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Abstract
We prove via FBI-transform a result concerning the microlocal Gevrey regularity of analytic
vectors for operators sumsof squares of vector fieldswith real-valued real analytic coefficients
of Hörmander type, thus providing a microlocal version, in the analytic category, of a result
due to Derridj (Pac J Math 302(2):511–543, 2019) concerning the problem of the local
regularity for the Gevrey vectors for sums of squares of vector fields with real-valued real
analytic/Gevrey coefficients.
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Mathematics Subject Classification 35H10 · 35H20 · 35B65

1 Introduction

We deal with the microlocal regularity of the analytic vectors for sum of squares of vector
fields. Let X1(x, D), . . . , Xm(x, D) be vector fields with real-valued real analytic coeffi-
cients on U , open neighborhood of the origin in R

n . Let P(x, D) denote the corresponding
sum of squares operator

P(x, D) =
m∑

j=1

X2
j (x, D). (1.1)

We assume that the operator P satisfies the Hörmander’s condition: the Lie algebra generated
by the vector fields and their commutators has the dimension n, equal to the dimension of
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the ambient space. The operator P satisfies the a priori estimate

‖u‖21/r +
m∑

j=1

‖X ju‖20 ≤ C
(|〈Pu, u〉| + ‖u‖20

)
, (1.2)

which we call, for the sake of brevity, the “subelliptic estimate.” Here u ∈ C∞
0 (U ), ‖ · ‖0

denotes the norm in L2(U ) and ‖ · ‖s the Sobolev norm of order s in U . Here r is the least
integer such that the vector fields, the commutators, the triple commutators etcetera up to
the commutators of length r span at any point of the closure of U all the ambient space
R
n . The sub-elliptic estimate was proved first by Hörmander in [18] for a Sobolev norm of

order r−1 − ε and up to order r−1 subsequently by Rothschild and Stein [22] as well as in a
pseudodifferential context by Bolley, Camus and Nourrigat in [7].
Let X j (x, ξ) be the symbol of the vector field X j . Write {Xi , Xk} the Poisson bracket of the
symbols of the vector fields Xi , Xk :

{Xi , Xk} (x, ξ) =
n∑

�=1

(
∂Xi

∂ξ�

∂Xk

∂x�

− ∂Xk

∂ξ�

∂Xi

∂x�

)
(x, ξ).

Definition 1.1 Let(x0, ξ0)be a point in the characteristic set of P:

Char(P) = {(x, ξ) ∈ T ∗U\{0} : X j (x, ξ) = 0, j = 1, . . . m}. (1.3)

Consider all the iterated Poisson brackets {Xi , Xk}, {X p, {Xi , Xk}} etcetera. We define
ν(x0, ξ0) as the length of the shortest iterated Poisson bracket of the symbols of the vector
fields which is non zero at (x0, ξ0).

We recall

Definition 1.2 Let P(x, D) be as in (1.1). We denote by Gs(U ; P) which is the space of the
Gevrey vectors of order s with respect to P , the set of all distributions u ∈ D ′(U ) such that
for any compact subset K of U there exists a positive constant CK such that

‖PNu‖L2(K ) ≤ C2N+1
K ((2N )!)s , ∀ N ∈ Z+. (1.4)

When s = 1 we set G1(U ; P) = A (U ; P) the set of the analytic vectors with respect to
P .

We recall that concerning systems of vector fields with real analytic coefficients satisfying
Hörmander’s condition the problem of the local regularity of the analytic vectors for such
systems was first studied in [11] followed by a more refined version in [16].

In a couple of recent works Derridj, [12] and [13], studied the problem of the local
regularity for the Gevrey vectors for operators of Hörmander type of first kind, i.e. sum
of squares, and of the second kind or degenerate elliptic parabolic. We prove the minimal
microlocal version of the result in [12] in the case of analytic vectors:

Theorem 1.1 Let P beas in (1.1). Let u be ananalytic vector for P, u ∈ A (U ; P). Let (x0, ξ0)
beapoint in the characteristic set of P andν(x0, ξ0) its length. Then (x0, ξ0) /∈ WFν(x0,ξ0)(u).

