1˜× · · ·˜×ρ̃l)ω̃ lifts to π . For general β using
Proposition 3.4 and the above case, similarly we may prove that every π̃ ∈ Temp(n)

ω (Gβ)

lifts to a π ∈ Tempω(Gβ), and conversely every π ∈ Tempω(Gβ) is a lift of a certain

π̃ ∈ Temp(n)
ω (Gβ). Finally such π̃ lifting to π is unique by Remark 3.2. �


However in the above proposition, it is unclear to the author if π ∈ Temp(n)
ω (Gβ), as a lift

of a certain π̃ ∈ Tempω̃(˜Gβ), is unique or not. So until now we cannot claim the existence

of a map MC : Tempω̃(˜Gβ) → Temp(n)
ω (Gβ), π̃ �→ π.

3 It is an abbreviation of metaplectic, a notation introduced by Flicker-Kazhdan.
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4 Calculation of Whittaker dimension

In this section, we consider one of the main important applications of metaplectic correspon-
dence: calculating the Whittaker dimension of a representation π̃ in Irrε(˜Gr ).

4.1 A general introduction of the Harish–Chandra germ expansion

In this subsection, let G be a connected reductive group over F , let g be the Lie algebra of
G. We won’t recall concrete definition of some notation in this part, but indeed the only case
we are interested in is G being a Levi subgroup Gβ of Gr . So the readers may just imagine
what happens in general and refer to the reference we provide.

Let π be an irreducible representation of G. First we briefly recall the definition of the
Harish-Chandra germ function (cf. [26]). Let θπ be the Harish-Chandra character of π , which
has the following germ expansion

θπ (x exp(X)) =
∑

O∈Nil(gx )

cπ,O(x)ĵ (X ,O),

where

• x is a semi-simple element of G;
• X is a semi-simple regular element in a small neighborhood of 0 in g;
• exp : g → G denotes the exponential map;
• gx denotes the Lie algebra of centralizer of x in G;
• Nil(gx ) denotes the set of nilpotent orbits of gx ;
• ĵ (·,O) denotes the Fourier transform of the orbital integral along O, which is a smooth

function on semi-simple regular elements of g;
• cπ,O(x) is a complex number depending on π , O and x .

We write Nilreg(gx ) for the set of regular nilpotent orbits of gx , and we define

cπ (x) := ∣

∣Nilreg(gx )
∣

∣

−1 ∑

O0∈Nilreg(gx )

cπ,O0(x)

as a complex function on the set of semi-simple elements in G, called the Harish-Chandra
germ function of π . The following formula can be used to calculate this germ function ([6,
Proposition 4.5.1]):

�G(x)cπ (x)

=
{

|W (Gx , Tx )|−1 limx ′→x �G(x ′)θπ (x ′), if Gx is quasi-split,

0, otherwise,
(4.1)

where

• DG(x) denotes the Weyl discriminant of G and �G(x) = DG(x)1/2;
• Gx denotes the neutral connected component of the centralizer of x in G;
• when Gx is quasi-split, Tx denotes the maximal split torus contained in a Borel subgroup

of Gx ;
• W (Gx , Tx ) denotes the corresponding Weyl group;
• x ′ in the limit are semi-simple regular elements in Tx .

Similarly we consider the corresponding theory for a covering group. Let ˜G be a central
extension of G by μn and let π̃ be an irreducible representation of ˜G. Let x∗ ∈ ˜G such that
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p(x∗) is semi-simple. To simplify our discussion, we also assume x∗ to be good, meaning
that for any y ∈ G commuting with p(x∗), we have that x∗ and s(y) commute. Indeed,

when x∗ is semi-simple and good, the character [x∗, ·] : ˜G p(x∗) → μn is trivial, where [·, ·]
denotes the commutator in ˜G. Thus in this special case the results in [36, Sect. 4] are largely
simplified.

For the Harish-Chandra character θπ̃ we still have the following germ expansion ([36,
Théorème 4.3.2]):

θπ̃ (x∗ exp(X)) =
∑

O∈Nil(g p(x∗))

cπ̃ ,O(x∗)ĵ (X ,O),

where

• X is a semi-simple regular element in a small neighborhood of 0 in g;
• exp(X) is realized as an element in ˜G via the splitting s;
• cπ̃ ,O(x∗) is a complex number depending on π̃ , O and x∗.

We similarly define

cπ̃ (x∗) := ∣

∣Nilreg(g p(x∗))
∣

∣

−1 ∑

O0∈Nilreg(g p(x∗))

cπ̃ ,O0(x
∗)

as a complex function on the set of good semi-simple elements in G, called the Harish-
Chandra germ function of π̃ . An identical argument of [6, Proposition 4.5.1] gives us

�G( p(x∗))cπ̃ (x∗)

=
{
∣

∣W (G p(x∗), Tp(x∗))
∣

∣

−1 limx ′∗→x∗ �G( p(x ′∗))θπ̃ (x ′∗), if G p(x∗) is quasi-split,

0, otherwise,

(4.2)

where x ′∗ in the limit are good semi-simple regular elements in ˜Tp(x∗).

