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Abstract

In this article, we obtain the Bogomolov—Sommese type vanishing theorem involving multi-
plier ideal sheaves for big line bundles. We define a dual Nakano semi-positivity of singular
Hermitian metrics with L?-estimates and prove a vanishing theorem which is a generalization
of the Bogomolov—Sommese type vanishing theorem to holomorphic vector bundles.
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1 Introduction

Positivity notions for holomorphic vector bundles and multiplier ideal sheaves play an impor-
tant role in several complex variables and complex algebraic geometry. For holomorphic
vector bundles, singular Hermitian metrics and its positivity are very interesting subjects. On
holomorphic line bundles, positivity of a singular Hermitian metric corresponds to plurisub-
harmonicity of the local weight and the multiplier ideal sheaf is an invariant of the singularities
of the plurisubharmonic functions.

Let X be a complex manifold and ¢ be a plurisubharmonic function. Let .# (¢) be the
sheaf of germs of holomorphic functions f such that | f|>¢~% is locally integrable which is
called the multiplier ideal sheaf. Let & be a singular Hermitian metric on a holomorphic line
bundle L over X and ¢ be the local weight of &, i.e. h = ¢~%. Then we define the multiplier
ideal sheaf for h by 7 (h) := 7 (¢).

For a holomorphic line bundle L over a projective manifold X of dim X = n, the famous
Bogomolov—Sommese vanishing theorem [3] asserts that H%(X, Q§’( ® L*) = 0for p <
k(L). In particular, if L is big then we have that
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H"(X, Q4 ® L) =0

for p > 0 by taking the dual. The Bogomolov—Sommese type vanishing theorem have been
studied in the direction of weakening the positivity (cf. [20, 30]).

For big line bundles, we first obtain the following Bogomolov—Sommese type vanishing
theorem which involves a multiplier ideal sheaf as in the Demailly—Nadel vanishing theorem
(cf. [8, 21, 22]) and which is an extension of the Demailly-Nadel vanishing theorem to
(p, n)-forms.

Theorem 1.1 Let X be a projective manifold of dimension n equipped with a Kéihler metric
won X. Let L be a holomorphic line bundle on X equipped with a singular Hermitian metric
h. We assume that

iOpp>ew
in the sense of currents for some ¢ > 0. Then we have that
H' (X, QY @ L® 7 (h) =0
for p > 0.

Theorem 1.1 is shown using the L2-estimate theorem (see Theorem 2.1) for ( p, n)-forms
and a fine resolution of Qf( QR L® I(h).

Notions of singular Hermitian metrics for holomorphic vector bundles were introduced and
investigated (cf. [4, 5]). However, it is known that we cannot always define the curvature cur-
rents with measure coefficients (see [27]). Hence, Griffiths semi-negativity or semi-positivity
([4, 27], see Definition 4.3) and Nakano semi-negativity ([27], see Definition 4.4) is defined
without using the curvature currents by using the properties of plurisubharmonic functions.
Here, Griffiths semi-positivity can be returned to Griffiths semi-negativity by considering
the duality, but this method cannot be used for Nakano semi-positivity because the dual of a
Nakano negative bundle in general is not Nakano positive.

After that, Nakano semi-positivity for singular Hermitian metrics (see Definition 4.6)
was defined in [18], who establishes the singular-type Nakano vanishing theorem, i.e. the
Demailly—Nadel type vanishing theorem extended to holomorphic vector bundles. This
definition is based on characterization of Nakano positivity using the so called “optimal L>-
estimate condition” for (n, 1)-forms by Deng—Ning—Wang—Zhou [13], and does not require
the use of curvature currents. In [29], these characterizations of positivity using L2-estimates
for (n, 1)-forms are extended to (n, ¢) and (p, n)-forms.

Throughout this paper, we let X be an n-dimensional complex manifold and £ — X be
a holomorphic vector bundle of finite rank . From the definition of Nakano semi-negativity
([27], see Definition 4.4), we naturally define dual Nakano semi-positive singular Hermitian
metrics (see Definition 4.5) with characterization using L>?-estimates (see Proposition 4.10).
Then, by using the method of the proof of Theorem 1.1, we obtain the following vanishing
theorem which is a generalization of dual Nakano vanishing theorem to singular Hermitian
metrics and of the Bogomolov—Sommese vanishing theorem to holomorphic vector bundles.

Theorem 1.2 Let X be a projective manifold equipped with a Hodge metric wyx on X. We
assume that (E, h) is strictly dual Nakano 8, -positive in the sense of Definition 4.11 on X
and det h is bounded on X. Then we have the following vanishing:

H"(X, Q% ® E) =0,

for p > 0.
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We get the following result which is a generalization of the Griffiths vanishing theorem
(cf.[10, ChapterVII, Corollary 9.4], [19]) to singular Hermitian metrics and which can also
be considered as a generalization of the Demailly—Nadel vanishing theorem and Theorem 1.1
to holomorphic vector bundles. Here, the generalization up to (n, g)-forms for singular Her-
mitian metrics is already known in [18].

Theorem 1.3 Let X be a projective manifold equipped with a Kdhler metric wx on X. We
assume that (E, h) is strictly Griffiths 8., -positive in the sense of Definition 4.7 on X. Then
we have the following vanishing:

HY(X,Kx @ &&(h®deth)) =0

H"(X, Q% ® &(h ® deth)) =0,

for p,q > 0.

2 Proof of Theorem 1.1

In this section, we first prove Theorem 2.1 and then use it to show Theorem 1.1.

Theorem 2.1 Let X be a projective manifold of dimension n and w be a Kiihler metric on
X. Let L be a holomorphic line bundle equipped with a singular Hermitian metric h whose
local weights are denoted ¢ € Llloc, i.e. h = e~ %. We assume that

O, =iddp > cw

in the sense of currents for some ¢ > 0. Then for any f € LP’H(X, L, h, o) satisfying
df =0, there exists u € ley’n_l(X, L, h, w) such that du = f and

2 1 2
|“|h,dew < — |f|h,dew.
X pe Jx

First, we consider Theorem 2.1 on a Stein manifold (= Proposition 2.6) and consider
Lemma 2.2 to show this. Here, the claim of the type of Theorem 2.1 and Lemma 2.2 for
(n, g)-forms rather than (p, n)-forms is already known (see [6, 8, 10, Chapter VIII]).

Let (X, w) be a Hermitian manifold and (E, &) be a holomorphic Hermitian vector bundle
over X. We denote the curvature operator [iOf j, Ap] on AP9Ty ® E by Ag’jl,w. And
the fact that the curvature operator [i ®f p, A,] is positive (resp. semi-positive) definite on
APATY @ E is simply written as A7% > 0 (resp. > 0).

Lemma 2.2 Let (E, h) be a holomorphic Hermitian vector bundle over X and w, y be Her-
mitian metrics on X such that y > w. For any u € AP" T;(" ® E,p > 1, we have that
Iulﬁﬁydvy < Iuli’dew and that ifAZ”r;l@ > 0 (resp. > 0) then

AL, =0 Gesp. = 0), (AL )7, u)n,dVy, < (ARG D)7 s w)nwd Ve

To show Lemma 2.2, we use the following symbolic definition and lemma which is the
calculation results.

