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Abstract
In this article, we obtain the Bogomolov–Sommese type vanishing theorem involving multi-
plier ideal sheaves for big line bundles. We define a dual Nakano semi-positivity of singular
Hermitianmetrics with L2-estimates and prove a vanishing theoremwhich is a generalization
of the Bogomolov–Sommese type vanishing theorem to holomorphic vector bundles.
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1 Introduction

Positivity notions for holomorphic vector bundles andmultiplier ideal sheaves play an impor-
tant role in several complex variables and complex algebraic geometry. For holomorphic
vector bundles, singular Hermitian metrics and its positivity are very interesting subjects. On
holomorphic line bundles, positivity of a singular Hermitian metric corresponds to plurisub-
harmonicity of the localweight and themultiplier ideal sheaf is an invariant of the singularities
of the plurisubharmonic functions.

Let X be a complex manifold and ϕ be a plurisubharmonic function. Let I (ϕ) be the
sheaf of germs of holomorphic functions f such that | f |2e−ϕ is locally integrable which is
called the multiplier ideal sheaf. Let h be a singular Hermitian metric on a holomorphic line
bundle L over X and ϕ be the local weight of h, i.e. h = e−ϕ . Then we define the multiplier
ideal sheaf for h by I (h) := I (ϕ).

For a holomorphic line bundle L over a projective manifold X of dim X = n, the famous
Bogomolov–Sommese vanishing theorem [3] asserts that H0(X ,�

p
X ⊗ L∗) = 0 for p <

κ(L). In particular, if L is big then we have that
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Hn(X ,�
p
X ⊗ L) = 0

for p > 0 by taking the dual. The Bogomolov–Sommese type vanishing theorem have been
studied in the direction of weakening the positivity (cf. [20, 30]).

For big line bundles, we first obtain the following Bogomolov–Sommese type vanishing
theorem which involves a multiplier ideal sheaf as in the Demailly–Nadel vanishing theorem
(cf. [8, 21, 22]) and which is an extension of the Demailly–Nadel vanishing theorem to
(p, n)-forms.

Theorem 1.1 Let X be a projective manifold of dimension n equipped with a Kähler metric
ω on X. Let L be a holomorphic line bundle on X equipped with a singular Hermitian metric
h. We assume that

i�L,h ≥ εω

in the sense of currents for some ε > 0. Then we have that

Hn(X ,�
p
X ⊗ L ⊗ I (h)) = 0

for p > 0.

Theorem 1.1 is shown using the L2-estimate theorem (see Theorem 2.1) for (p, n)-forms
and a fine resolution of �

p
X ⊗ L ⊗ I (h).

Notions of singularHermitianmetrics for holomorphic vector bundleswere introduced and
investigated (cf. [4, 5]). However, it is known that we cannot always define the curvature cur-
rents with measure coefficients (see [27]). Hence, Griffiths semi-negativity or semi-positivity
([4, 27], see Definition 4.3) and Nakano semi-negativity ([27], see Definition 4.4) is defined
without using the curvature currents by using the properties of plurisubharmonic functions.
Here, Griffiths semi-positivity can be returned to Griffiths semi-negativity by considering
the duality, but this method cannot be used for Nakano semi-positivity because the dual of a
Nakano negative bundle in general is not Nakano positive.

After that, Nakano semi-positivity for singular Hermitian metrics (see Definition 4.6)
was defined in [18], who establishes the singular-type Nakano vanishing theorem, i.e. the
Demailly–Nadel type vanishing theorem extended to holomorphic vector bundles. This
definition is based on characterization of Nakano positivity using the so called “optimal L2-
estimate condition” for (n, 1)-forms by Deng–Ning–Wang–Zhou [13], and does not require
the use of curvature currents. In [29], these characterizations of positivity using L2-estimates
for (n, 1)-forms are extended to (n, q) and (p, n)-forms.

Throughout this paper, we let X be an n-dimensional complex manifold and E → X be
a holomorphic vector bundle of finite rank r . From the definition of Nakano semi-negativity
([27], see Definition 4.4), we naturally define dual Nakano semi-positive singular Hermitian
metrics (see Definition 4.5) with characterization using L2-estimates (see Proposition 4.10).
Then, by using the method of the proof of Theorem 1.1, we obtain the following vanishing
theorem which is a generalization of dual Nakano vanishing theorem to singular Hermitian
metrics and of the Bogomolov–Sommese vanishing theorem to holomorphic vector bundles.

Theorem 1.2 Let X be a projective manifold equipped with a Hodge metric ωX on X. We
assume that (E, h) is strictly dual Nakano δωX -positive in the sense of Definition 4.11 on X
and det h is bounded on X. Then we have the following vanishing:

Hn(X ,�
p
X ⊗ E) = 0,

for p > 0.
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We get the following result which is a generalization of the Griffiths vanishing theorem
(cf. [10, ChapterVII,Corollary9.4], [19]) to singular Hermitian metrics and which can also
be considered as a generalization of the Demailly–Nadel vanishing theorem and Theorem 1.1
to holomorphic vector bundles. Here, the generalization up to (n, q)-forms for singular Her-
mitian metrics is already known in [18].

Theorem 1.3 Let X be a projective manifold equipped with a Kähler metric ωX on X. We
assume that (E, h) is strictly Griffiths δωX -positive in the sense of Definition 4.7 on X. Then
we have the following vanishing:

Hq(X , K X ⊗ E (h ⊗ det h)) = 0

Hn(X ,�
p
X ⊗ E (h ⊗ det h)) = 0,

for p, q > 0.

2 Proof of Theorem 1.1

In this section, we first prove Theorem 2.1 and then use it to show Theorem 1.1.

Theorem 2.1 Let X be a projective manifold of dimension n and ω be a Kähler metric on
X. Let L be a holomorphic line bundle equipped with a singular Hermitian metric h whose
local weights are denoted ϕ ∈ L1

loc, i.e. h = e−ϕ . We assume that

i�L,h = i∂∂ϕ ≥ εω

in the sense of currents for some ε > 0. Then for any f ∈ L2
p,n(X , L, h, ω) satisfying

∂ f = 0, there exists u ∈ L2
p,n−1(X , L, h, ω) such that ∂u = f and
∫

X
|u|2h,ωdVω ≤ 1

pε

∫
X

| f |2h,ωdVω.

First, we consider Theorem 2.1 on a Stein manifold (= Proposition 2.6) and consider
Lemma 2.2 to show this. Here, the claim of the type of Theorem 2.1 and Lemma 2.2 for
(n, q)-forms rather than (p, n)-forms is already known (see [6, 8, 10, ChapterVIII]).

Let (X , ω) be a Hermitian manifold and (E, h) be a holomorphic Hermitian vector bundle
over X . We denote the curvature operator [i�E,h,
ω] on 
p,q T ∗

X ⊗ E by Ap,q
E,h,ω. And

the fact that the curvature operator [i�E,h,
ω] is positive (resp. semi-positive) definite on

p,q T ∗

X ⊗ E is simply written as Ap,q
E,h,ω > 0 (resp. ≥ 0).

Lemma 2.2 Let (E, h) be a holomorphic Hermitian vector bundle over X and ω, γ be Her-
mitian metrics on X such that γ ≥ ω. For any u ∈ 
p,nT ∗

X ⊗ E, p ≥ 1, we have that
|u|2h,γ dVγ ≤ |u|2h,ωdVω and that if Ap,n

E,h,ω > 0 (resp. ≥ 0) then

Ap,n
E,h,γ > 0 (resp. ≥ 0), 〈(Ap,n

E,h,γ )−1u, u〉h,γ dVγ ≤ 〈(Ap,n
E,h,ω)−1u, u〉h,ωdVω.

To show Lemma 2.2, we use the following symbolic definition and lemma which is the
calculation results.

Definition 2.3 (cf. [29,Definition2.1]) Let (M, g)be anorientedRiemmannianC∞-manifold
with dimRM = m and (ξ1, . . . , ξm) be an orthonormal basis of (TM , g) at x0 ∈ M . For any
ordered multi-index I , we define ε(s, I ) ∈ {−1, 0, 1} as the number that satisfies ξs� ξ∗

I =
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ε(s, I )ξ∗
I\s , where if s /∈ I then ε(s, I ) = 0 and if s ∈ I then ε(s, I ) ∈ {−1, 1}. Here, the

symbol •� • represents the interior product, i.e. ξs� ξ∗
I = ιξs ξ

∗
I .

Let (X , ω) be a Hermitian manifold of dimC X = n. If (∂/∂z1, . . . , ∂/∂zn) is an
orthonormal basis of (TX , ω) at x0 then we define ε(s, I ) in the same way as follows
∂

∂zs
� dzI = ε(s, I )dzI\s . In particular, we have that

∂

∂zs
� dzI = ε(s, I )dzI\s .

Lemma 2.4 (cf. [29, Proposition2.2]) Let (X , ω) be a Hermitian manifold and (E, h) be
a holomorphic Hermitian vector bundle over X. Let x0 ∈ X and (z1, . . . , zn) be local
coordinates such that (∂/∂z1, . . . , ∂/∂zn) is an orthonormal basis of (TX , ω) at x0. Let
(e1, . . . , er ) be an orthonormal basis of Ex0 . We can write

ωx0 = i
∑

1≤ j≤n

dz j ∧ dz j , i�E,h,x0 = i
∑

j,k,λ,μ

c jkλμdz j ∧ dzk ⊗ e∗
λ ⊗ eμ.

