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Abstract
Let F be a local non-Archimedean field of characteristic zero with a finite residue field.
Based on Tadić’s classification of the unitary dual of GL2n(F), we classify irreducible unitary
representations ofGL2n(F) that have nonzero linear periods, in terms of Speh representations
that have nonzero periods. We also give a necessary and sufficient condition for the existence
of a nonzero linear period for a Speh representation.

Keywords p-adic groups · Distinguished representations · Unitary representations

Mathematics Subject Classification 22E50 · 22E35

1 Introduction

1.1 Main results

Let F be a local non-Archimedean field of characteristic zero with a finite residue field.
Denote the group Gn = GLn(F). Let p and q be two nonnegative integers with p + q = n,
we denote by H = Hp,q the subgroup of Gn of matrices of the form:(

g1 0
0 g2

)
with g1 ∈ Gp, g2 ∈ Gq .

Let π be a smooth representation of Gn on a complex vector space V and χ a character of
H , denote by HomH (π, χ) the space of linear forms l on V such that l(π(h)v) = χ(h)l(v)

for all v ∈ V and h ∈ H . Smooth representations π of Gn with HomH (π, χ) �= 0 are called
(H , χ)-distinguished, or simply H -distinguished if χ is the trivial character 1 of H .

Elements of HomH (π, 1) are called (local) linear periods of π . Linear periods have been
studied bymany authors. The uniqueness of linear periodswas proved by Jacquet andRallis in
[11]; the uniqueness of twisted linear periods, with respect to almost all characters χ of H and
in the case p = q , was proved by Chen and Sun in [3]. It thus remains an interesting question
of characterizing irreducible representations that have nonzero linear periods. It is known that
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2254 C. Yang

a tempered representation of GL2n(F) has nonzero linear periods with respect to Hn,n if and
only if it is a functorial transfer of a generic tempered representation of SO2n+1(F), see [13,
20, 22]. Another closely related characterization of the existence of nonzero linear periods for
an essentially square-integrable representation is through poles of the local exterior square
L-functions associated with the representation, see [20] and references therein. A recent
preprint by Sécherre [29] studied supercuspidal representations with nonzero linear periods
from the point of view of type theory. However, all of these characterizations are for generic
representations. Motivated by the recent work of Gan–Gross–Prasad [9] on branching laws
in the non-tempered case, we are led to consider in this work the existence of nonzero linear
periods for irreducible unitary representations.

Our main results are as follows. We refer the reader to Sect. 2 for unexplained notation in
the following two theorems.

Theorem 1.1 Let Sp(δ, k) be a Speh representation of G2n, where δ is a square-integrable
representation of Gd with d > 1, and k is a positive integer (2n = dk). Then Sp(δ, k) is
Hn,n-distinguished if and only if d is even and δ is Hd/2,d/2-distinguished.

Theorem 1.2 An irreducible unitary representation π of G2n is Hn,n-distinguished if and
only if it is self-dual and its Arthur part πAr is of the form

(σ1 × σ∨
1 ) × · · · × (σr × σ∨

r ) × σr+1 × · · · × σs .

where each σi is a Speh representation for i = 1, · · · , s, and each representation σ j is
Hm j ,m j -distinguished for some positive integer m j , j = r + 1, . . . , s.

Distinction problem for unitary representation has already been considered by Matringe
for local Galois periods in [21] and by Offen and Sayag for local Symplectic periods in
[27, 28]. We remark that the special case of Theorem 1.2 for representations of Arthur type
(see Theorem 7.3) is similar to [22, Theorem 3.13] about local linear periods for generic
representations and the main result in [21] about local Galois periods for unitary representa-
tions. A global analogue of our result is to find the Hn,n-distinguished representation in the
automorphic dual of G2n , which we will pursue in future works. We also refer the reader to
[7, 11] for the role of local linear periods and their global analogues in the study of standard
L-functions.

1.2 Remarks on themethod of the proof

Most of our work deals with distinction of parabolically induced representations of Gn .
The main tool to study distinction of induced representations is the geometric lemma of
Bernstein-Zelevinsky [1], which relates distinction of an induced representation to distinc-
tion of some Jacquet module of the inducing data. It was shown by Tadić in [30] that every
irreducible unitary representation is isomorphic to the parabolic induction of Speh repre-
sentations or their twists. The observation is that Jacquet modules of Speh representations
have convenient combinatorial descriptions similar to those of Jacquet modules of essentially
square-integrable representations [16]. As hinted by the geometric lemma, to classify Hn,n-
distinguished irreducible unitary representations, it is necessary to consider Hp,q -distinction
with respect to a particular family of characters in (2.1), not only of Speh representations, but
also of a larger class of representations, ladder representations. The class of ladder represen-
tations was introduced by Lapid and Mínguez in [17], and has many remarkable properties
which make them an ideal testing ground for distinction of non-generic representations and
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Linear periods for unitary representations 2255

some other questions in the representation theory of general linear groups, see for example
[6, 10, 18, 24]. The most complicated part of the paper, Sect. 6, is devoted to the study of
distinction of ladder representations. Our treatment is largely combinatorial based on detailed
analysis by the geometric lemma. We refer the reader to [19, 22] for a similar approach to
the classification of distinguished generic representations in Galois symmetric space and our
setting respectively.

We next outline the proof of Theorem 1.1. For the ‘if’ part, the existence of non-zero
linear periods for the standard module of a Speh representation Sp(Δ, k) is guaranteed by the
work of Blanc and Delorme [2] when Δ is Hd/2,d/2-distinguished. Thus it suffices to show
that the maximal proper subrepresentation of the standard module associated with Sp(Δ, k)
is not Hn,n-distinguished. The explicit structure of this maximal proper subrepresentation is
well known by the work of Tadić [32] (see also [17]). For the ‘only if’ part of Theorem 1.1,
however, we cannot expect to get any information on the distinguishedness of Δ from that of
the standard module of Sp(Δ, k) when k is an even, as in this case, the standard module of
Sp(Δ, k) is Hn,n-distinguished for any self-dual Δ by the work of Blanc and Delorme [2].
We instead use the idea of ‘restricting to the mirabolic subgroup’, and relate linear periods on
Sp(Δ, k)with those on its highest shifted derivative, which is exactly Sp(Δ, k−1). The ‘only
if’ part is then proved by induction on k. We remark that the idea of exploiting the theory of
derivatives in distinction problems has already appeared many times in the literature, see for
example [4, 15, 21, 22].

The paper is organized as follows. In Sect. 2we introduce notations and some preliminaries
on the representation theory of general linear groups. In Sect. 3 we present some general facts
on (Hp,q , μa)-distinguished representations,whereμa is the character in (2.1). In this section,
we recall a result of Ganwhich is crucial for our combinatorial study of twisted linear periods.
In Sect. 4 we give a detailed analysis of the parabolic orbits of the symmetric space involved
and in Sect. 5 we draw some consequences of the geometric lemma. Section 6 is devoted
to the study of distinction of ladder representations. We then complete the classification in
Sect. 7.

2 Preliminaries

Throughout the paper let F be a local non-Archimedean field of characteristic zero with a
finite residue field.

For any n ∈ Z≥0, let Gn = GLn(F) and let R(Gn) be the category of smooth complex
representations of Gn of finite length. Denote by Irr(Gn) the set of equivalence classes of
irreducible objects ofR(Gn) and by C (Gn) the subset consisting of supercuspidal represen-
tations. (By convention we define G0 as the trivial group and Irr(G0) consists of the trivial
representation of G0.) Let Irr and C be the disjoint union of Irr(Gn) and C (Gn),n ≥ 0,
respectively. For a representation π ∈ R(Gn), we call n the degree of π .

LetRn be the Grothendieck group ofR(Gn) andR = ⊕n≥0Rn . The canonical map from
the objects of R(Gn) to Rn will be denoted by π �→ [π].

Denote by ν the character ν(g) = | det g | on anyGn . (The n will be implicit and hopefully
clear from the context.) For any π ∈ R(Gn) and a ∈ R, denote by νaπ the representation
obtained from π by twisting it by the character νa , and denote by π∨ the contragredient of
π . The sets Irr and C are invariant under taking contragredient. For a character χ of F×,
define the real part 	(χ) of χ to be the real number a such that |χ(z)|C = |z|a , z ∈ F×,
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where | · |C is the absolute value on C. For a subgroup Q of Gn , denote by δQ the modular
character of Q.

For two nonnegative integers p and q with p + q = n, we denote by wp,q the matrix

wp,q =
(
0 Iq
Ip 0

)
.

Let Hp,q be the subgroup of Gn as in the introduction. For a ∈ R, define the character μa of
Hp,q by

μa

((
g1

g2

))
= νa(g1)ν

−a(g2), g1 ∈ Gp, g2 ∈ Gq . (2.1)

(By convention we allow the case where p or q is zero.)

2.1 Jacquet modules of induced representations

The standard parabolic subgroups ofGn are in bijection with compositions (n1, . . . , nt ) of n.
The corresponding standard Levi subgroup is the group of block diagonal invertible matrices
with block sizes n1, . . . , nt . It is isomorphic to Gn1 × · · · × Gnt .

Let P = M � U be a standard parabolic subgroup of Gn and σ a smooth, complex
representation of M . We denote by IndGn

P (σ ) its normalized parabolic induction; for any
standard Levi subgroup L ⊂ M , we denote by rL,M (σ ) the normalized Jacquet module (see
[1, Sect. 2.3]).

If ρ1, . . . , ρt are representations of Gn1 , . . . ,Gnt respectively, we denote by

ρ1 × · · · × ρt

the representation IndGn
P σ where σ is the representation ρ1 ⊗ · · · ⊗ ρt of M , where M is the

standard Levi subgroup of the parabolic subgroup P corresponding to (n1, . . . , nt ).
Next we briefly review the Jacquet module of a product of representations of finite length

[33, Sect. 1.6] (or more precisely, its composition factors). Let α = (n1, . . . , nt ) and β =
(m1, . . . ,ms) be two compositions of n. For every i ∈ {1, . . . , t}, let ρi ∈ R(Gni ). Denote
by Matα,β the set of t × s matrices B = (bi, j ) with nonnegative integer entries such that

s∑
j=1

bi, j = ni , i ∈ {1, . . . , t},
t∑

i=1

bi, j = m j , j ∈ {1, . . . , s}.

Fix B ∈ Matα,β . For any i ∈ {1, . . . , t}, αi = (bi,1, . . . , bi,s) is a composition of ni and we
write the compostion factors of rαi (ρi ) as

σ k
i = σ k

i,1 ⊗ · · · ⊗ σ k
i,s, σ k

i, j ∈ Irr(Gbi, j ), k ∈ {1, . . . , li },
where li is the length of rαi (ρi ). For any j ∈ {1, . . . , s} and a sequence k = (k1, . . . , kr ) of
integers such that 1 ≤ ki ≤ li , define

�
B,k
j = σ

k1
1, j × · · · × σ k

t, j ∈ R(Gm j ).

Then we have

[rβ(ρ1 × · · · × ρt ] =
∑

B∈Matα,β ,k

[�b,k
1 ⊗ · · · ⊗ �

B,k
s ].
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Linear periods for unitary representations 2257

2.2 Langlands classification

By a segment of cuspidal representations we mean a set

[a, b]ρ = {νaρ, νa+1ρ, . . . , νbρ},
where ρ ∈ C and a, b ∈ R, b − a ∈ Z≥0. The representation νaρ × νa+1ρ × · · · × νbρ

has a unique irreducible quotient, which is an essentially square-integrable representaton
and is denoted by Δ([a, b]ρ). The map [a, b]ρ �→ Δ([a, b]ρ) gives a bijection between the
set of segments of cuspidal representations and the subset of essentially square-integrable
representations in Irr. (In what follows, for simplicity of notation, we shall use Δ to denote
either a segment of cuspidal representations or the essentially square-integrable representa-
tions corresponding to it; we hope this will not cause any confusion.) We use the convention
that Δ([a, b]ρ) = 0 if b < a − 1 and Δ([a, a − 1]ρ) = 1, the trivial represntation of G0.

We denote the extremities of Δ = Δ([a, b]ρ) by b(Δ) = νaρ ∈ C and e(Δ) = νbρ ∈ C
respectively. We also write l(Δ) = b − a + 1 for the length of Δ.

For ρ ∈ C , we denote by Zρ the set {νaρ | a ∈ Z} and call it the cuspidal line of ρ. We
then transport the order and additive structure of Z to the cuspidal line Zρ. Thus we shall
sometimes write νaρ + b = νa+bρ and νaρ ≤ νbρ if a ≤ b, where a, b are integers. By the
contragredient of Zρ we mean the cuspidal line Zρ∨.