4.2 Whittaker space and dimension

We come back to our study of Kazhdan-Patterson covering groups. Let β = (r1, . . . , rk) be
a composition of r , and we write G = Gβ to simplify our notation. Let N be the unipotent
subgroup of a Borel subgroup of G. Let ψ be a generic character of N , which means that for
any simple root α related to N and the corresponding subgroup Nα of N , the restrictionψ |Nα

is non-trivial. It is easy to verify that such kind of pairs (N , ψ) form a single G-conjugacy
class.

For a finite length genuine representation π̃ of ˜G, we define

Wh(π̃) = HomN (π̃ , ψ)

theWhittaker space of π̃ , where as before we regard N as a subgroup of ˜G. As we explained,
this vector space essentially does not depend on the choice of the pair (N , ψ).

We note that Wh, as a functor from Repε(
˜G) to the category of complex vector spaces,

is exact. Since when β = (r), using the argument in [32, Theorem I.5.3] the functor Wh
is realized by taking the r -th Bernstein-Zelevinsky derivative, which is an exact functor. In
general, for each i we may similarly define ri -th “partial Bernstein-Zelevinsky functor” with
respect to the i-th block in G, which is also exact. The functor Wh is realized by taking the
ri -th partial Bernstein-Zelevinsky functor for each i .
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We define dπ̃ := dim
C
(Wh(π̃)), which is finite because of the following proposition.

Proposition 4.1 [32, Theorem I.5.3] or [42, Theorem 2] For π̃ irreducible we have dπ̃ =
cπ̃ (Ir ).

Let π̃i ∈ Irrε(˜Gri ) for each i = 1, . . . , k and let ω̃ be a genuine character of Z(˜Gr )

satisfying (2.5).

Proposition 4.2 We have d(π̃1˜×···˜×π̃k )ω̃
= d(π̃1˜⊗···˜⊗π̃k )ω̃

= dF (dr )−1 · ∏k
i=1 dF (dri ) · dπ̃i .

Proof The first equation follows from [2, Theorem]. The second equation follows from
Corollary 2.4 and the fact that the unipotent radical N is contained in G(n)

β,β . �


Here, dr = gcd(n, 2rc − r + 1) is defined as in §2.3.
Let ω̃ and ω be characters satisfying (3.1). Let π̃ ∈ Sqrtω̃(˜G) and let π ∈ Sqrtω(G) be

the metaplectic lift of π̃ . We study the relation between the Harish-Chandra germ functions
cπ̃ and cπ .

Proposition 4.3 Let x be a semi-simple element in G such that xn is semi-simple and the
centralizers Gx and Gxn are equal. Let T be a maximal split torus contained in Gx that
contains x. Then

�G(xn) · |W (Gx , T )| · cπ̃ (x∗)

= 1

dF (dr ) |n|r/2F

∑

{t∈T |tn=xn}
�G(t) · |W (Gt , T )| · cπ (t) · ε(x∗/t∗).

Proof We choose x ′ to be an element in T sufficiently close to x , such that x ′n is semi-simple
regular. Using (3.2) we have

�G(x ′n) · θπ̃ (x ′∗) = 1

dF (dr ) |n|r/2F

∑

{t ′∈T |t ′n=x ′n}
�G(t ′) · θπ (t ′) · ε(x ′∗/t ′∗).

Taking the limit x ′ → x and using (4.1) and (4.2), we finish the proof. �


Remark 4.4 In Proposition 4.3 the assumptionGx = Gxn is important, which guarantees that
T is a maximal split torus of each Gt and Gxn . We don’t know what happens if this condition
is not satisfied.

Taking x = Ir and using Propositions 4.1 and 4.3, we have the following important
corollary.

Corollary 4.5 We have

dπ̃ = 1

dF (dr ) |n|r/2F r !
∑

t

�G(t) · |W (Gt , T )| · cπ (t), (4.3)

where t in the sum ranges over diag(ζ1, . . . , ζr ) with ζ1, . . . , ζr ∈ μn, and T denotes the
torus of diagonal matrices.
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4.3 ThemainWhittaker dimensional formula for essentially square integrable
representations

In this subsection we focus on the case where G = Gr . We let T be the diagonal torus of G.
In general we let Tr ′ be the diagonal torus of Gr ′ for any r ′ ≥ 1.

First we propose the following conjecture related to a so-called “Zelevinsky standard
module”. Assume r = r0m for positive integers r0 and m. For ρ ∈ Cusp(Gr0) and two real
numbers a, b such that b − a + 1 = m, we define Z(ρ, [a, b]) to be the unique irreducible
subrepresentation of

ρνa × ρνa+1 × · · · × ρνb.