Definition 2.3 (cf.[29, Definition2.1]) Let (M, g) be an oriented Riemmannian C°°-manifold
with dimpM = m and (&1, ..., &,) be an orthonormal basis of (Ty, g) at xo € M. For any
ordered multi-index I, we define £(s, I) € {—1, 0, 1} as the number that satisfies & &} =
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e(s, I)E,*\S, where if s ¢ [ then e(s, 1) = 0 and if s € [ then (s, I) € {—1, 1}. Here, the
symbol e_s e represents the interior product, i.e. &1 &; = 1 &} .

Let (X, w) be a Hermitian manifold of dim¢c X = n. If (d/9z21,...,0/0z,) is an
orthonormal basis of (Tx, w) at xo then we define e(s, [) in the same way as follows

B
a—J dz; = e(s, I)dzj\s. In particular, we have that BTJ dz; = e(s, Ddzp\s.
s Zs

Lemma 2.4 (cf.[29, Proposition2.2]) Let (X, w) be a Hermitian manifold and (E, h) be

a holomorphic Hermitian vector bundle over X. Let xo € X and (z1,...,2z,) be local
coordinates such that (0/9z1,...,0/0z,) is an orthonormal basis of (Tx, w) at xq. Let
(e1, ..., er) be an orthonormal basis of E,. We can write

Wy =i Y dzjAdZj, iOpnx =i Y cjuudzj AdZ Qe Dey.
I<j<n JokoAhp
Let J, K, L and M be ordered multi-indices with |J| = |L| = p and |K| = |M| = q. For

any (p, q)-formu = ZIJ\=p,|K\=q,)\ uj kadzy Ndzx Qe € A”*"T;("JCO ® Ey,, we have
the following calculation results:

[{Opn Aol o = | D+ > = > | cjiutts k2ls K

jeJ jeK 1<j<n
+ Z Cikapg kU M u€(j, K)e(k, M)
J#k K\j=M\k

+ Z CikapkL K 2UJ K uEk, J)e(j, L).
J#k L\ j=J\k

Proof of Lemma 2.2 For any xo € X, after a linearly transformation, we may assume o =
iy l_ydzjndzjandy =i3 yjzdzj AdZ; at X0 with y; > 1. Let w; = V) for
j=1,2,...,nand (e, ..., e-) be an orthonormal basis of E,. Then we can write

y =1 Z dwj Ndwj,

1<j<n
. . - . , _
iOpp =1 Z Citopdzj NdZy @ €5 Q@ ey =i Z cjkkudwj/\dwk@eiébeu
Jokhp Jokh
with C/jkm = Cjku/VjYk- For any ordered multi-indices J we denote y; = I1;¢;y;. For

any u € AP"Tg xo ® Exo we can write

u= ZM}AdZJ ANdZn ® e, :Zu/“dwj ANdwy Q ey

with u',, =uy;/ysyny where N = {1, ..., n}.
Then we obtain that

|“|i,y = Z ;1> = Z)’j_z)//;zmulz, v, = YidVe,
ul},dVy =Yy 2 unPdVe < ul} ,dVe.

@ Springer



Bogomolov-Sommese type vanishing for holomorphic vector bundles Page50f23 92

From Lemma 2.4, we have that

(A )y = 3T+ Y ek, Dedj, L)
JjeJ J#k, L\ j=J\k
> ity etk D, L)
L\j=J\k
"W Z CiaptLatiye(k, He(j, LY/ (vivkyLyvr)
L\j=J\k

=y Y D Cimaptnatiyuetk, De(i, L)/ (viviy)® (Ii=L\j=J\k)
I L\j=J\k

=y Dvi D, Ciptnaiisek, Deli, L/ (vivyD)’
L\j=J\k

=y Y v Y Cittnlek, Deli, L/ ()
L\j=T\k

>y’ Y. Cipttraietk, De(i. L)/ (viv])
L\j=J\k

=y Y. ciopuntiyuetk, De(j. L)/ (Evive)
L\j=J\k
= yN(A‘Z';l oSyt Syu)e

where §), is the operator defined by
Syu = ZMJ)L]/‘,_z)/A?de‘/ NdzZy R e) € Ap’nTX*’X0 ® Ey,.

Therefore we obtain that A7, >0 = AR , > 0.
Hence for any u, v € AP"T§ . ® E,, we have that

[, )y 12 = [, Sy)ol® < (AR ) 7w o (AR, Sy v, Syv)e
< v (AR ) T W (AR v, v)y,

1

and the choice v = (A%" En J/) u implies

(AL )y vy < (AR )7 i )b
From the above and dV), = yNd V., this proof is completed. O

Lemma 2.5 Let X be a complex manifold and (E, h) be a holomorphic Hermitian vector
bundle over X. Letw, y be Hermitian metrics on X suchthaty > w. Foranyu € AP1T{QE,
we have that Iuli y = Iuli o

Proof Let notation be the same as one in the proof of Lemma 2.2.
Then for any u € AP4Tg o ® Ey,, we can write

U= Z ujgrdzy Ndzg ® e), = Z ”/JKAde ANdwg ® ey
J,K A J. K\

with ', .. = ujga/vivk. Hence, we have that
2 2
by, =Y 1P = luskal?/av)* < luskal* = lulj
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From the above, this proof is completed. O
Using Lemmas 2.2 and 2.5 , we obtain the following proposition.

Proposition 2.6 Letr S be a Stein manifold of dimension n and w be a Kdhler metric on S.
Let ¢ be a strictly plurisubharmonic function on S. We assume that

i85<p > cw
in the sense of currents for some ¢ > 0. Then for any f € L> (S, ¢, w) satisfying d f =0,

¢ p.n
there exists u € leo n1(S, @, ®) such that du = f and

1
/ U2 dV, < — [ FRe*aV,,
N pE Js

Proof We may assume that S is a submanifold of CV. By the theorem of Docquier and
Grauert, there exists an open neighborhood W < CV of § and a holomorphic retraction
n: W — S (cf.Chapter Vof [14]). Let p : CcN > Rx0 be a smooth function depending
only on |z| such that suppp € BY and that f(CN p(2)dV = 1, where BY is the unit ball.
Define ps(z) = (1/6?)h(z/¢) for e > 0. Let S* := {z € S | dy(z,5) > 1/v} be
a subset of S C CN. For any plurisubharmonic function o on S we define the function
a, = (a o i) * p1y. Then e, is a smooth plurisubharmonic function on S".

Let U be a open subset and €2 be a local Kéhler potential of @ on U, i.e. Q2 satisfies
i33Q = w. By the assumption, we getidd(p—eRQ2) = i®y ,—ew > Ointhe sense of currents.
Then the function (¢ — €Q), = ¢, — ££2,, is a smooth plurisubharmonic function defined
on U". Since 2, is strictly plurisubharmonic, ¢, also is a smooth strictly plurisubharmonic
function on SV and satisfies the following condition

1'8590U > £id0Qy, > sy,

where (&)),eN is a positive number sequence such that0 < ¢/2 < ¢, /e, (v — +00). Let
Yoo ‘= limy,, 5 ¢, then g is a plurisubharmonic function on § such that oo, = ¢ a.e.
and a smooth functions sequence (¢, ),cN is decreasing to ¢no.

By the Stein-ness of S, there exists a smooth exhaustive plurisubharmonic function
on S. We can assume that supg ¢ = +o0. For any number ¢ < supg ¥ = +00, we define
the sublevel sets S, := {z € S | ¥(2) < c} which is Stein. Fixed j € N. There exists
vop € N such that for any integer v > vp, §; CC S CC S". From Stein-ness of S,
there exists a complete Kéhler metric @; on S;. Then we define the complete Kéhler metric
ws '=w+38w; > wonS; fors > 0.

