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Abstract
Let X be a projective variety of dimension n over an algebraically closed field of arbitrary
characteristic and let A, B,C be nef divisors on X . We show that for any integer 1 ≤ k ≤
n − 1,

(Bk · An−k) · (Ak · Cn−k) ≥ k!(n − k)!
n! (An) · (Bk · Cn−k).

The same inequality in the analytic setting was obtained by Lehmann and Xiao for compact
Kählermanifolds using theCalabi–Yau theorem,while our approach is purely algebraic using
(multipoint) Okounkov bodies.We also discuss applications of this inequality to Bézout-type
inequalities and inequalities on degrees of dominant rational self-maps.

Keywords Reverse Khovanskii–Teissier inequality · Okounkov bodies · Intersection
numbers · Volumes

Mathematics Subject Classification 14C20 · 14M25 · 14C17

1 Introduction

In [23], Lehmann and Xiao have proved the so called reverse Khovanskii–Teissier inequality
on compact Kähler manifolds. Namely, for nef (1, 1)-classes α, β and γ on a compact Kähler
manifold of dimension n, we have

(βk · αn−k) · (αk · γ n−k) ≥ k!(n − k)!
n! (αn) · (βk · γ n−k). (1.1)

In fact such an inequalitywasfirst observedbyXiao [30]with aweaker constant k!(n−k)!
4n! which

can be improved to k!(n−k)!
n! by the technique of Popovici [26] (cf. [30, Remark 3.1]). Such
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an inequality between intersection numbers plays an important role in the proof of Morse
type inequalities (see also [26, 30]) and it also has interesting applications to dynamical
degrees of rational maps [1, 7]. Besides, it has an interesting analogue in convex geometry
[23, Theorem 5.9] and applications in the study of convolution of convex valuations [8,
Theorem 2.9].

The proof of Popovici and Lehmann–Xiao depends on solvingMonge–Ampére equations
which deeply relies on the Calabi–Yau theorem, and it has been asked in [21, Remark 9.3]
(the arXiv version of [22]) whether there is an algebraic approach working for projective
varieties defined over arbitrary fields. In [7, Theorem 3.4.3], by studying intersections of
numerical cycles, Dang has proved a weaker form of (1.1) in the algebraic geometry setting
with the constant k!(n−k)!

n! replacing by 1
(n−k+1)k

.
In this paper, we use the (multipoint) Okounkov bodies to prove this optimal inequality

in the algebraic geometry setting. The main result is

Theorem 1.1 Let X be a projective variety of dimension n over an algebraically closed field of
arbitrary characteristic. Let A, B,C be nef divisors on X. Then for any integer 1 ≤ k ≤ n−1,

(Bk · An−k) · (Ak · Cn−k) ≥ k!(n − k)!
n! (An) · (Bk · Cn−k). (1.2)

Moreover, if A, B,C are ample, then this inequality is strict.

We shall mention that the constant k!(n−k)!
n! in (1.2) is optimal. For instance, if X =

P
k × P

n−k , one can take A, B,C to be the divisors on X of type (1, 1), (1, 0), (0, 1),
respectively, then the equality holds in (1.2). It is interesting and natural to ask for the
characterization of the equality case of (1.2), but the answer might be very complicated. One
naive guess is that if the equality holds while both sides are non-zero, then B and C have
numerical dimensions k and n − k respectively and A lies on the plane spanned by B and C
in the Néron–Severi group NS(X) ⊗Z R. We will give such a characterization when X is a
surface in Proposition 5.1.

Our proof makes use of the connection between volumes of big divisors and volumes
of (multipoint) Okounkov bodies discovered in [15, 20, 29]. The desired inequality follows
from a dedicated comparison between the Okounkov bodies associated to an admissible flag
and the convex bodies associated to sub-flags obtained by cutting the admissible flag with
very general hyperplanes. In this way, we actually obtain a more general result for restricted
volumes, see Theorems 3.4, 3.5, and 3.8 for details. Another advantage of this method is
that we only need to deal with the intersection theory of divisors, which is much easier to
handle than that of algebraic cycles (cf. [7]). Very recently, Hu and Xiao [12] give a purely
combinatorial proof of Theorem 1.1.

As a consequence, we can get a Bézout-type inequality which was proved by Xiao [31,
Theorem 1.6] when the base field is C, generalizing the classical Bézout theorem for hyper-
surfaces. Here we get a better constant than [31, Theorem 1.6].

