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Abstract
Let N be a finitely generated nilpotent group. The subgroup zeta function ζ

≤
N (s) and the

normal zeta function ζ�
N (s) of N are Dirichlet series enumerating the finite index subgroups

or the finite index normal subgroups of N . We present results about their abscissae of conver-
gence α

≤
N and α�

N , also known as the degrees of polynomial subgroup growth and polynomial
normal subgroup growth of N , respectively. We first prove some upper bounds for the func-
tions N �→ α

≤
N and N �→ α�

N when restricted to the class of torsion-free nilpotent groups
of a fixed Hirsch length. We then show that if two finitely generated nilpotent groups have
isomorphic C-Mal’cev completions, then their subgroup (resp. normal) zeta functions have
the same abscissa of convergence. This follows, via the Mal’cev correspondence, from a
similar result that we establish for zeta functions of rings. This result is obtained by proving
that the abscissa of convergence of an Euler product of certain Igusa-type local zeta functions
introduced by du Sautoy and Grunewald remains invariant under base change. We also apply
this methodology to formulate and prove a version of our result about nilpotent groups for
virtually nilpotent groups. As a side application of our result about zeta functions of rings,
we present a result concerning the distribution of orders in number fields.

Keywords Subgroup growth · Zeta functions of group and rings
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1 Introduction

Let G be a finitely generated group and let

a≤
n (G) := |{H ≤ G : [G : H ] = n}|, a�

n (G) := |{H � G : [G : H ] = n}|
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be the number of subgroups or normal subgroups of index n in G. These numbers are finite
and the associated Dirichlet series

ζ
≤
G(s) :=

∞∑

n=1

a≤
n (G)

ns
=

∑

H≤ f G

[G : H ]−s, ζ�
G (s) :=

∞∑

n=1

a�
n (G)

ns
=

∑

H� f G

[G : H ]−s,

are called the subgroup zeta function and the normal zeta function of G, respectively. The
symbol H ≤ f G (resp. H � f G) indicates that the summation is over all subgroups (resp.
normal subgroups) H of finite index in G. We write ζ ∗

G(s) when we intend to address both
types of zeta functions simultaneously. These zeta functions were introduced by Grunewald,
Segal and Smith in the landmark paper [12].

Example 1.1 Let h ∈ N and let Z
h be the free abelian group of rank h. Then

ζ ∗
Zh (s) = ζ(s)ζ(s − 1) · · · ζ(s − h + 1),

where ζ(s) := ∑∞
n=1 n

−s is the Riemann zeta function (cf. [12, Proposition 1.1] or [18,
Chapter15]).

Observe that the subgroup zeta function of Z
h converges on a non-empty region of the

complex plane, namely the region Re(s) > h. This is a characteristic property of groups of
polynomial subgroup growth (PSG), i.e. groups G for which the function n �→ ∑n

i=1 a
≤
i (G)

is bounded by a polynomial function in n. More generally, for ∗ ∈ {≤,�} we set

α∗
G := inf

{
α | ∃c > 0 ∀n :

n∑

i=1

a∗
i (G) ≤ cnα

}
,

where conventionally inf ∅ = ∞. When α∗
G < ∞, we call this number the degree of polyno-

mial (normal) subgroup growth of G. If a∗
n (G) �= 0 for infinitely many n, then α∗

G coincides
with the abscissa of convergence of ζ ∗

G(s), that is, ζ ∗
G(s) defines an analytic function on the

region Re(s) > α∗
G and diverges for any s with Re(s) < α∗

G . A related invariant for groups
of polynomial subgroup growth (called the degree of the group) was introduced and studied
by Shalev; see for instance the influential paper [27]. For other types of growth we refer to
[18].

The finitely generated groups of polynomial subgroup growth have been characterized
algebraically by Lubotzky, Mann and Segal in [19]. We recall this characterization. Note first
that the subgroup growth (or the normal subgroup growth) of a group G is the same as that of
the quotient group G/R(G), where R(G) := ⋂

N� f G N is the finite residual of G, so there
is no loss of generality in assuming that the groups under consideration are residually finite,
i.e. the finite residual is trivial. It is proven in [19] that a finitely generated residually finite
group has polynomial subgroup growth if and only if it is virtually soluble of finite rank.

We shall only deal with groups of polynomial subgroup growth that are nilpotent or
virtually nilpotent. For these groups we will make some observations about the behavior of
the function G �→ α∗

G . These observations are mainly corollaries of properties of certain
Igusa-type zeta functions called cone integrals that arise in the analysis of ζ ∗

G(s).

1.1 Zeta functions ofT-groups

Since their introduction, zeta functions of groups have been investigatedmainly forT-groups,
i.e. finitely generated torsion-free nilpotent groups. If N is a T-group, then there is an Euler
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product decomposition

ζ ∗
N (s) =

∏

p prime

ζ ∗
N ,p(s) =

∏

p prime

ζ ∗̂
Np

(s), (1.1)

where ζ ∗
N ,p(s) := ∑∞

k=0 a
∗
pk

(N )p−ks is the local factor of ζ ∗
N (s) at p, and N̂p denotes the

pro-p completion of N . In addition, ζ ∗
N ,p(s) is a rational function in p−s [12].

The study of zeta functions of T-groups led to the consideration of zeta functions of
rings, which we recall below. The book [10] collects comprehensive information about the
first stage of the theory of zeta functions of groups and rings. The survey [33] exposes new
developments. Let us also mention [4, 16, 23] and Rossmann’s computer-algebra package
ZETA [24] (which effectively computes, among other things, many (normal) zeta functions
of nilpotent groups of moderate Hirsch length) just to illustrate the current activity on the
subject. We summarize some outstanding analytic properties of zeta functions of T-groups
obtained by du Sautoy and Grunewald.

Theorem 1.2 [8] Let N be an infinite T-group.

(1) α∗
N is a rational number and there exists δ > 0 such that ζ ∗

N (s) can be meromorphically
continued to the region Re(s) > α∗

N − δ. The continued function is holomorphic on the
line Re(s) = α∗

N except for a pole at s = α∗
N .

(2) If b∗
N is the order of the pole of the continued function and g∗

N (s) denotes the continuation

of (s − α∗
N )b

∗
N ζ ∗

N (s), then

n∑

i=1

a∗
i (N ) ∼ g∗

N (α∗
N )

α∗
N · (b∗

N − 1)! · nα∗
N (log n)b

∗
N−1

where we write f (n) ∼ g(n) if limn→∞ f (n)/g(n) = 1.

One natural problem is to relate α∗
N , b∗

N ∈ R to structural information about N . This was
posed as Problem 1.1 in [9] and remains open in general. Example 1.1 shows that if N is a
free abelian group of rank h ≥ 1, then α∗

N = h and b∗
N = 1. However, if N is a non-abelian

T-group, the computation of α∗
N is already a challenge. The values of α∗

N and b∗
N for various

T-groups are collected in [10]. In [22, Section 6.2], Rossamnn computes α�
N when N is a

T-group of maximal nilpotency class. As an example of computation of α�
N , we mention

the following remarkable calculation by Voll, which was obtained by purely combinatorial
methods.

Example 1.3 [32] Let F = F2,d be the free nilpotent group of class 2 on d generators (d ≥ 2).
Then

α�
F = max

{
d,

(
(d
2

) − j)(d + j) + 1
(d+1

2

) − j

∣∣∣∣ j = 1, . . . ,

(
d

2

)
− 1

}
.

Remark 1.4 The proof of Theorem 1.2(1) given in [8] expresses α∗
N in terms of some numer-

ical data associated to a principalization of an ideal of polynomials over Q obtained from N
(see Sect. 2 for a review of this). Even though nowadays there are algorithmic resolutions
of singularities and principalizations of ideals, they are impractical in this context since the
ideals obtained from N are very complicated (several polynomials in several variables), even
for quite simple N .
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We mentioned that if N is the free abelian group of rank h, then α
≤
N = α�

N = h. An
extension of the notion of rank to the class of T-group, or more generally, to the class of
polycyclic groups, is the notion of Hirsch length. If N is a polycyclic group, its Hirsch length
is the number of infinite factors in a subnormal series with cyclic factors, and it is denoted
by h(N ). Now, if N is a non-abelian T-group, then a simple argument shows that h(Nab) ≤
α�
N ≤ α

≤
N ≤ h(N ), where Nab denotes the abelianization of N (see [12, Proposition 1]).

There are better bounds for α�
N when N is a non-abelian T-group of nilpotency class 2;

cf. [21] and [12, Proposition 6.3]. We also mention the lower bound 1
6h(N ) ≤ α

≤
N ( [18,

Theorem 5.6.6]), which actually holds for a larger class of groups including the polycyclic
groups. All these results are useful for the following problem: given h > 2, describe the set
S∗
h of possible values for α∗

N as N ranges over the non-abelian T-groups of Hirsch length h.
According to [9, Proposition 1.1] and Theorem 1.2(a), S∗

h is a finite subset of [2, h] ∩ Q. In
particular, one can ask what is the maximum of S∗

h . Our first result gives a partial answer to
this question.

Theorem A Let N be a non-abelian T-group of Hirsch length h and nilpotency class c. Then
α

≤
N ≤ h − 1

2 if c = 2 and α
≤
N ≤ h − 1

c−1 if c > 2. Also α�
N ≤ h − 1.

In particular, given h ∈ N, the only T-group N of Hirsch length h with α
≤
N = h is the

abelian group Z
h.

Remark 1.5 The boundα�
N ≤ h−1 is optimal. Indeed, choose integers r ≥ 0 andm > 0 such

that 2m + 1+ r = h, and let G(m, r) be the product of Z
r with a central product ofm copies

of the discrete Heisenberg group H3(Z). Then h(G(m, r)ab) = h − 1 ≤ α�
G(m,r) ≤ h − 1,

which gives α�
G(m,r) = h − 1. In contrast, by our method in the proof of Theorem A, it

seems that our bound for α≤
N is far from being optimal. The few examples where α

≤
N has been

computed show that α≤
N ≤ h(N ) − 1 if N is a non-abelian T-group.

We return with the notation of Theorem 1.2. In trying to understand which structural data
of N is reflected in α∗

N and b∗
N it is natural to ask, given two T-groups N1 and N2, when

α∗
N1

= α∗
N2
, and if this is so, when b∗

N1
= b∗

N2
. According to [12, Proposition 3], if N1 and N2

are commensurable T-groups (i.e. there exist finite index subgroups H1 ≤ N1 and H2 ≤ N2

such that H1 ∼= H2), then α∗
N1

= α∗
N2
, and moreover b∗

N1
= b∗

N2
(cf. Proposition 3.7).