Forany v > vp and any v € A”’"TS*]_ , We obtain

([{99¢y. Aulv, Vo > (800, Aplv, V) = peylv|* and ALY =[iddg,, Ayl > 0.

AN

From this and Lemma 2.2, we have that A”) = [i3d¢,, A,,] > 0 and
ws

e v,

/ ([100¢@y, Ay 17 o Fuse ¥ dVa, < / ([109¢y, Apl ™" f, flwe ?dV,

S/ J

1
pSU S]'
1

/ f2evdvV,
Py Sj

IA

|fI2e%av,

IA
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2
< —/ |f12e™%dV,, < +oo.
pPeJs

For any two Hermitian metrics y1, y2 and any locally integrable function ® € L,
we define the Hilbert space Li,q(S, D, 1, y2) of (p,g)-forms g on S with measurable
coefficients such that

/;|g|;2/16_¢dvy2 < +o00.

Here there exists a positive smooth function y € £(S, R.o) such that dV,, = ydV,, then
we have that L3, (S, @, y1,y2) = L}, ,(S, ® —log7, y1).

Thanks to Hérmander’s L2-estimate for smooth Hermitian metric with weight ¢,
and complete Kihler metric ws, we get a solution uj;,s € Li’nfl(Sj,gav,w(;) C

L3, (Sj, ¢v, 05, @) of Juj, 5 = f on S; such that

/ lj sl e dV,, < / j a2, e d Vi < f 1i93¢0s Ay )™ f Flose Ve,

j Sj j
S/ ([109¢y, Aul™" f, flwe " dV,
Sj
2
=— |f|¢2oe_“’de < +o00.
pe Js

For fixed integer Ay > 1, (#;,1,1/1)1, <aeN forms a bounded sequence in Lfm_] (Sj, ov,
2

w1/)°
convergent subsequence in Li,ni 18}, v, ®1/5,, w). By using a diagonal argument, we get

w1/, , ) due to the monotonicity of | e| i.e. Lemma2.5. Therefore we can obtain a weakly
asubsequence (u v a, ) ken Of (4 v,1/2)2>1, converging weakly in Li,n—l (S, v, 0173, )
for any Ay, where u;,;, € Li’nfl(Sj,gov,a)l/;hk,a)) - L%’nil(Sj,q)v,wl/M,w). We

denote by u; , the weak limit of (u;,, 5, )xen. Then u; , satisfies 5uj,v = fonS; and

/; |uj,u|5))\k€7¢vde < / ([i09¢y, Ao]™' f, flwe ™ dV,
J .

J

for each k € N. Taking weak limit k — 400 and using the monotone convergence theorem,
we have the following estimate

lujloe#dV, 5/ ([130¢0y, Aol ™" f, floe ?dV,
N

J
1
=<
Pév

S

2
/ e *av, < — / e dVi, < +o0,
s pe Js

ie.uj, € ij n_1(Sj, @, w). For fixed vy > vp, (#;,y)v>y, forms a bounded sequence in
L;n_l (S, ¢v,, @) due to the monotonicity of (¢,),cn. Repeating the above argument and

taking the weak limit v — +o00, we get a solution u; € L%_nfl(Sj, 0, ®) ofguj = fonS;
such that

péy / ;e av, < f F2ebdVe,
s s
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for each v € N. Taking weak limit v — +o00 and using the monotone convergence theorem,
we have the following estimate

psf Iujlﬁ,e“"de§/|f|3,e—‘/’de.
S; N

Finally, repeating the above argument and taking the weak limit j — +o0, we get a
solution u € L2 (S, ¢, w) of du = f on § such that

p.n—1
1
/|u|§0e—¢’de < —/ |f12e™%dV,.
S peJs

From the above, this proof is completed. O
Then, use Proposition 2.6 to prove Theorem 2.1.

Proof of Theorem 2.1 By Serre’s GAGA, there exists a hypersurface H C X suchthat X\ H is

. . o e o, = 2
Stein and L is trivial over X \ H. From Proposition 2.6, for any d-closed f € Lp!n (X,L,h,w)

there exists u € L;,l_l(X \ H, —logdeth, w) = Li,n_l(X \ H, L, h, ) such that u = f

and
2 1 2
lulh wdVeo < — |/ 17,04 Ve
X\H PE€ JX\H
1 2
< — dv, 0.
< pE/XIfIh,w <+

Letting #u = 0 on H, we have that u € Li’nil(X, L,h,),du = fonX and

1
2 2
/x i odVer = -2 fx Ve,

from the following lemma. O

Lemma 2.7 (cf.[2, Lemma5.1.3]) Let X be a complex manifold and H be a hypersurface in
X. Let u and f be (possibly bundle valued) forms in leoc of X satisfying du = f on X \ H.
Then the same equation holds on X (in the sense of distributions).

Finally, we prove Theorem 1.1 using Theorem 2.1 and the following lemma and theorem.

Lemma 2.8 (Dolbeault-Grothendieck lemma, cf. [10, ChapterI]) Let T be a current of type
(p, 0) on some open subset U C C". If T is d-closed then it is a holomorphic differential
form, i.e. a smooth differential form with holomorphic coefficients.

Theorem 2.9 (cf. [14, Theorem 4.4.2]) Let Q2 be a pseudoconvex open set in C" and ¢ be
any plurisubharmonic function in Q. For any f € Li g+1 (2, @) with 0 f = O there exists a

solution u € Li,q (2, loc) of the equation du = f such that
/ ul?e™¢(1 + |21 2d Vg < / |fPPe ¥dVq.
Q Q

Proof of Theorem 1.1 We define the subsheaf ./ of germs of (p, g)-forms u with values

in L and with measurable coefficients such that both Iulﬁ and |5u|,21 are locally integrable.
And we consider the following sheaves sequence:

p,1 9 Int p,n
i "' S 0.

_ B
0 ——=kerdg — XLP’}?
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For any xg € X, there exists a bounded Stein open neighborhood €2 of xg such that L|g
is trivial. Then — log 4 is strictly plurisubharmonic function on €2 and L%,’ Q. L hw) =

L? (R, —logh, ). From Theorem 2.9, for any f € L3 (R, —logh, w) with 3 f = 0
there exists a solution u € Li’ g1 (€2, loc) of the equation u = f such that

1
inf ———— ul2egh gy, </ ul2eeh (1 + 1z 24V,
zee(1+|z|2>2/g" o= [Pt )2y,
5/ [f?e°"av, < +oo.
Q

By the boundedness of 2, we get 0 < inf,cq(14]z|?)~?andu € Li,q—l(ﬂv —logh, w) =
Li’ g—1 (2, L, h, ). Then we have that the above sheaves sequence is exact.