Where WFs(u), s ≥ 1, denotes the wave front set of the distribution u; it will be defined in
the next section via FBI-transform, Definition 2.1.
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Remark 1.2 A few remarks are in order:

(i) the method used to gain the above result can be extended to a class of Hörmander type
operators not strictly sums of squares; we consider operators of the form P(x, D) +∑m

i=1 b j (x)X j (x, D) + c(x) where P is as in (1.1), b j (x) are real-valued real analytic
functions and c(x) is a real analytic complex function;

(ii) the strategy to obtain the above result can be carried over to the case of s-Gevrey vectors
with s ∈ Z+;

(iii) the result is optimal, see example given in [9].

A few words about the method of proof: it consists in using the FBI transform and the
subelliptic inequality on the FBI side obtained in [1]. To do that we use a deformation
technique of the Lagrangian associated to the FBI proposed by Grigis and Sjöstrand in [15].

2 Background on FBI andmicro-local sub-elliptic estimate for sums of
squares

We are going to use a pseudodifferential and FIO (Fourier Integral Operators) calculus intro-
duced by Grigis and Sjöstrand in the paper [15]. We recall below the main definitions and
properties to make this paper self-contained and readable. For further details we refer to the
paper [15] and notes [23].
FBITransform.Let u ∈ E ′(�), whereE ′(�) denotes the space of distributionswith compact
support in �, open subset of Rn , which is the dual space of the space of smooth functions in
� equipped with its natural topology. We define the FBI transform of u as

Tu(z, λ) =
∫

Rn
eiλψ(z,y)u(y)dy,

where z ∈ C
n , λ ≥ 1 is a large parameter, ψ(z, w) in C

2n is an holomorphic function such
that det ∂z∂wψ �= 0, 
∂2wψ > 0. To the phase ψ there corresponds a weight function φ(z),
defined as

φ(z) = sup
y∈Rn

−
ψ(z, y), z ∈ C
n .

Example 1 A typical phase function may beψ(z, y) = i
2 (z− y)2. The corresponding weight

function is given by φ(z)
.= φ0(z) = 1

2 (
z)2.
We recall that T is associated to the following complex canonical transformation:

HT : C2n
(w,θ) −→ C

2n
(z,ζ ),

(w,−∂wψ(z, w)) �→ (z, ∂zψ(z, w)) ,
(2.1)

with ψ as a generating function.
In particular HT (R2n)

.= 
φ = {(z,−2i∂zφ(z)) ; z ∈ C
n}. In the case of classical phase

function, see Example 1, we have

H0(x, ξ) = (x − iξ, ξ), (x, ξ) ∈ R
2n .

We set H0(R
2n) = 
φ0 .

We recall the definition of s–Gevrey wave front set of a distribution via classical FBI trans-
form, i.e. using the phase function and the corresponding weight function of the Example 1.
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Definition 2.1 Let u be a compactly supported distribution on R
n . Let (x0, ξ0) ∈ T ∗

R
n\0.

We say that (x0, ξ0) /∈ WFs(u), s ≥ 1, if there exist a neighborhood � of x0 − iξ0 ∈ C
n and

positive constants C , ε such that

|e−λφ0(z)Tu(z, λ)| ≤ Ce−ελ1/s ,

for every z ∈ � and λ > 1.

Pseudodifferential Operators. Let us consider (z0, ζ0) ∈ C
2n and a real valued real analytic

function φ(z) defined near z0, such that φ is strictly plurisubharmonic and

2

i
∂zφ(z0) = ζ0.