We rephrase this fact. Recall first that a T-group can be embedded as an arithmetic group
of a uniquely determined unipotent group scheme over Q. In addition, two T-groups are
commensurable if and only if they are isomorphic to arithmetic groups of the same unipotent
group scheme over Q. Thus, the fact that α∗

N and b∗
N are commensurability-invariant can

be restated as follows: If N1 and N2 are arithmetic subgroups of the same unipotent group
scheme over Q, then α∗

N1
= α∗

N2
and b∗

N1
= b∗

N2
. Our next result is a partial generalization

of this property.

Theorem B LetN1 andN2 be unipotent group schemes over Q, and let Ni be an arithmetic
subgroup of Ni for i = 1, 2. If N1 and N2 are isomorphic after base change with C, then
α∗
N1

= α∗
N2

for ∗ ∈ {≤,�}.
Remark 1.6 In contrast, we expect that b∗

N1
= b∗

N2
does not hold in general. Indeed, Remark

1.9 below shows that this equality fails for zeta functions of rings in general. However, the
counter-example that we will show does not belong to the realm of nilpotent Lie rings (or
groups).

In other words, TheoremB says that the number α∗
N associated to aT-group N is in fact an

invariant of theC-Mal’cev completion of N , or simply that it is a geometric invariant. Similar
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conclusions in spirit can be deduced from the main result of [7] for the representation zeta
function ofT-groups, and from the main results of [2, 17] for the degree of polynomial repre-
sentation growth and for the subgroup growth rate of arithmetic groups in simply connected
absolutely simple group schemes over Q. Observe finally that a result similar to Theorem B
holds for the degree of polynomial word growth by the formula of Bass-Guivarc’h [3].

Remark 1.7 There is a known classification of nilpotent Lie algebras in dimension ≤ 7 over
C (and not over Q). Hence Theorem B could be used to completely determine, possibly with
computer help, the number α∗

N for all τ -groups N of Hirsch length at most 7.

1.2 Zeta functions of rings

Theorem B is obtained as a consequence of a more general result, namely Theorem C, which
employs the concept of zeta functions of rings introduced in [12, Sect. 3]. By a ring we shall
mean an abelian group L with a bilinear map L × L → L called multiplication, e.g. Lie
rings and the commutative rings with identity. A subring of L is an abelian subgroup A that
is closed under multiplication. To allow further applications, in case that L is commutative
ring with identity 1, we shall also require (as usual) that 1 ∈ A. A two-sided ideal of L will
be simply called an ideal.

Let L be a ring additively isomorphic to (Zh,+) for some h ≥ 1. For each positive integer
n, let a≤

n (L) and a�
n (L) denote the number of subrings or ideals of index n in L . The subring

and the ideal zeta functions of L are the Dirichlet series ζ
≤
L (s) := ∑∞

n=1 a
≤
n (L)n−s and

ζ�
L (s) := ∑∞

n=1 a
�
n (L)n−s , respectively. They have a factorization as an Euler product

ζ ∗
L (s) =

∏

p prime

ζ ∗
L,p(s),

where ζ ∗
L,p(s) := ∑∞

k=0 a
∗
pk

(L)p−ks .
The zeta functions of an arbitrary ring of additive rank 2 were computed in [28, Chapter

7]. The subring zeta function of an arbitrary Lie ring of additive rank 3 was computed in [14].
Zeta functions of nilpotent Lie rings are essentially the same as zeta functions of T-groups:
via the Mal’cev correspondence one can associate with a T-group N of Hirsch length h a
nilpotent Lie ring L of additive rank h (and viceversa), and it holds that ζ ∗

L (s) and ζ ∗
N (s) have

the same local factors for almost all primes p (see Proposition 3.7). Some information about
zeta functions of soluble Lie rings of higher rank can be found in [10, Chapter 3].

Theorem 1.2, formulated there for zeta functions of T-groups, was also proved for zeta
functions of rings in [8]. In particular, one can consider the pair (α∗

L , b∗
L), where α∗

L is the
abscissa of convergence of ζ ∗

L (s) and b∗
L is the order of the pole of the continued function at

s = α∗
L . Our next result is:

Theorem C Let L1 and L2 be two rings additively isomorphic to (Zh,+). If L1 ⊗Z C ∼=
L2 ⊗Z C as C-algebras, then α∗

L1
= α∗

L2
for ∗ ∈ {≤,�}.

Example 1.8 LetH := 〈x, y, z : [x, y] = z, [x, z] = [y, z] = 0〉 be the discrete Heisenberg
Lie ring. For each square free integer k we consider Lk := H ⊗Z O

Q(
√
k), where O

Q(
√
k)

denotes the ring of integers of the quadratic field Q(
√
k). This is a 2-step nilpotent Lie ring

of additive rank 6. If k �= k′, then Lk ⊗Z Q and Lk′ ⊗Z Q are not isomorphic as Q-Lie
algebras (cf. [15, Proposition 3.2]). However, Lk ⊗Z C ∼= H2⊗Z C asC-Lie algebras (where
H2 = H × H) and hence α∗

Lk
= α∗

H2 for all k as above. The zeta functions of H2 were
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8 Page 6 of 26 D. Sulca

computed in [12, Proposition 8.11] and [31], and it holds that α∗
H2 = 4. We can now use

Theorem C to conclude that α∗
Lk

= 4 for all square-free integer k.
We remark that a formula for ζ�

Lk
(s) was given in [12, Corollary 8.2]. More generally, for

any number field K , the local factors of ζ�
H⊗ZOK

(s) at almost all primes p were computed in
[25, 26]. A further analysis on the Euler product of these local factors is required to compute
the abscissa of convergence α�

H⊗ZOK
.

As a generalization of the above observation we have the following:

Theorem D Let L be a ring additively isomorphic to (Zh,+), K ⊃ Q a number field of
degree d andO its ring of integers. Let LO := L ⊗Z O. Then α∗

LO = α∗
Ld , where L

d denotes
the product of d copies of the ring L.

Proof Note that LO ⊗Z C = (L ⊗Z O) ⊗Z C ∼= L ⊗Z (O ⊗Z C) ∼= L ⊗Z C
d ∼= Ld ⊗Z C

as C-algebras. Hence α∗
LO = α∗

Ld by Theorem C. ��
Remark 1.9 Let L = Z, viewed as commutative ring with identity. Then, LZ[i] := Z⊗Z Z[i]
is the ring of Gaussian integers and ζ�

LZ[i](s) is the Dedekind zeta function ζQ(i)(s) of Q(i).

Hence α�
LZ[i] = 1 and b�

LZ[i] = 1. Note also that the product ring L2 has ideal zeta function

(ζ(s))2, whence α�
L2 = 1 and b�

L2 = 2. Since LZ[i] ⊗Z C ∼= L2 ⊗Z C, we deduce that
Theorem C does not hold for b∗

L in general.

Remark 1.10 The computation of α
≤
Ld is in general a quite difficult task. For example, let

Z
d
ring be the ring that is a product of d copies of the ring of integers Z. Then α

≤
Z
d
ring

= 1 for

d ≤ 5 [13, Theorem 6] while it is unknown for d > 5. The computation of α�
Ld might be also

difficult if L lacks an identity element. For instance, following up Example 1.8 and Corollary
D we find that α�

H⊗ZOK
= α�

Hd , where d = [K : Q]. We have α�
Hd = 2d if d ≤ 4 (see [10,

Chapter 1]), however nothing is known for d > 4.

Let us give an application of Corollary D to the distribution of orders in number fields.
Let K be a number field and let OK be its ring of integers. An order is a subring O of OK

with identity that is a Z-module of rank n. Set

NK (n) := |{O ⊆ OK | | disc(O) ≤ n}|.
The asymptotic behavior of n �→ NK (n)was studied in [13]. It was shown, by an application
of the results in [8] (the version of Theorem 1.2 for zeta functions of rings), that there exist
CK ∈ R, αK ∈ Q and βK ∈ N such that

NK (n) ∼ CKn
αK (log n)βK−1.

It was also conjectured that the number αK only depends on the degree [K : Q]; see [13,
Conjecture 1]. We now show that this is a special case of Corollary D.

Theorem E Let d := [K : Q], and let Z
d
ring denote the product of d copies of the ring of

integers Z. Then αK = 1
2α

≤
Z
d
ring

. In particular, αK only depends on the degree [K : Q].

Proof Let ηK (s) =
∑

O order
| discO|−s . Then ηK (s) = | discOK |−sζ

≤
OK

(2s), where OK

is seen as a ring with identity. Observe that αK is the abscissa of convergence of ηK (s),
hence αK = 1

2α
≤
OK

. Note also that Corollary D with L = Z (the ring of integers) yields

α
≤
OK

= α
≤
Z
d
ring

. Therefore, αK = 1
2α

≤
Z
d
ring

. ��
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1.3 Methodology

The idea behind the proof of Theorem C is quite simple. If L1 and L2 are isomorphic after
base change with C, then L1 ⊗Z K ∼= L2 ⊗Z K for some number field K (Lemma 3.5). Let
O be the ring of integers of K . We associate to the O-algebra LiO := Li ⊗Z O the zeta
functions ζ

≤O
LiO (s) and ζ

�O
LiO (s) enumerating O-subalgebras or O-ideals of LiO , and show

that ζ ∗
Li

(s) and ζ
∗O
LiO (s) have the same abscissa of convergence (Corollary 3.3). The proof of

this fact makes use of the main tool of the paper: cone integrals (see Sect. 2). We show that
for each i = 1, 2, ζ ∗

Li
(s) and ζ

∗O
LiO (s) are Euler products of cone integrals with the same cone

integral data but over different fields, namely over Q and over K (Corollary 3.2), and hence
they have the same abscissa of convergence. This last assertion follows from Theorem 2.2,
which collects several properties about cone integrals. Finally, Theorem 2.2 will also enable
us to conclude that ζ

∗O
L1O (s) and ζ

∗O
L2O (s) have the same abscissa of convergence (Corollary

3.4), from which Theorem C follows.
Theorem 2.2 will be also used to formulate and prove a version of Theorem B for virtually

nilpotent groups (Theorem 5.18). This will be possible as the zeta functions of these groups
can be expressed as finite sums of series that are Euler products of cone integrals. We omit
this version in the introduction and refer the reader to Sect. 5.