From Lemma 2.8, the kernel of ¢ consists of all germs of holomorphic (l’ 0)-forms with
values in L which satisfy the integrability condition and we have that ker 99 = Qf( RL®
& (h). In fact, for any locally open subset U C C" we obtain

fekerdo(U) < f=Y_ fidz € H'(U. Q% ® L) such that

/ | £1h.0d Ve =/ | f12e'8ra v, = Z/ | f112e 8"V, < +oo.
U U U

Therefore any f; € HO(U, C) satisfy the condition f; € .#(h)(U).
From the acyclicity of each .,5,”5 77, we obtain that

HI(X,Qf @ L® 7 (h) = HI(N'(X, Z[})).
By Theorem 2.1, we conclude that H"(I'(X, £/)) = 0. o

From the Demailly—Nadel vanishing theorem and Theorem 1.1, we get the following
results (= extension of the Demailly—Nadel vanishing theorem) immediately:

Let X be a projective manifold of dimension n equipped with a Kidhler metric w on X.
Let L be a holomorphic line bundle on X equipped with a singular Hermitian metric 4. We
assume that

iOpn > ew
in the sense of currents for some ¢ > 0. Then we have that
HP(X,Kx ® L® 7 (h)) =0,
H'"(X, Q) @ L® .7 (h) =0
for p > 0.

Remark 2.10 The above extension of the Demailly—Nadel vanishing theorem cannot be
extended to the same bidegree (p, ¢) with p + ¢ > n as the Kodaira—Akizuki—Nakano
type vanishing theorem.

In fact, Ramanujam has given in the following counterexample to the extension of the
Kodaira—Akizuki—Nakano type vanishing theorem to nef and big line bundles.

Counterexample. (cf. [10, ChapterVII], [26]) Let X be a blown up of one point in P”
and 7w : X — P" be the natural morphism. Clearly the line bundle 7*Opx (1) is nef and big.
Then we have the following non-vanishing cohomologies:

HPP(X, n*Opn(1)) #0 for 0<p<n-—1.
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And, from the analytical characterization of nef and big line bundles (see [7, 9, Chapter 6]),
there exist a singular Hermitian metric A+ o1y on w*Opn (1) such that & (hy+o(1)) = Ox
and i®n*OP”(l)vhn*O(l) > ew in the sense of currents for some ¢ > 0, where w is a Kihler

metric on X. Then we get the following counterexample:

HP(X, Q% @ 7" Opi (1) ® S (hnr0(1)) = HPP (X, 7 Opn (1)) #0 for 0<p <n-—1.

3 Smooth Hermitian metrics and dual Nakano positivity

Let (X, ) be a complex manifold of complex dimension n equipped with a Hermitian
metric w on X and (E, i) be a holomorphic Hermitian vector bundle of rank » over X. Let
D = D' + 9 be the Chern connection of (E, h), and ®f ; = [D’, 3] = D'd + 3D’ be the
Chern curvature tensor. Let (U, (z1, ..., 2,)) be local coordinates. Denote by (eq, ..., e;)
an orthonormal frame of E over U C X, and

iIOFEhxy =1 Z Ojrdz; Ndzy =i Z Cikpudzj Ndzx @ e ®ey, Cikap = Ckjun-
ik RN
To i®f j corresponds a natural Hermitian form 6g , on Ty ® E defined by
_ 0
Op.n(w) =0 p(u,u) = chkxuujxukus u= Zujkg Qe € Tx xy ® Ey,
J
ie. Opp = chk)»ﬂ(dzj ® 6’;) ® (dzr ® eﬂ)

Definition 3.1 Let X be a complex manifold and (E, /) be a holomorphic Hermitian vector
bundle over X.

e (E, h) is said to be Griffiths positive (resp. Griffiths semi-positive) if for any & € Tx ,,
£ #0ands € Ey, s # 0, we have

Oen6®s,EQ®s) >0 (resp. > 0).

We write (E, h) >grif 0,1.e. iOf ) >grif 0 (resp. >griy 0) for Griffiths positivity
(resp. semi-positivity).

e (E, h)is said to be Nakano positive (resp. Nakano semi-positive) if O 5, is positive (resp.
semi-positive) definite as a Hermitian formon 7y ® E,i.e. foranyu € Tx ® E, u # 0,
we have

Oc n(u,u) >0 (resp. > 0).
We write (E, h) >ngk 0,1.€. iOF  >nak O (resp. > yak 0) for Nakano positivity (resp.
semi-positivity).

We introduce another notion about Nakano-type positivity.

Definition 3.2 (cf. [11, Section 1], [19, Definition2.1]) Let X be a complex manifold of
dimension n and (E, h) be a holomorphic Hermitian vector bundle of rank r over X. (E, h)
is said to be dual Nakano positive (resp. dual Nakano semi-positive) if (E*, h*™) is Nakano
negative (resp. Nakano semi-negative).

From definitions, we see immediately that if (£, #) is Nakano positive or dual Nakano
positive then (E, h) is Griffiths positive. And there is an example of dual Nakano positive as
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follows. Let i ps be the Fubini-Study metric on Tp», then (7p», hg) is dual Nakano positive
and Nakano semi-positive (cf.[19, Corollary 7.3]). (Tp=, hrs) is easyly shown to be ample,
but it is not Nakano positive. In fact, if (Tp», hs) is Nakano positive then from the Nakano
vanishing theorem (see [23]), we have that

Hn—],n—l (]P)n’ (C) — Hﬂ—] (]P)}'l7 Q%n—l — Hn—] (Pn’ K]P”l ® T]P””) — 0.

However, this contradicts H"~1-#~1 ™", C) =C.
Here, the following theorem is known, which expresses the relationship for the three
positivity, i.e. Griffiths, Nakano and dual Nakano.

Theorem 3.3 (cf.[12, Theorem 1],[19, Theorem7.2]) Let h be a smooth Hermitian metric
on E. If (E, h) is Griffiths semi-positive then (E ® det E, h ® det h) is Nakano semi-positive
and dual Nakano semi-positive.

Let £7-4(E) be the sheaf of germs of C* sections of A”9T§ ® E and DP9 (E) be the
space of C*° sections of A”9T¢ ® E with compact support on X.

Deng, Ning, Wang and Zhou introduced a positive notion of Hérmander type in [13], which
is named as the optimal LP-estimate condition and characterizes Nakano semi-positivity,
ie. A'}ilh > 0, for holomorphic vector bundles (E, 7). Then we introduced the following
positive notion of Hérmander type in [29], which is an extension of the optimal L2-estimate
condition from (n, 1)-forms to (p, n)-forms and which characterizes the condition AZZ >0
(see Theorem 3.5).

Definition 3.4 (cf.[29, Definition 1.4]) Let (X, w) be a Kihler manifold of dimension n
which admits a positive holomorphic Hermitian line bundle and E be a holomorphic vector
bundle over X equipped with a (singular) Hermitian metric . (E, h) satisfies the (p, n)—LLZU—
estimate condition on X, if for any positive holomorphic Hermitian line bundle (A, h4) on
X and forany f € DP"(X, E® A) withd f =0, thereisu € L?NFI (X, E ® A) satisfying
du = f and

f 3 s d Ve < f {[iOany ®ide, Aol £, [Iinahg.od Ve,
X X

provided that the right hand side is finite.
And (E, h) satisfies the (p, n)—Lz—estimate condition on X if for any Kdhler metric @,
(E, h) satisfies the (p, n)-LL%-estimate condition on X

Theorem 3.5 (cf.[29, Theorem 1.6]) Let (X, w) be a Kdhler manifold of dimension n which
admits a positive holomorphic Hermitian line bundle and (E, h) be a holomorphic Hermitian
vector bundle over X and p be a nonnegative integer. If (E, h) satisfies the (p, n)-L2 -estimate
condition on X then we have that A’é”y;l’ > 0.

Here, as is well known, we know the following two facts about smooth Hermitian metrics
hon E: Let (X, w) be a Kihler manifold.

