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Abstract
Let u be a positive locally finite Borel measure on R” that is doubling, and define the
homogeneous W* (u)-Sobolev norm squared || f ||2 S(w) of a function f € L? (n) by

loc
//(f(x)—f(y))z dp (x)dp ()
e T o (s )

I

and denote by W* (u) the corresponding Hilbert space completion (when u is Lebesgue
measure, this is the familiar Sobolev space on R"). We prove in particular that for0 < o < n,
and o and w doubling measures on R", there is a positive constant # such for0 < s < 6,
any smooth a-fractional convolution singular integral 7% with homogeneous kernel that is
nonvanishing in some coordinate direction, is bounded from W* (o) to W* (w) if and only if
the classical fractional Muckenhoupt condition on the measure pair holds,

191, 1Qlo

Af = sup o~ < 00,
0eor |QP0=7)

as well as the Sobolev 1-testing and 1*-testing conditions for the operator 7%,

||T(gll||ws(w) < {IT“ (Ga (1))\/ |I|a'g (I)_Ss I e Qny
17571 s o = Trae (@, 0) VLD, 1€ Q"
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taken over the family of indicator test functions {1;};.p». Here Q" is the collection of all
cubes with sides parallel to the coordinate axes, and W* (u)* denotes the dual of W* (w)
determined by the usual L2 (u) bilinear pairing, which we identify with a dyadic Sobolev
space W@Zd (w) of negative order. The sufficiency assertion persists for more general singular
integral operators 7¢.
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1 Introduction

The Nazarov-Treil-Volberg T'1 conjecture on the boundedness of the Hilbert transform from
one weighted space L? (o) to another L? (), affirmatively in the two part paper [9, 10], with
the case of common point masses included in [7]. Since then there have been a number
of generalizations of boundedness of Calderén-Zygmund operators from one weighted L?
space to another, both to higher dimensional Euclidean spaces (see e.g. [10, 11, 17]), and also
to spaces of homogeneous type (see e.g. [4]). In addition there have been some generalizations
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Two weight Sobolev norm inequalities... Page3of74 81

to Sobolev spaces in place of L2 spaces, but only in the setting of a single weight (see e.g.
(3, 7D.

The purpose of this paper is to prove a two weight T 1 theorem on weighted Sobolev spaces
for general smooth a-fractional singular integrals on R”, but with doubling measures.! In
order to state our theorem, we need a number of definitions, some of which are recalled and
explained in detail further below. Let i be a positive locally finite Borel measure on R” that is

doubling, let D be a dyadic grid on R?, let « € N and let { A% be the set of weighted
k[ gep

Alpert projections on L2 () (see [14]). When « = 1, these are the familiar weighted Haar
projections Ap, = Al

Definition 1 Let u be a doubling measure on R”. Given s € R, we define the D-dyadic
homogeneous W, (i)-Sobolev norm of a function f € L10C () by

1 s, = Z (O A

o,

L2 ()

and we denote by W3,. (u) the corresponding Hilbert space completion® of f € L loc ()
with

||f||WJDK(M) < 00.

Note that W2, (1) = L* (). We will show below that W3, (u) = W3 () for all
s € R with [s]| sufficiently small, for all «, «” > 1, and for all dyadic grids D and D’. Thus for
a sufficiently small real s depending on the doubling measure 1, there is essentially just one
weighted ‘dyadic’ Sobolev space of order s, which we will denote by Wéyad (). Moreover,
for s > 0 and small enough and p doubling, there is a more familiar equivalent ‘continuous’
norm,

FO) =M\ du)du(y)
I fllws () = /R/( T ) ’B(”Y \x—yl) . (1.1)
2

We also show that the dual spaces Wi, ()* under the L2 () pairing are given by WB_SK (w)
for all grids D and integers «. Thus when p is doubling, we can identify W* ()™ with any
of the spaces WD () for |s| sufficiently small, and it will be convenient to denote W* (u)*

2

by W~ (), even though the above formula for || f llw-s () diverges when s > 0.

Finally, we note that without the doubling hypothesis on ., we in general need to include
additional Haar projections {IE’;}T o7 onto one-dimensional spaces of constant functions
on certain ‘tops’ T of the grid D, where a top is the union of a maximal tower in D (see
[2]). Without these additional projections, we may not recover all of L? () in general, and
moreover, the spaces W{) (w) defined above may actually depend on the dyadic grid D.
For example, if du (x) = 1[ 1,1 (x)dx and f (x) = 1j9,1y (x), the reader can easily check

1 Weighted Sobolev spaces are not canonically defined for general weights, and doubling is a convenient
hypothesis that gives equivalence of the various definitions.

2 For general measures, the functional ||| Wi, ) may only be a seminorm, but this is avoided for doubling

e
measures.
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81 Page4of74 E.T. Sawyer, B. D. Wick

that the functional || f| Wi | () vanishes when D is the standard dyadic grid, but is positive

when D is any grid containing [—1, 1).3

Note that we will not use the Hilbert space duality (that identifies the dual of a Hilbert
space with itself) to analyze the two weight boundedness of T : ijad (o) —> Wéyad (w),
but rather we will use the L2 (w) and L? (o) pairings in which case the dual of Wgyad (w)

is identified with W@fm (n) as above. The reason for this is that the weighted Alpert

projections {A’é "«

§ AM
[Z Q)" & }QeD do not.
Denote by Q24yaq the collection of all dyadic grids in R", and let Q" denote the collection
of all cubes in R" having sides parallel to the coordinate axes. A positive locally finite Borel

measure p on R” is said to be doubling if there is a constant Cgoyp, called the doubling
constant, such that

}Q 5 satisfy telescoping identities, while the orthogonal projections
(S

201, < Caouw |Q],,  forall cubes Q € Q".

Finally, for 0 < « < n we define a smooth «-fractional Calder 6n—Zygmund kernel
K%(x,y) to be a function K¢ : R" x R" — R satisfying the following fractional size and
smoothness conditions

ViKe on| + [k @] = Cajlr =TT 05 <00 (2)

and we denote by T* the associated a-fractional singular integral on R”. We say that 7.,
where T2 f = T* (fo), is bounded from ijad (o) to Wéyad (w) if for all admissible trun-

cations 7% we have
|72 7| Wit = T @ @) [ fllwy o) Torall f € Wegad (0) -

Here N7« (0, w) denotes the best constant in these inequalities uniformly over all admissible
truncations of T%. See below for a precise definition of admissible truncations, as well as
the interpretation of the testing conditions appearing in the next theorem. The case s = 0 of
Theorem 2 is in [1].

Theorem 2 (T'1 for doubling measures) Let 0 < « < n, and let T* denote a smooth a-
fractional singular integral on R". Let 0 and w be doubling Borel measures on R". Then
there is a positive constant 0, depending only on the doubling constants of o and w, such
that if0 < s < 0, then TS, where T¥ f = T (fo), is bounded from W* (o) to W* (w), i.e.

175 £ sy < D7 1 lws o) (1.3)
provided the classical fractional Muckenhoupt condition on the measure pair holds,

A3 = sup 1QlQl
gegr [QP()
as well as the Sobolev 1-testing and 1*-testing conditions for the operator T%,
17211 | ey < Tre @) VT, LD, 1€,
1750 s o) < Tres (@, ) VITIL WD), T Q"

3 Moreover, even taking into account the behaviour at infinity, one can show that || f| Wi, () = 0 when D

(e
;1
is the standard gI’ld and s > 0.
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taken over the family of indicator test functions {1;}con.

Conversely, the testing conditions are necessary for (1.3), and if in addtion T* is a smooth
convolution operator with homogeneous kernel that is nonvanishing in some coordinate
direction, then A < oo whenever the two weight norm inequality (1.3) holds for some
s > 0.

Remark 3 One can weaken the smoothness assumption on the kernel K depending on the
doubling constants of the measures o and w, but we will not pursue this here. See [16] for
sharper assumptions in the L case.

Problem 4 T'1 theorems for Sobolev norms involving general measures, even for the Hilbert
transform on the line, remain open at this time.

The proof of Theorem 2 expands on that for L? spaces with doubling measures using
weighted Alpert wavelets [1], but with a number of differences. For example:

(1) The map f — |f| fails to be bounded on chfid (w) for s > 0% which gives rise to

significant obstacles in dealing with bilinear inequalities (using the L? inner product as
a duality pairing) that require control of both T : Wgyad (o) —> Wgyad (w) and T* :
W&Zd () — W@;d (o).

(2) Asaconsequence, we are no longer able to use Calderén—Zygmund decompositions and
Carleson embedding theorems that require use of the modulus | f| of a Sobolev function
f . Instead, we derive a stronger form of the pivotal condition, that permits a new Carleson
condition to circumvent these hurdles.

(3) The estimation of Sobolev norms in the paraproduct form requires the use both of Alpert
and Haar wavelets, in connection with the new Carleson condition. This in turn requires
the identification of different wavelet spaces.

(4) In Proposition 44, we extend the Intertwining Proposition from [16] to Sobolev spaces
using a new stronger form of the x -pivotal condition, which also results in an overall
simplification of this proof.

(5) A power decay of doubling measures near zero sets of polynomials is needed to estimate
Sobolev norms of moduli of Alpert wavelets in Lemma 26 when s < 0, where the
logarithmic decay obtained in [16] is insufficient.

(6) Finally, we prove the comparability of the various Sobolev space norms for a fixed s and
doubling measure (the case s = 0 being trivial), including the familiar continuous norm
in (1.1) when s > 0. This equivalence is needed in particular to implement the good /bad
technology of Nazarov, Treil and Volberg.

2 Preliminaries: Sobolev spaces and doubling measures

Denote by Q" the collection of cubes in R” having sides parallel to the coordinate axes. A
positive locally finite Borel measure 1 on R” is said to satisfy thedoubling condition if there
is a pair of constants (8, y) € (0, 1)2, called doubling parameters, such that

IBOl, =y 10|, forallcubes Q € Q", 2.1

4 For example, if diu = dx and f = Y2, (=K ly_1 4y, then 112, ~ N, while |[f]I2 _, =~
- ' Wayad Wayad
ya lya
NH'ZS.
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81 Page6of74 E.T. Sawyer, B. D. Wick

and the reverse doubling condition if there is a pair of constants (8, y) € (0, 1)2, called
reverse doubling parameters, such that

|BOl, <y I|Ql, forallcubes Q c Q" (2.2)

Note that the inequality in (2.2) has been reversed from that in the definition of the doubling
condition in (2.1). A familiar equivalent reformulation of (2.1) is that there is a positive
constant Cyoup, called the doubling constant, such that |2Q],, < Cqgoub |Q],, for all cubes
Q € Q". There is also a positive constant Ggoub, called adoubling exponent, such that

N ou
sup ﬂ < saﬁ b, for all sufficiently large s > 0.

QeQ" |Q|/l. B

It is well known (see e.g. the introduction in [15]) that doubling implies reverse doubling,
and that u is reverse doubling if and only if there exists a positive constant 87", called a
reverse doubling exponent, such that

N rev
51, <%, for all sufficiently small s > 0.
ocor 101,

2.1 Decay of doubling measures near zero sets of polynomials

In order to deal with Sobolev norms and doubling measures, we will need the following
estimate on doubling measures of ‘halos’ of zero sets of normalized polynomials, which
follows the same plan of proof as in the case of boundaries of cubes proved in [16, Lemma
24]. We first recall a slight variant of a remark from [16].

For any polynomial P and cube Q, we say that P is Q-normalized if || P| oo (g) = 1.

Remark 5 Since all norms on a finite dimensional vector space are equivalent, we have upon
rescaling the cube Q to the unit cube,

1 Pllp(g) = |P (0)] + Vnt (Q) VPl peogy, degP <k, (2.3)
with implicit constants depending only on n and «. In particular there is a positive constant
K.« such that \/n¢ (Q) VP rec(g) < Kn.« for all Q-normalized polynomials P. Then for
every Q -normalized polynomial P of degree less than «, there is a ball B (y, %K (Q)) C

Q on which P is nonvanishing. Indeed, if there is no such ball, then

n 1
V() VPl < 5

1 =|IPllpocco) <
I PllL=(g) < 2K
is a contradiction.

Here is the result proved in [16, Lemma 24].

Lemma 6 Suppose i is a doubling measure on R" and that Q € Q". Then for0 < § < 1
we have

C
1O\ =80l = —1Ql.-
I ln% H
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We will need to improve significantly on this as follows. Without loss of generality, suppose
that Q = [0, 1] x [0, 1] in the plane and du (x, y) = w (x, y) dxdy. Define W to be even
on[—1, 1] by

1
W(y)z/ wx,y)dx, 0<y<1.
0

and note that W (y) dy is a doubling measure on [0, 1], hence also reverse doubling with
exponent 6™, Thus from the reverse doubling property applied to the subinterval [0, ¢] of
[—1, 1] we have that

t 1 1
/ W (y)dy < i / W (y)dy < C't* / W (y)dy.
0 —1 0

which says that

t 1
1[0, 11 x [0, 71,, =/0 W (y)dy < C’r““/0 W (y)dy = €'t [0, 1] x [0, 1], .
2.4)

This gives power decay instead of logarithmic decay, which will prove crucial below. The
next lemma is a generalization of [16, Lemma 24].

Lemma7 Letk € N. Suppose i is a doubling measure on R" and that Q € Q". Let Z denote
the zero set of a Q-normalized polynomial P of degree less than «, and for 0 < § < 1, let

ZSZ{yERnily—zl<8forsomezeZ}

denote the é-halo of Z. Then for a positive constant C,, . depending only on n and k, and
not on P itself, we have

C
0023l < 7 101,
8

Proof Let 8 = 27", Denote by €™ (Q) the set of m'" generation dyadic children of Q, so
that each 7 € €™ (Q) has side length ¢ (I) = 27"¢ (Q), and define the collections

Qi(’")(Q)z{1eG(’”)(Q):ICQandE)IﬂZ;é@},

ﬁ(m)(Q)E{IEQ(’”)(Q):3ICQandB(3I)ﬂZ;é(2)}.
Then

onzs= J IandQ\Z{;:Ukzz U -

1e6M(Q) 1e9®(0)

From Remark 5, we obtain that the the union |, 5®(0) R1I contains Q N Zg for k > cm for
some ¢ = ¢ € (0, 1) depending only on n and «, and in particular independent of m. Then
from the doubling condition we have |RI|, < Dg|I|, for all cubes I and some constant
Dp, and so for k > cm,

1 1
s = ¥ ez X prie=p [ [ X e
13 R R
1eH®(Q) 1eH®(Q) 1eH®(Q)
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1 1 1
= X ufa=5-[6® @] = |6 @)
D D D
R 1co® () R I R JZ
1
=—10NZsl,.
DR|Q sl
Thus we have
" m(l—c)
0= 3 59 @] 270007
0l k_Z ), b 12N Zsl,
=cm
which proves the lemma. O

We can apply the method used in (2.4) to obtain a power decay instead of a logarithmic
decay.

Corollary 8 Let k € N. Suppose w is a doubling measure on R" and that Q € Q". Let Z
denote the zero set of a Q-normalized polynomial P of degree less than k, and for0 < § < 1,
let Zs denote the §-halo of Z. Then for a positive constant Cy, , depending only on n and ,
and not on P itself, and for some 6 > 0, we have

10N Zsl, < Cpid’10],.

In particular this holds for Z = 38 Q, which is a finite union of zero sets of linear functions.

Proof Without loss of generality Q is the unit cube [0, 1]". Define an even function w (f) on
[—1, 1], that is increasing on [0, 1], by the formula

w(t)=|Z; 0<r<l.

|

Since P is a Q-normalized polynomial of degree less than «, there are positive constants
to, co, Co, A such that for every 0 < t < 1y, there is a collection of cubes {Qf }[ with

¢(Qj) = cot,
17, (x) < ) 1g (x) < Alyg (x)

1

Iz, () = ) 1y (0) < A.
i

Thus we have

w(2) <Y [CoQi], <Y Caow |, < CaowwM 1Zi],, = CaourAw (1), 0 <1 <o,

1 1
and hence there is a doubling exponent #9°° such that

w (St) < SGSJOUb

< , for all sufficiently large s.
w (1)

We claim w (¢) also satisfies the reverse doubling condition

w@) <C&fwl), 0<d8<i.
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Indeed, letdu = dt . Then assuming s > 5mthedeﬁmtlonofﬁd"“b we obtain for Q = [0, ¢]
that
__pdoub
30\ Ql, = > 1, = > 570 511,
1eD: 1C30\0.L(1)=L(Q) 1eD: IC30\0.L(I)=L(Q)
> (3" -1)57%" |0,

3" —1
= 101, =301, =130\ Ql, = (1 ~ ) 1301,

which gives reverse doubling, and hence
s
QN Zsl, :/ w(t)dt < C6°1Q|,, for0 <6 <,
0

and trivially this is extended to 6 < 1 by possibly increasing the constant C. O

2.2 Weighted Alpert bases for L2 (11) and L™ control of projections

The following theorem was proved in [14], which establishes the existence of Alpert wavelets,
for L? (u) in all dimensions, having the three important properties of orthogonality, telescop-
ing and moment vanishing. Since the statement is simplified for doubling measures, and this
is the only case considered in our main theorem, we restrict ourselves to this case here.

We first recall the basic construction of weighted Alpert wavelets in [14] restricted to
doubling measures. Let 1 be a doubling measure on R”, and fix x € N. For Q € 9", the
collection of cubes with sides parallel to the coordinate axes, denote by L2 " (w) the finite
dimensional subspace of L? () that consists of linear combinations of the indicators of the
children € (Q) of Q multiplied by polynomials of degree less than «, and such that the linear
combinations have vanishing ©-moments on the cube Q up to order x — 1:

L ow={r=3 1lgpg.: ff(x)xﬁduoc)—o for0 < |Bl < |,
0'e€(0Q)

where pgr (x) = Zﬁezn 1Bl <k—1 ag.px? isapolynomial in R" of degree less than k. Here

xP = x’f‘xfz ﬂ" .Letdg.x = dim LZQ,K (u) be the dimension of the finite dimensional
linear space L2 " ().
Let D denote a dyadic grid on R” and for Q € D, let A“ .. denote orthogonal projection

onto the finite dimensional subspace L (1), and let IE“ denote orthogonal projection
onto the finite dimensional subspace

P (0) = Span{lgx” : 0 < 8] < «}.

Theorem 9 (Weighted Alpert Bases) Let i be a doubling measure on R", fix k € N, and fix
a dyadic grid D in R".