LetΔ andΔ′ be two segments. We say thatΔ andΔ′ are linked ifΔ∪Δ′ forms a segment
but neither Δ ⊂ Δ′ nor Δ′ ⊂ Δ. If Δ and Δ′ are linked and b(Δ) = b(Δ′)ν j with j < 0,
then we say that Δ precedes Δ′ and write Δ ≺ Δ′.

A multisegment is a multiset (that is, set with multiplicities) of segments. Denote by O
the set of multisegements. For ρ ∈ C , let Oρ denote the multisegements such that all of its
segements are contained in the cuspidal line Zρ. An order m = {Δ1, . . . , Δt } ∈ O on a
multisegments m is of standard form if Δi ⊀ Δ j for all i < j . Every m ∈ O admits at least
one standard order.

Let m = {Δ1, . . . , Δt } ∈ O be ordered in standard form. The representation

λ(m) = Δ1 × · · · × Δt

is independent of the choice of order of standard form. It has a unique irreducible quotient
that we denote by L(m). The Langlands classification says that the map m �→ L(m) is a
bijection between O and Irr.

2.3 Unitary dual of Gn

Webriefly recall the classification of the unitary dual ofGn byTadić [30, TheoremD]. Let Irru

be the subset of unitarizable representations in Irr, andDu the subset of all square-integrable
classes in Irru . Let k be a positive integer, and let δ ∈ Du . The repersentation

ν(k−1)/2δ × ν(k−3)/2δ × · · · × ν−(k−1)/2δ

has a unique irreducible unitarizable quotient Sp(δ, k), called a Speh representation.
Suppose 0 < α < 1/2. The representation ναSp(δ, k) × ν−αSp(δ, k) is irreducible and

unitarizable; we denote it by Sp(δ, k)[α,−α].
Let B be the set of all

Sp(δ, k), Sp(δ, k)[α,−α],
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where δ ∈ Du , k is a positive integer and 0 < α < 1/2. By [30, Theorem D], an irreducible
representation π is unitarizable if and only if it is of the form

π1 × · · · × πt , πi ∈ B, i = 1, . . . , t .

Moreover, this expresssion is unique up to permutation. We call it a Tadić decomposition of
π .

By an irreducible representation of Arthur type, we mean an irreducible unitary represen-
tation whose Tadić decomposition does not involve any Sp(δ, k)[α,−α]. For π ∈ Irru , we
then have a decomposition π = πAr × πc, where πAr is a representation of Arthur type and
is called the Arthur part of π .

3 Preliminaries on (Hp,q,�a)-distinguished representations

3.1 Basic facts

Lemma 3.1 (1) Let π be a smooth representation of Gn. If π is (Hp,q , μa)-distinguished for
two nonnegative integers p, q with p + q = n and a ∈ R, then π is also (Hq,p, μ−a)-
distinguished;

(2) Letπ1, . . . , πt ∈ Irr(Gn). Ifπ1×· · ·×πt is (Hp,q , μa)-distinguished for two nonnegative
integers p, q with p+q = n and a ∈ R, thenπ∨

t ×· · ·×π∨
1 is (Hp,q , μ−a)-distinguished.

Proof The statement (1) follows from the fact that π ∼= πwq,p . Let ι denote the involution
ι(g) = t g−1 of transpose inversion. Then (2) follows from the fact that π ◦ ι ∼= π∨ for any
irreducible representation π and the fact that

(π1 × · · · × πt ) ◦ ι ∼= (πt ◦ ι) × · · · × (π1 ◦ ι)

��
For representations of dimension one, we have the following simple lemma, whose proof

we omit.

Lemma 3.2 Let χ be a character of Gn. Assume that χ is (Hp,q , μa)-distinguished for non-
negative integers p, q with p + q = n and a ∈ R. If q = 0 (resp. p = 0), then χ is the
character νa (resp. ν−a) of Gn; If p, q > 0, then a = 0 and χ = 1, the trivial character of
Gn.

For untwisted linear periods, we have the following fundamental result due to Jacquet and
Rallis [11].

Lemma 3.3 Let p, q be two positive integers with p + q = n. If π ∈ Irr(Gn), then
dimHomHp,q (π, 1) ≤ 1. Furthermore, if dimHomHp,q (π, 1) = 1, then π ∼= π∨.
Remark 3.4 In this work we will not need multiplicity one results about (twisted) linear
periods. However, the self-dualness property of distinguished representations is important
for our applications of the geometric lemma. For example, one key ingredient is Proposition
3.9 which asserts self-duality for distinguished essentially square-integrable representations.
In the case p = q , twisted linear periods have been studied by Chen and Sun in [3]. Their
result shows that, for all but finitely many a, dim HomHp,p (π, μa) ≤ 1 for all π ∈ Irr(G2p).
Due to the author’s limited knowledge, one cannot deduce self-duality for distingsuished
representations as in the untwisted case. For generic representations, however, one can deduce
self-duality from a result of Gan as shown in the next subsection.
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Linear periods for unitary representations 2259

3.2 Relations with Shalika periods

The Shalika subgroup of G2n is defined to be

S2n =
{(

a b
0 a

) ∣∣∣∣ a ∈ Gn, b ∈ Mn

}
= Gn � Nn,n,

where Mn indicates the set of n × n matrices with entries in F . Define a character ψS2n on
S2n by

ψS2n

((
a
a

)(
1 b
1

))
= ψF (Tr(b)), (3.1)

where ψF is a non-trivial character of F . For a smooth representation π of G2n , an element
in HomS2n (π,ψS2n ) is called a local Shalika period of π .

In the untwisted case, the relation between linear periods and Shalika periods is well
known (see [14] for their equivalence in the case of supercuspidal representations; see also
a discussion for relatively square-integrable representations in [20, Sect. 5]). Using a theta
correspondence approach, Gan proved the following result that relates generalized linear
periods and generalized Shalika periods on Gn .

Proposition 3.5 Let π be an irreducible generic representation of G2n and σ an irreducible
representation of Gn. One has

HomS2n (π, σ � ψS2n )
∼= HomHn,n (π, σ � C), (3.2)

where σ � ψS2n is viewed as a representation of S2n = Gn � Nn,n.

Proof This is a consequence of Theorem 3.1 and Theorem 4.1 of [8]. ��

In fact, in Theorem 3.1 of [8], Gan obtained a statement that relates the generalized linear
period of an irreducible representation to the generalized Shalika period of the big theta lift
of its contragradient. We refer interested readers to the original paper of Gan for more details.
What is pertinent to this work is the following simple corollary that relates as well twisted
linear periods in our context to Shalika periods.

Corollary 3.6 Let π be a generic representation of G2n. The followings are equivalent:

(1) π is (Hn,n, μa)-distinguished for some a ∈ R;
(2) π is (Hn,n, μa)-distinguished for all a ∈ R;
(3) π is (S2n, ψS2n )-distinguished.

In particular, if one of these equivalent conditions holds, then π is self-dual.

Proof As π is generic, its twist νaπ , for a ∈ R, is also generic. So

HomHn,n (π, μa) = HomHn,n (π, νa � ν−a) ∼= HomHn,n (ν
aπ, ν2a � C)

∼= HomS2n (ν
aπ, ν2a � ψS2n )

∼= HomS2n (π,ψS2n ).

��
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3.3 The theory of Bernstein–Zelevinsky derivatives

Let Pn ⊂ Gn be the mirabolic subgroup of Gn consisting of matrices with the last row
(0, 0, . . . , 0, 1). We refer the reader to [1, 3.2] for the definition of the following functors

Ψ − : Alg Pn → AlgGn−1, Ψ + : AlgGn−1 → Alg Pn,

Φ− : Alg Pn → Alg Pn−1, Φ+ : Alg Pn−1 → Alg Pn .

Define π(k) = Ψ −(Φ−)k−1
(
π |Pn

)
to be the kth derivative of a representation π of Gn .

The following proposition can be proved by the same argument as those in [15, Proposition
1] (see also [20, Proposition 3.1], where the linear subgroups Hp,q take different forms.)

Proposition 3.7 If σ is a representation of Pn−1 and χ is a character of Hp,q , then

HomPn∩Hp,q (Φ
+σ, χ) ∼= HomPn−1∩Hq−1,p (σ, χwq−1,pμ−1/2)

as complex vector spaces, where χwq−1,p is the character of Hq−1,p defined by χwq−1,p (g) =
χ(wq−1,p gw−1

q−1,p). In particular, for all a ∈ R, one has

HomPn∩Hp,q (Φ
+σ,μa) ∼= HomPn−1∩Hq−1,p (σ, μ−a−1/2). (3.3)

As a corollary, we have the following result due to Matringe [20, Theorem 3.1].

Corollary 3.8 Let Δ be an essentially square-integrable representation of Gn. Let p, q be
two positive integers with p+q = n, and χ a character of Hp,q . Assume that π is (Hp,q , χ)-
distinguished. Then p = q.

Another application of Proposition 3.7 will generalize Corollary 3.8 to essentially Speh
representations in Corollary 6.14 of Sect. 6.3.

As a direct consequence of Corollarys 3.8 and 3.6, we have:

Proposition 3.9 Let Δ be an essentially square-integrable representation of Gn. If Δ is
(Hp,q , μa)-distinguished for two positive integers p, q with p + q = n and some a ∈ R,
then p = q and Δ is Hp,p-distingusihed (hence self-dual).

4 Symmetric spaces and parabolic orbits

Themain tool we use to classify distinguished unitary representations is the geometric lemma
of Bernstein and Zelevinsky [1, Theorem 5.2]. Applying it requires a detailed analysis of
the double coset space P\Gn/Hp,q , where P is a parabolic subgroup of Gn . As Hp,q is a
symmetric subgroup of Gn , we follow the framework given by Offen in [26].

4.1 General notations

Let G = Gn , H = Hp,q be the subgroup of Gn as in the introduction. Let

ε = εp,q =
(
Ip

−Iq

)
,

and θ = θp,q be the involution on Gn defined by θ(g) = εgε−1. The symmetric space
associated to (G, θ) is

X = {g ∈ G | θ(g) = g−1},
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Linear periods for unitary representations 2261

equipped with the G-action g · x = gxθ(g)−1. The map g �→ g · e gives a bijection of the
coset space G/H onto the orbit G · e ⊂ X , and thus a bijection of the double coset space
P\G/H onto the P-orbits in G · e, where P denotes a parabolic subgroup of G. For any
g ∈ G, denote by [g]G the conjugacy class of g in G. Note that the map g �→ gε gives a
bijection of G · e onto [ε]G and that the G-action on G · e is transformed to the conjugation
action of G on [ε]G .

For any subgroup Q of G and x ∈ X , let Qx = {g ∈ Q | g · x = x} be the stabilizer of x
in Q. Note that Qx is just the centralizer of xε in Q.

4.2 Twisted involutions inWeyl groups

A first coarse classification of the double cosets in P\G/H is given by certain Weyl group
elements. Let W be the Weyl group of G. Let

W [2] = {w ∈ W | wθ(w) = e} = {w ∈ W | w2 = e}
be the set of twisted involutions in W . For two standard Levi subgroups M and M ′ of G, let
WM M ′ be the set of all w ∈ W that are left WM -reduced and right WM ′ -reduced.
Given a standard parabolic subgroup P = M � U , define a map

ιM : P\X → W [2] ∩ WM M (4.1)

by the relation

Px P = P ιM (P · x)P. (4.2)

For x ∈ X , let

w = ιM (P · x) and L = M(w) = M ∩ wMw−1.

Then L is a standard Levi subgroup of M satisfying L = wLw−1.

4.3 Admissible orbits

It is noted in [26] that, to apply the geometric lemma in particular cases, it is necessary to
first understand the admissible orbits. Recall that x ∈ X (or a P-orbit P · x in X) is said to
be M-admissible if M = wMw−1 where w = ιM (P · x). We now describe the relevant data
for M-admissible P-orbits in G · e.

By [26, Corollary 6.2], M-admissible P-orbits in G · e is in bijection with M-orbits in
G · e ∩ NG(M), or equivalently M-conjugacy classes in [ε]G ∩ NG(M).