Let J , K , L and M be ordered multi-indices with |J | = |L| = p and |K | = |M | = q. For
any (p, q)-form u = ∑

|J |=p,|K |=q,λ u J ,K ,λdz J ∧ dzK ⊗ eλ ∈ 
p,q T ∗
X ,x0

⊗ Ex0 , we have
the following calculation results:

〈[i�E,h,
ω]u, u〉ω =
⎛
⎝∑

j∈J

+
∑
j∈K

−
∑

1≤ j≤n

⎞
⎠ c j jλμu J ,K ,λu J ,K ,μ

+
∑

j �=k,K\ j=M\k

c jkλμu J ,K ,λu J ,M,με( j, K )ε(k, M)

+
∑

j �=k,L\ j=J\k

c jkλμuL,K ,λu J ,K ,με(k, J )ε( j, L).

Proof of Lemma 2.2 For any x0 ∈ X , after a linearly transformation, we may assume ω =
i
∑n

j=1 dz j ∧ dz j and γ = i
∑n

j=1 γ 2
j dz j ∧ dz j at x0 with γ j ≥ 1. Let w j = γ j z j for

j = 1, 2, . . . , n and (e1, . . . , er ) be an orthonormal basis of Ex0 . Then we can write

γ = i
∑

1≤ j≤n

dw j ∧ dw j ,

i�E,h = i
∑

j,k,λ,μ

c jkλμdz j ∧ dzk ⊗ e∗
λ ⊗ eμ = i

∑
j,k,λ,μ

c′
jkλμdw j ∧ dwk ⊗ e∗

λ ⊗ eμ

with c′
jkλμ = c jkλμ/γ jγk . For any ordered multi-indices J we denote γJ = � j∈J γ j . For

any u ∈ 
p,nT ∗
X ,x0

⊗ Ex0 we can write

u =
∑

u Jλdz J ∧ dzN ⊗ eλ =
∑

u′
JλdwJ ∧ dwN ⊗ eλ

with u′
Jλ = u Jλ/γJ γN where N = {1, . . . , n}.

Then we obtain that

|u|2h,γ =
∑

|u′
Jλ|2 =

∑
γ −2

J γ −2
N |u Jλ|2, dVγ = γ 2

N dVω,

|u|2h,γ dVγ =
∑

γ −2
J |u Jλ|2dVω ≤ |u|2h,ωdVω.
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From Lemma 2.4, we have that

〈Ap,n
E,h,γ u, u〉γ =

∑
j∈J

c′
j jλμu′

Jλu′
Jμ +

∑
j �=k,L\ j=J\k

c′
jkλμu′

Lλu′
Jμε(k, J )ε( j, L)

=
∑

L\ j=J\k

c′
jkλμu′

Lλu′
Jμε(k, J )ε( j, L)

= γ −2
N

∑
L\ j=J\k

c jkλμuLλu Jμε(k, J )ε( j, L)/(γ jγkγLγJ )

= γ −2
N

∑
I

∑
L\ j=J\k

c jkλμuLλu Jμε(k, J )ε( j, L)/(γ jγkγI )
2 (I := L\ j = J \k)

= γ −2
N

∑
I

γ 2
I

∑
L\ j=J\k

c jkλμuLλu Jμε(k, J )ε( j, L)/(γ jγkγ
2
I )2

= γ −2
N

∑
I

γ 2
I

∑
L\ j=J\k

c jkλμuLλu Jμε(k, J )ε( j, L)/(γ 2
L γ 2

J )

≥ γ −2
N

∑
L\ j=J\k

c jkλμuLλu Jμε(k, J )ε( j, L)/(γ 2
L γ 2

J )

= γ 2
N

∑
L\ j=J\k

c jkλμuLλu Jμε(k, J )ε( j, L)/(γ 2
L γ 2

J γ 4
N )

= γ 2
N 〈Ap,n

E,h,ωSγ u, Sγ u〉ω
where Sγ is the operator defined by

Sγ u =
∑

u Jλγ
−2
J γ −2

N dz J ∧ dzN ⊗ eλ ∈ 
p,nT ∗
X ,x0 ⊗ Ex0 .

Therefore we obtain that Ap,n
E,h,ω > 0 �⇒ Ap,n

E,h,γ > 0.
Hence for any u, v ∈ 
p,nT ∗

X ,x0
⊗ Ex0 we have that

|〈u, v〉γ |2 = |〈u, Sγ v〉ω|2 ≤ 〈(Ap,n
E,h,ω)−1u, u〉ω〈Ap,n

E,h,ωSγ v, Sγ v〉ω
≤ γ −2

N 〈(Ap,n
E,h,ω)−1u, u〉ω〈Ap,n

E,h,γ v, v〉γ ,

and the choice v = (Ap,n
E,h,γ )−1u implies

〈(Ap,n
E,h,γ )−1u, u〉h,γ γ 2

N ≤ 〈(Ap,n
E,h,ω)−1u, u〉h,ω.

From the above and dVγ = γ 2
N dVω, this proof is completed. ��

Lemma 2.5 Let X be a complex manifold and (E, h) be a holomorphic Hermitian vector
bundle over X. Letω, γ be Hermitian metrics on X such thatγ ≥ ω. For any u ∈ 
p,q T ∗

X ⊗E,
we have that |u|2h,γ ≤ |u|2h,ω.

Proof Let notation be the same as one in the proof of Lemma 2.2.
Then for any u ∈ 
p,q T ∗

X ,x0
⊗ Ex0 , we can write

u =
∑

J ,K ,λ

u J Kλdz J ∧ dzK ⊗ eλ =
∑

J ,K ,λ

u′
J KλdwJ ∧ dwK ⊗ eλ

with u′
J Kλ = u J Kλ/γJ γK . Hence, we have that

|u|2h,γ =
∑

|u′
J Kλ|2 =

∑
|u J Kλ|2/(γJ γK )2 ≤

∑
|u J Kλ|2 = |u|2h,ω.
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From the above, this proof is completed. ��
Using Lemmas 2.2 and 2.5 , we obtain the following proposition.

Proposition 2.6 Let S be a Stein manifold of dimension n and ω be a Kähler metric on S.
Let ϕ be a strictly plurisubharmonic function on S. We assume that

i∂∂ϕ ≥ εω

in the sense of currents for some ε > 0. Then for any f ∈ L2
p,n(S, ϕ, ω) satisfying ∂ f = 0,

there exists u ∈ L2
p,n−1(S, ϕ, ω) such that ∂u = f and

∫
S
|u|2ωe−ϕdVω ≤ 1

pε

∫
S
| f |2ωe−ϕdVω.

Proof We may assume that S is a submanifold of C
N . By the theorem of Docquier and

Grauert, there exists an open neighborhood W ⊂ C
N of S and a holomorphic retraction

μ : W → S (cf.Chapter Vof [14]). Let ρ : C
N → R≥0 be a smooth function depending

only on |z| such that supp ρ ⊂ B
N and that

∫
CN ρ(z)dV = 1, where B

N is the unit ball.
Define ρε(z) = (1/ε2n)h(z/ε) for ε > 0. Let Sν := {z ∈ S | dN (z, Sc) > 1/ν} be
a subset of S ⊂ C

N . For any plurisubharmonic function α on S we define the function
αν := (α ◦ μ) ∗ ρ1/ν . Then αν is a smooth plurisubharmonic function on Sν .

Let U be a open subset and � be a local Kähler potential of ω on U , i.e. � satisfies
i∂∂� = ω. By the assumption,weget i∂∂(ϕ−ε�) = i�L,h−εω ≥ 0 in the sense of currents.
Then the function (ϕ − ε�)ν = ϕν − ε�ν is a smooth plurisubharmonic function defined
on U ν . Since �ν is strictly plurisubharmonic, ϕν also is a smooth strictly plurisubharmonic
function on Sν and satisfies the following condition

i∂∂ϕν ≥ εi∂∂�ν ≥ ενω,

where (εν)ν∈N is a positive number sequence such that 0 < ε/2 < εν ↗ ε, (ν → +∞). Let
ϕ∞ := limν→+∞ ϕν then ϕ∞ is a plurisubharmonic function on S such that ϕ∞ = ϕ a.e.
and a smooth functions sequence (ϕν)ν∈N is decreasing to ϕ∞.

By the Stein-ness of S, there exists a smooth exhaustive plurisubharmonic function ψ

on S. We can assume that supS ψ = +∞. For any number c < supS ψ = +∞, we define
the sublevel sets Sc := {z ∈ S | ψ(z) < c} which is Stein. Fixed j ∈ N. There exists
ν0 ∈ N such that for any integer ν ≥ ν0, S j ⊂⊂ Sν0 ⊂⊂ Sν . From Stein-ness of S j ,
there exists a complete Kähler metric ω̂ j on S j . Then we define the complete Kähler metric
ωδ := ω + δω̂ j > ω on S j for δ > 0.

For any ν ≥ ν0 and any v ∈ 
p,nT ∗
S j
, we obtain

〈[i∂∂ϕν,
ω]v, v〉ω ≥ 〈[ενω,
ω]v, v〉ω = pεν |v|2 and Ap,n
e−ϕν ,ω

= [i∂∂ϕν,
ω] > 0.