Corollary 1.2 (cf. [31, Theorem 1.6]) Let X be a projective variety with an ample divisor H
as polarization and let A1, . . . , Ar be nef divisor classes on X. Assume that a1, . . . , ar ∈ Z>0

and |a| := ∑r
i=1 ai ≤ n. Let Y1, . . . , Yr be subvarieties of cycle classes Aa1

1 , . . . , Aar
r , and

assume that they have proper intersection, then

degH (Y1 ∩ · · · ∩ Yr ) ≤ min
k

{ ∏r
i=1

(|a|
ai

)

(|a|
ak

)
(Hn)r−1

}
r∏

i=1

degH (Yi ).
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There is another application on degrees of the iterations of rational self-maps on projective
varieties. Let f : X ��� X be a dominant rational self-map of a projective variety X of
dimension n defined over an algebraically closed field of arbitrary characteristic and let H
be a nef and big divisor on X . For any integer 0 ≤ i ≤ n, the i-th degree of f with respect
to H is defined by

degi,H ( f ) = (π∗
1 H

n−i · π∗
2 H

i ),

where π1 and π2 are the projections from the normalization of the graph of f in X × X onto
the first and the second factor, respectively. In [7], Dang proved a weaker form of (1.2) in
order to study the sequence of intermediate degrees of the iterations of a dominant rational
self-map and to recover the results in [1, 9, 28]. As an application of Theorem 1.1, we give
a new and simple proof of [7, Theorem 1] with better constants.

Corollary 1.3 (cf. [7, Theorem 1]) Let X be a projective variety of dimension n and let H be
a nef and big divisor on X. Fix an integer 0 ≤ i ≤ n.

(1) For any dominant rational self-maps f , g on X,

degi,H ( f ◦ g) ≤
(n
i

)

(Hn)
degi,H ( f ) · degi,H (g).

(2) For any nef and big divisor L on X and any dominant rational self-maps f on X,

degi,H ( f ) ≤
(n
i

)2
(Hn−i · Li ) · (Ln−i · Hi )

(Ln)2
degi,L( f ).

This result is essential in the definition of the dynamical degree of a self-rational map (cf. [1,
7, 9, 29]).

This paper is organized as the following. In Sect. 2, we introduce definitions and basic
knowledge on (multipoint) Okounkov bodies. In Sect. 3, we develop properties of Okounkov
bodies and prove Theorem 1.1 along with several general statements. In Sect. 4, we give the
applications of the main theorem. In Sect. 5, we give a characterization of the equality case
of Theorem 1.1 on surfaces.

2 Preliminaries

2.1 Notation and conventions

We work over an algebraically closed field of arbitrary characteristic. We adopt the standard
notation and definitions in [18–20]. A variety is reduced and irreducible. A divisor on a
projective variety always means a Cartier divisor. When the base field is uncountable, a
property holds for a very general choice of data if it is satisfied away from a countable union
of proper closed subvarieties of the relevant parameter space.

2.2 Volumes

Let X be a projective variety of dimension n and let D be a divisor on X . The volume of D
is the real number

volX (D) = lim
m→∞

h0(X ,OX (mD))

mn/n! .
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We say that D is big if volX (D) > 0. For more details and properties of volumes, we refer to
[18, 2.2.C] and [19, 11.4.A]. By the homogeneity of volumes, this definition can be extended
to Q-divisors. Note that if D is a nef divisor, then volX (D) = (Dn).

2.3 Restricted volumes

We recall the notation in [20, §2.4]. Let V be a projective variety and let D be a big divisor
on V . The augmented base locus B+(D) ⊂ V is defined to be B+(D) = B(D − A) for any
sufficiently small ample Q-divisor A, where B(D − A) is the stable base locus of D − A.
Let X be an irreducible closed subvariety of V of dimension n, then the restricted volume of
D from V to X is defined by

volV |X (D) = lim
m→∞

dim
(
Im

(
H0(V ,mD)

restr−→ H0(X ,mD|X )
))

mn/n! .

For a sufficiently divisible integer m > 0, consider πm : Vm → V to be the blowing-up
of V along the base ideal of |mD|, then we have

π∗
m |mD| = |Mm | + Em

where Mm is free, and Em is the fixed part. If X �⊂ B(D), the asymptotic intersection number
of D and X is defined to be

‖Dn · X‖ = lim sup
m→∞

(Mn
m · Xm)

mn
,

where Xm is the strict transform of X on Vm (cf. [10, Definition 2.6]). Recall that we have
the following Fujita’s approximation theorem of restricted volumes.