Conjecture 4.6 For x = diag(ζ1, . . . , ζr ) with ζi ∈ μn, we have

cZ(ρ,[a,b])(x) =

⎧

⎪

⎨

⎪

⎩

∏m
i=1 ωρ(ζ ′

i ) if x is G-conjugate to diag(ζ ′
1 Ir0 , . . . , ζ

′
m Ir0),

ζ ′
i ∈ μn pairwise different for i = 1, . . . ,m;

0 otherwise.

This conjecture helps us to calculate the Whittaker dimension of a genuine representation
of ˜G. We state the following main theorem.

Theorem 4.7 Let π̃ ∈ Sqrtε(˜G). Let m be the positive integer dividing r and let ρ ∈
Cusp(Gr/m), such that MC(π̃) = L(ρ, [0,m − 1]) (cf. Proposition 3.16). Let r0 = r/m
and let s be the order of ωρ |μn that divides m. When gcd(n, p) = 1, we have

dπ̃ = 1

dr
·
(

m/s + n/s − 1

m/s

)

.

Proof Weprove Theorem 4.7 on assumingConjecture 4.6. First we prove a general lemma
concerning the Harish–Chandra germ function. For a finite length representation π of G
having irreducible subquotients π1, . . . , πl (counting the multiplicity), we define θπ :=
∑l

i=1 θπi and cπ := ∑l
i=1 cπi .

Lemma 4.8 Let β = (r1, . . . , rk) be a composition of r , let πi ∈ Irr(Gri ), let T be the
diagonal torus of G and Gβ , and let x = diag(ζ1, . . . , ζr ) ∈ T such that ζi ∈ F×. Then

|W (Gx , T )| · cπ1×···×πk (x) = 1

r1! · · · rk !
∑

w∈W (G,T )

k
∏

i=1

∣

∣W ((Gri )xw,i , Tri )
∣

∣ · cπi (xw,i ),

where for x ∈ T and w ∈ W (G, T ) we write w−1xw = diag(xw,1, . . . , xw,k) with xw,i ∈
Gri , and (Gri )xw,i denotes the centralizer of xw,i in Gri .

Proof We consider x ′ = diag(ζ ′
1, . . . , ζ

′
r ) with ζ ′

i ∈ F× pairwise different for i = 1, . . . , r .
We denote byW (G, T ) andW (Gβ, T ) the correspondingWeyl groups. Using [50, Theorem
3] we have
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�Gr (x ′)θπ (x ′) =
∑

{g∈Gr /P(r),β |g−1x ′g∈Gβ }
�Gβ (g−1x ′g)θπ1⊗···⊗πk (g

−1x ′g)

=
∑

w∈W (G,T )/W (Gβ ,T )

�Gβ (w−1x ′w)θπ1⊗···⊗πk (w
−1x ′w)

= ∣

∣W (Gβ, T )
∣

∣

−1 ∑

w∈W (G,T )

�Gβ (w−1x ′w)θπ1⊗···⊗πk (w
−1x ′w)

= 1

r1! · · · rk !
∑

w∈W (G,T )

k
∏

i=1

�Gri (x ′
w,i )θπi (x

′
w,i )

Taking the limit x ′ → x and using (4.1) we finish the proof. �

Now we focus on the proof of Theorem 4.7. We write π = MC(π̃) = L(ρ, [0,m − 1]).

Using Tadic’s determinantal formula [35, Theorem 1], we have

π =
∑

m1+···+ml=m

(−1)m−l Z(ρ, [0, t1 − 1]) × Z(ρ, [t1, t2 − 1]) × · · · × Z(ρ, [tl−1, tl − 1]),

where mi in the sum are positive integers, and we define t0 = 0 and ti = m1 + · · · + mi

for each i = 1, 2, . . . , l, and the equation is taken in the Grothendieck group of finite length
representations of G. Taking the Harish–Chandra germ function and using Lemma 4.8, we
get

|W (Gx , T )| · cπ (x) = |W (Gx , T )|
∑

m1+···+ml=m

(−1)m−l c(×l
i=1Z(ρ,[ti−1,ti−1]))(x)

=
∑

m1+···+ml=m

(−1)m−l

∏l
i=1(r0mi )!

∑

w∈W (G,T )

l
∏

i=1

∣

∣W ((Gr0mi )xw,i , Tr0mi )
∣

∣ · cZ(ρ,[ti−1,ti−1])(xw,i ).

Using (4.3), we have

dπ̃ = 1

dF (dr ) |n|r/2F r !
∑

x

�G(x) · |W (Gx , T )| · cπ (x)

= 1

dF (dr ) |n|r/2F r !
∑

m1+···+ml=m

(−1)m−l

∏l
i=1(r0mi )!