Fix a composition n̄ = (n1, . . . , nt ) of n. Let P = M �U be the standard parabolic sub-
group of Gn associated to n̄. Denote byS

(n̄)
t the set of permutations τ on the set {1, 2, . . . , t}

such that ni = nτ(i) for all i ∈ {1, . . . , t}. To each τ inS(n̄)
t , we associate a block matrix wτ

which has Ini on its (τ (i), i)-block for each i and has 0 elsewhere. Then the map

τ �→ wτ M

defines an isomorphism of groups from S
(n̄)
t to NG(M)/M . Write an element of M as

diag{A1, . . . , At }. Note that an element wτ diag{A1, . . . , At } of NG(M) has order 2 if and
only if

τ 2 = 1 and Ai Aτ(i) = Ini for all i ∈ {1, . . . , t}.
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One sees that the M-conjugacy classes in [ε]G ∩ NG(M) are parameterized by the set of
pairs (cτ , τ ) where τ ∈ S

(n̄)
t , τ 2 = 1, and cτ is a set of the form

{(nk,+, nk,−) | for allksuch thatτ(k) = k}
such that ⎧⎪⎨

⎪⎩
nk = nk,+ + nk,−, nk,+, nk,− ≥ 0;∑

k,τ (k)=k nk,+ + ∑
(i,τ (i)),i<τ(i) ni = p;∑

k,τ (k)=k nk,− + ∑
(i,τ (i)),i<τ(i) ni = q.

(4.3)

Denote by I�
p,q(n̄) the set of all such pairs.

For the M-admissible P-orbit O corresponding to (cτ , τ ) in I�
p,q(n̄), we can choose a

natural orbit representative x = x(cτ ,τ ) ∈ O ∩ NG(M) as follows: The matrix x ε has Ini on
its (τ (i), i)-block when τ(i) �= i , diag(Ini,+ ,−Ini,−) on its (i, i)-block when τ(i) = i , and
0 elsewhere. One sees easily that Mx consists of elements diag{A1, . . . , At } such that{

Ai = Aτ(i), τ (i) �= i;
Ai Ini,+,ni,− = Ini,+,ni,− Ai τ(i) = i .

(4.4)

Here and in what follows, we denote by In1,n2 for the diagonal matrix diag{In1 ,−In2}. Thus,
when τ(i) = i , we may further write Ai as diag{Ai,+, Ai,−}. One also has Px = Mx � Ux .

The following computation of modular characters is indispensable for applications of the
geometric lemma, see [26, Theorem 4.2]. We omit the proof here as it is obtained by a routine
calculation.

Lemma 4.1 Let x ∈ G · e ∩ NG(M) be the representative as above of the M-admissible
P-orbit corresponding to (c, τ ) ∈ I�

p,q(n̄). Then, for m = diag{A1, . . . , At } ∈ Mx, we have

δPx δ
−1/2
P (m) =

∏
i< j

τ(i)=i,τ ( j)= j

ν(Ai,+)(n j,+−n j,−)/2ν(Ai,−)(n j,−−n j,+)/2ν(A j,+)(ni,−−ni,+)/2

(4.5)

· ν(A j,−)(ni,+−ni,−)/2
∏
i< j

τ(i)>τ( j)

ν(Ai )
−n j /2ν(A j )

ni /2.

4.4 General orbits

For our purposes, we consider only P-orbits in G · e ⊂ X where P is a maximal parabolic
subgroup. Let P = Pk,n−k be the standard parabolic subgroup associated to (k, n−k)withM
its Levi subgroup.We follow the geometricmethod as in [22]. The casewhere |p−q| ≤ 1 can
be essentially covered by the results there. We remark however that the symmetric subgroup
H there takes a different form and the treatment here is independent.

Let V be a n-dimensional F-vector space with a basis {e1, . . . , en}. Let V+ (resp. V−)
be the subspace of V of dimension p (resp. q) which is generated by {e1, . . . , ep} (resp.
{ep+1, . . . , en}). The coset space G/P can be identified with the set of subspaces of V of
dimension k. For such a subspace W , set

rW = dimF (W ∩ V+), sW = dimF (W ∩ V−).
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Lemma 4.2 Let W1 and W2 be two subspaces of V of dimension k. Then they are in the same
H-orbit if and only if rW1 = rW2 and sW1 = sW2 . For a pair of nonnegative integers (r , s),
there is a subspace W of V such that r = rW and s = sW if and only if{

r + s ≤ k,

k − s ≤ p, k − r ≤ q.
(4.6)

Denote by Ikp,q the set of pairs of nonnegative integers (r , s) that satisfying (4.6). Then,

by Lemma 4.2, the double cosets in H\G/P can be parameterized by Ikp,q . For (r , s) ∈ Ikp,q ,
call d = k − r − s the defect of (r , s).

We first seek a complete set of representatives of P\G/H . We split the discussions into
two cases.

Case k ≥ p. Let W(r ,s) be the subspace of V generated by

{e1, . . . , er ; er+1 + eq+r+1, . . . , ek−s + eq+k−s; eq+k−s+1, . . . en; ep+1, . . . , ek}.
Then dimF Wr ,s = k, dimF (W(r ,s) ∩ V+) = r and dimF (W(r ,s) ∩ V−) = s. Let η̃−1

(r ,s) be the
block matrix (

C1 C2

C3 C4

)

where C1 and C4 are matrices of size p × p and q × q respectively, and

C1 =
(
Ik−s

0

)
, C4 =

(
Ik−s+q−p

0

)

C2 =
(
0 0
0 Is+p−k

)
, C3 =

(
0 0
0 Ip−r

)
.

Then {η̃−1
(r ,s)} is a complete set of representatives of the double coset space H\G/P . Taking

inverse, we thus get a complete set of representatives {η̃(r ,s)} of P\G/H .
Case k ≤ p. Let W(r ,s) be the subspace of V of dimension k generated by

{e1, e2, . . . , er ; er+1 + en−k+r+1, . . . , ek−s + en−s; en−s+1, . . . , en}.
Then dimF Wr ,s = k, dimF (Wr ,s ∩ V+) = r and dimF (W(r ,s) ∩ V−) = s. Let η̃−1

(r ,s) be the
block matrix (

D1 D2

D3 D4

)

where D1 and D4 are matrices of size k × k and (n − k) × (n − k) respectively, and

D1 =
(
Ik−s

0

)
, D4 =

(
In−k−s

0

)

D2 =
(
0 0
0 Is

)
, D3 =

(
0 0
0 Ik−r

)
.

Then {η̃−1
(r ,s)} is a complete set of representatives of the double coset space H\G/P . Taking

inverse, we thus get a complete set of representatives {η̃(r ,s)} of P\G/H .
We then describe the relevant data for these general P-orbits in G ·e. For (r , s) ∈ Ikp,q , let

x̃(r ,s) = η̃(r ,s)θ(η̃(r ,s))
−1 ∈ G ·e. Thus {x̃(r ,s)} is a complete set of representatives of P-orbits
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in G · e. Write w(r ,s) = ιM (P · x̃(r ,s)). Recall that w(r ,s) is left and right WM -reduced. In
either case, we have that

w(r ,s) =

⎛
⎜⎜⎝
Ik−d

Id
Id

In−k−d

⎞
⎟⎟⎠ . (4.7)

Thus L = L(r ,s) = M ∩ w(r ,s)Mw−1
(r ,s) is the standard Levi subgroup associated to the

composition (k − d, d, d, n − k − d) of n. Denote by Q the standard parabolic subgroup
of Gn with Levi subgroup L . We can choose, in either case, an orbit representative x(r ,s) ∈
P · x̃(r ,s) ∩ Lw(r ,s) such that

x(r ,s)ε =

⎛
⎜⎜⎝
Ir ,s

Id
Id

Ip+s−k,q+r−k

⎞
⎟⎟⎠ . (4.8)

So the group Lx(r,s) consists of elements diag{A1,+, A1,−, A2, A3, A4,+, A4,−} such that{
A1,+ ∈ Gr , A1,− ∈ Gs, A4,+ ∈ Gp+s−k, A4,− ∈ Gq+r−k;
A2 = A3 ∈ Gd .

We can also choose η(r ,s) ∈ Gn such that η(r ,s)θ(η(r ,s))
−1 = x(r ,s) and that

η−1
(r ,s)

⎛
⎜⎜⎝

A1,+
A1,−

A2
A3

A4,+
A4,−

⎞
⎟⎟⎠ η(r ,s) =

⎛
⎜⎜⎝

A1,+
A2

A4,+
A4,−

A3
A1,−

⎞
⎟⎟⎠ ∈ Hp,q (4.9)

The modular characters for general orbtis that are relavent to us are computed as follows.

Lemma 4.3 For (r , s) ∈ Ikp,q , let x = x(r ,s), η = η(r ,s), L and Q as given above. For a ∈ R,
let μa be the character of H = Hp,q defined in (2.1).

For

m = diag{A1,+, A1,−, A2, A3, A4,+, A4,−} ∈ Lx ,

then

δQx δ
−1/2
Q (m) = ν(A1,+)(p−q+s−r)/2ν(A1,−)(q−p+r−s)/2ν(A4,+)(s−r)/2ν(A4,−)(r−s)/2,

(4.10)

μη−1

a (m) = ν(A1,+)aν(A1,−)−aν(A4,+)aν(A4,−)−a .

Proof Note that x(r ,s) is the natural representative for an L-admissible Q-orbit inG ·e chosen
in Sect. 4.3. Then (4.10) follows directly from Lemma 4.1. ��

5 Consequences of the geometric Lemma

5.1 The geometric lemma

We first recall the formulation of the geometric lemma of Bernstein and Zelevinsky in [26,
Theorem 4.2], and we refer the reader to loc.cit for unexplained notation.
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Proposition 5.1 Let P = M�U be a standard parabolic subgroup of G. Let σ be a represen-
tation of M, and χ a character of H. If the representation IndGP (σ ) is (H , χ)-distinguished,
then there exist a P-orbit O in P\(G · e) and η ∈ G satisfying x = η · e ∈ O ∩ Lw (where
w = ιM (P ·x) and L = M(w)) such that the Jacquetmodule rL,M (σ ) is (Lx , δQx δ

−1/2
Q χη

−1
)-

distinguished. Here Q = L �V is the standard parabolic subgroup of G with Levi subgroup
L.

We retain the notation of Sect. 4. As a consequence of the orbit analysis there, we formulate
the following corollary.

Corollary 5.2 Let σ1 resp. σ2 be a representation of Gk resp. Gn−k . If the representation
σ1 × σ2 is (Hp,q , μa)-distinguished for some p, q ≥ 0, p + q = n and a ∈ R, then
there exists a pair (r , s) ∈ Ikp,q with defect d = k − r − s such that the representation

r(k−d,d)σ1⊗r(d,n−k−d)σ2 of L is (Lx , δQx δ
−1/2
Q μ

η−1

a )-distinguished, where L is the standard
Levi subgroup of Gn associated to (k − d, d, d, n − k − d), Q is the standard parabolic
subgroup with L its Levi part, x = x(r ,s) is given in (4.8) and η = η(r ,s) ∈ Gn such that
x = η · e and (4.9) holds.

Often in practice there is a filtration of the Jacquet module of the inducing data whose suc-
cessive factors are pure tensor representations. The following lemma is a direct consequence
of Lemma 4.3.

Lemma 5.3 Notation being as above. Let ρ = ρ1 ⊗ ρ2 ⊗ ρ3 ⊗ ρ4 be a pure tensor represen-

tation of L. Then ρ is (Lx , δQx δ
−1/2
Q μ

η−1

a )-distinguished if and only if
⎧⎪⎨
⎪⎩

ρ2 ∼= ρ∨
3 ,

ρ1 is (Hr ,s, μa+(p−q+s−r)/2)-distinguished,

ρ4 is (Hp+s−k,q+r−k, μa+(s−r)/2) distinguished.

(5.1)

Remark 5.4 Our proof of classification has an inductive structure. This necessary conditions
(5.1) is the reason why we study (Hp,q , μa)-distinction from the beginning, although our
main concern is about Hp,p-distinction.

Remark 5.5 The subscripts in the pair (Hp,q , μa) play a subtle role in this work as, for
example, seen from Proposition 6.16. We do not have a conceptual explanation for this
now. The following observation might be helpful when applying this lemma. For a pair
(Hp,q , μa), set S+(p, q, a) = p − q + 2a and S−(p, q, a) = p − q − 2a. When passing
from distingusihed σ1 × σ2 to distingsuihed ρ1 and ρ4, the invariants S+ and S− for the
subgroup pairs are preserved respectively.