Theorem 2.1 ([10, Theorem 2.13], [20, Remark 3.6]) Let V be a projective variety and let
D be a big divisor on V . Let X be an irreducible closed subvariety of V of dimension n such
that X �⊂ B+(D). Then

volV |X (D) = ‖Dn · X‖.

2.4 Okounkov bodies

Okounkov bodies of big divisors were introduced in [15, 20] motivated by earlier works of
Okounkov [24, 25]. There have been many interesting applications of Okounkov bodies in
the study of geometric properties of divisors, for example, [2–6, 13, 14, 16, 17, 27].

We recall the definition of Okounkov bodies from [20]. Let X be a projective variety of
dimension n. Consider an admissible flag X• on X

X• : X = X0 ⊇ X1 ⊇ · · · ⊇ Xn−1 ⊇ Xn = {x}
where each Xi is an irreducible closed subvariety of X which is non-singular at the point x
and codim Xi = i . For a big divisor D on X , we consider the Q-linear system

|D|Q = {D′ | D ∼Q D′ ≥ 0}
and a valuation-like function

νX• : |D|Q → R
n≥0,

D′ �→ νX•(D
′) = (ν1, ν2, . . . , νn),
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where νi are defined inductively as follows:

(1) define ν1 := multX1 D
′ ∈ Q≥0 and D′

1 := D′ − ν1X1 on X0, and inductively,
(2) assuming that νi ∈ Q≥0 and D′

i on Xi−1 are defined, then define νi+1 :=
multXi+1(D

′
i |Xi ) ∈ Q≥0 and D′

i+1 = D′
i |Xi − νi+1Xi+1 on Xi .

Here we remark that as Xi−1 is non-singular at x , D′
i |Xi is a well-defined Q-divisor in a

neighborhood of x and multXi+1(D
′
i |Xi ) can be well-defined. The Okounkov body of D with

respect to X• is defined as

�X•(D) := the convex closure of νX•(|D|Q) in R
n≥0.

Here the definition is equivalent to [20, Definition 1.8] but we use Q-linear systems instead
of global sections as in [20] to make the notation simpler. Such a formulation appears for
example in [2]. By [20, Theorem A], we have

volRn (�X•(D)) = 1

n! volX (D) (2.1)

for every admissible flag X• on X .

2.5 Multipoint Okounkov bodies

In this paper, we will study the property of the Okounkov body of a given admissible flag
cutting by very general hyperplanes (see Proposition 3.2). For example, given an admissible
flag X• and a very general hyperplane H on X , in order to naturally define an admissible flag
H•, we need to pick a closed point in Xn−1 ∩ H . But in this way we lost the information of
other points in Xn−1 ∩ H . So the natural idea is to consider the whole set of points Xn−1 ∩ H
instead of just picking one. To this end, we need to extend the definition of admissible flags
and Okounkov bodies to multipoint admissible flags and multipoint Okounkov bodies.

Now we recall the definition of multipoint Okounkov bodies in [29]. For our purpose,
we only introduce a special case. Let Z be a projective variety of dimension k. Consider a
multipoint admissible flag Z• on Z

Z• : Z = Z0 ⊇ Z1 ⊇ · · · ⊇ Zk−1 ⊇ Zk = {p1, . . . , pN }
where Zk consists of N distinct points and for 0 ≤ i < k, each Zi is an irreducible closed
subvariety of Z which is non-singular at the points p1, . . . , pN and codim Zi = i . For
1 ≤ j ≤ N , denote by Z•(p j ) the admissible flag

Z = Z0 ⊇ Z1 ⊇ · · · ⊇ Zk−1 ⊇ {p j }.
Then for a big divisor D on Z , we can consider the functions νZ•(p j )(D

′) (1 ≤ j ≤ N )

for D′ ∈ |D|Q. Note that νZ•(p j )(D
′) only differs on the last coordinate in R

k . So the
lexicographical order of {νZ•(p j )(D

′) | 1 ≤ j ≤ N } is just the order of the last coordinates.
We define the subset Vj (D) ⊂ |D|Q by