1.4 Organization and notation

In Sect. 2, we recall the concept and some important properties of cone integrals overQ from
[8], and we extend them for any number field. We use these results to prove Theorem C in
Sect. 3 and to recall how this theorem implies Theorem B. In Sect. 4, we prove Theorem
A. This section is, to a large extent, independent from the other ones. Finally, in Sect. 5
we formulate and prove Theorem 5.18, which is the analogous of Theorem B for virtually
nilpotent groups.

We write N for the set {1, 2, . . .} and N0 for the set N ∪ {0}. We write R>0 for the set
{s ∈ R : s > 0} and R≥0 for the set {s ∈ R : s ≥ 0}. The notation f (n) ∼ g(n) means that
f (n)/g(n) tends to 1 as n tends to infinity.
For a prime p,Zp andQp denote the p-adic integers and the p-adic rationals, respectively.

For a number field K we denote byOK its ring of integers. Given a maximal ideal p ⊂ O :=
OK we denote by Op and Kp the p-adic completions of O and K . Given x ∈ Kp we denote
by ordp(x) ∈ Z∪{∞} its p-adic valuation and write |x |p := Np− ordp(x) for its p-adic norm,
where Np := [O : p].

2 A review of cone integrals

Cone integrals are a kind of p-adic integrals which can be seen as a generalization of Igusa
local zeta functions. They were introduced and studied by du Sautoy and Grunewald in [8]
under the assumption that the base field is Q. Theorem 2.2 collects the main properties of
cone integrals and at the same time it extends them to cone integrals over a general number
field. The rest of the section is devoted to explaining how this general formulation follows
essentially by the same arguments of [8].

Definition 2.1 Let K be a number field and let m be a positive integer. A finite collection
D = ( f0, g0, f1, g1, . . . , fl , gl) of non-zero polynomials in K [x1, . . . , xm] is called a cone
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8 Page 8 of 26 D. Sulca

integral data over K . Let O = OK , and let p ⊂ O be a maximal ideal. Then the integral

ZD(s, p) =
∫

M(D,p)

| f0(x)|sp|g0(x)|p|dx|p,

where

M(D, p) = {x ∈ Om
p | ordp( fi (x)) ≤ ordp(gi (x)) for i = 1, . . . , l},

and |dx|p = |dx1 ∧ · · · ∧ dxm |p is the normalized additive Haar measure on Om
p , is called a

cone integral over K , with cone integral data D.
It is easy to see that for each maximal ideal p ⊂ O, the integral ZD(s, p) can be expressed

as a power series, say ZD(s, p) = ∑∞
i=0 ap,iNp−is , where each ap,i is a non-negative rational

number. We associate to D the Dirichlet series

ZD(s) :=
∏

p⊂O maximal
ap,0 �=0

a−1
p,0ZD(s, p),

and denote its abscissa of convergence by αD . A function Z(s) such that Z(s) = ZD(s) is
said to be an Euler product of cone integrals over K with cone integral data D.

Theorem 2.2 Assume that ZD(s) is not the constant function. Then the following holds.

(1) Each ZD(s, p) is a rational function in Np−s with rational coefficients.
(2) αD is a rational number, and the abscissa of convergence of each ZD(s, p) is strictly to

the left of αD .
(3) There exists δ > 0 such that ZD(s) has meromorphic continuation to the region {s ∈ C :

Re(s) > αD − δ}, and the continued function is holomorphic on the line Re(s) = αD
except at s = αD , where it has a pole, say of order bD .

(4) Let Z(s) = ∑∞
n=1 ann

−s be a Dirichlet series such that Z(s) = ZD(s − h) for some h,
and assume that its abscissa of convergence α = αD + h is positive. Then there exist
c, c′ ∈ R such that

N∑

n=1

an ∼ cNα(log N )bD−1 and
N∑

n=1

an
nα

∼ c′(log N )bD .

(5) Let K ′ be a number field including K , and let D′ be the same collection D viewed as
cone integral data over K ′. Then αD = αD′ .

Remark 2.3 It is not true in general that bD = bD′ in (5). In fact, consider the cone integral
dataD = ( f0, g0, f1, g1, f2, g2, f3, g3) overQ, with polynomials inQ[x11, x22, x12], where

f0 = x11x22, g0 = x11, f1 = x11, g1 = x12, f2 = x11x22,

g2 = x212 + x211, f3 = x11, g3 = x22.

LetD′ be the same collectionD viewed as cone integral data overQ[i]. An easy computation
shows that

ZD(s) = ζ(s + 2)L(χ, s + 2) and ZD′(s) = (ζ(s + 2)L(χ, s + 2))2,

where χ : N → C is the Dirichlet character given by χ(n) = 1 if n ≡ 1 mod 4, χ(n) = −1
if n ≡ −1 mod 4 and χ(n) = 0 otherwise, and L(s, χ) is the associated L-function. In this
example we have αD = αD′ = −1, whereas bD = 1 and bD′ = 2. One can show, in the
notation of Sect. 3, that ZD(s − 2) is the ideal zeta function of Z[i], whereas ZD′(s − 2) is
the Z[i]-ideal zeta function of Z[i] ⊗Z Z[i].
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Properties (1)-(4) in Theorem 2.2 were proved in [8] in the case K = Q. Notice that (1) also
follows from a result of Denef [5]. The general case and (5) are somehow implicit in the
arguments of [8]. The rest of this section is devoted to making this more precise. Let us first
state an important corollary that will be used in our study of zeta functions of groups and
rings.

Corollary 2.4 Let D1 and D2 be two cone integral data over K .

(1) If ZD1(s, p) = ZD2(s, p) for almost all maximal ideals p ⊂ OK , then αD1 = αD2 and
bD1 = bD2 .

(2) If there exists a number field K ′ including K such that ZD′
1
(s − h, p′) = ZD′

2
(s − h, p′)

for almost all maximal ideals p′ ⊂ OK ′ , whereD′
i denotes the same collectionD1 viewed

as cone integral data over K ′, then αD1 = αD2 .

Proof Note that (1) is an immediate consequence of Theorem 2.2(2). As for (2), Theorem
2.2(5) implies first thatαDi = αD′

i
, and (1) shows thatαD′

1
= αD′

2
. It follows thatαD1 = αD2 .

��
From now on, we follow [8, Sects. 2, 3, 4] with slight modifications in the notation.

The interested reader may also consult [6] for further details. Let Ko be a number field, let
Oo = OKo , and let Do = ( f0, g0, . . . , fl , gl) be a cone integral data over Ko. Let (Yo, ho)
be a resolution for the polynomial F = ∏l

i=0 fi gi ∈ Ko[x1, . . . , xm] over Ko. Thus Yo is
a closed subscheme of some projective space over A

m
Ko , say Yo ⊂ A

m
Ko ×Ko P

k
Ko , ho is the

restriction to Yo of the projection A
m
Ko ×Ko P

k
Ko → A

m
Ko , and the following holds:

(i) Yo is smooth over Spec(Ko);
(ii) ho is an isomorphism over A

m
Ko \ V (F), where V (F) ⊂ A

m
Ko is the vanishing set of F ;

(iii) the reduced scheme ((ho)−1(V (F)))red associated to (ho)−1(V (F)) has only normal
crossings as subscheme of Yo.

Let {Eo
ι : ι ∈ T } be the set of irreducible components of ((ho)−1(V (F)))red. These,

with the structure of reduced subscheme, are smooth hypersurfaces of Y o by (iii). For each
ι ∈ T , let Nι( f j ) and Nι(g j ) be, respectively, the multiplicities of Eo

ι in the divisor of
f j ◦ h and g j ◦ h ( j = 0, 1, . . . , l), and let νι − 1 be the multiplicity of Eo

ι in the divisor of
(ho)∗(dx1 ∧ · · · ∧ dxm).

We next define

DT :=
{
u ∈ R

T≥0 :
∑

ι∈T
Nι( f j )u(ι) ≤

∑

ι∈T
Nι(g j )u(ι), for j = 1, . . . , l

}
, (2.1)

and for a subset I ⊂ T we define

DI := {u ∈ DT : u(ι) = 0 if and only if ι ∈ T \ I },
so we have DT = ⋃

I⊂T DI , a disjoint union.
Note that DT is a rational convex polyhedral cone, so there are integral generators

e1, . . . , eq ∈ N
T
0 ∩DT for its extremal edges such that NT

0 ∩R≥0ei = N0ei for i = 1, . . . , q .
The following constants will be important:

Ak :=
∑

ι∈T
ek(ι)Nι( f0) ∈ N0, Bk :=

∑

ι∈T
ek(ι)(Nι(g0) + νι) ∈ N, k = 1, . . . , q. (2.2)
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The cone DT has a simplicial decomposition, say DT = R0 ∪ R1 ∪ · · · ∪ Rq ∪ · · · ∪ Rw ,
such that R0 = {0}, Ri = R>0ei for i = 1, . . . , q , and dim Ri > 1 for i > q . For each
k = 0, . . . , w there is a subset Mk ⊂ {1, . . . , q} such that

Rk =
⎧
⎨

⎩
∑

j∈Mk

α je j : α j > 0 for all j ∈ Mk

⎫
⎬

⎭ .

Now for each I ⊂ T there is a subsetWI ⊂ {0, . . . , w} such that DI = ⋃
k∈WI

Rk . Since

DT is the disjoint union of the DI ’s, {0, 1, . . . , w} is also the disjoint union of theWI ’s; thus,
for each k = 0, . . . , w, there is a unique subset I ⊂ T such that k ∈ WI , and this subset will
be denoted by Ik .

Proposition 2.5 Let K be a number field including Ko, let O = OK , and let D be the same
collection Do viewed as cone integral data over K . If p ⊂ O is a maximal ideal such that
(Yo, ho) has good reduction modulo po := p ∩ Oo ⊂ Oo, then

ZD(s, p) =
w∑

k=0

(Np − 1)|Ik |Np−mcp,Ik

∏

j∈Mk

Np−(A j s+Bj )

1 − Np−(A j s+Bj )
, (2.3)

where for a subset I ⊂ T , cp,I := |{a ∈ Yo(O/p) : a ∈ Eo
ι (O/p) if and only if ι ∈ I }|, and

for a closed subscheme Zo ⊂ Yo, Zo denotes its reduction modulo po.