(1) Then { 0k } 0eD is a complete set of orthogonal projections in L? (i) and

f=Y 0hf fel’@w, 2.5)

Q€D
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<A’;;Kf,A#;Kf> " =0for P # Q,

L2

where convergence in the first line holds both in L? (i) norm and pointwise p-almost
everywhere.
(2) Moreover we have the telescoping identities

lp Y Ap =EL, —19Bh, for P,QeDwithQS P,  (26)
I: lecP

(3) and the moment vanishing conditions
/1;{" Ag;Kf(x) xﬂd,u(x) =0, forQeD, BeZ, 0<|B| <«. 2.7)

We can fix an orthonormal basis {h“ 7{ } of L2Q, () where I"g ,  is a convenient
ael’ Q.n ’
finite index set. Then

Vi)
Qi | yerg . and QeD

is an orthonormal basis for L2 (x). In particular we have

1122, = Z | 2%,

LZ( )

2

where f(Q) = {(f h‘é‘:‘;>ﬂ} and |f(Q)|2 = > ‘<f,h/5;ak>u

a€lgn.x a€lg

o~ K
In terms of the Alpert coefficient vectors fi (1) = {< f, a;‘, « ]>} . we have for the special
wed ] =
case of a doubling measure u (see [16, (4.7) on page 14]),

Fe =85 1y = |80 g VI = €801 oy, = €1
| fe (D] i S 1870 | e VI S C | AL | fe
(2.8)
and in particular,
1
n.a
. =N 2.9
‘ ik || poo () 11,

Boppea _ ua
s1nceA1KhQK h

Notation 10 For doublmg measures [, the cardinality of I' g .« depends only on n and «,
which are usually known from context, and so we will simply write T when p is doubling.

From now on, all measures considered will be assumed to doubling, and often without
explicit mention. We now inroduce Sobolev spaces defined by weighted Alpert projections
instead of weighted Haar projections. We show below that these spaces are actually equivalent.
For convenience we repeat the definition of weighted Sobolev space used in this paper.

Definition 11 Givenx € Nand s € R and D € Qqgyaq a dyadic grid, we define the k-dyadic
homogeneous W, (i)-Sobolev norm of a function f € L?(w) by

o,

L2(w)

1 Wy, o= D (@7 |a
“ QeD
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and we denote by Wy, (u) the corresponding Hilbert space completion.

Lemma 12 Th t[ﬂ Sh“’.”]
esel |L(Q) fg;, (0,a)eDXT

Sor any subset 'H of the dyadic grid D, we have,

is an orthonormal basis for Wi, (), and thus

2

> crat (DY = > Jerd® (2.10)

(I,a)e HxTI" W»fp;,((lt) (I,a)eHxI"

Proof We have

y , b -2 s y b
(earnfteany ) = 3@ (A (D R A DY)
WD, (10 0eD (D)
=Y e ey ey <A’é;Kh‘1‘;’,f,A’é;Kh’;;’f>L2( )
QeD "

_Jl1if I=Janda=5>b
T |O0if I#£#Jora#b

since Alg, ¢!t vanishesif Q # K,andequals hlyL if O = K. Thus { £ (Q)* K, }(Q -
is an orthonormal basis and we conclude that (2.10) holds. O

2.3 Equivalence of Sobolev spaces

In [23], Triebel defines the usual homogeneous unweighted Sobolev space W* with norm
Il f1lys given by

2 _ $ 2 23 7ol
170 = [ o roof ax= [ |0er) T ae.
R’l RV[
(-8 f oo dx.

which we will not consider here. Combining results of Triebel [23] with those of Seeger and
Ullrich [20] shows that

and the corresponding inhomogeneous version with norm squared [,

Lemma 13 ([23], [20]) The following three statements are equivalent for p equal to Lebesgue
measure and s € R.

(1) Wiyg = W,
2) {Z ()’ hy }1ED is an orthonormal basis for W¥,

3) —1<s<i

Here is the first step toward proving the equivalence of the different dyadic Sobolev spaces
over all grids D and integers « € N, which in particular is used to implement the good/bad
cube technology of Nazarov, Treil and Volberg. The reader can notice that the doubling
property of the measure p is not explicitly used in this argument, rather only in the definition
of the Sobolev spaces.

Lemma 14 Let p be a doubling measure on R" and let D be a dyadic grid on R". Then for
k1,k2 € Nands € R, we have,

W, (1) = W, (1),
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with equivalence of norms.

Proof We first claim that for s < 0,
Wp., (W) CWh. . () for I <k < k2, (2.11)
which by duality gives for s > 0,
W;D;K] (n) C W%;Kz (u) fors >0and 1 <« < ky. (2.12)

Indeed, for any subset H C D, we have

2 2
.a _ —2s w .a
Z Cl’ahlzkz - Z Q) Z Cla AQ;fq hI;Kz
IeH; aely W;:;,q ) QeD leH; ael’y, : OCI L2(0)
2
_2s 2 ,
= Z 12() Z (cr.q) HA”;th’;;lfz oo
QeD T€H; a€l’f px !
+ Z A Z f Cla (A/é;xlh/ll;ylfz) r.a (Ag;mhlll/,;(fc) du
QeD LI'eH; aely,c.a'elyr, o ociny * K

=A+ B,

where the first term satisfies

2
A= Z ¢ (Q)_zs Z (C1~“)2 HAZ;mhIIL;’I?z

2
QeD IeH; ael’y p LG
2 - ,
= 2 (e 2 @7 AG M
IeH; aEFl,n.x QeD
2 2
_ 2|, pa 2|, pm.a
= X @l e X @i,
I1€H; a€ly Diky IeH Dixy
2
2 - ,
¢ Y @dwE=c| Y aml
IeH; ael’ p IeH; ael'y p WiY);Kz(/L)
and where the final equality follows from Lemma 12.
To handle the second term, we write
B= Y awes [ X @ sl i s

[£I'€M; aely, a'ely, . RV gep: gcinr

2 >

Igl’eH; a€ely c.a’ €Ty 1’§16H; a,a’el’

LK

) R a
ceraery [ 430 00 g wi padu
R" | gep: ocr

B+ B
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where B and B, are symmetric. So it suffices to estimate

B Y adf ] X @ g > e fan,

TeH; a€ly p " | gep: 1 l'eH;a'elys, IGT
where
2
,a 2
Z C’/*”/hl;’;f(z = Z |CI/’“/ ’
I'eH; d'ely, 2 IGT L2 I'eH; d'ely, 2 IGT
2
=25 AM pHa _ Z —ds || AM pia
Z t(Q) AQ;l hI;Kz o t(Q) AQ;l Lz 20
QeD: Qcl L2() QeD: Qcl

So for s < 0 we have the estimate,

D=

_2 2
Bi< Y erat™™ > 1
TeH; a€l'rp, I'eH; d'ely, o IGT
2 ) ) 2
< o era €™ Yoo > lera|
I€H; a€ly nu T€H; a€ly nc U'eH; a'ely, o IGT

where the second factor squared is

> > eraf

IeH; aely I'eH; a'el: IGI
2 _2s
= > ler.a >t
I'eH; d'elyp, IGT TeH; aelp e IGT
2 -2
S SR R T
I'eH; d'elyp, IS
since s < 0. Altogether we have
2
2 -2
Bis Y adtnF=c| > el ;
IeH; a€l’y y TeH; a€l’y WXD (W)
)
which together with the estimate for term / proves our claim (2.11).
Now we claim that for s > 0 we have
Wp., (W) C Wp. o (w) forallky >kp > 1. (2.13)
Indeed, for any subset H C D, we have
2 2
Z Cl,alfll;;’:2 = Z ¢ (Q)izs Z Cla AZ;K] h‘;;’:z
IeH; ael’y p W;le W QeD 1eH; ael’y 1 QCI L2(w)
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2
:ZE(Q)izs Z CI” HAQ’(I l;:z 2

QeD IeH; ael’y L2
—2s . p, a w.a
£y 0o )3 [T G L GO T
QeD II'€M; aely,ca' €Ty, OoIVI
= A+ B,

where I Vv I’ denotes the smallest dyadic cube containing both I and I’ if it exists; otherwise
the sum over Q D I Vv I’ is empty. Just as before, the first term satisfies

A=Y e Y ()| s

L2

QeD IeH; a€lyne (”)
— —2s w,a
- Z CI tl Z ¢ (Q) Q (S HS) LZ(#)

IeH; ael’y p QeD

2 2

_ w.a
- Z (CI a th 2 lws =C Z (Cl’a) th w2 |l ws ()

TeH; aely Dy IeH; aely . Dy

2
2 -2 Iz
=C Y (adtF=C| Y ey, :
IeH; ael’y u TeH; a€l’y WA'D (w)
%)

and where the final equality follows from Lemma 12.
To handle the second term B, we only need to consider the two cases I’ C I and I' N1 =
A, L (I’) < £ (I). For the first case, we have the estimate,

Bast =| ). cra / D QTG B X erahil, pdu

TeH: acly e QeD: 031 I'eH; d €Ty, I'GI

—2s
=< Z }Cl.a| Z 14 (Q) AZ K1 hl; :2 Z cr, /hl’ K2
TeH; aely QeD: 021 L2 |1'€Hs a’ely, o IS 1200
where for s > 0,
—2s ,U« n,a —2s ,U« a _ —2s
> et sh mE s S ap ol =,
QeD: 0Dl L2(w) 0eD: 0D L2(w)

and

w.a 2
Z CI"“'hI’;Kz Z |C1'v"/

UeH; a'ely, I'GI 24\ Vel a'ely, I'GI
Thus we obtain the estimate
Beasel < e :
casel = cra|l€) Cr'.a
TeH; a€l'r . I'eH; d'ely, 2 I'GI
2 —2 —2 2
< > ed e oo™ > lera
T1eH; a€l'rne IeH; aelne I'eH; d'ely, = I'GI
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where

oo 3 lerr |’

I€H; a€ly n U'eH; a'ely, o I'GI
2 —
S 7 SR
I'eH; a’ely, T1€H; aely I’gl
2 —2s
~ Y Py
UeH; a’elp
Altogether we have
2
2 =25 ~ Hm.a
Beasel < Z |Cl,a| €(I) ~ Z cl»ahl;;{z ’
IeH; ael’y p, IeH; ael'y p,
n,K n,k WSD:KZ(M)

which is the desired estimate for Bcase -
Turning finally to the second case I' NI =@, ¢ (I) < ¢ (I’), we have

Basa = Y L(Q)7 3 / cra (8 M) e (B, i, ) di
QeD 1,I'eH; aclyyc.a'€lyr 0 QDIVI
rar=g,e(1'y<er)
[o¢]
-2
=) 2 oty 2 2
KeD QeD: KCQ m=11eHNCM (K); a€ly . I'eH; a'elypr , o0 1™ (1) CK
ery=ean

n w.a n w.a'
x /1.{” Cla (AQ;thIZKZ) ra (AQ:/q hl’;Kg) d/j,

-y Y[ Y oy, DR

KeDm=1 QeD: KcQ 1€HNEM (K); a€lf i

/
1% w.a
X 80 Z crahy, |du
I'eH; d' ey, o 7™ (1) CK
e(1')y<e)

Now we compute that for each K € D,

)

§ \a 2 : 2
C]’,a/hl;/-,(z = |CI/,a/

I'eM; a'ely , 7™ (I')CK I'eM; d' €Ty, 7™ (I')CK
A !
(1= L2(0) (1=
and
2
—25 AM w.a
Z Q) AQ;Kl Z Cl*“hl;Kz
QeD: KCQ TeHNEM (K); a€ly e L2(0)
2
_ —4s " n.a
- Z £(Q) AQ:K1 Z Cl*ahl:l(z
QeD: KCQ I1eHNEM (K); ael L2(0)
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2
DDA () > crahlie,
QeD: KcQ 1eHNEM (K); ael'y .k L2(w)
4 2 4« e 2
=CeE)™ > leral” = C27%" > D™ leral”
1eHNEM (K); ae€l'f 1eHNEM (K); ael'f
and hence

[o.¢]
Beaser = Z Z /]Rn Z ¢ (Q)izs Alé:lﬂ Z c’v“hllt;fz

KeD m=1 QeD: KCQ TeHNEM (K); a€ly i

n w.a
XAQ:K] Z CI/*“/hI/;Kz dp
I'eM; a'elyr , o n™ (1)K
e(1y<en)
o0
3 _ 2
=D IP MY D DI TN
KeD m=1 IeHNEM (K); ael’
- 2
x |€(K)™> ) lera
I'eH; d'ely, M (1" cK
((ry=en
o0
B 5 2
S R SR SETOE T
m=1 KeD [eHNEM (K); aely ;.
- 2
x |3 e > lerals
KeD I'eH; a'eTy, . M (1I'ycK
e(1)<e)

and regrouping we obtain

[e ]
Basx < 3. C27" [N o) era] o eral

> ¢(K)™%

m=1 I€H; a€ly p i I'eH; a'€lyp KeD: am (1Y CcK
oo
—2sm —2s 2 n—2s 2

<y Yo e erdl > e era|

m=1 1eH; ael’y p I'eH; a’el‘,fﬁw

2
-2 2 w

S e el x| Y cahly, :

IeH; ael’ px TeH: a€l’y y W%J 10

1K)

which is the desired estimate for Bgagen.

Thus from (2.12) and (2.11) we obtain WSD;K1 (n) = W%;KQ (u) forall s > 0, all grids D
and all integers k1, k2 € N. Duality now establishes these equalities for s < 0 as well, and
the case s = 0 is automatic. ]
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Following Peetre [13] and Stein [21], we define the homogeneous difference Sobolev
space ngff“( () by

Wi, o (W) = {f e LW : 1wy, (W) < oo} seRandk €N,
where

F ) =B f @]
Q)

2
£y o =

du (x),

QeD
andIE‘é;Kf(x)z< f)IQ(x) (|Q|#/fdu>lg(x).

The proof of the next lemma does not explicitly use the doubling property of u either.

Lemma 15 Suppose w is a doubling measure on R™ and D is a dyadic grid on R". Then for
s > 0and k € N, we have

Wi (W) = W (1),
with equivalence of norms.

Proof We expand the function

fO) =B, [ =) Ak f),

I1cQ

and so obtain for s > 0 that

2
Il 1l5ys
Ditf s«

Y e Z o ]

QeD

Z ¢ (1)72v

L2(n)

3 (HQ))‘L
L2(w) oo ()

[Un)

f

2
n
AI;K‘f

L2(w)

_ 2
=1/ By,

~ Z ¢ (1)72s
1€D

[m}

We just showed in Lemma 14 above that the weighted Alpert Sobolev spaces W%; « ()
coincide for s € R and « > 1, and so we simply write Wy, (1) for these spaces, and for
specificity we use the norm of WD 1 (w). Now we will show that the spaces Wé (n) are
independent of the dyadic grid D for |s| sufficiently small provided the measure u is doublmg,
and extend this to include the difference spaces WSDdiﬂ‘;K' () as well.

Theorem 16 Suppose . is a doubling measure on R" and D and € are dyadic grids on R".
Then for k € N, and |s| sufficiently small, we have

Wi, (1) = W, (10).

Proof Note that for J € £ and 0 < § =27 < 1, and F is any finite linear combination of
Alpert wavelets,
L

2
n "
AI;l( AJ;/( F d/L

1eD: L(1)=8¢(J)
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2
S N (s ey |
I€D: £(1)=8£(J) Hs(J)

2 2 2
AR FH dy = HM. FH Hs ()|, < HM. FH Cst 1]
_/Hm |t B an= st | 1Hs o < |85 F |5t

SC(Ss/

which gives for n > 0

2
Y. L /R af o F| dn

[eD: e()<L(J)

ad 2
D D DR (O R /R |t sl F an

m=1[eD: ¢(I)=2""¢(J)

2
‘A’;;KF‘ du

A

2
Alj:KF‘ dlj“’

° 2 2
<Y comertmey (J)—<2~‘+'7>/ ‘A’;KF’ du < Cs,,,,sE(J)‘(ZH”)/ ‘A’;,KF‘ du,
R~ ’ R~ ’
m=1

provided s < =57
On the other hand, for J € £ and § = 2™ > 1, there are at most 2" cubes / such that

£(I)=356€(J)and I NJ # @, and then following the line of reasoning in (2.14) we have,

2
Y. e /R |l 2% F|

1€D: ¢()>E(J)

2
_ —(2s+n) M I3
=y e [y o,
1€D: £(1)>£(J) and INJ #W R
2
~ oy e, ey, sl
1€D: £(I)>£(J) and INJ #) o
J| 2
~ —@stm Ml | u
<1, > ey e T ol F|
11,

1€D: £(I)>£(J) and IOJ;&(?J

S 1L |a0, FH Cpt (1) Zz e ()G lﬂ'}’]
m

m=1

2 © rev 2
55(])—2sz ‘A‘;;KF’ dp Y2 e < sz(J)—zs[]R )APJ‘;KF‘ ,
m=1

. —grev . . .
provided s > 1 5'— where 07" > 0 is the reverse doubling exponent of u, i.e.

rev
|7J |, > 2% |J|
% 23
Now we compute

2

m
AI;Kf’

N (Z A‘;.K) f
Je& '

2
2 —2s —2s
17 1es, o [§ ) g = 2D
€D 1eD

L2(u)
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2y e 3T AL AL f
1€D Je&: e(I)<t(J) L2(1)

2

+2 Z (> Z A AL f

IeD JeE: L()>L(J) L2()
We bound the first sum by
_ e\’ 2
2s Iz I3
G2t 2 (E (I)> |25 25 1 12(2)
IeD JeE: L()<t(J)
2
1D DUULEED DR IU R VYRR
Je€ 1€D: 6(1)<t(J) L2
) 2
< Cy 3 ) Coput 7 [ o s
Je& R
2
=< Cs,n,s ZZ (J)izs/ ’Aljliykf‘ dﬂ - Cs,n,x ”f”]z/w (n)°
Jee R Ei
and the second sum by
_ LU 2
2s I iz
2t > <g(7j)> ”AI;K B F| 2 = CrlF g o
1eD JeE: L()>L(J)
. —grev .
provided s > WT" Altogether we obtain
”f”WSD;K(W <Gy ||f||wgm(,,¢)
provided
n— orev _
ko os5< £ n,
2 2
and interchanging the roles of the dyadic grids D and £ completes the proof. O

Finally, we will explicitly compute the norm || f| W () by starting with
diff;

/ f (F ) = f O due (¥) dpe ()
101, JoJo

= //{f(x)2—2f(X)f(y)+f(y)2}du(x)du(y)
19l JoJo

=2 pan-210,(ehr) =2 [ {70 = (Ebs) fan

to obtain the representation

2
Jx) -
2
||f||W753dﬂ_; E(Q)A du (x)
2
= E(Q)fz‘Y/ {f()2—2 EGf) f )+ (ELSf }d (x)
Z 70 = 2(EGr) £ o0+ (E5) j it

QeD
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> z(Q)‘%/ {f(x)z— (ng)z}du )

QeD

! e(Q)‘”—/f(f(x)—f(y))zdumdu(y).
ZQXE:D 101, JoJo

We will next show that this last expression is comparable to the expression
T 2// fFO=FM  du)du(y)

WO Jrn S v = P B (g )|

27 ),

Theorem 17 Suppose that i is doubling on R". For s > 0 sufficiently small, we have

2 ~ 2
”f”W%Jdiffi'(M) ~ ”f”WS(N) .