Vj (D) = {
D′ ∈ |D|Q

∣
∣ νZ•(p j )(D

′) < νZ•(pi )(D
′) for all i �= j

}
. (2.2)

ThemultipointOkounkov body of Dwith respect to Z• and p j is defined in [29,Definition 3.4]
as

�Z•, j (D) := the convex closure ofνZ•(p j )(Vj (D)) in R
k≥0.
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By [29, Theorem 1.2], we have

N∑

j=1

volRk (�Z•, j (D)) = 1

k! volZ (D) (2.3)

for every multipoint admissible flag Z• on Z .
By the homogeneity (cf. [29, Proposition 3.10]), the definition of (multipoint) Okounkov

bodies can be extended to bigQ-divisors. In particular, (2.1) and (2.3) hold for bigQ-divisors.

Remark 2.2 In [29], it has been assumed that the base field is C and Z is smooth. But as the
proof of [29, Theorem 1.2] follows the line of [20, Theorem A], it is not hard to check that
[29, Theorem 1.2] holds for any projective variety over any algebraically closed field. Here
as in [20, Remark 3.7], we do not need to assume that the base field is uncountable.

2.6 Cutting a divisor by general hyperplanes

We will use the following lemma which is a direct consequence of Bertini’s theorem.

Lemma 2.3 Let X be a projective variety. Let D be a Q-divisor on X and let P be a prime
divisor whose generic point lies in the smooth locus of X. Then for a general very ample
divisor H on X, the following statements hold:

(1) if dim X > 2, then P|H is a prime divisor whose generic point lies in the smooth locus
of H;

(2) if dim X = 2, then P|H is a reduced divisor (consisting of points) lies in the smooth
locus of H;

(3) multP D = multP ′ D|H for each irreducible component P ′ of P|H .
Proof (1) and (2) follows from Bertini’s theorem [11, Theorem II.8.18]. To get (3), we just
need to choose H general so that

• for each irreducible component P1 of D, P1|H is reduced, and
• for irreducible components P1 and P2 of D, P1|H and P2|H has no common irreducible

component.

This is again by Bertini’s theorem. ��

3 Inequalities between volumes via Okounkov bodies

3.1 A comparision result on Okounkov bodies

We define pr>k : Rn → R
n−k to be the projection of the last n − k coordinates and pr≤k :

R
n → R

k to be the projection of the first k coordinates.
The following lemma gives a comparison of the Okounkov bodies of a certain admissible

flag and its sub-flag via the natural projections.

Lemma 3.1 Let X be a projective variety of dimension n, let D be a big divisor on X, and
let X• be an admissible flag. Fix an integer 1 ≤ k ≤ n. Denote Y = Xk and Y• = Xk+•.
Suppose that D|Y is big and OXi−1(Xi )|Y is a semiample line bundle on Y for 1 ≤ i ≤ k.
Then

pr>k(�X•(D)) ⊂ �Y•(D|Y ).
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Proof Fix any D′ ∈ |D|Q. Suppose that νX•(D
′) = (ν1, . . . , νn). Recall that for 0 ≤ i ≤ n−1

we define by induction that νi+1 = multXi+1 D
′
i |Xi and D′

i+1 = D′
i |Xi − νi+1Xi+1. Then by

definition νY•(D
′
k |Y ) = (νk+1, . . . , νn). By construction,

D′
k |Y ∼Q D|Y −

k∑

i=1

νi Xi |Y ,

where we view Xi |Y as a divisor defined by the line bundle OXi−1(Xi )|Y . So by our
assumption, D|Y − D′

k |Y is semiample. Therefore, we can find D̃ ∈ |D|Y |Q such that
νY•(D̃) = νY•(D

′
k |Y ) = (νk+1, . . . , νn). This concludes the desired inclusion. ��

The following proposition describes the behavior of the Okounkov body of an admissible
flag when cutting by very general hyperplanes.

Proposition 3.2 Let X be a projective variety of dimension n over an uncountable alge-
braically closed field, let D be a big divisor on X, and let X• be an admissible flag. Fix an
integer 1 ≤ k ≤ n − 1. For very general very ample divisors H1, . . . , Hn−k on X, denote
Z = H1 ∩ · · · ∩ Hn−k , then there is a natural multipoint admissible flag Z• on Z given by
Zi = Xi ∩ Z for 0 ≤ i ≤ k − 1, and Zk = Xk ∩ Z = {p1, . . . , pN }. Then

pr≤k(�X•(D)) ⊂
⋂

m∈Z>0

�Z•, j

(

D|Z + 1

m
AZ

)

for all 1 ≤ j ≤ N and any ample divisor AZ on Z.