Though this proposition is more general than [8, Corollary 3.2], its proof is the same, so
we do not repeat it. However, wemention some comments. Let (Y , h) and (Eι)ι∈T be the base
changes of (Yo, ho) and (Eo

ι )ι∈T by Spec(Kp) → Spec(Ko). Note that each Eι is a smooth
hypersurface in Y , but (Eι)ι∈T is not necessarily the collection of irreducible components of
h−1(V (F)) as Eι might not be irreducible. Nevertheless, it is easy to show that

div( f j ◦ h) =
∑

ι∈T
Nι( f j )Eι and div(g j ◦ h) =

∑

ι∈T
Nι(g j )Eι for j = 0, . . . , l,

div(h∗(dx1 ∧ · · · ∧ dxm)) =
∑

ι∈T
(νι − 1)Eι,

so one can argue as in [8, Sects. 2 and 3] by using the collection (Eι)ι∈T and not the irreducible
components of h−1(V (F)). In fact, this seems to be what is really done in [8].

The following consequence was also obtained at the end of [8, Sect. 2] from a different
formula for ZD(s, p).

Corollary 2.6 Write each ZD(s, p) as a power series
∑∞

i=0 ap,iNp−is . Then, ap,0 �= 0 for
almost all maximal ideals p ⊂ O.

Proof It is enough to show that αp,0 �= 0 for almost all maximal ideals p ⊂ O satysfying
the hypothesis of Proposition 2.5. We compute the term of the formula (2.3) for k = 0.
Note that M0 = ∅ and that I0 = ∅, so the term for k = 0 is Np−mcp,∅ = Np−m |{a ∈
Yo(O/p) \ ⋃ι∈T Eo

ι (O/p)}| = Np−m |Am(O/p) \ V (F)|, where F denotes the reduction
of F modulo p0 and V (F) ⊂ A

m(O/p) denotes the zero set of F . Note that by dimension
arguments, |Am(O/p) \ V (F)| > 0 for almost all p. The proof follows as the term for k = 0
contributes to ap,0. ��

Proposition 2.5 provides a formula for ZD(s, p) for almost all maximal ideals. A formula
for the exceptional primes (when K = Ko = Q) is given in [8, Proposition 3.3], but this
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seems to be incorrect as it was pointed out in [1, Remark 4.6]. Nevertheless, Theorem 2.2
does not use this proposition but rather its consequence [8, Corollary 3.4], which is correct
as claimed also in [1, Remark 4.6]. We will provide a proof of this in Proposition 2.8 below.
We shall need the following result of Stanley (cf. [29, Chapter 1]), which is formulated here
in our special setting.

Theorem 2.7 Let I ⊂ T be a non-empty subset, and let �I ∈ Z
l×I be the matrix defined by

(�I ) j,ι = Nι(g j ) − Nι( f j ), j = 1, . . . , l, ι ∈ I .

Given a vector v ∈ Z
l , we consider the generating series

F�,v((Xi )i∈I ) :=
∑

u∈N
I
0 : �I ·u≥v

Xu,

where Xu = ∏
ι∈I X

u(ι)
ι and (X ι)ι∈I is a collection of variables. If {u ∈ N

I
0 : � · u ≥ v} is

non-empty, then F�,v((Xi )i∈I ) is a rational function whose denominator divides

∏

j∈∪k∈WI Mk

(
1 −

∏

ι∈I
X e j (ι)

)
.

Here the inequality�I ·u ≥ v means component-wise. Observe that {e j : j ∈ ∪k∈WI Mk}
is just the set of integral generators of the extremal edges of the cone {u ∈ N

I
0 : �I · u ≥ 0}.

These vectors can be though of as vectors in N
I
0 since they are zero outside I .

Proposition 2.8 Let K be a number field including Ko, let O = OK , and let D be the
collection Do viewed as cone integral data over K . If p ⊂ O is any maximal ideal, then
ZD(s, p) is a rational function inNp−s with rational coefficients, and its denominator divides

q∏

j=1

(1 − Np−(A j s+Bj )).

In particular, the abscissa of convergence of ZD(s, p) is either −∞ or one of the rational

numbers − Bj
A j

where j = 1, . . . , q and A j �= 0.

Proof The same notation and comments after Proposition 2.5 apply here. Now h induces
a morphism of analytic manifolds Y (Kp) → Km

p that we still denote by h. This is an
isomorphism above {x ∈ Km

p : F(x) �= 0}. Write Y (Op) for h−1(Om
p ). Then Y (Op) can be

expressed as a disjoint union of a finite number of coordinate charts, say {(Ub, (y1, . . . , ym)) :
b ∈ B}, such that for each b ∈ B the following holds (see [20, Sect. 2]):

(1) The image of (y1, . . . , ym) : Ub → Km
p is exactly (pebOp)

m for some eb ∈ N0.
(2) Let Ib = {ι ∈ T : Eι(Kp) ∩Ub �= ∅}. Then there exists an injective function μb : Ib →

{1, . . . ,m} such that Eι(Kp) ∩Ub = {yμ(ι) = 0} for all ι ∈ Ib.
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(3) There are non-negative integers cb( f j ), cb(g j ) for j = 0, . . . , l and db, such that the
following holds on Ub:

| f j ◦ h|p = Np−cb( f j )
∏

ι∈Ib
|yμ(ι)|Nι( f j )

p ,

|g j ◦ h|p = Np−cb(g j )
∏

ι∈Ib
|yμ(ι)|Nι(g j )

p ,

|h∗(dx1 ∧ · · · ∧ dxm)|p = Np−db
∏

ι∈Ib
|yμ(ι)|νι−1

p |dy1 ∧ · · · ∧ dym |p.

It follows that ZD(s, p) = ∑
b∈B Jb(s), where

Jb(s) =
∫

Vb
Np−cb( f0)s−cb(g0)−db

∏

ι∈Ib
|yμb(ι)|Nι( f0)s+Nι(g0)+νι−1

p |dy1 ∧ · · · ∧ dym |p

and Vb is the subset of Ub defined by the conditions

cb(g j ) − cb( f j ) +
∑

ι∈Ib
(Nι(g j ) − Nι( f j )) ordp(yμb(ι)) ≥ 0, j = 1, . . . , l.

If Ib = ∅, then clearly Jb(s) = rNp−cb( f0)s for some rational number r . We now analyse
Jb(s) for Ib �= ∅. By (1) we can assume that Ub = (pebOp)

m with coordinates y1, . . . , ym .
Let�I = �Ib be the matrix of Theorem 2.7, let cb( f )− cb(g) ∈ Z

l denote the vector whose
j-entry is cb( f j ) − cb(g j ), and let v := cb( f ) − cb(g) − � · (eb)ι∈T ∈ Z

l . It follows that

Jb(s) = (1 − Np−1)|Ib|

· Np−cb( f0)s−cb(g0)−db−eb(m−|Ib|) ·
∑

u∈(ebN0)
Ib

�·u≥cb( f )−cb(g)

∏

ι∈Ib
Np−(sNι( f0)+Nι(g0)+νι)u(ι)

= (Npeb − Npeb−1)|Ib| · Np−cb( f0)s−cb(g0)−db−ebm−∑
ι∈Ib (sNι( f0)+Nι(g0)+νι)eb

·
∑

u∈N
I0
0

�·u≥v

∏

ι∈Ib
Np−(sNι( f0)+Nι(g0)+νι)u(ι).

By Theorem 2.7 this is a rational function in Np−s with rational coefficients, and whose
denominator divides

∏

j∈⋃k∈WIb
Mk

⎛

⎝1 −
∏

ι∈Ib
Np−(sNι( f0)+Nι(g0)+νι)e j (ι)

⎞

⎠

=
∏

j∈⋃k∈WIb
Mk

(
1 −

∏

ι∈T
Np−(sNι( f0)+Nι(g0)+νι)e j (ι)

)

=
∏

j∈⋃k∈WIb
Mk

(
1 − Np−(s A j+Bj )

)
.

This completes the proof of the proposition. ��
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With Proposition 2.5, Corollary 2.6 and Proposition 2.8, the proof of properties (1)–(4)
in Theorem 2.2 goes now exactly as in [8, Sect. 4]. In particular, one obtains the following
formula for αD which is independent of the field extension K ⊃ K0, and which proves (5)
in Theorem 2.2.

Proposition 2.9 αD = max
{
1−Bj
A j

: j = 1, . . . , l, A j �= 0
}
.

3 Zeta functions of rings as cone integrals

Let R be a commutative ring with identity. By an R-algebra we shall mean an R-module L
endowed with an R-bilinear map L × L → L called multiplication, e.g. an R-Lie algebra.
An R-subalgebra of L is an R-submodule A that is closed under multiplication. Left, right
and two-sided R-ideals are defined similarly. To simplify the presentation, by an R-ideal
we shall refer to a left R-ideal. Nevertheless, everything we say about left R-ideals is also
valid for right R-ideals and for two-sided R-ideals. To allow applications such as Theorem
E we shall also consider R-algebras with an identity, and in that case we will require that the
R-subalgebras contain the identity. A Z-algebra will be also called a ring.

Let L be an R-algebra (or an R-algebra with identity). The R-subalgebra zeta function
and the R-ideal zeta function of L are by definition the formal series

ζ
≤R
L (s) =

∑

L ′≤R L

[L : L ′]−s and ζ
�R
L (s) =

∑

L ′�R L

[L : L ′]−s

where L ′ runs only over those R-subalgebras or R-ideals of finite additive index respectively.
We write ζ

∗R
L (s) to address both type of zeta functions simultaneously. We will suppress the

subindex R when R = Z.
Let K be a number field and let O = OK . Let L be an O-algebra (or an O-algebra with

identity) whose underlying O-module is free of rank h ≥ 1. For a maximal ideal p ⊂ O we
write Lp := L ⊗O Op. This is an Op-algebra and it is easy to show that

ζ
∗O
L (s) =

∏

p⊂O
maximal

ζ
∗Op

Lp
(s).

We now fix a basis for L asO-module and hence identify L withOh . Let (cki j ) be the structure

coefficients of L with respect to the canonical basis {e1, . . . , eh}, that is, ei ·e j = ∑h
k=1 c

k
i j ek .

We denote by Trh(Op) the set of upper-triangular matrices with entries inOp andwrite |dm|p
for the normalized additive Haar measure of Trh(Op). Given a matrix m = (mi j ) we denote
by m′ = (m′

i j ) its adjoint.