Proof From the formula above we have

1o,
10 0 = /f[ QQ(xy)](f(X)—f(y))zdu(X)du(y)

2
& 2 1070,
1/ / C
E —_
2 Jpn Jre |x_y|2s B(/Hz'}, |X;}|)‘M

since [Q], 2 ‘B (%, lx;yl)’ whenever (x,y) € Q x Q. Conversely we use the one
w

C
(f @) = FOD*dp @ di () = 5 1 s

third trick for dyadic grids. Namely that there is a finite collection of dyadic grids {Dm}f:: 1
so that for every (x, y) € R" x R", there is some m and some Q € D,, such that

B(x,Clx=yD),B(y.Clx—y)CQ and £(Q)=Clx—yl,

where C is a large constant that will be fixed below. In particular this gives

1

1
101 ~ 1B (x.elx = yDl, 1B (v.clx = DI, for oo < ¢ < -

Then we cover the product space R" x R" with a collection of product balls

{B (xk, ¢ |xx — yk|) X B (yk, ¢ Ixx — ye DI

where E = {(xx, yx)}p= is adiscrete subset of R” x R", and provided c is chosen sufficiently
small, this collection of product balls has bounded overlap. Now denote by Q. the cube chosen
above by the point (x¢, yx) € R" x R". Then we have

Okl = |B (x,clx —yDl, = |B(y,clx —yDl,
for all (x, y) in the product ball B (xi, ¢ |xx — yk|) X B (Y, ¢ |xk — yk|),

and so

f@O=fMY dp@)duy)
T f / ( i )
W= Z Blxi.clie—yil) J BGrclu—yeh) \ 1% =Vl ‘5(%@)‘
"

<i/ / <f(x)—f(y)>2dM(X)du(y)
“Elata N @y |0kl

@ Springer



Two weight Sobolev norm inequalities... Page210of74 81

3n

1
Q) —— / - Tdp(x)d
=YY o lQM/Q 0= 0 e dn )

m=1 QeD,,

3
=22 Iy 0 S CI T
=1

since || f ”%vf w is independent of the dyadic grid D,, by Theorem 16. O
Dy, gifi 31

m,dr
In particular, we have thus obtained one of the main results of this subsection.

Theorem 18 For all grids D on R", all positive integers k, and all sufficiently small s > 0
depending only on the doubling constant of u, we have

W0 = Wi, 0 = Wi (),
with equivalence of norms.

As aconsequence of this theorem, there is essentially just one notion of a weighted Sobolev
space for a doubling measure p provided |s| is sufficiently small, namely W* (1) whens > 0,
and any of the dyadic spaces WSD;K () when s < 0. For specificity we will use the norm of
W;DO;I () on these spaces, where Dy is the standard dyadic grid on R".

Definition 19 Define ijad (n) = () =
norm Wgyad (w) with the norm of WD;1 (,u)

Dd ik (w) for |s| sufficiently small, and

Note that Wgyad (n) = W* () for s > 0 sufficiently small.

Remark 20 The Sobolev space W* (u) used here is different from the Sobolev space intro-
duced on a space of homogeneous type in [5], since one can show that the norm squared used
in [5] is comparable to

2

// S @)= f») dp (x)dp (y)
n S ‘B 2y lx— x)z ‘B(%%)‘u

It seems likely that our proof extends to the analogous 71 theorem for these weighted

101, <( (o) )9/ 2"Ql,
ol ~ o and “5rt S

Sobolev spaces using the doubling measure inequalities
doub

(az'" ) )Qﬂ
(9]
Problem 21 Does a T 1 theorem hold in the context of weighted Sobolev spaces with doubling
measures and norm squared given by

/ / (f(x) —f(y)>2 dp (x)dp (y)
e oW =00 ) T (s )]
where ¢ : (0, 00) — (0, 00) satisfies

(;)91§%5(;>92f0r0<s§t<oo?
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Remark 22 The inner product for the Hilbert space Wéyad (w) is given by

(8w = D @7 (8, 1. 8%, 8

).
0D L2 ()

where the inner product for L2 (11) is given by

oo = [ F 08w dn @,

In Lemma 12 we showed that {Z (Q)* AH i } 0eD is a complete set of orthogonal projections
’ €

on ijad (w), nevertheless we will not use the Hilbert space duality that identifies the dual of
a Hilbert space with the conjugate of itself under the inner product ( f, g) W3 aa i) but rather

the L2 (1) inner product which identifies the dual of Wéyad () with chfid (). As mentioned

in the introduction, the reason for this is that the weighted Alpert projections | A%
Ok [ pep

satisfy telescoping identities, while the orthogonal projections {Z Q) A’é; p } 0eD do not.

2.4 Haar, Alpert and indicator functions

The Alpert projections HA‘;,K }1 5 form a complete family of orthogonal projections on
? €
L2 (), where

Al;;KfEE7;Kf_ Z E f Z< 1K>L2( )h?:

I'eCp(I) aerl
Thus we have
2 2
' = e
Z‘ o Lz( )‘ H Wiyaa () Z H Lz( w0
2
e |ak, f\ = | ak
H ”f’Wdyduu QXE:D N L2(w) 1t L2(w)

— E (I)—ZS Z

ael’

2
)
AT

forall f € Wj,q (), which implies upon taking f = Rt that

k>

=)™, IeD.
Wéyad(ﬂ)

Now we compute the weighted Alpert Sobolev norms of indicators. By independence of
K, we may assume « = 1. Using (2.8 ) and (2.9), we then note that

2
2 HAZI" 2 ||g|i 11,0\
|anu |’ ~ L u:( M) forl € Q' €€ (0Q),
o0 |Q|,¢ |Q|u, |Q|ll«

@ Springer



Two weight Sobolev norm inequalities... Page230f74 81

and hence from (2.8) we obtain

‘ 2 B 2
s =2 @7 o), = 3 e |ab ]
dyad ’ L=(p) ’ L=(n)
QeD QeD: 021
(2.14)
. 2 L,
~ X o |ap | S Y eo g
QeD: Q21 QeD: Q21 "
© I - 1
— |I| 272115[ (1)723‘ H“ _ K(I)fzs |I| 272}’!.? 13 .
“}; |1, M; |1,

Since u is doubling, it also satisfies a dyadic reverse doubling condition with reverse doubling
exponent 6,7 > 0 depending on the doubling constant, i.e.

n no;ey
|71, = 2" |11,

e —2n(s+0™
Then for s > —6/' we have PR) 2ns \n‘"llﬂm <ye.2 ( n ) < 00, and so

10y ~ €D U
Altogether we have proved the following lemma.

Lemma 23 Suppose w is a locally finite positive Borel measure on R". Then

w.a
Ik

=0, foralll e D,a €Ty, k> 1ands € R,
Wéyad(p‘)

and if w is a doubling measure,

HIIHWgyad(M) ~e) U, foralll € D,k > 1ands > —6,".

2.4.1 Sharpness

Here we construct measures for which ||1; II%Vx w = for all intervals 7 and s < 0, and
dyad

thus are not dyadic reverse doubling. A trivial example is any finite measure 1, and an infinite
example is du (x) = 1, 00) (x) —L_ Tn fact we have the following lemma.

xInx
Lemma 24 Ifthere is s < O such that
2 —2s
111 jyad(/L) <Ce) |I|M

for all dyadic intervals I, then  is a dyadic reverse doubling measure with exponent |s|.

Proof We have

o0
1
2 : (n+1)ls| < |71=2 2s 2 ~1 .
_02 L, |I|u (O 1y ) <C|I|, , forallintervals /,

which shows that 7" 1], > é2(”+1)|s 1) w for all intervals 7, which is the dyadic reverse
doubling condition with t = |s]|. O
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Remark 25 There is an asymmetry inherent in the homogeneous Sobolev two weight inequal-
ity (3.1) for general measures. If we wish to use cube testing to characterize the Sobolev

inequality (3.1) for some s > 0 assuming the estimate ||1; ||€V,J @ < C¢ (I)zs |1],, then
dyad

from the equivalence with the bilinear inequality (3.2) and the discussion and lemma above,
we see that @ needs to be restricted, in fact by reverse dyadic doubling with exponent essen-
tially greater than 2 |s|, while no restriction needs to be made on o.

2.4.2 Norms of moduli of Alpert wavelets

w,a

Lethy. = (h J,K) be the vector of Alpert wavelets associated with the cube J. Note

that for @ doubling gleld 0 <s < 1, we have
2

h?.
H Tl W@
E (])ZS

)

and we now show that the same sort of Sobolev estimate holds for the absolute value ’h‘}{K ‘ of

the vector Alpert wavelet (which remains trivial in the case k¥ = 1 since h9., is then constant
on dyadic children of J).

Lemma 26 Let u be a doubling measure on R". Then the modulus of a vector of Alpert

wavelets 'y, = {h"¢ satisfies
Jik Jik
a€l’yni

h';.
”’ Jik Wosna (1)
e (])23

<C, forJeD.

Proof We expand

w.a

W.a
IZ

Jik

"
AQ;K h

2 _ 2s
= E £(Q)
Wdyad(”’) 0

L2

For a cube Q contained in a child J' of J that is disjoint from the zero set of the polynomial
1 J/h’;_’i on the child J’, the absolute values on the Alpert wavelet can be removed, and we

w.a a
h];K

=4 A’ém h’;jK vanishes. On the other hand, if Q C J’ intersects
|F Q)|

<C
L2(n) — «/|Q|,¢

: w
obtain that A 0k

hﬂqﬂ

T to obtain

then we use HAZ;Kf‘

2 ‘(huﬂ 2/ ’hua 2
LZ(IL) - [N’ R" Jik

< ([ Pl au) [z v <
Q ’ ’ o0

and together with Corollary 8, we obtain
A# w.a

2<
Z ¢ Q)7 Ok | Tk L2 ™~
QcClJ': ONZ#Y QcCJ': QNZ#D

the zero set Z of the polynomial 1/

the crude estimate,

2
w.a

hl/-va wn.a
Jik Jik Ok’ |k

101,
I

d/"v — ‘<hﬂ,a

>L2<m

AR >
H K L2(u)

1ol
z 2_\ /’L
> Q) I,
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°° Hm 101
- Z ¢ (J) Z i
m=1 ocJ:onz#p T H

LQ)=2""L()

A

i 2—2ms Z |?|M ¢ (])23
m=1

QcJ': ONZ#) lu
LQ)=2""¢(J)

m=1

which is the estimate we want when s > 0 or —% <5 <0,wheree =¢(u) > 0.

Finally, for big cubes Q containing J there is only the tower above J to consider, and
trivial estimates work:

Z E (Q)zs l‘;:z LZ( )
QeD: 0>J "
2 ? 2
- s |[ppma i w.a
= @ ), | o
QeD 0>J
2 00 2
2ms n.a w.a 2s 2ms w.a 2s
< Z 2 i ) | €0 < 02 ([ ) e
= m=1
o0
2mr 2s < 2s
<Y 2 (m)” T E e DF <)
m=1
provided s < O or s is small enough depending on the doubling constant of 1. O

2.5 Duality

Here we compute the dual space of Wg ad () under the L? (w) pairing

<f,g>Lz<m=[Rnf(x>g(x)du(x>— 3 /A”fA“gdu—Z[ Al f A gdp.

IeD,JeD
Lemma27 Let —1 < s < 1. Then
*
(Wiyaa 1)) = Wegaa 10,
holds in the sense that if g € W(E/;d (w) then f — (f, &)12(, defines a bounded linear
functional on Wa‘yad (), and conversely that every bounded linear functional on Wgyad ()
arises in this way.
Proof For « sufficiently large, Cauchy—Schwarz gives

|<fs g>L2(/L)| = <Z AM f Z AJ Kg>
L2(w)

IeD JeD
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= Z Z/ Kg) du
IeD JeD

A ACH) (N;mg) s

- Z/ e~ (af ) ear (afg)du

\//RHZ‘Z(I)A du\// Z‘zu)s )‘

= 1£ w0 18 w5, o

IA

Conversely, if A € ijad (u)* is a continuous linear functional on ijad (w), then for «
sufficiently large

e, h’,‘;K>L2(M) () AR,

IeD
> (A’,‘;Kf)‘ =S

1€D

Iz wo|
Z <f’h1;K>L2(M) Ah[;f( -

1D

< I g0 = 1A / fR e ()| an
IeD

2
=AY e

1eD

<f’ h;K>L2<u>

for all choices of coefficients {E nH— (f, h‘;K> } € £%(D), and so we have
L2 (1) IeD
€(I)* AhY., € £2(D), ie.

2s w |?
D LF ARG < AL
1€D
Thus if we define g to have Alpert coefficients Ah’;: ,l.e.

DN B D B (A L

1€D 1€D
ael’ ael’

then g € Wd_y;d (i) since

2
el = || > Jear (ahe)[ an= | X e |fenie) |
v 1€D )
ael’
= [ e Al <A
= () T | = IAl < oo,
1D
ael’
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and finally we have

u,a _ w.a w.a
Af = Z(f hl K)Lz( )A Lk = Z(f’hI:K>Lz(M) <g’h1;K>L2(M)

1€D 1€D
ael ael’

= [ F e = (f iz

2.6 Quasiorthogonality in weighted Sobolev spaces

Let A’;;’Iil =0(D)* A’;;Kland E’;;'Ifl =0()* IE’; . Since {AI o } o is a complete set of

orthogonal projections on Wgyad (R™), we have

—2s —
ZZ(I) ‘Lz(/L) Z H IKlf’
I1eD Ie

Wd dd(l’l’) HZ I Kl

Wd ad ()
_ 2
= 1By 0

and then if {E’;jﬂ ] rer is a collection of projections, indexed by a subgrid F of D satisfying
’ €
an appropriate Carleson condition, we expect to have

—2s _
FZ K(F) LZ(M) Z H FK] ‘
eF Fe

Here is the quasiorthogonality lemma appropriate for Sobolev spaces, in which | f| does not
appear, and which can be viewed as a Sobolev space version of the Carleson Embedding
Theorem.

EL, [ v S Mg 0

Lemma 28 (Quasiorthogonality Lemma) Let ;v be a doubling measure on R". Suppose that
Sfor some ¢ > 0, the subgrid F C D satisfies the e-strong ju-Carleson condition,

L)\ -

Y |\ == IFl.<C|F|, FeF. (2.15)
€(F) "

FeF

FCF'

Then for s < 5 we have

Z C(F)™>
FeF

2
N
EF}Kf

L2(w)

Sy o0

ﬂ(’")F K f

A*r(m)F;Kf |oc
(rr (’”)F)F of 7™ F that contains F, we have by (2.8) and (2.9),

2
|F|/,L H]E 7'[(”’>FK fH %/'

|t

Proof Since ‘ is a normalized polynomial of degree less than « on the D-child

]Eg';l( n(m)FK f‘ dl'l“ </ ‘An(m)FKf‘ d/'L
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and so for any r < 0 we have

2
-2 -2
Yo LE) f‘Lz()_Zf(F) g FKI(ZA@‘;Kf)
FeF FeF IeD L2(w)
2
-2
Z ™ ZEF K1 ﬂ(”’)FK f
FeF L2(1)
2
-2
Sy ewn, (Z [ A% e fHoo>
S

< Z CF)Y P, (Z | 8% 0 5.0 £ )
<Y e IR, (i ( (m)F)2t> (i ) <7T(m)F)—2l HAZ(»MF;K')CH;)
m=0

FeF m=0

2
~ 3 LEPEF, Z ¢ (n(m)F> HAMF KfHoo
m=0

FeF

Substituting F’ for 7" F, and letting t = s — £ < 0, we obtain from the &-strong Carleson
condition (2.15) th;
Se (F)*ZAT A

FeF L2(p)
o
|F| —ot 5
¢ F2t —2s 7"E( (m)F) / HAM H J
FZE.;: ( ) Z }(]‘[(m)F) | T (n(”’)F)F ﬂ(”l)F;Kf . 12
- |F| —2t )
~ A2 " (m)
NFZ]::Z(F) t—2s Z | (m)F E(rr m F) ./(n('")F)F ‘AZ(’")F;K‘f‘ du
€
_ |F| _2s 2
= C(F)yf —* | e(F)° AR, ‘
F/Xejf FZ;E B (F)) )
FCF'
= Z (044 (F/)_Sﬂ K(F’)S_ZS f‘
R I(F’)FI 2w
2
s FZFE(F’) A Sy 0
‘e

m}

Remark 29 We can replace f by its modulus | f| in the above lemma whenx = 1 and s > 0
is sufficiently small. Indeed, by the reverse triangle inequality we have

F@—E f o]
e(Q)‘

w(x)

1F Wy, 0 =

@ Springer



Two weight Sobolev norm inequalities... Page29of 74 81

dp (x)

2
fx) - ‘Q‘u fQ Sfdu 1Q (x)
- / )

& oy

_ / / 1f Ol =1f Wl
Zioi Lol i

Y // fO-f»
22 on Jolol i@

and now we use the equivalence 112 w = 11126 ( for |s| sufficiently small.
diff; 1 dyad: 1 (1)

du (x)du (y)

du x)dp (y) = IIfllw‘ L

3 Preliminaries: weighted Sobolev norm inequalities
Duality shows the equivalence of weighted norm inequalities with bilinear inequalities.
Lemma 30 The Sobolev norm inequality

175 F gy = 17 Nop 1 w00 (3.

is equivalent to the bilinear inequality

ZZ/ (T2 A f) AY gdo| <

a 2
”T Hbil ”f”Wéyad(o') “g”Wd’yid(w) for f’ 8 € L (/’L) .
1eD JeD

(3.2)

Proof Indeed, if the bilinear inequality holds and f = > ;.p A7 fand ¢ = > ;.p AYg,
then

‘ /R (129) gda)‘ ,ZDJZD / (T2 85 1) 25 gdo) < [Ty 1 g 00 18w, o)
shows that
175 F Ty P / ,157) gdwl Tl / 757) gdw‘

Hgnwéyad(a,)*fl

17 o 1wy g 00
= [, = [T

gy, —s <1
Wigad @

IA

pil Since L?* () is dense in Wéyad (n).

