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Abstract
Let μ be a positive locally finite Borel measure on R

n that is doubling, and define the
homogeneous Ws (μ)-Sobolev norm squared ‖ f ‖2Ws (μ) of a function f ∈ L2

loc (μ) by

∫
Rn

∫
Rn

(
f (x) − f (y)

|x − y|s
)2 dμ (x) dμ (y)∣∣∣B

(
x+y
2 ,

|x−y|
2

)∣∣∣
μ

,

and denote by Ws (μ) the corresponding Hilbert space completion (when μ is Lebesgue
measure, this is the familiar Sobolev space onR

n). We prove in particular that for 0 ≤ α < n,
and σ and ω doubling measures on R

n , there is a positive constant θ such for 0 < s < θ ,
any smooth α-fractional convolution singular integral T α with homogeneous kernel that is
nonvanishing in some coordinate direction, is bounded fromWs (σ ) to Ws (ω) if and only if
the classical fractional Muckenhoupt condition on the measure pair holds,

Aα
2 ≡ sup

Q∈Qn

|Q|ω |Q|σ
|Q|2(1− α

n )
< ∞,

as well as the Sobolev 1-testing and 1∗-testing conditions for the operator T α ,
∥∥T α

σ 1I
∥∥
Ws (ω)

≤ TT α (σ, ω)
√|I |σ � (I )−s , I ∈ Qn,∥∥T α,∗

ω 1I
∥∥
Ws (σ )∗ ≤ TT α,∗ (ω, σ )

√|I |ω� (I )s , I ∈ Qn,
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taken over the family of indicator test functions {1I }I∈Pn . Here Qn is the collection of all
cubes with sides parallel to the coordinate axes, and Ws (μ)∗ denotes the dual of Ws (μ)

determined by the usual L2 (μ) bilinear pairing, which we identify with a dyadic Sobolev
spaceW−s

dyad (μ) of negative order. The sufficiency assertion persists formore general singular
integral operators T α .
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1 Introduction

The Nazarov–Treil–Volberg T 1 conjecture on the boundedness of the Hilbert transform from
one weighted space L2 (σ ) to another L2 (ω), affirmatively in the two part paper [9, 10], with
the case of common point masses included in [7]. Since then there have been a number
of generalizations of boundedness of Calderón–Zygmund operators from one weighted L2

space to another, both to higher dimensional Euclidean spaces (see e.g. [10, 11, 17]), and also
to spaces of homogeneous type (see e.g. [4]). In addition there have been some generalizations
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to Sobolev spaces in place of L2 spaces, but only in the setting of a single weight (see e.g.
[3, 7]).

The purpose of this paper is to prove a two weight T 1 theorem onweighted Sobolev spaces
for general smooth α-fractional singular integrals on R

n , but with doubling measures.1 In
order to state our theorem, we need a number of definitions, some of which are recalled and
explained in detail further below. Letμ be a positive locally finite Borel measure onR

n that is

doubling, letD be a dyadic grid on R
n , let κ ∈ N and let

{
�μ

Q;κ
}
Q∈D be the set of weighted

Alpert projections on L2 (μ) (see [14]). When κ = 1, these are the familiar weighted Haar
projections �μ

Q = �μ

Q;1.

Definition 1 Let μ be a doubling measure on R
n . Given s ∈ R, we define the D-dyadic

homogeneous Ws
D;κ (μ)-Sobolev norm of a function f ∈ L2

loc (μ) by

‖ f ‖2Ws
D;κ (μ) ≡

∑
Q∈D

� (Q)−2s
∥∥∥�μ

Q;κ f
∥∥∥2
L2(μ)

and we denote by Ws
D;κ (μ) the corresponding Hilbert space completion2 of f ∈ L2

loc (μ)

with

‖ f ‖Ws
D;κ (μ) < ∞.

Note that W 0
D;κ (μ) = L2 (μ). We will show below that Ws

D;κ (μ) = Ws
D′;κ ′ (μ) for all

s ∈ R with |s| sufficiently small, for all κ, κ ′ ≥ 1, and for all dyadic gridsD andD′. Thus for
a sufficiently small real s depending on the doubling measure μ, there is essentially just one
weighted ‘dyadic’ Sobolev space of order s, which we will denote by Ws

dyad (μ). Moreover,
for s > 0 and small enough and μ doubling, there is a more familiar equivalent ‘continuous’
norm,

‖ f ‖Ws (μ) =
√√√√√
∫

Rn

∫
Rn

(
f (x) − f (y)

|x − y|s
)2 dμ (x) dμ (y)∣∣∣B

(
x+y
2 ,

|x−y|
2

)∣∣∣
μ

. (1.1)

We also show that the dual spacesWs
D;κ (μ)∗ under the L2 (μ) pairing are given byW−s

D;κ (μ)

for all grids D and integers κ . Thus when μ is doubling, we can identify Ws (μ)∗ with any
of the spacesW−s

D;κ (μ) for |s| sufficiently small, and it will be convenient to denoteWs (μ)∗
by W−s (μ), even though the above formula for ‖ f ‖W−s (μ) diverges when s ≥ 0.

Finally, we note that without the doubling hypothesis on μ, we in general need to include
additional Haar projections

{
E

μ
T

}
T∈T onto one-dimensional spaces of constant functions

on certain ‘tops’ T of the grid D, where a top is the union of a maximal tower in D (see
[2]). Without these additional projections, we may not recover all of L2 (μ) in general, and
moreover, the spaces Ws

D;κ (μ) defined above may actually depend on the dyadic grid D.
For example, if dμ (x) = 1[−1,1) (x) dx and f (x) = 1[0,1) (x), the reader can easily check

1 Weighted Sobolev spaces are not canonically defined for general weights, and doubling is a convenient
hypothesis that gives equivalence of the various definitions.
2 For general measures, the functional ‖‖Ws

D;κ (μ) may only be a seminorm, but this is avoided for doubling
measures.
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81 Page 4 of 74 E. T. Sawyer, B. D. Wick

that the functional ‖ f ‖Ws
D;1(μ) vanishes when D is the standard dyadic grid, but is positive

when D is any grid containing [−1, 1).3

Note that we will not use the Hilbert space duality (that identifies the dual of a Hilbert
space with itself) to analyze the two weight boundedness of T α

σ : Ws
dyad (σ ) → Ws

dyad (ω),

but rather we will use the L2 (ω) and L2 (σ ) pairings in which case the dual of Ws
dyad (μ)

is identified with W−s
dyad (μ) as above. The reason for this is that the weighted Alpert

projections
{
�μ

Q;κ
}
Q∈D satisfy telescoping identities, while the orthogonal projections{

� (Q)s �μ

Q;κ
}
Q∈D do not.

Denote by �dyad the collection of all dyadic grids in R
n , and letQn denote the collection

of all cubes in R
n having sides parallel to the coordinate axes. A positive locally finite Borel

measure μ on R
n is said to be doubling if there is a constant Cdoub, called the doubling

constant, such that

|2Q|μ ≤ Cdoub |Q|μ for all cubes Q ∈ Qn .

Finally, for 0 ≤ α < n we define a smooth α-fractional Calder ón–Zygmund kernel
K α(x, y) to be a function K α : R

n × R
n → R satisfying the following fractional size and

smoothness conditions∣∣∣∇ j
x K

α (x, y)
∣∣∣+
∣∣∣∇ j

y K
α (x, y)

∣∣∣ ≤ Cα, j |x − y|α− j−n , 0 ≤ j < ∞, (1.2)

and we denote by T α the associated α-fractional singular integral on R
n . We say that T α

σ ,
where T α

σ f ≡ T α ( f σ), is bounded fromWs
dyad (σ ) to Ws

dyad (ω) if for all admissible trun-

cations T̃ α we have∥∥T̃ α
σ f
∥∥
Ws

dyad(ω)
≤ NT α (σ, ω) ‖ f ‖Ws

dyad(σ ) , for all f ∈ Ws
dyad (σ ) .

HereNT α (σ, ω) denotes the best constant in these inequalities uniformly over all admissible
truncations of T α . See below for a precise definition of admissible truncations, as well as
the interpretation of the testing conditions appearing in the next theorem. The case s = 0 of
Theorem 2 is in [1].

Theorem 2 (T 1 for doubling measures) Let 0 ≤ α < n, and let T α denote a smooth α-
fractional singular integral on R

n. Let σ and ω be doubling Borel measures on R
n. Then

there is a positive constant θ , depending only on the doubling constants of σ and ω, such
that if 0 < s < θ , then T α

σ , where T α
σ f ≡ T α ( f σ), is bounded fromWs (σ ) to Ws (ω), i.e.∥∥T α

σ f
∥∥
Ws (ω)

≤ NT α ‖ f ‖Ws (σ ) , (1.3)

provided the classical fractional Muckenhoupt condition on the measure pair holds,

Aα
2 ≡ sup

Q∈Qn

|Q|ω |Q|σ
|Q|2(1− α

n )
< ∞,

as well as the Sobolev 1-testing and 1∗-testing conditions for the operator T α ,∥∥T α
σ 1I

∥∥
Ws (ω)

≤ TT α (σ, ω)
√|I |σ � (I )−s , I ∈ Qn,∥∥T α,∗

ω 1I
∥∥
W−s (σ )

≤ TT α,∗ (ω, σ )
√|I |ω� (I )s , I ∈ Qn,

3 Moreover, even taking into account the behaviour at infinity, one can show that ‖ f ‖Ws
D;1(μ) = 0 whenD

is the standard grid and s > 0.
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taken over the family of indicator test functions {1I }I∈Qn .
Conversely, the testing conditions are necessary for (1.3), and if in addtion T α is a smooth
convolution operator with homogeneous kernel that is nonvanishing in some coordinate
direction, then Aα

2 < ∞ whenever the two weight norm inequality (1.3) holds for some
s > 0.

Remark 3 One can weaken the smoothness assumption on the kernel K depending on the
doubling constants of the measures σ and ω, but we will not pursue this here. See [16] for
sharper assumptions in the L2 case.

Problem 4 T 1 theorems for Sobolev norms involving general measures, even for the Hilbert
transform on the line, remain open at this time.

The proof of Theorem 2 expands on that for L2 spaces with doubling measures using
weighted Alpert wavelets [1], but with a number of differences. For example:

(1) The map f → | f | fails to be bounded on W−s
dyad (ω) for s > 04, which gives rise to

significant obstacles in dealing with bilinear inequalities (using the L2 inner product as
a duality pairing) that require control of both T : Ws

dyad (σ ) → Ws
dyad (ω) and T ∗ :

W−s
dyad (ω) → W−s

dyad (σ ).
(2) As a consequence, we are no longer able to use Calderón–Zygmund decompositions and

Carleson embedding theorems that require use of the modulus | f | of a Sobolev function
f . Instead, we derive a stronger form of the pivotal condition, that permits a newCarleson
condition to circumvent these hurdles.

(3) The estimation of Sobolev norms in the paraproduct form requires the use both of Alpert
and Haar wavelets, in connection with the new Carleson condition. This in turn requires
the identification of different wavelet spaces.

(4) In Proposition 44, we extend the Intertwining Proposition from [16] to Sobolev spaces
using a new stronger form of the κ -pivotal condition, which also results in an overall
simplification of this proof.

(5) A power decay of doubling measures near zero sets of polynomials is needed to estimate
Sobolev norms of moduli of Alpert wavelets in Lemma 26 when s < 0, where the
logarithmic decay obtained in [16] is insufficient.

(6) Finally, we prove the comparability of the various Sobolev space norms for a fixed s and
doubling measure (the case s = 0 being trivial), including the familiar continuous norm
in (1.1) when s > 0. This equivalence is needed in particular to implement the good/bad
technology of Nazarov, Treil and Volberg.

2 Preliminaries: Sobolev spaces and doublingmeasures

Denote by Qn the collection of cubes in R
n having sides parallel to the coordinate axes. A

positive locally finite Borel measure μ on R
n is said to satisfy thedoubling condition if there

is a pair of constants (β, γ ) ∈ (0, 1)2, called doubling parameters, such that

|βQ|μ ≥ γ |Q|μ for all cubes Q ∈ Qn, (2.1)

4 For example, if dμ = dx and f = ∑2N
k=1 (−1)k 1[k−1,k), then ‖ f ‖2

W−s
dyad

≈ N , while ‖| f |‖2
W−s
dyad

≈
N1+2 s .
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81 Page 6 of 74 E. T. Sawyer, B. D. Wick

and the reverse doubling condition if there is a pair of constants (β, γ ) ∈ (0, 1)2, called
reverse doubling parameters, such that

|βQ|μ ≤ γ |Q|μ for all cubes Q ∈ Qn . (2.2)

Note that the inequality in (2.2) has been reversed from that in the definition of the doubling
condition in (2.1). A familiar equivalent reformulation of (2.1) is that there is a positive
constant Cdoub, called the doubling constant, such that |2Q|μ ≤ Cdoub |Q|μ for all cubes
Q ∈ Qn . There is also a positive constant θdoubμ , called adoubling exponent, such that

sup
Q∈Qn

|sQ|μ
|Q|μ

≤ sθdoubμ , for all sufficiently large s > 0.

It is well known (see e.g. the introduction in [15]) that doubling implies reverse doubling,
and that μ is reverse doubling if and only if there exists a positive constant θ revμ , called a
reverse doubling exponent, such that

sup
Q∈Qn

|sQ|μ
|Q|μ ≤ sθ revμ , for all sufficiently small s > 0.

2.1 Decay of doublingmeasures near zero sets of polynomials

In order to deal with Sobolev norms and doubling measures, we will need the following
estimate on doubling measures of ‘halos’ of zero sets of normalized polynomials, which
follows the same plan of proof as in the case of boundaries of cubes proved in [16, Lemma
24]. We first recall a slight variant of a remark from [16].

For any polynomial P and cube Q, we say that P is Q-normalized if ‖P‖L∞(Q) = 1.

Remark 5 Since all norms on a finite dimensional vector space are equivalent, we have upon
rescaling the cube Q to the unit cube,

‖P‖L∞(Q) ≈ |P (0)| + √
n� (Q) ‖∇P‖L∞(Q) , deg P < κ, (2.3)

with implicit constants depending only on n and κ . In particular there is a positive constant
Kn,κ such that

√
n� (Q) ‖∇P‖L∞(Q) ≤ Kn,κ for all Q-normalized polynomials P . Then for

every Q -normalized polynomial P of degree less than κ , there is a ball B
(
y,

√
n

2Kn,κ
� (Q)

)
⊂

Q on which P is nonvanishing. Indeed, if there is no such ball, then

1 = ‖P‖L∞(Q) ≤
√
n

2Kn,κ

� (Q) ‖∇P‖L∞(Q) ≤ 1

2

is a contradiction.

Here is the result proved in [16, Lemma 24].

Lemma 6 Suppose μ is a doubling measure on R
n and that Q ∈ Qn. Then for 0 < δ < 1

we have

|Q \ (1 − δ) Q|μ ≤ C

ln 1
δ

|Q|μ .
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Wewill need to improve significantly on this as follows.Without loss of generality, suppose
that Q = [0, 1] × [0, 1] in the plane and dμ (x, y) = w (x, y) dxdy. Define W to be even
on [−1, 1] by

W (y) ≡
∫ 1

0
w (x, y) dx, 0 ≤ y ≤ 1.

and note that W (y) dy is a doubling measure on [0, 1], hence also reverse doubling with
exponent θ rev. Thus from the reverse doubling property applied to the subinterval [0, t] of
[−1, 1] we have that

∫ t

0
W (y) dy ≤ Ctθ

rev
∫ 1

−1
W (y) dy ≤ C ′tθ rev

∫ 1

0
W (y) dy,

which says that

|[0, 1] × [0, t]|μ =
∫ t

0
W (y) dy ≤ C ′tθ rev

∫ 1

0
W (y) dy = C ′tθ rev |[0, 1] × [0, 1]|μ .

(2.4)

This gives power decay instead of logarithmic decay, which will prove crucial below. The
next lemma is a generalization of [16, Lemma 24].

Lemma 7 Let κ ∈ N. Supposeμ is a doubling measure onR
n and that Q ∈ Qn. Let Z denote

the zero set of a Q-normalized polynomial P of degree less than κ , and for 0 < δ < 1, let

Zδ = {y ∈ R
n : |y − z| < δ for some z ∈ Z

}
denote the δ-halo of Z. Then for a positive constant Cn,κ depending only on n and κ , and
not on P itself, we have

|Q ∩ Zδ|μ ≤ Cn,κ

ln 1
δ

|Q|μ .

Proof Let δ = 2−m . Denote by C(m) (Q) the set of mth generation dyadic children of Q, so
that each I ∈ C(m) (Q) has side length � (I ) = 2−m� (Q), and define the collections

G(m) (Q) ≡
{
I ∈ C(m) (Q) : I ⊂ Q and ∂ I ∩ Z �= ∅

}
,

H(m) (Q) ≡
{
I ∈ C(m) (Q) : 3I ⊂ Q and ∂ (3I ) ∩ Z �= ∅

}
.

Then

Q ∩ Zδ =
⋃

I∈G(m)(Q)

I and Q \ Zδ =
·⋃m

k=2

⋃
I∈H(k)(Q)

I .

From Remark 5, we obtain that the the union
⋃

I∈H(k)(Q) RI contains Q∩ Zδ for k ≥ cm for
some c = cn,κ ∈ (0, 1) depending only on n and κ , and in particular independent ofm. Then
from the doubling condition we have |RI |μ ≤ DR |I |μ for all cubes I and some constant
DR , and so for k ≥ cm,

∣∣∣H(k) (Q)

∣∣∣
μ

=
∑

I∈H(k)(Q)

|I |μ ≥
∑

I∈H(k)(Q)

1

DR
|RI |μ = 1

DR

∫ ⎛
⎝ ∑

I∈H(k)(Q)

1RI

⎞
⎠ dμ
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81 Page 8 of 74 E. T. Sawyer, B. D. Wick

≥ 1

DR

∫ ⎛
⎝ ∑

I∈G(k)(Q)

1I

⎞
⎠ dμ = 1

DR

∣∣∣G(k) (Q)

∣∣∣
μ

≥ 1

DR

∣∣∣G(m) (Q)

∣∣∣
μ

= 1

DR
|Q ∩ Zδ|μ .

Thus we have

|Q|μ ≥
m∑

k=cm

∣∣∣H(k) (Q)

∣∣∣
μ

≥ m (1 − c)

DR
|Q ∩ Zδ|μ

which proves the lemma. ��

We can apply the method used in (2.4) to obtain a power decay instead of a logarithmic
decay.

Corollary 8 Let κ ∈ N. Suppose μ is a doubling measure on R
n and that Q ∈ Qn. Let Z

denote the zero set of a Q-normalized polynomial P of degree less than κ , and for 0 < δ < 1,
let Zδ denote the δ-halo of Z. Then for a positive constant Cn,κ depending only on n and κ ,
and not on P itself, and for some θ > 0, we have

|Q ∩ Zδ|μ ≤ Cn,κ δθ |Q|μ .

In particular this holds for Z = ∂Q, which is a finite union of zero sets of linear functions.

Proof Without loss of generality Q is the unit cube [0, 1]n . Define an even function w (t) on
[−1, 1], that is increasing on [0, 1], by the formula

w (t) ≡ |Zt |μ 0 ≤ t ≤ 1.

Since P is a Q-normalized polynomial of degree less than κ , there are positive constants
t0, c0,C0, A such that for every 0 < t < t0, there is a collection of cubes

{
Qt

i

}
i with

�
(
Qt

i

) = c0t,

1Zt (x) ≤
∑
i

1Qt
i
(x) ≤ A1Zt (x)

1Z2t (x) ≤
∑
i

1C0Qt
i
(x) ≤ A.

Thus we have

w (2t) ≤
∑
i

∣∣C0Q
t
i

∣∣
μ

≤
∑
i

Cdoub
∣∣Qt

i

∣∣
μ

≤ CdoubM |Zt |μ = CdoubAw (t) , 0 < t < t0,

and hence there is a doubling exponent θdoubw such that

w (st)

w (t)
≤ sθdoubw , for all sufficiently large s.

We claim w (t) also satisfies the reverse doubling condition

w (δ) ≤ Cδεw (1) , 0 < δ < t0.
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Indeed, let dμ ≡ dw
dt . Then assuming s ≥ 5 in the definition of θdoubw , we obtain for Q = [0, t]

that

|3Q \ Q|μ =
∑

I∈D: I⊂3Q\Q,�(I )=�(Q)

|I |μ ≥
∑

I∈D: I⊂3Q\Q,�(I )=�(Q)

5−θdoubμ |5I |μ

≥ (
3n − 1

)
5−θdoubμ |Q|μ

�⇒ |Q|μ = |3Q|μ − |3Q \ Q|μ ≤
(
1 − 3n − 1

5θdoubμ

)
|3Q|μ

which gives reverse doubling, and hence

|Q ∩ Zδ|μ =
∫ δ

0
w (t) dt ≤ Cδε |Q|μ , for 0 < δ < t0,

and trivially this is extended to δ < 1 by possibly increasing the constant C . ��

2.2 Weighted Alpert bases for L2 (�) and L∞ control of projections

The following theoremwas proved in [14], which establishes the existence ofAlpertwavelets,
for L2 (μ) in all dimensions, having the three important properties of orthogonality, telescop-
ing and moment vanishing. Since the statement is simplified for doubling measures, and this
is the only case considered in our main theorem, we restrict ourselves to this case here.

We first recall the basic construction of weighted Alpert wavelets in [14] restricted to
doubling measures. Let μ be a doubling measure on R

n , and fix κ ∈ N. For Q ∈ Qn , the
collection of cubes with sides parallel to the coordinate axes, denote by L2

Q;κ (μ) the finite

dimensional subspace of L2 (μ) that consists of linear combinations of the indicators of the
children C (Q) of Q multiplied by polynomials of degree less than κ , and such that the linear
combinations have vanishing μ-moments on the cube Q up to order κ − 1:

L2
Q;κ (μ) ≡

⎧⎨
⎩ f =

∑
Q′∈C(Q)

1Q′ pQ′;κ (x) :
∫
Q

f (x) xβdμ (x) = 0, for 0 ≤ |β| < κ

⎫⎬
⎭ ,

where pQ′;κ (x) =∑β∈Z
n+:|β|≤κ−1 aQ′;βxβ is a polynomial inR

n of degree less than κ . Here

xβ = xβ1
1 xβ2

2 ...xβn
n . Let dQ;κ ≡ dim L2

Q;κ (μ) be the dimension of the finite dimensional

linear space L2
Q;κ (μ).

Let D denote a dyadic grid on R
n and for Q ∈ D, let �μ

Q;κ denote orthogonal projection

onto the finite dimensional subspace L2
Q;κ (μ), and let E

μ

Q;κ denote orthogonal projection
onto the finite dimensional subspace

Pn
Q;κ (σ ) ≡ Span{1Qxβ : 0 ≤ |β| < κ}.

Theorem 9 (Weighted Alpert Bases) Let μ be a doubling measure on R
n, fix κ ∈ N, and fix

a dyadic grid D in R
n.

(1) Then
{
�μ

Q;κ
}
Q∈D is a complete set of orthogonal projections in L2 (μ) and

f =
∑
Q∈D

�μ

Q;κ f , f ∈ L2 (μ) , (2.5)
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81 Page 10 of 74 E. T. Sawyer, B. D. Wick

〈
�μ

P;κ f ,�μ

Q;κ f
〉
L2(μ)

= 0 for P �= Q,

where convergence in the first line holds both in L2 (μ) norm and pointwise μ-almost
everywhere.

(2) Moreover we have the telescoping identities

1Q
∑

I : Q�I⊂P

�μ

I ;κ = E
μ

Q;κ − 1QE
μ

P;κ for P, Q ∈ D with Q � P, (2.6)

(3) and the moment vanishing conditions∫
Rn

�μ

Q;κ f (x) xβdμ (x) = 0, for Q ∈ D, β ∈ Z
n+, 0 ≤ |β| < κ. (2.7)

We can fix an orthonormal basis
{
hμ,a
Q;κ
}
a∈�Q,n,κ

of L2
Q;κ (μ)where�Q,n,κ is a convenient

finite index set. Then {
hμ,a
Q;κ
}
a∈�Q,n,κ and Q∈D

is an orthonormal basis for L2 (μ). In particular we have

‖ f ‖2L2(μ)
=
∑
Q∈D

∥∥∥�μ

Q;κ f
∥∥∥2
L2(μ)

=
∑
Q∈D

∣∣ f̂ (Q)
∣∣2 ,

where f̂ (Q) =
{〈

f , hμ,a
Q;κ
〉
μ

}
a∈�Q,n,κ

and
∣∣ f̂ (Q)

∣∣2 ≡
∑

a∈�Q,n,κ

∣∣∣∣
〈
f , hμ,a

Q;κ
〉
μ

∣∣∣∣
2

.

In terms of the Alpert coefficient vectors f̂κ (I ) ≡
{〈

f , aμ

I ;κ, j

〉}κ

j=1
, we have for the special

case of a doubling measure μ (see [16, (4.7) on page 14]),
∣∣ f̂κ (I )

∣∣ =
∥∥∥�μ

I ;κ f
∥∥∥
L2(μ)

≤
∥∥∥�μ

I ;κ f
∥∥∥
L∞(μ)

√
|I |μ ≤ C

∥∥∥�μ

I ;κ f
∥∥∥
L2(μ)

= C
∣∣ f̂κ (I )

∣∣ ,
(2.8)

and in particular,
∥∥∥hμ,a

Q;κ
∥∥∥
L∞(μ)

≈ 1√|I |μ
, (2.9)

since �μ

I ;κh
μ,a
Q;κ = hμ,a

Q;κ .

Notation 10 For doubling measures μ, the cardinality of �Q,n,κ depends only on n and κ ,
which are usually known from context, and so we will simply write � when μ is doubling.

From now on, all measures considered will be assumed to doubling, and often without
explicit mention. We now inroduce Sobolev spaces defined by weighted Alpert projections
insteadofweightedHaar projections.We showbelow that these spaces are actually equivalent.
For convenience we repeat the definition of weighted Sobolev space used in this paper.

Definition 11 Given κ ∈ N and s ∈ R and D ∈ �dyad a dyadic grid, we define the κ-dyadic
homogeneous Ws

D;κ (μ)-Sobolev norm of a function f ∈ L2 (μ) by

‖ f ‖2Ws
D;κ (μ) ≡

∑
Q∈D

� (Q)−2s
∥∥∥�μ

Q;κ f
∥∥∥2
L2(μ)
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and we denote by Ws
D;κ (μ) the corresponding Hilbert space completion.

Lemma 12 The set
{
� (Q)s hμ,a

Q;κ
}

(Q,a)∈D×�
is an orthonormal basis for Ws

D;κ (μ), and thus

for any subset H of the dyadic grid D, we have,
∥∥∥∥∥∥

∑
(I ,a)∈H×�

cI ,a� (I )s hμ,a
I ;κ

∥∥∥∥∥∥
2

Ws
D;κ (μ)

=
∑

(I ,a)∈H×�

∣∣cI ,a∣∣2 . (2.10)

Proof We have〈
� (I )s hμ,a

I ;κ , � (J )s hμ,b
J ;κ
〉
Ws

D;κ (μ)
=
∑
Q∈D

� (Q)−2s
〈
�μ

Q;κ� (I )s hμ,a
I ;κ ,�μ

Q;κ� (J )s hμ,b
J ;κ
〉
L2(μ)

=
∑
Q∈D

� (Q)−2s � (I )s � (J )s
〈
�μ

Q;κh
μ,a
I ;κ ,�μ

Q;κh
μ,b
J ;κ
〉
L2(μ)

=
{
1 if I = J and a = b
0 if I �= J or a �= b

,

since�μ

Q;κh
μ,a
K ;κ vanishes ifQ �= K , and equalshμ,a

K ;κ ifQ = K . Thus
{
� (Q)s hμ,a

Q;κ
}

(Q,a)∈D×�

is an orthonormal basis and we conclude that (2.10) holds. ��

2.3 Equivalence of Sobolev spaces

In [23], Triebel defines the usual homogeneous unweighted Sobolev space Ws with norm
‖ f ‖Ws given by

‖ f ‖2Ws ≡
∫

Rn

∣∣∣(−�)
s
2 f (x)

∣∣∣2 dx =
∫

Rn

∣∣∣(|ξ |2) s2 f̂ (ξ)

∣∣∣2 dξ,

and the corresponding inhomogeneous versionwith norm squared
∫

Rn

∣∣∣(I − �)
s
2 f (x)

∣∣∣2 dx ,
which we will not consider here. Combining results of Triebel [23] with those of Seeger and
Ullrich [20] shows that

Lemma 13 ([23], [20])The following three statements are equivalent forμ equal to Lebesgue
measure and s ∈ R.

(1) Ws
dyad = Ws,

(2)
{
� (I )s h I

}
I∈D is an orthonormal basis for Ws,

(3) − 1
2 < s < 1

2 .

Here is the first step toward proving the equivalence of the different dyadic Sobolev spaces
over all grids D and integers κ ∈ N, which in particular is used to implement the good/bad
cube technology of Nazarov, Treil and Volberg. The reader can notice that the doubling
property of the measure μ is not explicitly used in this argument, rather only in the definition
of the Sobolev spaces.

Lemma 14 Let μ be a doubling measure on R
n and let D be a dyadic grid on R

n. Then for
κ1, κ2 ∈ N and s ∈ R, we have,

Ws
D;κ1 (μ) = Ws

D;κ2 (μ) ,
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81 Page 12 of 74 E. T. Sawyer, B. D. Wick

with equivalence of norms.