From this and Lemma 2.2, we have that Ap,n
e−ϕν ,ωδ

= [i∂∂ϕν,
ωδ ] > 0 and
∫

S j

〈[i∂∂ϕν,
ωδ ]−1 f , f 〉ωδ e−ϕν dVωδ ≤
∫

S j

〈[i∂∂ϕν,
ω]−1 f , f 〉ωe−ϕν dVω

≤ 1

pεν

∫
S j

| f |2ωe−ϕν dVω

≤ 1

pεν

∫
S j

| f |2ωe−ϕdVω
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≤ 2

pε

∫
S
| f |2ωe−ϕdVω < +∞.

For any two Hermitian metrics γ1, γ2 and any locally integrable function � ∈ Lloc,
we define the Hilbert space L2

p,q(S,�, γ1, γ2) of (p, q)-forms g on S with measurable
coefficients such that ∫

S
|g|2γ1e−�dVγ2 < +∞.

Here there exists a positive smooth function γ̃ ∈ E(S, R>0) such that dVγ2 = γ̃ dVγ1 then
we have that L2

p,q(S,�, γ1, γ2) = L2
p,q(S,� − log γ̃ , γ1).

Thanks to Hörmander’s L2-estimate for smooth Hermitian metric with weight ϕν

and complete Kähler metric ωδ , we get a solution u j,ν,δ ∈ L2
p,n−1(S j , ϕν, ωδ) ⊂

L2
p,n−1(S j , ϕν, ωδ, ω) of ∂u j,ν,δ = f on S j such that

∫
S j

|u j,ν,δ|2ωδ
e−ϕν dVω ≤

∫
S j

|u j,ν,δ|2ωδ
e−ϕν dVωδ ≤

∫
S j

〈[i∂∂ϕν,
ωδ ]−1 f , f 〉ωδ e−ϕν dVωδ

≤
∫

S j

〈[i∂∂ϕν,
ω]−1 f , f 〉ωe−ϕν dVω

≤ 2

pε

∫
S
| f |2ωe−ϕdVω < +∞.

For fixed integer λ1 ≥ 1, (u j,ν,1/λ)λ1≤λ∈N forms a bounded sequence in L2
p,n−1(S j , ϕν,

ω1/λ1 , ω)due to themonotonicity of |•|2ω1/λ
, i.e. Lemma2.5. Thereforewe canobtain aweakly

convergent subsequence in L2
p,n−1(S j , ϕν, ω1/λ1 , ω). By using a diagonal argument, we get

a subsequence (u j,ν,λk )k∈N of (u j,ν,1/λ)λ≥λ1 converging weakly in L2
p,n−1(S j , ϕν, ω1/λ1 , ω)

for any λ1, where u j,ν,λk ∈ L2
p,n−1(S j , ϕν, ω1/λk , ω) ⊂ L2

p,n−1(S j , ϕν, ω1/λ1 , ω). We

denote by u j,ν the weak limit of (u j,ν,λk )k∈N. Then u j,ν satisfies ∂u j,ν = f on S j and
∫

S j

|u j,ν |2ωλk
e−ϕν dVω ≤

∫
S j

〈[i∂∂ϕν,
ω]−1 f , f 〉ωe−ϕν dVω

for each k ∈ N. Taking weak limit k → +∞ and using the monotone convergence theorem,
we have the following estimate

∫
S j

|u j,ν |2ωe−ϕν dVω ≤
∫

S j

〈[i∂∂ϕν,
ω]−1 f , f 〉ωe−ϕν dVω

≤ 1

pεν

∫
S j

| f |2ωe−ϕdVω ≤ 2

pε

∫
S
| f |2ωe−ϕdVω < +∞,

i.e. u j,ν ∈ L2
p,n−1(S j , ϕν, ω). For fixed ν1 ≥ ν0, (u j,ν)ν≥ν1 forms a bounded sequence in

L2
p,n−1(S j , ϕν1 , ω) due to the monotonicity of (ϕν)ν∈N. Repeating the above argument and

taking the weak limit ν → +∞, we get a solution u j ∈ L2
p,n−1(S j , ϕ, ω) of ∂u j = f on S j

such that

pεν

∫
S j

|u j |2ωe−ϕν dVω ≤
∫

S
| f |2ωe−ϕdVω,
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for each ν ∈ N. Taking weak limit ν → +∞ and using the monotone convergence theorem,
we have the following estimate

pε

∫
S j

|u j |2ωe−ϕdVω ≤
∫

S
| f |2ωe−ϕdVω.

Finally, repeating the above argument and taking the weak limit j → +∞, we get a
solution u ∈ L2

p,n−1(S, ϕ, ω) of ∂u = f on S such that
∫

S
|u|2ωe−ϕdVω ≤ 1

pε

∫
S
| f |2ωe−ϕdVω.

From the above, this proof is completed. ��
Then, use Proposition 2.6 to prove Theorem 2.1.

Proof of Theorem 2.1 BySerre’sGAGA, there exists a hypersurface H ⊂ X such that X\H is
Stein and L is trivial over X\H . FromProposition 2.6, for any ∂-closed f ∈ L2

p,n(X , L, h, ω)

there exists u ∈ L2
p,n−1(X \ H ,− log det h, ω) = L2

p,n−1(X \ H , L, h, ω) such that ∂u = f
and ∫

X\H
|u|2h,ωdVω ≤ 1

pε

∫
X\H

| f |2h,ωdVω

≤ 1

pε

∫
X

| f |2h,ωdVω < +∞.

Letting u = 0 on H , we have that u ∈ L2
p,n−1(X , L, h, ω), ∂u = f on X and

∫
X

|u|2h,ωdVω ≤ 1

pε

∫
X

| f |2h,ωdVω,

from the following lemma. ��
Lemma 2.7 (cf. [2, Lemma5.1.3]) Let X be a complex manifold and H be a hypersurface in
X. Let u and f be (possibly bundle valued) forms in L2

loc of X satisfying ∂u = f on X \ H.
Then the same equation holds on X (in the sense of distributions).

Finally, we prove Theorem 1.1 using Theorem 2.1 and the following lemma and theorem.

Lemma 2.8 (Dolbeault–Grothendieck lemma, cf. [10, ChapterI]) Let T be a current of type
(p, 0) on some open subset U ⊂ C

n. If T is ∂-closed then it is a holomorphic differential
form, i.e. a smooth differential form with holomorphic coefficients.

Theorem 2.9 (cf. [14, Theorem 4.4.2]) Let � be a pseudoconvex open set in C
n and ϕ be

any plurisubharmonic function in �. For any f ∈ L2
p,q+1(�, ϕ) with ∂ f = 0 there exists a

solution u ∈ L2
p,q(�, loc) of the equation ∂u = f such that

∫
�

|u|2e−ϕ(1 + |z|2)−2dV� ≤
∫

�

| f |2e−ϕdV�.

Proof of Theorem 1.1 We define the subsheaf L p,q
L,h of germs of (p, q)-forms u with values

in L and with measurable coefficients such that both |u|2h and |∂u|2h are locally integrable.
And we consider the following sheaves sequence:

0 ker ∂0 ↪→ L
p,0

L,h
∂0

L
p,1

L,h
∂1 · · · ∂n−1

L
p,n

L,h 0.

123



Bogomolov–Sommese type vanishing for holomorphic vector bundles Page 9 of 23 92

For any x0 ∈ X , there exists a bounded Stein open neighborhood � of x0 such that L|�
is trivial. Then − log h is strictly plurisubharmonic function on � and L2

p,q(�, L, h, ω) =
L2

p,q(�,− log h, ω). From Theorem 2.9, for any f ∈ L2
p,q(�,− log h, ω) with ∂ f = 0

there exists a solution u ∈ L2
p,q−1(�, loc) of the equation ∂u = f such that

inf
z∈�

1

(1 + |z|2)2
∫

�

|u|2elog hdVω ≤
∫

�

|u|2elog h(1 + |z|2)−2dVω

≤
∫

�

| f |2elog hdVω < +∞.

By theboundedness of�,weget 0 < inf z∈�(1+|z|2)−2 andu ∈ L2
p,q−1(�,− log h, ω) =

L2
p,q−1(�, L, h, ω). Then we have that the above sheaves sequence is exact.

From Lemma 2.8, the kernel of ∂0 consists of all germs of holomorphic (p, 0)-forms with
values in L which satisfy the integrability condition and we have that ker ∂0 = �

p
X ⊗ L ⊗

I (h). In fact, for any locally open subset U ⊂ C
n we obtain

f ∈ ker ∂0(U ) ⇐⇒ f =
∑

f I dzI ∈ H0(U ,�
p
X ⊗ L) such that∫

U
| f |2h,ωdVω =

∫
U

| f |2elog hdVω =
∑∫

U
| f I |2elog hdVω < +∞.

Therefore any f I ∈ H0(U , C) satisfy the condition f I ∈ I (h)(U ).
From the acyclicity of each L

p,q
L,h , we obtain that

Hq(X ,�
p
X ⊗ L ⊗ I (h)) ∼= Hq(�(X ,L

p,•
L,h )).

By Theorem 2.1, we conclude that Hn(�(X ,L
p,•

L,h )) = 0. ��
From the Demailly–Nadel vanishing theorem and Theorem 1.1, we get the following

results (= extension of the Demailly–Nadel vanishing theorem) immediately:
Let X be a projective manifold of dimension n equipped with a Kähler metric ω on X .

Let L be a holomorphic line bundle on X equipped with a singular Hermitian metric h. We
assume that

i�L,h ≥ εω

in the sense of currents for some ε > 0. Then we have that

H p(X , K X ⊗ L ⊗ I (h)) = 0,

Hn(X ,�
p
X ⊗ L ⊗ I (h)) = 0

for p > 0.