To handle the duality relation in (5.1), we have the following

Lemma 5.6 Let m1, . . . ,mr and n1, . . . , ns be multisegments. If

L(m1) × · · · × L(mr ) ∼= L(n1) × · · · × L(ns),

then m1 + · · · +mr = n1 + · · · + ns .
Proof It is known that L(m1 + · · · + mr ) is a subquotient of L(m1) × · · · × L(mr ). By our
condition, it is then a subquotient of λ(n1 + · · · + ns). Reversing the roles of mi ’s and n j ’s,
the required equality follows from [33, Theorem 7.1] (see also [31, Theorem 5.3]). ��
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As seen from above, the geometric lemma provides us necessary conditions for distinction
of induced representations.We now present a sufficient condition that is due to Matringe [22,
Proposition 3.8].

Lemma 5.7 Let n1 = 2m1 and n2 = 2m2 be even integers, let a ∈ R. Assume that
π1 is (Hm1,m1 , μa)-distinguished and π2 is (Hm2,m2 , μa)-distinguished. Then π1 × π2 is
(Hm1+m2,m1+m2 , μa)-distinguished.

5.2 Distinction of products of essentially square-integrable representations

We now apply Corollary 5.2 to products of essentially square-integrable representations.

Proposition 5.8 Let π = Δ1×· · ·×Δt be a representation of Gn, whereΔi = Δ([ai , bi ]ρi )
is an essentially square-integrable representation of Gni , i = 1, . . . , t . (Here we assume all
ai , bi are integers.) Suppose that π is (Hp,q , μa)-distinguished with p, q two nonnegative
integers, p + q = n, and a ∈ R. Then there exist an integer ct satisfying at − 1 ≤ ct ≤ bt
such that one of the following cases must hold:

Case A1. One has at = ct < bt . The representation Δ([at , ct ]ρt ) = b(Δt ) is either
the character νa+(q−p+1)/2 or the character ν−a+(p−q+1)/2 of G1; and there exists i ∈
{1, 2, . . . , t − 1}, and an integer ci , ai ≤ ci ≤ bi , such that

(i) one has Δ([at + 1, bt ]ρt )∨ ∼= Δ([ai , ci ]ρi );
(ii) the representation

Δ1 × · · · × Δ([ci + 1, bi ]ρi ) × · · · × Δt−1

is (Hp−nt ,1+q−nt , μa+1/2) or (H1+p−nt ,q−nt , μa−1/2)-distinguished, depending on
b(Δt ).

Case A2. One has at ≤ ct < bt . The representation Δ([at , ct ]ρt ), with its degree n′
t an

even integer, is Hn′
t/2,n

′
t/2

-distinguished; and there exists i ∈ {1, 2, . . . , t −1} and an integer
ci , ai ≤ ci ≤ bi , such that

(i) one has Δ([ct + 1, bt ]ρt )∨ ∼= Δ([ai , ci ]ρi );
(ii) the representation

Δ1 × · · · × Δ([ci + 1, bi ]ρi ) × · · · × Δt−1

is (Hp′,q ′ , μa) -distinguished with p′ = p − nt + n′
t/2 and q ′ = q − nt + n′

t/2.

Case B1. One has ct = bt . The representation Δ([at , ct ]ρt ) = Δt is either the character
νa+(q−p+1)/2 or the character ν−a+(p−q+1)/2 of G1; and the representation

Δ1 × · · · × Δt−1

is (Hp−1,q , μa+1/2) or (Hp,q−1, μa−1/2)-distinguished, depending on Δt .
Case B2. One has ct = bt . The representation Δt is Hnt/2,nt/2-distinguished, where nt is

even; and the representation

Δ1 × · · · × Δt−1

is (Hp−nt /2,q−nt/2, μa)-distinguished.
Case C. One has ct = at − 1. There exists i ∈ {1, 2, . . . , t − 1} and an integer ci ,

ai ≤ ci ≤ bi , such that
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(i) one has Δ∨
t

∼= Δ([ai , ci ]ρi );
(ii) the representation

Δ1 × · · · × Δ([ci + 1, bi ]ρi ) × · · · × Δt−1

is (Hp−nt ,q−nt , μa)-distinguished.

Proof Write σ1 = Δ1 × · · · × Δt−1 and σ2 = Δt , and k = n − nt . By Corollary 5.2, in its
notation, there exists (r , s) ∈ Ikp,q with defect d = k − r − s such that the representation

r(k−d,d)σ1 ⊗ r(d,n−k−d)σ2 of L is (Lx , δQx δ
−1/2
Q μ

η
a)-distinguished. By [33, 9.5], the Jacquet

module r(d,n−k−d)σ2 of σ2 is either zero or of the form Δ([ct + 1, bt ]ρt ) ⊗ Δ([at , ct ]ρt ) for
certain integer ct with at − 1 ≤ ct ≤ bt . By [33, 1.2, 1.6], there exists a filtration 0 ⊂ V1 ⊂
· · · ⊂ V = r(k−d,d)σ1 such that each successive factor is equivalent to a representation of
the form

Δ([c1 + 1, b1]ρ1) × · · · × Δ([ct−1 + 1, bt−1]ρt−1)

⊗ Δ([a1, c1]ρ1) × · · · × Δ([at−1, ct−1]ρt−1),

for certain integers ci such that ai − 1 ≤ ci ≤ bi , i = 1, . . . , t − 1. Therefore, there exists
integers ci , i = 1, 2, . . . , t , such that the pure tensor representation

t−1∏
i=1

Δ([ci + 1, bi ]ρi ) ⊗
t−1∏
i=1

Δ([ai , ci ]ρi ) ⊗ Δ([ct + 1, bt ]ρt ) ⊗ Δ([at , ct ]ρt )

is (Lx , δQx δ
−1/2
Q μ

η−1

a )-distinguished. By Lemma 5.3, we have

Δ([ct + 1, bt ]ρt )∨ ∼=
t−1∏
i=1

Δ([ai , ci ]ρi ).

By Lemma 5.6, ci = ai − 1 for all but one i between 1 and t − 1. So, for this i , we have

Δ([ct + 1, bt ]ρt )∨ ∼= Δ([ai , ci ]ρi ). (5.2)

Lemma 5.3 also implies that

Δ([at , ct ]ρt ) is(Hp+s−k,q+r−k, μa+(s−r)/2)-distinguished, (5.3)

and that

Δ1 × · · · × Δ([ci + 1, bi ]ρi ) × · · · × Δt−1

is(Hr ,s, μa+(p−q+s−r)/2)-distinguished. (5.4)

When at ≤ ct < bt , we have two subcases. If ct = at and the degree of ρt equals to 1, it
follows from (5.3) that (p + s − k, q + r − k) = (1, 0) or (0, 1). By (5.4), (5.2) and simple
calculations, we then have Case A1; Otherwise, the representation Δ([at , ct ]ρt ) is not one
dimensional. Thus, in (5.3) we have p + s − k > 0 and q + r − k > 0. By Proposition 3.9,
we get that Δ([at , ct ]ρt ) is Hn′

t/2,n
′
t/2

-distinguished with n′
t its degree. The rest statements

of Case A2 follow from simple calculations. Thus we have Case A2.
When ct = bt , we have two subcases. IfΔt is a character ofG1, then by similar arguments

as in Case A1, we have Case B1. Otherwise, by similar arguments as in Case A2, we have
Case B2. In these two cases, we have d = 0 and ci = ai − 1 by our convention.

When ct = at − 1, by (5.3), we have p+ s − k = q + r − k = 0. The statements of Case
C follow from (5.4), (5.2) and simple calculations. So we are done. ��
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Corollary 5.9 Let π = Δ1 × · · · × Δt be as above. If π is (Hp,q , μa)-distinguished with
p, q and a as above, then either the representation Δt is the character νa+(q−p+1)/2 or the
character ν−a+(p−q+1)/2 of G1, or there is i ∈ {1, 2, . . . , t} such that e(Δt )

∨ ∼= b(Δi ).

Proof Note that in all cases other than Case B1, we have a duality relation. ��
Considering the duality relation between extremities of segments, a generalization of

Corollary 5.9 is given later in Proposition 6.8.

6 Distinction of ladder representations

6.1 Notations and basic facts

The class of ladder representations was first introduced by Lapid and Mínguez in [17], and
was further studied by Lapid and his collaborators in [16] and [18]. We start by reviewing
some basic facts of these representations.

6.1.1 Definitions

Let ρ ∈ C . By a ladder we mean a set {Δ1, . . . , Δt } ∈ Oρ such that

b(Δ1) > · · · > b(Δt ) and e(Δ1) > · · · > e(Δt ). (6.1)

A representation π ∈ Irr is called a ladder representation if π = L(m) where m ∈ Oρ is a
ladder. Whenever we say thatm = {Δ1, . . . , Δt } ∈ Oρ is a ladder, we implicitly assume that
m is already ordered as in (6.1). We denote by m∨ ∈ Oρ∨ the ladder {Δ∨

t , . . . , Δ∨
1 }.

Lemma 6.1 Let m ∈ Oρ be a ladder. One has L(m)∨ = L(m∨).

Proof See [30, Proposition 5.6] ��
We introduce some more notation. For a ladder m = {Δ1, . . . , Δt } ∈ Oρ ordered as in

(6.1), set π = L(m). We shall denote b(Δ1) by b(π), called the beginning of the ladder
representaion π ; denote e(Δt ) by e(π), called the end of π . We shall denote the number t of
segments in m by ht(π), called the height of π .

We say that π is a decreasing (resp. increasing) ladder representation if

l(Δ1) ≥ · · · ≥ l(Δt ) (resp. l(Δ1) ≤ · · · ≤ l(Δt )).

We say that π is a left aligned (resp. right aligned) representation if b(Δi ) = b(Δi+1) + 1
(resp. e(Δi ) = e(Δi+1) + 1 ), i = 1, . . . , t − 1. Note that left aligned repreesentations
are decreasing ladder representations and right aligned representations are increasing ladder
representations.

A ladder representation is called an essentially Speh representation if it is both left aligned
and right aligned. Note that essentially Speh representations are just the usual Speh represen-
tations up to twist by a non-unitary character. LetΔ be an essentially square-integrable repre-
sentation of Gd and k a positive integer. Thenm1 = {ν(k−1)/2Δ, ν(k−3)/2Δ, . . . , ν(1−k)/2Δ}
is a ladder, and the ladder representation L(m1) is an essentially Speh representation, which
we denote by Sp(Δ, k). All essentially Speh representations can be obtained in this manner.

Let π = L(m) as above. Let us further write Δi = Δ([ai , bi ]ρ). (The ai ’s are integers
by our convention.) By a division of π as two ladder representations π ′ and π ′′, denoted by
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π = π ′ � π ′′, we mean that there exist integers ci with ai − 1 ≤ ci ≤ bi , i = 1, . . . , t , such
that

c1 > c2 > · · · > ct

and that

π ′ = L(Δ([a1, c1]ρ), . . . , Δ([at , ct ]ρ)),

π ′′ = L(Δ([c1 + 1, b1]ρ), . . . , Δ([ct + 1, bt ]ρ)).

Note that if π is an essentially Speh representation and π = π ′ � π ′′ with neither π ′ nor π ′′
the trivial representation of G0, then we have b(π) = b(π ′) and e(π) = e(π ′′).

6.1.2 Standard module

One useful property of ladder representations is that the relation between them and their stan-
dard modules is explicit. Let m = {Δ1, . . . , Δt } ∈ Oρ be a ladder with Δi = Δ([ai , bi ])ρ .
Set

Ki = Δ1 × · · · × Δi−1 × Δ([ai+1, bi ]ρ) × Δ([ai , bi+1]ρ) × Δi+1 × · · · × Δt ,

for i = 1, . . . , t − 1. (By our convention, Ki = 0 if ai > bi+1 + 1). By [17, Theorem 1] we
have

Proposition 6.2 With the above notation let K be the kernel of the projection λ(m) → L(m).
Then K = ∑t−1

i=1 Ki .

6.1.3 Jacquet modules

The Jacquet modules of ladder representations were computed in [16, Corollary 2.2], where
it is shown that the Jacquet module of a ladder representation is semisimple, multiplicity free,
and that its irreducible constituents are themselves tensor products of ladder representations.
For us, we need only the Jacquet modules with respect to maximal parabolic subgroups. We
record the result in [16] here. Let P = M � U be the standard parabolic subgroup of Gn

associated to (k, n − k).

Proposition 6.3 Let m = {Δ1, . . . , Δt } ∈ Oρ be a ladder with Δi = [ai , bi ]ρ , and π =
L(m). Then

rM,G(π) =
∑′

π=π1�π2

π2 ⊗ π1,

where the summation takes over all divisions of π as two ladder representations π1 and π2

such that the degree of π1 is n − k and that the degree of π2 is k.