Proof We first claim that for s < 0,

Ws
D;κ2 (μ) ⊂ Ws

D;κ1 (μ) for 1 ≤ κ1 ≤ κ2, (2.11)

which by duality gives for s > 0,

Ws
D;κ1 (μ) ⊂ Ws

D;κ2 (μ) for s > 0 and 1 ≤ κ1 ≤ κ2. (2.12)

Indeed, for any subset H ⊂ D, we have
∥∥∥∥∥∥

∑
I∈H; a∈�I ,n,κ

cI ,ah
μ,a
I ;κ2

∥∥∥∥∥∥
2

Ws
D;κ1 (μ)

=
∑
Q∈D

� (Q)−2s

∥∥∥∥∥∥
∑

I∈H; a∈�I ,n,κ : Q⊂I

cI ,a �μ

Q;κ1 h
μ,a
I ;κ2

∥∥∥∥∥∥
2

L2(μ)

=
∑
Q∈D

� (Q)−2s
∑

I∈H; a∈�I ,n,κ

(
cI ,a
)2 ∥∥∥�μ

Q;κ1h
μ,a
I ;κ2
∥∥∥2
L2(μ)

+
∑
Q∈D

� (Q)−2s
∑

I ,I ′∈H; a∈�I ,n,κ ,a′∈�I ′,n,κ : Q⊂I∩I ′

∫
Rn

cI ,a
(
�μ

Q;κ1h
μ,a
I ;κ2
)
cI ′,a′

(
�μ

Q;κ1h
μ,a′
I ′;κ2

)
dμ

≡ A + B,

where the first term satisfies

A =
∑
Q∈D

� (Q)−2s
∑

I∈H; a∈�I ,n,κ

(
cI ,a
)2 ∥∥∥�μ

Q;κ1h
μ,a
I ;κ2
∥∥∥2
L2(μ)

=
∑

I∈H; a∈�I ,n,κ

(
cI ,a
)2 ∑

Q∈D
� (Q)−2s

∥∥∥�μ

Q;κ1h
μ,a
I ;κ2
∥∥∥2
L2(μ)

=
∑

I∈H; a∈�I ,n,κ

(
cI ,a
)2 ∥∥∥hμ,a

I ;κ2
∥∥∥2
Ws

D;κ1 (μ)
≤ C

∑
I∈H

(
cI ,a
)2 ∥∥∥hμ,a

I ;κ2
∥∥∥2
Ws

D;κ2 (μ)

= C
∑

I∈H; a∈�I ,n,κ

(
cI ,a
)2

� (I )−2s = C

∥∥∥∥∥∥
∑

I∈H; a∈�I ,n,κ

cI ,ah
μ,a
I ;κ2

∥∥∥∥∥∥
2

Ws
D;κ2 (μ)

,

and where the final equality follows from Lemma 12.
To handle the second term, we write

B =
∑

I �=I ′∈H; a∈�I ,n,κ ,a′∈�I ′,n,κ

cI ,acI ′,a′
∫

Rn

⎧⎨
⎩

∑
Q∈D: Q⊂I∩I ′

� (Q)−2s �μ

Q;1 h
μ,a
I ;κ2

⎫⎬
⎭ hμ,a′

I ′;κ2dμ

=

⎧⎪⎨
⎪⎩

∑
I�I ′∈H; a∈�I ,n,κ ,a′∈�I ′,n,κ

+
∑

I ′�I∈H; a,a′∈�

⎫⎪⎬
⎪⎭

×cI ,acI ′,a′
∫

Rn

⎧⎨
⎩

∑
Q∈D: Q⊂I

� (Q)−2s �μ

Q;1 h
μ,a
I ;κ2

⎫⎬
⎭ hμ,a′

I ′;κ2dμ

≡ B1 + B2
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where B1 and B2 are symmetric. So it suffices to estimate

B1 =
∑

I∈H; a∈�I ,n,κ

cI ,a

∫
Rn

⎧⎨
⎩

∑
Q∈D: Q⊂I

� (Q)−2s �μ

Q;1 h
μ,a
I ;κ2

⎫⎬
⎭

⎧⎪⎨
⎪⎩

∑
I ′∈H; a′∈�I ′5,n,κ

: I�I ′
cI ′,a′hμ,a′

I ′;κ2

⎫⎪⎬
⎪⎭ dμ,

where∥∥∥∥∥∥∥
∑

I ′∈H; a′∈�I ′,n,κ : I�I ′
cI ′,a′hμ,a

I ′;κ2

∥∥∥∥∥∥∥

2

L2(μ)

=
∑

I ′∈H; a′∈�I ′,n,κ : I�I ′

∣∣cI ′,a′
∣∣2 ,

∥∥∥∥∥∥
∑

Q∈D: Q⊂I

� (Q)−2s �μ

Q;1 h
μ,a
I ;κ2

∥∥∥∥∥∥
2

L2(μ)

=
∑

Q∈D: Q⊂I

� (Q)−4s
∥∥∥�μ

Q;1h
μ,a
I ;κ2
∥∥∥2
L2(μ)

.

So for s < 0 we have the estimate,

B1 ≤
∑

I∈H; a∈�I ,n,κ

∣∣cI ,a∣∣ � (I )−2s

⎛
⎜⎝ ∑

I ′∈H; a′∈�I ′,n,κ : I�I ′

∣∣cI ′,a′
∣∣2
⎞
⎟⎠

1
2

≤
√ ∑

I∈H; a∈�I ,n,κ

∣∣cI ,a∣∣2 � (I )−2s

√√√√√√
∑

I∈H; a∈�I ,n,κ

� (I )−2s

⎛
⎜⎝ ∑

I ′∈H; a′∈�I ′,n,κ : I�I ′

∣∣cI ′,a′
∣∣2
⎞
⎟⎠,

where the second factor squared is

∑
I∈H; a∈�I ,n,κ

� (I )−2s

⎛
⎜⎝ ∑

I ′∈H; a′∈�: I�I ′

∣∣cI ′,a′
∣∣2
⎞
⎟⎠

=
∑

I ′∈H; a′∈�I ′,n,κ : I�I ′

∣∣cI ′,a′
∣∣2 ∑

I∈H; a∈�I ,n,κ : I�I ′
� (I )−2s

≈
∑

I ′∈H; a′∈�I ′,n,κ : I�I ′

∣∣cI ′,a′
∣∣2 �
(
I ′)−2s

since s < 0. Altogether we have

B1 �
∑

I∈H; a∈�I ,n,κ

∣∣cI ,a∣∣2 � (I )−2s = C

∥∥∥∥∥∥
∑

I∈H; a∈�I ,n,κ

cI ,ah
μ

I ;κ2

∥∥∥∥∥∥
2

Ws
D;κ2 (μ)

,

which together with the estimate for term I proves our claim (2.11).
Now we claim that for s > 0 we have

Ws
D;κ1 (μ) ⊂ Ws

D;κ2 (μ) for all κ1 ≥ κ2 ≥ 1. (2.13)

Indeed, for any subset H ⊂ D, we have
∥∥∥∥∥∥

∑
I∈H; a∈�I ,n,κ

cI ,ah
μ,a
I ;κ2

∥∥∥∥∥∥
2

Ws
D;κ1 (μ)

=
∑
Q∈D

� (Q)−2s

∥∥∥∥∥∥
∑

I∈H; a∈�I ,n,κ : Q⊂I

cI ,a �μ

Q;κ1 h
μ,a
I ;κ2

∥∥∥∥∥∥
2

L2(μ)

123



81 Page 14 of 74 E. T. Sawyer, B. D. Wick

=
∑
Q∈D

� (Q)−2s
∑

I∈H; a∈�I ,n,κ

(
cI ,a
)2 ∥∥∥�μ

Q;κ1h
μ,a
I ;κ2
∥∥∥2
L2(μ)

+
∑
Q∈D

� (Q)−2s
∑

I ,I ′∈H; a∈�I ,n,κ ,a′∈�I ′,n,κ : Q⊃I∨I ′

∫
Rn

cI ,a
(
�μ

Q;κ1h
μ,a
I ;κ2
)
cI ′,a′

(
�μ

Q;κ1h
μ,a′
I ′;κ2

)
dμ

≡ A + B,

where I ∨ I ′ denotes the smallest dyadic cube containing both I and I ′ if it exists; otherwise
the sum over Q ⊃ I ∨ I ′ is empty. Just as before, the first term satisfies

A =
∑
Q∈D

� (Q)−2s
∑

I∈H; a∈�I ,n,κ

(
cI ,a
)2 ∥∥∥�μ

Q;κ1h
μ,a
I ;κ2
∥∥∥2
L2(μ)

=
∑

I∈H; a∈�I ,n,κ

(
cI ,a
)2 ∑

Q∈D
� (Q)−2s

∥∥∥�μ

Q;κ1h
μ,a
I ;κ2
∥∥∥2
L2(μ)

=
∑

I∈H; a∈�I ,n,κ

(
cI ,a
)2 ∥∥∥hμ,a

I ;κ2
∥∥∥2
Ws

D;κ1 (μ)
≤ C

∑
I∈H; a∈�I ,n,κ

(
cI ,a
)2 ∥∥∥hμ,a

I ;κ2
∥∥∥2
Ws

D;κ2 (μ)

= C
∑

I∈H; a∈�I ,n,κ

(
cI ,a
)2

� (I )−2s = C

∥∥∥∥∥∥
∑

I∈H; a∈�I ,n,κ

cI ,ah
μ

I ;κ2

∥∥∥∥∥∥
2

Ws
D;κ2 (μ)

,

and where the final equality follows from Lemma 12.
To handle the second term B, we only need to consider the two cases I ′ ⊂ I and I ′ ∩ I =

∅, �
(
I ′) ≤ � (I ). For the first case, we have the estimate,

Bcase1 ≡

∣∣∣∣∣∣∣
∑

I∈H; a∈�I ,n,κ

cI ,a

∫
Rn

⎧⎨
⎩

∑
Q∈D: Q⊃I

� (Q)−2s �μ

Q;κ1 h
μ,a
I ;κ2

⎫⎬
⎭

⎧⎪⎨
⎪⎩

∑
I ′∈H; a′∈�I ′ ,n,κ : I ′�I

cI ′,a′hμ,a′
I ′;κ2

⎫⎪⎬
⎪⎭ dμ

∣∣∣∣∣∣∣

≤
∑

I∈H; a∈�I ,n,κ

∣∣cI ,a∣∣
∥∥∥∥∥∥

∑
Q∈D: Q⊃I

� (Q)−2s �μ

Q;κ1 h
μ,a
I ;κ2

∥∥∥∥∥∥
L2(μ)

∥∥∥∥∥∥∥
∑

I ′∈H; a′∈�I ′ ,n,κ : I ′�I

cI ′,a′hμ,a′
I ′;κ2

∥∥∥∥∥∥∥
L2(μ)

,

where for s > 0,∥∥∥∥∥∥
∑

Q∈D: Q⊃I

� (Q)−2s �μ

Q;κ1 h
μ,a
I ;κ2

∥∥∥∥∥∥
L2(μ)

≤ � (I )−2s

∥∥∥∥∥∥
∑

Q∈D: Q⊃I

�μ

Q;κ1h
μ,a
I ;κ2

∥∥∥∥∥∥
L2(μ)

= � (I )−2s ,

and ∥∥∥∥∥∥∥
∑

I ′∈H; a′∈�I ′,n,κ : I ′�I

cI ′,a′hμ,a
I ′;κ2

∥∥∥∥∥∥∥
L2(μ)

=
√√√√

∑
I ′∈H; a′∈�I ′,n,κ : I ′�I

∣∣cI ′,a′
∣∣2.

Thus we obtain the estimate

Bcase1 ≤
∑

I∈H; a∈�I ,n,κ

∣∣cI ,a∣∣ � (I )−2s

√√√√
∑

I ′∈H; a′∈�I ′,n,κ : I ′�I

∣∣cI ′,a′
∣∣2

≤
√ ∑

I∈H; a∈�I ,n,κ

∣∣cI ,a∣∣2 � (I )−2s

√√√√
∑

I∈H; a∈�I ,n,κ

� (I )−2s
∑

I ′∈H; a′∈�I ′,n,κ : I ′�I

∣∣cI ′,a′
∣∣2
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where ∑
I∈H; a∈�I ,n,κ

� (I )−2s
∑

I ′∈H; a′∈�I ′,n,κ : I ′�I

∣∣cI ′,a′
∣∣2

=
∑

I ′∈H; a′∈�I ′,n,κ

∣∣cI ′,a′
∣∣2 ∑

I∈H; a∈�I ,n,κ : I ′�I

� (I )−2s

≈
∑

I ′∈H; a′∈�I ′,n,κ

∣∣cI ′,a′
∣∣2 �
(
I ′)−2s

.

Altogether we have

Bcase1 �
∑

I∈H; a∈�I ,n,κ

∣∣cI ,a∣∣2 � (I )−2s ≈
∥∥∥∥∥∥

∑
I∈H; a∈�I ,n,κ

cI ,ah
μ,a
I ;κ2

∥∥∥∥∥∥
2

Ws
D;κ2 (μ)

,

which is the desired estimate for Bcase1.
Turning finally to the second case I ′ ∩ I = ∅, � (I ) ≤ �

(
I ′), we have

Bcase2 ≡
∑
Q∈D

� (Q)−2s
∑

I ,I ′∈H; a∈�I ,n,κ ,a′∈�I ′ ,n,κ : Q⊃I∨I ′
I ′∩I=∅,�(I ′)≤�(I )

∫
Rn

cI ,a
(
�μ

Q;κ1h
μ,a
I ;κ2
)
cI ′,a′

(
�μ

Q;κ1h
μ,a′
I ′;κ2

)
dμ

=
∑
K∈D

∑
Q∈D: K⊂Q

� (Q)−2s
∞∑

m=1

∑
I∈H∩C(m)(K ); a∈�I ,n,κ

∑
I ′∈H; a′∈�I ′ ,n,κ : π(m)(I ′)⊂K

�(I ′)≤�(I )

×
∫

Rn
cI ,a

(
�μ

Q;κ1h
μ,a
I ;κ2
)
cI ′,a′

(
�μ

Q;κ1h
μ,a′
I ′;κ2

)
dμ

=
∑
K∈D

∞∑
m=1

∫
Rn

∑
Q∈D: K⊂Q

� (Q)−2s �μ

Q;κ1

⎛
⎝ ∑

I∈H∩C(m)(K ); a∈�I ,n,κ

cI ,ah
μ,a
I ;κ2

⎞
⎠

× �μ

Q;κ1

⎛
⎜⎜⎜⎜⎝

∑
I ′∈H; a′∈�I ′ ,n,κ : π(m)(I ′)⊂K

�(I ′)≤�(I )

cI ′,a′hμ,a′
I ′;κ2

⎞
⎟⎟⎟⎟⎠ dμ.

Now we compute that for each K ∈ D,
∥∥∥∥∥∥∥∥∥∥

∑
I ′∈H; a′∈�I ′,n,κ : π(m)(I ′)⊂K

�(I ′)≤�(I )

cI ′,a′hμ,a
I ′;κ2

∥∥∥∥∥∥∥∥∥∥

2

L2(μ)

=
∑

I ′∈H; a′∈�I ′,n,κ : π(m)(I ′)⊂K
�(I ′)≤�(I )

∣∣cI ′,a′
∣∣2 ,

and
∥∥∥∥∥∥

∑
Q∈D: K⊂Q

� (Q)−2s �μ

Q;κ1

⎡
⎣ ∑

I∈H∩C(m)(K ); a∈�I ,n,κ

cI ,ah
μ,a
I ;κ2

⎤
⎦
∥∥∥∥∥∥
2

L2(μ)

=
∑

Q∈D: K⊂Q

� (Q)−4s

∥∥∥∥∥∥�
μ

Q;κ1

⎡
⎣ ∑

I∈H∩C(m)(K ); a∈�I ,n,κ

cI ,ah
μ,a
I ;κ2

⎤
⎦
∥∥∥∥∥∥
2

L2(μ)
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≤
∑

Q∈D: K⊂Q

� (Q)−4s

∥∥∥∥∥∥
∑

I∈H∩C(m)(K ); a∈�I ,n,κ

cI ,ah
μ,a
I ;κ2

∥∥∥∥∥∥
2

L2(μ)

= C� (K )−4s
∑

I∈H∩C(m)(K ); a∈�I ,n,κ

∣∣cI ,a∣∣2 = C2−4sm
∑

I∈H∩C(m)(K ); a∈�I ,n,κ

� (I )−4s
∣∣cI ,a∣∣2 ,

and hence

Bcase2 =
∑
K∈D

∞∑
m=1

∫
Rn

∑
Q∈D: K⊂Q

� (Q)−2s �μ

Q;κ1

⎛
⎝ ∑

I∈H∩C(m)(K ); a∈�I ,n,κ

cI ,ah
μ,a
I ;κ2

⎞
⎠

× �μ

Q;κ1

⎛
⎜⎜⎜⎜⎝

∑
I ′∈H; a′∈�I ′,n,κ : π(m)(I ′)⊂K

�(I ′)≤�(I )

cI ′,a′hμ,a
I ′;κ2

⎞
⎟⎟⎟⎟⎠ dμ

≤
∑
K∈D

∞∑
m=1

C2−sm
√ ∑

I∈H∩C(m)(K ); a∈�

� (I )−2s
∣∣cI ,a∣∣2

×
√√√√√� (K )−2s

∑
I ′∈H; a′∈�I ′,n,κ : π(m)(I ′)⊂K

�(I ′)≤�(I )

∣∣cI ′,a′
∣∣2

≤
∞∑

m=1

C2−sm
√∑

K∈D

∑
I∈H∩C(m)(K ); a∈�I ,n,κ

� (I )−2s
∣∣cI ,a∣∣2

×
√√√√√
∑
K∈D

� (K )−2s
∑

I ′∈H; a′∈�I ′,n,κ : π(m)(I ′)⊂K
�(I ′)≤�(I )

∣∣cI ′,a′
∣∣2,

and regrouping we obtain

Bcase2 ≤
∞∑

m=1

C2−sm
√ ∑

I∈H; a∈�I ,n,κ

� (I )−2s
∣∣cI ,a∣∣2

√ ∑
I ′∈H; a′∈�I ′,n,κ

∣∣cI ′,a′
∣∣2 ∑

K∈D: π(m)(I ′)⊂K

� (K )−2s

≤
∞∑

m=1

C2−2sm
√ ∑

I∈H; a∈�I ,n,κ

� (I )−2s
∣∣cI ,a∣∣2

√ ∑
I ′∈H; a′∈�I ′,n,κ

� (I ′)−2s
∣∣cI ′,a′

∣∣2

�
∑

I∈H; a∈�I ,n,κ

� (I )−2s
∣∣cI ,a∣∣2 ≈

∥∥∥∥∥∥
∑

I∈H; a∈�I ,n,κ

cI ,ah
μ

I ;κ2

∥∥∥∥∥∥
2

Ws
D;κ2 (μ)

,

which is the desired estimate for Bcase2.
Thus from (2.12) and (2.11) we obtain Ws

D;κ1 (μ) = Ws
D;κ2 (μ) for all s > 0, all grids D

and all integers κ1, κ2 ∈ N. Duality now establishes these equalities for s < 0 as well, and
the case s = 0 is automatic. ��
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Following Peetre [13] and Stein [21], we define the homogeneous difference Sobolev
space Ws

diff;κ (μ) by

Ws
Ddiff ;κ (μ) ≡

{
f ∈ L2 (μ) : ‖ f ‖Ws

Ddiff ;κ
(μ) < ∞

}
, s ∈ R and κ ∈ N,

where

‖ f ‖2Ws
Ddiff ;κ (μ) ≡

∑
Q∈D

∫
Q

∣∣∣∣∣
f (x) − E

μ

Q;κ f (x)

� (Q)s

∣∣∣∣∣
2

dμ (x) ,

and E
μ

Q;κ f (x) ≡
(
Eμ
Q f
)
1Q (x) =

(
1

|Q|μ
∫
Q

f dμ

)
1Q (x) .

The proof of the next lemma does not explicitly use the doubling property of μ either.

Lemma 15 Suppose μ is a doubling measure on R
n and D is a dyadic grid on R

n. Then for
s > 0 and κ ∈ N, we have

Ws
Ddiff ;κ (μ) = Ws

D;κ (μ) ,

with equivalence of norms.

Proof We expand the function

f (x) − E
μ

Q;κ f (x) =
∑
I⊂Q

�μ

I ;κ f (x) ,

and so obtain for s > 0 that

‖ f ‖2Ws
Ddiff ;κ

=
∑
Q∈D

� (Q)−2s
∑
I⊂Q

∥∥∥�μ

I ;κ f
∥∥∥2
L2(μ)

=
∑
I∈D

� (I )−2s
∥∥∥�μ

I ;κ f
∥∥∥2
L2(μ)

∑
Q∈D
Q⊃I

(
� (Q)

� (I )

)−2s

≈
∑
I∈D

� (I )−2s
∥∥∥�μ

I ;κ f
∥∥∥2
L2(μ)

= ‖ f ‖2Ws
D;κ (μ) .

��
We just showed in Lemma 14 above that the weighted Alpert Sobolev spaces Ws

D;κ (μ)

coincide for s ∈ R and κ ≥ 1, and so we simply write Ws
D (μ) for these spaces, and for

specificity we use the norm of Ws
D;1 (μ). Now we will show that the spaces Ws

D;κ (μ) are
independent of the dyadic gridD for |s| sufficiently small provided themeasureμ is doubling,
and extend this to include the difference spaces Ws

Ddiff ;κ (μ) as well.
Theorem 16 Suppose μ is a doubling measure on R

n and D and E are dyadic grids on R
n.

Then for κ ∈ N, and |s| sufficiently small, we have
Ws

D;κ (μ) = Ws
E;κ (μ) .

Proof Note that for J ∈ E and 0 < δ = 2−m ≤ 1, and F is any finite linear combination of
Alpert wavelets,

∑
I∈D: �(I )=δ�(J )

∫
Rn

∣∣∣�μ

I ;κ �μ

J ;κ F
∣∣∣2 dμ
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=
∑

I∈D: �(I )=δ�(J )

∫
Rn

∣∣∣�μ

I ;κ
(
1Hδ(J ) �μ

J ;κ F
)∣∣∣2 dμ ≤

∫
Hδ(J )

∣∣∣�μ

J ;κ F
∣∣∣2 dμ

≤
∫
Hδ(J )

∥∥∥�μ

J ;κ F
∥∥∥2∞ dμ =

∥∥∥�μ

J ;κ F
∥∥∥2∞ |Hδ (J )|μ ≤

∥∥∥�μ

J ;κ F
∥∥∥2∞ Cδε |J |μ

≤ Cδε

∫
Rn

∣∣∣�μ

J ;κ F
∣∣∣2 dμ,

which gives for η > 0

∑
I∈D: �(I )≤�(J )

� (I )−(2s+η)

∫
Rn

∣∣∣�μ

I ;κ �μ

J ;κ F
∣∣∣2 dμ

=
∞∑

m=1

∑
I∈D: �(I )=2−m�(J )

� (I )−(2s+η)

∫
Rn

∣∣∣�μ

I ;κ �μ

J ;κ F
∣∣∣2 dμ

≤
∞∑

m=1

C2m(2s+η−ε)� (J )−(2s+η)

∫
Rn

∣∣∣�μ

J ;κ F
∣∣∣2 dμ ≤ Cε,η,s� (J )−(2s+η)

∫
Rn

∣∣∣�μ

J ;κ F
∣∣∣2 dμ,

provided s <
ε−η
2 .

On the other hand, for J ∈ E and δ = 2m > 1, there are at most 2n cubes I such that
� (I ) = δ� (J ) and I ∩ J �= ∅, and then following the line of reasoning in (2.14) we have,

∑
I∈D: �(I )>�(J )

� (I )−(2s+η)

∫
Rn

∣∣∣�μ

I ;κ �μ

J ;κ F
∣∣∣2 dμ

=
∑

I∈D: �(I )>�(J ) and I∩J �=∅
� (I )−(2s+η)

∫
Rn

∣∣∣�μ

I ;κ �μ

J ;κ F
∣∣∣2 dμ

≈
∑

I∈D: �(I )>�(J ) and I∩J �=∅
� (I )−(2s+η) |I |μ

∥∥∥�μ

I ;κ �μ

J ;κ F
∥∥∥2∞

≈ |J |μ
∑

I∈D: �(I )>�(J ) and I∩J �=∅
� (I )−(2s+η)

|J |μ
|I |μ

∥∥∥�μ

J ;κ F
∥∥∥2∞

� |J |μ
∥∥∥�μ

J ;κ F
∥∥∥2∞ Cη� (J )η

∞∑
m=1

2−m(2s+η)� (J )−(2s+η)
|J |μ

|πn J |μ

≤ � (J )−2s
∫

Rn

∣∣∣�μ

J ;κ F
∣∣∣2 dμ

∞∑
m=1

2−m(2s+η)c2−mθ revμ ≤ C� (J )−2s
∫

Rn

∣∣∣�μ

J ;κ F
∣∣∣2 ,

provided s >
η−θ revμ

2 where θ revμ > 0 is the reverse doubling exponent of μ, i.e.

∣∣πn J
∣∣
μ

≥ c2nθ revμ |J |μ .

Now we compute

‖ f ‖2Ws
D;κ (μ) =

∑
I∈D

� (I )−2s
∥∥∥�μ

I ;κ f
∥∥∥2
L2(μ)

=
∑
I∈D

� (I )−2s

∥∥∥∥∥�
μ

I ;κ

(∑
J∈E

�μ

J ;κ

)
f

∥∥∥∥∥
2

L2(μ)
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≤ 2
∑
I∈D

� (I )−2s

∥∥∥∥∥∥
∑

J∈E: �(I )≤�(J )

�μ

I ;κ �μ

J ;κ f

∥∥∥∥∥∥
2

L2(μ)

+2
∑
I∈D

� (I )−2s

∥∥∥∥∥∥
∑

J∈E: �(I )>�(J )

�μ

I ;κ �μ

J ;κ f

∥∥∥∥∥∥
2

L2(μ)

.

We bound the first sum by

Cη

∑
I∈D

� (I )−2s
∑

J∈E: �(I )≤�(J )

(
� (J )

� (I )

)η ∥∥∥�μ

I ;κ �μ

J ;κ f
∥∥∥2
L2(μ)

≤ Cη

∑
J∈E

� (J )η
∑

I∈D: �(I )≤�(J )

� (I )−(2s+η)
∥∥∥�μ

I ;κ �μ

J ;κ f
∥∥∥2
L2(μ)

≤ Cη

∑
J∈E

� (J )η Cε,η,s� (J )−(2s+η)

∫
Rn

∣∣∣�μ

J ;κ f
∣∣∣2 dμ

≤ Cε,η,s

∑
J∈E

� (J )−2s
∫

Rn

∣∣∣�μ

J ;κ f
∣∣∣2 dμ = Cε,η,s ‖ f ‖2Ws

E;κ (μ) ,

and the second sum by

∑
I∈D

� (I )−2s
∑

J∈E: �(I )>�(J )

(
� (I )

� (J )

)η ∥∥∥�μ

I ;κ �μ

J ;κ f
∥∥∥2
L2(μ)

≤ Cη ‖ f ‖2Ws
E;κ (μ)

provided s >
η−θ revμ

2 . Altogether we obtain

‖ f ‖Ws
D;κ (μ) ≤ Cη ‖ f ‖Ws

E;κ (μ)

provided

η − θ revμ

2
< s <

ε − η

2
,

and interchanging the roles of the dyadic grids D and E completes the proof. ��
Finally, we will explicitly compute the norm ‖ f ‖Ws

Ddiff ;1(μ) by starting with

1

|Q|μ
∫
Q

∫
Q

( f (x) − f (y))2 dμ (x) dμ (y)

= 1

|Q|μ
∫
Q

∫
Q

{
f (x)2 − 2 f (x) f (y) + f (y)2

}
dμ (x) dμ (y)

= 2
∫
Q

f 2dμ − 2 |Q|μ
(
Eμ
Q f
)2 = 2

∫
Q

{
f (x)2 −

(
Eμ
Q f
)2}

dμ,

to obtain the representation

‖ f ‖2Ws
Ddiff ;1(μ) =

∑
Q∈D

∫
Q

∣∣∣∣∣
f (x) − Eμ

Q f

� (Q)s

∣∣∣∣∣
2

dμ (x)

=
∑
Q∈D

� (Q)−2s
∫
Q

{
f (x)2 − 2

(
Eμ
Q f
)
f (x) +

(
Eμ
Q f
)2}

dμ (x)
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=
∑
Q∈D

� (Q)−2s
∫
Q

{
f (x)2 −

(
Eμ
Q f
)2}

dμ (x)

= 1

2

∑
Q∈D

� (Q)−2s 1

|Q|μ
∫
Q

∫
Q

( f (x) − f (y))2 dμ (x) dμ (y) .

We will next show that this last expression is comparable to the expression

‖ f ‖2Ws (μ) ≡
∫

Rn

∫
Rn

(
f (x) − f (y)

|x − y|s
)2 dμ (x) dμ (y)∣∣∣B

(
x+y
2 ,

|x−y|
2

)∣∣∣
μ

.

Theorem 17 Suppose that μ is doubling on R
n. For s > 0 sufficiently small, we have

‖ f ‖2Ws
Ddiff ;1(μ) ≈ ‖ f ‖2Ws (μ) .

Proof From the formula above we have

‖ f ‖2Ws
Ddiff ;1(μ) = 1

2

∫
Rn

∫
Rn

⎧⎨
⎩
∑
Q∈D

1Q×Q (x, y)

� (Q)2s |Q|μ

⎫⎬
⎭ ( f (x) − f (y))2 dμ (x) dμ (y)

≤ 1

2

∫
Rn

∫
Rn

C

|x − y|2s
∣∣∣B
(
x+y
2 ,

|x−y|
2

)∣∣∣
μ

( f (x) − f (y))2 dμ (x) dμ (y) = C

2
‖ f ‖2Ws (μ) ,

since |Q|μ �
∣∣∣B
(
x+y
2 ,

|x−y|
2

)∣∣∣
μ
whenever (x, y) ∈ Q × Q. Conversely we use the one

third trick for dyadic grids. Namely that there is a finite collection of dyadic grids {Dm}3nm=1
so that for every (x, y) ∈ R

n × R
n , there is some m and some Q ∈ Dm such that

B (x,C |x − y|) , B (y,C |x − y|) ⊂ Q and � (Q) ≤ C |x − y| ,
where C is a large constant that will be fixed below. In particular this gives

|Q|μ ≈ |B (x, c |x − y|)|μ ≈ |B (y, c |x − y|)|μ , for
1

100
< c <

1

2
.