Remark 3.3 By [29, Proof of Theorem 1.2], if �Z•, j (D|Z )◦ �= ∅, then
⋂

m∈Z>0

�Z•, j

(

D|Z + 1

m
AZ

)

= �Z•, j (D|Z ).

But we do not need this fact in this paper.

Proof By definition, the set νX•(|D|Q) lies in Qn≥0, which is a countable set. So there exists
a countable set S ⊂ |D|Q such that �X•(D) is the convex closure of {νX•(D

′) | D′ ∈ S}.
It suffices to show that for all D′ ∈ S ⊂ |D|Q and for very general very ample divisors
H1, . . . , Hn−k on X , we have

pr≤k(νX•(D
′)) ∈ �Z•, j

(

D|Z + 1

m
AZ

)

(3.1)

for all m ∈ Z>0.
In fact, it suffices to show that (3.1) holds for a single D′ ∈ S and for very general very

ample divisors H1, . . . , Hn−k on X . More precisely, for fixed very ample linear systems
L1, . . . ,Ln−k on X , if (3.1) holds for every D′ ∈ S and every Hi ∈ Li\Zi,D′ where Zi,D′ ⊂
Li is a countable union of proper closed subset (depending on D′) for each i , then (3.1) holds
for every D′ ∈ S and every Hi ∈ Li\⋃

D′∈S Zi,D′ . Here
⋃

D′∈S Zi,D′ is again a countable
union of proper closed subset of Li as S is countable.

Nowwe consider a fixed D′ ∈ S. Suppose that νX•(D
′) = (ν1, . . . , νn). Recall that for 0 ≤

i ≤ n−1 we define by induction that νi+1 = multXi+1 D
′
i |Xi and D′

i+1 = D′
i |Xi −νi+1Xi+1.

By applying Lemma 2.3 inductively, by taking H1, . . . , Hn−k general, we get that

• νi+1 = multZi+1 D
′
i |Zi and D′

i+1|Zi = D′
i |Zi − νi+1Zi+1 for 0 ≤ i ≤ k − 2;

123
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• νk = mult ps D
′
k−1|Zk−1 for all 1 ≤ s ≤ N .

As AZ is ample, we can find A′
Z ∈ |AZ |Q whose support is very ample which does not

contain p j and Zk−1 but contains ps for all s �= j , in other words,

• mult p j A
′
Z = multZk−1 A

′
Z = 0, and

• mult ps A
′
Z = μs > 0 for all s �= j .

Then from the construction,

νZ•(p j )

(

D′|Z + 1

m
A′
Z

)

= (ν1, . . . , νk)

and

νZ•(ps )

(

D′|Z + 1

m
A′
Z

)

=
(

ν1, . . . , νk−1, νk + 1

m
μs

)

for s �= j . Then we have D′|Z + 1
m A′

Z ∈ Vj (D|Z + 1
m AZ ) as defined in (2.2) and hence

(ν1, . . . , νk) ∈ �Z•, j (D|Z + 1
m AZ ). ��

3.2 The generalized reverse Khovanskii–Teissier inequality

As the volume of Okounkov body can compute the volume of big divisors, the comparision
result in Sect. 3.1 will yield a stronger version of the reverse Khovanskii–Teissier inequality
as follows.

Theorem 3.4 Let X be a projective variety of dimension n over an uncountable alge-
braically closed field. Fix an integer 1 ≤ k ≤ n − 1. Let D be a big divisor on
X and let B1, . . . , Bk,C1, . . . ,Cn−k be very general very ample divisors on X. Denote
Y = B1 ∩ · · · ∩ Bk and Z = C1 ∩ · · · ∩ Cn−k . Then

volY (D|Y ) · volZ (D|Z ) ≥ k!(n − k)!
n! volX (D) · (Y · Z).

Proof It is easy to construct an admissible flag X• such that Xi = B1 ∩ · · · ∩ Bi for any
1 ≤ i ≤ k. By applying Lemma 3.1, we get

pr>k(�X•(D)) ⊂ �Y•(D|Y ).