Al =0 (resp. <0) = A} >0 (resp. < 0) forall g > 1 (see[6]),
(E, h) >Nnak 0 (resp. <nak0) <= A’E’}h,w >0 (resp. < 0) (see[12]).

Therefore, from these two facts, Lemma 3.6 and the definition of Nakano semi-positivity, we
obtain the following characterizations:

(a) (E, h) is Nakano semi-positive <= A'E,qh,w >0 forall g >1,
(b)  (E, h) is dual Nakano semi-positive <— Ag';lw >0 forall p>1.

@ Springer



92 Page 120f23 Y. Watanabe

Lemma 3.6 (cf.[29, Theorem2.3 and 2.5]) Let (X, w) be a Hermitian manifold and (E, h)
be a holomorphic vector bundle over X. We have that

A;’.;:f;’:;q >0 (resp. <0) — Ai{%’w >0 (resp. <0) — A'EZ’;‘_I’ <0 (resp. > 0).

By using the second condition (b), we show the following theorem which is already known
as (n, q)-forms in the case of Nakano semi-positive.

Theorem 3.7 Let (X, @) be a complete Kéihler manifold, w be another Kéihler metric which
is not necessarily complete and (E, h) be a dual Nakano semi-positive vector bundle. Then
forany d-closed f € L%w(X, E, h, w) there existsu € L%,”fl(X, E, h, w) satisfies ou = f
and

[ Vi = [ A Ve
X X
where we assume that the right-hand side is finite.

Furthermore, from the condition (b), Theorems 3.5 and 3.7, we obtain the following
characterization of dual Nakano semi-positivity by using L2-estimates.

Theorem 3.8 (cf.[29, Corollary4.5]) Let X be a complex manifold of dimension n which
admits a complete Kdihler metric and a positive holomorphic Hermitian line bundle. Let
(E, h) be a holomorphic Hermitian vector bundle over X. Then (E, h) satisfies the (p, n)-
L2-estimate condition for all p > 1 if and only if (E, h) is dual Nakano semi-positive.

Proof of Theorem 3.7 For any two Hermitian metrics yi, 2, we define the Hilbert space
L%’ q (X, E, h, y1, y») of (p, g)-forms g on X with measurable coefficients such that

/X|g|i,yldv}’2 < +00.

Here there exists a positive smooth function y € £(X, R.¢) such that dV,, = ydV,, then
we have that L2 (X, E, h,y1,y2) = L3 (X, E, 7h, n).

For every ¢ > 0, the Kihler metric w, = @ + s is complete. The idea of the proof is to
apply the L2-estimates to w, and to let & tend to zero. It follows from Lemma 2.2 and the
equivalence condition of dual Nakano semi-positivity, i.e. Ag”';l’ » = 0for p > 1 that

(A )" 2 @nwdVe, < (AF) )78 &) hwd Ve

for any g € AP"Ty ® E. Thanks to Hérmander’s L?-estimate, we get the solution u, €
Ly, (X, E h,w)) C L3, (X, E, h, o, o) of dus = f such that

/ A= / |}y o, d Ve, < f (AL o) bV,
X X X

< [ CAZL T Ve
X

where dV,, <dV,,.
For fixed integer jo > 1, (ul/j)jENZjo forms a bounded sequence in L;n_l(X, E,h,

2
@1/j

convergent subsequence in L?),n—l (X, E, h, w1}, ). By using a diagonal argument, we get

w1/ jo» @) due to the monotonicity of |e|?, ,i.e. Lemma2.5. Therefore we can obtain a weakly

a subsequence (u j, )eN Of (ul/f)jGszo converging weakly in wa_l (X, E, h, wyj,, w) for
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any jo, where uj, € Li,nfl(X, E, h,w1j,0) C Lﬁ,nfl(X, E, h, wy;j,, ®). We denote by
u the weak limit of (u j, )xen. Then u satisfies ou = f and

/;( |u|f21,a)1/jkde S /;(((Agir;,’w)_lfs f)h,wdes

for each k € N. Taking weak limit k — 400 and using the monotone convergence theorem,
we have the following estimate

/X ul} o d Ve < /X (AL D7V Finwd Ve < +00,
ieuely, ((X,E h ). a]
Finally, we get the following proposition by applying and modifying Theorem 3.8.

Proposition 3.9 Let h be a smooth Hermitian metric on E. We consider the following con-
ditions:

(1) h is dual Nakano semi-positive.

(2) For any Stein coordinate S such that E|s is trivial on S, any Kdhler metric ws on S, any
smooth strictly plurisubharmonic function y on S, any integer p € {1, ..., n} and any -
closed f € L%,’n(S, E,he™V, wy), there exists u € L;n_l(S, E, he ™V, ws) satisfying

ou = f and
fs 2 e dVipy < /S ByL o Pohose ™V Ve,
provided the right-hand side is finite, where By ., = [(00Y @ idg, Awgl-
(3) (E, h) satisfies the (p, n)-L2-estimate condition for all p > 1.

Then two conditions (1) and (2) are equivalent. If X admits a complete Kdhler metric w and
a positive holomorphic line bundle on X, the above three conditions are equivalent.

Proof First, we consider (1) = (2). We have that i@ ;v = iOp s + 199y ®idg is dual
Nakano positive on S and

A et g = UOE R, Dog] + 1100y ®ide, Augl = AL}, + Byws = Bywg >0 on S.

By Theorem 3.7, for any p > 1 and for iny 9-closed fe Lf,,n(S, E, he ¥, wg) there exists
ue Li n_1 (S, E, he ¥, wg) such that du = f and

/S Juljy e~V dVas < /S (A v o)™ o Ponwse™ dVag

< [ BFF oo™V Vi,
N

Next, we consider (2) = (1). From the condition (2), for any very small Stein coordinate
S, (E, h) satisfies the (p, n)—Lz)s—estimate condition on S. By Theorem 3.8, we have that
AZ'Z wg = 0 which is equivalent to dual Nakano semi-positive on S. Since dual Nakano
semi-positive is a local property, we get the condition (1).

Finally, we assume that X admits a complete Kéhler metric @ and a positive holomorphic
line bundle on X. From Theorems 3.7 and 3.8, we have that (3) < (1). O
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4 Singular Hermitian metrics and characterization of dual Nakano
positivity

In this section, we consider the case where a Hermitian metric of a holomorphic vector
bundle has singularities. First, for holomorphic vector bundles, we introduce the definition of
singular Hermitian metrics 4 and the multiplier submodule sheaf & (k) of & (E) with respect
to & that is analogous to the multiplier ideal sheaf.

Definition 4.1 (cf. [4, Section 3], [25, Definition 2.2.1] and [27, Definition 1.1]) We say that
h is a singular Hermitian metric on E if h is a measurable map from the base manifold X to
the space of non-negative Hermitian forms on the fibers satisfying 0 < det < +o0o0 almost
everywhere.

Definition 4.2 (cf.[5, Definition2.3.1]) Let & be a singular Hermitian metric on E. We define
the L2-subsheaf &' (h) of germs of local holomorphic sections of E by

Eh)y :={sx € O(E)y | |sx|% is locally integrable around x}.

Moreover, we introduce the definitions of positivity and negativity, such as Griffiths and
Nakano, for singular Hermitian metrics.