Then we cover the product space R
n × R

n with a collection of product balls

{B (xk, c |xk − yk |) × B (yk, c |xk − yk |)}∞k=1

where E ≡ {(xk, yk)}∞k=1 is a discrete subset ofR
n×R

n , and provided c is chosen sufficiently
small, this collection of product balls has boundedoverlap.Nowdenote by Qk the cube chosen
above by the point (xk, yk) ∈ R

n × R
n . Then we have

|Qk |μ ≈ |B (x, c |x − y|)|μ ≈ |B (y, c |x − y|)|μ
for all (x, y) in the product ball B (xk, c |xk − yk |) × B (yk, c |xk − yk |) ,

and so

‖ f ‖2Ws (μ) ≤
∞∑
k=1

∫
B(xk ,c|xk−yk |)

∫
B(yk ,c|xk−yk |)

(
f (x) − f (y)

|x − y|s
)2 dμ (x) dμ (y)∣∣∣B

(
x+y
2 ,

|x−y|
2

)∣∣∣
μ

�
∞∑
k=1

∫
Qk

∫
Qk

(
f (x) − f (y)

� (Qk)
s

)2 dμ (x) dμ (y)

|Qk |μ
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≤
3n∑

m=1

∑
Q∈Dm

� (Q)−2s 1

|Q|μ
∫
Q

∫
Q

( f (x) − f (y))2 dμ (x) dμ (y)

= 2
3n∑

m=1

‖ f ‖2Ws
Dm,diff ;1(μ) ≤ C ‖ f ‖2Ws

Ddiff ;1(μ)

since ‖ f ‖2Ws
Dm,diff ;1(μ)

is independent of the dyadic grid Dm by Theorem 16. ��

In particular, we have thus obtained one of the main results of this subsection.

Theorem 18 For all grids D on R
n , all positive integers κ , and all sufficiently small s > 0

depending only on the doubling constant of μ, we have

Ws (μ) = Ws
D;κ (μ) = Ws

Ddiff ;κ (μ) ,

with equivalence of norms.

As a consequence of this theorem, there is essentially just one notion of aweighted Sobolev
space for a doublingmeasureμ provided |s| is sufficiently small, namelyWs (μ)when s > 0,
and any of the dyadic spaces Ws

D;κ (μ) when s < 0. For specificity we will use the norm of
Ws

D0;1 (μ) on these spaces, where D0 is the standard dyadic grid on R
n .

Definition 19 Define Ws
dyad (μ) = Ws

D;κ (μ) = Ws
Ddiff ;κ (μ) for |s| sufficiently small, and

norm Ws
dyad (μ) with the norm of Ws

D;1 (μ).

Note that Ws
dyad (μ) = Ws (μ) for s > 0 sufficiently small.

Remark 20 The Sobolev space Ws (μ) used here is different from the Sobolev space intro-
duced on a space of homogeneous type in [5], since one can show that the norm squared used
in [5] is comparable to

∫
Rn

∫
Rn

⎛
⎜⎝ f (x) − f (y)∣∣∣B

(
x+y
2 ,

|x−y|
2

)∣∣∣α
μ

⎞
⎟⎠

2

dμ (x) dμ (y)∣∣∣B
(
x+y
2 ,

|x−y|
2

)∣∣∣
μ

.

It seems likely that our proof extends to the analogous T 1 theorem for these weighted

Sobolev spaces using the doublingmeasure inequalities
|Q|μ

|2mQ|μ �
(

�(Q)
�(2mQ)

)θ revμ
and

|2mQ|μ
|Q|μ �

(
�(2mQ)
�(Q)

)θdoubμ
.

Problem 21 Does a T 1 theorem hold in the context of weighted Sobolev spaces with doubling
measures and norm squared given by

∫
Rn

∫
Rn

(
f (x) − f (y)

ϕ (|x − y|)
)2 dμ (x) dμ (y)∣∣∣B

(
x+y
2 ,

|x−y|
2

)∣∣∣
μ

,

where ϕ : (0,∞) → (0,∞) satisfies
( s
t

)θ1
� ϕ (s)

ϕ (t)
�
( s
t

)θ2
for 0 < s ≤ t < ∞ ?
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Remark 22 The inner product for the Hilbert space Ws
dyad (μ) is given by

〈 f , g〉Ws
dyad(μ) ≡

∑
Q∈D

� (Q)−2s
〈
�μ

Q;κ f ,�μ

Q;κg
〉
L2(μ)

where the inner product for L2 (μ) is given by

〈 f , g〉L2(μ) ≡
∫

Rn
f (x) g (x) dμ (x) .

In Lemma 12 we showed that
{
� (Q)s �μ

Q;κ
}
Q∈D is a complete set of orthogonal projections

onWs
dyad (μ), nevertheless we will not use the Hilbert space duality that identifies the dual of

a Hilbert space with the conjugate of itself under the inner product 〈 f , g〉Ws
dyad(μ), but rather

the L2 (μ) inner product which identifies the dual ofWs
dyad (μ)withW−s

dyad (μ). Asmentioned

in the introduction, the reason for this is that the weighted Alpert projections
{
�μ

Q;κ
}
Q∈D

satisfy telescoping identities, while the orthogonal projections
{
� (Q)s �μ

Q;κ
}
Q∈D do not.

2.4 Haar, Alpert and indicator functions

The Alpert projections
{
�μ

I ;κ
}
I∈D form a complete family of orthogonal projections on

L2 (μ), where

�μ

I ;κ f ≡ E
μ

I ;κ f −
∑

I ′∈CD(I )

E
μ

I ′;κ f =
∑
a∈�

〈
f , hμ,a

I ;κ
〉
L2(μ)

hμ,a
I ;κ .

Thus we have

∑
a∈�

∣∣∣∣
〈
f , hμ,a

I ;κ
〉
L2(μ)

∣∣∣∣
2 ∥∥∥hμ,a

I ;κ
∥∥∥2
Ws

dyad(μ)
=
∑
a∈�

∥∥∥∥
〈
f , hμ,a

I ;κ
〉
L2(μ)

hμ,a
I ;κ

∥∥∥∥
2

Ws
dyad(μ)

=
∥∥∥�μ

I ;κ f
∥∥∥2
Ws

dyad(μ)
=
∑
Q∈D

� (Q)−2s
∥∥∥�μ

Q;κ �μ

I ;κ f
∥∥∥2
L2(μ)

= � (I )−2s
∥∥∥�μ

I ;κ f
∥∥∥2
L2(μ)

= � (I )−2s
∑
a∈�

∣∣∣∣
〈
f , hμ,a

I ;κ
〉
L2(μ)

∣∣∣∣
2

for all f ∈ Ws
dyad (μ), which implies upon taking f = hμ,a

I ;κ , that

∥∥∥hμ,a
I ;κ
∥∥∥2
Ws

dyad(μ)
= � (I )−2s , I ∈ D.

Now we compute the weighted Alpert Sobolev norms of indicators. By independence of
κ , we may assume κ = 1. Using (2.8 ) and (2.9), we then note that

∥∥∥�μ
Q1I

∥∥∥2∞ ≈

∥∥∥�μ
Q1I

∥∥∥2
L2(μ)

|Q|μ
≈

|I |2μ
|Q|μ
|Q|μ

=
( |I |μ

|Q|μ

)2

for I ⊂ Q′ ∈ CD (Q) ,
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and hence from (2.8) we obtain

‖1I ‖2Ws
dyad(μ) =

∑
Q∈D

� (Q)−2s
∥∥∥�μ

Q;11I
∥∥∥2
L2(μ)

=
∑

Q∈D: Q�I

� (Q)−2s
∥∥∥�μ

Q;11I
∥∥∥2
L2(μ)

(2.14)

≈
∑

Q∈D: Q�I

� (Q)−2s |Q|μ
∥∥∥�μ

Q;11I
∥∥∥2∞ ≈ |I |μ

∑
Q∈D: Q�I

� (Q)−2s |I |μ
|Q|μ

= |I |μ
∞∑
n=1

2−2ns� (I )−2s |I |μ
|πn I |μ

= � (I )−2s |I |μ
∞∑
n=1

2−2ns |I |μ
|πn I |μ

.

Sinceμ is doubling, it also satisfies a dyadic reverse doubling conditionwith reverse doubling
exponent θ revμ > 0 depending on the doubling constant, i.e.

∣∣πn I
∣∣
μ

≥ c2nθ revμ |I |μ .

Then for s > −θ revμ we have
∑∞

n=1 2
−2ns |I |μ

|πn I |μ ≤∑∞
n=1 2

−2n
(
s+θ revμ

)
< ∞, and so

‖1I ‖2Ws
dyad(μ) ≈ � (I )−2s |I |μ .

Altogether we have proved the following lemma.

Lemma 23 Suppose μ is a locally finite positive Borel measure on R
n. Then∥∥∥hμ,a

I ;κ
∥∥∥
Ws

dyad(μ)
= � (I )−s , for all I ∈ D, a ∈ �I ,n,κ , κ ≥ 1 and s ∈ R,

and if μ is a doubling measure,

‖1I ‖Ws
dyad(μ) ≈ � (I )−s

√
|I |μ, for all I ∈ D, κ ≥ 1 and s > −θ revμ .

2.4.1 Sharpness

Here we construct measures for which ‖1I ‖2Ws
dyad(μ)

= ∞ for all intervals I and s < 0, and

thus are not dyadic reverse doubling. A trivial example is any finite measureμ, and an infinite
example is dμ (x) = 1[e,∞) (x) 1

x ln x . In fact we have the following lemma.

Lemma 24 If there is s < 0 such that

‖1I ‖2Ws
dyad(μ) ≤ C� (I )−2s |I |μ

for all dyadic intervals I , then μ is a dyadic reverse doubling measure with exponent |s|.
Proof We have

∞∑
n=0

2(n+1)|s| 1

|πn I |μ
� |I |−2

μ � (I )2s ‖1I ‖2Ws
dyad(μ) ≤ C |I |−1

μ , for all intervals I ,

which shows that |πn I |μ ≥ 1
C 2

(n+1)|s| |I |μ for all intervals I , which is the dyadic reverse
doubling condition with t = |s|. ��
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Remark 25 There is an asymmetry inherent in the homogeneous Sobolev twoweight inequal-
ity (3.1) for general measures. If we wish to use cube testing to characterize the Sobolev
inequality (3.1) for some s > 0 assuming the estimate ‖1I ‖2W−s

dyad(ω)
≤ C� (I )2 s |I |ω, then

from the equivalence with the bilinear inequality (3.2) and the discussion and lemma above,
we see that ω needs to be restricted, in fact by reverse dyadic doubling with exponent essen-
tially greater than 2 |s|, while no restriction needs to be made on σ .

2.4.2 Norms of moduli of Alpert wavelets

Let hω
J ;κ =

(
hω,a
J ;κ
)
a∈�

be the vector of Alpert wavelets associated with the cube J . Note

that for ω doubling and 0 ≤ s < 1, we have
∥∥∥hω

J ;κ
∥∥∥2
W−s

dyad(ω)

� (J )2s
= 1,

and we now show that the same sort of Sobolev estimate holds for the absolute value
∣∣∣hω

J ;κ
∣∣∣ of

the vector Alpert wavelet (which remains trivial in the case κ = 1 since hω
J ;κ is then constant

on dyadic children of J ).

Lemma 26 Let μ be a doubling measure on R
n. Then the modulus of a vector of Alpert

wavelets hμ

J ;κ =
{
hμ,a
J ;κ
}
a∈�J ,n,κ

satisfies

∥∥∥
∣∣∣hμ

J ;κ
∣∣∣
∥∥∥2
W−s

dyad(μ)

� (J )2s
� C, for J ∈ D.

Proof We expand
∥∥∥
∣∣∣hμ,a

J ;κ
∣∣∣
∥∥∥2
W−s

dyad(μ)
=
∑
Q

� (Q)2s
∥∥∥�μ

Q;κ
∣∣∣hμ,a

J ;κ
∣∣∣
∥∥∥2
L2(μ)

.

For a cube Q contained in a child J ′ of J that is disjoint from the zero set of the polynomial
1J ′hμ,a

J ;κ on the child J ′, the absolute values on the Alpert wavelet can be removed, and we

obtain that �μ

Q;κ
∣∣∣hμ,a

J ;κ
∣∣∣ = ± �μ

Q;κ hμ,a
J ;κ vanishes. On the other hand, if Q ⊂ J ′ intersects

the zero set Z of the polynomial 1J ′hμ,a
J ;κ , then we use

∥∥∥�μ

Q;κ f
∥∥∥
L2(μ)

≤ C | f̂ (Q)|√|Q|μ to obtain

the crude estimate,

∥∥∥�μ

Q;κ
∣∣∣hμ,a

J ;κ
∣∣∣
∥∥∥2
L2(μ)

=
∣∣∣∣
〈
hμ,a
Q;κ ,

∣∣∣hμ,a
J ;κ
∣∣∣
〉
L2(μ)

∣∣∣∣
2 ∫

Rn

∣∣∣hμ,a
J ;κ
∣∣∣2 dμ =

∣∣∣∣
〈
hμ,a
Q;κ ,

∣∣∣hμ,a
J ;κ
∣∣∣
〉
L2(μ)

∣∣∣∣
2

�
(∫

Q

∣∣∣hμ,a
J ;κ
∣∣∣2 dμ

)∥∥∥hμ,a
J ;κ
∥∥∥2∞ |Q|μ �

|Q|μ
|J |μ ,

and together with Corollary 8, we obtain

∑
Q⊂J ′: Q∩Z �=∅

� (Q)2s
∥∥∥�μ

Q;κ
∣∣∣hμ,a

J ;κ
∣∣∣
∥∥∥2
L2(μ)

�
∑

Q⊂J ′: Q∩Z �=∅
� (Q)2s

|Q|μ
|J |μ

123



Two weight Sobolev norm inequalities… Page 25 of 74 81

=
∞∑

m=1

(
2−m� (J )

)2s ∑
Q⊂J ′: Q∩Z �=∅
�(Q)=2−m�(J )

|Q|μ
|J |μ

�

⎛
⎜⎜⎜⎝

∞∑
m=1

2−2ms
∑

Q⊂J ′: Q∩Z �=∅
�(Q)=2−m�(J )

|Q|μ
|J |μ

⎞
⎟⎟⎟⎠ � (J )2s

�
( ∞∑
m=1

2−2ms2−εm

)
� (J )2s

which is the estimate we want when s > 0 or − ε
2 < s ≤ 0, where ε = ε (μ) > 0.

Finally, for big cubes Q containing J there is only the tower above J to consider, and
trivial estimates work:

∑
Q∈D: Q⊃J

� (Q)2s
∥∥∥�μ

Q;κ
∣∣∣hμ,a

J ;κ
∣∣∣
∥∥∥2
L2(μ)

=
∑

Q∈D: Q⊃J

� (Q)2s
∣∣∣∣
〈
hμ,a
Q;κ ,

∣∣∣hμ

J ;κ
∣∣∣
〉
L2(μ)

∣∣∣∣
2 ∫

Rn

∣∣∣hμ,a
J ;κ
∣∣∣2 dμ

≤
∞∑

m=1

22ms
∣∣∣∣
〈
hμ,a

π(m) J ;κ ,

∣∣∣hμ,a
J ;κ
∣∣∣
〉
L2(μ)

∣∣∣∣
2

� (J )2s �
∞∑

m=1

22ms
(∫

J

∣∣∣hμ,a
π(m) J ;κ

∣∣∣2 dμ

)
� (J )2s

�
∞∑

m=1

22ms |J |μ∣∣π(m) J
∣∣
μ

� (J )2s � � (J )2s ,

provided s < 0 or s is small enough depending on the doubling constant of μ. ��

2.5 Duality

Here we compute the dual space of Ws
dyad (μ) under the L2 (μ) pairing

〈 f , g〉L2(μ) =
∫

Rn
f (x) g (x) dμ (x) =

∑
I∈D,J∈D

∫
Rn

�μ
I f �μ

J gdμ =
∑
I∈D

∫
Rn

�μ
I f �μ

I gdμ.

Lemma 27 Let −1 < s < 1. Then
(
Ws

dyad (μ)
)∗ = W−s

dyad (μ) ,

holds in the sense that if g ∈ W−s
dyad (μ) then f → 〈 f , g〉L2(μ) defines a bounded linear

functional on Ws
dyad (μ), and conversely that every bounded linear functional on Ws

dyad (μ)

arises in this way.

Proof For κ sufficiently large, Cauchy–Schwarz gives

∣∣〈 f , g〉L2(μ)

∣∣ =
∣∣∣∣∣∣
〈∑
I∈D

�μ

I ;κ f ,
∑
J∈D

�μ

J ;κg
〉

L2(μ)

∣∣∣∣∣∣
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=
∣∣∣∣∣
∑
I∈D

∑
J∈D

∫
Rn

(
�μ

I ;κ f
) (

�μ

J ;κg
)
dμ

∣∣∣∣∣

=
∣∣∣∣∣
∑
I∈D

∫
Rn

(
�μ

I ;κ f
) (

�μ

I ;κg
)
dμ

∣∣∣∣∣

=
∣∣∣∣∣
∑
I∈D

∫
Rn

� (I )−s
(
�μ

I ;κ f
)

� (I )s
(
�μ

I ;κg
)
dμ

∣∣∣∣∣

≤
√∫

Rn

∑
I∈D

∣∣∣� (I )−s
(
�μ

I ;κ f
)∣∣∣2 dμ

√∫
Rn

∑
I∈D

∣∣∣� (I )s
(
�μ

I ;κg
)∣∣∣2 dμ

= ‖ f ‖Ws
dyad(μ) ‖g‖W−s

dyad(μ) .

Conversely, if � ∈ Ws
dyad (μ)∗ is a continuous linear functional on Ws

dyad (μ), then for κ

sufficiently large∣∣∣∣∣
∑
I∈D

� (I )−s
〈
f , hμ

I ;κ
〉
L2(μ)

� (I )s �hμ

I ;κ

∣∣∣∣∣

=
∣∣∣∣∣
∑
I∈D

〈
f , hμ

I ;κ
〉
L2(μ)

�hμ

I ;κ

∣∣∣∣∣ =
∣∣∣∣∣
∑
I∈D

�
(
�μ

I ;κ f
)∣∣∣∣∣ = |� f |

≤ ‖�‖ ‖ f ‖Ws
dyad(μ) = ‖�‖

√∫
Rn

∑
I∈D

∣∣∣� (I )−s
(
�μ

I ;κ f
)∣∣∣2 dμ

= ‖�‖
√√√√∑

I∈D
� (I )−2s

∣∣∣∣
〈
f , hμ

I ;κ
〉
L2(μ)

∣∣∣∣
2

for all choices of coefficients

{
� (I )−s

〈
f , hμ

I ;κ
〉
L2(μ)

}
I∈D

∈ �2 (D), and so we have

� (I )s �hμ

I ;κ ∈ �2 (D), i.e.

√∑
I∈D

� (I )2s
∣∣∣�hμ

I ;κ
∣∣∣2 ≤ ‖�‖ .

Thus if we define g to have Alpert coefficients �hμ,a
I ;κ , i.e.

g =
∑
I∈D
a∈�

〈
g, hμ,a

I ;κ
〉
L2(μ)

hμ,a
I ;κ ≡

∑
I∈D
a∈�

(
�hμ,a

I ;κ
)
hμ,a
I ;κ

then g ∈ W−s
dyad (μ) since

‖g‖W−s
dyad(μ) =

√∫
Rn

∑
I∈D

∣∣∣� (I )s
(
�μ

I ;κg
)∣∣∣2 dμ =

√√√√√
∑
I∈D
a∈�

� (I )2s
∣∣∣∣
〈
g, hμ,a

I ;κ
〉
L2(μ)

∣∣∣∣
2

=
√√√√
∑
I∈D
a∈�

� (I )2s
∣∣∣�hμ,a

I ;κ
∣∣∣2 ≤ ‖�‖ < ∞,
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and finally we have

� f =
∑
I∈D
a∈�

〈
f , hμ,a

I ;κ
〉
L2(μ)

�hμ,a
I ;κ =

∑
I∈D
a∈�

〈
f , hμ,a

I ;κ
〉
L2(μ)

〈
g, hμ,a

I ;κ
〉
L2(μ)

=
∫

Rn
f (x) g (x) dμ (x) = 〈 f , g〉L2(μ) .

��

2.6 Quasiorthogonality in weighted Sobolev spaces

Let �μ,s
I ;κ1 = � (I )−s �μ

I ;κ1and E
μ,s
I ;κ1 = � (I )−s

E
μ

I ;κ1 . Since
{
�μ,s

I ;κ1
}
I∈D is a complete set of

orthogonal projections on Ws
dyad (Rn), we have

∑
I∈D

� (I )−2s
∥∥∥�μ

I ;κ1 f
∥∥∥2
L2(μ)

=
∑
I∈D

∥∥∥�μ,s
I ;κ1 f

∥∥∥2
Ws

dyad(μ)
=
∥∥∥∥∥
∑
I∈D

�μ,s
I ;κ1 f

∥∥∥∥∥
2

W 2
dyad(μ)

= ‖ f ‖2Ws
dyad(μ)

and then if
{
E

μ,s
F;κ1

}
F∈F is a collection of projections, indexed by a subgridF ofD satisfying

an appropriate Carleson condition, we expect to have

∑
F∈F

� (F)−2s
∥∥∥Eμ

F;κ1 f
∥∥∥2
L2(μ)

=
∑
F∈F

∥∥∥Eμ,s
F;κ1 f

∥∥∥2
L2(μ)

� ‖ f ‖2Ws
dyad(μ) .

Here is the quasiorthogonality lemma appropriate for Sobolev spaces, in which | f | does not
appear, and which can be viewed as a Sobolev space version of the Carleson Embedding
Theorem.

Lemma 28 (Quasiorthogonality Lemma) Let μ be a doubling measure on R
n. Suppose that

for some ε > 0, the subgrid F ⊂ D satisfies the ε-strong μ-Carleson condition,

∑
F∈F
F⊂F ′

(
�
(
F ′)

� (F)

)ε

|F |μ ≤ C
∣∣F ′∣∣

μ
F ′ ∈ F . (2.15)

Then for s < ε
2 we have

∑
F∈F

� (F)−2s
∥∥∥Eμ

F;κ f
∥∥∥2
L2(μ)

� ‖ f ‖2Ws
dyad(σ ) .

Proof Since
�μ

π(m)F;κ f∥∥∥�μ

π(m)F;κ f
∥∥∥∞

is a normalized polynomial of degree less than κ on the D-child

(
π(m)F

)
F of π(m)F that contains F , we have by (2.8) and (2.9),

|F |μ
∥∥∥Eσ

F;κ �μ

π(m)F;κ f
∥∥∥2∞ ≈

∫
F

∣∣∣Eσ
F;κ �μ

π(m)F;κ f
∣∣∣2 dμ ≤

∫
F

∣∣∣�μ

π(m)F;κ f
∣∣∣2 dμ

≈ |F |μ
∥∥∥�μ

π(m)F;κ f
∥∥∥2∞
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and so for any t < 0 we have

∑
F∈F

� (F)−2s
∥∥∥Eμ

F;κ f
∥∥∥2
L2(μ)

=
∑
F∈F

� (F)−2s

∥∥∥∥∥E
μ

F;κ1

(∑
I∈D

�μ

I ;κ f

)∥∥∥∥∥
2

L2(μ)

=
∑
F∈F

� (F)−2s

∥∥∥∥∥
∞∑

m=1

E
μ

F;κ1 �μ

π(m)F;κ f

∥∥∥∥∥
2

L2(μ)

�
∑
F∈F

� (F)−2s |F |μ
( ∞∑
m=1

∥∥∥Eμ

F;κ �μ

π(m)F;κ f
∥∥∥∞

)2

≤
∑
F∈F

� (F)−2s |F |μ
( ∞∑
m=1

∥∥∥�μ

π(m)F;κ f
∥∥∥∞

)2

≤
∑
F∈F

� (F)−2s |F |μ
( ∞∑
m=0

�
(
π(m)F

)2t)( ∞∑
m=0

�
(
π(m)F

)−2t ∥∥∥�μ

π(m)F;κ f
∥∥∥2∞
)

≈
∑
F∈F

� (F)2t−2s |F |μ
∞∑

m=0

�
(
π(m)F

)−2t ∥∥∥�μ

π(m)F;κ f
∥∥∥2∞ .

Substituting F ′ for π(m)F , and letting t = s − ε
2 < 0, we obtain from the ε-strong Carleson

condition (2.15) that∑
F∈F

� (F)−2s
∥∥∥Eμ

F;κ f
∥∥∥2
L2(μ)

�
∑
F∈F

� (F)2t−2s
∞∑

m=0

|F |μ∣∣(π(m)F
)
F

∣∣
μ

�
(
π(m)F

)−2t
∫
(π(m)F)F

∥∥∥�μ

π(m)F;κ f
∥∥∥2∞ dμ

≈
∑
F∈F

� (F)2t−2s
∞∑

m=0

|F |μ∣∣(π(m)F
)
F

∣∣
μ

�
(
π(m)F

)−2t
∫
(π(m)F)F

∣∣∣�μ

π(m)F;κ f
∣∣∣2 dμ

=
∑
F ′∈F

⎛
⎜⎜⎝
∑
F∈F
F⊂F ′

� (F)−ε
|F |μ

|(F ′)F |μ

⎞
⎟⎟⎠ �

(
F ′)ε−2s

∥∥∥�μ

F ′;κ f
∥∥∥2
L2(μ)

≤
∑
F ′∈F

(
C�
(
F ′)−ε

∣∣F ′∣∣
μ

|(F ′)F |μ

)
�
(
F ′)ε−2s

∥∥∥�μ

F ′;κ f
∥∥∥2
L2(μ)

�
∑
F ′∈F

�
(
F ′)−2s

∥∥∥�μ

F ′;κ f
∥∥∥2
L2(μ)

� ‖ f ‖2Ws
dyad(μ) .

��

Remark 29 We can replace f by its modulus | f | in the above lemma when κ = 1 and s > 0
is sufficiently small. Indeed, by the reverse triangle inequality we have

‖| f |‖2Ws
diff;1(μ) =

∑
Q∈D

∫
Q

∣∣∣∣∣
f (x) − E

μ

Q;1 f (x)

� (Q)s

∣∣∣∣∣
2

dμ (x)
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=
∑
Q∈D

∫
Q

∣∣∣∣∣∣
f (x) −

(
1

|Q|μ
∫
Q f dμ

)
1Q (x)

� (Q)s

∣∣∣∣∣∣

2

dμ (x)

= 2
∑
Q∈D

1

|Q|2μ

∫
Q

∫
Q

∣∣∣∣ | f (x)| − | f (y)|
� (Q)s

∣∣∣∣
2

dμ (x) dμ (y)

≤ 2
∑
Q∈D

1

|Q|2μ

∫
Q

∫
Q

∣∣∣∣ f (x) − f (y)

� (Q)s

∣∣∣∣
2

dμ (x) dμ (y) = ‖ f ‖2Ws
diff;1(μ) ,

and now we use the equivalence ‖·‖2Ws
diff;1(μ)

≈ ‖·‖2Ws
dyad;1(μ)

for |s| sufficiently small.

3 Preliminaries: weighted Sobolev norm inequalities

Duality shows the equivalence of weighted norm inequalities with bilinear inequalities.

Lemma 30 The Sobolev norm inequality
∥∥T α

σ f
∥∥
Ws

dyad(ω)
≤ ∥∥T α

∥∥
op ‖ f ‖Ws

dyad(σ ) (3.1)

is equivalent to the bilinear inequality
∣∣∣∣∣
∑
I∈D

∑
J∈D

∫
Rn

(
T α

σ �σ
I f
)�ω

J gdω

∣∣∣∣∣ ≤
∥∥T α

∥∥
bil ‖ f ‖Ws

dyad(σ ) ‖g‖W−s
dyad(ω) for f , g ∈ L2 (μ) .

(3.2)

Proof Indeed, if the bilinear inequality holds and f = ∑
I∈D �σ

I f and g = ∑
J∈D �ω

J g,
then
∣∣∣∣
∫

Rn

(
T α

σ f
)
gdω

∣∣∣∣ =
∣∣∣∣∣
∑
I∈D

∑
J∈D

∫
Rn

(
T α

σ �σ
I f
)�ω

J gdω

∣∣∣∣∣ ≤
∥∥T α

∥∥
bil ‖ f ‖Ws

dyad(σ ) ‖g‖W−s
dyad(ω)

shows that

∥∥T α
σ f
∥∥
Ws

dyad(ω)
= sup

‖g‖Ws
dyad(ω)∗≤1

∣∣∣∣
∫

Rn

(
T α

σ f
)
gdω

∣∣∣∣ = sup
‖g‖

W−s
dyad(ω)

≤1

∣∣∣∣
∫

Rn

(
T α

σ f
)
gdω

∣∣∣∣
≤ ∥∥T α

∥∥
bil ‖ f ‖Ws

dyad(σ )

�⇒ ∥∥T α
∥∥
op ≤ ∥∥T α

∥∥
bil since L2 (μ) is dense in Ws

dyad (μ) .

Conversely, if the norm inequality holds, then
∣∣∣∣
∫

Rn

(
T α

σ f
)
gdω

∣∣∣∣ ≤ ∥∥T α
σ f
∥∥
Ws

dyad(ω)
‖g‖Ws

dyad(ω)∗ ≤ ∥∥T α
∥∥
op ‖ f ‖Ws

dyad(σ ) ‖g‖Ws
dyad(ω)∗

= ∥∥T α
∥∥
op ‖ f ‖Ws

dyad(σ ) ‖g‖W−s
dyad(ω)

�⇒ ∥∥T α
∥∥
bil ≤ ∥∥T α

∥∥
op .