Denote by ϑ(z, w) the holomorphic function defined near (z0, z̄0) by

ϑ(z, z̄) = φ(z). (2.2)

Because of the strict plurisubharmonicity of φ, we have

det ∂z∂wϑ �= 0 (2.3)

and

�ϑ(z, w̄) − 1

2
[φ(z) + φ(w)] ∼ −|z − w|2. (2.4)

Let λ ≥ 1 be a large positive parameter. We write

D̃ = 1

λ
D, D = 1

i
∂.

Denote by q(z, ζ, λ) an analytic classical symbol1 and by Q(z, D̃, λ) the formal classical
pseudodifferential operator associated to q . Using “Kuranishi’s trick” 2 one may represent
Q(z, D̃, λ) as

Qu(z, λ) =
(

λ

2iπ

)n ∫
e2λ(ϑ(z,θ)−ϑ(w,θ))q̃(z, θ, λ)u(w)dwdθ. (2.5)

Here q̃ denotes the symbol of Q in the actual representation.
To realize the above operator we need a prescription for the integration path3. This is

accomplished by transforming the classical integration path via the Kuranishi change of
variables and eventually applying Stokes theorem:

Q�u(z, λ) =
(

λ

π

)n ∫

�

e2λϑ(z,w̄)q̃(z, w̄, λ)u(w)e−2λφ(w)L(dw), (2.6)

where L(dw) = (2i)−ndw ∧ dw̄ is the Lebesgue measure in R
2n , the integration path

is θ = w̄ and � × � is a small neighborhood of (z0, z̄0). We remark that Q�u(z) is an
holomorphic function of z.

1 For more details on the subject see [23], Section 1; see also [17].
2 For more details on the “Kuranishi’s trick” see [19] Proposition 2.1.3 and [23] Remarque 4.3.
3 For a detailed discussion about the integration paths see [23].
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Definition 2.2 Let� be an open subset ofCn . We denote by Hφ(�) the space of all functions
u(z, λ) holomorphic with respect to z, such that for every ε > 0 and for every compact
K ⊂⊂ � there exists a constant C > 0 such that

|u(z, λ)| ≤ Ceλ(φ(z)+ε),

for z ∈ K and λ ≥ 1.

A few remarks are in order.

(i) If q̃ is a classical symbol of order zero, Q�(z, D̃, λ) is uniformly bounded as λ → +∞,
from Hφ(�) into itself.

(ii) If the principal symbol is real, Q�(z, D̃, λ) is formally self adjoint operator in L2(�,

e−2λφ(z)L(dz)).
(iii) The definition (2.5) of the realization of a pseudodifferential operator on an open subset

� of Cn is not the classical one. Via the Kuranishi trick it can be reduced to the classical
definition. On the other hand using the function ϑ allows us to use a weight function
not explicitly related to an FBI phase. This is useful since in the proof we deform the
I-Lagrangian, R-Symplectic variety 
φ0 , corresponding e.g. to the classical FBI phase,
and obtain a deformed weight function which is useful in the a priori estimate.

We also recall that the identity operator can be realized as

I�u(z, λ) =
(

λ

π

)n ∫

�

e2λϑ(z,w̄)i(z, w̄, λ)u(w, λ)e−2λφ(w)L(dw), (2.7)

for a suitable analytic classical symbol i(z, ζ, λ). Moreover we have the following estimate
(see [15] and [23], Sect. 12)

‖I�u − u‖φ−d2/C ≤ C ′‖u‖φ+d2/C , (2.8)

for suitable positive constants C and C ′, for u ∈ L2 (�) and holomorphic in � . Here we
denoted by

d(z) = dist(z, ��), (2.9)

the distance of z to the boundary of �, and by

‖u‖2f =
∫

�

|u(z)|2e−2λ f (z)L(dz). (2.10)

We also recall the following important result on the composition of two pseudodifferential
operators.