∑

w∈W (G,T )

∑

x

f (m1, . . . ,ml , w, x)

where x ranges over diag(ζ1, . . . , ζr ) with ζi ∈ μn for each i , and

f (m1, . . . ,ml , w, x) := �G(x) ·
l

∏

i=1

∣

∣W ((Gr0mi )xw,i , Tr0mi )
∣

∣ · cZ(ρ,[ti−1,ti−1])(xw,i ).

It is clear that
∑

w∈W (G,T )

∑

x

f (m1, . . . ,ml , w, x) = |W (G, T )|
∑

x

f (m1, . . . ,ml , 1, x),

so we further have

dπ̃ = 1

dF (dr ) |n|r/2F

∑

m1+···+ml=m

(−1)m−l

∏l
i=1(r0mi )!

∑

x

f (m1, . . . ,ml , 1, x). (4.4)
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For the identity element 1 ∈ W (G, T ), we write xi = x1,i for short for each i = 1, · · · , l.
Using Conjecture 4.6,

f (m1, . . . ,ml , 1, x) = �G(x)
l

∏

i=1

∣

∣W ((Gr0mi )xi , Tr0mi )
∣

∣ · cZ(ρ,[ti−1,ti−1])(xi )

is 0 except the following condition holds: For every i = 1, . . . , l, the matrix xi is Gr0mi -
conjugate to a matrix of the form diag(ζi1 Ir0 , . . . , ζimi Ir0) with ζi j ∈ μn pairwise different
for j = 1, · · · ,mi . In this case we have

∣

∣W ((Gr0mi )xi , Tr0mi )
∣

∣ = (r0!)mi for each i and

f (m1, . . . ,ml , 1, x) = �G(x)
l

∏

i=1

(r0!)mi

mi
∏

i=1

ωρ(ζi j ).

Fromnowonweassume gcd(n, p) = 1.Themost important consequence of this assump-
tion is that, �G(x) = 1 for any x of the form diag(ζ1, . . . , ζn) with ζi ∈ μn , which seems
to be crucial in the calculation below. Moreover, we also have μn ⊂ F

×
q , dF (dr ) = dr and

|n|F = 1.
Then we have

dπ̃ = 1

dr

∑

m1+···+ml=m

⎛

⎝

l
∏

i=1

(−1)mi−1(r0!)mi

(r0mi )!
∑

xi

mi
∏

j=1

ωρ(ζi j )

⎞

⎠

= 1

dr

∑

m1+···+ml=m

⎛

⎜

⎜

⎜

⎝

l
∏

i=1

(−1)mi−1

mi !
∑

ζi1,...,ζimi ∈μn
pairwise different

mi
∏

j=1

ωρ(ζi j )

⎞

⎟

⎟

⎟

⎠

where for each i , the corresponding xi in the sum ranges over the matrices in Tr0mi that are
Gr0mi -conjugate to diag(ζi1 Ir0 , . . . , ζimi Ir0) with ζi j ∈ μn pairwise different.

Lemma 4.9 For each i we have

1

mi !
∑

ζi1,...,ζimi ∈μn
pairwise different

mi
∏

j=1

ωρ(ζi j ) =
{

(−1)(s+1)mi /s · ( n/s
mi /s

)

if s divides mi ;
0 otherwise.

Proof Let ζ be a generator of μn , and let ζ0 = ωρ(ζ ) which is a generator of μs . Then the
left-hand side becomes

∑

k1+···+ks=mi

s
∏

j=1

(

n/s

k j

)

ζ
jk j
0 ,

where k j in the sum are non-negative integers, meaning that for each j there are k j ’s ζil with

1 ≤ l ≤ mi such that ωρ(ζil) = ζ
j
0 . Considering the generating function

s
∏

j=1

(ζ
j
0 X + 1)n/s = (

(−1)s+1Xs + 1
)n/s

and comparing the coefficient of Xmi , we finish the proof. �
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Using this lemma, we further have

dπ̃ = 1

dr

∑

m1+···+ml=m
s divides mi

(

l
∏

i=1

(−1)mi−1(−1)(s+1)mi /s ·
(

n/s

mi/s

)

)

= 1

dr

∑

m′
1+···+m′

l=m/s

(

l
∏

i=1

(−1)m
′
i−1 ·

(

n/s

m′
i

)

)

= 1

dr
·
(

m/s + n/s − 1

m/s

)

,

where for the last step we compare the coefficient of Xm/s in the generating function

+∞
∑

i=0

(

n/s
∑

j=1

(−1) j−1
(

n/s

j

)

X j )i = 1

(1 − X)n/s
=

+∞
∑

i=0

(

i + n/s − 1

i

)

Xi ,

so we finish the proof. �


Remark 4.10 By Theorem 4.7 and Proposition 4.2, it is theoretically and algorithmically
possible to calculate dπ̃ for any π̃ ∈ Irrω̃(˜Gr ), since in the Grothendieck group π̃ can be
written as a linear combination (with coefficients being integers that can be determined) of
representations of the form

(L(ρ̃1, [0,m1 − 1])ω̃1
˜× · · ·˜×L(ρ̃l , [0,ml − 1])ω̃l )ω̃,

where ρ̃i ∈ Cuspε(
˜Gri ) such that

∑l
i=1 rimi = r and ω̃i are genuine compatible characters

of Z( ˜Grimi ) for each i (cf. [31]).