6.1.4 Bernstein–Zelevinsky derivatives

The full derivative of a ladder representation was computed in [17, Theorem 14], where it is
shown that the semisimplification of all of the derivatives of a ladder representation consists
of ladder representations of smaller groups. In particular, the derivatives of a left aligned
representation take simple forms, which we recall here.
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Lemma 6.4 Let ρ ∈ C (Gd), and m = {Δ1, . . . , Δt } ∈ Oρ be a ladder with Δi =
Δ([ai , bi ]ρ). Suppose that π = L(m) is a left aligned representation. If k is not divided
by d, then π(k) = 0. If k = rd, then

π(k) = L(Δ([a1 + r , b1]ρ),Δ2, . . . , Δt ).

6.2 Distinction of products of essentially Speh representations

In this subsection we apply Corollary 5.2 to products of essentially Speh representations.
Instead of Lemma 5.6, we will use the following lemma to handle the duality relation in

consequences of the geometric lemma.

Lemma 6.5 Let σ and πi be left aligned representations of Gn and Gni , i = 1, . . . , k. If
σ ∼= π1 × · · · × πk , then k = 1.

Proof By Lemma 6.4, the derivatives of left aligned representations are either 0 or irreducible
representations. Our assertion then follows form the description of the derivatives of a product
of representations in [1, Corollary 4.6] ��

In view of Lemma 6.5 and the description of Jacquet modules of a ladder representation
in Proposition 6.3, we formulate the following proposition, whose proof is very similar to
that of Proposition 5.8 and is omitted here.

Proposition 6.6 Let π = π1 ×· · ·×πt be a representation of Gn, where πi is an essentiallly
Speh representation of Gni , i = 1, . . . , t . Assume that π is (Hp,q , μa)-distinguished with p,
q two nonnegative integers, p + q = n and a ∈ R. Then there exist a division of πt as two
ladder representations π ′

t and π ′′
t , πt = π ′

t � π ′′
t , with degrees n′

t and n′′
t respectively, such

that one of the following cases must hold:
Case A. The representation π ′

t is neither πt nor the trivial representation of G0. There
exists i0, 1 ≤ i0 ≤ t − 1, and a division of πi0 as two ladder representations π ′

i0
and π ′′

i0
,

πi0 = π ′
i0

� π ′′
i0
, such that

(i) π ′
t is (Hr ,s, μa+(r−s+q−p)/2)-distinguished, for two nonnegative integers r , s ≥ 0, r +

s = n′
t ;

(ii) π ′′∨
t

∼= π ′
i0
;

(iii) the representation

π1 × · · · × πi0−1 × π ′′
i0 × πi0+1 × · · · × πt−1 (6.2)

is (Hr ′,s′ , μa+(s′−r ′+p−q)/2)-distinguished, for two nonnegative integers r ′, s′ ≥ 0, r ′ +
s′ = n − nt − n′′

t .

Case B. One has π ′
t = πt is (Hr ,s, μa+(r−s+q−p)/2)-distinguished, for two nonnegative

integers r , s ≥ 0, r + s = nt , and the representation

π1 × · · · × πt−1 (6.3)

is (Hr ′,s′ , μa+(s′−r ′+p−q)/2)-distinguished, for two nonnegative integers r ′, s′ ≥ 0, r ′ + s′ =
n − nt .

Case C. The representation π ′
t is the trivial representation of G0, so π ′′

t = πt . There
exists i0, 1 ≤ i0 ≤ t − 1, and a division of πi0 as two ladder representations π ′

i0
and π ′′

i0
,

πi0 = π ′
i0

� π ′′
i0
, such that
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(i) π∨
t

∼= π ′
i0
;

(ii) the representation

π1 × · · · × πi0−1 × π ′′
i0 × πi0+1 × · · · × πt−1 (6.4)

is (Hr ,s, μa+(s−r+p−q)/2)-distinguished, for two nonnegative integers r , s ≥ 0, r + s =
n − 2nt .

Remark 6.7 It is easy to see that Lemma 6.5 fails if one removes the condition that σ is
left aligned. This is the reason why we restrict ourselves to products of essentially Speh
representations here. Proposition 6.6 makes an inductive proof of the classification result
possible as, in many cases, the representations (6.2), (6.3) and (6.4) are still products of
essentially Speh representations.

Nevertheless, we have the following proposition for products of ladder representations
that is very useful in later arguments.

Proposition 6.8 Let Π = π1 × · · · × πt and Π ′ = π ′
1 × · · · × π ′

s be two products of ladder
representations. If Π × Π ′ is (Hp,q , μa)-distinguished for two nonnegative integers p, q,
p + q = n and a ∈ R, then there are two possibilities here:

(1) Π is (Hp1,q1 , μa1)-distinguished and Π ′ is (Hp2,q2 , μa2)-distinguished for some pi , qi
and ai , i = 1, 2. Here the subscripts (pi , qi , ai ), i = 1, 2, satisfy{

p1 + p2 = p

q1 + q2 = q
and

{
p1 − q1 + 2a1 = p − q + 2a

p2 − q2 − 2a2 = p − q − 2a.

(2) There exist i ∈ {1, . . . , t} and j ∈ {1, . . . , s} such that e(π ′
j )

∨ ∼= b(πi ).

Proof This follows from similar arguments of Proposition 5.8 and the following simple
implication of Lemma 5.6 when applied to ladder representations. ��
Lemma 6.9 Let m1, . . . ,mr and n1, . . . , ns be ladders. If

L(m1) × · · · × L(mr ) ∼= L(n1) × · · · × L(ns),

then there exist i ∈ {1, . . . , r} and j ∈ {1, . . . , s} such that b(L(mi )) ∼= b(L(n j )).

Proof By Lemma 5.6, one hasm1 +· · ·+mr = n1 +· · ·+ns . Writemi = {Δi,1, . . . , Δi,ki }
and n j = {Δ′

j,1, . . . , Δ
′
j,l j

} for these i’s and j’s. Let Δ be one segement in
∑

i mi such

that b(Δ) is maximal, which means that, if for some Δ0 ∈ ∑
i mi with b(Δ0) lying in

the same cuspidal line with b(Δ), then b(Δ0) ≤ b(Δ). As these mi ’s are ladders, one has
Δ ∈ {Δ1,1, . . . , Δr ,1}. Also, one has Δ ∈ {Δ′

1,1, . . . , Δ
′
s,1}. So the lemma follows. ��

It will turns out that the ordering of representations in a product is important for the
geometric lemma approach to distinction problems. The commutativity of a product of two
ladder representations was studied by Lapid and Mínguez in [18]. Here we present a special
case of their results that is sufficient for our purpose.

Lemma 6.10 Let ρ ∈ C . Letm1,m2 ∈ Oρ be two ladders, withm1 = {Δ1,1, . . . , Δ1,t1} and
m2 = {Δ2,1, . . . , Δ2,t2}. Suppose thatL(m1) is an essentially Speh representation andL(m2)

is a right aligned representation. If e(Δ1,t1) = e(Δ2,t2) and t2 ≤ t1, or e(Δ1,t1) = e(Δ2,t2)

and b(Δ1,t1) ≤ b(Δ2,t2), then L(m1)×L(m2) is irreducible and L(m1)×L(m2) = L(m2)×
L(m1).
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Proof Note that the results in [18] are expressed in terms of Zelevinsky classification. By
the combinatorial description of Zelevinsky involution by Moeglin-Waldspurger [25] (see
also [17, Sect. 3.2]), we can rewrite the conditions in the lemma in terms of the Zelevinsky
involution mt

1 and mt
2 of m1 and m2. The assertion then follows from Proposition 6.20 and

Lemma 6.21 in [18]. ��

6.3 Distinction of essentially Speh representations

From now on, we shall perform some detailed analysis using our consequences of the geo-
metric lemma.

Proposition 6.11 Let π be an essentially Speh representation of Gn. If π is (Hp,q , μa)-
distinguished for two positive integers p, q with p + q = n and some a ∈ R, then π is
self-dual.

Proof Write π = L(m) with m = {Δ1, . . . , Δt } a ladder. The case where π is one dimen-
sional is obvious. So we assume that π , hence Δt , is not one dimensional. By assumption,
Δ1 × · · · × Δt is (Hp,q , μa)-distinguished. By Corollary 5.9, there exists i , 1 ≤ i ≤ t , such
that

b(Δi ) ∼= e(Δt )
∨. (6.5)

We claim that i = 1. If so, by Lemma 6.1, we see thatπ is self-dual. In fact, if otherwise i > 1,
we apply Proposition 6.8 to π1 ×π2, where π1 = Δ1 ×· · ·×Δi−1 and π2 = Δi ×· · ·×Δt .
We get either that

b(Δ j ) ∼= e(Δk)
∨ (6.6)

for some j , 1 ≤ j ≤ i − 1 and some k, i ≤ k ≤ t , or that π1 is (Hp1,q1 , μa1)-distinguished
with some p1, q1 and a1, which implies, using Corollary 5.9 again, that

b(Δl) ∼= e(Δi−1)
∨ (6.7)

for some l, 1 ≤ l ≤ i − 1. But we see easily that both (6.6) and (6.7) contradict with (6.5). ��
Corollary 6.12 Let π be an essentially Speh representation of Gn. If the representation π is
(Hp,q , μa)-distinguished for two positive integers p, q with p + q = n and some a ∈ R,
a �= 0, then p = q.

Proof This follows from Proposition 6.11 and consideration of the central character of π . ��
Now we are in a position to prove one direction of Theorem 1.1 (what we actualy prove is

slightly more). The arguments involve an application of the theory of Bernstein-Zelevinsky
derivatives.

Proposition 6.13 Let π = Sp(Δ, l) be an essentially Speh representation of Gn, where Δ

is an essentially square-integrable representaion of Gd , d > 1, and l is a positive integer.
Assume that π is Hp,q -distinguished or (Hp,q , μ−1/2) for two positive integers p, q, p+q =
n. Then the degree d of Δ is even, and Δ is Hd/2,d/2-distinguished; also one has p = q.

Proof We prove this by induction on l. The case l = 1 follows from Proposition 3.9. Suppose
that π is (Hp,q , μa)-distinguished with a = 0 or −1/2. By Proposition 6.11 we know that
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π is self-dual, hence Δ is also self-dual. Note that π is irreducible. By Lemma 3.1, we may
assume that p ≥ q . By the assumption on π , we have

HomPn∩Hp,q (π |Pn , μa) �= 0,

where a = 0 or −1/2. By [1, Sect. 3.5], the restriction π |Pn of π to Pn has a filtration
which has composition factors (Φ+)i−1Ψ +(π(i)), i = 1, . . . , h, where π(h) is the highest
derivative of π . We first analyze linear functionals on these factor sapces using the theory of
Bernstein-Zelevinsky derivatives.

(1) When i = 2k is even. If q > k and p > k − 1, by applying (3.3) repeatly, we have

HomPn∩Hp,q ((Φ
+)i−1Ψ +(π(i)), μa) ∼= HomPn−i+1∩Hq−k,p−k+1(Ψ

+(π(i)), μ−a−1/2)

∼= HomHq−k,p−k (ν
1/2π(i), μ−a−1/2). (6.8)

Otherwise, there exists i0 ≥ 0 such that

HomPn∩Hp,q ((Φ
+)i−1Ψ +(π(i)), μa) ∼= HomPn−i+i0+1((Φ

+)i0Ψ +(π(i)), μa′), (6.9)

where a′ = a or −a − 1/2 depending on i0 odd or even.
(2) When i = 2k + 1 is odd. If q > k and p > k, by applying (3.3) repeatly, we have

HomPn∩Hp,q ((Φ
+)i−1Ψ +(π(i)), μa) ∼= HomPn−i+1∩Hp−k,q−k (Ψ

+(π(i)), μa)

∼= HomHp−k,q−k−1(ν
1/2π(i), μa). (6.10)

Otherwise, there exists i0 ≥ 0 such that

HomPn∩Hp,q ((Φ
+)i−1Ψ +(π(i)), μa) ∼= HomPn−i+i0+1((Φ

+)i0Ψ +(π(i)), μa′), (6.11)

where a′ = a or −a − 1/2 depending on i0 even or odd.