Proposition 2.1 ([15], Proposition 1.3). Let Q1 and Q2 be of order zero. Then they can be
composed and

Q�
1 ◦ Q�

2 = (Q1 ◦ Q2)
� + R�,

where R� is an error term, i.e. an operator whose norm is O(1) as an operator from
Hφ+(1/C)d2 to Hφ−(1/C)d2

The a priori Estimate. Let X j (z, ζ ), j = 1, . . . , m, be classical analytic symbols of order
one defined in � open neighborhood of (z0, ζ0) ∈ 
φ inC2n . We assume also that the X j |
φ

are real valued. Let

P(z, D̃) =
m∑

j=1

X2
j (z, D̃). (2.11)
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According to [15] the �-realization of P can be written as

P� =
m∑

j=1

(X�
j )2 + O(λ2), (2.12)

where O(λ2) is continuous from Hφ̃ to Hφ−(1/C)d2 with norm bounded by C ′λ2, φ̃ given by

φ̃(z) = φ(z) + 1

C
d2(z),

and d has been defined in (2.9).
Following [1] we state the FBI version of the estimate (1.2).

Theorem 2.1 Let (x0, ξ0) be in Char(P) and ν
.= ν(x0, ξ0), Definition 1.1. LetHT (x0, ξ0) =

(z0, ζ0) ∈ 
φ and P� be as in (2.12). Let �1 open neighborhood of (z0, ζ0) such that
�1 ⊂⊂ �. Then

λ
2
ν ‖u‖2φ +

m∑

j=1

‖X�
j u‖2φ ≤ C

(
〈P�u, u〉φ + λα‖u‖2φ,�\�1

)
, (2.13)

where α is a positive integer and u ∈ L2(�, e−2φ(z)L(dz)).

3 Proof of the Theorem 1.1

In order to prove the result we want take advantage of Theorem 2.1. We consider the sum of
squares operator

Q(x, Dt , D) =
m∑

j=0

X2
j = D2

t + P(x, D), (3.1)

in Õ = ]−δ0, δ0[×O, δ0 > 0.
We study the microlocal properties of the solutions of the problem Qv = f , f ∈ Cω(Õ).
We denote by �̃ the characteristic set of Q given by

�̃ = {(t, x, τ, ξ) ∈ T ∗Õ\{0} : Q(t, x, τ, ξ) = 0}
= {(t, x, τ, ξ) ∈ T ∗Õ\{0} : τ = 0, X j (x, ξ) = 0, j = 1, . . . , m}. (3.2)

We remark that ν(t0,x0,0,ξ0),(t0, x0, 0, ξ0) ∈ �̃, is equal to ν(x0,ξ0), (x0, ξ0) ∈ �, where �

denotes the characteristic set of P(x, D).
We construct a deformation of
φ0 following the ideas in [15], see also [1]. Let (0, x0, 0, ξ0) ∈
�̃ and ν its length.
We perform an FBI-transform of the form

Tu(z, λ) =
∫

Rn+1
eiλψ(z,t,x)u(t, x)dtdx, z = (z0, z1) ∈ C

1+n,

where u(t, x) is a compactly supported distribution and ψ(z, t, x) is a phase function. Even
though it does not really matter which phase function we use, the classical phase function
will be employed:

ψ0(z, t, x) = i

2

[
(z0 − t)2 + (z1 − x)2

]
. (3.3)
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Let� be an open neighborhood of the pointπz◦HT (0, x0, 0, ξ0) inC1+n . Hereπz denotes the
space projection πz : C1+n

z ×C
1+n
ζ → C

1+n
z , ζ = (ζ0, ζ1), andHT is the complex canonical

transformation associated to T , (2.1). We recall that in the case of FBI with classical phase
function, Example 1, we have H0(t, x, τ, ξ) = (t − iτ, x − iξ, τ, ξ).

Denoting by Q̃ our operator after the FBI we have that Q̃|
φ0
= Q, 
φ0 = H0(R

2(1+n)).