Conversely, if the norm inequality holds, then

e

IA

H T;”fH Wiyaa (@) ”g”WSyad(‘”)* = ” T ||0p ||f||W3‘yad(g) ||g||wgyad(w)*

17 op 1 w00 €T,
= [Ty = |7 ”op

[}
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3.1 The good-bad decomposition

Here we follow the random grid idea of Nazarov, Treil and Volberg. Denote by Qgyad the
collection of all dyadic grids D. For a weight 1, we consider a random choice of dyadic grid
D on the natural probability space Qgyad.

Definition 31 For a positive integer r and 0 < ¢ < 1, acube J € D is said to be (r,&)-bad
if there is a cube I € D with |I| > 2"|J|, and

dist(e(D), J) < LJ1E 11",

Here, e(J) is the union of the boundaries of the children of the cube J. (This contains the
set of discontinuities of h’;,K and its derivatives less than order «.) Otherwise, J is said to be
(r,e)-good.

The basic proposition here is this, see e.g. [24] and e.g. [11] or [17] for higher dimensions.
Proposition 32 There is the conditional probability estimate

PN (J s (re)-bad : J € D) < C.27°.

cond

Define projections

good Df goode Z Auf and Pbad Df_Pbadef_ goodf

1 is (r,e)-good €D
(3.3)

Recall that

2],

2
1 B o

L2’

Yooy |a
QeD

~ 2
”f”wd W) 71 () forall D € Qdyad-

The basic Proposition is then this.

Proposition 33 (cf. Theorem 17.1 in [24] where the middle line below is treated) We have
the estimates

D
Qdyad

Pl <2 1 fllwr o -
baas /| gy () = Co2 2 I w00

<C 277 P(1) s
Lo = C IF Nz

< C.27 2" ||f||w(;y~“‘]d(u)-

L
IEQdya\d Pbad;'Df‘

L
EQdyad ‘Pbad;DfH w=s
D

()

Proof We have

2
5 —_mwD 2s "
Qdydd <H bad;/Df H Wéyad(ﬂ)) B ]EQdyad Z (1) <f h >L2(H)

1€D is (r,e)-bad

= CSEQddeZ v Z ¢ (1)7% hM)Lz(#) =C:27" ”sz jyad(ﬂ) ’
1eD
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and then

— &y )
2 <H b"‘d;Df’ Wéyudw) ) \/]Egd“d (H b"‘de’ Wiaa i >> < G221 w0 -

Similarly for L? (i) and Wd_yfld (w) in place of Wéyad (). m]

From this we conclude the following: Given any 0 < ¢ < 1, there is a choice of r,
depending on ¢, so that the following holds. Let T : Wj'yad (o) = ijad (w) be a bounded
linear operator, where for specificity we take ijad = Wp,, and Dy is the standard dyadic
grld on R”. We then have

Ir ||Wd 0 (@)= Wiyg(@) = < sup sup EQdyadEQdyaJ(TPgood;Df’ Pg’oodng> |
1 g g1 =1 Iy =1 @
3.4

A —S
Indeed, we can choose f € Wdyad (o) of norm one, and g € Wdyad (w) of norm one, and we
can write

J = Poooa:0f + Plaa;pf

and similarly for g and &, so that
1T 1 ws 100 ()= Wiy g (@) = HT, £, 8)0l
EszdyddEQdydd|<T Pood: 0.+ Paood: sg> |+ EQdedEQdydd|<Ta PRad: D/ Poood; £ 8 >w|
Eszdyqd EQdyad |<To Plood: 0.+ Prad;c8 > [+ EgdyadEQdyad (ToPhas. o f > Phaa£8),|

< BB By o Plooai /- Plnoaie8) |+ 3Ce27 ¥ 1Ty o1 Wi en

And this proves (3.4) for r sufficiently large.

This has the following implication for us: Given any linear operator T and 0 < ¢ < 1,
it suffices to consider only (r,e)-good cubes for r sufficiently large, and prove an estimate
Sfor ||IT|| Wiad (0) = Wiy (@) that is independent of this assumption. Accordingly, we will call
(r,e)-good cubes just good cubes from now on. At certain points in the arguments below,
such as in the treatment of the neighbour form for Wéyad (0), we will need to further restrict
the parameter ¢ (and accordingly r as well).

3.2 Defining the norm inequality

We now turn to a precise definition of the weighted norm inequality
175 F w0 = R 1 My g0+ F € Wagaa (0 (3.5)

where Wd aq (0) 1s the Hilbert space completion of the space of functions f € L% (o) for

which

loc

||f”W§yad(‘7) < 00.

A similar definition holds for Wéyad (w). For a precise definition of (3.5), it is possible to
proceed with the notion of associating operators and kernels through an identity for functions
with disjoint support as in [22]. However, we choose to follow the approach in [18, see page
314]. So we suppose that K¢ is a smooth «-fractional Calder6n—-Zygmund kernel, and we
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introduce a family [ng‘ R ]0 . of nonnegative functions on [0, co) so that the truncated
’ <O<R<OO
kernels ng R (X, y) = ng" z (Ix = y|) K% (x, y) are bounded with compact support for fixed

x or y, and uniformly satisfy (1.2). Then the truncated operators
Té, of (1) = /R K& (r,y) f () do (3), x €R",

are pointwise well-defined, and we will refer to the pair (K o, [ng‘ R] as an

0<§ <R<oo)
a-fractional singular integral operator, which we typically denote by 7%, suppressing the

dependence on the truncations.

Definition 34 We say that an w«-fractional singular integral operator 7% = (K”‘,
{15 kYos-roo) satisfies the norm inequality (3.5) provided

1725 e Wy o) = T« @) 1 flwy o) f € Wiyaa (0),0 <8 < R < o0.

Independence of Truncations In the presence of the classical Muckenhoupt condition
A9, the norm inequality ( 3.5) is essentially independent of the choice of truncations
used, including nonsmooth truncations as well—see [9]. However, in dealing with the
Monotonicity Lemma 40 below, where «*" order Taylor approximations are made on the
truncated kernels, it is necessary to use sufficiently smooth truncations. Similar comments
apply to the Cube Testing conditions (3.6) and (3.7) below.

3.2.1 Ellipticity of kernels

Modifying slightly the definition in [21, (39) on page 210], we say that an «-fractional
Calder6n—Zygmund kernel K is elliptic in the sense of Stein if there is a unit coordinate
vector e; € R" for some 1 < k < n, and a positive constant ¢ > 0 such that

|K* (x,x +tep)| = clt|*™", forallz e R.

For example, the Beurling, Cauchy and Riesz transform kernels, as well as those for k-iterated
Riesz transforms are elliptic in the sense of Stein for any £ > 1.

3.2.2 Cube testing

While the next more general testing conditions with k > 1, introduced in [14, 16], are not
used in the statements of our theorems, they will be used in the course of our proof.

The k-cube testing conditions associated with an « -fractional singular integral operator
T“, introduced in [14] for s = 0, are given by

1 2

T (0, w)* = sup  max 7”1 T (1 mﬂ)H < o0,
(e @.0) = o e oo, 1107 eme) e

(TK’_S (w a))2 = sup max S HIQT"’* <1Qmﬁ>H2 < o0

N 0e0r 0=lfl< £(Q)* 0], I ) lwgsyor =7

(3.6)

_ B
where (T%*),, = (T%)", with mg x) = (xe(é?) for any cube Q and multiindex 8, where

¢ is the center of the cube Q, and where we interpret the right hand sides as holding uniformly
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over all sufficiently smooth truncations of 7*. Equivalently, in the presence of A5, we can take
a single suitable truncation, see Independence of Truncations in Subsubsection 3.2 above.

We also use the larger triple k -cube testing conditions in which the integrals over Q are
extended to the triple 3Q of Q:

1 2
TR (0, w) 2 = sup max —————— H13 T (1 mﬁ>) < 00,
(S5 (. 0)) = sup o s =g, 17277 (ome) ;e
(TERK’T;S* (w, 0))2 = sup max % H13QT£“* (lQm’é) ‘ ’ _ < 00.
" 0eQn 0=IBl<k £(Q)* |0, Wigea (@)
3.7)

3.3 Necessity of the classical Muckenhoupt condition

Suppose that 7 f = K * f where K% (x) = ‘?f,x_)u , and Q (x) is homogeneous of degree
0 and smooth away from the origin. Note that we do not require any cancellation properties
on €2, except that when « = 0 we suppose f Q(x)do,—1 (x) = 0 where o, is surface
measure on the sphere (see e.g. [21] page 68 for the case « = 0). We assume €2 is nontrivial
in the sense that there is a coordinate direction ® € S$"~! such that  (®) # 0. Then there
is a cone I" centered on ® on which K (x) = |)Sc2\'(”{)“ and Q2 (x) > ¢ > O for x € I'. Consider
pairs of separated dyadic cubes in direction ®,

SPo ={(1.1') :dist (I, I') =~ (1) =€(I"), Ry (I)
<dist (I, 1") ~ R (1), and I has direction © from I},

where R is chosen large enough that if the cone I' is translated to any point in /, then it
contains any cube I’ for which (1, 1') € SPe.
We first derive the ‘separated’ Muckenhoupt condition from the full testing condition for

T, ie.
1 1 ) ,
—/dw —/da <F%re (s;0,0)°, (I.I') € SPe.
[’ Jp 1] J;

We may assume without loss of generality that ® = e, the unit vector in the direction of
the positive x-axis. Now we choose a special unit Haar function h7, i.e. AQ AT, = hY, and

||h‘1‘), = 1, satisfying "

L% (w)

he (x) = Z aglg (x), where

{ ag > 0 if K lies to the right of center
Kee(l)

ag < 0 if K lies to the left of center ’

where for a cube Q centered at the origin, we say a child K lies to the right of center if K is
contained in the half space where x; > 0. We now compute

I il = 360 5 (et s,
JeD
=t (1/)725 |ag (T%1;0) Hiz(a})
2
> ()2 (1 10,08), P = (1)

[ ([ xecnda )i o

2
/, </1 [K¥ (x —y) = K* (¢ — y)]do (y)) ¢ () dw (x)

=e(r)7*
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2
—2s ///;[K“(X_Y)_Ka(cl/—y)] ?)/(x)do'(y)dw(x)

o ( / / e(1')

VI, dist (1, 17y +1=«
2
|I|0 }1/|w
dist (1, I7)?"—2¢°

since w is doubling. Thus we have

er)y™

2
do (y)dw (x))

—ct (1)

117,
dist (1, 1/)211 —2a ~
< §T7e (550, 0) |14 (@) > 8ETe (510, w)* (D)7 ],

< 1T (1,0)HW\

@)

which gives the desired inequality,
1, 171,
|I|n o |[ |Vl o

Since the measures are doubling, we obtain the full Muckenhoupt inequality,

< §%7e (s; 0, a))

Af (0, w) = sup:l:za(irll[:; < Fre (530, w)?.

Thus we have proved the following lemma.

Lemma35 [fTYf = K% % f where K% (x) = lQlf,x)a, and 2 (x) is homogeneous of degree
0 and smooth away from the origin and Q2 (ex) # 0 for some 1 < k < n, then boundedness
of T* from Wgyad (o) to W(iyad (w), implies the AS (o, w) condition, more precisely,

VAS (0,0) S FT7e (550, 0) <Nre (550, 0).

3.3.1 Necessity of the strong «™" order pivotal condition for doubling weights

The smaller fractional Poisson integrals PY (Q, 1) used here, in [14] and elsewhere, are given
by

/ L))"

B (£(Q) + |y = col)

and the «'"-order fractional pivotal constants VYL VYT < o0, k > 1, are given by

P (O, ) = g dn (), k=1, (3.8)

(V" (0.0)* = sup ZP“ (0r.190)° 101, (3.9)
QDUQr |Q|0 r=1

(V5" (0, ) = ZP“ 0,,190)’ 10/, = (%™ (@, 0))°

QDUQr | Q|(u

and the g-strong «-pivotal constants V5'x , V3= < 00,k > 1, & > 0, are given by

ax (5 ) = ) (Y
(%2 @) = |Q|U§P (0r.10)’ (E(Qr)> 10/l
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w o oV . (Q) (% o)
(37 o) _qug,iQuo;P ot (UQ)) 01y = (4 @)

(3.10)

and where the suprema are taken over all subdecompositions of a cube Q € Q" into pairwise
disjoint dyadic subcubes Q,. The case ¢ = 0 of the following lemma was obtained in [16,
Subsection 4.1 on pages 12—13, especially Remark 15], where it was the point of departure
for freeing the theory from reliance on energy conditions when the measures are doubling.

Lemma36 Let 0 < o < n. If o is a doubling measure, then for k > 03°“b + o —nand
0 <& <62, we have

Vza,’gl( (0, w) < Ck,sAg (0, w).

Proof A doubling measure o with doubling parameters 0 < B8,y < 1 as in (2.1), has a
‘doubling exponent’ #9°"° > 0 and a positive constant ¢ depending on S, y that satisfy the
condition, see e.g. [16],

j ggoub

‘2*-/’Q’ > 277%™ 10|, forall j € N.
o

We can then exploit the doubling exponents §9°° and reverse doubling exponents ™" of
the doubling measure o in order to derive certain «*" order pivotal conditions Vil < oo.
Indeed, if o has doubling exponent 3°U® and x > 63°° + o — n, we have

40N
d
'/R"\I () + |x — )o@ o (x)

=Ze(1>“‘"/, | L
j=1

20 1\2i-11 (1+ |x— 61|)"+K ¢

[20))
[ee] oo

5 |[|Z_122_/("+K_0‘) 2]1‘ S |I|;—122—j(n+l(—ol)
j=1 ’ j=1

< Coxapy 17T,

(3.11)

e e}
providedn +k — o — 9(‘,10“'3 > 0,i.e. k > QgOUb + a — n. It follows that if 7 D U 11, isa
r=

subdecomposition of / into pairwise disjoint cubes /., and k > QgOUb + a — n, then

()
ZP (I, 1;0)° (w)) 1A%
- - 200)\* B ED) N ey 1l
,S;(ur“ |Ir|(;) (m) |Ir|w—2<g(1)> |] |2(1 a) | r|rr
1204
)Z( ”) |y < CocAS (0. 0) |11,

provided 0 < ¢ < 6%, indeed,

. : o
(e(l)> |Ir|g = (6(1)) CU,E (e(lr)) |I|a SCU,'?'I'U'
(1) ¢ ¢
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This then gives

Vil < CeeAS (0.0) k> 6" +a—nand0 < e <6, (3.12)

where the constant C, . depends on «, ¢ and the doubling constant of o. A similar result
holds for V3" if k +n —a > 63" and 0 < & < 6. hold for the doubling and reverse

doubling exponents §4°%° 9TV of . o

3.4 The energy lemma

For0 <o <nandm € R4, we recall from (3.8) the m!"-order fractional Poisson integral
£(JHm
dp(y),
o @D + 1y — g et )
where PY (J, u) = P% (J, u) is the standard Poisson integral. The case s = 0 of the following

extension of the ‘energy lemma’ is due to Rahm, Sawyer and Wick [14], and is proved in
detail in [16, Lemmas 28 and 29 on pages 27-30].

Pl (J, ) =

Definition 37 Given a subset 7 C D, define the projection P = >,/ ; A‘}’,;K, and given
acube J € D, define the projection P = ) yiep. yicy AY-

Lemma 38 (Energy Lemma) Fix k > 1. Let J be a cube in D, and let Vj € Wd;d (w) be
supported in J with vanishing w-means up to order less than k. Let v be a positive measure
supported in R"\yJ with y > 1, and let T* be a smooth a-fractional singular integral
operator with 0 < a < n. Then for |s| sufficiently small, we have the ‘pivotal’ bound

(7% @) W) 2| S CPEG ) EDT VI s, B13)
Sor any function ¢ with || < 1.

We also recall from [16, Lemma 33] the following Poisson estimate, that is a straightfor-
ward extension of the case m = 1 due to Nazarov, Treil and Volberg in [12].

Lemma39 Fixm > 1. SupposethatJ C I C K andthatdist (J, d1) > 2/nt (J)® € (I)' 7.

Then
¢ (J) m—e(n+m—ao)
7) Pft”(I,O'IK\I). (314)

L)

We now give Sobolev modifications to several known arguments. The next lemma was
proved in [14] for s = 0.

Py (J,0lg\1) S (

Lemma40 LetO <o <n,« € Nand0 < § < 1. Suppose that I and J are cubes in R" such
that J C 2J C I, and that | is a signed measure on R" supported outside 1. Finally suppose
that T* is a smooth fractional singular integral on R" with kernel K (x, y) = K{ (x), and
that w is a locally finite positive Borel measure on R". Then

2
85T 1l ) S P o) + W el (3.15)

where for a measure v,

¢ (Jv)P= )
|Bl=k

2
|27

[ (&) o) av o

B 2
;K'x ” ijad(“’)
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J; -
* Wdyfad (@)

PY . (J, v\ 2
e, () = (f”) N R

2

. . 2
where m'; € J satisfies || |x — m’}|K || W (Lo) = rﬂf] || |x —m|* || Wiag (o)
[ —
Remark 41 Note that when s = 0, we have J;(J:Vz‘f{;d(m) = | J’KILZW = 1, and so the

above inequality becomes the familiar Monotonicity Lemma. For s close to zero, Lemma 26
s
shows that

Wdyad (@)

T < 1, which gives the same familiar form.

Proof of Lemma 40 The proof is an easy adaptation of the one-dimensional proof in [14],
which was in turn adapted from the proofs in [11, 17], but using a k" order Taylor expansion
instead of a first order expansion on the kernel (K ¥ ) (x) = K% (x, y). Due to the importance
of this lemma, as explained above, we repeat the short argument.