��
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3.1 The good–bad decomposition

Here we follow the random grid idea of Nazarov, Treil and Volberg. Denote by �dyad the
collection of all dyadic gridsD. For a weight μ, we consider a random choice of dyadic grid
D on the natural probability space �dyad.

Definition 31 For a positive integer r and 0 < ε < 1, a cube J ∈ D is said to be (r ,ε)-bad
if there is a cube I ∈ D with |I | ≥ 2r |J |, and

dist(e(I ), J ) ≤ 1
2 |J |ε|I |1−ε.

Here, e(J ) is the union of the boundaries of the children of the cube J . (This contains the
set of discontinuities of hμ

J ;κ and its derivatives less than order κ .) Otherwise, J is said to be
(r ,ε)-good.

The basic proposition here is this, see e.g. [24] and e.g. [11] or [17] for higher dimensions.

Proposition 32 There is the conditional probability estimate

P
�dyad
cond (J is (r ,ε) -bad : J ∈ D) ≤ Cε2

−εr .

Define projections

Pμ

good;D f = Pμ
good f ≡

∑
I is (r ,ε)-good ∈D

�
μ
I f and Pμ

bad;D f = Pμ
bad f ≡ f − Pμ

good f .

(3.3)

Recall that

‖ f ‖2Ws
D(μ) ≡

∑
Q∈D

� (Q)−2s
∥∥∥�μ

Q f
∥∥∥2
L2(μ)

,

‖ f ‖2Ws
dyad(μ) ≈ ‖ f ‖2Ws

D(μ) , for all D ∈ �dyad.

The basic Proposition is then this.

Proposition 33 (cf. Theorem 17.1 in [24] where the middle line below is treated) We have
the estimates

E
D
�dyad

∥∥∥Pμ

bad;D f
∥∥∥
Ws

D(μ)
≤ Cε2

− ε
2 r ‖ f ‖Ws

dyad(μ) ,

E
D
�dyad

∥∥∥Pμ

bad;D f
∥∥∥
L p(μ)

≤ Cε2
− εr

p ‖ f ‖L p(μ) ,

E
D
�dyad

∥∥∥Pμ

bad;D f
∥∥∥
W−s

D (μ)
≤ Cε2

− ε
2 r ‖ f ‖W−s

dyad(μ) .

Proof We have

E
D
�dyad

(∥∥∥ Pμ

bad;D f
∥∥∥2
Ws

dyad(μ)

)
= E

D
�dyad

∑
I∈D is (r ,ε)-bad

� (I )−2s 〈 f , hμ
I

〉2
L2(μ)

≤ CεE
D
�dyad

2−εr
∑
I∈D

� (I )−2s 〈 f , hμ
I

〉2
L2(μ)

= Cε2
−εr ‖ f ‖2Ws

dyad(μ) ,
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and then

E
D
�dyad

(∥∥∥ Pμ

bad;D f
∥∥∥
Ws

dyad(μ)

)
≤
√

E
D
�dyad

(∥∥∥Pμ

bad;D f
∥∥∥2
Ws

dyad(μ)

)
≤ Cε2

− ε
2 r ‖ f ‖Ws

dyad(μ) .

Similarly for L p (μ) and W−s
dyad (μ) in place of Ws

dyad (μ). ��
From this we conclude the following: Given any 0 < ε < 1, there is a choice of r ,

depending on ε, so that the following holds. Let T : Ws
dyad (σ ) → Ws

dyad (ω) be a bounded
linear operator, where for specificity we take Ws

dyad = Ws
D0

, and D0 is the standard dyadic
grid on R

n . We then have‖T ‖Ws
dyad(σ )→Ws

dyad(ω) ≤ 2 sup
‖ f ‖Ws

dyad (σ )=1
sup

‖φ‖
W−s
dyad (ω)

=1
E
D
�dyad

E
E
�dyad

|
〈
TPσ

good;D f , Pω
good;Dg

〉
ω
|.

(3.4)

Indeed, we can choose f ∈ Ws
dyad (σ ) of norm one, and g ∈ W−s

dyad (ω) of norm one, and we
can write

f = Pσ
good;D f + Pσ

bad;D f

and similarly for g and E , so that

‖T ‖Ws
dyad(σ )→Ws

dyad(ω) = ∣∣〈Tσ f , g〉ω
∣∣

≤ E
D
�dyad

E
E
�dyad

|
〈
TσPσ

good;D f , Pω
good;Eg

〉
ω
| + E

D
�dyad

E
E
�dyad

|
〈
TσPσ

bad;D f , Pω
good;Eg

〉
ω
|

+ E
D
�dyad

E
E
�dyad

|
〈
TσPσ

good;D f , Pω
bad;Eg

〉
ω
| + E

D
�dyad

E
E
�dyad

|〈TσPσ
bad;D f , Pω

bad;Eg
〉
ω
|

≤ E
D
�dyad

E
E
�dyad

|
〈
TσPσ

good;D f , Pω
good;Eg

〉
ω
| + 3Cε2

− ε
2 r ‖T ‖Ws

dyad(σ )→Ws
dyad(ω) .

And this proves (3.4) for r sufficiently large.
This has the following implication for us: Given any linear operator T and 0 < ε < 1,

it suffices to consider only (r,ε)-good cubes for r sufficiently large, and prove an estimate
for ‖T ‖Ws

dyad(σ )→Ws
dyad(ω) that is independent of this assumption. Accordingly, we will call

(r ,ε)-good cubes just good cubes from now on. At certain points in the arguments below,
such as in the treatment of the neighbour form for Ws

dyad (σ ), we will need to further restrict
the parameter ε (and accordingly r as well).

3.2 Defining the norm inequality

We now turn to a precise definition of the weighted norm inequality∥∥T α
σ f
∥∥
Ws

dyad(ω)
≤ NT α ‖ f ‖Ws

dyad(σ ) , f ∈ Ws
dyad (σ ) , (3.5)

where Ws
dyad (σ ) is the Hilbert space completion of the space of functions f ∈ L2

loc (σ ) for
which

‖ f ‖Ws
dyad(σ ) < ∞.

A similar definition holds for Ws
dyad (ω). For a precise definition of (3.5), it is possible to

proceed with the notion of associating operators and kernels through an identity for functions
with disjoint support as in [22]. However, we choose to follow the approach in [18, see page
314]. So we suppose that K α is a smooth α-fractional Calderón–Zygmund kernel, and we
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introduce a family
{
ηα

δ,R

}
0<δ<R<∞ of nonnegative functions on [0,∞) so that the truncated

kernels K α
δ,R (x, y) = ηα

δ,R (|x − y|) K α (x, y) are bounded with compact support for fixed
x or y, and uniformly satisfy (1.2). Then the truncated operators

T α
σ,δ,R f (x) ≡

∫
Rn

K α
δ,R (x, y) f (y) dσ (y) , x ∈ R

n,

are pointwise well-defined, and we will refer to the pair
(
K α,

{
ηα

δ,R

}
0<δ<R<∞

)
as an

α-fractional singular integral operator, which we typically denote by T α , suppressing the
dependence on the truncations.

Definition 34 We say that an α-fractional singular integral operator T α = (
K α,{

ηα
δ,R

}
0<δ<R<∞

)
satisfies the norm inequality (3.5) provided

∥∥T α
σ,δ,R f

∥∥
Ws

dyad(ω)
≤ NT α (σ, ω) ‖ f ‖Ws

dyad(σ ) , f ∈ Ws
dyad (σ ) , 0 < δ < R < ∞.

Independence of Truncations In the presence of the classical Muckenhoupt condition
Aα
2 , the norm inequality ( 3.5) is essentially independent of the choice of truncations

used, including nonsmooth truncations as well—see [9]. However, in dealing with the
Monotonicity Lemma 40 below, where κ th order Taylor approximations are made on the
truncated kernels, it is necessary to use sufficiently smooth truncations. Similar comments
apply to the Cube Testing conditions (3.6) and (3.7) below.

3.2.1 Ellipticity of kernels

Modifying slightly the definition in [21, (39) on page 210], we say that an α-fractional
Calderón–Zygmund kernel K α is elliptic in the sense of Stein if there is a unit coordinate
vector ek ∈ R

n for some 1 ≤ k ≤ n, and a positive constant c > 0 such that∣∣K α (x, x + tek)
∣∣ ≥ c |t |α−n , for all t ∈ R.

For example, the Beurling, Cauchy andRiesz transform kernels, as well as those for k-iterated
Riesz transforms are elliptic in the sense of Stein for any k ≥ 1.

3.2.2 Cube testing

While the next more general testing conditions with κ > 1, introduced in [14, 16], are not
used in the statements of our theorems, they will be used in the course of our proof.

The κ-cube testing conditions associated with an α -fractional singular integral operator
T α , introduced in [14] for s = 0, are given by

(
Tκ,s
T α (σ, ω)

)2 ≡ sup
Q∈Qn

max
0≤|β|<κ

1

� (Q)−2s |Q|σ
∥∥∥1QT α

σ

(
1Qm

β
Q

)∥∥∥2
Ws

dyad(ω)
< ∞,

(
Tκ,−s

(T α)∗ (ω, σ )
)2 ≡ sup

Q∈Qn
max

0≤|β|<κ

1

� (Q)2s |Q|ω
∥∥∥1QT α,∗

ω

(
1Qm

β
Q

)∥∥∥2
W−s

dyad(σ )
< ∞,

(3.6)

where (T α,∗)ω = (T α
σ

)∗, with mβ
Q (x) ≡

(
x−cQ
�(Q)

)β

for any cube Q and multiindex β, where

cQ is the center of the cube Q, andwherewe interpret the right hand sides as holding uniformly
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over all sufficiently smooth truncations of T α . Equivalently, in the presence of Aα
2 ,we can take

a single suitable truncation, see Independence of Truncations in Subsubsection 3.2 above.
We also use the larger triple κ-cube testing conditions in which the integrals over Q are

extended to the triple 3Q of Q:

(
TRκ,s

T α (σ, ω)
)2 ≡ sup

Q∈Qn
max

0≤|β|<κ

1

� (Q)−2s |Q|σ
∥∥∥13QT α

σ

(
1Qm

β
Q

)∥∥∥2
Ws

dyad(ω)
< ∞,

(
TRκ,−s

(T α)∗ (ω, σ )
)2 ≡ sup

Q∈Qn
max

0≤|β|<κ

1

� (Q)2s |Q|ω
∥∥∥13QT α,∗

ω

(
1Qm

β
Q

)∥∥∥2
W−s

dyad(σ )
< ∞.

(3.7)

3.3 Necessity of the classical Muckenhoupt condition

Suppose that T α f = K ∗ f where K α (x) = �(x)
|x |n−α , and �(x) is homogeneous of degree

0 and smooth away from the origin. Note that we do not require any cancellation properties
on �, except that when α = 0 we suppose

∫
�(x) dσn−1 (x) = 0 where σn−1 is surface

measure on the sphere (see e.g. [21] page 68 for the case α = 0). We assume � is nontrivial
in the sense that there is a coordinate direction � ∈ S

n−1 such that �(�) �= 0. Then there
is a cone � centered on � on which K (x) = �(x)

|x |n−α and �(x) ≥ c > 0 for x ∈ �. Consider
pairs of separated dyadic cubes in direction �,

SP� ≡ {(I , I ′) : dist (I , I ′) ≈ � (I ) = �
(
I ′) , R1� (I )

≤ dist
(
I , I ′) ≈ R� (I ) , and I ′ has direction � from I

}
,

where R is chosen large enough that if the cone � is translated to any point in I , then it
contains any cube I ′ for which

(
I , I ′) ∈ SP�.

We first derive the ‘separated’ Muckenhoupt condition from the full testing condition for
T α , i.e. (

1

|I ′|
∫
I ′
dω

)(
1

|I |
∫
I
dσ

)
≤ FTT α (s; σ, ω)2 ,

(
I , I ′) ∈ SP�.

We may assume without loss of generality that � = e1, the unit vector in the direction of
the positive x1-axis. Now we choose a special unit Haar function hω

I ′ , i.e. �ω
I ′hω

I ′ = hω
I ′ and∥∥hω

I ′
∥∥
L2(ω)

= 1, satisfying

hω
I ′ (x) =

∑
K∈C(I )

aK 1K (x) , where

{
aK > 0 if K lies to the right of center
aK < 0 if K lies to the left of center

,

where for a cube Q centered at the origin, we say a child K lies to the right of center if K is
contained in the half space where x1 ≥ 0. We now compute
∥∥1I ′T α (1Iσ)

∥∥2
Ws

dyad(ω)
=
∑
J∈D

� (J )−2s
∥∥�ω

J

(
1I ′T α1Iσ

)∥∥2
L2(ω)

≥ �
(
I ′)−2s ∥∥�ω

I ′
(
T α1Iσ

)∥∥2
L2(ω)

≥ �
(
I ′)−2s ∣∣〈T α1Iσ, hω

I ′
〉
ω

∣∣2 = �
(
I ′)−2s

∣∣∣∣
∫
I ′

(∫
I
K α (x, y) dσ (y)

)
hω
I ′ (x) dω (x)

∣∣∣∣
2

= �
(
I ′)−2s

∣∣∣∣
∫
I ′

(∫
I

[
K α (x − y) − K α (cI ′ − y)

]
dσ (y)

)
hω
I ′ (x) dω (x)

∣∣∣∣
2
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= �
(
I ′)−2s

∣∣∣∣
∫
I ′

∫
I

[
K α (x − y) − K α (cI ′ − y)

]
hω
I ′ (x) dσ (y) dω (x)

∣∣∣∣
2

� c�
(
I ′)−2s

(∫
I ′

∫
I

∣∣∣∣∣
1√|I |ω

�
(
I ′)

dist (I , I ′)n+1−α

∣∣∣∣∣ dσ (y) dω (x)

)2

= c�
(
I ′)−2s |I |2σ

∣∣I ′∣∣
ω

dist (I , I ′)2n−2α ,

since ω is doubling. Thus we have

�
(
I ′)−2s |I |2σ

∣∣I ′∣∣
ω

dist (I , I ′)2n−2α �
∥∥1I ′T α (1Iσ)

∥∥2
Ws

dyad(ω)

≤ FTT α (s; σ, ω)2 ‖1I ‖2Ws
dyad(σ ) ≈ FTT α (s; σ, ω)2 � (I )−2s |I |σ

which gives the desired inequality,

|I |σ
|I |n−α

∣∣I ′∣∣
ω

|I ′|n−α
� FTT α (s; σ, ω)2 .

Since the measures are doubling, we obtain the full Muckenhoupt inequality,

Aα
2 (σ, ω) = sup

I

|I |σ |I |ω
|I |2(n−α)

� FTT α (s; σ, ω)2 .

Thus we have proved the following lemma.

Lemma 35 If T α f = K α ∗ f where K α (x) = �(x)
|x |n−α , and �(x) is homogeneous of degree

0 and smooth away from the origin and � (ek) �= 0 for some 1 ≤ k ≤ n, then boundedness
of T α from Ws

dyad (σ ) to Ws
dyad (ω), implies the Aα

2 (σ, ω) condition, more precisely,
√
Aα
2 (σ, ω) � FTT α (s; σ, ω) ≤ NT α (s; σ, ω) .

3.3.1 Necessity of the strong �th order pivotal condition for doubling weights

The smaller fractional Poisson integrals Pα
κ (Q, μ) used here, in [14] and elsewhere, are given

by

Pα
κ (Q, μ) =

∫
Rn

� (Q)κ(
� (Q) + ∣∣y − cQ

∣∣)n+κ−α
dμ (y) , κ ≥ 1, (3.8)

and the κ th-order fractional pivotal constants Vα,κ
2 ,Vα,κ,∗

2 < ∞, κ ≥ 1, are given by

(Vα,κ
2 (σ, ω)

)2 = sup
Q⊃∪̇Qr

1

|Q|σ
∞∑
r=1

Pα
κ

(
Qr , 1Qσ

)2 |Qr |ω (3.9)

(Vα,κ,∗
2 (σ, ω)

)2 = sup
Q⊃∪̇Qr

1

|Q|ω
∞∑
r=1

Pα
κ

(
Qr , 1Qω

)2 |Qr |σ = (Vα,κ
2 (ω, σ )

)2

and the ε-strong κ-pivotal constants Vα,κ
2,ε ,Vα,κ,∗

2,ε < ∞, κ ≥ 1, ε > 0, are given by

(
Vα,κ
2,ε (σ, ω)

)2 = sup
Q⊃∪̇Qr

1

|Q|σ
∞∑
r=1

Pα
κ

(
Qr , 1Qσ

)2 ( � (Q)

� (Qr )

)ε

|Qr |ω
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(
Vα,κ,∗
2,ε (σ, ω)

)2 = sup
Q⊃∪̇Qr

1

|Q|ω
∞∑
r=1

Pα
κ

(
Qr , 1Qω

)2 ( � (Q)

� (Qr )

)ε

|Qr |σ =
(
Vα,κ
2,ε (ω, σ )

)2

(3.10)

and where the suprema are taken over all subdecompositions of a cube Q ∈ Qn into pairwise
disjoint dyadic subcubes Qr . The case ε = 0 of the following lemma was obtained in [16,
Subsection 4.1 on pages 12–13, especially Remark 15], where it was the point of departure
for freeing the theory from reliance on energy conditions when the measures are doubling.

Lemma 36 Let 0 ≤ α < n. If σ is a doubling measure, then for κ > θdoubσ + α − n and
0 < ε ≤ θ revσ , we have

Vα,κ
2,ε (σ, ω) ≤ Cκ,εA

α
2 (σ, ω) .

Proof A doubling measure σ with doubling parameters 0 < β, γ < 1 as in (2.1), has a
‘doubling exponent’ θdoubσ > 0 and a positive constant c depending on β, γ that satisfy the
condition, see e.g. [16],∣∣∣2− j Q

∣∣∣
σ

≥ c2− jθdoubσ |Q|σ for all j ∈ N.

We can then exploit the doubling exponents θdoubσ and reverse doubling exponents θ revσ of
the doubling measure σ in order to derive certain κ th order pivotal conditions Vα,κ

2,ε < ∞.

Indeed, if σ has doubling exponent θdoubσ and κ > θdoubσ + α − n, we have∫
Rn\I

� (I )κ

(� (I ) + |x − cI |)n+κ−α
dσ (x)

=
∞∑
j=1

� (I )α−n
∫
2 j I\2 j−1 I

1(
1 + |x−cI |

�(I )

)n+κ−α
dσ (x)

� |I | α
n −1

∞∑
j=1

2− j(n+κ−α)
∣∣∣2 j I

∣∣∣
σ

� |I | α
n −1

∞∑
j=1

2− j(n+κ−α) 1

c2− jθdoubσ

|I |ω

≤ Cn,κ,α,β,γ |I | α
n −1 |I |σ

(3.11)

provided n + κ − α − θdoubσ > 0, i.e. κ > θdoubσ + α − n. It follows that if I ⊃
·⋃∞

r=1
Ir is a

subdecomposition of I into pairwise disjoint cubes Ir , and κ > θdoubσ + α − n, then

∞∑
r=1

Pα
κ (Ir , 1Iσ)2

(
� (I )

� (Ir )

)ε

|Ir |ω

�
∞∑
r=1

(
|Ir | α

n −1 |Ir |σ
)2 ( � (I )

� (Ir )

)ε

|Ir |ω =
∞∑
r=1

(
� (I )

� (Ir )

)ε |Ir |σ |Ir |ω
|Ir |2(1− α

n )
|Ir |σ

� Aα
2 (σ, ω)

∞∑
r=1

(
� (I )

� (Ir )

)ε

|Ir |σ ≤ Cσ,εA
α
2 (σ, ω) |I |σ

provided 0 < ε ≤ θ revσ , indeed,
(

� (I )

� (Ir )

)ε

|Ir |σ ≤
(

� (I )

� (Ir )

)ε

Cσ,ε

(
� (Ir )

� (I )

)θ revσ

|I |σ ≤ Cσ,ε |I |σ .
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This then gives

Vα,κ
2,ε ≤ Cκ,εA

α
2 (σ, ω) κ > θdoubσ + α − n and 0 < ε ≤ θ revσ (3.12)

where the constant Cκ,ε depends on κ, ε and the doubling constant of σ . A similar result
holds for Vα,κ,∗

2,ε if κ + n − α > θdoubω and 0 < ε ≤ θ revω hold for the doubling and reverse

doubling exponents θdoubω , θ revω of ω. ��

3.4 The energy lemma

For 0 ≤ α < n and m ∈ R+, we recall from (3.8) the mth-order fractional Poisson integral

Pα
m (J , μ) ≡

∫
Rn

� (J )m

(� (J ) + |y − cJ |)m+n−α
dμ (y) ,

where Pα
1 (J , μ) = Pα (J , μ) is the standard Poisson integral. The case s = 0 of the following

extension of the ‘energy lemma’ is due to Rahm, Sawyer and Wick [14], and is proved in
detail in [16, Lemmas 28 and 29 on pages 27–30].

Definition 37 Given a subset J ⊂ D, define the projection Pω
J ≡ ∑

J ′∈J �ω
J ′;κ , and given

a cube J ∈ D, define the projection Pω
J ≡∑J ′∈D: J ′⊂J �ω

J ′;κ .

Lemma 38 (Energy Lemma) Fix κ ≥ 1. Let J be a cube in D, and let �J ∈ W−s
dyad (ω) be

supported in J with vanishing ω-means up to order less than κ . Let ν be a positive measure
supported in R

n\γ J with γ > 1, and let T α be a smooth α-fractional singular integral
operator with 0 ≤ α < n. Then for |s| sufficiently small, we have the ‘pivotal’ bound∣∣∣〈T α (ϕν) ,�J

〉
L2(ω)

∣∣∣ � Cγ P
α
κ (J , ν) � (J )−s

√|J |ω ‖�J‖W−s
dyad(ω) (3.13)

for any function ϕ with |ϕ| ≤ 1.

We also recall from [16, Lemma 33] the following Poisson estimate, that is a straightfor-
ward extension of the case m = 1 due to Nazarov, Treil and Volberg in [12].

Lemma 39 Fixm ≥ 1. Suppose that J ⊂ I ⊂ K and thatdist (J , ∂ I ) > 2
√
n� (J )ε � (I )1−ε.

Then

Pα
m(J , σ1K\I ) �

(
� (J )

� (I )

)m−ε(n+m−α)

Pα
m(I , σ1K\I ). (3.14)

We now give Sobolev modifications to several known arguments. The next lemma was
proved in [14] for s = 0.

Lemma 40 Let 0 ≤ α < n, κ ∈ N and 0 < δ < 1. Suppose that I and J are cubes inR
n such

that J ⊂ 2J ⊂ I , and thatμ is a signed measure onR
n supported outside I . Finally suppose

that T α is a smooth fractional singular integral on R
n with kernel K α (x, y) = K α

y (x), and
that ω is a locally finite positive Borel measure on R

n. Then
∥∥�ω

J ;κT
αμ
∥∥2
Ws

dyad(ω)
� �α

κ,s (J , μ)2 + �α
κ,s (J , |μ|)2 , (3.15)

where for a measure ν,

�α
κ,s (J , ν)2 ≡

∑
|β|=κ

∣∣∣∣
∫

Rn

(
K α

y

)(κ) (
mκ

J

)
dν (y)

∣∣∣∣
2 ∥∥�ω

J ;κ x
β
∥∥2
Ws

dyad(ω)
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�α
κ,s (J , |ν|)2 ≡

(
Pα

κ+δ (J , |ν|)
|J | κ

n

)2 ∥∥∣∣x − mκ
J

∣∣κ∥∥2
Ws

dyad(1Jω)

∥∥∥
∣∣∣hω

J ;κ
∣∣∣
∥∥∥2
W−s

dyad(ω)

� (J )2s

where mκ
J ∈ J satisfies

∥∥∣∣x − mκ
J

∣∣κ∥∥2
Ws

dyad(1Jω)
= inf

m∈J

∥∥|x − m|κ∥∥2Ws
dyad(1Jω)

.

Remark 41 Note that when s = 0, we have

∥∥∥
∣∣∣hω

J ;κ
∣∣∣
∥∥∥2
W−s
dyad (ω)

�(J )2 s
=

∥∥∥hω
J ;κ
∥∥∥2
L2(ω)

1 = 1, and so the

above inequality becomes the familiar Monotonicity Lemma. For s close to zero, Lemma 26

shows that

∥∥∥
∣∣∣hω

J ;κ
∣∣∣
∥∥∥2
W−s
dyad (ω)

�(J )2 s
� 1, which gives the same familiar form.

Proof of Lemma 40 The proof is an easy adaptation of the one-dimensional proof in [14],
which was in turn adapted from the proofs in [11, 17], but using a κ th order Taylor expansion

instead of a first order expansion on the kernel
(
K α

y

)
(x) = K α (x, y). Due to the importance

of this lemma, as explained above, we repeat the short argument.

Let
{
hω,a
J ;κ
}
a∈�J ,n,κ

be an orthonormal basis of L2
J ;κ (ω) consisting of Alpert functions as

above.Nowwe use theCalderón–Zygmund smoothness estimate (1.2), togetherwith Taylor’s
formula

K α
y (x) = Tay

(
K α

y

)
(x, c) + 1

κ!
∑

|β|=κ

(
K α

y

)(β)

(θ (x, c)) (x − c)β ;

Tay
(
K α

y

)
(x, c) ≡ K α

y (c) + [(x − c) · ∇] K α
y (c) + ... + 1

(κ − 1)! [(x − c) · ∇]κ−1 K α
y (c) ,

and the vanishing means of the Alpert functions hω,a
J ;κ for a ∈ �J ,n,κ , to obtain

〈
T αμ, hω,a

J ;κ
〉
L2(ω)

=
∫

Rn

{∫
Rn

K α (x, y) hω,a
J ;κ (x) dω (x)

}
dμ (y) =

∫
Rn

〈
K α

y , hω,a
J ;κ
〉
L2(ω)

dμ (y)

=
∫

Rn

〈
K α

y (x) − Tay
(
K α

y

) (
x,mκ

J

)
, hω,a

J ;κ (x)
〉
L2(ω)

dμ (y)

=
∫

Rn

〈
1

κ!
∑

|β|=κ

(
K α

y

)(β) (
θ
(
x,mκ

J

)) (
x − mκ

J

)β
, hω,a

J ;κ (x)

〉

L2(ω)

dμ (y) (some θ
(
x,mκ

J

) ∈ J )

=
∑

|β|=κ

〈[∫
Rn

1

κ!
(
K α

y

)(β) (
mκ

J

)
dμ (y)

] (
x − mκ

J

)β
, hω,a

J ;κ
〉
L2(ω)

+
∑

|β|=κ

〈⎡
⎣
∫

Rn

1

κ!

⎡
⎣(K α

y

)(β) (
θ
(
x,mκ

J

))−
∑

|β|=κ

(
K α

y

)(β) (
mκ

J

)
⎤
⎦ dμ (y)

⎤
⎦(x − mκ

J

)β
, hω,a

J ;κ

〉

L2(ω)

.

Then using that
∫

Rn

(
K α

y

)(β) (
mκ

J

)
dμ (y) is independent of x ∈ J , and that〈(

x − mκ
J

)β
,hω

J ;κ
〉
L2(ω)

=
〈
xβ,hω

J ;κ
〉
L2(ω)

by moment vanishing of the Alpert wavelets,

we can continue with
〈
T αμ, hω,a

J ;κ
〉
L2(ω)

=
∑

|β|=κ

[∫
Rn

1

κ!
(
K α

y

)(β) (
mκ

J

)
dμ (y)

]
·
〈
xβ, hω,a

J ;κ
〉
L2(ω)

+ 1

κ!
∑

|β|=κ

〈[∫
Rn

[(
K α

y

)(β) (
θ
(
x,mκ

J

))−
(
K α

y

)(β) (
mκ

J

)]
dμ (y)

] (
x − mκ

J

)β
, hω,a

J ;κ
〉
L2(ω)

.
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Hence
∣∣∣∣∣∣
〈
T αμ, hω,a

J ;κ
〉
L2(ω)

−
∑

|β|=κ

[∫
Rn

1

κ!
(
K α

y

)(β) (
mκ

J

)
dμ (y)

]
·
〈
xβ, hω,a

J ;κ
〉
L2(ω)

∣∣∣∣∣∣

≤ 1

κ!
∑

|β|=κ

∣∣∣∣∣
〈[∫

Rn
sup
θ∈J

∣∣∣∣
(
K α

y

)(β)

(θ) −
(
K α

y

)(β) (
mκ

J

)∣∣∣∣ d |μ| (y)
] ∣∣x − mκ

J

∣∣κ ,

∣∣∣hω,a
J ;κ
∣∣∣
〉
L2(ω)

∣∣∣∣∣

�
∥∥∥∥CCZ

Pα
κ+δ (J , |μ|)

|J |κ
∣∣x − mκ

J

∣∣κ
∥∥∥∥
Ws

dyad(ω)

∥∥∥
∣∣∣hω,a

J ;κ
∣∣∣
∥∥∥
W−s

dyad(ω)

� CCZ
Pα

κ+δ (J , |μ|)
|J |κ

∥∥∣∣x − mκ
J

∣∣κ∥∥
Ws

dyad(1Jω)

∥∥∥
∣∣∣hω,a

J ;κ
∣∣∣
∥∥∥
W−s

dyad(ω)

where in the last line we have used
∫

Rn
sup
θ∈J

∣∣∣∣
(
K α

y

)(β)

(θ) −
(
K α

y

)(β) (
mκ

J

)∣∣∣∣ d |μ| (y)

� CCZ

∫
Rn

( |J |
|y − cJ |

)δ d |μ| (y)
|y − cJ |κ+1−α

= CCZ
Pα

κ+δ (J , |μ|)
|J |κ .