We have thatπz ◦H0(0, x0, 0, ξ0) = (0, x0−iξ0) = (0, w0) ∈ C
1+n .We perturb canonically

φ0. For λ ≥ 1 let us consider a real analytic function defined near the pointH0(0, x0, 0, ξ0) ∈

φ0 , say h(z, ζ, λ). Solve, for small positive s, the Hamilton-Jacobi problem

⎧
⎨

⎩
2
∂φ

∂s
(s, z, λ) = h

(
z,

2

i

∂φ

∂z
(s, z, λ), λ

)

φ(0, z, λ) = φ0(z)
. (3.4)

Set

φs(z, λ) = φ(s, z, λ),

we have the canonical map 
φ0 → 
φs where


φs = exp (isHh) 
φ0 .

We choose the function h as

h(z, ζ, λ) = h

(
z,

2

i

∂φ0

∂z
(z), λ

)
+ λ−1h1(z, ζ )

(
ζ − 2

i

∂φ0

∂z
(z)

)
,

where h1(z, ζ ) is an holomorphic function and

h

(
z,

2

i

∂φ0

∂z
(z), λ

)
= h(z, ζ, λ)|
φ0

= (z′′0)2 + λ−
ν−1
ν
(
(z′0)2 + |z1 − w0|2

)
, (3.5)

z0 = z′0 + i z′′0 ∈ C.
Since R

2(1+n) and 
φ0 are isometric, keep in mind the definition of 
φ0 , it is easier to
construct the function h in R

2(n+1) near the characteristic point:

h(t, x, τ, ξ, λ) = τ 2 + λ−1+ 1
ν
[
t2 + |x − x0|2 + |ξ − ξ0|2

]
. (3.6)

The function φs can be expanded as a power series in the variable s using both equation (3.4)
and the Faà di Bruno formula to obtain

φs(z, λ) = φ0(z) + s

2
h(·, ·, λ)∣∣


φ0

+ O(λ−1s2), (3.7)

where h on 
φ0 is given by (3.5). Our purpose is to use the estimate (2.13) where the weight
function φ has been replaced by the weight φs . This is possible using the phase ϑs in (2.5)
and realizing the operator as in (2.6). Here ϑs is defined as the holomorphic extension of
ϑs(z, z̄) = φs(z).

We need to restrict the symbol of Q to 
φs ; we denote by Qs the symbols of Q restricted
to 
φs . Noting that

X2
j

(
x,

2

i
∂xφs(x, λ

)
, λ) = X2

j

(
x,

2

i
∂xφ0(x), λ

)

+ 2sX j

(
x,

2

i
∂xφ0(x), λ

) 〈
∂ξ X j (x,

2

i
∂xφ0(x), λ),

2

i
∂x∂sφs(x, λ)∣∣

s=0

〉

+ O(s2λ
2
ν ).
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We deduce that

Qs = Q + s
m∑

j=0

X j {h, X j } + s2
m∑

j=0

{h, X j }2 +O(s2λ
2
ν )

= Q(x, ξ) + sR(x, ξ, λ) + O(s2λ
2
ν ). (3.8)

The analytic extension of Qs is the symbol appearing in the �-realization of Qs , Qs�. We
point out that the principal symbol of Qs satisfies the assumptions of Theorem 2.1 and, using
the a priori inequality (2.13), we can deduce an estimate of the form (2.13) for Qs in the Hφs

spaces. We have

λ
2
ν ‖u‖2φs

+
m∑

j=0

‖X�
j u‖2φs

≤ C
(
|〈(Qs� − sR� − O(s2λ

2
ν ))u, u〉φs | + λα‖u‖2φs ,�\�1

)
.