Proposition 3.1 For each maximal ideal p ⊂ O it holds that

ζ
∗Op

Lp
(s) = (1 − Np−h)−1

∫

M∗(Op)

|m11|s−1
p · · · |mhh |s−h

p |dm|p,

where M≤(Op) ⊂ Trh(Op) denotes the set of those upper-triangular matrices (mi j ) such
that

ordp(m11 · · ·mhh) ≤ ordp

⎛

⎝
h∑

t=1

h∑

r=i

h∑

s= j

mir c
t
rsm jsm

′
tk

⎞

⎠ for all i, j, k = 1, . . . , h,
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andM�(Op) ⊂ Trh(Op) denotes the set of those upper-triangular matrices (mi j ) such that

ordp(m11 · · ·mhh) ≤ ordp

(
h∑

s=1

h∑

r=i

mir c
s
r jm

′
sk

)
for all i, j, k = 1, . . . , h.

If in addition L is anO-algebra with identity, say 1 = (u1, . . . , uh), then we also have to
add the following extra conditions in the definition of M≤(Op):

ordp(m11 · · ·mhh) ≤ ordp

(
h∑

i=1

uim
′
i j

)
∀ j = 1, . . . , h.

Proof The first part of the proposition when K = Q is proved in [8, Theorem 5.5] (see also
[12, Sec. 3]). That proof can be easily extended to this general case. By following that proof
in the case that L is an O-algebra with identity, we see that the conditions that we add to the
definition ofM≤(Op) are simply a translation of the condition that theOp-submodule of Lp

generated by the rows of the matrix (mi j ) contains 1 = (u1, . . . , uh). This is necessary since
we are requiring that the R-subalgebras of an R-algebra with identity must contain 1. ��
As an immediate consequence we obtain

Corollary 3.2 Let L be an O-algebra (or an O-algebra with identity) that is isomorphic to
Oh as O-module. Then there exists a cone integral data D∗ over K such that

ζ
∗O
L (s) = ZD∗(s − h),

and such that for any finite extension K ′ ⊃ K, say with ring of integers O′, we have

ζ
∗O′
L ′ (s) = ZD′∗(s − h),

where L ′ is the O′-algebra L ⊗O O′ and D′∗ is the same collection D∗ viewed as cone
integral data over K ′.

As a combination of this corollary and Theorem 2.2 we now obtain

Corollary 3.3 Let L be an O-algebra (or an O-algebra with identity) that is isomorphic to
Oh asO-module. Assume that ζ ∗O

L (s) is not a constant function, and let α∗O
L be its abscissa

of convergence. Then the following holds.

(1) α
∗O
L is a rational number and there exists δ > 0 such that ζ

∗O
L (s) can be meromor-

phically continued to the region Re(s) > α
∗O
L − δ. Moreover, the continued function is

holomorphic on the line Re(s) = α
∗O
L except at s = α

∗O
L where it has a pole.

(2) Let K ′ be a number field including K , O′ its ring of integers, and L ′ = L ⊗O O′. Then
ζ

∗O
L (s) and ζ

∗O′
L ′ (s) have the same abscissa of convergence.

Another consequence is

Corollary 3.4 Let L1 and L2 be two O-algebras (or O-algebras with identity) that are iso-
morphic to Oh as O-modules. Let b∗O

Li
be the order of the pole of ζ

∗O
Li

(s) at s = α
∗O
Li

. If

L1 ⊗O K and L2 ⊗O K are isomorphic K -algebras, then α
∗O
L1

= α
∗O
L2

and b∗O
L1

= b∗O
L2

.

Proof Let D∗
i be the cone integral data of Corollary 3.2 for Li . By Corollary 2.2(1) it is

enough to prove that ZD∗
1
(s − h, p) = ZD∗

2
(s − h, p) for almost all maximal ideals p ⊂ O.

This follows from the fact that L1p := L1 ⊗O Op and L2p := L2 ⊗O Op are isomorphic
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Op-algebras for almost all p. To prove this fact, we may assume that L1 = L2 = Oh

as O-modules and so L1 ⊗O K = L2 ⊗O K = Kh . Let α ∈ GLh(K ) be a K -algebra
isomorphism α : L1 ⊗O K → L2 ⊗O K . Then for almost all maximal ideals p it holds that
α, α−1 ∈ GLh(Op), and hence α induces an isomorphism L1p

∼= L2p. This completes the
proof. ��

In order to prove Theorem C we shall need the following result.

Lemma 3.5 Let K be a field and let A1 and A2 be finite dimensional K -algebras. If for some
field extension K ′ ⊃ K the K ′-algebras A1 ⊗K K ′ and A2 ⊗K K ′ are isomorphic over K ′,
then this also holds for some finite extension K ′ ⊃ K.

Proof Note that A1 and A2 have necessarily the same dimension over K , hence we can
assume that A1 = A2 = Kh as vector spaces over K for some h. Let I ⊂ GLh ×Z Spec(K )

be the subfunctor such that if K ′ is any commutative algebra over K with identity, then I (K ′)
is the set of K ′-algebra isomorphisms A1 ⊗K K ′ → A2 ⊗K K ′. It is easy to see that I is
represented by a closed subscheme of GLh ×Z Spec(K ). The hypothesis implies that I is not
the empty scheme. Therefore, if K ′ is the residue field at a closed point of I , which is a finite
extension of K , we have I (K ′) �= ∅. ��
Theorem C follows from the following

Theorem 3.6 Let K be a number field and O its ring of integers. Let L1 and L2 be two
O-algebras (or O-algebras with identity) that are isomorphic to Oh as O-modules for some
h > 0. If L1 ⊗O K ′ and L2 ⊗O K ′ are isomorphic K ′-algebras for some field extension
K ′ ⊃ K, then ζ

∗O
L1

(s) and ζ
∗O
L2

(s) have the same abscissa of convergence.

Proof By Lemma 3.5 we can assume that the field K ′ of the hypothesis is a finite extension
of K . Let O′ be its ring of integers and let L ′

i = Li ⊗O O′. By Corollary 3.3, ζ ∗O
Li

(s) and

ζ
∗O′
L ′
i

(s) have the same abscissa of convergence for i = 1, 2. By Corollary 3.4, ζ
∗O′
L ′
1

(s) and

ζ
∗O′
L ′
2

(s) have the same abscissa of convergence since L ′
1⊗O′ K ′ = L ′

2⊗O′ K ′ as K ′-algebras.
It follows that ζ ∗O

L1
(s) and ζ

∗O
L2

(s) have the same abscissa of convergence. ��
We now explain how Theorem B follows from Theorem C. Let N be a unipotent group

scheme over Q and let N be an arithmetic subgroup ofN. We define n to be the Lie algebra
of N, which is a nilpotent Lie algebra of dimension h(N ) over Q.

Proposition 3.7 Let L be any Lie subring of n additively isomorphic to Z
h, with h = h(N ),

such that L ⊗Z Q = n. Then ζ ∗
N (s) and ζ ∗

L (s) have the same abscissa of convergence, that
is α∗

N = α∗
L . In addition, b∗

N = b∗
L .

Proof By Corollary 3.4 it is enough to prove this by just one L . By [12, Theorem 4.1], there
is L satisfying the hypothesis such that for almost all primes p, ζ ∗

N (s) and ζ ∗
L (s) have the

same local factor at p. Now, by Corollary 3.2, there exists a cone integral data D∗
L such that

ζ ∗
L (s) = ZD∗

L
(s − h). By [30, Corollary 1], there exists a cone integral data D∗

N such that
ζ ∗
N (s) = ZD∗

N
(s − h). It follows that ZD∗

N
(s − h, p) = ZD∗

L
(s − h, p) for almost all p. The

proposition follows now from Corollary 2.4(1). ��
Since the category of unipotent algebraic groups over a field K of characteristic zero and the
category of finite dimensional nilpotent Lie algebras over K are equivalent, it is now clear
that Theorem B follows from Theorem C.
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4 An upper bound for˛∗
N for non-abelianT-groups

In this section we prove Theorem A. By Proposition 3.7, it is enough to prove the analogous
result for nilpotent Lie rings.

Lemma 4.1 Let Z
e be the free abelian group of rank e, e > 0, and let δ be a positive number

such that δ < e. Then there is a constant k = k(e, δ) such that

N∑

n=1

a≤
n (Ze)

ne−δ
≤ kN δ, ∀N ∈ N.

Proof Consider the Dirichlet series Z(s) =
∞∑

n=1

bn
ns

, where bn = a≤
n (Ze)

ne−δ
. Then Z(s) =

ζ
≤
Ze (s + e − δ) = ZD(s − δ), where D is the cone integral data of Corollary 3.2 for the zeta
function ζ

≤
Ze (s) (we view Z

e as an abelian Lie ring). The abscissa of convergence of Z(s) is
δ > 0, and the order of the pole of Z(s) at s = δ, which is the order of the pole of ζ

≤
Ze (s)

at e, is 1. This follows from the formula for ζ
≤
Ze (s) given in Example 1.1. Thus, by Theorem

2.2(4), there exists a constant k such that
∑N

n=1 bn ≤ kN δ for all N . This proves the lemma.
��

We now set some notation. If L is a ring additively isomorphic to Z
h , then α�

L ≤ α
≤
L ≤

α
≤
Zh = h. We denote δ∗

L = h − α∗
L for ∗ ∈ {≤,�}. If L is a nilpotent Lie ring, then γi (L)

denotes the i-th term of the lower central series. The nilpotency class of L is the first positive
integer c such that γc+1(L) = 0. If A is an ideal of L we also define a lower series as follows:
γ1(L, A) = A and γi (L, A) = [γi−1(L, A), L] for i > 1.

Proposition 4.2 Let L be a non-abelian nilpotent Lie ring additively isomorphic to Z
h, let

c be its nilpotency class, let Z = {x ∈ L : nx ∈ γc(L) for some n ∈ N}, and let e be the
additive rank of γc(L). Then

δ
≤
L ≥ δ

≤
L/Z + e

1 + (c − 1)e
and δ�

L ≥ δ�
L/Z + e

1 + e
.

Proof Notice that Z is an ideal of L included in the centre of L , the quotient ring L/Z is
additively isomorphic to Z

h−e, and the index k1 := [Z : γc(L)] is finite. Since Z is central,
any subgroup of Z is automatically an ideal of L .