Remark 2.10 The above extension of the Demailly–Nadel vanishing theorem cannot be
extended to the same bidegree (p, q) with p + q > n as the Kodaira–Akizuki–Nakano
type vanishing theorem.

In fact, Ramanujam has given in the following counterexample to the extension of the
Kodaira–Akizuki–Nakano type vanishing theorem to nef and big line bundles.

Counterexample. (cf. [10, ChapterVII], [26]) Let X be a blown up of one point in P
n

and π : X → P
n be the natural morphism. Clearly the line bundle π∗OPn (1) is nef and big.

Then we have the following non-vanishing cohomologies:

H p,p(X , π∗OPn (1)) �= 0 for 0 ≤ p ≤ n − 1.
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And, from the analytical characterization of nef and big line bundles (see [7, 9, Chapter 6]),
there exist a singular Hermitian metric hπ∗ O(1) on π∗OPn (1) such that I (hπ∗ O(1)) = OX

and i�π∗OPn (1),hπ∗ O(1) ≥ εω in the sense of currents for some ε > 0, where ω is a Kähler
metric on X . Then we get the following counterexample:

H p(X ,�
p
X ⊗ π∗OPn (1) ⊗ I (hπ∗ O(1))) ∼= H p,p(X , π∗OPn (1)) �= 0 for 0 ≤ p ≤ n − 1.

3 Smooth Hermitianmetrics and dual Nakano positivity

Let (X , ω) be a complex manifold of complex dimension n equipped with a Hermitian
metric ω on X and (E, h) be a holomorphic Hermitian vector bundle of rank r over X . Let
D = D′ + ∂ be the Chern connection of (E, h), and �E,h = [D′, ∂] = D′∂ + ∂ D′ be the
Chern curvature tensor. Let (U , (z1, . . . , zn)) be local coordinates. Denote by (e1, . . . , er )

an orthonormal frame of E over U ⊂ X , and

i�E,h,x0 = i
∑
j,k

� jkdz j ∧ dzk = i
∑

j,k,λ,μ

c jkλμdz j ∧ dzk ⊗ e∗
λ ⊗ eμ, c jkλμ = ck jμλ.

To i�E,h corresponds a natural Hermitian form θE,h on TX ⊗ E defined by

θE,h(u) := θE,h(u, u) =
∑

c jkλμu jλukμ, u =
∑

u jλ
∂

∂z j
⊗ eλ ∈ TX ,x0 ⊗ Ex ,

i.e. θE,h =
∑

c jkλμ(dz j ⊗ e∗
λ) ⊗ (dzk ⊗ e∗

μ).

Definition 3.1 Let X be a complex manifold and (E, h) be a holomorphic Hermitian vector
bundle over X .

• (E, h) is said to be Griffiths positive (resp. Griffiths semi-positive) if for any ξ ∈ TX ,x ,
ξ �= 0 and s ∈ Ex , s �= 0, we have

θE,h(ξ ⊗ s, ξ ⊗ s) > 0 (resp. ≥ 0).

We write (E, h) >Gri f 0, i.e. i�E,h >Gri f 0 (resp. ≥Gri f 0) for Griffiths positivity
(resp. semi-positivity).

• (E, h) is said to be Nakano positive (resp. Nakano semi-positive) if θE,h is positive (resp.
semi-positive) definite as a Hermitian form on TX ⊗ E , i.e. for any u ∈ TX ⊗ E , u �= 0,
we have

θE,h(u, u) > 0 (resp. ≥ 0).

We write (E, h) >Nak 0, i.e. i�E,h >Nak 0 (resp. ≥Nak 0) for Nakano positivity (resp.
semi-positivity).

We introduce another notion about Nakano-type positivity.

Definition 3.2 (cf. [11, Section1], [19, Definition2.1]) Let X be a complex manifold of
dimension n and (E, h) be a holomorphic Hermitian vector bundle of rank r over X . (E, h)

is said to be dual Nakano positive (resp. dual Nakano semi-positive) if (E∗, h∗) is Nakano
negative (resp. Nakano semi-negative).

From definitions, we see immediately that if (E, h) is Nakano positive or dual Nakano
positive then (E, h) is Griffiths positive. And there is an example of dual Nakano positive as
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follows. Let hF S be the Fubini-Study metric on TPn , then (TPn , hF S) is dual Nakano positive
and Nakano semi-positive (cf. [19, Corollary7.3]). (TPn , hF S) is easyly shown to be ample,
but it is not Nakano positive. In fact, if (TPn , hF S) is Nakano positive then from the Nakano
vanishing theorem (see [23]), we have that

Hn−1,n−1(Pn, C) = Hn−1(Pn,�n−1
Pn ) = Hn−1(Pn, KPn ⊗ TPn ) = 0.

However, this contradicts Hn−1,n−1(Pn, C) = C.
Here, the following theorem is known, which expresses the relationship for the three

positivity, i.e. Griffiths, Nakano and dual Nakano.

Theorem 3.3 (cf. [12, Theorem1], [19, Theorem7.2]) Let h be a smooth Hermitian metric
on E. If (E, h) is Griffiths semi-positive then (E ⊗ det E, h ⊗ det h) is Nakano semi-positive
and dual Nakano semi-positive.

Let E p,q(E) be the sheaf of germs of C∞ sections of 
p,q T ∗
X ⊗ E and D p,q(E) be the

space of C∞ sections of 
p,q T ∗
X ⊗ E with compact support on X .

Deng,Ning,Wang andZhou introduced a positive notion ofHörmander type in [13],which
is named as the optimal L p-estimate condition and characterizes Nakano semi-positivity,
i.e. An,1

E,h ≥ 0, for holomorphic vector bundles (E, h). Then we introduced the following

positive notion of Hörmander type in [29], which is an extension of the optimal L2-estimate
condition from (n, 1)-forms to (p, n)-forms and which characterizes the condition Ap,n

E,h ≥ 0
(see Theorem 3.5).

Definition 3.4 (cf. [29, Definition1.4]) Let (X , ω) be a Kähler manifold of dimension n
which admits a positive holomorphic Hermitian line bundle and E be a holomorphic vector
bundle over X equipped with a (singular) Hermitian metric h. (E, h) satisfies the (p, n)-L2

ω-
estimate condition on X , if for any positive holomorphic Hermitian line bundle (A, h A) on
X and for any f ∈ D p,n(X , E ⊗ A) with ∂ f = 0, there is u ∈ L2

p,n−1(X , E ⊗ A) satisfying

∂u = f and∫
X

|u|2h⊗h A,ωdVω ≤
∫

X
〈[i�A,h A ⊗ idE ,
ω]−1 f , f 〉h⊗h A,ωdVω,

provided that the right hand side is finite.
And (E, h) satisfies the (p, n)-L2-estimate condition on X if for any Kähler metric ω̃,

(E, h) satisfies the (p, n)-L2
ω̃
-estimate condition on X

Theorem 3.5 (cf. [29, Theorem1.6]) Let (X , ω) be a Kähler manifold of dimension n which
admits a positive holomorphic Hermitian line bundle and (E, h) be a holomorphic Hermitian
vector bundle over X and p be a nonnegative integer. If (E, h) satisfies the (p, n)-L2

ω-estimate
condition on X then we have that Ap,n

E,h,ω ≥ 0.

Here, as is well known, we know the following two facts about smooth Hermitian metrics
h on E : Let (X , ω) be a Kähler manifold.

An,1
E,h,ω ≥ 0 (resp. ≤ 0) �⇒ An,q

E,h,ω ≥ 0 (resp. ≤ 0) for all q ≥ 1 (see [6]),
(E, h) ≥Nak 0 (resp. ≤Nak 0) ⇐⇒ An,1

E,h,ω ≥ 0 (resp. ≤ 0) (see [12]).
Therefore, from these two facts, Lemma 3.6 and the definition of Nakano semi-positivity, we
obtain the following characterizations:

(a) (E, h) is Nakano semi-positive ⇐⇒ An,q
E,h,ω ≥ 0 for all q ≥ 1,

(b) (E, h) is dual Nakano semi-positive ⇐⇒ Ap,n
E,h,ω ≥ 0 for all p ≥ 1.
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Lemma 3.6 (cf. [29, Theorem2.3 and 2.5]) Let (X , ω) be a Hermitian manifold and (E, h)

be a holomorphic vector bundle over X. We have that

An−p,n−q
E∗,h∗,ω ≥ 0 (resp. ≤ 0) ⇐⇒ Ap,q

E,h,ω ≥ 0 (resp. ≤ 0) ⇐⇒ An−q,n−p
E,h,ω ≤ 0 (resp. ≥ 0).

By using the second condition (b), we show the following theoremwhich is already known
as (n, q)-forms in the case of Nakano semi-positive.

Theorem 3.7 Let (X , ω̂) be a complete Kähler manifold, ω be another Kähler metric which
is not necessarily complete and (E, h) be a dual Nakano semi-positive vector bundle. Then
for any ∂-closed f ∈ L2

p,n(X , E, h, ω) there exists u ∈ L2
p,n−1(X , E, h, ω) satisfies ∂u = f

and ∫
X

|u|2h,ωdVω ≤
∫

X
〈(Ap,n

E,h,ω)−1 f , f 〉h,ωdVω,

where we assume that the right-hand side is finite.

Furthermore, from the condition (b), Theorems 3.5 and 3.7, we obtain the following
characterization of dual Nakano semi-positivity by using L2-estimates.