Definition 4.3 (cf. [4, Definition 3.1], [25, Definition 2.2.2] and [27, Definition 1.2] ) We say
that a singular Hermitian metric % is

(1) Griffiths semi-negative if |u|y is plurisubharmonic for any local holomorphic section
ue O()of E.
(2) Griffiths semi-positive if the dual metric 2* on E* is Griffiths semi-negative.

Let & be a smooth Hermitian metric on E and u = (uq, ..., u,) be an n-tuple of local
holomorphic sections of E. We define Tuh, an (n — 1, n — 1)-form through

n
h - 3=
T, = E (uj, u)pdzj N dzg
k=1

where (z1, ..., z,) are local coordinates on X, and dzﬂ\dzk denotes the wedge product of
all dz; and dz; expectdz; and dzy, multiplied by a constant of absolute value 1, chosen so that
T, is a positive form. Then a short computation yields that (E, &) is Nakano semi-negative
if and only if TLf' is plurisubharmonic in the sense that i aETu" > 0 (see [1, 27]). In the case
of uj = ux = u, (E, h) is Griffiths semi-negative.

From the above, we introduce the definition of Nakano semi-negativity for singular Her-
mitian metrics.

Definition 4.4 (cf.[27, Section 1]) We say that a singular Hermitian metric / on E is Nakano
semi-negative if the (n — 1,n — 1)-form T is plurisubharmonic for any n-tuple of local
holomorphic sections u = (uy, ..., uy).

Here, since the dual of a Nakano negative bundle in general is not Nakano positive,
we cannot define Nakano semi-positivity for singular Hermitian metrics as in the case of
Griffiths semi-positive, but we naturally define dual Nakano semi-positivity (see [28]) for
singular Hermitian metrics as follows.

Definition 4.5 We say that a singular Hermitian metric i on E is dual Nakano semi-positive
if the dual metric 2* on E* is Nakano semi-negative.
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For Nakano semi-positivity of singular Hermitian metrics, we already know one definition
in [18], which is based on the optimal L?-estimate condition in [13] and is equivalent to the
usual definition for the smooth case by Deng—Ning—Wang—Zhou’s characterization of Nakano
semi-positivity in terms of optimal L2-estimate condition in [13].

Definition 4.6 (cf.[18, Definition 1.1]) Assume that /4 is a Griffiths semi-positive singular
Hermitian metric. We say that & is Nakano semi-positive if for any Stein coordinate S such
that E|s is trivial, any Kdhler metric wg on S, any smooth strictly plurisubharmonic function
¥ on S, any positive integer ¢ € {1, ...,n} and any 9-closed f € L,zl’q(S, E, he Y, ws)
there exists u € Lﬁ,q,l(S, E, he ", wyg) satisfying du = f and

/S 2 e dVipy < /S By o Fohose ™V Ve,

where By, s = [i 99y ®idg, Ay ]. Here we assume that the right-hand side is finite.

In [21, 22], Nadel proved that .# (h) is coherent by using the Hérmander L2-estimate.
After that, as holomorphic vector bundles case, Hosono and Inayama proved that &(h) is
coherent if / is Nakano semi-positive in the sense of singular as in Definition 4.6 in [15] and
[18].

For singular Hermitian metrics, we cannot always define the curvature currents with
measure coefficients (see [27]). However, the above Definition 4.6 can be defined by not
using the curvature currents of a singular Hermitian metric directly. Therefore, by using
these definitions, the following definition of strictly positivity for Griffiths and Nakano is
known.

Definition 4.7 (cf.[16, Definition2.6],[18, Definition2.16]) Let (X, wx) be a Kihler mani-
fold and & be a singular Hermitian metric on E.
e We say that h is strictly Griffiths 8, -positive if for any open subset U and any Kéhler
potential ¢ of wy on U, he®? is Griffiths semi-positive on U.
e We say that h is strictly Nakano 8, -positive if for any open subset U and any Kihler
potential ¢ of wx on U, hed? is Nakano semi-positive on U in the sense of Definition 4.6.

This definition for Nakano gives the following L2-estimate theorem and establishes the
singular-type Nakano vanishing theorem (Theorem 4.9) by using this L>-estimate theorem.

Theorem 4.8 (cf.[18, Theorem 1.4]) Let (X, wx) be a projective manifold and a Hodge
metric on X and q be a positive integer. We assume that (E, h) is strictly Nakano .y -
positive in the sense of Definition 4.7 on X. Then for any 0-closed f € L,%’q(X, E, h, wy)

there exists u € L%,qfl(X’ E. h, wy) satisfies u = f and

1
2 2
/}‘(|M|h,deVCUX =< 5q/;(|f|h’deVwX

Theorem 4.9 (cf.[18, Theorem 1.5]) Let (X, wyx) be a projective manifold and a Hodge met-
ric on X. We assume that (E, h) is strictly Nakano 8, -positive in the sense of Definition 4.7
on X. Then the g-th cohomology group of X with coefficients in the sheaf of germs of holo-
morphic sections of Kx ® & (h) vanishes for g > 0:

HI(X, Kx ® &(h)) =0,
where & (h) is the sheaf of germs of locally square integrable holomorphic sections of E with

respect to h.
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Here, from the above discussion we consider dual Nakano positivity using L?-estimates
and its relation to Definition 4.5. For convenience, we say that /4 is L>-type dual Nakano
semi -positive if h is a Griffiths semi-positive singular Hermitian metric and has the following
L?-estimates condition (= the singular case of condition (2) in Proposition 3.9):

For any Stein coordinate S such that E|g is trivial, any Kéhler metric wg on S, any smooth
strictly plurisubharmonic function v on S, any positive integer p € {1,...,n} and any
9-closed f e Lfm(S, E, he ¥, wgs) there exists u € wa_](S, E,he ", ws) satisfying
du = f and

fs 2 e dViy < fs BFL . Pose™ AV,

where By s = [i 0y ®idg, A ]. Here we assume that the right-hand side is finite.
Then we obtain the following proposition that the natural Definition 4.5 satisfies the above
condition analogous to Definition 4.6.

Proposition 4.10 Assume that a singular Hermitian metric h on E is dual Nakano semi-
positive. Then h is L*>-type dual Nakano semi-positive.

This proof is in the next section. The above discussion of Nakano semi-positivity and this
proposition show the usefulness of Definition 4.5. From Proposition 3.9, this L>-estimates
condition can be considered a natural extension of dual Nakano semi-positivity to singular
Hermitian metrics and coincides with the usual definition if /4 is smooth.

Using Definition 4.7 as a reference, we introduce a definition of strictly positivity for dual
Nakano as follows.

Definition 4.11 Let (X, wyx) be a Kihler manifold and % be a singular Hermitian metric on
E. We say that & is strictly dual Nakano §, -positive if for any open subset U and any Kihler
potential ¢ of wx on U, he®? is dual Nakano semi-positive on U.

By using this definition, we get the following L2-estimate theorem which is an extension
of Theorem 2.1 to holomorphic vector bundles.

Theorem 4.12 Let (X, wyx) be a projective manifold and a Hodge metric on X and p be a
positive integer. We assume that (E, h) is strictly dual Nakano 8., -positive on X. Then for
any d-closed f € L%’H(X, E, h,wx) there exists u € Li,nfl(X, E, h, wy) satisfies ou = f
and

1
/X'”'%"wxdv‘“x < 5/X|f|%,,wxdex.