Let {h Tk } -
agl jnk
above. Now we use the Calder6n—Zygmund smoothness estimate (1.2), together with Taylor’s

formula

be an orthonormal basis of L%,K (w) consisting of Alpert functions as

ke @ =Ty (k¢) o+ 0 (k0) T 0 en - o
" 1Bl=k

I
Tay (K;*) (5:0) = K5 @ +[(x = ) VIKS © 4 b o [ =) VI KE (),

and the vanishing means of the Alpert functions h(j,’: fora € T'y »,, to obtain

(rewn) o = LA L ke cmmszwaolano = [ (ksnsz), ano

[ (- (53 o 5 ) v

1 B
= /”<Z(K;') (6 (x.m5)) (x = m)” hw"<x>> di(y)  (omed (x,m5) € 1)
L% (w)

e
N )P o
= S (L (0" enyaoJe-my asz)
+ WZ_K < |i/1R” ! |:< v)(ﬁ) (0 (x,mY)) — ‘f;::'( <K3>(ﬁ) (m’})} du (y):| (x— m‘})ﬂ i h(}’;Z>L2(w)

(B)
Then using that [g, (K;‘) (m’;)d,u (y) is independent of x € J, and that

((x — m’;)ﬂ i h‘}’;K>L2(w) = (xﬂ, hL;”()LZ(w) by moment vanishing of the Alpert wavelets,

we can continue with

(rwnss) =3 [[ 2 (&) ) au ] L

1Bl=

2 XL [(K;‘)“” 0 xom5)) = (55)” 0) [ 0] 5 =) 152

|Bl=x L2 (w)
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Hence
1 B)
o) (k)" sy ] )
( e lg—i UJR ! () die ) | 7 A5 2
1 B) B)
<— <U sup | (K5) " @) = (K2) " () dlul(y)] = m& [~ h‘;’:;‘>
K. R el ’ 2
|1Bl=k L% (w)
P, . (J,
T Lo N |17
[J] Wioa (@) T Wgaq (@)
P s (J, D)
< K48 _ Hl
~tcz VG ‘H mJ’ H Wiaa (o) ||| 75 Wika(@)
where in the last line we have used
B) B)
[ s (k)™ @ (k5)™ )| bl 00
R" peJ
1\ dll ) P (. |1l
5 CCZ/ ( KHl—a CCZM*K'
re \|y—csl/) |y—cyl [J]
ih of I o\ k - -
Thus with v}, = & [& (Ky> (m%)dup (y), and noting that the functions
{ fh’}),‘j} - are orthonormal ina € I'y ,, , for each B and J, we have
ael’ jnx
B : B ?
SIS D R BN R IS
vy (x * ik L2(w) Z ‘x » Uy Jik L2(w) J;K L2(w)
ael“J,,,,K
2 2
- 2 _|.B 2s
- ‘UJ HA(});KX}S”LZ((U) - ‘UJ‘ ¢ (‘]) ’ ||A(});Kxﬁ ngyad(w)
and hence
2 —— 2 2 2 ?
. —2s __ —2s w,a
”AC});KTal““”W ) rn (‘]’K)’ LN =) Z ‘(Ta“’hl;x>Lz(w)’
aEFj'nYK
_ —2s 2s
—t() ‘ ‘ O I
|Bl=x
P s (. D)\ 2
+0 ( K+0 K ) ¢ (J)72s x —m¥ : H ‘hw:a )
i [ESCIR AR Wi [ W
Thus we conclude that
Tie Wgyad(w) - l|ﬁ\—K K'! n Y Tie Wgyad(w)

2

: [[ps
Py s (J, ul) )2 H W (@)
& (P e =5 g
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and

[ w,a
where b, = {1

}ael“Jv,,ﬁ,(

S () e ano

K!

P <P;“ , |u|)>2‘
M

bD

|Bl=x

m}

The following Energy Lemma follows from the above Monotonicity Lemma in a standard
way, see e.g. [17]. Recall that for a subset 7 C D, and for a cube J € D, there are projections

— — — w,a
P =2 res 89, andPy =3, p iy A9, Recallalso thathy = [h],

is
ik }1161—‘./’,1_,(

the vector of Alpert wavelets associated with the cube J.

Lemma 42 (Energy Lemma) Fix k > 1 and a locally finite positive Borel measure w. Let
JbeacubeinD. Let V; € Wd;d (w) be supported in J with vanishing w-means up to order
less than k. Let v be a positive measure supported in R*\y J with y > 1. Let T be a smooth
o-fractional singular integral operator with 0 < a < n. Then we have the ‘pivotal’ bound

. |,
o o -5 i ng,;d(w)
(7 0 Wiy | £ EPE D™ VT 00— o

(3.16)

for any function ¢ with |¢| < 1.

4 The strong -pivotal corona decomposition

To set the stage for control of the stopping form below in the absence of the energy condition,
we construct the strong k-pivotal corona decomposition for f € ijad (m), in analogy with

the energy version for L2 (¢') and L? (w) used in the two part paper [8, 9] and in [17].

Fix y > 1 and define Gy = {F} to consist of the single cube F, and define the first
generation G| = { Fk] } i Of k-pivotal stopping children of Flo to be the maximal dyadic
subcubes I of Fj satisfying

2
pe (1, 1Fpa) 1, =y, .

Then define the second generation G, = {F kz}  of CZ k-pivotal s-stopping children of F' 10
to be the maximal dyadic subcubes I of some Fkl € G satisfying

2
Pe(1150) 11y = 711,

Continue by recursion to define G, for all n > 0, and then set
o0
F=JG={F:n=0k=1}
n=0

to be the set of all CZ «k-pivotal stopping intervals in F’ 10 obtained in this way.
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4.1 Carleson condition for stopping cubes and corona controls

The e-strong o -Carleson condition for F follows from the usual calculation,

F'e€z(F) F'e€r(F)

< Vi (0, 0) |Fly .

Z(F) ¢ ’ 1 « ’ 2 K(F) ¢ ’

> (@) 1Fl= ) X e (f) 17
I
14

Now set Cg_i) (F) to be the ¢ generation of F-subcubes of F, and define F (F) =

0 (f) . VSR 1
U£=0 ¢ (F) to be the collection of all F-subcubes of F'. Then if S < 3, Wwe have the
e-strong o -Carleson condition,
CEN v CEN |
~ (65) 7= 2 (55) 17,
F'eF(F) =0 prec@(F)
oo oL, K K
Voo +1
<> == IFl, <2IF|,. (4.1)
=0 Y

Using Lemma 28, this Carleson condition delivers a basic method of control by qua-
siorthogonality (see [9, 17] for the case s = 0),

—5 o p\2
Do Fl (€D ERS) S Iy o (4.2)
FeF g

which is used repeatedly in conjunction with orthogonality of Sobolev projections A‘;;K g,
D 1858 lys oy = 1815 43)
JeD v v
Moreover, in each corona
Cr={leD:I1CFandl ¢ F' forany F' € F with F' & F},
we have, from the definition of the stopping times, the ¢ -strong « -pivotal control,

L(F)

&
5(1)> [, <T|Il,, [ e€CrandF e F. 4.4)

PY (I, 1F0)? (

5 Reduction of the proof to local forms

To prove Theorem 2, we begin by proving the bilinear form bound,

(757 2),|
S (/42 0. 0) + TRE (0, 0) + TRGL . @,0) V5 VL) 1 w00 gl -
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Following the weighted Haar expansions of Nazarov, Treil and Volberg, we write f and g in
weighted Alpert wavelet expansions,

pole o) (g

Then following [17] and many others, the L? inner product in ( 5.1) can be expanded as

(7 (5 50) (25

> (T (a5 ) (8508)),

I1€eD and JeD

(Ttgf’g>a)

Then the sum is further decomposed by first the Cube Size Splitting, then using the Shifted
Corona Decomposition, according to the Canonical Splitting. We assume the reader is famil-
iar with the notation and arguments in the first eight sections of [17]. The n-dimensional
decompositions used in [17] are in spirit the same as the one-dimensional decompositions in
[9], as well as the n -dimensional decompositions in [11], but differ in significant details.

A fundamental result of Nazarov, Treil and Volberg [12] is that all the cubes I and J
appearing in the bilinear form above may be assumed to be (r, €) — good, where a dyadic
interval K is (r, €) — good, or simply good, if for every dyadic supercube L of K, it is the
case that either K has side length at least 2! " times that of L, or K €(r,e) L. We say thata
dyadic cube K is (r, £)-deeply embedded in a dyadic cube L, or simply r-deeply embedded
in L, which we write as K €, o L, when K C L and both

L(K) <27"¢(L), (5.2)

dist | K, | oL | = 2ek) €)' ",
L'eCplL
Here is a brief schematic diagram as in [ 1], summarizing the shifted corona decompositions
as used in [1, 17] for Alpert and Haar wavelet expansions of f and g. We first introduce
parameters as in [1, 17]. We will choose ¢ > 0 sufficiently small later in the argument,
and then r must be chosen sufficiently large depending on ¢ in order to reduce matters to
(r, &) — good functions by the Nazarov, Treil and Volberg argument.

Definition 43 The parameters t and p are fixed to satisfy
t>randp >r+T,

where r is the goodness parameter already fixed.

<ng~f’ g)w
!

Be, (fr9) + Bs(f.e) + Ba(fie) + B (f.9
\

Tdiagonal (f.8) + Trarbelow (f»8) + Trarabove (f, &) + Tdisjoint f, 8

| \

ng (f’ g) Tgarbelow (f’ g) + T%arbelow (f’ g)
\

stop (f g) + Bparaproduct (f g) + Bnelghbour (f g) + Bcommutator (f’ g)
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5.1 Cube size splitting
The Nazarov, Treil and Volberg Cube Size Splitting of the inner product (T;" f g)w splits the

pairs of cubes (, J) in a simultaneous Alpert decomposition of f and g into four groups
determined by relative position, is given by

(15 f.8), = 20 (15 (A7, 0) - (85.48)),

1,JeD
= D AT (A7) (258, + Do (T8 (87, 0) . (89..8)),
1,JeD 1,JeD
JEp el JpeDI
+ 3 (T2 (89,0 1) . (89..8)),

1,JeD
LJ —
JnI=fand G ¢[277,2]

+ ) (T(aT.f) (AT.e)),
1,JeD
2P <or

=Be,. (f.8)+B,5(f. &) +Bn(f. &) +B, (f.8).

Note however that the assumption the cubes / and J are (r, €) — good remains in force
throughout the proof.

We will now make use of the x-cube testing and triple testing constants, defined in (3.6)
and (3.7), to prove the following bound in the Sobolev setting, which in the case s = 0 was
proved in [16, see Lemma 31] following the Nazarov, Treil and Volberg arguments for Haar
wavelets in [17, see the proof of Lemma 7.1] (see also [9]),

Ba(f.8)+B, (f. 9]
<cC (azT + T+ WBPU (5, 0) + Ag) 1 w0 18wz 0y - (5-3)

where if Qdyaq is the set of all dyadic grids,

WBPFL D (o, w)
B ey e(Q)”
= sup sup

DeQ 0.0'eD VIQls 190 4.

0C30\Q' or Q'C30\0

/ TY (1o f) gda)‘ < 0
,Pgl )norm (U) Q/
P2) ()

45
§ 0"/ norm

TN

is a weak boundedness constant that in the case s = 0 was introduced in [16]. Here we will
use the case k] = k» = k. However, we only use that this constant is removed in the final
section below using the following bound proved in [16, see (6.25) in Subsection 6.7 and note
that only triple testing is needed there by choosing ¢ (Q’ ) < £(Q) (using duality and T%*
if needed)], and which holds also in the Sobolev setting using Cauchy—Schwarz and triple
testing,

WBPY™ (0, w) < C, (Im;ﬁ (. 0) + TR (o, a)) . (5.4)
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In fact the stronger bound with absolute values inside the sums in (5.3) was proved in the
case s = 0 in the previous references,

2 (72 (85,00 (850, [+ 2 [T (85.1) . (85c8)), |
1.JeD 1.JeD
JnI=pand S ¢[277 2¢] 2- p<§<({)> <20
(5.5

— (Kk,K),§
<C (KKTé + e + WBP” (0, w) + Ag) 1w, o 18l o -

This bound will be useful later since it yields the same bound for the sum of any subcollection
of the index set, and for the convenience of the reader, we prove (5.5) below. Since the
below and above forms Be, . (f, g).B,.s (f, ) are symmetric, matters are then reduced
to proving

Bey. (f- @)1 S (Tre + Trhe +/43) 1F w00 18wt o0 - (5.6)

We introduce some notation in order to prove (5.5). For weighted Alpert wavelet projec-
tions A, , we write the projection E‘,’,,K AT., f onto the child 1" e €p (I)as M;’,_K 1;,, where

M, /
Mg, is a polynomial of degree less than « restricted to /. Then we let Py, = = —1*% be

-

its normalization on I’. From (2.8) we have the estimate,

CHA(I’:Kf’Lz(g) Lol
NIE NI

Proof of (5.5). To handle the second term in (5.5) we first decompose it into

HE?/;K Al f H = (5.7)
oo

> oo+ X o+ X (72 (85.0£) . 55c), |

1,JeD: JC31 1,JeD: 1C3J 1,JeD
27PUD)<U(N)<2P L) 27PU(D)<L(J)=<2PL(])  27PLI)<E(J)<2P¢(])
J¢3land I¢3J]

= A+ Ay + As.

The proof of the bound for term A3 is similar to that of the bound for the first term in (5.5),
and so we will defer its proof until after the second term has been proved.

We now consider term A; as term A, is symmetric. To handle this term we will write
the Alpert functions h" and h9., as linear combinations of polynomials times indicators
of the children of thelr supportmg cubes, denoted Iy and Jy respectively. Then we use the
testing condition on Iy and Jy when they overlap, i.e. their interiors intersect; we use the
weak boundedness property on Iy and Jy when they touch, i.e. their interiors are disjoint but
their closures intersect (even in just a point); and finally we use the AS condition when Iy
and Jy are separated, i.e. their closures are disjoint. We will suppose initially that the side
length of J is at most the side length 7, i.e. £ (J) < ¢ (I), the proof for J = 7 I being similar
but for one point mentioned below.

So suppose that Iy is a child of I and that Jy is a child of J. If Jy C Iy we have using
(5.7),

(7 (1, 83, 1)1, 8%, 8, | < |f/x%| (e (Phactn) - Pricts,). Amw
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2 e /
~ |I|U Jyr
_ e
~ VI,

where f,( (I) denotes the vector Alpert coefficient of f at the dyadic cube /. The point
referred to above is that when J = w1 we write

(7 (PRt ) Pitn), = (PRactie T (PR )),

and get the dual testing constant ‘I’},f . If Jyr and Iy touch, then £ (Jy') < £ (Ip) and we have
Jor C 319\ 1y, and so

1

2 2
dw) 18 (DI

72 (Pp.cl)

l “a~ -~
T s 18 (DI S T3 [ fe (D] & (DI,

gx (DI

o o w
w‘ ~ m ‘<To (PIH;KIIG) ’ PJ@/;K110’> \/7

|f7f(l)| (k,k),8 18 (D] (k). s ~
< WBP ra I, 1]y =WBPrq e (4 « (D] -
SRV PAPRM NI | Fe (D] 1&g ()]

Finally, if Jg and Iy are separated, and if K is the smallest (not necessarily dyadic) cube
containing both Jy and I, then dist (/g, Jyr) = € (K) and we have

’(Tg (119 A(;;K f) , 1]0/ AOJD;K g>

|7 (D) G ()]
‘(T(f‘ (L, A% f) Ly 85, g)w‘ S K|I|g ‘ 1y,) ‘ \/KW

_ e 1 oo 18D Vsl o'l
N : =z olo 1ol == =
VI, dist (To. Jy') VW, dist(s, Jo)

< a5 1R )& 1.

Now we sum over all the children of J and I satisfying 27°¢ (I) < £(J) < 2°¢(I) for
which J C 317 to obtain that

| Fe (D18 (D)

LS (T 4 T +WBPE (0, 0) + /A9 3 7 (D] 18 (D1
1,JeD: JC31
27P0(1)<e(J)<2°€(])
It is at this point that the Sobolev norms make their appearance, through an application of
the Cauchy—Schwarz inequality to obtain

> |7 (D] 1&g ()]
1,JeD: Jc3I
27Pe(1)<e(J)<2Pe(I)

-~ 2 _2g ~ .
<G, > |Fe (D"~ > |G (DIP ()™
1,JeD: JC31 1,JeD: JC31
27Pe(1)<e(J)<2Pe(I) 27Pe(1)<E(J)<2PL(])

S llwg ) gl s @ -

This completes our proof of the bound for the second term in (5.5), save for the deferral of
term A3, which we bound below.
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Now we turn to the sum of separated cubes in (5.5). We split the pairs (I, J) € D° x D®
occurring in the first term in (5.5) into two groups, those with side length of J smaller than
side length of 7, and those with side length of I smaller than side length of J, treating only
the former case, the latter being symmetric. Thus we prove the following bound:

A(f, ) = > !(Té' (87, 1) A‘J”;th)’ S VAL I w00 18wt ) -

1,JeD
INJ=0 and £(J)<2~P4(I)

We apply the ‘pivotal’ bound (3.13) from the Energy Lemma to estimate the inner product
<T:‘ (A‘I’,Kf) , A‘J",Kg> and obtain,
’ ’ (4]

(75 (85.00) - 85,c8),| S P2 (|67 F10) €O VT 858y

Denote by dist the £°° distance in R": dist (x, y) = max|<;<, ’xj -y ’ We now estimate
separately the long-range and mid-range cases where dist (J, /) > £ (1) holds or not, and
we decompose A accordingly:

A(f,g) = A (f,0) +A™(f, g).

The long-range case: We begin with the case where dist (J, I) is at least € (1), i.e.
JN31 = . Since J and [ are separated by at least max {£ (J) , £ (I)}, we have the inequality

Py (J

o t(J) o
A£G flo) ’“flm A f )] do ()

. LD VI,
< ||A9. e —————,
~ || I,KfH $ dist (I, ])ﬂ-‘rl—a

since ‘A‘,’;,{f(}’)‘dg () = HA(ITLKf‘

o T i it =

ey Thus with A (f, g) = A" (£, g) we have
o

Wéyad ()

o
|

A(f,2) ,S Z Z ”A(;;Kf” Wgyad(g) ”AL});KgH Wd_yzd(w)

1D J: (J)<L(l): dist(I,J)=¢(I)

x(w))‘ D L.

e()) dist(, )yt
Z HA f”wS (0)” ]Kg” (w)A(I»J)§

I,J)eP

withA(l,J)z(fEZ) - ¢ — o/ 1 s

dist (1, J)"H1—«
andP ={(I,J)eDxD:L(J)<t() anddist(I,J) > £(I)}.