Theorem 3.8 (cf. [29, Corollary4.5]) Let X be a complex manifold of dimension n which
admits a complete Kähler metric and a positive holomorphic Hermitian line bundle. Let
(E, h) be a holomorphic Hermitian vector bundle over X. Then (E, h) satisfies the (p, n)-
L2-estimate condition for all p ≥ 1 if and only if (E, h) is dual Nakano semi-positive.

Proof of Theorem 3.7 For any two Hermitian metrics γ1, γ2, we define the Hilbert space
L2

p,q(X , E, h, γ1, γ2) of (p, q)-forms g on X with measurable coefficients such that
∫

X
|g|2h,γ1

dVγ2 < +∞.

Here there exists a positive smooth function γ̃ ∈ E(X , R>0) such that dVγ2 = γ̃ dVγ1 then
we have that L2

p,q(X , E, h, γ1, γ2) = L2
p,q(X , E, γ̃ h, γ1).

For every ε > 0, the Kähler metric ωε = ω + εω̂ is complete. The idea of the proof is to
apply the L2-estimates to ωε and to let ε tend to zero. It follows from Lemma 2.2 and the
equivalence condition of dual Nakano semi-positivity, i.e. Ap,n

E,h,ω ≥ 0 for p ≥ 1 that

〈(Ap,n
E,h,ωε

)−1g, g〉h,ωε dVωε ≤ 〈(Ap,n
E,h,ω)−1g, g〉h,ωdVω

for any g ∈ 
p,nT ∗
X ⊗ E . Thanks to Hörmander’s L2-estimate, we get the solution uε ∈

L2
p,n−1(X , E, h, ωε) ⊂ L2

p,n−1(X , E, h, ωε, ω) of ∂uε = f such that
∫

X
|u|2h,ωε

dVω ≤
∫

X
|u|2h,ωε

dVωε ≤
∫

X
〈(Ap,n

E,h,ωε
)−1 f , f 〉h,ωε dVωε

≤
∫

X
〈(Ap,n

E,h,ω)−1 f , f 〉h,ωdVω,

where dVω ≤ dVωε .
For fixed integer j0 ≥ 1, (u1/ j ) j∈N≥ j0

forms a bounded sequence in L2
p,n−1(X , E, h,

ω1/ j0 , ω) due to themonotonicity of |•|2ω1/ j
, i.e. Lemma2.5. Thereforewe can obtain aweakly

convergent subsequence in L2
p,n−1(X , E, h, ω1/ j0 , ω). By using a diagonal argument, we get

a subsequence (u jk )k∈N of (u1/ j ) j∈N≥ j0
converging weakly in L2

p,n−1(X , E, h, ω1/ j0 , ω) for

123



Bogomolov–Sommese type vanishing for holomorphic vector bundles Page 13 of 23 92

any j0, where u jk ∈ L2
p,n−1(X , E, h, ω1/ jk , ω) ⊂ L2

p,n−1(X , E, h, ω1/ j0 , ω). We denote by

u the weak limit of (u jk )k∈N. Then u satisfies ∂u = f and
∫

X
|u|2h,ω1/ jk

dVω ≤
∫

X
〈(Ap,n

E,h,ω)−1 f , f 〉h,ωdVω,

for each k ∈ N. Taking weak limit k → +∞ and using the monotone convergence theorem,
we have the following estimate∫

X
|u|2h,ωdVω ≤

∫
X
〈(Ap,n

E,h,ω)−1 f , f 〉h,ωdVω < +∞,

i.e. u ∈ L2
p,n−1(X , E, h, ω). ��

Finally, we get the following proposition by applying and modifying Theorem 3.8.

Proposition 3.9 Let h be a smooth Hermitian metric on E. We consider the following con-
ditions:

(1) h is dual Nakano semi-positive.
(2) For any Stein coordinate S such that E |S is trivial on S, any Kähler metric ωS on S, any

smooth strictly plurisubharmonic function ψ on S, any integer p ∈ {1, . . . , n} and any ∂-
closed f ∈ L2

p,n(S, E, he−ψ, ωS), there exists u ∈ L2
p,n−1(S, E, he−ψ, ωS) satisfying

∂u = f and ∫
S
|u|2h,ωS

e−ψdVωS ≤
∫

S
〈B−1

ψ,ωS
f , f 〉h,ωS e−ψdVωS ,

provided the right-hand side is finite, where Bψ,ωS = [i∂∂ψ ⊗ idE ,
ωS ].
(3) (E, h) satisfies the (p, n)-L2-estimate condition for all p ≥ 1.

Then two conditions (1) and (2) are equivalent. If X admits a complete Kähler metric ω and
a positive holomorphic line bundle on X, the above three conditions are equivalent.

Proof First, we consider (1) �⇒ (2). We have that i�E,he−ψ = i�E,h + i∂∂ψ ⊗ idE is dual
Nakano positive on S and

Ap,n
E,he−ψ ,ωS

= [i�E,h,
ωS ] + [i∂∂ψ ⊗ idE ,
ωS ] = Ap,n
E,h,ωS

+ Bψ,ωS ≥ Bψ,ωS > 0 on S.

By Theorem 3.7, for any p ≥ 1 and for any ∂-closed f ∈ L2
p,n(S, E, he−ψ, ωS) there exists

u ∈ L2
p,n−1(S, E, he−ψ, ωS) such that ∂u = f and

∫
S
|u|2h,ωe−ψdVωS ≤

∫
S
〈(Ap,n

E,he−ψ ,ωS
)−1 f , f 〉h,ωS e−ψdVωS

≤
∫

S
〈B−1

ψ,ωS
f , f 〉h,ωS e−ψdVωS .

Next, we consider (2) �⇒ (1). From the condition (2), for any very small Stein coordinate
S, (E, h) satisfies the (p, n)-L2

ωS
-estimate condition on S. By Theorem 3.8, we have that

Ap,n
E,h,ωS

≥ 0 which is equivalent to dual Nakano semi-positive on S. Since dual Nakano
semi-positive is a local property, we get the condition (1).

Finally, we assume that X admits a complete Kähler metric ω and a positive holomorphic
line bundle on X . From Theorems 3.7 and 3.8, we have that (3) ⇐⇒ (1). ��
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4 Singular Hermitianmetrics and characterization of dual Nakano
positivity

In this section, we consider the case where a Hermitian metric of a holomorphic vector
bundle has singularities. First, for holomorphic vector bundles, we introduce the definition of
singular Hermitian metrics h and the multiplier submodule sheaf E (h) of O(E) with respect
to h that is analogous to the multiplier ideal sheaf.

Definition 4.1 (cf. [4, Section 3], [25, Definition 2.2.1] and [27, Definition 1.1]) We say that
h is a singular Hermitian metric on E if h is a measurable map from the base manifold X to
the space of non-negative Hermitian forms on the fibers satisfying 0 < det h < +∞ almost
everywhere.

Definition 4.2 (cf. [5, Definition2.3.1]) Let h be a singular Hermitian metric on E . We define
the L2-subsheaf E (h) of germs of local holomorphic sections of E by

E (h)x := {sx ∈ O(E)x | |sx |2h is locally integrable around x}.
Moreover, we introduce the definitions of positivity and negativity, such as Griffiths and

Nakano, for singular Hermitian metrics.

Definition 4.3 (cf. [4, Definition 3.1], [25, Definition 2.2.2] and [27, Definition 1.2] ) We say
that a singular Hermitian metric h is

(1) Griffiths semi-negative if |u|h is plurisubharmonic for any local holomorphic section
u ∈ O(E) of E .

(2) Griffiths semi-positive if the dual metric h∗ on E∗ is Griffiths semi-negative.

Let h be a smooth Hermitian metric on E and u = (u1, . . . , un) be an n-tuple of local
holomorphic sections of E . We define T h

u , an (n − 1, n − 1)-form through

T h
u =

n∑
j,k=1

(u j , uk)h ̂dz j ∧ dzk

where (z1, . . . , zn) are local coordinates on X , and ̂dz j ∧ dzk denotes the wedge product of
all dzi and dzi expect dz j and dzk , multiplied by a constant of absolute value 1, chosen so that
Tu is a positive form. Then a short computation yields that (E, h) is Nakano semi-negative
if and only if T h

u is plurisubharmonic in the sense that i∂∂T h
u ≥ 0 (see [1, 27]). In the case

of u j = uk = u, (E, h) is Griffiths semi-negative.
From the above, we introduce the definition of Nakano semi-negativity for singular Her-

mitian metrics.

Definition 4.4 (cf. [27, Section1]) We say that a singular Hermitian metric h on E is Nakano
semi-negative if the (n − 1, n − 1)-form T h

u is plurisubharmonic for any n-tuple of local
holomorphic sections u = (u1, . . . , un).

Here, since the dual of a Nakano negative bundle in general is not Nakano positive,
we cannot define Nakano semi-positivity for singular Hermitian metrics as in the case of
Griffiths semi-positive, but we naturally define dual Nakano semi-positivity (see [28]) for
singular Hermitian metrics as follows.

Definition 4.5 We say that a singular Hermitian metric h on E is dual Nakano semi-positive
if the dual metric h∗ on E∗ is Nakano semi-negative.
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For Nakano semi-positivity of singular Hermitian metrics, we already know one definition
in [18], which is based on the optimal L2-estimate condition in [13] and is equivalent to the
usual definition for the smooth case byDeng–Ning–Wang–Zhou’s characterization ofNakano
semi-positivity in terms of optimal L2-estimate condition in [13].