If A is a finite index subring of L , then A + Z is a subring including Z , and A ∩ Z is
a finite index subgroup of Z . If A is an ideal, then A + Z is also an ideal. In any case, we
have [L : A] = [L : A + Z ][Z : A ∩ Z ]. It is easy to show that if A is a subring, then
γc(A+ Z) ⊂ A∩ Z , and if A is an ideal, then γc(L, A+ Z) ⊂ A∩ Z . Thus, for any positive
δ with δ < h we have

ζ
≤
L (h − δ) =

∑

A≤ f L

[L : A]−h+δ =
∑

B≤ f L:
Z⊂B

[L : B]−h+δ
∑

C≤ f Z :
γc(B)⊂C

[Z : C]−h+δμ
≤
B,C ,

ζ�
L (h − δ) =

∑

A� f L

[L : A]−h+δ =
∑

B� f L:
Z⊂B

[L : B]−h+δ
∑

C≤ f Z :
γc(L,B)⊂C

[Z : C]−h+δμ�
B,C ,

where μ
≤
B,C = |{A ≤ f L : A + Z = B, A ∩ Z = C}| and μ�

B,C = |{A � f L : A + Z =
B, A ∩ Z = C}|. By [18, Lemma 1.3.1] we have μ�

B,C ≤ μ
≤
B,C ≤ |Hom(B/Z , Z/C)| ≤
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[Z : C]h−e. Thus,

ζ
≤
L (h − δ) ≤

∑

B≤ f L:
Z⊂B

[L : B]−h+δ
∑

C≤ f Z :
γc(B)⊂C

[Z : C]−e+δ,

ζ�
L (h − δ) ≤

∑

B� f L:
Z⊂B

[L : B]−h+δ
∑

C≤ f Z :
γc(L,B)⊂C

[Z : C]−e+δ. (4.1)

Given B ≤ f L with Z ⊂ B, we claim that γc(B) ⊃ [L : B]c−1γc(L). In fact, there
are x1, . . . , xh−e ∈ Z whose classes modulo Z form a basis of the Z-module L/Z , and
there are positive integers d1|d2| · · · |dh−e such that B/Z is generated by the classes of
d1x1, . . . , dh−exh−e. So [L : B] = d1d2 · · · dh−e. Notice that γc(L) is the subgroup of Z
generated by all the elements of the form [xi1 , . . . , xic ] := [[· · · [[xi1 , xi2 ], xi3 ], · · · ], xic ]
with not all i1, . . . , ic equal, and γc(B) is generated by all the elements of the form
di1 · · · dic [xi1 , . . . , xic ] with not all i1, . . . , ic equal. Now, if i1, . . . , ic are not all equal to
each other, then the product of two factors in di1 · · · dic divides [L : B] and the other
factors are also divisors of [L : B]. Thus, di1 · · · dic divides [L : B]c−1 and hence
[L : B]c−1[xi1 , . . . , xic ] ∈ γc(B). It follows that γc(B) ⊃ [L : B]c−1γc(L), as claimed.
Note that if B is in addition an ideal, then γc(L, B) ⊃ γc(L, [L : B]L) = [L : B]γc(L).
Since [L : [L : B]tγc(L)] = k1[γc(L) : [L : B]tγc(L)] = k1[L : B]te for any t ∈ N, we
conclude that

∑

C≤ f Z :
γc(B)⊂C

[Z : C]−e+δ ≤
∑

C≤ f Z
[Z :C]≤k1[L:B](c−1)e

[Z : C]−e+δ ≤ k2(k1[L : B](c−1)e)δ,

∑

C≤ f Z :
γc(L,B)⊂C

[Z : C]−e+δ ≤
∑

C≤ f Z
[Z :C]≤k1[L:B]e

[Z : C]−e+δ ≤ k2(k1[L : B]e)δ, (4.2)

where k2 is the constant provided by Lemma 4.1.
A combination of (4.1) and (4.2) yields

ζ
≤
L (h − δ) ≤ k(δ)

∑

Z⊂B≤ f L

[L : B]−h+δ+δ(c−1)e = k(δ)ζ≤
L/Z (h − δ(1 + (c − 1)e)),

ζ�
L (h − δ) ≤ k(δ)

∑

Z⊂B� f L

[L : B]−h+δ+δe = k(δ)ζ�
L/Z (h − δ(1 + e)),

for some constant k(δ). It follows from the first inequality that ζ
≤
L (h − δ) converges if

h − δ(1 + ce) > α
≤
L/Z , i.e., if δ <

h−α
≤
L/Z

1+ce = δ
≤
L/Z+e

1+(c−1)e . This proves that δ
≤
L/Z is at least

δ
≤
L/Z+e

1+(c−1)e . Similarly, from the second inequality we deduce that δ�
L is at least

δ
�
L/Z+e

1+e . ��

Theorem A follows from the next one.

Theorem 4.3 Let L be a non-abelian nilpotent Lie ring additively isomorphic to Z
h, and let

c be its nilpotency class.

(1) If c = 2, then α
≤
L ≤ h − 1

2 . If c > 2 then α
≤
L ≤ h − 1

c−1 .
(2) α�

L ≤ h − 1.
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Proof We use the notation of Proposition 4.2. Observe that the nilpotency class of L/Z is
c − 1.

We prove (1). Assume first that c = 2. By Proposition 4.2, δ
≤
L ≥ e

1+e ≥ 1
2 , hence

α
≤
L ≤ h − 1

2 . We now assume that c > 2 and prove that α≤
L ≤ h − 1

c−1 , or equivalently that

δ
≤
L ≥ 1

c−1 , by induction on c. If c = 3, then δ
≤
L ≥ δ

≤
L/Z+e

1+2e ≥ 1/2+e
1+2e = 1

2 = 1
c−1 . Assume

next that c > 3 and that the result has been proved for c − 1 (in particular for L/Z ). Then

δ
≤
L ≥ δ

≤
L/Z+e

1+(c−1)e ≥ 1/(c−2)+e
1+(c−1)e >

1/(c−1)+e
1+(c−1)e = 1

c−1 . This completes the induction and the proof
of (1).

We now prove (2), which is equivalent to δ�
L ≥ 1, by induction on c. If c = 2, then the

result follows from [12, Proposition 6.3]. Assume now that c > 2 and that the result has been

proved for c − 1. By Proposition 4.2 we have δ�
L ≥ δ

�
L/Z+e

1+e ≥ 1+e
1+e = 1. This completes the

induction and the proof of (2). ��

5 A version of Theorem B for virtually nilpotent groups

Let G be a finitely generated virtually nilpotent group and let N be its Fitting subgroup, that
is, themaximal nilpotent normal subgroup. It is known that α∗

G ≤ α∗
N +1 (cf. [18, Proposition

5.6.4], [30, Theorem 3]), and the next example shows that the equality might hold.

Example 5.1 Let N = Z and G = Z � Aut(Z). Then ζ
≤
N (s) = ζ(s) and ζ

≤
G(s) = 2−sζ(s) +

ζ(s − 1). In particular, α≤
N = 1 and α

≤
G = 2.

It follows that α∗
G is not longer commensurability-invariant within the class of finitely gen-

erated virtually nilpotent groups. This notwithstanding, it is possible to formulate a version
of Theorem B for virtually nilpotent groups. First of all, given G and N as above, we may
assume that N is torsion-free, that is, a T-group. In fact, the torsion subgroup t(N ) of N is a
finite normal subgroup of G and the next lemma shows that α∗

G = α∗
G/t(N ).

Lemma 5.2 Let G be a group of finite rank and T a finite normal subgroup of G. Write
Q = G/T . Then α∗

G = α∗
Q and ζ ∗

G,p(s) = ζ ∗
Q,p(s) for every prime p not dividing |T |.

Proof The equality α
≤
G = α

≤
Q is proved in [18, Proposition 5.6.2]. We adapt that proof to

show that α�
G = α�

Q . Clearly α�
G ≥ α�

Q , so we only need to focus on the reverse inequality.
Fix a positive integer n. A normal subgroup H�G of index n determines normal subgroups

H ∩ T � T and HT � G. The index [T : H ∩ T ] divides both n and |T |, and we have
[G : HT ] = n/[T : H ∩ T ]. Now fix a common divisor, say t , of |T | and n. Fix also D � T
and B � G such that T ⊂ B, [T : D] = t and [G : B] = n/t . If there is H � G such that
H ∩ T = D and HT = B, then necessarily [G : H ] = n, D is normal in G, and H/D is a
complement of T /D in HT /D. Therefore, there are at most |Der(B/T , T /D)| possibilities
for H , and this number is turn bounded by [T : D]rk(Q) ≤ |T |rk(Q); cf. [18, Lemma 1.3.1].
It follows that

a�
n (G) ≤

∑

t |n, t ||T |
a�
t (T )a�

n/t (Q)|T |rk(Q) ≤ |T |rk(Q)ζ�
T (0)

∑

t |n, t ||T |
a�
n/t (Q).

By using the above inequality we now conclude that for any positive integer n,

n∑

j=1

a�
j (G) ≤ |T |rk(Q)ζ�

T (0)
∑

t ||T |

∑

t | j≤n

a�
j/t (Q) ≤ |T |rk(Q)+1ζ�

T (0)
n∑

j=1

a�
j (Q)
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and this clearly implies that α�
G ≤ α�

Q .
The equality ζ ∗

G,p(s) = ζ ∗
Q,p(s) for a prime p � |T | holds because the index of any

subgroup H ≤ G is divisible by [T H : H ] = [T : T ∩ H ], hence if [G : H ] is a power of
p we have [T : T ∩ H ] = 1, that is H ⊇ T . ��

We return to the set-up introduced at the beginning of the section. We will also assume
from now on that N is a T-group. Consider now the induced group extension S : 1 → N →
G

π−→ F → 1. It is easy to check that

ζ
≤
G(s) =

∑

E≤F

[F : E]−sζ
≤
S,E (s), ζ�

G (s) =
∑

E�F

[F : E]−sζ�
S,E (s),

where

ζ
≤
S,E (s) :=

∑

A≤ f G: π(AN )=E

[π−1(E) : A]−s, ζ�
S,E (s) :=

∑

A� f G: π(AN )=E

[π−1(E) : A]−s .

We denote by α
≤
S,E or α�

S,E the abscissae of convergence of ζ
≤
S,E (s) and ζ�

S,E (s). We recall
the following result.

Theorem 5.3 [30] Let ∗ ∈ {≤,�}, and let E ≤ F, where E is normal if ∗ = �. Then there
exists a cone integral data D∗

E over Q such that ζ ∗
S,E (s) = ZDE∗(s − h(N ) − |E | + 1).

Therefore, α∗
S,E is a rational number and ζ ∗

S,E (s) has meromorphic continuation to a region
of the form Re(s) > α∗

S,E − δ for some δ > 0.