The third term in the right hand side of the scalar product above is easily absorbed on the left
provided s is small enough. Let us consider the second term in the scalar product above. By
Proposition 2.1, we have

R� =
m∑

j=0

a�
j (x, D̃, λ)X�

j (x, D̃, λ) + O(λ),

where a�
j (x, D̃, λ), j = 0, . . . ,m, are zero order operators and O(λ) denotes an operator

from Hφs+ 1
C d2 to Hφs− 1

C d2 whose norm is bounded by Cλ. Hence

s|〈R�u, u〉φs | ≤ Cs
(
λ

2
ν ‖u‖2φs

+
m∑

j=0

‖X�
j u‖2φs

+ λ2‖u‖2
φ̃s

)
,

where φ̃s = φs + 1
C d

2. Hence we deduce that there exist a neighborhood �0 of (0, w0), a
positive number δ and a positive integer α such that, for every�1 ⊂⊂ �2 ⊂⊂ � ⊂ �0, there
exists a constant C > 0 such that, for 0 < s < δ, we have

λ
2
ν ‖u‖φs ,�1 ≤ C

(
‖Qs�u‖φs ,�2 + λα‖u‖φs ,�\�1

)
. (3.9)

We now prove that if Qu is analytic at (0, x0, 0, ξ0) then the point (0, x0, 0, ξ0) does not
belong to WFν(u).

Since Qu is real analytic the first term in the right hand side of (3.9) can be estimated by
Ce−λ/C for a positive constantC . We have to estimate the second term on the right hand side
of the above inequality. We have

φs(z, λ) = φ0(z) + s

2
h(z,

2

i

∂φ

∂z
(0, z), λ) +O(λ−1s2).

Hence

φs(z, λ) − φ0(z) ∼ s

2

[
(z′′0)2 + λ−

ν−1
ν
(
(z′0)2 + |z1 − w0|2

)]
.

Since z = (z0, z1) ∈ �\�1, i.e. far from (0, w0), there exists a positive constant β such that

h|
φ0∩�\�1 ≥ 2λ−1+1/νβ > 0.
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Microlocal regularity of the analytic vectors 1991

We have

φs(z, λ)|�\�1 ≥ φ0(z) + sλ−1+ 1
ν β +O(λ−1s2).

The second term on the right hand side of (3.9) can be estimated by

‖u‖2φs ,�\�1
≤ C1(s)e

−λ
1
ν s β

2 ,

where C1(s) > 0. From (3.9) and the above argument there is a positive constant C2 such
that

‖u‖2φs ,�1
≤ C2e

−λ
1
ν s β

2 .

Let �3 a sufficient small neighborhood of the point (0, w0), �3 � �1, such that for a fixed
small positive s

φs(z, λ) − φ0(z) ≤ sβ

4
λ−1+ 1

ν + λ−1C3(s),

z ∈ �3, λ ≥ 1.
Then there are two positive constants, C̃ and ε, such that

‖u‖2φ0,�3
≤ C̃e−ελ

1
ν
.

Now we consider the problem
⎧
⎨

⎩

(
D2
t + P(x, D)

)
U (t, x) = 0,

U (0, x) = u(x),
(3.10)

in Õ = ]−δ0, δ0[× O , δ0 > 0, where u(x) is an analytic vector for P(x, D):

‖Pku‖0 ≤ C2k+1(2k)!. (3.11)

The function

U (t, x) =
∑

k≥0

t2k

2k! P
ku(x)

is a solution of the above problem. We choose δ0 <
√
2C .

In order to complete the proof of the Theorem 1.1 we have to show that (0, x0, 0, ξ0) /∈
WFs0 (U ) if and only if (x0, ξ0) /∈ WFs0(u) for every s0 ≥ 1.
This result was showed in the case s0 = 1 via Fourier transform in [8], Proposition 3.3. We
give, for any s0 ∈ [1,+∞), a proof via the classical FBI transform.
Step one: if (x0, ξ0) /∈ WFs0(u) then (0, x0, 0, ξ0) /∈ WFs0(U ).
By hypothesis we have that (x0, ξ0) /∈ WFs0(u) if and only of there exist � open neighbor-
hood of the point x0 − iξ0 in C

n and positive constants C1 and ε1 such that

|e−λφ0(z)T (χu) (z, λ)| ≤ C1e
−ε1λ

1/s0
, ∀z ∈ �, (3.12)

where χ is a C∞
0 (O) identically one in a neighborhood of x0.