Definition 4.6 (cf. [18, Definition1.1]) Assume that h is a Griffiths semi-positive singular
Hermitian metric. We say that h is Nakano semi-positive if for any Stein coordinate S such
that E |S is trivial, any Kähler metric ωS on S, any smooth strictly plurisubharmonic function
ψ on S, any positive integer q ∈ {1, . . . , n} and any ∂-closed f ∈ L2

n,q(S, E, he−ψ, ωS)

there exists u ∈ L2
n,q−1(S, E, he−ψ, ωS) satisfying ∂u = f and
∫

S
|u|2h,ωS

e−ψdVωS ≤
∫

S
〈B−1

ψ,ωS
f , f 〉h,ωS e−ψdVωS ,

where Bψ,ωS = [i∂∂ψ ⊗ idE ,
ωS ]. Here we assume that the right-hand side is finite.

In [21, 22], Nadel proved that I (h) is coherent by using the Hörmander L2-estimate.
After that, as holomorphic vector bundles case, Hosono and Inayama proved that E (h) is
coherent if h is Nakano semi-positive in the sense of singular as in Definition 4.6 in [15] and
[18].

For singular Hermitian metrics, we cannot always define the curvature currents with
measure coefficients (see [27]). However, the above Definition 4.6 can be defined by not
using the curvature currents of a singular Hermitian metric directly. Therefore, by using
these definitions, the following definition of strictly positivity for Griffiths and Nakano is
known.

Definition 4.7 (cf. [16, Definition2.6], [18, Definition2.16]) Let (X , ωX ) be a Kähler mani-
fold and h be a singular Hermitian metric on E .

• We say that h is strictly Griffiths δωX -positive if for any open subset U and any Kähler
potential ϕ of ωX on U , heδϕ is Griffiths semi-positive on U .

• We say that h is strictly Nakano δωX -positive if for any open subset U and any Kähler
potential ϕ ofωX onU , heδϕ is Nakano semi-positive onU in the sense of Definition 4.6.

This definition for Nakano gives the following L2-estimate theorem and establishes the
singular-type Nakano vanishing theorem (Theorem 4.9) by using this L2-estimate theorem.

Theorem 4.8 (cf. [18, Theorem1.4]) Let (X , ωX ) be a projective manifold and a Hodge
metric on X and q be a positive integer. We assume that (E, h) is strictly Nakano δωX -
positive in the sense of Definition 4.7 on X. Then for any ∂-closed f ∈ L2

n,q(X , E, h, ωX )

there exists u ∈ L2
n,q−1(X , E, h, ωX ) satisfies ∂u = f and

∫
X

|u|2h,ωX
dVωX ≤ 1

δq

∫
X

| f |2h,ωX
dVωX .

Theorem 4.9 (cf. [18, Theorem1.5]) Let (X , ωX ) be a projective manifold and a Hodge met-
ric on X. We assume that (E, h) is strictly Nakano δωX -positive in the sense of Definition 4.7
on X. Then the q-th cohomology group of X with coefficients in the sheaf of germs of holo-
morphic sections of K X ⊗ E (h) vanishes for q > 0:

Hq(X , K X ⊗ E (h)) = 0,

where E (h) is the sheaf of germs of locally square integrable holomorphic sections of E with
respect to h.
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Here, from the above discussion we consider dual Nakano positivity using L2-estimates
and its relation to Definition 4.5. For convenience, we say that h is L2-type dual Nakano
semi -positive if h is a Griffiths semi-positive singular Hermitian metric and has the following
L2-estimates condition (= the singular case of condition (2) in Proposition 3.9):

For any Stein coordinate S such that E |S is trivial, any Kähler metric ωS on S, any smooth
strictly plurisubharmonic function ψ on S, any positive integer p ∈ {1, . . . , n} and any
∂-closed f ∈ L2

p,n(S, E, he−ψ, ωS) there exists u ∈ L2
p,n−1(S, E, he−ψ, ωS) satisfying

∂u = f and ∫
S
|u|2h,ωS

e−ψdVωS ≤
∫

S
〈B−1

ψ,ωS
f , f 〉h,ωS e−ψdVωS ,

where Bψ,ωS = [i∂∂ψ ⊗ idE ,
ωS ]. Here we assume that the right-hand side is finite.
Then we obtain the following proposition that the natural Definition 4.5 satisfies the above

condition analogous to Definition 4.6.

Proposition 4.10 Assume that a singular Hermitian metric h on E is dual Nakano semi-
positive. Then h is L2-type dual Nakano semi-positive.

This proof is in the next section. The above discussion of Nakano semi-positivity and this
proposition show the usefulness of Definition 4.5. From Proposition 3.9, this L2-estimates
condition can be considered a natural extension of dual Nakano semi-positivity to singular
Hermitian metrics and coincides with the usual definition if h is smooth.

Using Definition 4.7 as a reference, we introduce a definition of strictly positivity for dual
Nakano as follows.

Definition 4.11 Let (X , ωX ) be a Kähler manifold and h be a singular Hermitian metric on
E . We say that h is strictly dual Nakano δωX -positive if for any open subsetU and any Kähler
potential ϕ of ωX on U , heδϕ is dual Nakano semi-positive on U .

By using this definition, we get the following L2-estimate theorem which is an extension
of Theorem 2.1 to holomorphic vector bundles.

Theorem 4.12 Let (X , ωX ) be a projective manifold and a Hodge metric on X and p be a
positive integer. We assume that (E, h) is strictly dual Nakano δωX -positive on X. Then for
any ∂-closed f ∈ L2

p,n(X , E, h, ωX ) there exists u ∈ L2
p,n−1(X , E, h, ωX ) satisfies ∂u = f

and ∫
X

|u|2h,ωX
dVωX ≤ 1

δ p

∫
X

| f |2h,ωX
dVωX .

Proof There exists an ample divisor D on X with respect to the Hodge class {ωX }. Then
SD := X \ D is Stein and ωX has a Kähler potential ϕ on SD . And there exists a hypersurface
H on SD such that S := SD \ H is also Stein and that E |S is trivial by Stein-ness of SD .

Then we have that

〈Bδϕ,ωX f , f 〉h,ωX = δ p| f |2h,ωX
, 〈B−1

δϕ,ωX
f , f 〉h,ωX = 1

δ p
| f |2h,ωX

.

From Definition 4.11 and Proposition 4.10, for any smooth strictly plurisubharmonic
function ψ on S, there exists u ∈ L2

p,n−1(S, E, heδϕ−ψ, ωX ) such that ∂u = f and
∫

S
|u|2h,ωX

eδϕ−ψdVωX ≤
∫

S
〈B−1

δϕ,ωX
f , f 〉h,ωX eδϕ−ψdVωX
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if the right-hand side is finite. Taking ψ = δϕ, we get a solution u ∈ L2
p,n−1(S, E, h, ωX )

of ∂u = f such that∫
S
|u|2h,ωX

dVωX ≤
∫

S
〈B−1

δϕ,ωX
f , f 〉h,ωX dVωX = 1

δ p

∫
S
| f |2h,ωX

dVωX

≤ 1

δ p

∫
X

| f |2h,ωX
dVωX < +∞.

Letting u = 0 on X \ S, we have that u ∈ L2
p,n−1(X , E, h, ωX ), ∂u = f on X and

∫
X

|u|2h,ωX
dVωX ≤ 1

δ p

∫
X

| f |2h,ωX
dVωX ,

from Lemma 2.7. ��

5 Applications and proof of Proposition 4.10

In this section, as applications of Theorem 3.8, we introduce a property necessary for proofs
of Proposition 4.10 and Theorem 6.1 that the (n, q) and (p, n)-L2-estimate condition is pre-
servedwith respect to increasing sequences andwe prove Proposition 4.10. This phenomenon
is first mentioned in [17] as an extension of the properties seen in plurisubharmonic functions.
After that, it is extended to the case of singular Nakano semi-positivity in [18], and then to
the case of the (n, q) and (p, n)-L2-estimate condition in [29].

Proposition 5.1 (cf. [18, Proposition6.1])Let h be a singular Hermitian metric on E. Assume
that there exists a sequence of smooth Nakano semi-positive metrics (hν)ν∈N increasing to
h pointwise. Then h is Nakano semi-positive in the sense of Definition 4.6, (i.e. L2-type).

Here, more general versions of Proposition 5.1 are obtained in [24].

Proposition 5.2 (cf. [29, Corollary5.7]) Let h be a singular Hermitian metric on E. Assume
that there exists a sequence of smooth dual Nakano semi-positive metrics (hν)ν∈N increasing
to h pointwise. Then h is L2-type dual Nakano semi-positive.

By using this proposition, we prove Proposition 4.10.

Proof of Proposition 4.10 Let S be a Stein coordinate such that E |S is trivial. From Propo-
sition 5.2, it is sufficient to show that there exists a sequence of smooth dual Nakano
semi-positive metrics (hν)ν∈N over any relatively compact subset of S increasing to h point-
wise.