Proof There exists an ample divisor D on X with respect to the Hodge class {wx}. Then

Sp := X\ Dis Stein and wyx has a Kéhler potential ¢ on Sp. And there exists a hypersurface

H on Sp such that S := Sp \ H is also Stein and that E| is trivial by Stein-ness of Sp.
Then we have that

_ 1
(Bsp.ox [ Foiwx = 0PI flh g (Bsg oy o oy = 5|f|i,w.

From Definition 4.11 and Proposition 4.10, for any smooth strictly plurisubharmonic
function ¥ on §, there exists u € L%},n—l (S, E, he®* ¥ wx) such that du = f and

/S U2, eV AV, < fs Byl Fo DoV dViy
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if tEe right-hand side is finite. Taking ¢ = J¢, we get a solution u € Li’nfl(S, E,h,wx)
of du = f such that

1
2 v -1 2 v
fglu|h,wxd ox = /;(B(s(p,wxf»f)h,wxdex - sp /S |f|h,wxd wx
1 2
< dv +o00.
~p /;( |f|h,wx ox =

Lettingu = 0on X \ S, we have that u € Li,nfl(X, E.h, wx), du = fon X and

1
2 2
/;('ulh,wxdex = %/){'fu,wxdexv

from Lemma 2.7. O

5 Applications and proof of Proposition 4.10

In this section, as applications of Theorem 3.8, we introduce a property necessary for proofs
of Proposition 4.10 and Theorem 6.1 that the (n, ¢) and (p, n)-L2?-estimate condition is pre-
served with respect to increasing sequences and we prove Proposition 4.10. This phenomenon
is first mentioned in [17] as an extension of the properties seen in plurisubharmonic functions.
After that, it is extended to the case of singular Nakano semi-positivity in [18], and then to
the case of the (n, ¢) and (p, n)-L2-estimate condition in [29].

Proposition 5.1 (cf.[18, Proposition 6.1]) Let h be a singular Hermitian metric on E. Assume
that there exists a sequence of smooth Nakano semi-positive metrics (h,),eN increasing to
h pointwise. Then h is Nakano semi-positive in the sense of Definition 4.6, (i.e. L?-type).

Here, more general versions of Proposition 5.1 are obtained in [24].

Proposition 5.2 (cf.[29, Corollary 5.7]) Let h be a singular Hermitian metric on E. Assume
that there exists a sequence of smooth dual Nakano semi-positive metrics (hy),eN increasing
to h pointwise. Then h is L*-type dual Nakano semi-positive.

By using this proposition, we prove Proposition 4.10.

Proof of Proposition 4.10 Let S be a Stein coordinate such that E|g is trivial. From Propo-
sition 5.2, it is sufficient to show that there exists a sequence of smooth dual Nakano
semi-positive metrics (%, ),en over any relatively compact subset of S increasing to & point-
wise.

Here, 1™ is Nakano semi-negative singular Hermitian metric on E* over S. We define a
sequence of smooth Hermitian metrics (h),en approximating 2* by a convolution of 4*
with an approximate identity. In other words, let 4}, := h* % p, where p, is an approximate
identity, i.e.p € D(S) with p > 0, p(z) = p(lz]), [p = 1 and p,(z) = v"p(vz). From
Griffiths semi-negativity of 2*, each h}; is Griffiths semi-negative and (h}),en is decreasing
to h* pointwise (cf. [4, Proposition 3.1],[27, Proposition 1.3]).

Finally, we show that /7 is Nakano semi-negative (cf. [27]). For any n-tuple of holomor-
phic sections u = (uq, ..., u,) of E, we have locally that

(w0, s (2) = f (), 1y (Do (w)dViy,
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where i} (z) := h*(z — w) and that

T () = / T (2) py (w)d V.

By Nakano semi-negativity of 47, for any test form ¢ € D(S) we have that
S i S i n Y
i00T, " (¢) = /¢188Tu“ = / T," Nidd¢
= f { / T/ @) py (w)dVy | A 1900
Z w

= / [ f T (@) A 1036} py(w)d Vi

= / 103, () py (w)d Vi > 0,

o nE . ..
where 188Tuh'” (¢) > 0. Hence, T,," is plurisubharmonic i.e. 1 <yq 0 and we let i, :=
(h})* then (h,)yen is a sequence of smooth dual Nakano semi-positive metrics satisfying
the necessary conditions. O

Here, for convenience, we also introduce the following notion for strictly dual Nakano
positivity using L2-estimates. Let (X, wy) be a Kihler manifold, we say that / is L2-type
strictly dual Nakano 8,-positive if for any open subset U and any Kéhler potential ¢ of wy
on U, he®? is L?-type dual Nakano semi-positive on U.

From Proposition 4.10, we immediately obtain the following two facts:

e Letwy be a Kidhler metric on X and & be a singular Hermitian metric on E. If / is strictly
dual Nakano §,,, -positive then 4 is L2-type strictly dual Nakano &, -positive.

e Theorem 4.12 holds under the weaker assumption that / is L2-type strictly dual Nakano
8wy -positive from its proof.

Finally, using these two propositions, we obtain the following two theorems which is a
generalization of Demailly—Skoda type theorem (see[12], [19, Theorem 3.3]). These theo-
rems were shown in [18] up to the Nakano (semi-)positive case, and can be shown for the
dual Nakano (semi-)positive case in almost the same way using Proposition 5.2.

Theorem 5.3 Let h be a singular Hermitian metric on E. If h is Griffiths semi-positive then
(E ® det E, h ® det h) is Nakano semi-positive in the sense of Definition 4.6 (i.e. L*-type)
and L?*-type dual Nakano semi-positive.

Theorem 5.4 Let wx be a Kiihler metric on X and h be a singular Hermitian metric on
E. If h is strictly Griffiths 8., -positive then (E ® det E, h @ det h) is strictly Nakano (r +
1)8wy -positive in the sense of Definition 4.7 (i.e. L2-type) and L?-type strictly dual Nakano
(r + 1)éyy -positive.

6 Proofs of Theorem 1.3 and 1.2

In this section, we get the proofs of Theorem 1.2 and 1.3. First, we prove the following
theorem and corollary, which is an extension of Theorem 2.9 to holomorphic vector bundles,
to show these theorems.
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Theorem 6.1 Let X be a complex manifold and E be a holomorphic vector bundle over X
equipped with a singular Hermitian metric h. We assume that h is Griffiths semi-positive on
X. Then for any xo € X, there exist an open neighborhood U of xo and a Kdhler metric w
on U satisfying that for any d-closed f & Li’q(U, E ®detE, h @ deth, w), there exists

uel? (U ,E®detE, h@deth, ) suchthat du = f.

Proof For any xo € X, there exist a bounded Stein neighborhood U of x( such that E|y and
Ty are trivial and a sequence of smooth Griffiths positive metrics (4,),en on U increasing
to h pointwise (see [4, Proposition 3.1], [27]). Here, (E ® det E, h,, ® deth,) is Nakano
positive and (E @ det E, h ® det &) is Nakano semi-positive in the sense of Definition 4.6 by
Proposition 5.1. We fix a bounded Kéhler potential ¥ of w on U and define the trivial vector
bundle F := E®det E® A" P Ty over U, where AP4 T; QR FEQ®det E = A™4 TU* ® F.Let
1 ) be a trivial Hermitian metric and thf = ITge_‘/’ be a smooth Nakano positive metric
on a trivial vector bundle A" P Ty.