By applying Proposition 3.2 to the case Hi = Ci for 1 ≤ i ≤ n − k, we get

pr≤k(�X•(D)) ⊂
⋂

m∈Z>0

�Z•, j

(

D|Z + 1

m
AZ

)

for all 1 ≤ j ≤ N , where Z = C1 ∩ · · · ∩ Cn−k , N = (Xk · Z) = (Y · Z), and AZ is an
ample divisor on Z . So

�X•(D) ⊂ �Z•, j

(

D|Z + 1

m
AZ

)

× �Y•(D|Y ) ⊂ R
k × R

n−k

123



Algebraic reverse Khovanskii–Teissier inequality via Okounkov... Page 9 of 14 26

for all 1 ≤ j ≤ N and all m ∈ Z>0. Combining with (2.1) and (2.3), this yields

1

n! (Y · Z) · volX (D) = N volRn (�X•(D))

≤
N∑

j=1

volRk

(

�Z•, j

(

D|Z + 1

m
AZ

))

· volRn−k (�Y•(D|Y ))

= 1

k! volZ
(

D|Z + 1

m
AZ

)

· 1

(n − k)! volY (D|Y ).

We can conclude the assertion by taking m → ∞, as volZ is a continuous function for big
Q-divisors by [20, Corollary 4.12]. ��

As a consequence, we can obtain a general form of Theorem 1.1.

Theorem 3.5 Let X be a projective variety of dimension n. Fix an integer 1 ≤ k ≤ n − 1.
Let A, B1, . . . , Bk,C1, . . . ,Cn−k be nef divisors on X. Then

(B1 · · · · · Bk · An−k) · (Ak · C1 · · · · · Cn−k)

≥ k!(n − k)!
n! (An) · (B1 · · · · · Bk · C1 · · · · · Cn−k). (3.2)

Moreover, if A, B1, . . . , Bk,C1, . . . ,Cn−k are ample, then this inequality is strict.

Proof After base change we may assume that the base field is uncountable. As the inequality
is homogeneous and nef divisors are the limits of ample Q-divisors in the Néron–Severi
group NS(X) ⊗Z R, it suffices to prove the inequality (3.2) for very ample divisors
A, B1, . . . , Bk,C1, . . . ,Cn−k on X . Then the inequality (3.2) follows from Theorem 3.4
by taking D = A.

For the last statement, suppose that A, B1, . . . , Bk,C1, . . . ,Cn−k are ample. Without loss
of generality, we may assume that A is very ample and is a subvariety of X . Assume to the
contrary that the equality holds. Note that for any sufficiently small t > 0, Bk − t A is ample.
So applying (3.2) to A, B1, . . . , Bk−1, Bk − t A,C1, . . . ,Cn−k , we get

(B1 · · · · · Bk−1 · (Bk − t A) · An−k) · (Ak · C1 · · · · · Cn−k)

≥ k!(n − k)!
n! (An) · (B1 · · · · · Bk−1 · (Bk − t A) · C1 · · · · · Cn−k).

By the assumption, this implies that

(B1 · · · · · Bk−1 · An−k+1) · (Ak · C1 · · · · · Cn−k)

≤ k!(n − k)!
n! (An) · (B1 · · · · · Bk−1 · A · C1 · · · · · Cn−k). (3.3)

On the other hand, applying (3.2) to A|A, B1|A, . . . , Bk−1|A,C1|A, . . . ,Cn−k |A on the vari-
ety A, we get

(B1 · · · · · Bk−1 · An−k+1) · (Ak · C1 · · · · · Cn−k)

≥ (k − 1)!(n − k)!
(n − 1)! (An) · (B1 · · · · · Bk−1 · A · C1 · · · · · Cn−k). (3.4)

Here we remark that we need k > 1 in order to apply (3.2), but inequality (3.4) holds trivially
if k = 1. Then (3.3) and (3.4) yields
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(An) · (B1 · · · · · Bk−1 · A · C1 · · · · · Cn−k) ≤ 0,

a contradiction. ��
Remark 3.6 From the proof of Theorem 3.5, it is easy to see that the inequality (3.2) is strict
as long as A, Bk are ample and (B1 · · · · · Bk−1 · A · C1 · · · · · Cn−k) > 0.

Remark 3.7 Although we deduce Theorem 3.5 from Theorem 3.4, it is not hard to see that
Theorem 3.5 implies Theorem 3.4 conversely, as the volume of a big divisor can be approxi-
mated by ample divisors by Fujita’s approximation theorem (cf. [20, §3.1] or Theorem 2.1).
This fact was pointed out by Jian Xiao.