Here, h∗ is Nakano semi-negative singular Hermitian metric on E∗ over S. We define a
sequence of smooth Hermitian metrics (h∗

ν)ν∈N approximating h∗ by a convolution of h∗
with an approximate identity. In other words, let h∗

ν := h∗ ∗ ρν where ρν is an approximate
identity, i.e.ρ ∈ D(S) with ρ ≥ 0, ρ(z) = ρ(|z|), ∫

ρ = 1 and ρν(z) = νnρ(νz). From
Griffiths semi-negativity of h∗, each h∗

ν is Griffiths semi-negative and (h∗
ν)ν∈N is decreasing

to h∗ pointwise (cf. [4, Proposition3.1], [27, Proposition1.3]).
Finally, we show that h∗

ν is Nakano semi-negative (cf. [27]). For any n-tuple of holomor-
phic sections u = (u1, . . . , un) of E , we have locally that

(u j , uk)h∗
ν
(z) =

∫
(u j , uk)h∗

w
(z)ρν(w)dVw,
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where h∗
w(z) := h∗(z − w) and that

T
h∗

ν
u (z) =

∫
T

h∗
w

u (z)ρν(w)dVw.

By Nakano semi-negativity of h∗
w, for any test form φ ∈ D(S) we have that

i∂∂T
h∗

ν
u (φ) =

∫
φi∂∂T

h∗
ν

u =
∫

T
h∗

ν
u ∧ i∂∂φ

=
∫

z

{∫
w

T
h∗

w
u (z)ρν(w)dVw

}
∧ i∂∂φ

=
∫

w

{∫
z

T
h∗

w
u (z) ∧ i∂∂φ

}
ρν(w)dVw

=
∫

i∂∂T
h∗

w
u (φ)ρν(w)dVw ≥ 0,

where i∂∂T
h∗

w
u (φ) ≥ 0. Hence, T

h∗
ν

u is plurisubharmonic i.e. h∗
ν ≤Nak 0 and we let hν :=

(h∗
ν)

∗ then (hν)ν∈N is a sequence of smooth dual Nakano semi-positive metrics satisfying
the necessary conditions. ��

Here, for convenience, we also introduce the following notion for strictly dual Nakano
positivity using L2-estimates. Let (X , ωX ) be a Kähler manifold, we say that h is L2-type
strictly dual Nakano δω-positive if for any open subset U and any Kähler potential ϕ of ωX

on U , heδϕ is L2-type dual Nakano semi-positive on U .
From Proposition 4.10, we immediately obtain the following two facts:

• LetωX be a Kähler metric on X and h be a singular Hermitian metric on E . If h is strictly
dual Nakano δωX -positive then h is L2-type strictly dual Nakano δωX -positive.

• Theorem 4.12 holds under the weaker assumption that h is L2-type strictly dual Nakano
δωX -positive from its proof.

Finally, using these two propositions, we obtain the following two theorems which is a
generalization of Demailly–Skoda type theorem (see [12], [19, Theorem 3.3]). These theo-
rems were shown in [18] up to the Nakano (semi-)positive case, and can be shown for the
dual Nakano (semi-)positive case in almost the same way using Proposition 5.2.

Theorem 5.3 Let h be a singular Hermitian metric on E. If h is Griffiths semi-positive then
(E ⊗ det E, h ⊗ det h) is Nakano semi-positive in the sense of Definition 4.6 (i.e. L2-type)
and L2-type dual Nakano semi-positive.

Theorem 5.4 Let ωX be a Kähler metric on X and h be a singular Hermitian metric on
E. If h is strictly Griffiths δωX -positive then (E ⊗ det E, h ⊗ det h) is strictly Nakano (r +
1)δωX -positive in the sense of Definition 4.7 (i.e. L2-type) and L2-type strictly dual Nakano
(r + 1)δωX -positive.

6 Proofs of Theorem 1.3 and 1.2

In this section, we get the proofs of Theorem 1.2 and 1.3. First, we prove the following
theorem and corollary, which is an extension of Theorem 2.9 to holomorphic vector bundles,
to show these theorems.
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Theorem 6.1 Let X be a complex manifold and E be a holomorphic vector bundle over X
equipped with a singular Hermitian metric h. We assume that h is Griffiths semi-positive on
X. Then for any x0 ∈ X, there exist an open neighborhood U of x0 and a Kähler metric ω

on U satisfying that for any ∂-closed f ∈ L2
p,q(U , E ⊗ det E, h ⊗ det h, ω), there exists

u ∈ L2
p,q−1(U , E ⊗ det E, h ⊗ det h, ω) such that ∂u = f .

Proof For any x0 ∈ X , there exist a bounded Stein neighborhood U of x0 such that E |U and
TU are trivial and a sequence of smooth Griffiths positive metrics (hν)ν∈N on U increasing
to h pointwise (see [4, Proposition 3.1], [27]). Here, (E ⊗ det E, hν ⊗ det hν) is Nakano
positive and (E ⊗ det E, h ⊗ det h) is Nakano semi-positive in the sense of Definition 4.6 by
Proposition 5.1. We fix a bounded Kähler potential ψ of ω on U and define the trivial vector
bundle F := E ⊗det E ⊗
n−pTU over U , where 
p,q T ∗

U ⊗ E ⊗det E ∼= 
n,q T ∗
U ⊗ F . Let

IT p
U
be a trivial Hermitian metric and hT p

U
:= IT p

U
e−ψ be a smooth Nakano positive metric

on a trivial vector bundle 
n−pTU .
Define a singularHermitianmetrichF := h⊗det h⊗hT p

U
on trivial vector bundle F overU .

Then we have that (F, hF ) is strictly Nakano 1ω-positive on U in the sense of Definition 4.7.
This is enough to show that for any Kähler potential ϕ ofω, hF eϕ is Nakano semi-positive on
U in the sense of Definition 4.6. Let hF,ν := hν ⊗det hν ⊗hT p

U
be a smooth Hermitian metric

on F then hF,νeϕ is Nakano semi-positive. In fact, from hF,νeϕ = hν ⊗ det hν ⊗ IT p
U

e−ψ+ϕ

and Nakano positivity of hν ⊗ det hν , we get

i�F,hF,νeϕ = i�E⊗det E,hν⊗det hν ⊗ id
n−p TU + i∂∂(ψ − ϕ) ⊗ idF

= i�E⊗det E,hν⊗det hν ⊗ id
n−p TU ≥Nak 0.

Therefore (hF,νeϕ)ν∈N is a sequence of smoothNakano semi-positivemetric onU increasing
to hF eϕ . From Proposition 5.1, we have that hF eϕ is Nakano semi-positive onU in the sense
of Definition 4.6.

For any (p, q)-form v with values in E ⊗det E , the form v is considered (n, q)-form with
values in F and we have that |v|2hF ,ω = |v|2h⊗det h,ωe−ψ . In fact, we can write

ω =
∑

dz j ∧ dz j ,

v =
∑

vI JλdzI ∧ dz J ⊗ eλ ∈ 
p,q T ∗
U ⊗ E ⊗ det E

=
∑

vI JλdzN ∧ dz J ⊗ ∂

∂zN\I
⊗ eλ ∈ 
n,q T ∗

U ⊗ 
n−pTU ⊗ E ⊗ det E

∼= 
n,q T ∗
U ⊗ F,

at any fixed point, where (e j )1≤ j≤r is an orthonormal basis of E ⊗ det E . Then we get

|v|2hF ,ω = |v|2h⊗det h⊗I
T

p
U

,ωe−ψ =
∑

vI JλvK Jμ(h ⊗ det h)λμδN\I ,N\K e−ψ

=
∑

vI Jλv I Jμ(h ⊗ det h)λμe−ψ = |v|2h⊗det h,ωe−ψ,

where δI K = � jδi j k j is multi-Kronecker’s delta.

By using the boundedness of ψ on U , for any ∂-closed f ∈ L2
p,q(U , E ⊗ det E, h ⊗

det h, ω), we have that∫
U

| f |2hF ,ωdVω =
∫

U
| f |2h⊗det h,ωe−ψdVω ≤ sup

U
e−ψ

∫
U

| f |2h⊗det h,ωdVω < +∞,
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i.e. f ∈ L2
n,q(U , F, hF , ω), where supU e−ψ < +∞. Therefore, from strictly Nakano

1ω-positivity of (F, hF ) in the sense of Definition 4.7 and Theorem 4.8, there exists u ∈
L2

n,q−1(U , F, hF , ω) such that ∂u = f and
∫

U
|u|2hF ,ωdVω ≤ 1

q

∫
U

| f |2hF ,ωdVω < +∞.

Repeating the above argument, we have that

+∞ >

∫
U

|u|2hF ,ωdVω =
∫

U
|u|2h⊗det h,ωe−ψdVω ≥ inf

U
e−ψ

∫
U

|u|2h⊗det h,ωdVω,

i.e. u ∈ L2
p,q−1(U , E ⊗ det E, h ⊗ det h, ω) and the following L2-estimate

∫
U

|u|2h⊗det h,ωdVω ≤ 1

q

supU e−ψ

infU e−ψ

∫
U

| f |2h⊗det h,ωdVω,

where the right-hand side is finite. ��
Corollary 6.2 Let X be a complex manifold and E be a holomorphic vector bundle over X
equipped with a singular Hermitian metric h. We assume that h is Griffiths semi-positive on
X and that det h is bounded on X. Then for any x0 ∈ X, there exist an open neighborhood
U of x0 and a Kähler metric ω on U satisfying that for any ∂-closed f ∈ L2

p,q(U , E, h, ω),

there exists u ∈ L2
p,q−1(U , E, h, ω) such that ∂u = f .

Proof For any x0, there exists a bounded Stein neighborhood U of x0 such that E |U is
trivial then E ⊗ det E |U ∼= E |U . By the boundedness of det h on U , for any ∂-closed
f ∈ L2

p,q(U , E, h, ω) we have that
∫

U
| f |2h⊗det h,ωdVω =

∫
U

| f |2h,ωdet h dVω ≤ sup
U

det h
∫

U
| f |2h,ωdVω < +∞,

i.e. f ∈ L2
p,q(U , E ⊗ det E, h ⊗ det h, ω).