Now let Dy = {K eD: L(K)= 2N} foreach N € Z.For N € Z and t € Z, we further
decompose A (f, g) by pigeonholing the sidelengths of 7 and J by 2V and 2V~ respectively:

Af0) =) AN(f.9);

t=0 NeZ

A?V(f’g)E Z ”A fHWd d(a)” JKgH (w)A(I’J)

., NHePy

@ Springer



81 Page46of 74 E.T. Sawyer, B. D. Wick

where Py = {(I,J) € Dy x Dy, : dist (I, J) > £(I)}.

Now Al (f,8) = Al (P(l’\,;Kf, P‘I‘\’,_Z:Kg) where P“M;K = ZkeDM

projection onto the linear span Span {h’;(‘f(} , and so by orthogonality of the
’ KE'DM,LIEFKYH.,(

A’;(, . denotes Alpert

rojections {P’L . } we have
proy Mk | prez,

Z A?V (f. 9= Z |A§V (P(X/;K‘f’ PCIL\)I—t;Kg)|
NeZ NeZ
= 2 IANTIPR gy o0 1PR=isc8 s
NeZ

1

3 3
2 2
[ 161} (S 195 Ty ) (195 )
NeZ NeZ v NeZ v

< {;i% ”A?\,H} ||f||Wgyad(a) ”g”Wd’yid(w) :

IA

Thus it suffices to show an estimate uniform in N with geometric decay in 7, and we will
show

AN (F. ) = €27 AT fllwg o0 I8l o) fort = 0and N € Z.  (5.8)
We now pigeonhole the distance between / and J:

AN (fo0) =) Ay, (f.8);

=0

Z HA(IT;Kf” W3 0a(0) HAOJU;Kg” Wd_fxd(w) AL, )
U, N)ePy , Y Y

A?V,[ (f? g)

where Pl , = (1) € Dy x Dy : dist (1, ) ~ 2V}

If we define H (Aﬁ\, [) to be the bilinear form on £> x £> with matrix [A (I, J)](IJ)EPI:V I

then it remains to show that the norm HH (Aﬁv,e) o is bounded by C271(1=9)=¢, /AS.

In turn, this is equivalent to showing that the norm HH(B]’V ¢ of the bilin-

2 502

tr
ear form H (thv,é) =H (Ai\/l) H (Aﬁw) on the sequence space ¢ is bounded by
C2272(1=9)=20 A% Here H (va ¢) is the quadratic form with matrix kernel

[thv,e (7, J’)] having entries:

J.J'€Dy_s

By, (J.]) = > AU, D)A(1,J'), forJ,J € Dy_,.
IeDy: dist(1,J)~dist(I,J)~=2N+t

We are reduced to showing,

" (By. o) oy e < C27HIT972CAS fort > 0,£>0and N € Z,
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which is an estimate in which Alpert projections no longer play a role, and this estimate is
proved as in [12], and more precisely as in [17]. Note that the only arithmetic difference in
the argument here is that in the estimates, the parameter ¢t > 0 is replaced by ¢ (1 — 5) > 0,
which has no effect on the conclusion. This completes our proof of the long-range estimate

long o ) )
A (£.8) S \AS 1 Ny 00 18 s, o

At this point we pause to complete the bound for A3 in the second term in (5.5). Indeed,
the deferred term A3 can be handled using the above argument since 3J NI =@ = J N3]
implies that we can use the Energy Lemma as we did above.

The mid range case: Let

P={U,J)eDxD:Jisgood, £(J)<27°¢(), JC3I\I}.

For (1, J) € P, the ‘pivotal’ bound (3.13 ) from the Energy Lemma gives

T f 1) €T V10 1858 s

Now we pigeonhole the lengths of / and J and the distance between them by defining

(7 (85,01) . 858), | S P (

Pha El(l,]) eDxD:Jisgood, £(I)=2", ¢(J)=2"" Jc3r\1, 2!
5dist(1,])§2d}.

Note that the closest a good cube J can come to / is determined by the goodness inequality,
which gives this bound for 2¢ > dist (I, J):

24 > —g(1)\=F ¢ (J)F = ~aNU=e)p(N=ne _ _oN—et,
Z5 () ) 3 5
which implies N —et —1 <d <N,

where the last inequality holds because we are in the case of the mid-range term. Thus we
have

> | (a5.r). 29,s),)

1,J)eP
S 2 185l 0 P U 185 o) €™ VI,
1,J)eP

o] N
DD DD DD DR LV ] PF A C2

!=p NeZ d=N—et—1 (I,1)eP}y ,

T f1o) eV

Now we use

P (J,

L(J)
. o) = AT do
Iqu| ) /; (E (J) |y le)n_;,_l_a ’ f(y)| ()7)

oN-
Smllé F g o €DVl

and apply Cauchy—Schwarz in J and use J C 37 \ [ to get
> | (85,00) . 89.c8), |

I, J))eP
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00 N N—t(1—s)AN(n—a)
2 2 NN/ 130N\
S’ Z Z Z Z 2d(n+1—a) ||A(17J(f”W5 q(0) ;N(nfa) “
t=p NeZ d=N—et—1 IeDy v

. Jos..e],
Z Ik Wdyad (@)

JeDn_;
JC3I\I and dist(1,J)~24

2N t(1— s)zN(n o)

Saveny YRR a5 Y a7 g o

t=p NeZ 1eDy
Z H chg’
JeDN_, Wdyad (@)
JC3I\I

00
,S (1+et) Zzit[lisig(}wrlia)],/ A%’ ”f”Wgyad(a) ||g||W‘1;f|d(w)
1=p

< & s -5
VAT 1 g 00 18 s, o

where in the third line above we have used >0y .. | 1 < 1+ e, and in the last line

2th(l —s) 2N(I170t)

—t[l—s—e(n+1—a)]
2(N—¢t)(n+1-a) - ’

followed by Cauchy—Schwarz in I and N, using that we have bounded overlap in the triples

of I for I € Dy. We have also assumed here that 0 < ¢ < m i: - and this completes the

proof of (5.5). ]

5.2 Shifted corona decomposition

To prove (5.6), we recall the Shifted Corona Decomposition, as opposed to the parallel corona
decomposition used in [16], associated with the Calderén—Zygmund « -pivotal stopping cubes
F introduced above. But first we must invoke standard arguments, using the full k-cube testing
conditions (3.7), to permit us to assume that f and g are supported in a finite union of dyadic
cubes Fy on which they have vanishing moments of order less than «.

5.2.1 The initial reduction using full testing

For this construction, we will follow the treatment as given in [19]. We first restrict f and g
to be supported in a large common cube Q... Then we cover Qo with 2" pairwise disjoint
cubes I, € D with £ (1) = € (Qco). We now claim we can reduce matters to consideration
of the 22" forms

> Y [, a5, edo.
1€D: ICly JeD: JC Ty VB

as both I, and J range over the dyadic cubes as above. First we note that when I, and
Joo are distinct, the corresponding form is included in the sum B (f, g) + B (f, g), and
hence controlled. Thus it remains to consider the forms with /oo = J~ and use the cubes I
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as the starting cubes in our corona construction below. Indeed, we have from (2.5) that

f= Z AL +ET o fs

1€D: [Clx
12 w
8§ = Z AJ;/cg +EIOO;Kg’
JeD: JClx

which can then be used to write the bilinear form f (T(f‘ f ) gdw as a sum of the forms

/R (17 1) gdo = > > /R (T3 A7 1) A5, gdo (5.9)

Io |1.7€D: 1,JCIy

* Z /R" (T(f‘ A[[r;’( f) E?W?Kgdw + Z /Rn (Tth(ITw;Kf) A(})ZK gdw

1eD: IClx JeD: JClx
+ [ @8 ) B sdo].
taken over the 2" cubes /5, above.

The second, third and fourth sums in (5.9) can be controlled by the full testing conditions
3.7),e.g.

> ag B sdo = | [ |2 sqr | 120 (BLe)do

[€D: IClx 1€D: IClso
(5.10)
|y oa el
1€D: IClx We (o) dyad
dyad
EY . g
Io;
o DO I N e N
1€D: IClx Wéyad(a) loo;Kg L ch/id(a)
K
S T 1f g o 18122, 0
and similarly for the third and fourth sum.
5.2.2 The shifted corona
Define the two Alpert corona projections,
Cr = Z A7, and P‘é’,_shm = Z A‘}’;Kz
IeCr r JGC;—shiﬂ

where

C;;shift = [CF \Né (F)] U U ['/\/% (F/) \,/\/% (F)] 5 (5.11)
F'eCr(F)

where N, (F)={J € D:J C Fand € (J) > 2774 (F)}.
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Thus the shifted corona C}_Shiﬂ has the top t levels from Cr removed, and includes the first
7 levels from each of its F-children, except if they have already been removed. We must
restrict the Alpert supports of f and g to good cubes, as defined e.g. in [16], so that with the
superscript good denoting this restriction,

a _ o w _ 2}
CFf_ Z A1;f<1 and Pc;*shiﬁg_ Z AJ;Kz

good good, 7 —shift
IeCy JeCr

where CiOOd = Cp N D and C%-O(’d’r_smﬁ = C;_Shiﬁ N Deed and D4 consists of the
(r, &) — good cubes in D. '

A simple but important property is the fact that the -shifted coronas Cf{smft have overlap
bounded by 7:

Y g ()<t JeED. (5.12)
FeF "

It is convenient, for use in the canonical splitting below, to introduce the following shorthand
notation for F', G € F:

€p
(1508, 1) Poane) = X (110 (45,9,
’ @ IeCr and JGCE’Shm
JE,I

5.3 Canonical splitting

We then proceed with the Canonical Splitting as in [17], but with Alpert wavelets in place
of Haar wavelets,

Sp
B@p (fv g) = Z <TO' ( gl;f) ’ P?é—shiﬂg>
[&]

F.GeF

Cp Cp
= Z <To ( gFf) > P(gr—shiﬂg> + Z <T0 ( ZFf) > P(gr—shiﬂg>
FeF r ®  FGeF ¢ &
GGF
€p Cp
+ Z <Tcr ( ((Tij) ) Pgr—shmg> + Z <Ta ( ZFf) > P(gr—shiﬁg>
F.GeF ¢ ®  F.GeF ¢ »
(;217 FNG=0

= Tdiagonal (fs 8) + Ttarvelow (f> &) + Trar above (f 8) + Tdisjoim (f, 9.

The two forms Ty above (f, &) and Tgisjoine (f» g) each vanish just as in [17], since there
are no pairs (I, J) € Cr x Cg_smﬂ withboth (i) J €, I and (ii) either F & GorGNF = (.

5.3.1 The far below form

Here is a generalization to weighted Sobolev spaces of the Intertwining Proposition from
[16, Proposition 36 on page 35], that uses strong k-pivotal conditions with Alpert wavelets.
Recall that 0 < ¢ < 1 and r is chosen sufficiently large depending on ¢. The argument given
here is considerably simpler than that in [16].
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Proposition 44 (The Intertwining Proposition) Suppose o, w are positive locally finite Borel
measures on R", that o is doubling, and that F satisfies an 6" -strong o -Carleson condition.
Then for a smooth a-fractional singular integral T, and for good functions f € WSyad (o)

and g € chlzd (w), and with k1, ko > 1 sufficiently large, we have the following bound for

Ttar betow (f+8) = D per 21 12F < AT f?P(COan;shiftg> :
w

[Taarbeton (F- ] S (Vi +y/43) 1wy 18w, 00 (5.13)

Proof We write

D Y S YD S

] 1 m+1
I 12F m=lp ap FGIcaly ™ F

> > o) (E, of —E2 m+1FK]f>

m=1y7. .m pC m+1
I'm F¢/Cﬂ]; F

F
Z 10(1) IEI Klf Zl m+1F\an (E m+1FK|f>

=lr. nj‘a__FgICn;’_-HF

3

= 3

F —YF
and then

Z (T2 fr. gr), = Z (T2 Br. gF), + Z (Tevr. gF),

FeF FeF FeF
Now we use the pivotal bound (3.13),

(7% @) W)z | S P2 €O VT 15 s
the pivotal stopping control (4.4),

¢(F)

o 2
Py (I,1p0) (E D

&
) |, <T|Il,, I€Crand F € F,

and (3.14), namely

P;: (1, O'IK\I) s

¢ (J) k—e(n+k—a)
i)

P{ (7, 0lkv) S (

to obtain that

Z(T YF. 8F),
zlm

1 FeF

o o )
n;”le;/q f“w Py (F7 lﬂ';_-HF\n’}’_-FU) L(F) VIF, ”gF”ch,Zd(@

k—e(n+x—a)
” ( ¢(F) )
m+l
F Pt |l o \ € (w2 F)

F
(T3 F Lyt g 0 ) €O VIF L g s o

E i o,/

Z P ( Z 1 R P\

FeF m=1

O-) L) VIFly ”gF”W(g,;d(w)

gk

m

Mg

m

x P!

=R
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equals

, (F) k—e(n+Kk—a)—s
o m -
IE”?] Fey fHoo (z (#F)> C (7t F)

|Fle
o m
X{PK (”]—'F’ ln;z“F\n;’éF") |n§‘n’F|w} 2 F|, lgr lwso

n+n'
] (75
wpt Fual || o\ € (nF)

_ F
X (T} F) {Vﬁ'e |”$F|g} ||m1|p; l8F g

where we have used the pivotal stopping inequality, and written
k—ent+r—a)—s+0 =n+7,
with n, n” > 0 to be chosen later. Note that this requires the Alpert parameter « to satisfy

e(n—a)+s—0"
> .
1—¢

(5.14)

Then by Cauchy—Schwarz we have

Z (Tevr.gr),

FeF
1
3 ’ er) N IR
VS e ‘E"m f| e@RF) T |apF| ( @
> mzf T g THe\e@rF)) g
1
oo ¢(F) ) n 5 2
X lgrll
> 2 (i >
The square of the first factor satisfies
2 Do e\ IR
o |7 F| € (72 F) 2S< ©
m=1 FeF HF o TN t(TRF) |”$F‘w
2 2 L)\ |F]
= Z HE;}'F/;KIfHOOK(F/) Y‘F/’O' Z (K(F/)) |F/|w
re 555 !
2 -2
5 Z HET[}‘F' Klf”ooz(F/) Z HEF” KlfH (F/) g |F/|a’
F’e@ F(F")
< HEF Y R R VA
F'e

where the first inequality in the last line follows from the strong o -Carleson condition, and
the second inequality follows from the Quasiorthogonality Lemma 28. The square of the
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second factor satisfies

00 21’
2(F)
> <( F)> ler iy S D2 lerliyzs o) < N8l )

m=1 FeF FeF

where we have used " > 0.
It remains to bound ZFE}-(T;"ﬁp, gp)w where B = Y >, o A ECICAIH F 1ocr
(E‘,’ . f ) The difference between the previous estimate and this one is that the averages
o
E”;ﬂjrl Fik f

o0
averages Zm:l Zl: n;f-FgICn;",_-HF Loy ’ 7;K1
disjoint sets {0 (1)}”,}_F§1Cﬂ;+1 p- We start with

Z (T2Br. gF),

FeF

1 2 P\ F inside the Poisson kernel have been replaced with the sum of

, but where the sum is taken over pairwise

N

oo
Z Pg F, Z Z 19(1) |E1 K1f| o |l (F)_S /|F|w ”gF”Wd;Ead(w)

FeF m=1 I:Jt’]”_-FgICn_';HF

o0
>y > IS, £l . P (F. oyo) € (F) ™ V/IFI, lgrllygs @ =S

m=lFeF .z pCIcayt F

Then we use

> |ES.. ]l PE (F. 1o(1)0)

I FGICay P

< sup ”El 1 f”oo Pg F, Z 19(1)0‘
I FGICTyt F I FGICy ' F
— o o
= sup |7 /] | P2 (F’ 1713”__+1F\n;i_F‘7)’
I: n}’_-F%ICn’]"_-“F
and obtain that
33 s |Ef fll

m=1FeF \I: Tp FGICa3 ' F
o )
P (F’ lﬂ;f-HF\ﬂﬁf-Fa) ¢ m lsr ”W;ad(“’) '

Now we define G, [F] € (n;”_-F, n}”;“F] so that sup,. A FSICTIHF HE;’.KIfH
: - ;

HEgm[F];/q f HOO, and dominate S by

o0
s<Y Y HE(ém[F]meoopg (F, ln;+1F\n;FU>E(F)_S VIFlo lIgrllws @)

m=1FeF
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L (F) K o
EG, 11 me < ) P\ Gm [FT, i pyom g0
m=1 FeF EGn [FD) ( d d )
XU (F)™ V/IFly lgF s o
-5 S o] (retes)
- GulFlixi
m=1FeF E(G [F])
(r)Y
o
SR (VIS Ip—— o | VIEn
m+1 -
X M L(F)™S &“gF”W,S @)
LG [FD |G [Fllo dyad

and then continue with

S Vg Z > H GulFY; me (

m=1 FeF

¢ (F)
L(G[F]

)nz = |VIGu FIl, |

¢(mp'F) Flo ot
(Gu[F]) G (11, 8T Waia(@
= Ve 2 3 [Boep £] G 1P VIGH TFT,
m=1 FeF o0
(ﬂ s (3 F) Flo__ o0
* z(Gm[F])> (G [F]) G [F1l ST Waia(@)

NVzerEVZ Z H Gl F]qu‘

m=| FeF Wiyaa @)
(Y N
“\ G FD) C(Gm [F]) G LFIL 1 e

Since there is geometric gain in the product

0(F)

|F 'l ¢ (F)

( ()

n—s
t(Gnm [F])) L(GnFD

|Gm

(G lFD ~

[F]l

provided n > s, an application of Cauchy—Schwarz finishes the proof since G, [F] is

uniquely determined by F and m in the tower ( mE aEt F ]

V5 grev 22 mo= % H GnlFI; ;qf‘

FeF
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1
2

00 5 3 ,
o —m(n—s) o
< Vi 3.2 > oG]y o) (2 Nerl
m=1 FeFr dyad FeF y

o0
< Vgﬁéev Z 2—m(77—&) “f”Wéyad(g) ||g||w&zd(w) = CVZG;EV “f”ijad(o-) ”g”W(E/;d(w) :

m=1

Note that we have used n > s, which requires a bit more on « than was used in (5.14), namely
that

k—et+k—a)—s+0=n+n >s,
which requires

e(n—a)+2s — 02
> .
1—¢

(5.15)

5.3.2 The diagonal form

To handle the diagonal term Tgiagonal (f, &), we decompose according to the stopping times
f’

Sp

Tdiagonal (f, &) = Z Bé;p (f, 8= <T§‘ ( ZF f) s Pz;—shiﬁg> s

FeF @

and it is enough, using Cauchy—Schwarz and quasiorthogonality (4.2) in f, together with
orthogonality (4.3) in both f and g, to prove the ‘below form’ bound involving the usual
cube testing constant,

Wﬁyuu(”)>

Indeed, using quasiorthogonality, Lemma 28, and orthogonality of projections Pz, f and
P‘gr_shm g this then gives the estimate,
F

Pe i &
C;_S!l

oF, (/0| < (%5 +/a3) (9 B0 s, VIFTs + 198, 1] o
dyad @

(5.16)

Tatsgona (£ )] S (T +/43) 17wy o0 18w, o0 (5.17)
Thus at this point we have essentially reduced the proof of Theorem 2 to

(1) proving (5.16),
(2) and controlling the triple polynomial testing condition (3.7) by the usual cube testing
condition and the classical Muckenhoupt condition.