In particular we have the following corollary.

Corollary 4.11 Let ρ̃ ∈ Cuspε(
˜Gr ′

0
). Assume MC(ρ̃) = L(ρ, [0, s − 1]) for r ′

0 = r0s and
ρ ∈ Cusp(Gr0), such that ωρ |μn is of order s (cf. Proposition 3.16). If gcd(n, p) = 1, then

dL(ρ̃,[0,k−1])ω̃ = 1

dr

(

k + n/s − 1

k

)

and dZ(ρ̃,[0,k−1])ω̃ = 1

dr

(

n/s

k

)

.

Proof The first statement is nothing but a reformulation of Theorem 4.7. For the second
statement, recall that we have the following determinantal formula (cf. [31, 35])

Z(ρ̃, [0, k − 1])ω̃
=

∑

k1+···+kl=k

(−1)k−l(L(ρ̃, [t0, t1 − 1])ω̃1
˜×L(ρ̃, [t1, t2 − 1])ω̃2

˜× · · ·˜×L(ρ̃, [tl−1, tl − 1])ω̃l )ω̃,

where we write t0 = 0 and ti = k1 + · · · + ki for each i = 1, . . . , l, and the above two sums
are in the Grothendieck group of finite length representations of ˜Gr . Taking the Whittaker
dimension and using the first formula and Proposition 4.2, we get

dr · dZ(ρ̃,[0,k−1])ω̃ =
∑

k1+···+kl=k

l
∏

i=1

(−1)ki−1
(

ki + n/s − 1

ki

)

=
(

n/s

k

)

,
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where the last equation follows by considering the coefficient of Xk in the generating function

+∞
∑

i=0

(

+∞
∑

j=1

(−1) j−1
(

j + n/s − 1

j

)

X j )i =
+∞
∑

i=0

(1 − (1 + X)−n/s)i = (1 + X)n/s .

�

In particular we have the following interesting special case.

Corollary 4.12 We keep the notation of Corollary 4.11. Then

dZ(ρ̃,[0,n/s−1])ω̃ = 1 and dZ(ρ̃,[0,k−1])ω̃ = 0 if k > n/s.

It should be interesting to give an independent algebraic proof of the above corollary,
like what Bernstein-Zelevinsky did in [5, 53] in the n = 1 case. Their proof, which is
mysterious enough, relies on themultiplicity one theorem of theWhittakermodel of a generic
representation. So giving an independent proof of the about corollary includes providing a
better understanding of the old but prominent theory of Bernstein-Zelevinsky.

4.4 Evidence of Conjecture 4.6

In this subsection we still let G = Gr . We verify Conjecture 4.6 for two special cases.
First we consider the case where r0 = 1, then ρ is indeed a character of F×. In this case

by definition we have

Z(ρ, [a, b]) = (ρν(b+a)/2) ◦ det

which is a character of Gr . Then for x = diag(ζ1, · · · , ζr ) with ζi ∈ μn we have

�G(x) · cZ(ρ,[a,b])(x) = lim
x ′→x

�G(x ′) · (ρν(b+a)/2)(det(x ′))

where in the limit x ′ = diag(ζ ′
1, . . . , ζ

′
r ) with ζ ′

i ∈ μn pairwise different. If there exist i �= j
such that ζi = ζ j , then

lim
x ′→x

�G(x ′) = 0 and thus cZ(ρ,[a,b])(x) = 0;
if ζi are pairwise different for i = 1, . . . , r , we have

cZ(ρ,[a,b])(x) = (ρν(b+a)/2)(det(x)) =
r
∏

i=1

ρ(ζi ).

So in this case the conjecture is verified. In particular we have the following important
corollary as a special case of Corollary 4.11.

Corollary 4.13 Let χ̃ ∈ Irrε(˜F×). Assume gcd(n, p) = 1, then

dL(χ̃ ,[0,k−1])ω̃ = 1

dr

(

k + n − 1

k

)

and dZ(χ̃ ,[0,k−1])ω̃ = 1

dr

(

n

k

)

.

Remark 4.14 In the case where χ̃ is an unramified representation, Z(χ̃ , [0, k − 1])ω̃ is usu-
ally called an “exceptional representation” or a “theta representation”, whose Whittaker
dimension is calculated in [32, Theorem I.3.5] by considering functional equations related
to intertwining operators. So we give an independent proof of their result and also generalize
it to ramified case.