It follows that α∗
G is a rational number and that ζ ∗

G(s) has meromorphic continuation to a
region of the form Re(s) > α∗

G − δ for some δ > 0.

5.1 The case of virtually abelian groups

To motivate the formulation of Theorem B for virtually nilpotent groups, we will make a
digression and discuss the case where N is abelian. We will change the notation and write T
instead of N . In this case, a formula for ζ ∗

S,E (s) (up to a finite number of local factors) was
given in [11], and this suffices to read off the abscissa of convergence (Theorem 2.2(2)). We
will recall this result (see Proposition 5.7 below) after introducing some notation.

Let F be a finite group and let V be a Q[F]-module of finite dimension over Q.

(1) Let Q[F] = A0 ⊕ A1 ⊕ · · · Ar be a decomposition of Q[F] into simple components.
Then Ai is isomorphic to a matrix algebra Mmi (Di ) for some central division algebra
Di over a number field Ki . Assume that A0 = Q · ∑γ∈F γ , so that D0 = K0 = Q and
m0 = 1.

(2) Let n2i = dimKi Ai = m2
i e

2
i , where e

2
i = dimKi Di .

(3) Let V = V0 ⊕ V1 ⊕ · · · ⊕ Vr , where Vi = Ai V . Then Vi ∼= (Dmi
i )ki (as Ai -modules) for

some integer ki ≥ 0. Note that V0 ∼= Q
k0 is the set of fixed points of F .

Define

ζ
≤
F�V (s) :=

k0−1∏

j=0

ζ(s − j) ·
r∏

i=1

ki ei−1∏

j=0

ζKi (ni (s − 1) − j),

ζ�
F�V (s) :=

k0−1∏

j=0

ζ(s − j) ·
r∏

i=1

ki ei−1∏

j=0

ζKi (ni s − j),
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where ζKi (s) is the Dedekind zeta function of Ki . Let α∗
F�V denote the abscissa of conver-

gence of ζ ∗
F�V (s). Since ζKi (s) has abscissa of convergence 1, we conclude that

α
≤
F�V = max

{
k0,

k1
m1

+ 1, . . . ,
kr
mr

+ 1

}
, α�

F�V = max

{
k0,

k1
m1

, . . . ,
kr
mr

}
.

Remark 5.4 A quick analysis shows that either α≤
F�V ≤ dim V or else α

≤
F�V = dim V +1,

in which case the action of F on V is non-trivial, every f ∈ F acts on V either as the identity
or as minus the identity, and ζ

≤
F�V (s) = ζV (s − 1), where ζV (s) := ∏dim V−1

j=0 ζ(s − j).

Remark 5.5 Note that after base change with C, Ai decomposes as a product of [Ki : Q]
copies of Mmiei (C), and Vi decomposes accordingly as a product of [Ki : Q] copies of
(Cmi ei )ei ki . Since ei ki

eimi
= ki

mi
, the numbers α

≤
F�V and α�

F�V can still be read off from the
C[F]-module V ⊗Q C. Hence:

Corollary 5.6 Let V1 and V2 be Q[F]-modules of finite dimension over Q. If V1 ⊗Q C ∼=
V2 ⊗Q C are isomorphic as C[F]-modules, then α∗

F�V1
= α∗

F�V2
.

Now, letG be afinitely generated virtually abelian groupwith torsion-freeFitting subgroup
T � G (hence T ∼= Z

h for some h), and let S : 1 → T → G
π−→ F → 1 be the associated

group extension. Set V := T ⊗Z Q, which is naturally a Q[F]-module. Note that if E � F
is a normal subgroup, then the 0-homology H0(E, V ) of E with coefficients in V is also a
Q[F]-module.

Proposition 5.7 [11, Sect. 2] For each subgroup E ≤ F, the series ζ
≤
S,E (s) and ζ

≤
E�V (s)

have the same local factor at p for almost all primes p. For each normal subgroup E�F, the
series ζ�

S,E (s) and ζ�
F�H0(E,V )(s) have the same local factor at p for almost all primes p.

Corollary 5.8 For each E ≤ F we have α
≤
S,E = α

≤
E�V , and for each E � F we have

α�
S,E = α�

F�H0(E,V ).

Proof By Theorem 5.3 and Theorem 2.2(2), we can disregard a finite number of local factors
in the computation of α∗

S,E . By the definition of ζ
≤
E�V (s) and ζ�

F�H0(E,V )(s), we can also
disregard a finite number of local factors in the computation of α≤

E�V or α�
F�H0(E,V ). Thus,

the corollary follows from Proposition 5.7. ��
Corollary 5.9 Either α

≤
G = α

≤
T or else α

≤
G = α

≤
T + 1. Moreover, the latter occurs if and only

if some element of F acts as minus the identity on T .

Proof We have α
≤
G = max{α≤

S,E : E ≤ F} and we know that α≤
G ≥ α

≤
T = h, where h is the

rank of T . By Corollary 5.8 and Remark 5.4 we find that α
≤
S,E is either h + 1 or α

≤
S,E ≤ h.

This proves that α
≤
G is either h or h + 1. If α

≤
G = h + 1, then α

≤
S,E = h + 1 for some

non-trivial E ≤ F , and by Remark 5.4 there is a non-trivial element of E that acts on T as
minus the identity. Conversely, if there is f ∈ F that acts on T as minus the identity, then
we can replace f by some power and assume that f 2 = 1. If E = 〈 f 〉, then α

≤
S,E = h + 1

by Remark 5.4. ��
Proposition 5.10 For each i ∈ {1, 2}, let Gi be a finitely generated virtually abelian group
with torsion-free Fitting subgroup Ti , and let Si : 1 → Ti → Gi → Fi → 1 be the induced
group extension. Assume that there is a C-linear isomorphism α : T1 ⊗Z C → T2 ⊗Z C and
a group isomorphism γ : P1 → P2 such that α( f · v) = γ ( f ) · α(v) for all v ∈ T1 ⊗Z C

and f ∈ F1. Then for each E1 ≤ F1 it holds that α
≤
S1,E1

= α
≤
S2,γ (E1)

, and for each E1 � F1
it holds that α�

S1,E1
= α�

S2,γ (E1)
. In particular, α≤

G1
= α

≤
G2

and α�
G1

= α�
G2

.
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Proof This follows from Corollary 5.8 and Corollary 5.6. ��

5.2 The R-Mal’cev completion for virtually nilpotent groups

Proposition 5.10 is our version of Theorem B for virtually abelian groups, and we want to
formulate a similar result for virtually nilpotent groups. To do this we recall the notion of
Mal’cev completion for virtually nilpotent groups [30, Section 1]. We begin by reviewing
the definition of nilpotent R-powered groups.

Definition 5.11 Let c ∈ N. A commutative ring R is said to be c-binomial if R → R ⊗Z Q

is injective and if
(r
k

) := r(r−1)···(r−k+1)
k! belongs to R for all r ∈ R and k = 1, . . . , c. For

such a ring, a nilpotent group N of nilpotency class ≤ c is said to be R-powered if for all
r ∈ R and n ∈ N , an element nr ∈ N has been defined such that the following holds:

(i) n1 = n, nr1+r2 = nr1nr2 , (nr1)r2 = nr1r2 for all n ∈ N , r1, r2 ∈ R.
(ii) m−1nrm = (m−1nm)r for all m, n ∈ N , r ∈ R.
(iii) The Hall-Petresco formula holds for all k-tuples (n1, . . . , nk) of elements of N and all

r ∈ R [34, Chap., 6] .

Note that (iii) makes sense by [34, Theorem 6.1] since N has nilpotency class ≤ c and
therefore only the first c binomials

(r
1

)
, . . .

(r
c

)
appear in the formula.

A morphism ϕ : N → M of nilpotent R-powered groups of nilpotency class ≤ c is a
group homomorphism such that ϕ(nr ) = ϕ(n)r for all n ∈ N and r ∈ R. They will be called
R-morphisms.

Definition 5.12 Let N be a T-group, say of nilpotency class c. Let R be a c-binomial ring.
The R-Mal’cev completion of N is a nilpotent R-powered group N R (necessarily of the
same nilpotency class as N ) together with a homomorphism ι : N → N R satisfying the
following universal property: if M is another nilpotent R-powered group of nilpotency class
≤ c and ϕ : N → M is a group homomorphism, then there exists a unique R-morphism
ϕ̃ : N R → M such that ϕ̃ ◦ ι = ϕ.

The theory of nilpotent R-powered groups, in particular the proof of the existence of the
R-Mal’cev completion for T-groups, is expounded in [34, Chapters 10 and 11] under the
assumption that R is a binomial domain (i.e.

(r
k

) ∈ R for all r ∈ R and all k ∈ N). However,
everything can be extended without further modifications to c-binomial rings in the case of
nilpotency class ≤ c.

Remark 5.13 The unipotent group scheme N over Q defined by a T-group N is precisely
the group scheme that represents the functor K �→ NK from commutative Q-algebras to
groups. If N1 and N2 are the unipotent group schemes over Q defined respectively by two
T-groups N1 and N2, thenN1 andN2 are isomorphic after base change with a field K ⊃ Q

if and only if NK
1 and NK

2 are isomorphic as nilpotent K -powered groups.

Definition 5.14 Given c ∈ N and a c-binomial ring R, we define a category Vc,R as follows.
The objects are group extensions S : 1 → N → G → F → 1, where N is a nilpotent
R-powered group of nilpotency class ≤ c, F is a finite group, and it is required that for any
g ∈ G, the automorphism of N induced by conjugation by g is an R-automorphism. The
morphisms in Vc,R are morphisms of short exact sequences of groups (u, v, w) : S → S′
such that u is an R-morphism. We also call them R-morphisms.

123



8 Page 22 of 26 D. Sulca

Definition 5.15 Let S : 1 → N
ι−→ G

π−→ F → 1 be an object of Vc,Z, where N is a
T-group, and let R be a c-binomial ring. The R-Mal’cev completion of S is an object SR of
Vc,R together with a morphism of short exact sequences (i, j, k) : S → SR satisfying the
following universal property: if (u, v, w) : S → T is a morphism of short exact sequences,
where T is an object of Vc,R , then there exists a unique R-morphism (ũ, ṽ, w̃) : SR → T
such that (ũ, ṽ, w̃) ◦ (i, j, k) = (u, v, w).