3.3 Proof of Theorem 1.1

It is just a special case of Theorem 3.5.

3.4 Further discussions on restricted volumes

In this subsection we will discuss the generalization of Theorem 3.4 to restricted volumes,
which was suggested by Jian Xiao.

Theorem 3.8 Let V be a projective variety over an uncountable algebraically closed field
and let D be a big divisor on V . Let X be an irreducible closed subvariety of V of dimension n
such that X �⊂ B+(D). Fix an integer 1 ≤ k ≤ n− 1. Let B1, . . . , Bk,C1, . . . ,Cn−k be very
general very ample divisors on V .Denote Y = B1∩· · ·∩Bk∩X and Z = C1∩· · ·∩Cn−k∩X.
Then

volV |Y (D) · volV |Z (D) ≥ k!(n − k)!
n! volV |X (D) · (Y · Z)X .

Proof For any sufficiently divisible integer m > 0, consider πm : Vm → V to be the
blowing-up of V along the base ideal of |mD|, then we have

π∗
m |mD| = |Mm | + Em

where Mm is free, and Em is the fixed part. Denote by Xm the strict transform of X on
Vm . By taking B1, . . . , Bk,C1, . . . ,Cn−k very general, we may assume that Y , Z �⊂ B+(D)

and for every sufficiently divisible integer m > 0, Ym = (π∗
m B1 · · · · · π∗

mBk · Xm) and
Zm = (π∗

mC1 · · · · · π∗
mCn−k · Xm) as cycles, where Ym, Zm are the strict transforms of Y , Z

on Vm respectively. Then by applying Theorem 3.5 to

Mm |Xm , π∗
m B1|Xm , . . . , π∗

m Bk |Xm , π∗
mC1|Xm , . . . , π∗

mCn−k |Xm

on Xm , we get

(π∗
m B1 · · · · · π∗

mBk · Mn−k
m · Xm) · (Mk

m · π∗
mC1 · · · · · π∗

mCn−k · Xm)

≥ k!(n − k)!
n! (Mn

m · Xm) · (π∗
m B1 · · · · · π∗

mBk · π∗
mC1 · · · · · π∗

mCn−k · Xm).

By taking m → ∞, we get

‖Dk · Y‖ · ‖Dn−k · Z‖ ≥ k!(n − k)!
n! ‖Dn · X‖ · (Y · Z)X .

This concludes the desired inequality by Theorem 2.1. ��

123



Algebraic reverse Khovanskii–Teissier inequality via Okounkov... Page 11 of 14 26

4 Applications

4.1 Proof of Corollary 1.2

It is equivalent to showing that

(Aa1
1 · · · · · Aar

r · Hn−|a|) ≤ min
k

{ ∏r
i=1

(|a|
ai

)

(|a|
ak

)
(Hn)r−1

}
r∏

i=1

(Aai
i · Hn−ai ).

Without loss of generality, it suffices to show that

(Hn)r−1 · (Aa1
1 · · · · · Aar

r · Hn−|a|) ≤
r∏

i=2

(|a|
ai

) r∏

i=1

(Aai
i · Hn−ai ). (4.1)

Without loss of generality, we may assume that H is very ample. When r = 1, (4.1) is
trivial. Suppose that r ≥ 2. Take general elements H1, . . . , Hn−|a| ∈ |H | and take Z =
H1 ∩ · · · ∩ Hn−|a|. Applying Theorem 3.5 to Ar |Z and H |Z , we get

(Hn) · (Aa1
1 · · · · · Aar

r · Hn−|a|)
= (H |a||Z ) · (Aa1

1 |Z · · · · · Aar
r |Z )

≤
(|a|
ar

)

(Aa1
1 |Z · · · · · Aar−1

r−1 |Z · Har |Z ) · (Aar
r |Z · H |a|−ar |Z )

=
(|a|
ar

)

(Aa1
1 · · · · · Aar−1

r−1 · Hn−|a|+ar ) · (Aar
r · Hn−ar ).

So we can prove inequality (4.1) by induction on r .

Remark 4.1 Theconstantweobtain is slightly better thanXiao’s,which ismink

{ ∏r
i=1 (

n
ai
)

( n
ak
)(Hn)r−1

}

,

but the proof is basically the same as long as one knows Theorem 3.5. It remains interesting
to find the optimal constant. We refer to [30, §3.4] for some related discussions.