From Theorem 6.1, there exists u ∈ L2
p,q−1(U , E ⊗det E, h ⊗det h, ω) satisfies ∂u = f .

Then we have that infU det h > 0 and that

inf
U

det h
∫

U
|u|2h,ωdVω ≤

∫
U

|u|2h,ωdet h dVω =
∫

U
|u|2h⊗det h,ωdVω < +∞,

i.e. u ∈ L2
p,q−1(U , E, h, ω). ��

Finally, we prove Theorems 1.2 and 1.3 by using the above result and the following
proposition. For singular Hermitian metrics h on E , we define the subsheaf L p,q

E,h of germs

of (p, q)-forms u with values in E and with measurable coefficients such that both |u|2h and
|∂u|2h are locally integrable.

Proof of Theorem 1.3 There exist a Hodge metric γX and a positive number c > 0 such that
ωX ≥ cγX on X . Since Griffiths positivity is local property, h is strictly Griffiths cδγX -
positive. For any open subset U and any Kähler potential ψ of γX on U , we prove that hecδψ

is Griffiths semi-positive on U . It is known that this is equivalent to log |u|2
h∗e−cδψ being

plurisubharmonic for any local holomorphic section u ∈ O(E∗) (see [27]). Here, for any
x0 ∈ U and any ball neighborhood B of x0 such that B ⊂ U , there is a Kähler potential
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ϕ of ωX on B. Then ϕ − cψ is plurisubharmonic on B. By the assumption, we have that
log |u|2

h∗e−δϕ is plurisubharmonic for any u ∈ O(E∗)x0 . From the inequality

i∂∂ log |u|2h∗e−cδψ = i∂∂ log |u|2h∗e−δϕ+δ(ϕ−cψ) = i∂∂ log |u|2h∗e−δϕ + δi∂∂(ϕ − cψ) ≥ 0,

the function log |u|2
h∗e−cδψ is plurisubharmonic.

By Theorem 4.8 and 5.4, we obtain the cohomology vanishing for (n, q)-forms, i.e.
Hq(X , K X ⊗ E (h ⊗ det h)) = 0 for q > 0, already known (see [18, Theorem1.6]).

We consider the following sheaves sequence:

0 ker ∂0 ↪→ L
p,0

E⊗det E,h⊗det h

∂0
L

p,1
E⊗det E,h⊗det h

∂1 · · · ∂n−1
L

p,n
E⊗det E,h⊗det h 0.

By Theorem 6.1, we have that the above sheaves sequence is exact.
From Lemma 2.8, the kernel of ∂0 consists of all germs of holomorphic (p, 0)-forms

with values in E ⊗ det E which satisfy the integrability condition and we have that ker ∂0 =
�

p
X ⊗ E (h ⊗ det h). In fact, for any locally open subset U ⊂ C

n we obtain

f ∈ ker ∂0(U ) ⇐⇒ f =
∑

f I dzI ∈ H0(U ,�
p
X ⊗ E ⊗ det E) such that∫

U
| f |2h⊗det h,ωdVω =

∑
I

∫
U

| f I |2h⊗det hdVω < +∞.

Therefore any f I ∈ H0(U , E ⊗ det E) satisfy the condition f I ∈ E (h ⊗ det h)(U ).
From the acyclicity of each L

p,q
E⊗det E,h⊗det h , we have that

Hq(X ,�
p
X ⊗ E (h ⊗ det h)) ∼= Hq(�(X ,L

p,•
E⊗det E,h⊗det h)).

By Theorem 4.12 and 5.4, we get Hn(�(X ,L
p,•

E⊗det E,h⊗det h)) = 0. ��

Proof of Theorem 1.2 We consider the following sheaves sequence:

0 ker ∂0 ↪→ L
p,0

E,h
∂0

L
p,1

E,h
∂1 · · · ∂n−1

L
p,n

E,h 0.

By Corollary 6.2, we have that the above sheaves sequence is exact.
Locally, we see h = det h · ĥ∗ where ĥ∗ is the adjugate matrix of h∗. From Griffiths

semi-negativity of h∗, each element of ĥ∗ is locally bounded [25, Lemma 2.2.4]. From the
assumption det h is bounded, we get E (h) = O(E).

Repeating the above argument, we have that ker ∂0 = �
p
X ⊗ E (h) = �

p
X ⊗ O(E).

From the acyclicity of each L
p,q

E,h , we have that Hq(X ,�
p
X ⊗ E) ∼= Hq(�(X ,L

p,•
E,h )). By

Theorem 4.12, we have that Hn(�(X ,L
p,•

E,h )) = 0. ��

Remark 6.3 Since Theorem 4.12 holds, Theorem 1.2 also holds under the weaker assumption
that h is L2-type strictly dual Nakano δωX -positive.
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4. Berndtsson, B., Păun, M.: Bergman kernels and the pseudoeffectivity of relative canonical bundles. Duke
Math. J. 145(2), 341–378 (2008)

5. de Cataldo, M.A.A.: Singular Hermitian metrics on vector bundles. J. Reine Angew. Math. 502, 93–122
(1998)

6. Demailly, J.P.: Estimations L2 pour l’opérateur ∂ d’un fibré vectoriel holomorphe semi-positif au dessus
d’une variété Kählérienne complète. Ann. Sci. Ec. Norm. Sup. 15, 457–511 (1982)

7. Demailly, J. P.: Singular Hermitianmetrics on positive line bundles. In: Hulek, K., Peternell, T., Schneider,
M., Schreyer, F. (eds) Proceedings of Conference on Complex Algebraic Varieties (Bayreuth, April 2–6,
1990). Lecture Notes in Mathematics, Vol. 1507. Springer, Berlin (1992)

8. Demailly, J.P.: A numerical criterion for very ample line bundles. J. Differ. Geom. 37, 323–374 (1993)
9. Demailly, J.P.: Analytic Methods in Algebraic Geometry, Surveys ofModernMathematics, vol. 1. Higher

Education Press, Beijing (2010)
10. Demailly, J.P.:Complex analytic anddifferential geometry. https://www-fourier.ujf-grenoble.fr/demailly/

manuscripts/agbook.pdf
11. Demailly, J. P.: Hermitian-Yang-Mills approach to the conjecture of Griffiths on the positivity of ample

vector bundles. arXiv:2002.02677v4
12. Demailly, J.P., Skoda, H.: Relations entre les notions de positivité. In: Griffiths, P.A., de Nakano, S.,

Séminaire, P., Lelong, H. (eds.) Skoda (Analyse), Année 1978/79, Lecture Notes in Mathematics, vol.
822, pp. 304–309. Springer, Berlin (1980)

13. Deng, F., Ning, J.,Wang, Z., Zhou, X.: Positivity of holomorphic vector bundles in terms of L p-conditions
of ∂ . Math. Ann. (2022). https://doi.org/10.1007/s00208-021-02348-7

14. Hörmander, L.: An Introduction to Complex Analysis in Several Variables, NorthHolland Mathematical
Library, vol. 7, 3rd edn. North-Holland Publishing Co., Amsterdam (1990)

15. Hosono, G., Inayama, T.: A converse of Hörmander’s L2-estimate and new positivity notions for vector
bundles. Sci. China Math. 64, 1745–1756 (2021). https://doi.org/10.1007/s11425-019-1654-9

16. Inayama, T.: L2-estimates and vanishing theorems for holomorphic vector bundles equippedwith singular
Hermitian metrics. Mich. Math. J. 69, 79–96 (2020)

17. Inayama, T.: From Hörmander’s L2-estimates to partial positivity. Compt. Rendus Math. Tome 359(2),
169–179 (2021)

18. Inayama, T.: Nakano positivity of singularHermitianmetrics and vanishing theorems ofDemailly–Nadel–
Nakano type. Algebr. Geometry 9(1), 69–92 (2022)

19. Liu, K., Sun, X., Yang, X.: Positivity and vanishing theorems for ample vector bundles. J. Algebr. Geom.
22(2), 303–331 (2013)

20. Mourougane, C.: Versions kählériennes du théorème d’annulation de Bogomolov. Collect.Math. 49(2–3),
433–445 (1998)

21. Nadel, A.M.: Multiplier ideal sheaves and Kähler–Einstein metrics of positive scalar curvature. Proc. Nat.
Acad. Sci. USA 86, 7299–7300 (1989)

22. Nadel, A.M.: Multiplier ideal sheaves and Kähler–Einstein metrics of positive scalar curvature. Ann.
Math. 132, 549–596 (1990)

23. Nakano, S.: On complex analytic vector bundles. J. Math. Soc. Jpn. 7, 1–12 (1955)

123

http://creativecommons.org/licenses/by/4.0/
https://www-fourier.ujf-grenoble.fr/demailly/manuscripts/agbook.pdf
https://www-fourier.ujf-grenoble.fr/demailly/manuscripts/agbook.pdf
http://arxiv.org/abs/2002.02677v4
https://doi.org/10.1007/s00208-021-02348-7
https://doi.org/10.1007/s11425-019-1654-9


Bogomolov–Sommese type vanishing for holomorphic vector bundles Page 23 of 23 92

24. Liu, Z., Yang, H., Zhou, X.Y.: On the multiplier submodule sheaves associated to singular Nakano semi-
positive metrics. arXiv:2111.13452
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