We claim that the factor spaces corresponding to non-highest derivatives contribute noth-
ing, that is, we have

HomPn∩Hp,q ((Φ
+)i−1Ψ +(π(i)), μa) = 0, for all 1 ≤ i < h. (6.12)

We shall discuss separately according to i is even or odd, a = 0 or −1/2. Note first that,
by Lemma 6.4, when 1 ≤ i < h, the i-th derivative π(i) is either 0 or a ladder representation
of the form

L(Δ1 × ν(l−3)/2Δ × · · · × ν(1−l)/2Δ), (6.13)

whereΔ1 is a subsegment ofν(l−1)/2Δobtainedbydiscarding thefirst few terms. In particular,
π(i) is either 0 or an irreducible representation. Thus, if we are in the case where (6.9) or
(6.11) holds, then

HomPn∩Hp,q ((Φ
+)i−1Ψ +(π(i)), μa) ∼= HomPn−i+i0+1((Φ

+)i0Ψ +(π(i)), μa′)

= 0,

as the representation (Φ+)i0Ψ +(π(i)) is either 0 or an irreducible representation of Pn−i+i0+1

that is not one dimensional by [1, 3.3 Remarks].
Now we deal with the case where (6.8) or (6.10) holds. Note that, from (6.13), ν1/2π(i)

either is 0 or can be realized as the unique irreducible quotient of a representation of the form
ν1/2Δ1 × Sp(Δ, l − 1) with Δ1 as above. We discuss as follows.
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Case (1) where a = 0 and i = 2k is even. By (6.8), it suffices to show that

HomHq−k,p−k (ν
1/2Δ1 × Sp(Δ, l − 1), μ−1/2) = 0. (6.14)

Assume, on the contrary, that ν1/2Δ1 × Sp(Δ, l − 1) is (Hq−k,p−k, μ−1/2)-distinguished.
AsΔ is self-dual, e(Sp(Δ, l−1))∨ = b(Sp(Δ, l−1)) �= b(ν1/2Δ1). So, by Proposition 6.8,

ν1/2Δ1 is(Hr ,s, μ(s−p−r+q−1)/2) -distinguished

and

Sp(Δ, l − 1)is(Hq−k−r , p−k−s, μ(s−r−1)/2)-distinguished

for some nonnegative integers r and s. If the degree of ν1/2Δ1 is greater than 1, then ν1/2Δ1

is self-dual by Proposition 3.9. This is absurd because the central character of ν1/2Δ1 has
positive real part; If the degree of ν1/2Δ1 is 1, then (r , s) = (1, 0) or (0, 1). If r = 1 and
s = 0, then Sp(Δ, l − 1) is (Hq−k−1,p−k, μ−1)-distinguished. Thus we have p = q − 1 by
Corollary 6.12. This is absurd as we have assumed that p ≥ q; If r = 0 and s = 1, then
ν1/2Δ1 is the character ν(p−q)/2 of G1 and Sp(Δ, l − 1) is (Hq−k, p−k−1, 1)-distinguished.
So, by induction hypothesis, we have p−1 = q . This implies that e(ν(l−1)/2Δ) = e(Δ1) = 1,
the trivial character of G1. This is impossible as Δ is self-dual and its degree d is greater
than 1.

Case (2) where a = 0 and i = 2k + 1 is odd. In this case we see easily that

HomHp−k,q−k−1(ν
1/2π(i), 1) = 0, (6.15)

as the central character of ν1/2π(i) has positive real part when i < h.
The arguments for the remaining two cases where a = −1/2, i is even or odd are similar

to those of the above two cases and are omitted here. So we have proved (6.12).
By Lemma 6.4, we know that the highest derivative of π is π(d) and ν1/2π(d) = Sp(Δ, l−

1). Now we have

HomPn∩Hp,q ((Φ
+)d−1Ψ +(π(d)), μa) �= 0, (6.16)

where a = 0 or −1/2. We analyze the left hand side of (6.16) as above. The cases (6.9) and
(6.11) cannot happen by the same arguments as above. The case (6.10) cannot happen by
induction hypothesis and the fact that p ≥ q . So the only possible case is when (6.8) holds,
that is, d is even and

HomPn∩Hp,q ((Φ
+)i−1Ψ +(π(d)), μa) ∼= HomHq−k,p−k (Sp(Δ, l − 1), μ−a−1/2).

Note that when a = 0 or −1/2, −a − 1/2 = −1/2 or 0. Thus we are done by induction
hypothesis. ��

We have the following generalization of Corollary 3.8 to essentially Speh representations.

Corollary 6.14 Let π be an essentially Speh representation of Gn that is not one dimensional.
If π is (Hp,q , μa)-distinguished for two positive integers p, q with p + q = n and a ∈ R,
then we have p = q.

Proof The case a �= 0 is Corollary 6.12. The case a = 0 follows from Proposition 6.13. ��
Remark 6.15 We postpone the proof of the other direction of Theorem 1.1 in Sect. 7.1.
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6.4 Distinguished left aligned representations

The results of this subsection are used only in Sect. 7.2 where we classify distinguished
representations that are products of Speh representations. The analysis in this subsection is
quite involved; the readers can skip it for the fisrt reading.

The purpose of this subsection is to show the following

Proposition 6.16 Let π be a left aligned (resp. right aligned) representation of Gn. If π is
(Hp,q , μ(p−q)/2) (resp. (Hp,q , μ(q−p)/2))-distinguished for two nonnegative integers p, q,
p + q = n, then π is an essentially Speh representation.

We need the following technical lemmas. When the supercuspidal representations in the
support of the left aligned representation have degree greater than 1, we can prove slightly
more.

Lemma 6.17 Let ρ ∈ C (Gd), d > 1, and m = {Δ1, . . . , Δt } ∈ Oρ be a ladder. Assume that
π = L(m) is a decreasing or an increasing ladder representation of Gn. If π is (Hp,q , μa)-
distinguished for two positive integers p, q, p + q = n and some a ∈ R, then all the l(Δi )’s
are the same. Moreover, π is self-dual.

Proof Note that π is irreducible. By Lemma 3.1, passing to contragradient if necessary,
we may assume that l(Δ1) ≤ l(Δ2) ≤ · · · ≤ l(Δt ).By our assumption, the representation
Δ1 × · · · × Δt is (Hp,q , μa)-distinguished. We now appeal to Proposition 5.8. Write Δi =
Δ([ai , bi ]ρ), i = 1, 2, . . . , t . Note that by our assumption that d > 1, Case A1 and Case B1
cannot happen.

Case A2. In this case We have at ≤ ct < bt , and Δ([at , ct ]ρ) is self-dual. Thus we
have νat ρ ∼= ν−ct ρ∨, and consequently (at + ct )d + 2	(wρ) = 0. We also have Δ([ct +
1, bt ]ρ)∨ ∼= Δ([ai , ci ]ρ) for some i < t and ci ≥ ai . Thus we get νai ρ ∼= ν−bt ρ∨, and then
(ai + bt )d + 2	(wρ) = 0. But this is absurd because ai > at and bt > ct .

Case B2. In this case we have ct = bt , and Δ([at , bt ]ρ) is self-dual. Thus we have
νat ρ ∼= ν−bt ρ∨, and consequently (at +bt )d +2	(wρ) = 0. We also have Δ1 ×· · ·×Δt−1

is (Hp′,q ′ , μa′)-distinguished for some p′, q ′ and a′. If t = 1, there is nothing to be proved.
If t > 1, by Corollay 5.9, we get that (νbt−1ρ)∨ ∼= νai ρ for some 1 ≤ i ≤ t − 1. Thus we
get (ai + bt−1)d + 2	(wρ) = 0. This is absurd because ai > at and bt−1 > bt .

So the only possible case is Case C.We then haveΔ([at , bt ])∨ ∼= Δ([ai , ci ]) for i < t and
certain ai ≤ ci ≤ bi . Note that, by our assumption, we have l(Δi ) ≤ l(Δt ). Thus we have
l(Δi ) = l(Δt ). We claim that i = 1. If so, all l(Δi )’s will be the same by our assumption.
Indeed, if i > 1, consider the (Hp,q , μa)-distinguished representaion

(Δ1 × · · · × Δi−1) × (Δi × · · · × Δt ).

By Propostion 6.8, either we have e(Δi−1)
∨ ∼= b(Δa) with 1 ≤ a ≤ t − 1, or we have

e(Δc)
∨ ∼= b(Δb) with 1 ≤ b ≤ t − 1 and i ≤ c ≤ t . We then get a contradiction as in Case

A2 or B2. The assertion on the self-dualness property follows from a repeated analysis as
above. ��

If we drop the assumption that d > 1, the argument becomes complicated by the possible
occurrence of Case A1 or Case B1 when applying Proposition 5.8. We have the following
result on the shape of right aligned representations when it is distinguished.

Lemma 6.18 Let ρ be a character of G1, and m ∈ Oρ be a ladder. Assume that π = L(m)

is a right aligned representation of Gn. If π is (Hp,q , μa)-distinguished for two nonnegative
integers p, q, p + q = n and some a ∈ R, then either
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Fig. 1 An example of a ladder of
the form (6.17) with i1 = i2 = 1
and i3 = 2

Fig. 2 An example of a ladder of
the form (6.18) with i1 = 2 and
i2 = 2

(1) we have

m = {Δ1, . . . , Δi1 ,Δi1+1, . . . , Δi1+i2 ,Δi1+i2+1, . . . , Δi1+i2+i3} (6.17)

with i1, i2 and i3 ≥ 0, such that l(Δk) = 1 when 1 ≤ k ≤ i1, l(Δi1+k) = l > 1 when
1 ≤ k ≤ i2, l(Δi1+i2+k)) = l + 1 when 1 ≤ k ≤ i2, and that e(Δi1+i2+i3)

∨ ∼= b(Δi1+1)

(See Fig. 1 for an example),
or

(2) we have

m = {Δ1, . . . , Δi1 ,Δi1+1, . . . , Δi1+i2} (6.18)

with i1 and i2 > 0, such that l(Δk) = 1when 1 ≤ k ≤ i1, l(Δi1+k) = 2when 1 ≤ k ≤ i2,
and that e(Δi1+i2)

∨ ∼= b(Δ1) (See Figure 2 for an example).

Proof Write m = {Δ1, . . . , Δt }. If l(Δt ) = 1, then π is a one dimensional representation
and m is of the form (6.17) with i2 = i3 = 0. If l(Δt ) = l(Δ1) = 2, then π is an essentially
Speh representation. It follows from Proposition 6.11 that m is of the form (6.17) with
i1 = i3 = 0. If l(Δt ) = 2 and l(Δ1) = 1, then π can be realized as the unique irreducible
quotient of π1 × π2, where π1 is a one dimensional representation and π2 is an essentially
Speh representation of length 2. Thus π1 × π2 is (Hp,q , μa)-distinguished. By Proposition
6.6, m is either of the form (6.18) (Case A), or of the form (6.17) with i3 = 0, i1 > 0,
i2 > 0 and l = 2 (Case B and Proposition 6.11). Note that here Case C is impossible by
our assumption on π1 and π2. If l(Δt ) > 2, then we apply Proposition 5.8 to the product
Δ1 × · · · × Δt and discuss case by case. Note first that Case A2 cannot happen by similar
arguments as those in Lemma 6.17; Case B1 cannot happen by our assumption on Δt . In
the remaining cases, it follows from Corollary 5.9, Proposition 6.8 and arguments similar to
those in Lemma 6.17 that m is of the form (6.17). ��

The following lemma is a simple consequence of Lemma 3.2.
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Lemma 6.19 Let π be a one dimensional representation of Gn. If π is (Hp,q , μ(q−p)/2)-
distinguished with p + q = n, then π is either the trivial character 1 of Gn or the character
ν−n/2 of Gn. In particular, b(π) is either ν(n−1)/2 or ν−1/2 of G1.

As shown in Lemma 6.18, there are two possibilities for the shape of distinguished right
aligned representations. Now we remove one possibility if we impose some restriction on
the subscripts (p, q, a).

Lemma 6.20 Keep the notation as in Lemma 6.18, let π = L(m) with m of the form (6.18).
Then π cannot be (Hp,q , μ(q−p)/2)-distinguished.

Proof We assume on the contrary that π is (Hp,q , μ(q−p)/2)-distinguished. By part (1) of
Lemma 3.1, we may assume that p ≤ q . Note that π can be realized as the unique quotient
of π1 × π2, where π1 is a one dimensional representation, π2 is an essentially Speh repre-
sentation of length 2, and e(π2)

∨ ∼= b(π1). Thus, π1 × π2 is (Hp,q , μ(q−p)/2)-disintuished.
By Proposition 6.6, there exist divisions of π1 and π2, π1 = π ′

1 � π ′′
1 and π2 = π ′

2 � π ′′
2

respectively, such that, among other things, π ′′
1 is (Hr ,s, μ(s−r)/2)-distinguished for two non-

negative integers r and s. Note thatπ ′
1 is not the trivial representation ofG0 by our assumption

on π and Proposition 6.11. We shall discuss further according to the values of r and s.