123



43 Page 28 of 33 J. Zou

Now we consider the other extreme for cuspidal representations, which is summed up as
the following theorem.

Theorem 4.15 Assume gcd(n, p) = 1. For π ∈ Cusp(G) and x = diag(ζ1, . . . , ζr ) with
ζi ∈ μn ⊂ F

×
q ⊂ F×, we have

cπ (x) =
{

ωπ(ζ ) if ζ1 = · · · = ζr = ζ ;
0 if ζi �= ζ j for some i �= j .

Proof When ζ1 = · · · = ζr = 1, by [43] and [44] cπ (Ir ) equals the Whittaker dimension
of π which is 1. For ζ1 = · · · = ζr = ζ ∈ μn in general, by (4.1) we have cπ (ζ Ir ) =
ωπ(ζ )cπ (Ir ) = ωπ(ζ ). To prove the rest, we first give an ad-hoc introduction of the simple
type theory for our use, and we leave [9], or in general [12] for more details.

A simple stratum [a, β] in A = Mr (F) consists of a hereditary order a in A and an
element β ∈ G, such that E = F[β] is a field of degree d over F , and E× normalizes a. Let
B 	 Mr (E) be the centralizer of E in A, thus r = md . Let b = B ∩ a be a hereditary order
in B, let pa be the Jacobson radical of a and let pb = pa ∩ b be the Jacobson radical of b.
We further assume our simple stratum to be maximal, saying that b is a maximal order in B.
In this case, we change a up to G-conjugacy, such that

a = {(ai j )1≤i, j≤e | ai j ∈ Mm f (oF ) for 1 ≤ i ≤ j ≤ e and ai j ∈ Mm f (pF ) for 1 ≤ j < i ≤ e}
and

pa = {(ai j )1≤i, j≤e | ai j ∈ Mm f (oF ) for 1 ≤ i < j ≤ e and ai j ∈ Mm f (pF ) for 1 ≤ j ≤ i ≤ e},
where d = e f with e the ramification index and f the residue degree of E/F , and oF (resp.
oE ) denotes the ring of integers of F (resp. E), and pF (resp. pE ) denotes the corresponding
maximal ideal. We further have the Fq -algebra embedding

ι = (ι1, . . . , ιe) : Mm(Fq f ) 	 b/pb ↪→ a/pa 	 Mm f (Fq) × · · · × Mm f (Fq)
︸ ︷︷ ︸

e-copies

, (4.5)

where each ιi is an Fq -algebra embedding4 from Mm(Fq f ) to the i-th Mm f (Fq) on the
right-hand side, which induces the corresponding group embedding

ι = (ι1, . . . , ιe) : GLm(Fq f ) 	 b×/1 + pb ↪→ a×/1 + pa 	 GLm f (Fq) × · · · × GLm f (Fq)
︸ ︷︷ ︸

e-copies

.

(4.6)

Associated with [a, β], we may construct an open compact pro-p-group J 1(a, β) ⊂ 1 + pa
and an open compact group J 0(a, β) = b× J 1(a, β) ⊂ a×, andwe have J 0(a, β)/J 1(a, β) 	
b×/1+pb 	 GLm(Fq f ). We will write J 0 and J 1 instead of J 0(a, β) and J 1(a, β) for short.

One main result of the simple type theory predicts the existence of a pair (J,�) with
J := E× J 0 and an irreducible representation � of J , such that π is isomorphic to the
compact induction indGJ (�). The restriction λ = �|J 0 equals the tensor product κ ⊗ρ. Here
κ is a so-called β-extension as an irreducible representation of J 0 of dimension a power of
p, whose construction and properties shall be irrelevant. And ρ is the inflation of a cuspidal
representation ρ of GLm(Fq f ) 	 b×/1 + pb.

4 Each ιi is injective since Mm (Fq f ) is a simple Fq -algebra.
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We come back to the original proof. Let x ′ = diag(ζ ′
1, . . . , ζ

′
r ) be a semi-simple regular

element of G, such that ζ ′
i ∈ ζi (1 + pF ) for each i . For a finite dimensional irreducible

representation � of an �-group J , we denote by tr(�) the trace of �. Using [10, Theorem
A.14], for an open compact subgroup K1 of G, we have

θπ (x ′) =
∑

h∈K1\G/J

∑

g∈K1h J/J,g−1x ′g∈J

tr(�)(g−1x ′g). (4.7)

Lemma 4.16 If ζi �= ζ j for some 1 ≤ i < j ≤ n, then for any g ∈ G such that g−1x ′g ∈ J
we have tr(�)(g−1x ′g) = 0.

It is clear that the rest of Theorem 4.15 follows from Lemma 4.16, (4.1) and (4.7), so we
focus on the proof of Lemma 4.16.