Thus with v
β
J = 1

κ!
∫

Rn

(
K α

y

)(β) (
mκ

J

)
dμ (y), and noting that the functions{

v
β
J h

ω,a
J ;κ
}
a∈�J ,n,κ

are orthonormal in a ∈ �J ,n,κ for each β and J , we have

∣∣∣∣vβ
J

〈
xβ, hω,a

J ;κ
〉
L2(ω)

∣∣∣∣
2

=
∑

a∈�J ,n,κ

∣∣∣∣
〈
xβ, v

β
J · hω,a

J ;κ
〉
L2(ω)

∣∣∣∣
2

=
∥∥∥�ω

J ;κv
β
J x

β
∥∥∥2
L2(ω)

=
∣∣∣vβ

J

∣∣∣2 ∥∥�ω
J ;κ x

β
∥∥2
L2(ω)

=
∣∣∣vβ

J

∣∣∣2 � (J )2s
∥∥�ω

J ;κ x
β
∥∥2
Ws

dyad(ω)

and hence

∥∥�ω
J ;κT

αμ
∥∥2
Ws

dyad(ω)
=
∣∣∣T̂ αμ (J ; κ)

∣∣∣2 � (J )−2s = � (J )−2s
∑

a∈�J ,n,κ

∣∣∣∣
〈
T αμ, hω,a

J ;κ
〉
L2(ω)

∣∣∣∣
2

= � (J )−2s
∑

|β|=κ

∣∣∣vβ
J

∣∣∣2 � (J )2s
∥∥�ω

J ;κ x
κ
∥∥2
Ws

dyad(ω)

+O

(
Pα

κ+δ (J , |μ|)
|J | κ

n

)2

� (J )−2s
∥∥∣∣x − mκ

J

∣∣κ∥∥2
Ws

dyad(1Jω)

∑
a∈�J ,n,κ

∥∥∥
∣∣∣hω,a

J ;κ
∣∣∣
∥∥∥2
W−s

dyad(ω)
.

Thus we conclude that

∥∥�ω
J ;κT

αμ
∥∥2
Ws

dyad(ω)
≤ C1

∑
|β|=κ

∣∣∣∣ 1κ!
∫

Rn

(
K α

y

)(β)

(mJ ) dμ (y)

∣∣∣∣
2 ∥∥�ω

J ;κ x
κ
∥∥2
Ws

dyad(ω)

+C2

(
Pα

κ+δ (J , |μ|)
|J | κ

n

)2 ∥∥∣∣x − mκ
J

∣∣κ∥∥2
Ws

dyad(1Jω)

∥∥∥
∣∣∣hω

J ;κ
∣∣∣
∥∥∥2
W−s

dyad(ω)

� (J )2s
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where hω
J ;κ ≡

{
hω,a
J ;κ
}
a∈�J ,n,κ

and

∑
|β|=κ

∣∣∣∣ 1κ!
∫

Rn

(
K α

y

)(β)

(mJ ) dμ (y)

∣∣∣∣
2

�
(
Pα

κ (J , |μ|)
|J | κ

n

)2

.

��

The following Energy Lemma follows from the aboveMonotonicity Lemma in a standard
way, see e.g. [17]. Recall that for a subsetJ ⊂ D, and for a cube J ∈ D, there are projections

Pω
J ≡∑J ′∈J �ω

J ′;κand P
ω
J ≡∑J ′∈D: J ′⊂J �ω

J ′;κ . Recall also that h
ω
J ;κ ≡

{
hω,a
J ;κ
}
a∈�J ,n,κ

is

the vector of Alpert wavelets associated with the cube J .

Lemma 42 (Energy Lemma) Fix κ ≥ 1 and a locally finite positive Borel measure ω. Let
J be a cube inD. Let�J ∈ W−s

dyad (ω) be supported in J with vanishing ω-means up to order
less than κ . Let ν be a positive measure supported in R

n\γ J with γ > 1. Let T α be a smooth
α-fractional singular integral operator with 0 ≤ α < n. Then we have the ‘pivotal’ bound

∣∣∣〈T α (ϕν) ,�J
〉
L2(ω)

∣∣∣ � Cγ P
α
κ (J , ν) � (J )−s

√|J |ω ‖�J‖W−s
dyad(ω)

∥∥∥
∣∣∣hω

J ;κ
∣∣∣
∥∥∥2
W−s

dyad(ω)

� (J )2s

(3.16)

for any function ϕ with |ϕ| ≤ 1.

4 The strong -pivotal corona decomposition

To set the stage for control of the stopping form below in the absence of the energy condition,
we construct the strong κ-pivotal corona decomposition for f ∈ Ws

dyad (μ), in analogy with

the energy version for L2 (σ ) and L2 (ω) used in the two part paper [8, 9] and in [17].
Fix γ > 1 and define G0 = {

F0
1

}
to consist of the single cube F0

1 , and define the first
generation G1 = {

F1
k

}
k of κ-pivotal stopping children of F0

1 to be the maximal dyadic
subcubes I of F0 satisfying

Pα
κ

(
I , 1F0

1
σ
)2 |I |ω ≥ γ |I |σ .

Then define the second generation G2 = {
F2
k

}
k of CZ κ-pivotal s-stopping children of F0

1
to be the maximal dyadic subcubes I of some F1

k ∈ G1 satisfying

Pα
κ

(
I , 1F1

k
σ
)2 |I |ω ≥ γ |I |σ .

Continue by recursion to define Gn for all n ≥ 0, and then set

F ≡
∞⋃
n=0

Gn = {Fn
k : n ≥ 0, k ≥ 1

}

to be the set of all CZ κ-pivotal stopping intervals in F0
1 obtained in this way.
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4.1 Carleson condition for stopping cubes and corona controls

The ε-strong σ -Carleson condition for F follows from the usual calculation,

∑
F ′∈CF (F)

(
� (F)

� (F ′)

)ε ∣∣F ′∣∣
σ

≤ 1

γ

⎧⎨
⎩

∑
F ′∈CF (F)

Pα
κ

(
F ′, 1Fσ

)2 ( � (F)

� (F ′)

)ε ∣∣F ′∣∣
ω

⎫⎬
⎭

≤ 1

γ
Vα,κ
2,ε (σ, ω) |F |σ .

Now set C(�)
F (F) to be the �th generation of F-subcubes of F , and define F (F) =⋃∞

�=0
C

(�)
F (F) to be the collection of all F-subcubes of F . Then if

Vα,κ
2,ε +1
γ

< 1
2 , we have the

ε-strong σ -Carleson condition,

∑
F ′∈F(F)

(
� (F)

� (F ′)

)ε ∣∣F ′∣∣
σ

=
∞∑

�=0

∑
F ′∈C(�)

F (F)

(
� (F)

� (F ′)

)ε ∣∣F ′∣∣
σ

≤
∞∑

�=0

(
Vα,κ
2,ε + 1

γ

)�

|F |σ ≤ 2 |F |σ . (4.1)

Using Lemma 28, this Carleson condition delivers a basic method of control by qua-
siorthogonality (see [9, 17] for the case s = 0),

∑
F∈F

|F |σ
(
� (F)−s Eσ

F f
)2 � ‖ f ‖2Ws

dyad(σ ) , (4.2)

which is used repeatedly in conjunction with orthogonality of Sobolev projections �ω
J ;κg,

∑
J∈D

∥∥�ω
J ;κg

∥∥2
W−s

dyad(ω)
= ‖g‖2

W−s
dyad(ω)

. (4.3)

Moreover, in each corona

CF ≡ {I ∈ D : I ⊂ F and I �⊂ F ′ for any F ′ ∈ F with F ′
� F

}
,

we have, from the definition of the stopping times, the ε -strong κ-pivotal control,

Pα
κ (I , 1Fσ)2

(
� (F)

� (I )

)ε

|I |ω < � |I |σ , I ∈ CF and F ∈ F . (4.4)

5 Reduction of the proof to local forms

To prove Theorem 2, we begin by proving the bilinear form bound,

∣∣〈T α
σ f , g

〉
ω

∣∣
�
(√

Aα
2 (σ, ω) + TR

(κ)
T α (σ, ω) + TR

(κ)

(T α)∗ (ω, σ ) + Vα,κ
2,ε + Vα,κ,∗

2,ε

)
‖ f ‖Ws

dyad(σ ) ‖g‖W−s
dyad(ω) .
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Following the weighted Haar expansions of Nazarov, Treil and Volberg, we write f and g in
weighted Alpert wavelet expansions,

〈
T α

σ f , g
〉
ω

=
〈
T α

σ

(∑
I∈D

�σ
I ;κ1 f

)
,

(∑
J∈D

�ω
J ;κ2g

)〉

ω

. (5.1)

Then following [17] and many others, the L2 inner product in ( 5.1) can be expanded as

〈
T α

σ f , g
〉
ω

=
〈
T α

σ

(∑
I∈D

�σ
I ;κ1 f

)
,

(∑
J∈D

�ω
J ;κ2g

)〉

ω

=
∑

I∈D and J∈D

〈
T α

σ

(�σ
I ;κ1 f

)
,
(
�ω

J ;κ2g
)〉

ω
.

Then the sum is further decomposed by first the Cube Size Splitting, then using the Shifted
Corona Decomposition, according to theCanonical Splitting. We assume the reader is famil-
iar with the notation and arguments in the first eight sections of [17]. The n-dimensional
decompositions used in [17] are in spirit the same as the one-dimensional decompositions in
[9], as well as the n -dimensional decompositions in [11], but differ in significant details.

A fundamental result of Nazarov, Treil and Volberg [12] is that all the cubes I and J
appearing in the bilinear form above may be assumed to be (r , ε) − good, where a dyadic
interval K is (r , ε) − good, or simply good, if for every dyadic supercube L of K , it is the
case that either K has side length at least 21−r times that of L , or K �(r ,ε) L . We say that a
dyadic cube K is (r , ε)-deeply embedded in a dyadic cube L , or simply r-deeply embedded
in L , which we write as K �r ,ε L , when K ⊂ L and both

� (K ) ≤ 2−r� (L) , (5.2)

dist

⎛
⎝K ,

⋃
L ′∈CDL

∂L ′
⎞
⎠ ≥ 2� (K )ε � (L)1−ε .

Here is a brief schematic diagramas in [1], summarizing the shifted corona decompositions
as used in [1, 17] for Alpert and Haar wavelet expansions of f and g. We first introduce
parameters as in [1, 17]. We will choose ε > 0 sufficiently small later in the argument,
and then r must be chosen sufficiently large depending on ε in order to reduce matters to
(r , ε) − good functions by the Nazarov, Treil and Volberg argument.

Definition 43 The parameters τ and ρ are fixed to satisfy

τ > r and ρ > r + τ,

where r is the goodness parameter already fixed.
〈
T α

σ f , g
〉
ω↓

B�ρ ( f , g) + Bρ� ( f , g) + B∩ ( f , g) + B� ( f , g)
↓

Tdiagonal ( f , g) + Tfarbelow ( f , g) + Tfarabove ( f , g) + Tdisjoint ( f , g)
↓ ↓

BF�ρ
( f , g) T1farbelow ( f , g) + T2farbelow ( f , g)
↓

BFstop ( f , g) + BFparaproduct ( f , g) + BFneighbour ( f , g) + BFcommutator ( f , g)
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5.1 Cube size splitting

The Nazarov, Treil and Volberg Cube Size Splitting of the inner product
〈
T α

σ f , g
〉
ω
splits the

pairs of cubes (I , J ) in a simultaneous Alpert decomposition of f and g into four groups
determined by relative position, is given by

〈
T α

σ f , g
〉
ω

=
∑

I ,J∈D

〈
T α

σ

(�σ
I ;κ f

)
,
(�ω

J ;κg
)〉

ω

=
∑

I ,J∈D
J�ρ,ε I

〈
T α

σ

(�σ
I ;κ f

)
,
(�ω

J ;κg
)〉

ω
+
∑

I ,J∈D
Jρ,ε�I

〈
T α

σ

(�σ
I ;κ f

)
,
(�ω

J ;κg
)〉

ω

+
∑

I ,J∈D
J∩I=∅ and �(J )

�(I ) /∈[2−ρ ,2ρ]

〈
T α

σ

(�σ
I ;κ f

)
,
(�ω

J ;κg
)〉

ω

+
∑

I ,J∈D
2−ρ≤ �(J )

�(I ) ≤2ρ

〈
T α

σ

(�σ
I ;κ f

)
,
(�ω

J ;κg
)〉

ω

= B�ρ,ε ( f , g) + Bρ,ε� ( f , g) + B∩ ( f , g) + B� ( f , g) .

Note however that the assumption the cubes I and J are (r , ε) − good remains in force
throughout the proof.

We will now make use of the κ-cube testing and triple testing constants, defined in (3.6)
and (3.7 ), to prove the following bound in the Sobolev setting, which in the case s = 0 was
proved in [16, see Lemma 31] following the Nazarov, Treil and Volberg arguments for Haar
wavelets in [17, see the proof of Lemma 7.1] (see also [9]),

∣∣B∩ ( f , g) + B� ( f , g)
∣∣

≤ C
(
Tκ,s
T α + Tκ,−s

T α,∗ + WBP(κ1,κ2),s
T α (σ, ω) +

√
Aα
2

)
‖ f ‖Ws

dyad(σ ) ‖g‖W−s
dyad(ω) , (5.3)

where if �dyad is the set of all dyadic grids,

WBP(κ1,κ2),s
T α (σ, ω)

≡ sup
D∈�

sup
Q,Q′∈D

Q⊂3Q′\Q′ or Q′⊂3Q\Q

� (Q)s �
(
Q′)−s

√|Q|σ |Q′|ω
sup

f ∈
(
Pκ1

Q

)
norm

(σ )

g∈
(
Pκ2

Q′
)
norm

(ω)

∣∣∣∣
∫
Q′

T α
σ

(
1Q f

)
gdω

∣∣∣∣ < ∞

is a weak boundedness constant that in the case s = 0 was introduced in [16]. Here we will
use the case κ1 = κ2 = κ . However, we only use that this constant is removed in the final
section below using the following bound proved in [16, see (6.25) in Subsection 6.7 and note
that only triple testing is needed there by choosing �

(
Q′) ≤ � (Q) (using duality and T α,∗

if needed)], and which holds also in the Sobolev setting using Cauchy–Schwarz and triple
testing,

WBP(κ,κ),s
T α (σ, ω) ≤ Cκ

(
TRκ,s

T α (σ, ω) + TRκ,−s
T α,∗ (ω, σ )

)
. (5.4)

123



Two weight Sobolev norm inequalities… Page 43 of 74 81

In fact the stronger bound with absolute values inside the sums in (5.3) was proved in the
case s = 0 in the previous references,

∑
I ,J∈D

J∩I=∅ and �(J )
�(I ) /∈[2−ρ ,2ρ]

∣∣∣〈T α
σ

(�σ
I ;κ f

)
,
(�ω

J ;κg
)〉

ω

∣∣∣+ ∑
I ,J∈D

2−ρ≤ �(J )
�(I ) ≤2ρ

∣∣∣〈T α
σ

(�σ
I ;κ f

)
,
(�ω

J ;κg
)〉

ω

∣∣∣

(5.5)

≤ C
(
Tκ,s
T α + Tκ,−s

T α,∗ + WBP(κ,κ),s
T α (σ, ω) +

√
Aα
2

)
‖ f ‖Ws

dyad(σ ) ‖g‖W−s
dyad(ω) .

This boundwill be useful later since it yields the same bound for the sum of any subcollection
of the index set, and for the convenience of the reader, we prove (5.5) below. Since the
below and above forms B�ρ,ε ( f , g) , Bρ,ε� ( f , g) are symmetric, matters are then reduced
to proving

∣∣B�ρ,ε ( f , g)
∣∣ � (Ts

T α + T−s
T α,∗ +

√
Aα
2

)
‖ f ‖Ws

dyad(σ ) ‖g‖W−s
dyad(ω) . (5.6)

We introduce some notation in order to prove (5.5). For weighted Alpert wavelet projec-
tions�σ

I ;κ , wewrite the projectionE
σ
I ′;κ �σ

I ;κ f onto the child I ′ ∈ CD (I ) asMσ
I ′;κ1I± , where

Mσ
I ′;κ is a polynomial of degree less than κ restricted to I ′. Then we let Pσ

I ′;κ ≡ Mσ
I ′;κ∥∥∥Mσ

I ′;κ
∥∥∥∞

be

its normalization on I ′. From (2.8) we have the estimate,

∥∥∥Eσ
I ′;κ �σ

I ;κ f
∥∥∥∞ ≤ C

∥∥∥�σ
I ;κ f

∥∥∥
L2(σ )√|I ′|σ

≈ C

∣∣ f̂κ (I )
∣∣√|I ′|σ
. (5.7)

Proof of (5.5). To handle the second term in (5.5) we first decompose it into⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
I ,J∈D: J⊂3I

2−ρ�(I )≤�(J )≤2ρ�(I )

+
∑

I ,J∈D: I⊂3J
2−ρ�(I )≤�(J )≤2ρ�(I )

+
∑

I ,J∈D
2−ρ�(I )≤�(J )≤2ρ�(I )

J �⊂3I and I �⊂3J

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

∣∣∣〈T α
σ

(�σ
I ;κ f

)
,�ω

J ;κg
〉
ω

∣∣∣

≡ A1 + A2 + A3.

The proof of the bound for term A3 is similar to that of the bound for the first term in (5.5),
and so we will defer its proof until after the second term has been proved.

We now consider term A1 as term A2 is symmetric. To handle this term we will write
the Alpert functions hσ

I ;κ and hω
J ;κ as linear combinations of polynomials times indicators

of the children of their supporting cubes, denoted Iθ and Jθ ′ respectively. Then we use the
testing condition on Iθ and Jθ ′ when they overlap, i.e. their interiors intersect; we use the
weak boundedness property on Iθ and Jθ ′ when they touch, i.e. their interiors are disjoint but
their closures intersect (even in just a point); and finally we use the Aα

2 condition when Iθ
and Jθ ′ are separated, i.e. their closures are disjoint. We will suppose initially that the side
length of J is at most the side length I , i.e. � (J ) ≤ � (I ), the proof for J = π I being similar
but for one point mentioned below.

So suppose that Iθ is a child of I and that Jθ ′ is a child of J . If Jθ ′ ⊂ Iθ we have using
(5.7),
∣∣∣〈T α

σ

(
1Iθ �σ

I ;κ f
)
, 1Jθ ′ �ω

J ;κ g
〉
ω

∣∣∣ �
∣∣ f̂κ (I )

∣∣
√|I |σ

∣∣∣
〈
T α

σ

(
Pσ
Iθ ;κ1Iθ

)
, Pω

Jθ ′ ;κ1Jθ ′
〉
ω

∣∣∣ |ĝκ (J )|√|J |ω
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�
∣∣ f̂κ (I )

∣∣
√|I |σ

(∫
Jθ ′

∣∣∣T α
σ

(
Pσ
Iθ ;κ1Iθ

)∣∣∣2 dω

) 1
2

|ĝκ (J )|

�
∣∣ f̂κ (I )

∣∣
√|I |σ

Tκ,s
Tα

|I |
1
2
σ |ĝκ (J )| � Tκ,s

Tα

∣∣ f̂κ (I )
∣∣ |ĝκ (J )| ,

where f̂κ (I ) denotes the vector Alpert coefficient of f at the dyadic cube I . The point
referred to above is that when J = π I we write〈

T α
σ

(
Pσ
Iθ ;κ1Iθ

)
, Pω

Jθ ′ ;κ1Jθ ′
〉
ω

=
〈
Pσ
Iθ ;κ1Iθ , T

α,∗
ω

(
Pω
Jθ ′ ;κ1Jθ ′

)〉
σ

and get the dual testing constant Tκ,s
T ∗
α
. If Jθ ′ and Iθ touch, then � (Jθ ′) ≤ � (Iθ ) and we have

Jθ ′ ⊂ 3Iθ\Iθ , and so

∣∣∣〈T α
σ

(
1Iθ �σ

I ;κ f
)
, 1Jθ ′ �ω

J ;κ g
〉
ω

∣∣∣ �
∣∣ f̂κ (I )

∣∣
√|I |σ

∣∣∣
〈
T α

σ

(
Pσ
Iθ ;κ1Iθ

)
, Pω

Jθ ′ ;κ1Jθ ′
〉
ω

∣∣∣ |ĝκ (J )|√|J |ω
�
∣∣ f̂κ (I )

∣∣
√|I |σ

WBP(κ,κ),s
T α

√|I |σ |J |ω
|ĝκ (J )|√|J |ω

= WBP(κ,κ),s
T α

∣∣ f̂κ (I )
∣∣ |ĝκ (J )| .

Finally, if Jθ ′ and Iθ are separated, and if K is the smallest (not necessarily dyadic) cube
containing both Jθ ′ and Iθ , then dist (Iθ , Jθ ′) ≈ � (K ) and we have

∣∣∣〈T α
σ

(
1Iθ �σ

I ;κ f
)
, 1Jθ ′ �ω

J ;κ g
〉
ω

∣∣∣ �
∣∣ f̂κ (I )

∣∣
√|I |σ

∣∣∣〈T α
σ

(
1Iθ
)
, 1Jθ ′

〉
ω

∣∣∣ |ĝκ (J )|√|J |ω
�
∣∣ f̂κ (I )

∣∣
√|I |σ

1

dist (Iθ , Jθ ′)n−α
|Iθ |σ |Jθ ′ |ω

|ĝκ (J )|√|J |ω
=

√|Iθ |σ |Jθ ′ |ω
dist (Iθ , Jθ ′)n−α

∣∣ f̂κ (I )
∣∣ |ĝκ (J )|

�
√
Aα
2

∣∣ f̂κ (I )
∣∣ |ĝκ (J )| .

Now we sum over all the children of J and I satisfying 2−ρ� (I ) ≤ � (J ) ≤ 2ρ� (I ) for
which J ⊂ 3I to obtain that

A1 �
(
Tκ,s
T α + Tκ,−s

T α,∗ + WBP(κ,κ),s
T α (σ, ω) +

√
Aα
2

) ∑
I ,J∈D: J⊂3I

2−ρ�(I )≤�(J )≤2ρ�(I )

∣∣ f̂κ (I )
∣∣ |ĝκ (J )| .

It is at this point that the Sobolev norms make their appearance, through an application of
the Cauchy–Schwarz inequality to obtain

∑
I ,J∈D: J⊂3I

2−ρ�(I )≤�(J )≤2ρ�(I )

∣∣ f̂κ (I )
∣∣ |ĝκ (J )|

≤ Cρ

⎛
⎜⎜⎝

∑
I ,J∈D: J⊂3I

2−ρ�(I )≤�(J )≤2ρ�(I )

∣∣ f̂κ (I )
∣∣2 � (I )−2s

⎞
⎟⎟⎠

1
2
⎛
⎜⎜⎝

∑
I ,J∈D: J⊂3I

2−ρ�(I )≤�(J )≤2ρ�(I )

|ĝκ (J )|2 � (J )2s

⎞
⎟⎟⎠

1
2

� ‖ f ‖Ws
dyad(σ ) ‖g‖W−s

dyad(ω) .

This completes our proof of the bound for the second term in (5.5), save for the deferral of
term A3, which we bound below.
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Now we turn to the sum of separated cubes in (5.5). We split the pairs (I , J ) ∈ Dσ ×Dω

occurring in the first term in (5.5) into two groups, those with side length of J smaller than
side length of I , and those with side length of I smaller than side length of J , treating only
the former case, the latter being symmetric. Thus we prove the following bound:

A ( f , g) ≡
∑

I ,J∈D
I∩J=∅ and �(J )≤2−ρ�(I )

∣∣∣〈T α
σ

(�σ
I ;κ f

)
,�ω

J ;κg
〉
ω

∣∣∣ �
√
Aα
2 ‖ f ‖Ws

dyad(σ ) ‖g‖W−s
dyad(ω) .

We apply the ‘pivotal’ bound (3.13) from the Energy Lemma to estimate the inner product〈
T α

σ

(
�σ

I ;κ f
)

,�ω
J ;κg

〉
ω
and obtain,

∣∣∣〈T α
σ

(�σ
I ;κ f

)
,�ω

J ;κg
〉
ω

∣∣∣ � Pα
κ

(
J ,
∣∣�σ

I ;κ f
∣∣ σ ) � (J )−s

√|J |ω
∥∥�ω

J ;κg
∥∥
W−s

dyad(ω)
.

Denote by dist the �∞ distance in R
n : dist (x, y) = max1≤ j≤n

∣∣x j − y j
∣∣. We now estimate

separately the long-range and mid-range cases where dist (J , I ) ≥ � (I ) holds or not, and
we decompose A accordingly:

A ( f , g) ≡ Along ( f , g) + Amid ( f , g) .

The long-range case: We begin with the case where dist (J , I ) is at least � (I ), i.e.
J ∩3I = ∅. Since J and I are separated by at least max {� (J ) , � (I )}, we have the inequality

Pα
κ

(
J ,
∣∣�σ

I ;κ f
∣∣ σ ) ≈

∫
I

� (J )

|y − cJ |n+1−α

∣∣�σ
I ;κ f (y)

∣∣ dσ (y)

�
∥∥�σ

I ;κ f
∥∥
Ws

dyad(σ )
� (I )s

� (J )
√|I |σ

dist (I , J )n+1−α
,

since
∫
I

∣∣∣�σ
I ;κ f (y)

∣∣∣ dσ (y) ≤
∥∥∥�σ

I ;κ f
∥∥∥
L2(σ )

√|I |σ and
∥∥∥�σ

I ;κ f
∥∥∥
Ws

dyad(σ )
= � (I )−s

∥∥∥�σ
I ;κ f

∥∥∥
L2(σ )

. Thus with A ( f , g) = Along ( f , g) we have

A ( f , g) �
∑
I∈D

∑
J : �(J )≤�(I ): dist(I ,J )≥�(I )

∥∥�σ
I ;κ f

∥∥
Ws

dyad(σ )

∥∥�ω
J ;κg

∥∥
W−s

dyad(ω)

×
(

� (I )

� (J )

)s
� (J )

dist (I , J )n+1−α

√|I |σ
√|J |ω

≡
∑

(I ,J )∈P

∥∥�σ
I ;κ f

∥∥
Ws

dyad(σ )

∥∥�ω
J ;κg

∥∥
W−s

dyad(ω)
A (I , J ) ;

with A (I , J ) ≡
(

� (I )

� (J )

)s
� (J )

dist (I , J )n+1−α

√|I |σ
√|J |ω;

and P ≡ {(I , J ) ∈ D × D : � (J ) ≤ � (I ) and dist (I , J ) ≥ � (I )} .

Now let DN ≡ {
K ∈ D : � (K ) = 2N

}
for each N ∈ Z. For N ∈ Z and t ∈ Z+, we further

decompose A ( f , g) by pigeonholing the sidelengths of I and J by 2N and 2N−t respectively:

A ( f , g) =
∞∑
t=0

∑
N∈Z

At
N ( f , g) ;

At
N ( f , g) ≡

∑
(I ,J )∈P t

N

∥∥�σ
I ;κ f

∥∥
Ws

dyad(σ )

∥∥�ω
J ;κg

∥∥
W−s

dyad(ω)
A (I , J )
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where P t
N ≡ {(I , J ) ∈ DN × DN−t : dist (I , J ) ≥ � (I )} .

Now At
N ( f , g) = At

N

(
Pσ
N ;κ f , Pω

N−t;κg
)
where Pμ

M;κ =
∑

K∈DM
�μ

K ;κ denotes Alpert

projection onto the linear span Span
{
hμ,a
K ;κ
}
K∈DM ,a∈�K ,n,κ

, and so by orthogonality of the

projections
{
Pμ

M;κ
}
M∈Z

we have

∣∣∣∣∣
∑
N∈Z

At
N ( f , g)

∣∣∣∣∣ =
∑
N∈Z

∣∣At
N

(
Pσ
N ;κ f , Pω

N−t;κg
)∣∣

≤
∑
N∈Z

∥∥At
N

∥∥ ∥∥Pσ
N ;κ f

∥∥
Ws

dyad(σ )

∥∥Pω
N−t;κg

∥∥
W−s

dyad(ω)

≤
{
sup
N∈Z

∥∥At
N

∥∥
}(∑

N∈Z

∥∥Pσ
N ;κ f

∥∥2
Ws

dyad(σ )

) 1
2
(∑
N∈Z

∥∥Pω
N−t;κg

∥∥2
W−s

dyad(ω)

) 1
2

≤
{
sup
N∈Z

∥∥At
N

∥∥
}

‖ f ‖Ws
dyad(σ ) ‖g‖W−s

dyad(ω) .

Thus it suffices to show an estimate uniform in N with geometric decay in t , and we will
show

∣∣At
N ( f , g)

∣∣ ≤ C2−t
√
Aα
2 ‖ f ‖Ws

dyad(σ ) ‖g‖W−s
dyad(ω) , for t ≥ 0 and N ∈ Z. (5.8)

We now pigeonhole the distance between I and J :

At
N ( f , g) =

∞∑
�=0

At
N ,� ( f , g) ;

At
N ,� ( f , g) ≡

∑
(I ,J )∈P t

N ,�

∥∥�σ
I ;κ f

∥∥
Ws

dyad(σ )

∥∥�ω
J ;κg

∥∥
W−s

dyad(ω)
A (I , J )

where P t
N ,� ≡

{
(I , J ) ∈ DN × DN−s : dist (I , J ) ≈ 2N+�

}
.

If we define H
(
At
N ,�

)
to be the bilinear form on �2 × �2 with matrix [A (I , J )](I ,J )∈P t

N ,�
,

then it remains to show that the norm
∥∥∥H
(
At
N ,�

)∥∥∥
�2→�2

is bounded by C2−t(1−s)−�
√
Aα
2 .

In turn, this is equivalent to showing that the norm
∥∥∥H
(
Bt
N ,�

)∥∥∥
�2→�2

of the bilin-

ear form H
(
Bt
N ,�

)
≡ H

(
At
N ,�

)tr
H
(
At
N ,�

)
on the sequence space �2 is bounded by

C22−2t(1−s)−2�Aα
2 . Here H

(
Bt
N ,�

)
is the quadratic form with matrix kernel[

Bt
N ,�

(
J , J ′)]

J ,J ′∈DN−s
having entries:

Bt
N ,�

(
J , J ′) ≡

∑
I∈DN : dist(I ,J )≈dist(I ,J ′)≈2N+�

A (I , J ) A
(
I , J ′) , for J , J ′ ∈ DN−t .