The following construction of the R-Mal’cev completion of S was given in [30, Section 1]
under the assumption that R is binomial. However, everything remains valid in our situation.
Wemay assume that ι is an inclusion and thatπ is a quotient map. Let s : F → G be a section
of π (i.e. π ◦ s = idF ) such that s(1) = 1 and s( f −1) = s( f )−1 for all f ∈ F . Then there
are maps σ : F → Aut(N ) and ψ : F × F → N such that for all f , f ′ ∈ F and n ∈ N we
have σ( f )(n) = s( f )ns( f )−1 and s( f )s( f ′) = ψ( f , f ′)s( f f ′). The pair (σ, ψ) is called
the cocycle associated to S and the section s. It satisfies the following cocycle conditions:

σ( f )σ ( f ′) = μ(ψ( f , f ′))σ ( f f ′) ∀ f , f ′ ∈ F

ψ( f , f ′)ψ( f f ′, f ′′) = σ( f )(ψ( f , f ′))ψ( f , f ′ f ′′) ∀ f , f ′, f ′′ ∈ F . (5.1)

The group G can be identified with the group N ×(σ,ψ) F whose underlying set is N × F
and where the operations are given by

(n, f ) · (n′, f ′) = (nσ( f )(n′)ψ( f , f ′), f f ′). (5.2)

Under this identification, N becomes N × {1}.
We now consider the R-Mal’cev completion N ↪→ N R of N . Note that σ can be extended

to a map F → AutR(N ), and ψ can be seen as a map F × F → N R . We still denote
these extensions by σ and ψ . We obtain a group N R ×(σ,ψ) F whose underlying set is
N R × F and where the operations are given by (5.2). Indeed, we get a group extension
1 → N R → N R ×(σ,ψ) F → F → 1, which is an object in Vc,R . This extension together
with the inclusions N ↪→ N R , N×(σ,ψ) F ↪→ N R×(σ,ψ) F , F = F , is in fact the R-Mal’cev
completion SR of S.

Remark 5.16 For i ∈ {1, 2} let Gi be a finitely generated virtually nilpotent group with
torsion-free Fitting subgroup Ni , and let Si : 1 → Ni → Gi → Fi → 1 be the associated
group extension. We may assume that Gi = Ni ×(σi ,ψi ) Fi , with (σi , ψi ) satisfying the
cocycle (5.1). Let c ∈ N be an upper bound for the nilpotency classes of N1 and N2, and
let R be a c-binomial domain. We describe what an R-isomorphism between SR

1 and SR
2 is.

By definition this is a morphism of exact sequences (u, v, w) : SR
1 → SR

2 , where u is an
R-isomorphism and w : F1 → F2 is an isomorphism. Note that v has the form

v(n, f ) = (u(n)τ ( f ), w( f )) (5.3)

for some map τ : F1 → N R
2 . One can easily check that given an R-isomorphism u : N R

1 →
N R
2 , a group isomorphism w : F1 → F2, and a map τ : F1 → N R

2 , if we define v as in (5.3),
then (u, v, w) is an R-isomorphism between SR

1 and SR
2 if and only if for all f , f ′ ∈ F and

n ∈ N ,

u(σ1( f )(n))u(ψ( f , f ′))τ ( f f ′) = τ( f )σ2(w( f ))(u(n))σ2(w( f ))(τ ( f ′))ψ2(w( f ), w( f ′)).
(5.4)

Remark 5.17 Let G be a finitely generated virtually nilpotent group with torsion-free Fitting
subgroup N , and let S : 1 → N → G → F → 1 be the associated group extension.
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We may assume that G = N ×(σ,ψ) F , with (σ, ψ) satisfying the cocycle condition (5.1).
For each Q-commutative algebra K we define G(K ) := NK ×(σ,ψ) F . Then G is an affine
group scheme over Q isomorphic as scheme to ∪̇ f ∈FA

h
Q
, where h := h(N ). It has N, the

unipotent group scheme defined by N , as its connected component. It is easy to check thatG
is well-defined up to Q-isomorphism. We call G the group scheme defined by G. Let G ′ be
another finitely generated virtually nilpotent group with torsion-free Fitting subgroup N ′, let
S′ be the associated group extension, and let G′ be the group scheme over Q defined by G ′.
It is not difficult to show thatG andG′ are isomorphic after base change with a field K ⊃ Q

if and only if SK1 and SK2 are K -isomorphic.

5.3 Theorem B for virtually nilpotent groups

We can now state the analogous of Theorem B for virtually nilpotent groups, which also
extends Proposition 5.10.

Theorem 5.18 LetGi be afinitely generated virtually nilpotent groupwith torsion-freeFitting
subgroup Ni and let Si : 1 → Ni → Gi → Fi → 1 be the induced group extension for
i = 1, 2. Assume that there is aC-isomorphism (u, v, w) : SC

1
∼= SC

2 . Then for each E1 ≤ F1
we have α

≤
S1,E1

= α
≤
S2,w(E1)

, and for each E1 � F1 we have α�
S1,E1

= α�
S2,w(E1)

.

The rest of the section is devoted to the proof of this theorem. The idea is similar to that of
the proof of Theorem C given in Section 3.

Lemma 5.19 For i ∈ {1, 2}, let Gi be a finitely generated virtually nilpotent group with
torsion-free Fitting subgroup Ni , and let Si : 1 → Ni → Gi → Fi → 1 be the associated
group extension. Assume that F1 ∼= F2 and letw0 : F1 → F2 be an isomorphism. If for some
field extension K ⊃ Q there is K -isomorphism (u, v, w) : SK1 ∼= SK2 with w = w0, then this
also holds for some number field.

Proof We can assume thatGi = Ni ×(σi ,ψi ) Fi , with (σi , ψi ) satisfying the cocycle condition
(5.1). Let Iw0 be the functor from the category of commutative algebras overQ to the category
of sets that is defined by:

Iw0(K ) = {(u, τ ) | u : NK
1 → NK

2 is a K -isomorphism and τ : F1 → NK
2 satisfies5.4}.

(5.5)

By using the log isomorphism between the unipotent group scheme overQ defined by Ni and
its Lie algebra (viewed as functor on commutative algebras over Q) and the fact that, owing
to nilpotency, the Baker-Campbell-Hausdorff formula is finite, one can easily show that Iw0

is represented by a closed subscheme of GLh ×∏
f ∈F1 A

h ×Spec(Q), where h := h(N1) =
h(N2). The hypothesis implies that Iw0 is not the empty scheme by Remark 5.16. If K is the
residue field at a closed point of Iw0 , then K is a number field and Iw0(K ) �= ∅. Again by
Remark 5.16, a pair (u, τ ) ∈ Iw0(K ) yields a K -isomorphism (u, v, w) : SK1 → SK2 , with v

defined by (5.3) and w = w0. ��
Definition 5.20 Let R be a c-binomial ring, and let S : 1 → N → G

π−→ F → 1 be an
object of Vc,R . For each subgroup E ≤ F we define the following formal series:

ζ
≤
S,E (s) :=

∑

A≤ f G:
π(A)=E ∧ A∩N≤R N

[π−1(E) : A]−s , ζ�
S,E (s) :=

∑

A� f G:
π(A)=E ∧ A∩N≤R N

[π−1(E) : A]−s ,

(5.6)
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where the notation A∩N ≤R N means that A∩N is an R-subgroup of N , that is, a subgroup
such that nr ∈ A ∩ N for all n ∈ A ∩ N and r ∈ R.

Proposition 5.21 Let G be a finitely generated virtually nilpotent group with torsion-free
Fitting subgroup N, say of nilpotency class c and Hirsch length h, and let S : 1 → N →
G

π−→ F → 1 be the associated extension. Let ∗ ∈ {≤,�}. Then for each E ≤ F, with E
normal if ∗ = �, there exists a cone integral data D∗

E over Q such that the following holds.

(1) For each prime p we have ζ ∗
SZp ,E

(s) = (1 − p−1)h ZD∗
E
(s − h − |E | + 1, p).

(2) Let K be a number field and O its ring of integers. For each maximal ideal p ⊂ O for
which Op is c-binomial (e.g. c! /∈ p) we have ζ ∗

SOp ,E
(s) = (1 − Np−1)−h ZD∗

E⊗QK (s −
h−|E |+1, p), whereD∗

E ⊗Q K denotes the collectionD∗
E viewed as cone integral data

over K .

Proof A construction of a collection D∗
E that satisfies (1) was obtained in [30, Section 2.2].

With the same proof one can show that this collection also satisfies (2). ��
Proof of Theorem 5.18: Lemma 5.19 enables us to replace C by a number field K in the
hypothesis of the theorem without modifying w. We can assume that Gi = Ni ×(σi ,ψi ) Fi ,
with (σi , ψi ) satisfying the cocycle condition (5.1). Let τ : F1 → NK

2 be the map of Remark
5.16 defined from (u, v, w). Let {x1, . . . , xh} be a Mal’cev basis for N1 and {y1, . . . , yh} a
Mal’cev basis for N2.

We denote by T the set of maximal ideals p ⊂ O := OK satisfying the following
conditions:

(1) Op is c-binomial (e.g. c! /∈ p) so that N
Op

1 and N
Op

2 are Op-powered groups;

(2) u(xi ), τ ( f ) ∈ N
Op

2 for all i = 1, . . . , h and f ∈ F1;

(3) u−1(yi ) ∈ N
Op

1 for all i = 1, . . . , h;

Note that almost all maximal ideals p ⊂ O are in T . For such a p, conditions (2) and
(3) imply that u induces an Op-isomorphism N

Op

1 → N
Op

2 . According to Remark 5.16,

(u, v, w) induces an isomorphism S
Op

1 → S
Op

2 .
Fix E1 ≤ F1, with E1 normal if ∗ = �, and set E2 := w(E1). We consider the cone

integral dataD∗
Ei

of Proposition 5.21 applied to Si . From the above paragraph we deduce that
ZD∗

E1
⊗K (s − h − |E1| + 1, p) = ZD∗

E2
⊗K (s − h − |E2| + 1, p) for all almost all maximal

ideals p ⊂ O, where D∗
Ei

⊗ K denotes the same collection D∗
Ei

viewed as cone integral data
over K . Therefore, by Corollary 2.4(2), ZD∗

E1
(s−h−|E1|+1) and ZD∗

E2
(s−h−|E2|+1)

have the same abscissa of convergence. Finally, by Proposition 5.21, ζ ∗
S1,E1

(s) and ζ ∗
S2,E2

(s)
have the same abscissa of convergence. ��
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