Since det(g−1x ′g) = ∏r
i=1 ζ ′

i ∈ o×
F , we have g

−1x ′g ∈ J 0. We write g−1x ′g = yk with
y ∈ b×, k ∈ J 1, and y the image of y in GLm(Fq f ) 	 b×/1 + pb.

Lemma 4.17 Let Py(X) be the characteristic polynomial of y in Mm(Fq f ), then

[N
Fq f /Fq (Py(X))]e =

r
∏

i=1

(X − ζi ),

where N
Fq f /Fq := ∏

σ∈Gal(Fq f /Fq ) σ denotes the norm map.

Proof By definition, P ′(X) = ∏r
i=1(X − ζ ′

i ) ∈ oF [X ] is the characteristic polynomial
of g−1x ′g = yk, thus P(X) = ∏r

i=1(X − ζi ) ∈ Fq [X ] is the characteristic polyno-
mial of yk in GLr (Fq) 	 GLr (oF )/1 + Mr (pF ). Since yk ∈ a×, by direct calculation
P(X) depends only on the image of yk in GLm f (Fq)

⊕e 	 a×/1 + pa. More pre-
cisely by (4.6), ι(y) = diag(ι1(y), . . . , ιe(y)) is exactly the image of yk in GLm f (Fq)

⊕e.
Moreover, P(X) = ∏e

i=1 Pιi (y)(X) with Pιi (y)(X) denoting the characteristic polyno-
mial of ιi (y) in Mm f (Fq). Finally we have N

Fq f /Fq (Py(X)) = Pιi (y)(X) for each i , thus

[N
Fq f /Fq (Py(X))]e = ∏e

i=1 Pιi (y)(X) = P(X) = ∏r
i=1(X − ζi ). �


Now we finish the proof of Lemma 4.16. By definition we have tr(�)(g−1x ′g) =
tr(κ)(g−1x ′g) · tr(ρ)(g−1x ′g) and tr(ρ)(g−1x ′g) = tr(ρ)(yk) = tr(ρ)(y). Using [25, Theo-
rem 12], tr(ρ)(y) = 0 unless Py(X) is a power of an irreducible polynomial in Fq [X ], which
happens only if ζ1 = · · · = ζr using Lemma 4.17. Thus we must have tr(ρ)(y) = 0 and
tr(�)(g−1x ′g) = 0 once there exist i, j such that ζi �= ζ j , finishing the proof of Lemma
4.16 and Theorem 4.15. �


As a special case of Theorem 4.7, we have

Corollary 4.18 Assume gcd(n, p) = 1. Let π̃ ∈ Cuspε(
˜G) such that π = MC(π̃) ∈

Cusp(G), then

dπ̃ = n/dr .

Remark 4.19 We notice that π̃ is cuspidal if π is so, but the converse is not true in general
(cf. Proposition 3.16). So this corollary calculates the Whittaker dimension of a certain class
of cuspidal representations of ˜G. One may also compare our result with the result of Blondel
[7, Theorem 3] for depth 0 cuspidal representations, and find out that they match well if the
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number k in loc. cit. is 1, which is indeed expected when π is cuspidal (although we do
not give a proof here). This “coincidence” indeed motivates us to study an “explicit” meta-
plectic correspondence as what Bushnell–Henniart [11] proposed for the Jacquet–Langlands
correspondence.

5 Conjecture 14 of [30] for a Kazhdan–Patterson covering group

In this section, we explain how our results could be used to study an analogue of [30, Con-
jecture 14] for a Kazhdan–Patterson covering group. Our discussion here is rather heuristic.

Still, all the covering groups we consider are Kazhdan-Patterson for fixed n, c. Fix two
positive integers r and c0. Let π̃ ∈ Tempε(

˜Gr ), which is necessarily generic by Proposition

3.17, Proposition 4.2 and Corollary 4.11. For a compatible genuine character ω̃ of Z( ˜Grnc0),
we consider the parabolic induction

(π̃ν−(c0n−1)/2n
˜×π̃ν−(c0n−3)/2n

˜× · · ·˜×π̃ν(c0n−3)/2n
˜×π̃ν(c0n−1)/2n)ω̃. (5.1)

By theLanglands classification [1, Theorem4.1], it has a unique irreducible subrepresentation
which we denote by ρc0(π̃)ω̃. We state [30, Conjecture 14] in our settings.

Conjecture 5.1 When c0 = 1, the Whittaker space of ρ1(π̃)ω̃ is one-dimensional. In gen-
eral, ρc0(π̃)ω̃ is a (nr , c0)-representation (cf. [30, Definition 11]), or, a fortiori, the highest
derivative of ρc0(π̃)ω̃ is of order nr and equals ν−1/2 · ρc0−1(π̃)ω̃′ for a certain compatible

genuine character ω̃′ of Z( ˜Grn(c0−1)).