We are reduced to showing,
∥∥H (Bt

N ,�

)∥∥
�2→�2

≤ C2−2t(1−s)−2�Aα
2 for t ≥ 0, � ≥ 0 and N ∈ Z,
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which is an estimate in which Alpert projections no longer play a role, and this estimate is
proved as in [12], and more precisely as in [17]. Note that the only arithmetic difference in
the argument here is that in the estimates, the parameter t > 0 is replaced by t (1 − s) > 0,
which has no effect on the conclusion. This completes our proof of the long-range estimate

Along ( f , g) �
√
Aα
2 ‖ f ‖Ws

dyad(σ ) ‖g‖W−s
dyad(ω) .

At this point we pause to complete the bound for A3 in the second term in (5.5). Indeed,
the deferred term A3 can be handled using the above argument since 3J ∩ I = ∅ = J ∩ 3I
implies that we can use the Energy Lemma as we did above.

The mid range case: Let

P ≡ {(I , J ) ∈ D × D : J is good, � (J ) ≤ 2−ρ� (I ) , J ⊂ 3I \ I
}
.

For (I , J ) ∈ P , the ‘pivotal’ bound (3.13 ) from the Energy Lemma gives∣∣∣〈T α
σ

(�σ
I ;κ f

)
,�ω

J g
〉
ω

∣∣∣ � Pα
κ

(
J ,
∣∣�σ

I ;κ f
∣∣ σ ) � (J )−s

√|J |ω
∥∥�ω

J ;κg
∥∥
W−s

dyad(ω)
.

Now we pigeonhole the lengths of I and J and the distance between them by defining

P t
N ,d ≡

{
(I , J ) ∈ D × D : J is good, � (I ) = 2N , � (J ) = 2N−t , J ⊂ 3I \ I , 2d−1

≤ dist (I , J ) ≤ 2d
}
.

Note that the closest a good cube J can come to I is determined by the goodness inequality,
which gives this bound for 2d ≥ dist (I , J ):

2d ≥ 1

2
� (I )1−ε � (J )ε = 1

2
2N (1−ε)2(N−t)ε = 1

2
2N−εt ;

which implies N − εt − 1 ≤ d ≤ N ,

where the last inequality holds because we are in the case of the mid-range term. Thus we
have∑

(I ,J )∈P

∣∣∣〈T α
σ

(�σ
I ;κ f

)
,�ω

J ;κg
〉
ω

∣∣∣

�
∑

(I ,J )∈P

∥∥�ω
J ;κg

∥∥
W−s

dyad(ω)
Pα

κ

(
J ,
∣∣�σ

I ;κ f
∣∣ σ ) � (J )−s

√|J |ω

=
∞∑
t=ρ

∑
N∈Z

N∑
d=N−εt−1

∑
(I ,J )∈P t

N ,d

∥∥�ω
J ;κg

∥∥
W−s

dyad(ω)
Pα

κ

(
J ,
∣∣�σ

I ;κ f
∣∣ σ ) � (J )−s

√|J |ω.

Now we use

Pα
(
J ,
∣∣�σ

I ;κ f
∣∣ σ ) =

∫
I

� (J )

(� (J ) + |y − cJ |)n+1−α

∣∣�σ
I ;κ f (y)

∣∣ dσ (y)

� 2N−t

2d(n+1−α)

∥∥�σ
I f
∥∥
Ws

dyad(σ )
� (I )s

√|I |σ
and apply Cauchy–Schwarz in J and use J ⊂ 3I \ I to get

∑
(I ,J )∈P

∣∣∣〈T α
σ

(�σ
I ;κ f

)
,�ω

J ;κg
〉
ω

∣∣∣
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�
∞∑
t=ρ

∑
N∈Z

N∑
d=N−εt−1

∑
I∈DN

2N−t(1−s)2N (n−α)

2d(n+1−α)

∥∥�σ
I ;κ f

∥∥
Ws

dyad(σ )

√|I |σ
√|3I \ I |ω

2N (n−α)

×
√√√√√

∑
J∈DN−t

J⊂3I\I and dist(I ,J )≈2d

∥∥∥�ω
J ;κg

∥∥∥2
W−s

dyad(ω)

� (1 + εt)
∞∑
t=ρ

∑
N∈Z

2N−t(1−s)2N (n−α)

2(N−εt)(n+1−α)

√
Aα
2

∑
I∈DN

∥∥�σ
I ;κ f

∥∥
Ws

dyad(σ )

√√√√√
∑

J∈DN−t
J⊂3I\I

∥∥∥�ω
J ;κg

∥∥∥2
W−s

dyad(ω)

� (1 + εt)
∞∑
t=ρ

2−t[1−s−ε(n+1−α)]
√
Aα
2 ‖ f ‖Ws

dyad(σ ) ‖g‖W−s
dyad(ω)

�
√
Aα
2 ‖ f ‖Ws

dyad(σ ) ‖g‖W−s
dyad(ω) ,

where in the third line above we have used
∑N

d=N−εt−1 1 � 1 + εt , and in the last line

2N−t(1−s)2N (n−α)

2(N−εt)(n+1−α)
= 2−t[1−s−ε(n+1−α)],

followed by Cauchy–Schwarz in I and N , using that we have bounded overlap in the triples
of I for I ∈ DN . We have also assumed here that 0 < ε < 1−s

n+1−α
, and this completes the

proof of (5.5). ��

5.2 Shifted corona decomposition

To prove (5.6), we recall the Shifted CoronaDecomposition, as opposed to the parallel corona
decomposition used in [16], associatedwith theCalderón–Zygmund κ-pivotal stopping cubes
F introduced above.But firstwemust invoke standard arguments, using the fullκ-cube testing
conditions (3.7), to permit us to assume that f and g are supported in a finite union of dyadic
cubes F0 on which they have vanishing moments of order less than κ .

5.2.1 The initial reduction using full testing

For this construction, we will follow the treatment as given in [19]. We first restrict f and g
to be supported in a large common cube Q∞. Then we cover Q∞ with 2n pairwise disjoint
cubes I∞ ∈ D with � (I∞) = � (Q∞). We now claim we can reduce matters to consideration
of the 22n forms

∑
I∈D: I⊂I∞

∑
J∈D: J⊂J∞

∫
Rn

(
T α

σ �σ
I ;κ f

)�ω
J ;κ gdω,

as both I∞ and J∞ range over the dyadic cubes as above. First we note that when I∞ and
J∞ are distinct, the corresponding form is included in the sum B∩ ( f , g) + B� ( f , g), and
hence controlled. Thus it remains to consider the forms with I∞ = J∞ and use the cubes I∞
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as the starting cubes in our corona construction below. Indeed, we have from (2.5) that

f =
∑

I∈D: I⊂I∞
�σ

I ;κ f + E
σ
I∞;κ f ,

g =
∑

J∈D: J⊂I∞
�ω

J ;κg + E
ω
I∞;κg,

which can then be used to write the bilinear form
∫ (

T α
σ f
)
gdω as a sum of the forms

∫
Rn

(
T α

σ f
)
gdω =

∑
I∞

⎧⎨
⎩

∑
I ,J∈D: I ,J⊂I∞

∫
Rn

(
T α

σ �σ
I ;κ f

)�ω
J ;κ gdω (5.9)

+
∑

I∈D: I⊂I∞

∫
Rn

(
T α

σ �σ
I ;κ f

)
E

ω
I∞;κgdω +

∑
J∈D: J⊂I∞

∫
Rn

(
T α

σ E
σ
I∞;κ f

)�ω
J ;κ gdω

+
∫

Rn

(
T α

σ E
σ
I∞;κ f

)
E

ω
I∞;κgdω

}
,

taken over the 2n cubes I∞ above.
The second, third and fourth sums in (5.9) can be controlled by the full testing conditions

(3.7), e.g.
∣∣∣∣∣∣

∑
I∈D: I⊂I∞

∫
Rn

(
T α

σ �σ
I ;κ f

)
E

ω
I∞;κgdω

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫
I∞

⎛
⎝ ∑

I∈D: I⊂I∞
�σ

I ;κ f

⎞
⎠ T α,∗

ω

(
E

ω
I∞;κg

)
dσ

∣∣∣∣∣∣
(5.10)

≤
∥∥∥∥∥∥

∑
I∈D: I⊂I∞

�σ
I ;κ f

∥∥∥∥∥∥
Ws

dyad(σ )

∥∥∥1I∞T α,∗
ω

(
E

ω
I∞;κg

)∥∥∥
W−s

dyad(σ )

=
∥∥∥∥∥∥

∑
I∈D: I⊂I∞

�σ
I ;κ f

∥∥∥∥∥∥
Ws

dyad(σ )

∥∥∥Eω
I∞;κg

∥∥∥
L∞

∥∥∥∥∥∥∥
1I∞T α,∗

ω

⎛
⎜⎝ E

ω
I∞;κg∥∥∥Eω

I∞;κg
∥∥∥
L∞

⎞
⎟⎠
∥∥∥∥∥∥∥
W−s

dyad(σ )

� Tκ
T α,∗
ω

‖ f ‖Ws
dyad(σ ) ‖g‖W−s

dyad(ω)

and similarly for the third and fourth sum.

5.2.2 The shifted corona

Define the two Alpert corona projections,

Pσ
CF

≡
∑
I∈CF

�σ
I ;κ1 and Pω

Cτ−shift
F

≡
∑

J∈Cτ−shift
F

�ω
J ;κ2

where

Cτ−shift
F ≡ [CF \ N τ

D (F)
] ∪

⋃
F ′∈CF (F)

[N τ
D
(
F ′) \ N τ

D (F)
] ; (5.11)

where N τ
D (F) ≡ {

J ∈ D : J ⊂ F and � (J ) > 2−τ � (F)
}
.
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Thus the shifted corona Cτ−shift
F has the top τ levels from CF removed, and includes the first

τ levels from each of its F-children, except if they have already been removed. We must
restrict the Alpert supports of f and g to good cubes, as defined e.g. in [16], so that with the
superscript good denoting this restriction,

Pσ
CF

f =
∑

I∈Cgood
F

�σ
I ;κ1 and Pω

Cτ−shift
F

g =
∑

J∈Cgood,τ−shift
F

�ω
J ;κ2

where CgoodF ≡ CF ∩ Dgood and Cgood,τ−shift
F ≡ Cτ−shift

F ∩ Dgood, and Dgood consists of the
(r , ε) − good cubes in D.

A simple but important property is the fact that the τ -shifted coronas Cτ−shift
F have overlap

bounded by τ :
∑
F∈F

1Cτ−shift
F

(J ) ≤ τ, J ∈ D. (5.12)

It is convenient, for use in the canonical splitting below, to introduce the following shorthand
notation for F,G ∈ F :

〈
T α

σ

(
Pσ
CF

f
)
, Pω

Cτ−shift
G

g

〉�ρ

ω

≡
∑

I∈CF and J∈Cτ−shift
G

J�ρ I

〈
T α

σ

(�σ
I ;κ f

)
,
(�ω

J ;κg
)〉

ω
.

5.3 Canonical splitting

We then proceed with the Canonical Splitting as in [17], but with Alpert wavelets in place
of Haar wavelets,

B�ρ ( f , g) =
∑

F,G∈F

〈
Tσ

(
Pσ
CF

f
)
, Pω

Cτ−shift
G

g

〉�ρ

ω

=
∑
F∈F

〈
Tσ

(
Pσ
CF

f
)
, Pω

Cτ−shift
F

g

〉�ρ

ω

+
∑

F,G∈F
G�F

〈
Tσ

(
Pσ
CF

f
)
, Pω

Cτ−shift
G

g

〉�ρ

ω

+
∑

F,G∈F
G�F

〈
Tσ

(
Pσ
CF

f
)
, Pω

Cτ−shift
G

g

〉�ρ

ω

+
∑

F,G∈F
F∩G=∅

〈
Tσ

(
Pσ
CF

f
)
, Pω

Cτ−shift
G

g

〉�ρ

ω

≡ Tdiagonal ( f , g) + Tfar below ( f , g) + Tfar above ( f , g) + Tdisjoint ( f , g) .

The two forms Tfar above ( f , g) and Tdisjoint ( f , g) each vanish just as in [17], since there
are no pairs (I , J ) ∈ CF ×Cø−shift

G with both ( i) J �ρ I and (ii) either F � G orG∩ F = ∅.

5.3.1 The far below form

Here is a generalization to weighted Sobolev spaces of the Intertwining Proposition from
[16, Proposition 36 on page 35], that uses strong κ-pivotal conditions with Alpert wavelets.
Recall that 0 < ε < 1 and r is chosen sufficiently large depending on ε. The argument given
here is considerably simpler than that in [16].
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Proposition 44 (The Intertwining Proposition) Suppose σ, ω are positive locally finite Borel
measures onR

n, that σ is doubling, and thatF satisfies an θ revσ -strong σ -Carleson condition.
Then for a smooth α-fractional singular integral T α , and for good functions f ∈ Ws

dyad (σ )

and g ∈ W−s
dyad (ω), and with κ1, κ2 ≥ 1 sufficiently large, we have the following bound for

Tfar below ( f , g) =∑F∈F
∑

I : I�F

〈
T α

σ �σ
I ;κ1 f , Pω

Cø−shift
F

g

〉
ω

:

∣∣Tfar below ( f , g)
∣∣ � (Vα,κ1

2,θ revσ
+
√
Aα
2

)
‖ f ‖Ws

dyad(σ ) ‖g‖W−s
dyad(ω) . (5.13)

Proof We write

fF ≡
∑

I : I�F

�σ
I ;κ1 f =

∞∑
m=1

∑
I : πm

F F�I⊂πm+1
F F

�σ
I ;κ1 f

=
∞∑

m=1

∑
I : πm

F F�I⊂πm+1
F F

1θ(I )

(
E

σ
I ;κ1 f − E

σ

πm+1
F F;κ1 f

)

=
∞∑

m=1

∑
I : πm

F F�I⊂πm+1
F F

1θ(I )
(
E

σ
I ;κ1 f

)−
∞∑

m=1

1
πm+1
F F\πm

F F

(
E

σ

πm+1
F F;κ1 f

)

≡ βF − γF

and then ∑
F∈F

〈
T α

σ fF , gF
〉
ω

=
∑
F∈F

〈
T α

σ βF , gF
〉
ω

+
∑
F∈F

〈
T α

σ γF , gF
〉
ω

.

Now we use the pivotal bound (3.13),∣∣∣〈T α (ϕν) ,�J
〉
L2(ω)

∣∣∣ � Pα
κ (J , ν) � (J )−s

√|J |ω ‖�J‖W−s
dyad(ω) ,

the pivotal stopping control (4.4),

Pα
κ (I , 1Fσ)2

(
� (F)

� (I )

)ε

|I |ω < � |I |σ , I ∈ CF and F ∈ F,

and (3.14), namely

Pα
k

(
J , σ1K\I

)
�
(

� (J )

� (I )

)k−ε(n+k−α)

Pα
k

(
I , σ1K\I

)
,

to obtain that
∣∣∣∣∣
∑
F∈F

〈
T α

σ γF , gF
〉
ω

∣∣∣∣∣ �
∑
F∈F

Pα
κ

(
F,

∞∑
m=1

1
πm+1
F F\πm

F F

∣∣∣∣Eσ

πm+1
F F;κ1 f

∣∣∣∣ σ
)

� (F)−s
√|F |ω ‖gF‖W−s

dyad(ω)

=
∞∑

m=1

∑
F∈F

∥∥∥∥Eσ

πm+1
F F;κ1 f

∥∥∥∥∞
Pα

κ

(
F, 1

πm+1
F F\πm

F Fσ
)

� (F)−s
√|F |ω ‖gF‖W−s

dyad(ω)

≤
∞∑

m=1

∑
F∈F

∥∥∥∥Eσ

πm+1
F F;κ1 f

∥∥∥∥∞

(
� (F)

�
(
πm
F F
)
)κ−ε(n+κ−α)

×Pα
κ

(
πm
F F, 1

πm+1
F F\πm

F Fσ
)

� (F)−s
√|F |ω ‖gF‖W−s

dyad(ω)
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equals

∞∑
m=1

∑
F∈F

∥∥∥∥Eσ

πm+1
F F;κ1 f

∥∥∥∥∞

(
� (F)

�
(
πm
F F
)
)κ−ε(n+κ−α)−s

�
(
πm
F F
)−s

×
{
Pα

κ

(
πm
F F, 1

πm+1
F F\πm

F Fσ
)√∣∣πm

F F
∣∣
ω

}√ |F |ω∣∣πm
F F
∣∣
ω

‖gF‖W−s
dyad(ω)

≤
∞∑

m=1

∑
F∈F

∥∥∥∥Eσ

πm+1
F F;κ1 f

∥∥∥∥∞

(
� (F)

�
(
πm
F F
)
)η+η′

×�
(
πm
F F
)−s
{
Vα,κ
2,θ revσ

√∣∣πm
F F
∣∣
σ

}√ |F |ω∣∣πm
F F
∣∣
ω

‖gF‖W−s
dyad(ω) ,

where we have used the pivotal stopping inequality, and written

κ − ε (n + κ − α) − s + θ revσ = η + η′,

with η, η′ > 0 to be chosen later. Note that this requires the Alpert parameter κ to satisfy

κ >
ε (n − α) + s − θ revσ

1 − ε
. (5.14)

Then by Cauchy–Schwarz we have∣∣∣∣∣
∑
F∈F

〈
T α

σ γF , gF
〉
ω

∣∣∣∣∣

� Vα,κ
2,θ revσ

⎛
⎝ ∞∑

m=1

∑
F∈F

∥∥∥∥Eσ

πm+1
F F;κ1 f

∥∥∥∥
2

∞
�
(
πm
F F
)−2s ∣∣πm

F F
∣∣
σ

(
� (F)

�
(
πm
F F
)
)2η |F |ω∣∣πm

F F
∣∣
ω

⎞
⎠

1
2

×
⎛
⎝ ∞∑

m=1

∑
F∈F

(
� (F)

�
(
πm
F F
)
)2η′

‖gF‖2
W−s

dyad(ω)

⎞
⎠

1
2

.

The square of the first factor satisfies

∞∑
m=1

∑
F∈F

∥∥∥∥Eσ

πm+1
F F;κ1 f

∥∥∥∥
2

∞

∣∣πm
F F
∣∣
σ

�
(
πm
F F
)−2s

(
� (F)

�
(
πm
F F
)
)2η |F |ω∣∣πm

F F
∣∣
ω

=
∑
F ′∈F

∥∥∥Eσ
πF F ′;κ1 f

∥∥∥2∞ �
(
F ′)−2s ∣∣F ′∣∣

σ

∑
F∈F
F⊂F ′

(
� (F)

� (F ′)

)2η |F |ω
|F ′|ω

�
∑
F ′∈F

∥∥∥Eσ
πF F ′;κ1 f

∥∥∥2∞ �
(
F ′)−2s ∣∣F ′∣∣

σ
=
∑
F ′′∈F

∥∥∥Eσ
F ′′;κ1 f

∥∥∥2∞
∑

F ′∈CF (F ′′)
�
(
F ′)−2s ∣∣F ′∣∣

σ

�
∑
F ′′∈F

∥∥∥Eσ
F ′′;κ1 f

∥∥∥2∞ �
(
F ′′)−2s ∣∣F ′′∣∣

σ
� ‖ f ‖2Ws

dyad(σ )

where the first inequality in the last line follows from the strong σ -Carleson condition, and
the second inequality follows from the Quasiorthogonality Lemma 28. The square of the
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second factor satisfies

∞∑
m=1

∑
F∈F

(
� (F)

�
(
πm
F F
)
)2η′

‖gF‖2
W−s

dyad(ω)
�
∑
F∈F

‖gF‖2
W−s

dyad(ω)
≤ ‖g‖2

W−s
dyad(ω)

where we have used η′ > 0.
It remains to bound

∑
F∈F

〈
T α

σ βF , gF
〉
ω
where βF = ∑∞

m=1
∑

I : πm
F F�I⊂πm+1

F F 1θ(I )(
E

σ
I ;κ1 f

)
. The difference between the previous estimate and this one is that the averages

1
πm+1
F F\πm

F F

∣∣∣∣Eσ

πm+1
F F;κ1 f

∣∣∣∣ inside the Poisson kernel have been replaced with the sum of

averages
∑∞

m=1
∑

I : πm
F F�I⊂πm+1

F F 1θ(I )

∣∣∣Eσ
I ;κ1 f

∣∣∣, but where the sum is taken over pairwise

disjoint sets {θ (I )}
πm
F F�I⊂πm+1

F F . We start with
∣∣∣∣∣
∑
F∈F

〈
T α

σ βF , gF
〉
ω

∣∣∣∣∣

�
∑
F∈F

Pα
κ

⎛
⎜⎝F,

∞∑
m=1

∑
I : πm

F F�I⊂πm+1
F F

1θ(I )
∣∣Eσ

I ;κ1 f
∣∣ σ
⎞
⎟⎠ � (F)−s

√|F |ω ‖gF‖W−s
dyad(ω)

=
∞∑

m=1

∑
F∈F

∑
I : πm

F F�I⊂πm+1
F F

∥∥Eσ
I ;κ1 f

∥∥∞ Pα
κ

(
F, 1θ(I )σ

)
� (F)−s

√|F |ω ‖gF‖W−s
dyad(ω) ≡ S.

Then we use∑
I : πm

F F�I⊂πm+1
F F

∥∥Eσ
I ;κ1 f

∥∥∞ Pα
κ

(
F, 1θ(I )σ

)

≤
⎛
⎝ sup

I : πm
F F�I⊂πm+1

F F

∥∥Eσ
I ;κ1 f

∥∥∞

⎞
⎠ Pα

κ

⎛
⎜⎝F,

∑
I : πm

F F�I⊂πm+1
F F

1θ(I )σ

⎞
⎟⎠

=
⎛
⎝ sup

I : πm
F F�I⊂πm+1

F F

∥∥Eσ
I ;κ1 f

∥∥∞

⎞
⎠Pα

κ

(
F, 1

πm+1
F F\πm

F Fσ
)

,

and obtain that

S ≤
∞∑

m=1

∑
F∈F

⎛
⎝ sup

I : πm
F F�I⊂πm+1

F F

∥∥Eσ
I ;κ1 f

∥∥∞

⎞
⎠

Pα
κ

(
F, 1

πm+1
F F\πm

F Fσ
)

� (F)−s
√|F |ω ‖gF‖W−s

dyad(ω) .

Now we define Gm [F] ∈
(
πm
F F, πm+1

F F
]
so that supI : πm

F F�I⊂πm+1
F F

∥∥∥Eσ
I ;κ1 f

∥∥∥∞ =∥∥∥Eσ
Gm [F];κ1 f

∥∥∥∞, and dominate S by

S ≤
∞∑

m=1

∑
F∈F

∥∥∥Eσ
Gm [F];κ1 f

∥∥∥∞ Pα
κ

(
F, 1

πm+1
F F\πm

F Fσ
)

� (F)−s
√|F |ω ‖gF‖W−s

dyad(ω)
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�
∞∑

m=1

∑
F∈F

∥∥∥Eσ
Gm [F];κ1 f

∥∥∥∞

(
� (F)

� (Gm [F])

)η

Pα
κ

(
Gm [F] , 1

πm+1
F F\πm

F Fσ
)

×� (F)−s
√|F |ω ‖gF‖W−s

dyad(ω)

=
∞∑

m=1

∑
F∈F

∥∥∥Eσ
Gm [F];κ1 f

∥∥∥∞

(
� (F)

� (Gm [F])

)η

×

⎧⎪⎨
⎪⎩P

α
κ

(
Gm [F] , 1

πm+1
F F\πm

F Fσ
)⎛⎝�

(
πm+1
F F

)

� (Gm [F])

⎞
⎠

ε√|Gm [F]|ω

⎫⎪⎬
⎪⎭

×
⎛
⎝�
(
πm+1
F F

)

� (Gm [F])

⎞
⎠

−ε

� (F)−s

√
|F |ω

|Gm [F]|ω
‖gF‖W−s

dyad(ω) ,

and then continue with

� Vα
2,θ revσ

∞∑
m=1

∑
F∈F

∥∥∥Eσ
Gm [F];κ1 f

∥∥∥∞

(
� (F)

� (G [F])

)η

� (F)−s
{√|Gm [F]|σ

}

×
⎛
⎝�
(
πm+1
F F

)

� (Gm [F])

⎞
⎠

−ε√
|F |ω

|Gm [F]|ω
‖gF‖W−s

dyad(ω)

= Vα
2,θ revσ

∞∑
m=1

∑
F∈F

∥∥∥Eσ
G[F];κ1 f

∥∥∥∞ � (Gm [F])−s
√|Gm [F]|σ

×
(

� (F)

� (Gm [F])

)η−s
⎛
⎝�
(
πm+1
F F

)

� (Gm [F])

⎞
⎠

−ε√
|F |ω

|Gm [F]|ω
‖gF‖W−s

dyad(ω)

≈ Vα
2,θ revσ

∞∑
m=1

∑
F∈F

∥∥∥�σ
Gm [F];κ1 f

∥∥∥
Ws

dyad(σ )

×
(

� (F)

� (Gm [F])

)η−s
⎛
⎝�
(
πm+1
F F

)

� (Gm [F])

⎞
⎠

−ε√
|F |ω

|Gm [F]|ω
‖gF‖W−s

dyad(ω) .

Since there is geometric gain in the product

(
� (F)

� (Gm [F])

)η−s
⎛
⎝�
(
πm+1
F F

)

� (Gm [F])

⎞
⎠

−ε√
|F |ω

|Gm [F]|ω ≤
(

� (F)

� (Gm [F])

)η−s

� 2−m(η−s),

provided η > s, an application of Cauchy–Schwarz finishes the proof since Gm [F] is

uniquely determined by F and m in the tower
(
πm
F F, πm+1

F F
]
:

Vα
2,θ revσ

∞∑
m=1

2−m(η−s)
∑
F∈F

∥∥∥�σ
Gm [F];κ1 f

∥∥∥
Ws

dyad(σ )
‖gF‖W−s

dyad(ω)
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≤ Vα
2,θ revσ

∞∑
m=1

2−m(η−s)

(∑
F∈F

∥∥∥�σ
Gm [F];κ1 f

∥∥∥2
Ws

dyad(σ )

) 1
2
(∑
F∈F

‖gF‖2
W−s

dyad(ω)

) 1
2

≤ Vα
2,θ revσ

∞∑
m=1

2−m(η−s) ‖ f ‖Ws
dyad(σ ) ‖g‖W−s

dyad(ω) = CVα
2,θ revσ

‖ f ‖Ws
dyad(σ ) ‖g‖W−s

dyad(ω) .

Note that we have used η > s, which requires a bit more on κ than was used in (5.14), namely
that

κ − ε (n + κ − α) − s + θ revσ = η + η′ > s,

which requires

κ >
ε (n − α) + 2s − θ revσ

1 − ε
. (5.15)

��

5.3.2 The diagonal form

To handle the diagonal term Tdiagonal ( f , g), we decompose according to the stopping times
F ,

Tdiagonal ( f , g) =
∑
F∈F

BF�ρ
( f , g) ≡

〈
T α

σ

(
Pσ
CF

f
)
, Pω

Cτ−shift
F

g

〉�ρ

ω

,

and it is enough, using Cauchy–Schwarz and quasiorthogonality (4.2) in f , together with
orthogonality (4.3) in both f and g, to prove the ‘below form’ bound involving the usual
cube testing constant,

∣∣∣BF�ρ
( f , g)

∣∣∣ �
(
Ts
T α +

√
Aα
2

) (
� (F)−s

∥∥Eσ
F;κ f

∥∥∞
√|F |σ + ∥∥Pσ

CF
f
∥∥
Ws

dyad(σ )

) ∥∥∥∥Pω

Cτ−shift
F

g

∥∥∥∥
W−s

dyad(ω)

.

(5.16)

Indeed, using quasiorthogonality, Lemma 28, and orthogonality of projections Pσ
CF

f and
Pω

Cτ−shift
F

g this then gives the estimate,

∣∣Tdiagonal ( f , g)∣∣ �
(
Ts
T α +

√
Aα
2

)
‖ f ‖Ws

dyad(σ ) ‖g‖W−s
dyad(ω) . (5.17)

Thus at this point we have essentially reduced the proof of Theorem 2 to

(1) proving (5.16),
(2) and controlling the triple polynomial testing condition (3.7) by the usual cube testing

condition and the classical Muckenhoupt condition.

In the next section we address the first issue by proving the inequality ( 5.16) for the below
forms BF�ρ

( f , g). In the final section, we address the second issue and complete the proofs
of our theorems by drawing together all of the estimates.
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6 The Nazarov, Treil and Volberg reach for Alpert wavelets

It will be convenient to denote our fractional singular integral operators by T λ, 0 ≤ λ < n,
instead of T α , thus freeing up α for the familiar role of denoting multi-indices in Z

n+. Before
getting started, we note that for a doubling measure μ, a cube I and a polynomial P , we
have

‖P1I ‖L∞(μ) = sup
x∈I

|P (x)|

because μ charges all open sets, and so in particular, ‖P1I ‖L∞(σ ) = ‖P1I ‖L∞(ω).
We will often follow the analogous arguments in [1], and point out the places where

significant new approaches are needed. See [1] for a review of the classical reach of Nazarov,
Treil and Volberg using Haar wavelet projections �σ

I , namely the beautiful and ingenious
‘thinking outside the box’ idea of the paraproduct / stopping / neighbour decomposition of
Nazarov, Treil and Volberg [12] using Haar wavelets.