Define a singular Hermitian metric i p := h®det hQh Tp on trivial vector bundle F over U.
Then we have that (F, hF) is strictly Nakano 1,,-positive on U in the sense of Definition 4.7.
This is enough to show that for any Kihler potential ¢ of w, i pe? is Nakano semi-positive on
U in the sense of Definition4.6. Lethp , := h, ®deth, ® thf be a smooth Hermitian metric
on F then hf ,e? is Nakano semi-positive. In fact, from hp ,e¥ = h, ® deth, ® IT[? e~ Vte
and Nakano positivity of /, ® det h,,, we get

IOF hp v = IOEQdet E.hy@deth, @ idan-pr, +100(F — @) ® idF
= iOpgdet E,h,@deth, @ 1dpn—r7, ZNak 0.

Therefore (hr,,e?)yen is a sequence of smooth Nakano semi-positive metric on U increasing
to h pe?. From Proposition 5.1, we have that /1 pe? is Nakano semi-positive on U in the sense
of Definition 4.6.

For any (p, g)-form v with values in E ® det E, the form v is considered (n, g)-form with
values in F and we have that |v|%w = |v|%l®deth,we"”. In fact, we can write

a):Zde /\dzj',
U:ZU]J}LdZ] ANdZj ® ey eA”’qu}k®E®detE

= Z vpadzn ANdZy @

®e € AT QAN PTy @ E®det E
IN\I

ZAMTSQF,
at any fixed point, where (e;)| <<, is an orthonormal basis of E ® det E. Then we get

2 2 - = -
V0 = Wlisdenor, o = ) vi0vksu(h @ deth)udygvge ™"
U

=Y vV @deth)ue™ = liggen e

where 8;x = I1;; ik is multi-Kronecker’s delta.

By using the boundedness of v on U, for any d-closed f & Lf,’q(U, EQdetE, h ®
det h, w), we have that

/Ulfllzw,wde = /;/ |-f|%z®deth,a)eiwdv€0 = s?]peiw /;] |f|%l®deth,wd‘/w < +o09,
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i‘e. f € L%,q(U, F,hp,w), where sup eV < 4o00. Therefore, from strictly Nakano
w -positivity of (F, hr) in the sense of Definition 4.7 and Theorem 4.8, there exists u €
nq (U, F, hF, ) such that u = f and

1
2 2
/[;luh,”:’wdes gL|f|hF’wde < 400.

Repeating the above argument, we have that

+00 > / lulj, odVe = / ulfgaeinowe ' dVe = infe ™V / |7 gdetn.0d Ve
U U U U
ie.u € Li q_l(U, E ®det E, h ® det h, ) and the following L2 -estimate

1 supy e™

2
/U|”|h®deth,wde = -

200 | Rewan Ve

where the right-hand side is finite. O

Corollary 6.2 Let X be a complex manifold and E be a holomorphic vector bundle over X
equipped with a singular Hermitian metric h. We assume that h is Griffiths semi-positive on
X and that det h is bounded on X. Then for any xoy € X, there exist an open neighborhood
U of xo and a Kéihler metric o on U satisfying that for any 9-closed f € L%’q (U, E,h,w),

there exists u € Li’qfl(U, E, h, ) such that du = f.

Proof For any xq, there exists a bounded Stein neighborhood U of x( such thag Ely is
trivial then £ ® det E|y = E|y. By the boundedness of det# on U, for any d-closed
fe Li’q(U, E, h, w) we have that

/ | flhedetn.od Ve =/ | f1} ,dethdV,, < supdeth/ | f17.0d Ve < +00,
U U U U

ie. fely (U, EQdetE, h®deth, ).
From Theorem 6.1, there exists u € L%,q_l (U, EQdet E, h®det h, w) satisfies du = f.
Then we have that infy; det 2 > 0 and that

infdeth/ luly ,d Ve 5/ Iul,zlwdetthw:/ |t} gt od Ver < 400,
v U ' U ' U '

ieuely (U E h o). o

Finally, we prove Theorems 1.2 and 1.3 by using the above result and the following
proposition. For singular Hermitian metrics 2 on E, we define the subsheaf Zf , of germs

of (p, g)-forms u with values in E and with measurable coefficients such that both |u|? 5 and
|du|7 are locally integrable.

Proof of Theorem 1.3 There exist a Hodge metric yx and a positive number ¢ > 0 such that
wx > cyx on X. Since Griffiths positivity is local property, & is strictly Griffiths c¢§,,-
positive. For any open subset U and any Kihler potential ¥ of yx on U, we prove that he®®V
is Griffiths semi-positive on U. It is known that this is equivalent to log Iuli*e,w being
plurisubharmonic for any local holomorphic section u € ¢(E*) (see [27]). Here, for any
xo € U and any ball neighborhood B of xy such that B C U, there is a Kéhler potential
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¢ of wx on B. Then ¢ — ¢ is plurisubharmonic on B. By the assumption, we have that
log |u|i*f§w is plurisubharmonic for any u € ¢'(E™)y,. From the inequality

109 10g [ul}. sy = 190108 [l , 50 56p-cp) = 109 10g [}, s, +8i03(¢ — cp) 2 0,

the function log |u Ii*e_mw, is plurisubharmonic.

By Theorem 4.8 and 5.4, we obtain the cohomology vanishing for (n, g)-forms, i.e.
HY(X,Kx ® &(h ® deth)) = 0 for ¢ > 0, already known (see [18, Theorem 1.6]).

We consider the following sheaves sequence:

_ En El In1
7 .0 Pl cppn
0 ———=kerdo = Lrgge £ haden — L ridet £ hwdeth = > L Eguel £ hadeth 0-

By Theorem 6.1, we have that the above sheaves sequence is exact.

From Lemma 2.8, the kernel of 3¢ consists of all germs of holomorphic (p, 0)-forms
with values in E ® det E which satisfy the integrability condition and we have that ker 3¢ =
Qf( ® &(h @ det h). In fact, for any locally open subset U C C" we obtain

fekerdp(U) < f=) fidzi € H(U,Q} ® E ®det E) such that

/U|f|f21®deth,mde :Z/U | f1lhgdenndVer < +00.
1

Therefore any f7 € HO(U, E ® det E) satisfy the condition f7 € &(h ® deth)(U).

. . p,q
From the acyclicity of each L. Eh@deth WE have that

HY(X, Q% ® 6(h @ deth)) = HUT(X, L b hgden)-
By Theorem 4.12 and 5.4, we get H"(T'(X, Zf e £ podecn)) = 0- o

Proof of Theorem 1.2 We consider the following sheaves sequence:

— p,0 9o p.1 a1 On—1
0*>ker80~'—>.,$fE’h .,?E’h

p.n
z0 0.

By Corollary 6.2, we have that the above sheaves sequence is exact.

Locally, we see h = deth - h* where h* is the adjugate matrix of 2*. From Griffiths
semi-negativity of 1*, each element of h* is locally bounded [25, Lemma 2.2.4]. From the
assumption det / is bounded, we get &(h) = O(E).

Repeating the above argument, we have that kerdyp = Qf ® &(h) = Qf ® O(E).
From the acyclicity of each fg”g, we have that HY(X, Q% ® E) = HY(I'(X, fé’”;)). By
Theorem 4.12, we have that H"(I'(X, /1)) = 0. u]

Remark 6.3 Since Theorem 4.12 holds, Theorem 1.2 also holds under the weaker assumption
that & is L>-type strictly dual Nakano 8wy -positive.
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