4.2 Proof of Corollary 1.3

(1) For any dominant rational self-maps f , g on X , take a projective normal variety W with
generically finite morphisms p j : W → X for j = 1, 2, 3 such that p2 = p1 ◦ g and
p3 = p2 ◦ f . Then by the projection formula between W and the graphs of f , g,

1. degi,H ( f ◦ g) = 1
deg(p1)

· (p∗
1H

n−i · p∗
3H

i );

2. degi,H ( f ) = 1
deg(p2)

· (p∗
2H

n−i · p∗
3H

i );

3. degi,H (g) = 1
deg(p1)

· (p∗
1H

n−i · p∗
2H

i ).

If i = 0 or n the statement is trivially true. If 1 ≤ i ≤ n − 1, by Theorem 1.1, we have

degi,H ( f ◦ g) = 1

deg(p1)
· (p∗

1H
n−i · p∗

3H
i )

≤ 1

deg(p1)
·

(n
i

)

(p∗
2H

n)
(p∗

1H
n−i · p∗

2H
i ) · (p∗

2H
n−i · p∗

3H
i )

=
(n
i

)

(Hn)
degi,H ( f ) · degi,H (g).
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(2) Let π1 and π2 be the projections from the normalization of the graph of f in X × X
onto the first and the second factor, respectively. If i = 0 or n the statement is trivially true.
If 1 ≤ i ≤ n − 1 then by applying Theorem 1.1 repeatedly, one can get

degi,H ( f ) = (π∗
1 H

n−i · π∗
2 H

i )

≤
(n
i

)

(π∗
1 L

n)
(π∗

1 H
n−i · π∗

1 L
i ) · (π∗

1 L
n−i · π∗

2 H
i )

≤
(n
i

)

(π∗
1 L

n)
(π∗

1 H
n−i · π∗

1 L
i ) ·

(n
i

)

(π∗
2 L

n)
(π∗

1 L
n−i · π∗

2 L
i ) · (π∗

2 L
n−i · π∗

2 H
i )

=
(n
i

)2
(Hn−i · Li ) · (Ln−i · Hi )

(Ln)2
degi,L( f ).

Remark 4.2 As we apply the optimal inequality (1.2), we obtain better constants than Dang’s

in [7, Theorem 1]. For example, the constant in [7, Theorem 1(i)] is (n−i+1)i

(Hn)
. It remains

interesting to find the optimal constants.

5 Characterization of the equality case on surfaces

In this section, we give a characterization of the equality case of Theorem 1.1 on surfaces.
The proof is motivated by [1, Proposition 1.15]. For simplicity, we state the characteriza-
tion for non-singular surfaces, and the general case can be easily worked out by taking a
desingularization.

Proposition 5.1 Let X be a non-singular projective surface. Let A, B,C be nef divisors on
X. Then

2(B · A) · (A · C) = (A2) · (B · C) �= 0

if and only if the following conditions hold

(1) A ≡ sB + tC in NS(X) ⊗Z R for some s, t > 0;
(2) B2 = C2 = 0, (B · C) �= 0.

Proof The “if” part is obvious. We only deal with the “only if” part.
Suppose that 2(B · A) · (A ·C) = (A2) · (B ·C) �= 0. Then (B · A), (A ·C), (A2), (B ·C)

are all positive numbers. Set � = A− (A2)
2(A·B)

B. Then (� ·C) = 0 and (�2) = (A2)2(B2)

4(A·B)2
≥ 0.

We claim that � and C are propotional in NS(X) ⊗Z R by the Hodge index theorem. Fix
any ample divisor H on X , by our assumption, C is not numerically trivial, so (H · C) �= 0.
Then ((� − (�·H)

(C ·H)
C) · H) = 0. On the other hand, ((� − (�·H)

(C ·H)
C)2) ≥ 0. So the classical

Hodge index theorem (see [11, Theorem V.1.9]) implies that � − (�·H)
(C ·H)

C ≡ 0. As they are

propotional, we can also get � ≡ (�·A)
(C ·A)

C , which implies that

A ≡ (A2)

2(B · A)
B + (A2)

2(C · A)
C (5.1)

by the construction of �. The fact that (B2) = (C2) = 0 can be obtained by intersecting
(5.1) with B,C respectively. ��
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