Remark 5.2 The exponent−1/2 in ν−1/2 ·ρc0−1(π̃)ω̃′ differs from that in [30, Conjecture 14]
(which is (n−1)/2). It is because in loc. cit. the author considered non-normalized derivative
functors, whereas we consider normalized derivative functors.

We expect that using Corollary 4.11, the Bernstein-Zelevinsky theory of derivatives in [4,
§3-4] and the theory of generalized Speh representations studied by Tadić [47] and others,
this conjecture can be verified as in the linear case [13, Theorem 4]. However, we need to
generalize the above results to aKazhdan-Patterson covering group,which, although expected
to be routine, has not been fully done yet. So instead we satisfy ourselves with a special case,
where π̃ is a cuspidal representation.

Proposition 5.3 When π̃ is a cuspidal representation, the above conjecture is true.

Proof Let s(π̃) be as in Proposition 3.14, let s = s(π̃)n be a positive integer that divides n
and let m = n/s. Let

π̃0 = Z(π̃ , [−(mc0 − 1)/2, (mc0 − 1)/2])ω̃0

be the unique irreducible subrepresentation of

(ν−(mc0−1)s/2nπ̃˜×ν−(mc0−3)s/2nπ̃˜× · · ·˜×ν(mc0−1)s/2nπ̃)ω̃0

of ˜Grmc0 , where ω̃0 is a certain compatible genuine character of Z(˜Grmc0). Using the Zelevin-
sky classification [31], the representation (5.1) has an irreducible subrepresentation

(ν−(s−1)/2nπ̃0˜×ν−(s−3)/2nπ̃0˜× · · ·˜×ν(s−1)/2nπ̃0)ω̃,

which is exactly ρc0(π̃)ω̃. Using [30, Proposition 12] whose argument works for a Kazhdan-
Patterson covering group as well, we need to prove that

123



Local metaplectic correspondence and applications Page 31 of 33 43

• When c0 = 1, the Whittaker space of Z(π̃, [−(m − 1)/2, (m − 1)/2])ω̃0 is one-
dimensional;

• π̃0 = Z(π̃, [−(mc0 −1)/2, (mc0 −1)/2])ω̃0 is an (mr , c0)-representation. Or, a fortiori,
the highest derivative of Z(π̃, [−(mc0−1)/2, (mc0−1)/2])ω̃0 is of ordermr and equals

Z(π̃ , [−(mc0 − 1)/2, (mc0 − 1 − 2m)/2])ω̃′
0

= ν−1/2 · Z(π̃ , [−(mc0 − 1 − m)/2, (mc0 − 1 − m)/2])ω̃′′
0
,

where ω̃′
0 and ω̃′′

0 are certain compatible genuine characters of Z( ˜Gr(m−1)c0).

The first claim follows from Corollary 4.12. The second claim follows from Corollary 4.12,
the formula of Jacquet module of π̃0 in Lemma 3.15.(2), and the fact that the i-th derivative
functor equals the composition of the Jacquet module functor related to the composition
(rmc0 − i, i) with the i-th second partial derivative functor. We omit the detail but leave [53,
§3] for a similar argument. �


Data availability Data sharing is not applicable to this article as no new data were created or analyzed in this
study.
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36. Li, W.-W.: La formule des traces pour les revêtements de groupes réductifs connexes. II. Analyse har-

monique locale. Ann. Sci. Éc. Norm. Supér. (4) 45(5), 787–859 (2012)
37. Matsumoto, H.: Sur les sous-groupes arithmétiques des groupes semi-simples déployés. Ann. Sci. École

Norm. Sup. (4) 2(1), 1–62 (1969)
38. Mezo, P.: Comparisons of general linear groups and their metaplectic coverings I. Can. J. Math. 54(1),

92–137 (2002)
39. Mezo, P.: Metaplectic tensor products for irreducible representations. Pac. J. Math. 215(1), 85–96 (2004)
40. Mœglin, C., Waldspurger, J.-L.: Spectral decomposition and Eisenstein series: a paraphrase of the scrip-

tures. Cambridge University Press, Cambridge, p. 113 (1995)
41. Mœglin, C., Waldspurger, J.-L., de Whittaker, M.: Dégénérés pour des groupes p-adiques. Math. Z.

196(3), 427–452 (1987)
42. Patel, S.-P.: A theorem of Mœglin and Waldspurger for covering groups. Pac. J. Math. 273(1), 225–239

(2015)
43. Rodier, F.: Modèle de Whittaker et caractères de représentations, Non-commutative harmonic analysis,

Lecture Notes in Math., Vol. 466. Springer, Berlin, pp. 151–171 (1975)
44. Shalika, J.A.: The multiplicity one theorem for GLn . Ann. Math. 100(2), 171–193 (1974)
45. Shimura, G.: On modular forms of half integral weight. Ann. Math. 97(2), 440–481 (1973)
46. Suzuki, T.: Distinguished representations of metaplectic groups. Am. J. Math. 120(4), 723–755 (1998)
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