In the next section we address the first issue by proving the inequality ( 5.16) for the below
forms Bgﬂ (f, ). In the final section, we address the second issue and complete the proofs
of our theorems by drawing together all of the estimates.
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6 The Nazarov, Treil and Volberg reach for Alpert wavelets

It will be convenient to denote our fractional singular integral operators by T, 0 <X <n,
instead of 7%, thus freeing up o for the familiar role of denoting multi-indices in Z’, . Before
getting started, we note that for a doubling measure p, a cube I and a polynomial P, we
have

1 P1sll ooy = sup [P (x)]
xel

because  charges all open sets, and so in particular, || P1; ||z (o) = | P11l 100 (-

We will often follow the analogous arguments in [1], and point out the places where
significant new approaches are needed. See [1] for a review of the classical reach of Nazarov,
Treil and Volberg using Haar wavelet projections A7, namely the beautiful and ingenious
‘thinking outside the box’ idea of the paraproduct / stopping / neighbour decomposition of
Nazarov, Treil and Volberg [12] using Haar wavelets.

When using weighted Alpert wavelet projections A‘[’; . instead, the projection E‘I’,;K AT S
onto the child I’ € €p (I) equals M., 1. where M = M., is a polynomial of degree less
than « restricted to 1’, and hence no longer commutes with the operator 7;*—unless it is the
constant polynomial. We now recall the modifications used in [1], where they obtained,

ng.si’( (f’ g) = Z (TU)L A(;;K‘ f’ A?;Kg>w

1€CF and J eCLhilt
J€pel

= > (o). 5.l

IeCp and JeCl Ml

JEpel
A
T ) Yo (T (leay A, £) . A5.8),
1€CF and JeC4 M 6L )eCp (D\y)
JEpel

= Brome:x (/> 8) + Breighvourse (/> 8) -
They further decomposed the B}fome; . form using
Mp=Mp, =1y A7, f=E}, A7, f, 6.1)
to obtain

B}fome;/c (f’ g

Z (T;L (MIJ 11/) ) ALJU;Kg)w
1€Cp and JeCL MM
J€pel

— A w
= Z (MIJTU 1, A];Kg)w
I1eCr and JeC;’Shm
JCpel

SO CAU AL AN
IeCr and Jec;*shiﬂ
JCp el

— A w
= Z (MIJTalF’AJ;Kg>w
I€CF and JeCL*hift
JEp.el
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A w
- Z <M1JTU lF\’J’AJ;Kg)w
I€CF and JeCkhit
JCEpel

+ Z <[T§’MIJ] IIJ’AC}):Kg>w
IeCp and JEC’F_S}‘ifl
J€p.l

Bparaproduct K (f. 8 — stop K (f. &)+ Bcommutator K (f. 8-

Altogether then we have the weighted Alpert version of the Nazarov, Treil and Volberg
paraproduct decomposition that was obtained by Alexis, Sawyer and Uriarte-Tuero in [1],

C,, &1k (f.8) = paraproducl K (f. 8+ leop K (f. 8+ Bcommutalor K (f. 8
+Bne1ghbour K (f’ g) :

6.1 The paraproduct form

Following [1], we first pigeonhole the sum over pairs / and J arising in the paraproduct form
according to which child K € €p (/) contains J,

deraproduct K (f. 8= Z Z Z (MK;KTri\lF’ AC});Kg>w
IeCr Ke€p () yeci7™hiM: je, o1
JCK
The form Bparaproduct « (f+ &) will be handled using the telescoping property in part (2) of

Theorem 9, to sum the restrictions to a cube J € C }_Shiﬁ of the polynomials Mg, on a child
K € Cp (1) of I, over the relevant cubes /, to obtain a restricted polynomial 1; Pk that is
controlled by EF | f1, and then passing the polynomial M ;. over to A9, g. More precisely,
for each J € C%_Shiﬁ, let Iﬁ denote the smallest L € Cg such that J €, . L provided it
exists. Note that J is at most 7 levels below the bottom of the corona Cr, and since p > 27,
we have that either n(p)J € Cr or that rr(Dp)J 2 F.Let I denote the D-child of IJ that

contains J, provided 1; exists. We have

Yo UMg, =1, Z MKK—lj(IEf’ f—E%, f)

IeCp: Il IeCp: Il

_ 1Py ?f j Ij exists o 6.2)
0 if I; doesn’t exist
Then we write
A
Bparaproduct K (f. 8= Z <M1./2KTG 1p, AC;;Kg>w
I1€CF, 15 eCr and JeCf;Shift
JEpel
From (6.2) we obtain
lJPJ' 00 E Eg + EU' 00 ’ (63)
1Pl = B2, 0+ IR L
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and so

ST <1, S Y T:1F,Aakg>

Jeckshift reCp: Iecp ' i%(”

JC,,FI ”

- Z (1P TH1p, A9..8),

JeC}’Shif‘
to obtain
F s s
Bparaproduct;lc (f, g)‘ = Z <Ta 1r, Py AL});K g>w = <To 1p, Z Py« AL});K g>
Jecrshit Jecrshit .
Py
A o Jik w
< 1T g el | 2 25,
7 —shift
JeCp W(;yid(w)
: . Py
= Tt (O VIFlo [Brcf iy | 20 Forigy 28
7 —shift Fl.
JeCy; Wd_yi-‘d(w)

Now we will use an almost orthogonality argument that reflects the fact that for J’ small
compared to J, the function M., A‘;’,; . & has vanishing » -mean, and the polynomial
1, Pj?;"“a AY. . g is relatively smooth at the scale of J', together with the fact that the
polynomials

PJ;K
Ez 1/

of degree at most x — 1, have L norm uniformly bounded by the constant C appearing in
(6.3). We begin by writing

Ry, =

2
2 Rrcbfs = < Do RinbGg Do Rie b g>
Jecrfshift _ Jecr—shift J/Ecr—shifl B
r Wdy;d (@) r r Wdysad (@)
w w —
= Z + Z <RJ;K AJ;K 8 Ry« AJ’;/c g>W7s () =A+B.
J.Ject—shift  j prcoT—shift dyad
, F J F
Jcl JIGI

By symmetry, it suffices to estimate term A. We will use the definitions

1 gy = 2 L@ A
QeD

b1,

2w’

oy = 3 €0 (8%, f. 8%, )

2 9
0eD L2 ()
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together with the fact that when « = 1, A“Q’. 1Rk A‘}),K g has one vanishing moment, to
obtain

A= X X @ [ (8haRne 85 8) (8 R 85, ) do

J, J/Ecr shift Qe D

rey ecd
2
2
’S Z “Aaj);l«gH W(;y-;d(w) = Z 4 (1)2Y “AJ KgHLZ(w) = Pé);_—shiflg s .
JEC;;Shiﬂ JEC;':shltt Wdyad (@)

Note that here it is important to know that Wd ad (w) equals both W (w) and WD | (@).
Indeed, if J' is small compared to J, and J' C Jp C J, then there are just three

possibilities for Q, namely Q N J' = ¥, Q 2 J',and Q C J.If Q N J = { then

the integral vanishes by support considerations. If Q 2 J' then the integral vanishes since

AQ | (Rj © DG, g) is constant on J', R4 A‘}’,;K g has w-mean 0 on J', and Az;l is a
projection. Thus we are left with the case where Q C J' C J. We have

/n ( aQ)Jl (RJ?K AC.});K g)) (Az;l (R-’/i'( A(;’;K g))da)

= HRJU‘ AT g”p@(w) H Ry 871 gH

L (w)

/ AQ 1 (RJ K AaJ);K g) Aaé;] (RJ/H( AHJ)’;K g)
X
R

3\ v g 1 | oo

dow|,
L®(w) L% (w)

and now if Q C J’, we get

2%, (R, s g) 2%, (R,, o g)
/ dw
R’l

e |\ v
H I 2T 8 oo ) ik B 8| Lo
/ 20:1R1x 87, 8 Ry G, 8
= dw
w | Ry 2%, g [Ry 85, 8
H T BTk 8 oo Tk 205k 8| oo )

where A“’ | has one vanishing mean, and hence

(6 (e 5,.90) (65 (R0 5. £)) 0

_ Q9 Q) a)
= Z(J) ” Jik .I K gHLOC(w) Z(J/) HRJ/;K A]’;K gHLw(w) |Q|w
e |25,
H I8 oy 17758 20y £(0) £(Q)

SN N R A

L)L) |12y 109y
_Z(J)K(J/)\/Z ViR “ Jkg“LZ(w) H J'; /cg‘

L% (w)

L2(w) ”A(}):Kg HLZ(w) ’
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by (2.8), i.e.

H RJ’;K Aaj)/;,( gHLw(w) m ~ HAw, KgH Loo(w) m 5 HAQJ)/;Kg Lz(w) ’
” Ry Abjj;f( g“LOO(a)) m ~ HAJ;Kg“L”(@ m 5 “A(});Kg”Lz(w) .

Note that it was necessary to invoke the Haar wavelets with k = 1 in order to obtain this
inequality for s # 0.
We now note for use in the next estimate that

101, £(Q) 101, £(Q)
e 2s =l — Z 2s w
Z © /e €(J) mX:;) Z © [l €(J)

0eD QeD

oclJ’ QcJ and €(Q)=2""¢(J")
> 27me (J 1
Z 2s - —2sm ; (J() ) W Z 1 /l Q|w
m=0 @ QeD

QcJ and £(Q)=2""¢(J")

> 27me(J) [ 1w
<Y e(yromt ) | ot > I
m=0 e(‘]) |J|w QeD !

QcJ’ and £(Q)=2""¢(J")

— 1\2s E(‘I/) |J/|w —2smA—m ((J/) |J/|w
=t |J|a,2222 2= G gy T

Thus recalling that we restricted attention to the case J' C J by symmetry, we have

3@ [ (g ) (R 5]

J.J Ec'[ shift Qe D
/R (891 R 45, 8) (891 Rye 85, 8) dw‘

rey el

= ) Dt

J, 7’ ECT shift QeD

ey cJ’
2 |10, €(0)
< X Yo [ GEi vl b 185 e,
J.J GCT shift QeD «
yey  ecr
e(J) (1]
< gy A [ e H 7, A®.
~ - ( ) e(‘]) |J|w J ,Kg L2(w) H J,Kg”Lz(w)
],]/GC}'—;_Shm
J'cJ
which is
o /
_ —mnA—2sm 2s |J |w w w
- Z 2772 Z ) V 17 HAJ';Kg‘ L2(w) ”AJ;Kg“LQ(w)
m=0 7 J/Ecrfshifl 2]
, F
e(I=2""e(J)
o0
S D VT s
m=0 Jectshift J7eCshM p(gry=0-me(r)
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[V ], H
X AY,. ‘
V0, 177wE

L2(w) H AL});Kg H L% (w)

o
J’ 2
SRRt Y el
. . ’ w
m=0 JEC;—shlﬂ J’GC?;_Shlf[: LIN=2-"0(J) [0
© 2
% Z H Af'i’(g’ L2(w)
J': 0(J)=2""m0(J)
which is at most
o0
—mn~—2sm 2s w
N 22 2 Z ) ||AJ;Kg||L2(a))
m=0 Jec;fshift
® 2
x . Z HAJ’?"g‘ L2(w)
J'eCETNI g gn=2-me(T)
© 2
—mnA—2sm 2s
’S Z 2 2 Z ¢ (J) ’ A(}):Kg‘ L2(w)
m=0 7 eCrfshift
F
2s w 2
X Z ) K(J) ) Z HAJ/;Kg‘ Lz(m)
Jecishit Jreck it p(gn=2-me(J)
2 o0
< 2s w —mA—2sm~ms
~ Z ¢ (J) AJ?’(g‘ LZ(w) Z 2 2 2
JEC;—shiﬂ m=0
(T 2s w 2
X J A%, ‘
Z ) ) Z ( ) ]»Kg LZ(w)
JeCy it precthilt, g(yry=o-me(J)
o0
= P(é)r—shiﬂg 22—;n2—2sm2mx
F Wd}fnd (@) m=0
Z I 2s w 2 C Pa)
‘, A 5 ‘ = T—shi
Z ) J" k8 L2() s |Fex shift & S
]/ECIF—shm dyad
provided that s > —1. Altogether we have shown
P
F — / Jik
Bparaproduct:/( (f’ g) 5 T;"/\K (F) ' |F|U ||IE(177;Kf||LOO(g) Z EC |f| (});K g
r—shift ~F
JeCp Wn;y;d(w)
S Tl (F) ™ VIFle [Efe f | ooy Cs |Poc-wing| -
F Wdy;d(w)

@ Springer



81 Page62of74 E.T. Sawyer, B. D. Wick

For future reference we record the fact that the main inequality proved above,
2
2
w w
Z Ry BT 8 S Z ”AJ;Kg“WC;yjd(w)’
]EC;-_Shm JEC;;_Shm

Wcl;;d (w)

continues to hold if C;ﬁghiﬂ is replaced by an arbitrary subset 7 of the dyadic grid D, and if
the polynomials R, are replaced with any family of polynomials {W Tk } Jes such that for
all J € 7,

degWy.. <k,

/ WJ;KdCl) = 0,
J

sup|W1;,(| <C.
J

More precisely the above arguments prove,

2

Z Wik AL});K 8 S Z “AC});Kg”év&zd(w) : (6.4)
JeJ chlfad(w) JeJ

Since the weighted Sobolev wavelets [A‘;’ B ]J > are pairwise orthogonal, we have
’ €

2

2
> sl =

w
Pcr—shiﬁg
7 —shift £
JeCr™

F

Wiha (@)
and so we obtain

(6.5)

Wigaa (@)

F —
Bparaproduct;K (f’ g)‘ S S;"?»E (F) : HE(I{",KfH L®@) V |F|(7 PZ);TShiﬂg

as required by (5.16).

We next turn to the commutator inner products <[T;‘, My, K] 1,09, g) arising in
’ [

BF

commutator; K

(f, g), followed by the neighbour and stopping inner products.

Remark 45 The arguments for the commutator, neighbour and stopping forms follow closely
the analogous arguments in [1] where the case s = 0 is handled. Nevertheless, there are
differences arising when s # 0, and so we give complete details for the convenience of the
reader.

6.2 The commutator form

Fix « > 1. In this subsection we use « to denote a multiindex in R”, and so we will instead
use A to denote the fractional order of the Calderon-Zygmund operator. Assume now that K *
is a general standard A-fractional kernel in R”, and T* is the associated Calderén—Zygmund

o o] ap
operator, and that Py 4 1/ (x) = (%) = (%) (ﬂf’&f’;’) , where |a| < k — 1 and
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I' e €p (D), I € Cr. We recall from [1] the formula

n
=D k=) D> capyxPy.

k=1 [Bl+lyI=lel—1

Continuing to follow [1], we then have

1y (0) [Poa,rr T} 1 () = 1 (x) fR K* (¢ = ) {Paar ) = Puar O} 1y () do ()
1 ()/ K (x —y) Z( yk> i <x7a>ﬁ<y*a>y 1 vy der (3)
=l =y ey ) e, \ean ) Neany) (700
yl=le|-1
n N a ﬂ
=y ca,ﬁ,ylpm[/%(x “V)Kw)) }11 <y)do(y>]<€(1)) ,

k=11Bl+ly|=le|-1

where @} (x —y) = K*(x — ) (xg(l?k) So [Pya,r. T}] 1y (x) is a ‘polynomial” of
degree |o| — 1 with variable coefficients. Now we take the inner product of the commu-
tator with A, g for some J C / ’, and split the inner product into two pieces,

<[Paa]/ ]1]/ JKg / [Pola]’T ]11/ (X)A g(_x)dw(_x) (66)
= /Rn [Paa.r’ TGA] 1oy (x) A g (x)dw (x)

+/R [Poar T} 12y (x) A9, g (x) do (x)
= Int** (J) + Int*" (J),

where we are suppressing the dependence on « and I’. For the first term Int*? (J) we write

n
i) =" Y capy g ().

k=1 |Bl+ly|=lal-1

where with the choice a = ¢ the center of J, we define

B
— A o cJ ®
Intkﬁy(J)zfj[/Il\N(Dk( y)<£(1)> m}(um) A, 8 (x)do (x)
- n2J 7 k(x y) E(I/) ];Kg(x) a)(x) Z(1,) U(}’)

6.7)

While these integrals need no longer vanish, we will show they are suitably small, using that
B
the function (%) A9, g (x) is supported in J and has vanishing »-means up to order
k — |B| — 1, and that the function @i (z) is appropriately smooth away from z = 0,
v CD S
| (Z)| < G Iz |m+n—k—1 o) :

Indeed, we have the following estimate for the integral in braces in (6.7), keeping in
mind that y € I’\2J and x € J, where the term in the second line below vanishes because
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B
h(x) = (JE(_;/{ ) A9, g (x) has vanishing @-means up to order x — 1 — |B], and the fourth

line uses that & (x) is supported in J:

‘/ O} (x — y) h () do (x)
]Rn

k—=|pl-1
1
- / > @(@—w)-V)’"@i(w—y) h (x)dw (x)
m=0 :

| ~ )
+ [ = e V0] (1) h () o o)