(1) If exactly one of r and s is 0, thenπ ′′
1 is the character ν−n′′

1/2 ofGn′′
1
. Thus b(π ′′

1 ) = ν−1/2,

e(π ′
1) = ν1/2. By Proposition 6.6, we also have π ′∨

1
∼= π ′′

2 . Thus b(π ′′
2 ) = e(π ′

1)
∨ =

ν−1/2 = b(π ′′
1 ), which is absurd.

(2) If r > 0 and s > 0, thenπ ′′
1 is the character 1 ofG2r , that is,b(π ′′

1 ) = νr−1/2 and e(π ′′
1 ) =

ν−r+1/2. So, e(π ′
1) = b(π ′′

1 ) + 1 = νr+1/2. By Proposition 6.6, we have π ′∨
1

∼= π ′′
2 . So

b(π ′′
2 ) = ν−r−1/2. By our assumption on the shape of m, this implies that π ′

2 is also
a one dimensional representation which, by Proposition 6.6, is (Hr ′,s′ , μ(r ′−s′)/2+q−p)-
distinguished for certain nonnegative integers r ′ and s′ and that b(π ′

2) = b(π ′′
2 ) − 1 =

ν−r−3/2. One of r ′ and s′ has to be 0. Recall that we have assumed that p ≤ q . We then
see easily that π ′

2 is the character ν p−q+n′/2 of GLn′ . Note that we have an equality of
central characters, ωπ ′

2
= ωπ . This implies that

n′(p − q + n′/2) = −(p − q)2/2.

So, n′ = q−p andb(π ′
2) = ν−1/2. This is absurd aswe have shown thatb(π ′

2) = ν−r−3/2

with r a positive integer.
(3) If r = s = 0, we have two subcases according to whether or not π ′

2 is a one dimensional
representaiton. If it is, we get a contradiction by exactly the same arguments as in (2)with
r being repalced by 0. If it is not, it follows from the duality relations in Lemma 6.18,
applied to the contragradient ofπ ′

2, that b(π ′
2)

∨ is either b(π ′′
2 )+1 or e(π ′′

2 )−1. But, note
that b(π ′

2) = e(π ′
1)−2. It follows from the relation π ′∨

1
∼= π ′′

2 that b(π ′
2)

∨ = b(π ′′
2 )+2.

This is absurd as π ′′
2 is one dimensional and b(π ′′

2 ) ≥ e(π ′′
2 ).

��
Proof of Proposition 6.16 By part (2) of Lemma 3.1, we only need to prove the statement for
left aligned representations. We may further assume that p ≤ q by part (1) of Lemma 3.1.
By Lemma 6.17, we may write π = L(m) with m ∈ Oρ a ladder and ρ a character of G1.
By considering the contragredient π∨ = L(m∨), we see from Lemma 6.20 that m∨ is of the
form (6.17). So, we may write

m = {Δ1, . . . , Δi1 ,Δi1+1, . . . , Δi1+i2 ,Δi1+i2+1, . . . , Δi1+i2+i3}
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with i1, i2 and i3 ≥ 0, such that l(Δk) = l1 > 2 when 1 ≤ k ≤ i1, l(Δi1+k) = l1 − 1 when
1 ≤ k ≤ i2, l(Δi1+i2+k)) = 1 when 1 ≤ k ≤ i3, and that e(Δi1+i2)

∨ ∼= b(Δ1).
We may as well assume that i1 and i2 are not all zero. Our first step is to show that

i3 = 0. If not so, we realize π , in the obvious way, as the unique irreducible quotient of
π1 ×π2 ×π3 with πi an essentially Speh representation for each i , such that π3 is a character
of Gn3 , n3 > 0, and that at least one of π1 and π2 is not the trivial representation of G0.
By our assumption on π , the representation π1 ×π2 ×π3 is (Hp,q , μ(p−q)/2)-distinguished.
Note that as i3 > 0, e(π3) is not dual to b(π1) or b(π2). So, by Proposition 6.8, π3 is
(Hr ,s, μ(r−s)/2)-distinguished with respect to two nonnegative integers r and s. As π3 is one
dimensional, π3 is either the trivial represntation 1 of Gn3 or the character νn3/2 of Gn3 . In
particular, b(Δi1+i2+1) = ν(n3−1)/2 or νn3−1/2. But this will contradict with the fact that
e(Δi1+i2)

∨ ∼= b(Δ1).
Our next step is to show that i1 = 0 or i2 = 0. Assume on the contrary that i1 > 0

and i2 > 0. By our assumption on π , the representation π∨ = L(m∨) is (Hp,q , μ(q−p)/2)-
distinguished. Thus, the representation

Δ∨
i1+i2 × · · · × Δ∨

i1+1 × Δ∨
i1 × · · · × Δ∨

1

is (Hp,q , μ(q−p)/2)-distinguished. By Proposition 5.8, we deduce that b(Δ∨
1 ) ∼= e(Δ1)

∨ is
the character νq−p+1/2 or ν p−q+1/2 ofG1. (This is the consequence of Case A1; Case A2 and
Case B2 are eliminated by arguments similar to those in Lemma 6.17; Case B1 and Case C
are eliminated by our assumptions.) It follows easily from the condition b(Δ1) ∼= e(Δi1+i2)

∨
and the assumption p ≤ q that e(Δ1)

∨ = ν p−q+1/2. Hence we have e(Δ1) = νq−p−1/2.
We show that i1 = q − p and e(Δi1) = ν1/2 by consideration on the central character of

π . In fact, on the one hand, we see from the assumption onm and the fact e(Δ1) = νq−p−1/2

that the central character wπ of π is νa where a = (q − p)i1 − i21/2; on the othe hand, as
π is (Hp,q , μ(p−q)/2)-distinguished, we have wπ = νa

′
where a′ = (q − p)2/2. Thus the

assertion follows. Also, from the fact that e(Δi1+i2)
∨ ∼= b(Δ1), we get that b(Δ1) = νi2+1/2.

Thus, l(Δ1) = q − p − i2 > 2, in particular i1 > i2.
Now, as in the first step, we have that π1 × π2 is (Hp,q , μ(p−q)/2)-distinguished, where

π1 = L(Δ1, . . . , Δi1) and π2 = L(Δi1+1, . . . , Δi1+i2). We appeal to Proposition 6.6, and
claim that Case A and Case B cannot happen. In fact, if Case A or Case B happens, there
will be a division of π2 as π ′

2 and π ′′
2 , where π ′

2 is not the trivial representation of G0, such
that π ′

2 is (Hr ,s, μ(r−s)/2)-distinguished for two nonnegative integers r and s. In particular,
the central character wπ ′

2
of π ′

2 has nonnegative real part. But this will contradict with the

fact that e(Δi1+1) = ν−3/2. So, there exists a division of π1 as two ladder representations π ′
1

and π ′′
1 such that π2 ∼= π ′∨

1 and that π ′′
1 is (Hp−n2,q−n2 , μ(p−q)/2)-distinguished. Note that

π ′′
1 is a right aligned representation, and is not a one dimensional representation due to the

fact that i1 > i2. By Lemma 6.18, we then get a contradiction as we can check easily that
the ladder m′′

1 of π ′′
1 is not of the form (6.17) or (6.18). ��

7 Distinction in the unitary dual

7.1 The case of Speh representations

We now classify distinguished Speh representations in terms of distinguished discrete series.
In fact, we will do it for essentially Speh representations.
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Theorem 7.1 Let n = 2m, and Sp(Δ, k) be an essentially Speh representation of Gn, where
Δ is an essentially square-integrable representation of Gd with d > 1, and k is a positive
integer. Then Sp(Δ, k) is Hm,m-distinguished if and only if d is even and Δ is Hd/2,d/2-
distinguished.

Proof One direction has been proved in Proposition 6.13. We now assume that d is even and
that Δ is Hd/2,d/2-distinguished. By [26, Proposition 7.2], which is based on the work of
Blanc and Delorme [2], the representation

ν(k−1)/2Δ × ν(k−3)/2Δ × · · · × ν(1−k)/2Δ (7.1)

is Hm,m-distinguished. (The distinguishedness of Δ is unnecessary when k is even).We have
the following exact sequence of representations of Gn ,

0 → K → ν(k−1)/2Δ × ν(k−3)/2Δ × · · · × ν(1−k)/2Δ → Sp(Δ, k) → 0, (7.2)

where the kernelK = ∑k−1
i=1 Ki is given explicitly in Proposition 6.2. To show that Sp(Δ, k)

is Hm,m-distinguished, it suffices to show that each Ki is not Hm,m-distinguished. Write the
representation (7.1) as Δ([a1, b1]ρ)× · · ·×Δ([ak, bk]ρ), here the cuspidal representation ρ

is taken to be self-dual and thus ai and bi , i = 1, 2, . . . , k need not be integers. So we have

ai+1 = ai − 1, bi+1 = bi − 1, i = 1, . . . , k − 1

ai + bk+1−i = 0, i = 1, . . . , k.

We further omit the subscript ρ in the sequel. Recall that, by Proposition 6.2,

Ki = Δ([a1, b1]) × · · · × Δ([ai+1, bi ]) × Δ([ai , bi+1]) × · · · × Δ([ak, bk]).
If i + 1 ≤ (k + 1)/2 and Ki is Hm,m-distinguished, by applying Proposition 5.8 repeatly,

we get thatΔ([ai+1, bi ])×Δ([ai , bi+1])×· · ·×Δ([ak+1−i , bk+1−i ]) is Hm′,m′ -distinguished
for certain m′. (In each step, only Case C is possible.) When we apply Proposition 5.8 once
again, still, only Case C is possible. But this is absurd as l(Δ([ai , bi+1])) < l(Δ). Similar
arguments can show that Ki is not Hm,m-distinguished if i ≥ (k + 1)/2.

The remaining case is when k is even and i = k/2. In what follows, to save notation,
we sometimes write H -distinguished for Hm′,m′ -distinguished when there is no need to
address m′. If Ki is Hm,m-distinguished, by applying Proposition 5.8 repeatly, we get that
Δ([ai+1, bi ])×Δ([ai , bi+1]) is H -distinguished. This in turn implies that bothΔ([ai+1, bi ])
and Δ([ai , bi+1]) are H -distinguished by Proposition 6.8. Let us write Δ = St(ρ, l). Then
by our assumption on i , we have Δ([ai , bi+1]) = St(ρ, l − 1) and Δ([ai+1, bi ]) = St(ρ, l +
1). By [20, Theorem 6.1], we can conclude that St(ρ, l) is H -distinguished if and only if
St(ρ, l−1) (or St(ρ, l+1)) is not H -distinguished. Actually, as ρ is self-dual, the L-function
L(s, φ(ρ) ⊗ φ(ρ)) has a simple pole at s = 0, where φ(ρ) is the Langlands parameter of ρ.
By the factorization

L(s, φ(ρ) ⊗ φ(ρ)) = L(s,�2 ◦ φ(ρ)) · L(s,Sym2 ◦ φ(ρ)),

we know that exactly one of the symmetric or exterior square L-factors of ρ has a pole
at s = 0. The above conclusion then follows from [20, Theorem 6.1] where distinction of
St(ρ, l) is related to the pole of symmetric or exterior square L-facotrs of ρ according to l is
even or odd. Thus by our assumption that Δ is Hd/2,d/2-distingusihed, we get that Ki is not
Hm,m-distinguished. So we are done. ��
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7.2 The general case

We start with an auxiliary result, which is needed in one step of the proof of Theorem 7.3.

Lemma 7.2 Let π = π1 × · · · × πt be an irreducible unitary representation of G2m with
each πi a Speh representation. Let h be a positive integer. Assume that, for all of those πi

such that supp(πi ) is contained in the cuspidal line Zν−1/2, we have b(πi ) ≤ νh−1/2. If
the representation π × ν−h/2 is (Hm,m+h, μh/2)-distinguished, where ν−h/2 is viewed as a
representation of Gh, then π is Hm,m-distinguished.