When using weighted Alpert wavelet projections�σ
I ;κ instead, the projectionE

σ
I ′;κ �σ

I ;κ f
onto the child I ′ ∈ CD (I ) equals MI ′;κ1I± where M = MI ′;κ is a polynomial of degree less
than κ restricted to I ′, and hence no longer commutes with the operator T λ

σ —unless it is the
constant polynomial. We now recall the modifications used in [1], where they obtained,

BF�ρ,ε;κ ( f , g) ≡
∑

I∈CF and J∈Cτ−shift
F

J�ρ,ε I

〈
T λ

σ �σ
I ;κ f ,�ω

J ;κg
〉
ω

=
∑

I∈CF and J∈Cø−shift
F

J�ρ,ε I

〈
T λ

σ

(
1IJ �σ

I ;κ f
)
,�ω

J ;κg
〉
ω

+
∑

I∈CF and J∈Cø−shift
F

J�ρ,ε I

∑
θ(IJ )∈CD(I )\{IJ }

〈
T λ

σ

(
1θ(IJ ) �σ

I ;κ f
)
,�ω

J ;κg
〉
ω

≡ BFhome;κ ( f , g) + BFneighbour;κ ( f , g) .

They further decomposed the BFhome;κ form using

MI ′ = MI ′;κ ≡ 1I ′ �σ
I ;κ f = E

σ
I ′;κ �σ

I ;κ f , (6.1)

to obtain

BFhome;κ ( f , g) =
∑

I∈CF and J∈Cτ−shift
F

J�ρ,ε I

〈
T λ

σ

(
MIJ 1IJ

)
,�ω

J ;κg
〉
ω

=
∑

I∈CF and J∈Cτ−shift
F

J�ρ,ε I

〈
MIJ T

λ
σ 1IJ ,�ω

J ;κg
〉
ω

+
∑

I∈CF and J∈Cτ−shift
F

J�ρ,ε I

〈[
T λ

σ , MIJ

]
1IJ ,�ω

J ;κg
〉
ω

=
∑

I∈CF and J∈Cτ−shift
F

J�ρ,ε I

〈
MIJ T

λ
σ 1F ,�ω

J ;κg
〉
ω
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−
∑

I∈CF and J∈Cτ−shift
F

J�ρ,ε I

〈
MIJ T

λ
σ 1F\IJ ,�ω

J ;κg
〉
ω

+
∑

I∈CF and J∈Cτ−shift
F

J�ρ,ε I

〈[
T λ

σ , MIJ

]
1IJ ,�ω

J ;κg
〉
ω

≡ BFparaproduct;κ ( f , g) − BFstop;κ ( f , g) + BFcommutator;κ ( f , g) .

Altogether then we have the weighted Alpert version of the Nazarov, Treil and Volberg
paraproduct decomposition that was obtained by Alexis, Sawyer and Uriarte-Tuero in [1],

BF�ρ,ε;κ ( f , g) = BFparaproduct;κ ( f , g) + BFstop;κ ( f , g) + BFcommutator;κ ( f , g)

+BFneighbour;κ ( f , g) .

6.1 The paraproduct form

Following [1], we first pigeonhole the sum over pairs I and J arising in the paraproduct form
according to which child K ∈ CD (I ) contains J ,

BFparaproduct;κ ( f , g) =
∑
I∈CF

∑
K∈CD(I )

∑
J∈Cτ−shift

F : J�ρ,ε I
J⊂K

〈
MK ;κT λ

σ 1F ,�ω
J ;κg

〉
ω

.

The form BFparaproduct;κ ( f , g) will be handled using the telescoping property in part (2) of

Theorem 9, to sum the restrictions to a cube J ∈ Cτ−shift
F of the polynomials MK ;κ on a child

K ∈ CD (I ) of I , over the relevant cubes I , to obtain a restricted polynomial 1J PK ;κ that is
controlled by Eσ

F | f |, and then passing the polynomial MJ ;κ over to �ω
J ;κg. More precisely,

for each J ∈ Cø−shift
F , let I �

J denote the smallest L ∈ CF such that J �ρ,ε L provided it
exists. Note that J is at most τ levels below the bottom of the corona CF , and since ρ > 2τ ,
we have that either π

(ρ)
D J ∈ CF or that π

(ρ)
D J � F . Let I �

J denote the D-child of I �
J that

contains J , provided I �
J exists. We have

∑
I∈CF : I �

J⊂I

1J MK ;κ = 1J
∑

I∈CF : I �
J⊂I

MK ;κ = 1J

(
E

σ

I �
J ;κ

f − E
σ
F;κ f

)

≡
{
1J PJ ;κ if I �

J exists
0 if I �

J doesn’t exist
. (6.2)

Then we write

BFparaproduct;κ ( f , g) =
∑

I∈CF , I
�
J∈CF and J∈Cτ−shift

F
J�ρ,ε I

〈
MIJ ;κT λ

σ 1F ,�ω
J ;κg

〉
ω

.

From (6.2) we obtain

∥∥1J PJ ;κ
∥∥
L∞(σ )

≤
∥∥∥∥Eσ

I �
J ;κ

f

∥∥∥∥
L∞(σ )

+ ∥∥Eσ
F;κ f

∥∥
L∞(σ )

, (6.3)
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and so

BFparaproduct;κ ( f , g) =
∑

J∈Cτ−shift
F

〈
1J

⎛
⎜⎜⎜⎜⎝

∑
I∈CF : I �

J∈CF
J�ρ,ε I

∑
I ′∈CD(I )
J⊂I ′

MI ′;κ

⎞
⎟⎟⎟⎟⎠ T λ

σ 1F ,�ω
J ;κg

〉

ω

=
∑

J∈Cτ−shift
F

〈
1J PJ ;κT λ

σ 1F ,�ω
J ;κg

〉
ω

to obtain

∣∣∣BFparaproduct;κ ( f , g)
∣∣∣ =

∣∣∣∣∣∣∣
∑

J∈Cτ−shift
F

〈
T λ

σ 1F , PJ ;κ �ω
J ;κ g

〉
ω

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

〈
T λ

σ 1F ,
∑

J∈Cτ−shift
F

PJ ;κ �ω
J ;κ g

〉

ω

∣∣∣∣∣∣∣

≤ ∥∥T λ
σ 1F

∥∥
Ws

dyad(μ)

∥∥Eσ
F;κ f

∥∥
L∞(σ )

∥∥∥∥∥∥∥
∑

J∈Cτ−shift
F

PJ ;κ
Eσ
F | f | �ω

J ;κ g

∥∥∥∥∥∥∥
W−s

dyad(ω)

≤ Ts
T λ� (F)−s

√|F |σ
∥∥Eσ

F;κ f
∥∥
L∞(σ )

∥∥∥∥∥∥∥
∑

J∈Cτ−shift
F

PJ ;κ
Eσ
F | f | �ω

J ;κ g

∥∥∥∥∥∥∥
W−s

dyad(ω)

.

Now we will use an almost orthogonality argument that reflects the fact that for J ′ small
compared to J , the function MJ ′;κ �ω

J ′;κ g has vanishing ω -mean, and the polynomial
1J Pcorona

J ;κ �ω
J ;κ g is relatively smooth at the scale of J ′, together with the fact that the

polynomials

RJ ;κ ≡ PJ ;κ
Eσ
F | f |

of degree at most κ − 1, have L∞ norm uniformly bounded by the constant C appearing in
(6.3). We begin by writing
∥∥∥∥∥∥∥
∑

J∈Cτ−shift
F

RJ ;κ �ω
J ;κ g

∥∥∥∥∥∥∥

2

W−s
dyad(ω)

=
〈 ∑
J∈Cτ−shift

F

RJ ;κ �ω
J ;κ g,

∑
J ′∈Cτ−shift

F

RJ ′;κ �ω
J ′;κ g

〉

W−s
dyad(ω)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
J ,J ′∈Cτ−shift

F
J ′⊂J

+
∑

J ,J ′∈Cτ−shift
F

J�J ′

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

〈
RJ ;κ �ω

J ;κ g, RJ ′;κ �ω
J ′;κ g

〉
W−s

dyad(ω)
≡ A + B.

By symmetry, it suffices to estimate term A. We will use the definitions

‖ f ‖2Ws
dyad(μ) ≡

∑
Q∈D

� (Q)−2s
∥∥∥�μ

Q;κ f
∥∥∥2
L2(μ)

,

〈 f , h〉Ws
dyad(μ) ≡

∑
Q∈D

� (Q)−2s
〈
�μ

Q;κ f ,�μ

Q;κh
〉
L2(μ)

,
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together with the fact that when κ = 1, �ω
Q;1RJ ;κ �ω

J ;κ g has one vanishing moment, to
obtain

A =
∑

J ,J ′∈Cτ−shift
F

J ′⊂J

∑
Q∈D
Q⊂J

� (Q)2s
∫

Rn

(
�ω

Q;1RJ ;κ �ω
J ;κ g

) (
�ω

Q;1RJ ′;κ �ω
J ′;κ g

)
dω

�
∑

J∈Cτ−shift
F

∥∥�ω
J ;κg

∥∥2
W−s

dyad(ω)
=

∑
J∈Cτ−shift

F

� (J )2s
∥∥�ω

J ;κg
∥∥2
L2(ω)

=
∥∥∥∥Pω

Cτ−shift
F

g

∥∥∥∥
2

W−s
dyad(ω)

.

Note that here it is important to know that W−s
dyad (ω) equals both W−s

D;κ (ω) and W−s
D;1 (ω).

Indeed, if J ′ is small compared to J , and J ′ ⊂ JJ ′ ⊂ J , then there are just three
possibilities for Q, namely Q ∩ J ′ = ∅, Q � J ′, and Q ⊂ J ′. If Q ∩ J ′ = ∅ then
the integral vanishes by support considerations. If Q � J ′ then the integral vanishes since

�ω
Q;1
(
RJ ;κ �ω

J ;κ g
)
is constant on J ′, RJ ′;κ �ω

J ′;κ g has ω-mean 0 on J ′, and �ω
Q;1 is a

projection. Thus we are left with the case where Q ⊂ J ′ ⊂ J . We have∣∣∣∣
∫

Rn

(
�ω

Q;1
(
RJ ;κ �ω

J ;κ g
)) (�ω

Q;1
(
RJ ′;κ �ω

J ′;κ g
))

dω

∣∣∣∣
= ∥∥RJ ;κ �ω

J ;κ g
∥∥
L∞(ω)

∥∥∥RJ ′;κ �ω
J ′;κ g

∥∥∥
L∞(ω)

×

∣∣∣∣∣∣∣
∫

Rn

⎛
⎜⎝

�ω
Q;1
(
RJ ;κ �ω

J ;κ g
)

∥∥∥RJ ;κ �ω
J ;κ g

∥∥∥
L∞(ω)

⎞
⎟⎠
⎛
⎜⎝

�ω
Q;1
(
RJ ′;κ �ω

J ′;κ g
)

∥∥∥RJ ′;κ �ω
J ′;κ g

∥∥∥
L∞(ω)

⎞
⎟⎠ dω

∣∣∣∣∣∣∣
,

and now if Q ⊂ J ′, we get

∫
Rn

⎛
⎜⎝

�ω
Q;1
(
RJ ;κ �ω

J ;κ g
)

∥∥∥RJ ;κ �ω
J ;κ g

∥∥∥
L∞(ω)

⎞
⎟⎠
⎛
⎜⎝

�ω
Q;1
(
RJ ′;κ �ω

J ′;κ g
)

∥∥∥RJ ′;κ �ω
J ′;κ g

∥∥∥
L∞(ω)

⎞
⎟⎠ dω

=
∫

Rn

⎛
⎜⎝ �ω

Q;1RJ ;κ �ω
J ;κ g∥∥∥RJ ;κ �ω

J ;κ g
∥∥∥
L∞(ω)

⎞
⎟⎠
⎛
⎜⎝ RJ ′;κ �ω

J ′;κ g∥∥∥RJ ′;κ �ω
J ′;κ g

∥∥∥
L∞(ω)

⎞
⎟⎠ dω

where �ω
Q;1 has one vanishing mean, and hence

∣∣∣∣
∫ (

�ω
Q;1
(
RJ ;κ �ω

J ;κ g
)) (�ω

Q;1
(
RJ ′;κ �ω

J ′;κ g
))

dω

∣∣∣∣
≤ � (Q)

� (J )

∥∥RJ ;κ �ω
J ;κ g

∥∥
L∞(ω)

� (Q)

� (J ′)

∥∥∥RJ ′;κ �ω
J ′;κ g

∥∥∥
L∞(ω)

|Q|ω

�

∥∥∥�ω
J ;κg

∥∥∥
L2(ω)√|J |ω

∥∥∥�ω
J ′;κg

∥∥∥
L2(ω)√|J ′|ω

� (Q)

� (J )

� (Q)

� (J ′)
|Q|ω

= � (Q)

� (J )

� (Q)

� (J ′)

√
|Q|ω
|J |ω

√
|Q|ω
|J ′|ω

∥∥�ω
J ;κg

∥∥
L2(ω)

∥∥∥�ω
J ′;κg

∥∥∥
L2(ω)

≤
√

|Q|ω
|J |ω

� (Q)

� (J )

∥∥∥�ω
J ′;κg

∥∥∥
L2(ω)

∥∥�ω
J ;κg

∥∥
L2(ω)

,
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by (2.8), i.e.∥∥∥RJ ′;κ �ω
J ′;κ g

∥∥∥
L∞(ω)

√|J ′|ω �
∥∥∥�ω

J ′;κg
∥∥∥
L∞(ω)

√|J ′|ω �
∥∥∥�ω

J ′;κg
∥∥∥
L2(ω)

,

∥∥RJ ;κ �ω
J ;κ g

∥∥
L∞(ω)

√|J |ω �
∥∥�ω

J ;κg
∥∥
L∞(ω)

√|J |ω �
∥∥�ω

J ;κg
∥∥
L2(ω)

.

Note that it was necessary to invoke the Haar wavelets with κ = 1 in order to obtain this
inequality for s �= 0.

We now note for use in the next estimate that

∑
Q∈D
Q⊂J ′

� (Q)2s

√
|Q|ω
|J |ω

� (Q)

� (J )
=

∞∑
m=0

∑
Q∈D

Q⊂J ′ and �(Q)=2−m�(J ′)

� (Q)2s

√
|Q|ω
|J |ω

� (Q)

� (J )

=
∞∑

m=0

�
(
J ′)2s 2−2sm 2−m�

(
J ′)

� (J )

√
1

|J |ω
∑
Q∈D

Q⊂J ′ and �(Q)=2−m�(J ′)

1
√|Q|ω

≤
∞∑

m=0

�
(
J ′)2s 2−2sm 2−m�

(
J ′)

� (J )

√
1

|J |ω 2
m
2

√√√√√
∑
Q∈D

Q⊂J ′ and �(Q)=2−m�(J ′)

|Q|ω

= �
(
J ′)2s �

(
J ′)

� (J )

√
|J ′|ω
|J |ω

∞∑
m=0

2
m
2 2−2sm2−m ≤ Cs�

(
J ′)2s �

(
J ′)

� (J )

√
|J ′|ω
|J |ω .

Thus recalling that we restricted attention to the case J ′ ⊂ J by symmetry, we have

∑
J ,J ′∈Cτ−shift

F
J ′⊂J

∑
Q∈D
Q⊂J

� (Q)2s
∣∣∣∣
∫

Rn

(
�ω

Q;1RJ ;κ �ω
J ;κ g

) (
�ω

Q;1RJ ′;κ �ω
J ′;κ g

)
dω

∣∣∣∣

=
∑

J ,J ′∈Cτ−shift
F

J ′⊂J

∑
Q∈D
Q⊂J ′

� (Q)2s
∣∣∣∣
∫

Rn

(
�ω

Q;1RJ ;κ �ω
J ;κ g

) (
�ω

Q;1RJ ′;κ �ω
J ′;κ g

)
dω

∣∣∣∣

�
∑

J ,J ′∈Cτ−shift
F

J ′⊂J

∑
Q∈D
Q⊂J ′

� (Q)2s

√
|Q|ω
|J |ω

� (Q)

� (J )

∥∥∥�ω
J ′;κg

∥∥∥
L2(ω)

∥∥�ω
J ;κg

∥∥
L2(ω)

�
∑

J ,J ′∈Cτ−shift
F

J ′⊂J

�
(
J ′)2s �

(
J ′)

� (J )

√
|J ′|ω
|J |ω

∥∥∥�ω
J ′;κg

∥∥∥
L2(ω)

∥∥�ω
J ;κg

∥∥
L2(ω)

which is

=
∞∑

m=0

2−m2−2sm
∑

J ,J ′∈Cτ−shift
F

�(J ′)=2−m�(J )

� (J )2s

√
|J ′|ω
|J |ω

∥∥∥�ω
J ′;κg

∥∥∥
L2(ω)

∥∥�ω
J ;κg

∥∥
L2(ω)

≤
∞∑

m=0

2−m2−2sm
∑

J∈Cτ−shift
F

� (J )2s
∑

J ′∈Cø−shift
F : �(J ′)=2−m�(J )
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×
√

|J ′|ω
|J |ω

∥∥∥�ω
J ′;κg

∥∥∥
L2(ω)

∥∥�ω
J ;κg

∥∥
L2(ω)

�
∞∑

m=0

2−m2−2sm
∑

J∈Cτ−shift
F

� (J )2s

√√√√ ∑
J ′∈Cø−shift

F : �(J ′)=2−m�(J )

|J ′|ω
|J |ω

∥∥∥�ω
J ;κg

∥∥∥2
L2(ω)

×
√√√√ ∑

J ′: �(J ′)=2−m�(J )

∥∥∥�ω
J ′;κg

∥∥∥2
L2(ω)

which is at most

�
∞∑

m=0

2−m2−2sm
∑

J∈Cτ−shift
F

� (J )2s
∥∥�ω

J ;κg
∥∥
L2(ω)

×
√√√√ ∑

J ′∈Cτ−shift
F : �(J ′)=2−m�(J )

∥∥∥�ω
J ′;κg

∥∥∥2
L2(ω)

�
∞∑

m=0

2−m2−2sm

√√√√ ∑
J∈Cτ−shift

F

� (J )2s
∥∥∥�ω

J ;κg
∥∥∥2
L2(ω)

×
√√√√ ∑

J∈Cτ−shift
F

� (J )2s
∑

J ′∈Cτ−shift
F : �(J ′)=2−m�(J )

∥∥∥�ω
J ′;κg

∥∥∥2
L2(ω)

�
√√√√ ∑

J∈Cτ−shift
F

� (J )2s
∥∥∥�ω

J ;κg
∥∥∥2
L2(ω)

∞∑
m=0

2−m2−2sm2ms

×
√√√√ ∑

J∈Cτ−shift
F

∑
J ′∈Cτ−shift

F : �(J ′)=2−m�(J )

� (J ′)2s
∥∥∥�ω

J ′;κg
∥∥∥2
L2(ω)

≤
∥∥∥∥Pω

Cτ−shift
F

g

∥∥∥∥
W−s

dyad(ω)

∞∑
m=0

2−m2−2sm2ms

√√√√ ∑
J ′∈Cτ−shift

F

� (J ′)2s
∥∥∥�ω

J ′;κg
∥∥∥2
L2(ω)

= Cs

∥∥∥∥Pω

Cτ−shift
F

g

∥∥∥∥
2

W−s
dyad(ω)

provided that s > −1. Altogether we have shown

∣∣∣BFparaproduct;κ ( f , g)
∣∣∣ � Ts

T λ� (F)−s
√|F |σ

∥∥Eσ
F;κ f

∥∥
L∞(σ )

∥∥∥∥∥∥∥
∑

J∈Cτ−shift
F

PJ ;κ
Eσ
F | f | �ω

J ;κ g

∥∥∥∥∥∥∥
W−s

dyad(ω)

� Ts
T λ� (F)−s

√|F |σ
∥∥Eσ

F;κ f
∥∥
L∞(σ )

Cs

∥∥∥∥Pω

Cτ−shift
F

g

∥∥∥∥
W−s

dyad(ω)

.
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For future reference we record the fact that the main inequality proved above,

∥∥∥∥∥∥∥
∑

J∈Cτ−shift
F

RJ ;κ �ω
J ;κ g

∥∥∥∥∥∥∥

2

W−s
dyad(ω)

�
∑

J∈Cτ−shift
F

∥∥�ω
J ;κg

∥∥2
W−s

dyad(ω)
,

continues to hold if Cτ−shift
F is replaced by an arbitrary subset J of the dyadic grid D, and if

the polynomials RJ ;κ are replaced with any family of polynomials
{
WJ ;κ

}
J∈J such that for

all J ∈ J ,

degWJ ;κ < κ,∫
J
WJ ;κdω = 0,

sup
J

∣∣WJ ;κ
∣∣ ≤ C .

More precisely the above arguments prove,

∥∥∥∥∥∥
∑
J∈J

WJ ;κ �ω
J ;κ g

∥∥∥∥∥∥
2

W−s
dyad(ω)

�
∑
J∈J

∥∥�ω
J ;κg

∥∥2
W−s

dyad(ω)
. (6.4)

Since the weighted Sobolev wavelets
{
�ω

J ;κ
}
J∈D are pairwise orthogonal, we have

∑
J∈Cτ−shift

F

∥∥�ω
J ;κg

∥∥2
W−s

dyad(ω)
=
∥∥∥∥Pω

Cτ−shift
F

g

∥∥∥∥
2

W−s
dyad(ω)

,

and so we obtain
∣∣∣BFparaproduct;κ ( f , g)

∣∣∣ � Ts
T λ� (F)−s

∥∥Eσ
F;κ f

∥∥
L∞(σ )

√|F |σ
∥∥∥∥Pω

Cτ−shift
F

g

∥∥∥∥
W−s

dyad(ω)

(6.5)

as required by (5.16).

We next turn to the commutator inner products
〈[
T λ

σ , MI ′;κ
]
1I ′ ,�ω

J ;κg
〉
ω

arising in

BFcommutator;κ ( f , g), followed by the neighbour and stopping inner products.

Remark 45 The arguments for the commutator, neighbour and stopping forms follow closely
the analogous arguments in [1] where the case s = 0 is handled. Nevertheless, there are
differences arising when s �= 0, and so we give complete details for the convenience of the
reader.

6.2 The commutator form

Fix κ ≥ 1. In this subsection we use α to denote a multiindex in R
n , and so we will instead

use λ to denote the fractional order of the Calderon–Zygmund operator. Assume now that K λ

is a general standard λ-fractional kernel in R
n , and T λ is the associated Calderón–Zygmund

operator, and that Pα,a,I ′ (x) =
(
x−a
�(I ′)

)α =
(
x1−a1
�(I ′)

)α1
...
(
xn−an
�(I ′)

)αn
, where |α| ≤ κ − 1 and

123



Two weight Sobolev norm inequalities… Page 63 of 74 81

I ′ ∈ CD (I ), I ∈ CF . We recall from [1] the formula

xα − yα =
n∑

k=1

(xk − yk)
∑

|β|+|γ |=|α|−1

cα,β,γ x
β yγ .

Continuing to follow [1], we then have

1I ′ (x)
[
Pα,a,I ′ T λ

σ

]
1I ′ (x) = 1I ′ (x)

∫
Rn

K λ (x − y)
{
Pα,a,I ′ (x) − Pα,a,I ′ (y)

}
1I ′ (y) dσ (y)

= 1I ′ (x)
∫

Rn
K λ (x − y)

⎧⎨
⎩

n∑
k=1

(
xk − yk
� (I ′)

) ∑
|β|+|γ |=|α|−1

cα,β,γ

(
x − a

� (I ′)

)β ( y − a

� (I ′)

)γ

⎫⎬
⎭ 1I ′ (y) dσ (y)

=
n∑

k=1

∑
|β|+|γ |=|α|−1

cα,β,γ 1I ′ (x)

[∫
�λ

k (x − y)

{(
y − a

� (I ′)

)γ}
1I ′ (y) dσ (y)

](
x − a

� (I ′)

)β

,

where �λ
k (x − y) = K λ (x − y)

(
xk−yk
�(I ′)

)
. So

[
Pα,a,I ′ , T λ

σ

]
1I ′ (x) is a ‘polynomial’ of

degree |α| − 1 with variable coefficients. Now we take the inner product of the commu-
tator with �ω

J ;κg for some J ⊂ I ′, and split the inner product into two pieces,

〈[
Pα,a,I ′ T λ

σ

]
1I ′ ,�ω

J ;κg
〉
ω

=
∫

Rn

[
Pα,a,I ′ T λ

σ

]
1I ′ (x) �ω

J ;κ g (x) dω (x) (6.6)

=
∫

Rn

[
Pα,a,I ′ T λ

σ

]
1I ′\2J (x) �ω

J ;κ g (x) dω (x)

+
∫

Rn

[
Pα,a,I ′ T λ

σ

]
1I ′∩2J (x) �ω

J ;κ g (x) dω (x)

≡ Intλ,� (J ) + Intλ,� (J ) ,

where we are suppressing the dependence on α and I ′. For the first term Intλ,� (J ) we write

Intλ,� (J ) =
n∑

k=1

∑
|β|+|γ |=|α|−1

cα,β,γ Int
λ,�
k,β,γ (J ) ,

where with the choice a = cJ the center of J , we define

Intλ,�
k,β,γ (J ) ≡

∫
J

[∫
I ′\2J

�λ
k (x − y)

(
y − cJ
� (I ′)

)γ

dσ (y)

](
x − cJ
� (I ′)

)β

�ω
J ;κ g (x) dω (x)

=
∫
I ′\2J

{∫
J
�λ

k (x − y)

(
x − cJ
� (I ′)

)β

�ω
J ;κ g (x) dω (x)

}(
y − cJ
� (I ′)

)γ

dσ (y) .

(6.7)

While these integrals need no longer vanish, we will show they are suitably small, using that

the function
(
x−cJ
�(I ′)

)β �ω
J ;κ g (x) is supported in J and has vanishing ω-means up to order

κ − |β| − 1, and that the function �λ
k (z) is appropriately smooth away from z = 0,

∣∣∇m�λ
k (z)

∣∣ ≤ Cm,n
1

|z|m+n−λ−1 � (I ′)
.

Indeed, we have the following estimate for the integral in braces in (6.7), keeping in
mind that y ∈ I ′\2J and x ∈ J , where the term in the second line below vanishes because
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h (x) =
(
x−cJ
�(I ′)

)β �ω
J ;κ g (x) has vanishing ω-means up to order κ − 1− |β|, and the fourth

line uses that h (x) is supported in J :∣∣∣∣
∫

Rn
�λ

k (x − y) h (x) dω (x)

∣∣∣∣

=
∣∣∣∣∣∣
∫

Rn

⎧⎨
⎩

κ−|β|−1∑
m=0

1

m! ((x − cJ ) · ∇)m �λ
k (cJ − y)

⎫⎬
⎭ h (x) dω (x)

+
∫

Rn

1

(κ − |β|)! ((x − cJ ) · ∇)κ−|β| �λ
k

(
ηω
J

)
h (x) dω (x)

∣∣∣∣
� ‖h‖L1(ω)

� (J )κ−|β|

[� (J ) + dist (y, J )]κ−|β|+n−λ−1 � (I ′)

�
(

� (J )

� (I ′)

)|β|
� (J )κ−|β|

[� (J ) + dist (y, J )]κ−|β|+n−λ−1 � (I ′)
√|J |ω |̂g (J )| ,

since

‖h‖L1(ω) =
∫
J

∣∣∣∣∣
(
x − cJ
� (I ′)

)β

�ω
J ;κ g (x)

∣∣∣∣∣ dω (x)

≤
(

� (J )

� (I ′)

)|β| ∥∥�ω
J ;κg

∥∥
L1(ω)

�
(

� (J )

� (I ′)

)|β|√|J |ω |̂g (J )| .

Now recall the orthonormal basis
{
hσ,a
I ;κ
}
a∈�

of L2
I ;κ (σ ) for any I ∈ D. For a D-child I ′

of a cube I , we consider the polynomial

Qσ
I ′;κ ≡ 1I ′

∑
a∈�

cah
σ,a
I ;κ

where ca =
〈
f ,hσ,a

I ;κ
〉

| f̂ (I )| , so that Qσ
I ′;κ is a renormalization of the polynomial MI ′;κ introduced

earlier. We have
∣∣ f̂ (I )

∣∣ 1I ′
∑
a∈�

cah
σ,a
I ;κ = ∣∣ f̂ (I )

∣∣ 1I ′ Qσ
I ′;κ = E

σ
I ′;κ f − 1I ′Eσ

I ;κ f ,

where

∑
a∈�

|ca |2 =
∑
a∈�

∣∣∣∣∣∣

〈
f , hσ,a

I ;κ
〉

∣∣ f̂ (I )
∣∣
∣∣∣∣∣∣

2

= 1.

Recall also that from (2.8) we have

∣∣ f̂ (I )
∣∣ ∥∥∥Qσ

I ′;κ
∥∥∥∞ =

∥∥∥∥∥1I ′
∑
a∈�

〈
f , hσ,a

I ;κ
〉
hσ,a
I ;κ

∥∥∥∥∥
∞

= ∥∥1I ′ �σ
I ;κ f

∥∥∞ ≈
∣∣ f̂ (I )

∣∣
√|I |σ

.