Y (])K—\ﬁl
(€ (J) +dist (y, )< IBIHF=2=1 g ()

2N\ B 0 (Jye—IBl R
5( ()) : /) _ ULIEWDI,

5 ”h”Ll(u})

[A00) €(J) +dist (y, )] IBH=2=1 g (1)
since
Ml = [ (S ? g
u(w)—/] (W) T 8§ ()| do (x)
Y \mHAw (D) I8l R
‘(z(m) J;KgllLl@)N(“,,)) Vil B I

Now recall the orthonormal basis [ if,r Z] . of L%_ . (0) for any I € D. For a D-child / !
*Jae ’
of a cube I, we consider the polynomial

o — o,a
Qrie = Ly anhl;f(

ael’
() . o . .
where ¢, = T so that Q . 18 a renormalization of the polynomial My, introduced
earlier. We have
|F D1 Y cahfy = [F(D[1700F. =B, f = 1L0E], f,

ael’

where

>l |2—Z<f’h(’tz>2_
Sl Fol ]

ael ael

Recall also that from (2.8) we have

ra o o,a\ ;0,a o AKI)
7l ]os.. 1"§<f’ LN =lensls ’jW(T'-

Hence for c; € J C I, if we write

07 (M=) ba<

|la| <k

) > buPuc; ().

|| <k
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and then rescale to the unit cube and invoke the fact that any two norms on a finite dimensional
vector space are equivalent, we obtain

> Il ~ | 05

la| <k

I'eep (). (6.8)

1
S v |I |U '
‘We then write

([Qrkc. TS ] 11n2g. Ac});,(g>w = Z bo ([Paes» T3] 1mar, A(});Kg)a,
la| <k
and note that

(@1 TV 1rar. 85,8, | = Y

la| <k

([Pac, TF] 1imos. A‘});,{gu ;

be([Pacys T 1inass 15,81, |

S

1
max
Sy lel<x
so that it remains to estimate each inner product Int*? (J) = <[Pa,c 7 T;\] 1oy, A, g>
as follows: ¢

05, ()

n
(D= Y capyInth, ()] S

k=11Bl+ly|=la|-1

)

max
[Bl+]y|=lal-1
where |B| + |y | = |o| — 1, and the estimates above imply,

_ B
/ o} (x — ) (xz (,f)’> A9 g (¥)do (x)

ALl
Int (J)‘ < /
‘ k.B.y "2y

do (y)

‘ y—cr\’
(5(1’)>

/- (g(]))lﬂ E(J)K*Lﬂ‘
~ e \ £ [ (J) +dist (y, J)]<TIBH=2=1 g (1)

R 2(J) +dist (v, H\ 7!
x¢|f@|g(h|(%) do (y)

L) )
YA (J) +dist (v, J)

1 —~
T e i e EDlde o)

e\t -
=< ( )) VIJle 18 (DI

0)

5 / ( () )”““ 1 do ()
1oy \E() + dist (y, /) () +dist o DI ean |

Now we fix € N, and estimate the sum of [Int*+# (J)| over J C I’ with £ (J) = 27"¢ (I')
by splitting the integration in y according to the size of ¢ (J) + dist (y, J), to obtain the
following bound:

3 ‘Int)"u (1)‘

JcIe(y=2""1e(1’)
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| R ) Kk—|a|+1
=P lC U I SV N ) /m] (7>

£ (J) +dist(y, J
Jcr: e=2""e(1") () +dist (7. /)

« do (y)
(£ (J) +dist (v, HI"~Le (1)

52—1“‘1‘_1) Z mlg(]”:Z/

Jcr: eH=2""1e(1’)

)K*\OtH‘l do (y)

s+1 J\ZAJ (zxg (J)),1,A,1 ¢ (1/)

257]
524\04 Z \/ITlg(J)\Z K \vtl+1 s(n7171)| |<_7

n—x’
Jal':e(J)y=2"1e(l’) ¢

which gives upon pigeonholing the sum in J according to membership in the grandchildren
of I’ at depth t — s:

> mE )

JeeQ )

x (2°J]
<2 ta| Z mlg(‘lﬂz K loe|+n— o

QUi
JEC )

_Ztmz PEY Y VLRI

(1—s) (5) Z(K)” (K"
Kee W (I') Je€ ) (K)

<2t'“'2 DD DR DN W

KeesV ) JeeW (K)

<2rm2 DD D SN

LKy
Keel (1)

> BWIA

Je€ (K)

Now we use the A% condition and doubling for o to obtain the bound

13K 13K, 13K, - -
Ty VIl S ey VKl = AVIKL, £ 43K

Thus we have

Z |Int™# (/)] < 2~ tlalfz ) || Z JIEL

JeeD Kee (1)

<2 t]e| / Z K Jee] |I,|a-

<27 ALV,

> BWP

Jee (k)

> BWP

JeeD

Y. BWP,

TeeD
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since 1 < |a| < k — 1 (the commutator vanishes if |«| = 0) shows that both 2~71¢l < 27
and

Kk —la|>1>0.

We now claim the same estimate holds for the sum of |Int*” (J)| over J C I’ with
L(J)y=2"" (I’), namely

B
cjy w
J(/Z](bk( _y)<2(1)> 00)([(1)) AT, 8§ (x)dw(x)
1 \V\ —le
<
_/]</2‘]€(1/)|x_y|n—)u—l (ﬂ)‘ 200

Z(J) [y 1+18l 1 . do (y)da) (.X)
5( ,> 7|g(1)|// PN
eI e Jil, 7 J2r lx =yl

In order to estimate the double integral using the A’z\ condition we cover the band |x — y| <
C27"™¢ (J) by a collection of cubes Q (zim, C27"€ (J)) x Q (zm, C27"L(J)) in CJ x CJ
with centers (z,,, z») and bounded overlap. Then we have

/ / do (y)dw (x) - Z // do (y)dw (x)
s =y @-me ()"

x,ye2J
[x—yl=27"e(J)

‘Intk - (J)‘ <

y—c
200!

85,8 (0] do ()

/ do (y)dw (x)
0(en.C2 ML) x Q(an.C2 (D)) (27 (J))" 7

[o¢]
1=0 Q (2, C27"L(J)) X Q (2. C27"L(]))
< W Z 22D NN Q (2, C27MEWD)], 1Q (2 C27MEWD)],,
m=0

Zm

1 = -
m(n—i—1) —m —m —m n—»i
= fo L2 ;JlQ(chz CO, 10 m C2mE )] 45 e )
oo
< A Yo et e ST C T, £ \ A5 Vil
m=0

Thus altogether, we have

()

TSN Iy I+18] , \/7@ by ST
i, 0] < (57) w)mm NV N R
e\

_f( ()) EDIVIT, < /a3 g

1200 K(I)

g

since |a| > 1 (otherwise the commutator vanishes). Now

o .
Yoo mttan| s Y /A ()[e(J)‘Sz(J)S]Ig(J)I\/lJlfr

© ® ean
JeeB JeeW )
<e(1)7 2 AL, Y LDF R

JeeP
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and so altogether we have

> ([Pacs 12110 285,08), |

JeeD
= Y |mt* )
JeeQ
< > W+ Y [ )
JeeQ JeeR )
<2 =g (1) \/Ajm Yo eWFRWGA

JeeW )
Finally then we obtain from this and (6.8),

Z ‘([Ql’:K’To'A]ll”AL});Kg>w‘: Z Z bOf([Pa»CJ’TaA]lI”AC});KgM

JeeQ ) JeeQ ) [lel=k=1

S22 A | YD PRI
JeeD

Now using My, = ]f(l)‘ 01, and applying the above estimates with I’ = I, we
can sum over 7 and / € Cp to obtain

Blommuatorse -0 = Y [FOI|([75 0] 11,0 29 .8) | 69)
1€Cp and J eCL MMt
JEpel
o0
Sy 2 IIe(r) AL F ) > L EWP
1=r1eCr Je€W(1y) and JeC§ MM
o0
—t(1— _ - 2 ~
SARY 2 N ey TR | Y > > IE WP
t=r I1eCr IeCr JEC%)(IJ)and JGC;—_Shm

oo

SV 2 R £y
t=r

SVAIPE s o

F
Thus the commutator form Bcommmamr; p

@
P ci- shift &
—s
F Wdyad (@)

w
P co—shift 8 .
-5
d Wdyad (@)

(f, g) is controlled by A% alone.
6.3 The neighbour form
In this form we can obtain the required bound, which uses only the A’z\ constant, by taking

absolute values inside the sum, and following [1] again, we argue as in the case of Haar
wavelets in [17, end of Subsection 8.4]. We begin with My, = 1 A9, f asin (6.1) to
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obtain

IA

> > ‘(TGA (o)) AT, 1) A‘}’;Kg)w‘

I€Cp and JeCL M 0L ECD D\ /)
Tyl

)3 > | (). 89,), )

1Cp and Jec M I'=0(1))eCp (D\{1s)
J€pel

F
Bneighbour;f( (f’ g)‘

IA

We now control this by the pivotal bound (3.13) on the inner product with v =

|| My || L (o) 1;do, and then estimating by the usual Poisson kernel,

(T2 (Mrs 1) 85,8), | S P2 (I Ml oy Lo ) €D VI, 1858wz,

= Ml e o P O 100) €™ V1T 1858y

~ 1 = :
| oo "~ T | £ (I)| from (2.8), along with (3.14), namely

¢ (J) m—e(n+m—»>x)
¢ (1)>

and the estimate || My }

PL(J,olx\1) S ( Py (I, o1g\1),

to obtain

F
Bneighbour;K (f’ g)‘

UL
) ) 2P (1,110) € (D)7 VTl 1858 4y
IeCr and JeCy M I'=0(1) €€ (D\U)) V1 s
J€pel

F D .
YD Y Dl g0y ey i, 185,820

) VI
IeCp Iy, lyeCp (1) jec;_—shlfl oo
ho#ls e, 1andJCh

< [F ) . 0
=53 > > v P (1, 15,0) € ()) \/|J|w||AJ:Kg||Wd,y;d(w)

t=r IeCr Iy, lee€D(I)Jecf shift and ¢(J)=2-"e(I)
lo#1p Jc,,fl and JC Iy

A

Q

=)

3D D | |§:) {(2,,)175(%14)7: ¢y P (1o, 1100)}

1=r 1eCr lo.lgc€p (1) yect MM and ¢(J)=2""¢(1)
lo#ly F1epoland icly

Xy Ulw HAI});K{,’Hw&zd(w)
o0
=Y Y Y Al I Is. 1),

1€Cr Iy, lpeCp () t=r
lo#ly

J

where

A, Iy, Ip, 1)
_ oy e LD |7

VI'le

P* ([(), 1190)
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X Z mﬁ )° ”A(});Kg H Wi

5 .
S q(@)
g—shift - dyad
JeCs™ N and ¢()=2""e(D)
JEp.el and JCly

Now recall that the case s = 0 of the following estimate was proved in [17, see from the
bottom of page 120 to the top of page 122],

)

ch;d ()

.¢]
YDRED DIED DEXUY | VU [ P

I[eCr Iy, lpeCp (1) s=r
lo#lg

P hin&
C;— shr

where the quantity A (1, Iy, Iy, t) was defined there with s = O (in our notation) by

(7)) VB AT £IP (10, 15,0) > Vo872l 2,

JeCE MM and ¢()=2"5¢(1)
JEp,el and JCly

- - ~ 17D
When o is doubling, the reader can check that ‘E 5,00, f ‘ X T
in [17, see from the bottom of page 120 to the top of page 122] applies almost verbatim to our
situation when |¢ (n + 1 — 1) 4+ s| < 1. This proves the required bound for the neighbour
form,

and then that the proof

, sl <1, (6.10)

Wigaa (@)

Brf;:ighbour;l( (f? g)‘ \/A>% ” PgFf ” Wéyad(g)

Pgr—shiﬂg
F
since we can always take ¢ (n + 1 — A) as small as we wish.

6.4 The stopping form

To bound the stopping form following the argument in [ 1], we only need the k -pivotal constant
Vé ", not the strong k-pivotal constant Vé; , together with the argument for the Haar stopping

form due to Nazarov, Treil and Volberg. Nevertheless, we will use the strong constant V;‘ 8'(
below for convenience. Recall that

|f(1)| QI/U( = ]E(IT’;Kf - II/JE([T;Kf'

We begin the proof by pigeonholing the ratio of side lengths of 7 and J in the stopping form:

Blopie (F-0)= D . > FOQrkT . 85,8),
IeCr I'eCp(I) JGC;—shifl
Jcl"and JEp el

OIS > 7D Qe TH s 5%, 8.

1=0 1eCr I'eCp () jectMiltand ¢(J)=2""¢(1)
Jcl' and JEp o1

F
Bstop;lc,t (f’ g)

L,

ﬂ
Il
=
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where using Lemma 26, we have H ‘A‘}’,Kg‘ H < H A , and so
’ Wyaa (@) Wayaa (@)
stopxt(f g)‘ Z Z Z |f(1)‘ ”Ql’:KHLoo(w) ‘(T;LIF\IH Al_l/);,(g)w‘

1€Cr I'eCp (1) ject MMand ¢(J)=2""¢(1)
Jcl' and J@pgl

sy X > 7o) f PL o) 6™ VT 1858y s o
1eCr I'e€p (D) jeChMMand ¢()=27"¢(1)
Jcl' and JEp o 1

Y Y Y ol
I1€Cr I'e€p () jeCkMand £(J)=27"¢(1) ?
JcI' and JEp e

Pe (1 1p00) VIV lo [ 45 el

(Z,t)/(fs(nﬁ»l{f)\)fx

20 (@)

< (e | Z 3 e | Ff

1€Cr I'e€p (D) jeck*Mand e())=2""0(1)
JcI'and JEp ¢ 1

X Z Z Z |25 gHded(m)

1eCr I'e€p (D) yecy*hMand ¢(s)=2""¢(1)
Jcl"and JEp el

P2 (1, 1F\1'0')2 [l

II’

Now we note that

2 2 2 258 3

1€Cr I'e€p () jeci™iMtand e(J)=2"5¢(1)
Jcl'and JE) o 1

= Z |ag g”wdad(w)

T—shift
JeCy

2

P(gr—shiﬂ 8
a —S
F Wdyad (@)

and use the stopping control bound P (I, 1r0)? ||, < T |1, < 2V5, (0, @) |I'] in the
corona Cp, to obtain

_ o\ K—entr—=2)
slop;«x(f g)‘ < -1 S)) Vﬁ\_g (0, w)
x Z Z Z en” » ‘f(1)| II/ sz shmg‘ .
1eCr I'e€p () yech*hMand ¢(s)=2""¢(1) Wegaa (@)
JcI' and JEp o 1
N\ K—e(n+k—2) Py
< (2707) Vitew [Y e Fmf Pg,,smg'
IeCp r Wigna @)
—r\K—E(n+K—1)=S 4L,
5 (2 t) VZ,SK (G’ w) ||P%Ff|| Wa'yud(n) P‘é}r;shit‘rg’ wes (w).
dyad
Finally then we sum in ¢ to obtain
Stopx(f g)‘SVZS(a w)Z gt(,p,”(f,g)’ 6.11)
K e(n+k—1)—s
(U a)) Z ” f”W () PcT %hlflg
e Wasna(@)
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SVE (0.0) P2, f] P
~ 72, ’ C s T—shift & ,
¢ P2 i Wayaa @) || € Wigaa (@)
if we take 0 < & < ;- _’ﬁjﬁ -, which can always be done for « large if [s| < 1.

7 Conclusion of the proofs

Collecting all the estimates proved above, namely (5.3), (5.10), (5.4), (5.13), Lemma 36,
(5.17), (6.5), (6.9), (6.10) and ( 6.11), we obtain just as in [1] that for any dyadic grid D, and
any admissible truncation of 7%,

(TePBaf Pg,odg)w’ = € (TR (0, 0) + TR (©,0) + 43 (0,0) + &30 (0,0))

[Pt

D
‘Pgoodg‘

Wciyad () Wc.g/l:d (@)

Thus for any admissible truncation of 7%, using the above two theorems, we obtain

’(T(gpg)odf’ Pg)odg> ‘
Nye (0, w) < C sup @

D
b H Pgoodf

(7.1)

pD g ‘
d _
ijﬂd (o) ‘ 800 Wdyfid (@)

<C (Ti)‘i'}(f (0, ®) + TRYus (0, 0) + AS (o, a))) + CesNye (0, w) .
Our next task is to use the doubling hypothesis to replace the triple «-testing constants

by the usual cube testing constants, and we follow almost verbatim the argument in [1] for
the case s = 0. Recall that the «-cube testing conditions use the Q-normalized monomials

—eo\B
mg (x)=1p (x) (%) , for which we have ng HLOO ~ 1

Theorem 46 Suppose that o and w are locally finite positive Borel measures on R", with o
doubling, and let k € N. If T* is a bounded operator from W* (o) to W* (w), then for every
0 < &2 < 1, there is a positive constant C (k, €2) such that

TR (0,0) = C (6, 2) [Thu (0,0) + /43 (0. 0) | + 20w (0.0) K 2 1,

and where the constants C (k, €2) depend only on k and €, and not on the operator norm
(ﬁTa ((7, w)

Proof Fix a dyadic cube I.If P is an I-normalized polynomial of degree less than « on the
cube I, i.e. | Pl & 1, then we can approximate P by a step function

S = Z a1f11/,
ree?

satisfying

&
IS =1, Pliper) < >

provided we take m > 1 sufficiently large depending on n and «, but independent of the cube
1. Then using the above lemma with C22¢; < %2, and the estimate |a; | < [P~ S 1, we
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have

”T;‘l,PHWgyad(U)f > aTiy

ree®
D o Wéyad(a)

+H77 1S =Py, o \//31 7515 = P11 doo

a €2
=C Y Ty o+ 5 e (0.0 VTl
reei
&2
<C Y Tr@o) il + 5% (@ 0) VI,
ree (0

<cC {TTC, (0, ) + %zmw (o, a))] J.

Combining this with (7.1) we obtain

Nye (0, w) < C ( To (0, 0) + o (0, 0) +,/AS (0, a))) + C (g2 + &3) Nye (0, w) .

Since Nre (0, w) < oo for each truncation, we may absorb the final summand on the right
into the left hand side provided C (&3 + €3) < %, to obtain

Nre (0, ) S Tpa (0, ©) + Tpos (@, 0) +,/AS (0, w).
By the definition of boundedness of T¢ in (34), this completes the proof of Theorem 2.
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