Proof A crucial fact, on which we rely, is that π is a commutative product of Speh represen-
tations. Our first step is to show that we can reduce the proposition to the case that for all
i ,

the support supp(πi )is contained inZν−1/2andb(πi ) = νh−1/2. (7.3)

Indeed, write Π = π1 × · · · × πr and Π ′ = πr+1 × · · · × πt × ν−h/2 where, π j ’s, r + 1 ≤
j ≤ t , are all the representations in the Tadić decomposition of π that satisfy (7.3). So
Π × Π ′ is (Hm,m+h, μh/2)-distinguished. By Proposition 6.8, Π is (Hm1,m1+h1 , μh1/2)-
distinguished and Π ′ is (Hm−m1,m−m1+h−h1 , μ(h+h1)/2)-distinguished for certain integers
m1 and h1. Note that the central character of Π has real part 0. We have h1 = 0. So, Π is
Hm1,m1 -distinguished and Π ′ is (Hm−m1,m−m1+h, μh/2)-distinguished. The reduction then
follows from Lemma 5.7.

We thus assume that π = π1 × · · · × πt with b(πi ) = νh−1/2 for all i . Moreover, we
arrange the ordering of πi ’s such that ht(π1) ≥ · · · ≥ ht(πt ). We prove the lemma by
induction on t .

As the representation π × ν−h/2 is (Hm,m+h, μh/2)-distinguished, by Proposition 6.6,
there exist two representations σ ′ and σ ′′ of dimension one, ν−h/2 = σ ′ � σ ′′, such that,
among other things, σ ′ is (Ha,b, μh+(a−b)/2)-distinguished for two nonnegative integers a
and b.

(1). If σ ′ is not the trivial representation of G0, that is, a and b are not all zero, we have three
cases. If a > 0 and b > 0, then by Lemma 3.2, σ ′ must be the trivial representation 1
of Ga+b. This is absurd as we have b(σ ′) = ν−1/2; If a > 0 and b = 0, then σ ′ is the
character νh+a/2 of Ga . Thus b(σ ′) = νh+a−1/2 which is absurd; If a = 0 and b > 0,
we see easily that a = 0 and b = h, that is, σ ′ is the character ν−h/2 of Gh . So, it follows
from Case B of Proposition 6.6 that π is Hm,m-distinguished.

(2). If σ ′ is the trivial representaion of G0, then we are in Case C of Proposition 6.6.Hence
there exists i , 1 ≤ i ≤ t and a division of πi as two ladder representations π ′

i and π ′′
i ,

πi = π ′
i � π ′′

i , such that π
′
i is the character νh/2 of Gh and the representation

π1 × · · · × πi−1 × π ′′
i × πi+1 × · · · × πt (7.4)

is (Hm−h,m, μh/2)-distinguished. We have two subcases. If πi is one dimensional, then
πi must be the trivial representaion 1 of G2h as b(πi ) = νh−1/2. Thus π ′′

i is the character
ν−h/2 of Gh . By Lemma 6.10, ν−h/2 × π j = π j × ν−h/2 for j = 1, . . . , t . So we move
π ′′
i to the end of the product (7.4) and get by induction hypothesis that

π1 × · · · × πi−1 × πi+1 × · · · × πk

is Hm−h,m−h-distinguished. Hence π is Hm,m-distingusihed by Lemma 5.7. If otherwise
πi is not one dimensional, we can also move π ′′

i to the beginning of the product (7.4) by
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Lemma 6.10 and our ordering of πi ’s. By part (2) of Lemma 3.1,

π1 × · · · × πi−1 × πi+1 × · · · × πt × (π ′′
i )∨ (7.5)

is (Hm,m−h, μ−h/2)-distinguished. This is impossible by Proposition 6.8, and then we
are done. Indeed, firstly, we can check easily that π ′′

i , hence its contragradient (π ′′
i )∨,

cannot be (Hp1,q1 , μa1)-distinguished for any (p1, q1, a1) by Lemma 6.18. Secondly,
note that e((π ′′

i )∨) = ν−h−1/2 is not dual to b(πi ) = νh−1/2 for all i .

��
Theorem 7.3 Let π be an irreducible unitary representation of G2m of Arthur type. Then π

is Hm,m-distinguished if and only if π is of the form

(σ1 × σ∨
1 ) × · · · × (σr × σ∨

r ) × σr+1 × · · · × σs . (7.6)

where each σi is a Speh representation for i = 1, . . . , r , and each representation σ j is
Hm j ,m j -distinguished for some positive integer m j , j = r + 1, . . . , s.

Proof By the work of Blanc and Delorme [2], we know that σ j ×σ∨
j is Hm j ,m j -distinguished

with m j the degree of σ j , j = 1, . . . , r . One direction then follows from Lemma 5.7. Write
π = π1 × · · · × πt to be the Tadić decomposition of π . We prove the other direction by
induction on t . The case t = 1 is obvious. In general, as π is a commutative product, we
order these πi in the following way: We first group these πi by cuspidal supports. Namely,
representations with cuspidal supports contained in the union of one cuspidal line and its
contragredient are put in the same group. The ordering of the groups can be arbitrary. For
representations within the same group, if their cuspidal supports are contained in one cuspidal
line, we arrange the ordering such that when i < j , we have either b(πi ) < b(π j ), or
b(πi ) = b(π j ) and ht(πi ) ≤ ht(π j ); if their cuspidal supports are contained in two different
cuspidal lines, we arrange the ordering such that when i < j , we have ht(πi ) ≤ ht(π j ).

By our assumption, π is Hm,m-distinguished. We apply Propositon 6.6 and discuss case
by case.

Case A. There exists a division of πt , πt = π ′
t � π ′′

t , where π ′
t is neither πt nor the trivial

representation of G0, such that, among other things, π ′
t is (Hr ,s, μ(r−s)/2)-distinguished for

two nonnegative integers r and s. We have two subcases.

(1) The representation π ′
t is not one dimensional. By Proposition 6.16, we know π ′

t is an
essentially Speh representation. So, by Corollary 6.14, we have r = s. That is, π ′

t is
Hr ,r -distinguished. In particular, π ′

t is self-dual, and hence πt is self-dual. This further
shows that π ′

t is a Speh representation. By Proposition 6.6, there exists i , 1 ≤ i ≤ t − 1,
and a division of πi , πi = π ′

i � π ′′
i such that (π ′′

t )∨ ∼= π ′
i and that

π1 × · · · × πi−1 × π ′′
i × πi+1 × · · · × πt−1 (7.7)

is Hm′,m′ -distinguished for some positive integer m′. Thus we have b(πt ) = b(πi ). By
our assumption on the ordering of representations, we have ht(πi ) ≤ ht(πt ). As π ′

t is
a self-dual Speh representation that does not equal to πt , we have ht(π ′′

t ) = ht(πt ). As
ht(π ′

i ) ≤ ht(πi ), we have ht(πt ) = ht(πi ) due to the fact that (π ′′
t )∨ ∼= π ′

i . Thus we
have πi ∼= πt and π ′′

i
∼= π ′

t . Recall that π ′
t is a Hr ,r -distinguished Speh representation.

So, by induction hypothesis, the representation (7.7) is of the form (7.6). After removing
π ′′
i in the product, we still get a representation of the form (7.6). Therefore, by adding

πt × πi , we get that π is of the form (7.6).

123



2282 C. Yang

(2) The representation π ′
t is one dimensional. If r > 0 and s > 0, then π ′

t is the trivial
representation 1 ofG2r by Lemma 3.2. Note that, in this case, πt is not a one dimensional
representaion. Then by the same arguments as in Case A (1), we are done in this case.
If one of r , s is 0, then π ′

t is the character νh/2 of Gh , h = max{r , s}. Thus we have
b(πt ) = b(π ′

t ) = νh−1/2. In particular, πt is self-dual. By Proposition 6.6, there exists
i , 1 ≤ i ≤ t − 1, and a division of πi , πi = π ′

i � π ′′
i such that (π ′′

t )∨ ∼= π ′
i and that

π1 × · · · × πi−1 × π ′′
i × πi+1 × · · · × πt−1 (7.8)

is (Hm−nt ,m−nt+h, μh/2)-distinguished with nt the degree of πt . Thus we have b(πi ) =
b(πt ) = νh−1/2, and πi is also self-dual. By our assumption on the ordering of repre-
sentations, we have ht(πi ) = ht(πt ), and hence πi ∼= πt . Thus, the representation π ′′

i is
the character ν−h/2 of Gh . By Lemma 6.10, the representation (7.8) is isomorphic to the
representation

π1 × · · · × πi−1 × πi+1 × · · · × πt−1 × ν−h/2.

By Lemma 7.2, the representation π1 × · · · × πi−1 × πi+1 × · · · × πt−1 is Hm−nt ,m−nt -
distinguished, and hence is of the form (7.6) by induction hypothesis. Therefore, by
adding πi × πt , we get that π is of the form (7.6).

Case B. In this case the representation πt is (Hr ,s, μ(r−s)/2)-distinguished for two non-
negative integers r and s, and the representation

π1 × · · · × πt−1

is (Hm−r ,m−s, μ(r−s)/2)-distinguished. As πt is a Speh representation, by consideration of
its central character, we have r = s. Therefore, by induction hypothesis we are done.

Case C. There exists i , 1 ≤ i ≤ t − 1, and a division of πi , πi = π ′
i � π ′′

i , such that
(πt )

∨ ∼= π ′
i and that the representation

π1 × · · · × πi−1 × π ′′
i × πi+1 × · · · × πt−1

is Hm−nt ,m−nt -distinguished. By our assumption on the ordering of representations, we have
πi ∼= (πt )

∨. Thus π ′′
i is the trivial representation of G0. By induction hypothesis, the repre-

sentation π1 × · · · × πi−1 × πi+1 × · · · × πt−1 is of the form (7.6). Therefore, by adding
πt × (πt )

∨, the representation π is of the form (7.6). ��
To classify distinguished representations in the entire unitary dual, it remains to consider

distinction of complementary series representations. Recall that a complementary series
representation is an irreducible unitary representation of the form ναSp(δ, k) × ν−αSp(δ, k)
with 0 < α < 1/2, and is denoted by Sp(δ, k)[α,−α]. By the work of Blanc and Delorme
[2], one sees that Sp(δ, k)[α,−α] is Hm,m-distinguished if and only if it is self-dual, wherem
is the degree of Sp(δ, k). To apply the geometric lemma, we first note the following lemma.

Lemma 7.4 Let ρ be a unitary supercuspidal representation of Gd and c a fixed integer. Let
π be a ladder representation of Gn with cuspidal supports contained in the cuspidal line
Zνα+c/2ρ orZν−α+c/2ρ with 0 < α < 1/2, then π cannot be self-dual. If, moreover, π is left
aligned, then π cannot be (Hp,q , μ(p−q)/2)-distinguished for certain nonnegative integers
p, q with p + q = n.

Proof As 0 < α < 1/2, the cuspidal line Zνα+c/2ρ (or Zν−α+c/2ρ) is not self-dual. Thus π

cannot be self-dual by Lemma 6.1. For the second statement, if π is one dimensional, then
by Lemma 6.19, the cuspidal supports of π is contained in Zν0 or Zν−1/2. This contradicts
with our assumption; if π is not one dimensional, then by Proposition 6.16 and Corollary
6.14, one sees π is self-dual. This is absurd as shown by the first statement. ��
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Theorem 7.5 An irreducible unitary representation π of G2n is Hn,n-distinguished if and
only if it is self-dual and its Arthur part πAr is of the form (7.6).

Proof To simplify notation, we will say a representaion H -distinguished for Hm,m-
distinguished when there is no need to address m. Write π = πAr × πc. If π is self-dual,
by uniqueness of Tadić decomposition, we have πc is also self-dual. As πc is a commutative
product of complementary series representations, we have πc is H -distinguished. The ‘if’
part then follows from Lemma 5.7. For the ‘only if’ part, write π as a product of essentially
Speh representations

π1 × · · · × πt × να1Sp(δ1, k1) × ν−α1Sp(δ1, k1) × · · · × ναr Sp(δr , kr ) × ν−αr Sp(δr , kr )
(7.9)

such that k1 ≤ k2 ≤ · · · ≤ kr , and that πi is a Speh representation for i = 1, . . . , t . Now
we appeal to Proposition 6.6. By Lemma 7.4, only Case C can happen. Note that we have
k1 ≤ · · · ≤ kr and 0 < αi < 1/2, i = 1, . . . , r . By simple arguments we can show that
each time after applying Proposition 6.6, we can delete two non-unitary essentially Speh
representations in the product (7.9), and the new representation is H -distinguished. Thus by
a repeated use of Proposition 6.6, we get πAr = π1 × · · · × πt is H -distinguished. The ‘only
if’ part then follows from Theorem 7.3. ��
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