Hence for cJ ∈ J ⊂ I ′, if we write

Qσ
I ′;κ (y) =

∑
|α|<κ

bα

(
y − cJ
� (I ′)

)α

=
∑

|α|<κ

bαPα,cJ (y) ,
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and then rescale to the unit cube and invoke the fact that any two norms on a finite dimensional
vector space are equivalent, we obtain

∑
|α|<κ

|bα| ≈
∥∥∥Qσ

I ′;κ
∥∥∥∞ ≈ 1√|I |σ

, I ′ ∈ CD (I ) . (6.8)

We then write
〈[
QI ′;κ , T λ

σ

]
1I ′\2J ,�ω

J ;κg
〉
ω

=
∑

|α|<κ

bα

〈[
Pα,cJ , T

λ
σ

]
1I ′\2J ,�ω

J ;κg
〉
ω

and note that∣∣∣〈[QI ′;κ , T λ
σ

]
1I ′\2J ,�ω

J ;κg
〉
ω

∣∣∣ ≤ ∑
|α|<κ

∣∣∣bα

〈[
Pα,cJ , T

λ
σ

]
1I ′\2J ,�ω

J ;κg
〉
ω

∣∣∣

� 1√|I |σ
max|α|<κ

∣∣∣〈[Pα,cJ , T
λ
σ

]
1I ′\2J ,�ω

J ;κg
〉
ω

∣∣∣ ,

so that it remains to estimate each inner product Intλ,� (J ) =
〈[
Pα,cJ , T

λ
σ

]
1I ′\2J ,�ω

J ;κg
〉
ω

as follows:

∣∣Intλ,� (J )
∣∣ =

∣∣∣∣∣∣
n∑

k=1

∑
|β|+|γ |=|α|−1

cα,β,γ Int
λ,�
k,β,γ (J )

∣∣∣∣∣∣ � max|β|+|γ |=|α|−1

∣∣∣Intλ,�
k,β,γ (J )

∣∣∣ ,

where |β| + |γ | = |α| − 1, and the estimates above imply,

∣∣∣Intλ,�
k,β,γ (J )

∣∣∣ ≤
∫
I ′\2J

∣∣∣∣∣
∫

�λ
k (x − y)

(
x − cJ
� (I ′)

)β

�ω
J ;κ g (x) dω (x)

∣∣∣∣∣
∣∣∣∣
(
y − cJ
� (I ′)

)γ ∣∣∣∣ dσ (y)

�
∫
I ′\2J

(
� (J )

� (I ′)

)|β|
� (J )κ−|β|

[� (J ) + dist (y, J )]κ−|β|+n−λ−1 � (I )

×√|J |ω |̂g (J )|
(

� (J ) + dist (y, J )

� (I ′)

)|γ |
dσ (y)

=
∫
I ′\2J

(
� (J )

� (I ′)

)|α|−1 (
� (J )

� (J ) + dist (y, J )

)κ−|α|+1

× 1

[� (J ) + dist (y, J )]n−λ−1 � (I ′)
√|J |ω |̂g (J )| dσ (y)

=
(

� (J )

� (I ′)

)|α|−1√|J |ω |̂g (J )|

×
{∫

I ′\2J

(
� (J )

� (J ) + dist (y, J )

)κ−|α|+1 1

[� (J ) + dist (y, J )]n−λ−1 � (I ′)
dσ (y)

}
.

Nowwe fix t ∈ N, and estimate the sum of
∣∣Intλ,� (J )

∣∣ over J ⊂ I ′ with � (J ) = 2−t�
(
I ′)

by splitting the integration in y according to the size of � (J ) + dist (y, J ), to obtain the
following bound:

∑
J⊂I ′: �(J )=2−t �(I ′)

∣∣∣Intλ,� (J )

∣∣∣
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� 2−t(|α|−1)
∑

J⊂I ′: �(J )=2−t �(I ′)

√|J |ω |̂g (J )|
{∫

I ′\2J

(
� (J )

� (J ) + dist (y, J )

)κ−|α|+1

× dσ (y)

[� (J ) + dist (y, J )]n−λ−1 �
(
I ′
)
}

� 2−t(|α|−1)
∑

J⊂I ′: �(J )=2−t �(I ′)

√|J |ω |̂g (J )|
{ t∑
s=1

∫
2s+1 J\2s J

(
2−s)κ−|α|+1 dσ (y)

(2s� (J ))n−λ−1 �
(
I ′
)
}

� 2−t |α| ∑
J⊂I ′: �(J )=2−t �(I ′)

√|J |ω |̂g (J )|
t∑

s=1

(
2−s)κ−|α|+1

2−s(n−λ−1)

∣∣2s J ∣∣
σ

� (J )n−λ
,

which gives upon pigeonholing the sum in J according to membership in the grandchildren
of I ′ at depth t − s:

∑
J∈C(t)

D (I ′)

∣∣Intλ,� (J )
∣∣

� 2−t |α| ∑
J∈C(t)

D (I ′)

√|J |ω |̂g (J )|
t∑

s=1

(
2−s)κ−|α|+n−λ |2s J |σ

� (J )n−λ

= 2−t |α|
t∑

s=1

(
2−s)κ−|α| ∑

K∈C(t−s)
D (I ′)

∑
J∈C(s)

D (K )

√|J |ω |̂g (J )| |2s J |σ
� (K )n−λ

� 2−t |α|
t∑

s=1

(
2−s)κ−|α| ∑

K∈C(t−s)
D (I ′)

|3K |σ
� (K )n−λ

∑
J∈C(s)

D (K )

√|J |ω |̂g (J )|

� 2−t |α|
t∑

s=1

(
2−s)κ−|α| ∑

K∈C(t−s)
D (I ′)

|3K |σ
� (K )n−λ

√|K |ω
√√√√

∑
J∈C(s)

D (K )

|̂g (J )|2.

Now we use the Aλ
2 condition and doubling for σ to obtain the bound

|3K |σ
� (K )n−λ

√|K |ω �
√|3K |σ |3K |ω

� (3K )n−λ

√|3K |σ ≤
√
Aλ
2

√|3K |σ �
√
Aλ
2

√|K |σ .

Thus we have

∑
J∈C(t)

D (I ′)

∣∣Intλ,� (J )
∣∣ � 2−t |α|

√
Aλ
2

t∑
s=1

(
2−s)κ−|α| ∑

K∈C(t−s)
D (I ′)

√|K |σ
√√√√

∑
J∈C(s)

D (K )

|̂g (J )|2

� 2−t |α|
√
Aλ
2

t∑
s=1

(
2−s)κ−|α|√|I ′|σ

√√√√
∑

J∈C(t)
D (I ′)

|̂g (J )|2

� 2−t
√
Aλ
2

√|I ′|σ
√√√√

∑
J∈C(t)

D (I ′)

|̂g (J )|2,
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since 1 ≤ |α| ≤ κ − 1 (the commutator vanishes if |α| = 0) shows that both 2−t |α| ≤ 2−t

and

κ − |α| ≥ 1 > 0.

We now claim the same estimate holds for the sum of
∣∣Intλ,� (J )

∣∣ over J ⊂ I ′ with
� (J ) = 2−t�

(
I ′), namely

∣∣∣Intλ,�
k,β,γ (J )

∣∣∣ �
∣∣∣∣∣
∫
J

(∫
2J

�λ
k (x − y)

(
y − cJ
� (I ′)

)γ

dσ (y)

)(
x − cJ
� (I ′)

)β

�ω
J ;κ g (x) dω (x)

∣∣∣∣∣

≤
∫
J

(∫
2J

1

� (I ′) |x − y|n−λ−1

∣∣∣∣ y − cJ
� (I ′)

∣∣∣∣
|γ |

dσ (y)

) ∣∣∣∣ x − cJ
� (I ′)

∣∣∣∣
|β| ∣∣�ω

J ;κg (x)
∣∣ dω (x)

�
(

� (J )

� (I ′)

)|γ |+|β| 1

� (I ′)
√|J |ω

|̂g (J )|
∫
J

∫
2J

dσ (y) dω (x)

|x − y|n−λ−1 .

In order to estimate the double integral using the Aλ
2 condition we cover the band |x − y| ≤

C2−m� (J ) by a collection of cubes Q
(
zm,C2−m� (J )

)× Q
(
zm,C2−m� (J )

)
in C J ×C J

with centers (zm, zm) and bounded overlap. Then we have

∫
J

∫
2J

dσ (y) dω (x)

|x − y|n−λ−1 ≤
∞∑

m=0

∫∫

x,y∈2J
|x−y|≈2−m�(J )

dσ (y) dω (x)(
2−m� (J )

)n−λ−1

≈
∞∑

m=0

∑
Q(zm ,C2−m�(J ))×Q(zm ,C2−m�(J ))

∫
Q(zm ,C2−m�(J ))×Q(zm ,C2−m�(J ))

dσ (y) dω (x)(
2−m� (J )

)n−λ−1

≤ 1

� (J )n−λ−1

∞∑
m=0

2m(n−λ−1)
∑
zm

∣∣Q (zm ,C2−m� (J )
)∣∣

σ

∣∣Q (zm ,C2−m� (J )
)∣∣

ω

≤ 1

� (J )n−λ−1

∞∑
m=0

2m(n−λ−1)
∑
zm

√∣∣Q (zm ,C2−m� (J )
)∣∣

σ

∣∣Q (zm ,C2−m� (J )
)∣∣

ω

√
Aλ
2

(
2−m� (J )

)n−λ

�
√
Aλ
2� (J )

∞∑
m=0

2m(n−λ−1)2−m(n−λ)
√|C J |σ |C J |ω �

√
Aλ
2� (J )

√|J |σ |J |ω.

Thus altogether, we have

∣∣∣Intλ,�
k,β,γ (J )

∣∣∣ �
(

� (J )

� (I ′)

)|γ |+|β| 1

� (I ′)
√|J |ω

|̂g (J )|
√
Aλ
2� (J )

√|J |σ |J |ω

≤
√
Aλ
2

(
� (J )

� (I ′)

)|α|
|̂g (J )|√|J |σ ≤

√
Aλ
2
� (J )

� (I ′)
|̂g (J )|√|J |σ ,

since |α| ≥ 1 (otherwise the commutator vanishes). Now

∑
J∈C(t)

D (I ′)

∣∣Intλ,� (J )
∣∣ �

∑
J∈C(t)

D (I ′)

√
Aλ
2
� (J )

� (I ′)
[
� (J )−s � (J )s

] |̂g (J )|√|J |σ

≤ �
(
I ′)−s 2−t(1−s)

√
Aλ
2

√|I ′|σ
√√√√

∑
J∈C(t)

D (I ′)

� (J )2s |̂g (J )|2,
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and so altogether we have
∑

J∈C(t)
D (I ′)

∣∣∣〈[Pα,cJ , T
λ
σ

]
1I ′ ,�ω

J ;κg
〉
ω

∣∣∣

=
∑

J∈C(t)
D (I ′)

∣∣Intλ (J )
∣∣

≤
∑

J∈C(t)
D (I ′)

∣∣Intλ,� (J )
∣∣+ ∑

J∈C(t)
D (I ′)

∣∣Intλ,� (J )
∣∣

� 2−t(1−s)�
(
I ′)−s

√
Aλ
2

√|I ′|σ
√√√√

∑
J∈C(t)

D (I ′)

� (J )2s |̂g (J )|2.

Finally then we obtain from this and (6.8),

∑
J∈C(t)

D (I ′)

∣∣∣〈[QI ′;κ , T λ
σ

]
1I ′ ,�ω

J ;κg
〉
ω

∣∣∣ =
∑

J∈C(t)
D (I ′)

∣∣∣∣∣∣
∑

|α|≤κ−1

bα

〈[
Pα,cJ , T

λ
σ

]
1I ′ ,�ω

J ;κg
〉
ω

∣∣∣∣∣∣

� 2−t(1−s)�
(
I ′)−s

√
Aλ
2

√√√√
∑

J∈C(t)
D (I ′)

� (J )2s |̂g (J )|2.

Now using MIJ ;κ = ∣∣ f̂ (I )
∣∣ QIJ ;κ , and applying the above estimates with I ′ = IJ , we

can sum over t and I ∈ CF to obtain
∣∣∣BFcommutator;κ ( f , g)

∣∣∣ ≤ ∑
I∈CF and J∈Cτ−shift

F
J�ρ,ε I

∣∣ f̂ (I )
∣∣ ∣∣∣
〈[
T λ

σ , QIJ ;κ
]
1IJ ,�ω

J ;κg
〉
ω

∣∣∣ (6.9)

�
∞∑
t=r

∑
I∈CF

2−t(1−s)�
(
I ′)−s

√
Aλ
2

∣∣ f̂ (I )
∣∣
√√√√

∑
J∈C(t)

D (IJ ) and J∈Cτ−shift
F

� (J )2s |̂g (J )|2

�
√
Aλ
2

∞∑
t=r

2−t(1−s)
√∑

I∈CF

� (I )−2s
∣∣ f̂ (I )

∣∣2
√√√√
∑
I∈CF

∑
J∈C(t)

D (IJ ) and J∈Cτ−shift
F

� (J )2s |̂g (J )|2

�
√
Aλ
2

∞∑
t=r

2−t
∥∥Pσ

CF
f
∥∥
Ws

dyad(σ )

∥∥∥∥Pω

Cτ−shift
F

g

∥∥∥∥
W−s

dyad(ω)

�
√
Aλ
2

∥∥Pσ
CF

f
∥∥
Ws

dyad(σ )

∥∥∥∥Pω

Cø−shift
F

g

∥∥∥∥
W−s

dyad(ω)

.

Thus the commutator form BFcommutator;κ ( f , g) is controlled by Aλ
2 alone.

6.3 The neighbour form

In this form we can obtain the required bound, which uses only the Aλ
2 constant, by taking

absolute values inside the sum, and following [1] again, we argue as in the case of Haar
wavelets in [17, end of Subsection 8.4]. We begin with MI ′;κ = 1I ′ �σ

I ;κ f as in (6.1) to
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obtain∣∣∣BFneighbour;κ ( f , g)
∣∣∣ ≤

∑
I∈CF and J∈Cτ−shift

F
J�ρ,ε I

∑
θ(IJ )∈CD(I )\{IJ }

∣∣∣〈T λ
σ

(
1θ(IJ ) �σ

I ;κ f
)
,�ω

J ;κg
〉
ω

∣∣∣

≤
∑

I∈CF and J∈Cτ−shift
F

J�ρ,ε I

∑
I ′≡θ(IJ )∈CD(I )\{IJ }

∣∣∣〈T λ
σ

(
MI ′;κ1I ′

)
,�ω

J ;κg
〉
ω

∣∣∣ .

We now control this by the pivotal bound (3.13) on the inner product with ν =∥∥MI ′;κ
∥∥
L∞(σ )

1I ′dσ , and then estimating by the usual Poisson kernel,

∣∣∣〈T λ
σ

(
MI ′;κ1I ′

)
,�ω

J ;κg
〉
ω

∣∣∣ � Pλ
κ

(
J ,
∥∥MI ′;κ

∥∥
L∞(σ )

1I ′σ
)

� (J )−s
√|J |ω

∥∥�ω
J ;κg

∥∥
W−s

dyad(ω)

≤ ∥∥MI ′;κ
∥∥
L∞(σ )

Pλ (J , 1I ′σ) � (J )−s
√|J |ω

∥∥�ω
J ;κg

∥∥
W−s

dyad(ω)
,

and the estimate
∥∥MI ′;κ

∥∥
L∞(σ )

≈ 1√|I ′|σ
∣∣ f̂ (I )

∣∣ from (2.8), along with (3.14), namely

Pλ
m(J , σ1K\I ) �

(
� (J )

� (I )

)m−ε(n+m−λ)

Pα
m(I , σ1K\I ),

to obtain

∣∣∣BFneighbour;κ ( f , g)
∣∣∣

�
∑

I∈CF and J∈Cτ−shift
F

J�ρ,ε I

∑
I ′≡θ(IJ )∈CD(I )\{IJ }

∣∣ f̂ (I )
∣∣√|I ′|σ
Pλ (J , 1I ′σ) � (J )−s

√|J |ω
∥∥�ω

J ;κg
∥∥
W−s

dyad(ω)

=
∑
I∈CF

∑
I0,Iθ ∈CD(I )

I0 �=Iθ

∑
J∈Cτ−shift

F
J�ρ,ε I and J⊂I0

∣∣ f̂ (I )
∣∣

√|Iθ |σ
Pλ
(
J , 1Iθ σ

)
� (J )−s

√|J |ω
∥∥�ω

J ;κg
∥∥
W−s

dyad(ω)

=
∞∑
t=r

∑
I∈CF

∑
I0,Iθ ∈CD(I )

I0 �=Iθ

∑
J∈Cτ−shift

F and �(J )=2−t �(I )
J�ρ,ε I and J⊂I0

∣∣ f̂ (I )
∣∣

√|Iθ |σ
Pλ
(
J , 1Iθ σ

)
� (J )−s

√|J |ω
∥∥�ω

J ;κg
∥∥
W−s

dyad(ω)

�
∞∑
t=r

∑
I∈CF

∑
I0,Iθ ∈CD(I )

I0 �=Iθ

∑
J∈Cτ−shift

F and �(J )=2−t �(I )
J�ρ,ε I and J⊂I0

∣∣ f̂ (I )
∣∣

√|Iθ |σ
{(
2−t )1−ε(n+1−λ)−s

� (I )s Pλ
(
I0, 1Iθ σ

)}

×√|J |ω
∥∥�ω

J ;κg
∥∥
W−s

dyad(ω)

=
∑
I∈CF

∑
I0,Iθ ∈CD(I )

I0 �=Iθ

∞∑
t=r

A (I , I0, Iθ , t) ,

where

A (I , I0, Iθ , t)

= (2−t )1−ε(n+1−λ)−s � (I )s
∣∣ f̂ (I )

∣∣√|I ′|σ
Pλ
(
I0, 1Iθ σ

)
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×
∑

J∈Cø−shift
F and �(J )=2−t�(I )
J�ρ,ε I and J⊂I0

√|J |ω� (J )s
∥∥�ω

J ;κg
∥∥
W−s

dyad(ω)
.

Now recall that the case s = 0 of the following estimate was proved in [17, see from the
bottom of page 120 to the top of page 122],
∣∣∣∣∣∣∣∣
∑
I∈CF

∑
I0,Iθ∈CD(I )

I0 �=Iθ

∞∑
s=r

A (I , I0, Iθ , s)

∣∣∣∣∣∣∣∣
�
√
Aλ
2

∥∥Pσ
CF

f
∥∥
Ws

dyad(σ )

∥∥∥∥Pω

Cτ−shift
F

g

∥∥∥∥
W−s

dyad(ω)

,

where the quantity A (I , I0, Iθ , t) was defined there with s = 0 (in our notation) by

(
2−t )1−ε(n+1−λ) ∣∣Eσ

Iθ �σ
I ;1 f

∣∣Pλ
(
I0, 1Iθ σ

) ∑
J∈Cτ−shift

F and �(J )=2−s�(I )
J�ρ,ε I and J⊂I0

√|J |ω
∥∥�ω

J ;κg
∥∥
L2(ω)

.

When σ is doubling, the reader can check that
∣∣∣Eσ

Iθ
�σ

I ;1 f
∣∣∣ ≈ | f̂ (I )|√|Iθ |σ , and then that the proof

in [17, see from the bottom of page 120 to the top of page 122] applies almost verbatim to our
situation when |ε (n + 1 − λ) + s| < 1. This proves the required bound for the neighbour
form,

∣∣∣BFneighbour;κ ( f , g)
∣∣∣
√
Aλ
2

∥∥Pσ
CF

f
∥∥
Ws

dyad(σ )

∥∥∥∥Pω

Cτ−shift
F

g

∥∥∥∥
W−s

dyad(ω)

, |s| < 1, (6.10)

since we can always take ε (n + 1 − λ) as small as we wish.

6.4 The stopping form

Tobound the stopping form following the argument in [1], we only need the κ-pivotal constant
Vλ,κ
2 , not the strong κ-pivotal constant Vλ,κ

2,ε , together with the argument for the Haar stopping

form due to Nazarov, Treil and Volberg. Nevertheless, we will use the strong constant Vλ,κ
2,ε

below for convenience. Recall that
∣∣ f̂ (I )

∣∣ QI ′;κ = E
σ
I ′;κ f − 1I ′Eσ

I ;κ f .

We begin the proof by pigeonholing the ratio of side lengths of I and J in the stopping form:

BFstop;κ ( f , g) ≡
∑
I∈CF

∑
I ′∈CD(I )

∑
J∈Cτ−shift

F
J⊂I ′ and J�ρ,ε I

∣∣ f̂ (I )
∣∣ 〈QI ′;κT λ

σ 1F\I ′ ,�ω
J ;κg

〉
ω

=
∞∑
t=0

∑
I∈CF

∑
I ′∈CD(I )

∑
J∈Cτ−shift

F and �(J )=2−t �(I )
J⊂I ′ and J�ρ,ε I

∣∣ f̂ (I )
∣∣ 〈QI ′;κT λ

σ 1F\I ′ ,�ω
J ;κg

〉
ω

≡
∞∑
s=0

BFstop;κ,t ( f , g)
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where using Lemma 26, we have
∥∥∥
∣∣∣�ω

J ;κg
∣∣∣
∥∥∥
W−s

dyad(ω)
�
∥∥∥�ω

J ;κg
∥∥∥
W−s

dyad(ω)
, and so

∣∣∣BFstop;κ,t ( f , g)
∣∣∣ ≤ ∑

I∈CF

∑
I ′∈CD(I )

∑
J∈Cτ−shift

F and �(J )=2−t �(I )
J⊂I ′ and J�ρ,ε I

∣∣ f̂ (I )
∣∣ ∥∥QI ′;κ

∥∥
L∞(ω)

∣∣∣〈T λ
σ 1F\I ′ ,�ω

J ;κg
〉
ω

∣∣∣

�
∑
I∈CF

∑
I ′∈CD(I )

∑
J∈Cτ−shift

F and �(J )=2−t �(I )
J⊂I ′ and J�ρ,ε I

∣∣ f̂ (I )
∣∣ 1√|I ′|σ

Pλ
κ

(
J , 1F\I ′σ

)
� (J )−s

√|J |ω
∥∥�ω

J ;κg
∥∥
W−s

dyad(ω)

≤
∑
I∈CF

∑
I ′∈CD(I )

∑
J∈Cτ−shift

F and �(J )=2−t �(I )
J⊂I ′ and J�ρ,ε I

� (I )−s
∣∣ f̂ (I )

∣∣ 1√|I ′|σ
(
2−t )κ−ε(n+κ−λ)−s

×Pλ
κ

(
I , 1F\I ′σ

)√|J |ω
∥∥�ω

J ;κg
∥∥
W−s

dyad(ω)

�
(
2−t )κ−ε(n+κ−λ)−s

√√√√√√
∑
I∈CF

∑
I ′∈CD(I )

∑
J∈Cτ−shift

F and �(J )=2−t �(I )
J⊂I ′ and J�ρ,ε I

� (I )−2s
∣∣ f̂ (I )

∣∣2 1

|I ′|σ Pλ
κ

(
I , 1F\I ′σ

)2 |J |ω

×
√√√√√
∑
I∈CF

∑
I ′∈CD(I )

∑
J∈Cτ−shift

F and �(J )=2−t �(I )
J⊂I ′ and J�ρ,ε I

∥∥�ω
J g
∥∥2
W−s

dyad(ω)
.

Now we note that ∑
I∈CF

∑
I ′∈CD(I )

∑
J∈Cτ−shift

F and �(J )=2−s�(I )
J⊂I ′ and J�ρ,ε I

∥∥�ω
J g
∥∥2
W−s

dyad(ω)

≤
∑

J∈Cτ−shift
F

∥∥�ω
J g
∥∥2
W−s

dyad(ω)
=
∥∥∥∥Pω

Cτ−shift
F

g

∥∥∥∥
2

W−s
dyad(ω)

and use the stopping control bound Pλ
κ (I , 1Fσ)2 |I |ω ≤ � |I |σ � 2Vλ

2,ε (σ, ω)
∣∣I ′∣∣

σ
in the

corona CF , to obtain

∣∣∣BFstop;κ,t ( f , g)
∣∣∣ �

(
2−t(1−s)

)κ−ε(n+κ−λ) Vλ
2,ε (σ, ω)

×
√√√√√√
∑
I∈CF

∑
I ′∈CD(I )

∑
J∈Cτ−shift

F and �(J )=2−t �(I )
J⊂I ′ and J�ρ,ε I

� (I )−2s
∣∣ f̂ (I )

∣∣2 |J |σ
|I ′|σ

∥∥∥∥Pω

Cτ−shift
F

g

∥∥∥∥
W−s

dyad(ω)

�
(
2−t(1−s)

)κ−ε(n+κ−λ) Vλ,κ
2,ε (σ, ω)

√∑
I∈CF

� (I )−2s
∣∣ f̂ (I )

∣∣2
∥∥∥∥Pω

Cτ−shift
F

g

∥∥∥∥
W−s

dyad(ω)

�
(
2−t )κ−ε(n+κ−λ)−s Vλ,κ

2,ε (σ, ω)
∥∥Pσ

CF
f
∥∥
Ws

dyad(σ )

∥∥∥∥Pω

Cτ−shift
F

g

∥∥∥∥
W−s

dyad(ω)

.

Finally then we sum in t to obtain

∣∣∣BFstop;κ ( f , g)
∣∣∣ ≤ Vλ,κ

2,ε (σ, ω)

∞∑
t=0

∣∣∣BFstop;κ,t ( f , g)
∣∣∣ (6.11)

� Vλ,κ
2,ε (σ, ω)

∞∑
t=0

(
2−t )κ−ε(n+κ−λ)−s ∥∥Pσ

CF
f
∥∥
Ws

dyad(σ )

∥∥∥∥Pω

Cτ−shift
F

g

∥∥∥∥
W−s

dyad(ω)
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� Vλ,κ
2,ε (σ, ω)

∥∥Pσ
CF

f
∥∥
Ws

dyad(σ )

∥∥∥∥Pω

Cτ−shift
F

g

∥∥∥∥
W−s

dyad(ω)

,

if we take 0 < ε < κ+s
n+κ−λ

, which can always be done for κ large if |s| < 1.

7 Conclusion of the proofs

Collecting all the estimates proved above, namely (5.3), (5.10), (5.4), (5.13), Lemma 36,
(5.17), (6.5), (6.9), (6.10) and ( 6.11), we obtain just as in [1] that for any dyadic gridD, and
any admissible truncation of T α ,∣∣∣
〈
T α

σ PDgood f , P
D
goodg

〉
ω

∣∣∣ ≤ C
(
TRκ,s

T α (σ, ω) + TRκ,−s
T α,∗ (ω, σ ) + Aα

2 (σ, ω) + ε3NT α (σ, ω)
)

×
∥∥∥PDgood f

∥∥∥
Ws

dyad(σ )

∥∥∥PDgoodg
∥∥∥
W−s

dyad(ω)
.

Thus for any admissible truncation of T α , using the above two theorems, we obtain

NT α (σ, ω) ≤ C sup
D

∣∣∣
〈
T α

σ PDgood f , P
D
goodg

〉
ω

∣∣∣∥∥∥PDgood f
∥∥∥
Ws

dyad(σ )

∥∥∥PDgoodg
∥∥∥
W−s

dyad(ω)

(7.1)

≤ C
(
TRκ,s

T α (σ, ω) + TRκ,−s
T α,∗ (ω, σ ) + Aα

2 (σ, ω)
)

+ Cε3NT α (σ, ω) .

Our next task is to use the doubling hypothesis to replace the triple κ-testing constants
by the usual cube testing constants, and we follow almost verbatim the argument in [1] for
the case s = 0. Recall that the κ-cube testing conditions use the Q-normalized monomials

mβ
Q (x) ≡ 1Q (x)

(
x−cQ
�(Q)

)β

, for which we have
∥∥∥mβ

Q

∥∥∥
L∞ ≈ 1.

Theorem 46 Suppose that σ and ω are locally finite positive Borel measures on R
n, with σ

doubling, and let κ ∈ N. If T α is a bounded operator from Ws (σ ) to Ws (ω), then for every
0 < ε2 < 1, there is a positive constant C (κ, ε2) such that

TRκ,s
T α (σ, ω) ≤ C (κ, ε2)

[
Ts
T α (σ, ω) +

√
Aα
2 (σ, ω)

]
+ ε2NT α (σ, ω) κ ≥ 1,

and where the constants C (κ, ε2) depend only on κ and ε, and not on the operator norm
NT α (σ, ω).

Proof Fix a dyadic cube I . If P is an I -normalized polynomial of degree less than κ on the
cube I , i.e. ‖P‖L∞ ≈ 1, then we can approximate P by a step function

S ≡
∑

I ′∈C(m)

D (I )

aI ′1I ′ ,

satisfying

‖S − 1I P‖L∞(σ ) <
ε2

2

provided we takem ≥ 1 sufficiently large depending on n and κ , but independent of the cube
I . Then using the above lemma with C2

m
2 ε1 ≤ ε2

2 , and the estimate |aI ′ | � ‖P‖L∞ � 1, we
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have

∥∥T α
σ 1I P

∥∥
Ws

dyad(σ )
≤

∥∥∥∥∥∥∥
∑

I ′∈C(m)

D (I )

aI ′T α
σ 1I ′

∥∥∥∥∥∥∥
Ws

dyad(σ )

+ ∥∥T α
σ [(S − P) 1I ]

∥∥
Ws

dyad(σ )

√∫
3I

∣∣T α
σ [(S − P) 1I ]

∣∣2 dω

≤ C
∑

I ′∈C(m)

D (I )

|aI ′ | ∥∥T α
σ 1I ′

∥∥
Ws

dyad(σ )
+ ε2

2
NT α (σ, ω)

√|I |σ

≤ C
∑

I ′∈C(m)

D (Q)

Ts
T α (σ, ω)

√|I ′|σ + ε2

2
NT α (σ, ω)

√|I |σ

≤ C
{
Ts
T α (σ, ω) + ε2

2
NT α (σ, ω)

}√|I |σ .

��
Combining this with (7.1) we obtain

NT α (σ, ω) ≤ C
(
Ts
T α (σ, ω) + T−s

T α,∗ (ω, σ ) +
√
Aα
2 (σ, ω)

)
+ C (ε2 + ε3)NT α (σ, ω) .

Since NT α (σ, ω) < ∞ for each truncation, we may absorb the final summand on the right
into the left hand side provided C (ε2 + ε3) < 1

2 , to obtain

NT α (σ, ω) � Ts
T α (σ, ω) + T−s

T α,∗ (ω, σ ) +
√
Aα
2 (σ, ω).

By the definition of boundedness of T α in (34), this completes the proof of Theorem 2.
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