We have to show that there is � open neighborhood of the point (0, x0 − iξ0) in C
n+1 and

positive constants C2 and ε2 such that

|e−λφ0(w,z)T (χU ) (w, z, λ)| ≤ C2e
−ε2λ

1/s0
, ∀(w, z) ∈ �, (3.13)
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1992 G. Chinni, M. Derridj

where χ(t, x) = χ0(t)θ0(x), here χ0(t) is C
∞
0 (]− δ1, δ1[), 0 < δ1 < δ0, such that χ0(t) ≡ 1

in ]−δ2, δ2[, 0 < δ2 < δ1/2, and θ0(x) isC
∞
0 (Br0(x0)),Br0(x0) = {x ∈ R

n : |x−x0| < r0},
r0 ≤ dist

(
x0, �πz′(�)

)
such that θ0(x) ≡ 1 in Br1(x0), 0 < r1 < r0.

We have

T (χU ) (w, z, λ) =
∫∫

e−
λ
2 (w−s)2e−

λ
2 (z−y)2χ0(s)θ0(y)U (s, y) dsdy

=
∞∑

N=0

1

(2N )!
∫∫

e−
λ
2 (w−s)2e−

λ
2 (z−y)2χ0(s)θ0(y)s

2N PNu(y) dsdy
︸ ︷︷ ︸

.=P N (w,z)

.

Let r̃0 > 0 such that r̃0 � r1. We take z in the FBI transform such that z′ = �(z) ∈
Br̃0−ε (x0), where 0 < ε < r̃0.
Case N = 0, since there are two positive constants A and ε̃0 such that

∣∣∣∣
∫

e−
λ
2 (w−s)2χ0(s)ds

∣∣∣∣ ≤ e
λ
2 (w

′′)2 Ae−λε̃0 ,

taking advantage from (3.12) there is a positive constant C3 such that
∣∣∣∣e

−λφ0(w,z)
∫∫

e−
λ
2 (w−s)2e−

λ
2 (z−y)2χ0(s)θ0(y)u(y) dsdy

∣∣∣∣

≤ C3e
−ε1λ

1/s0 e−ε̃0λ. (3.14)

In order to make the proof more readable, before looking at the general case, we analyze the
cases N = 1 and N = 2.
Case N = 1; we have

P1 (w, z)
.= 1

2

∫∫
e−

λ
2 (w−s)2e−

λ
2 (z−y)2χ0(s)θ0(y)s

2Pu(y) dsdy. (3.15)

We introduce θ1(y) ∈ C∞
0

(
Br1 (x0)

)
such that supp

(
θ1
) ⊆ Br1 (x0), where θ0(y) ≡ 1, and

θ1(y) ≡ 1 in Br2 (x0), where r̃0 ≤ r2 < r1 < r0. We have

P1 (w, z) = 1

2

∫∫
e−

λ
2 (w−s)2χ0(s)s

2e−
λ
2 (z−y)2θ0(y)

× P
[(

θ1 (y) + (1− θ1 (y)
))
u(y)

]
dsdy

= 1

2

∫∫
e−

λ
2 (w−s)2χ0(s)s

2
(
P∗e−

λ
2 (z−y)2

)
θ1 (y) u(y) dsdy

+ 1

2

∫∫
e−

λ
2 (w−s)2χ0(s)s

2
[
P∗ (e−

λ
2 (z−y)2θ0(y)

)]

× (1− θ1 (y)
)
u(y) dsdy; (3.16)

P∗ denotes the adjoint of P .
Case N = 2; we have

P2 (w, z)
.= 1

4!
∫∫

e−
λ
2 (w−s)2e−

λ
2 (z−y)2χ0(s)θ0(y)s

4P2u(y) dsdy. (3.17)

We introduce θ1(y) in C∞
0

(
Br1 (x0)

)
and θ2(y) in C∞

0

(
Br2 (x0)

)
such that supp

(
θ1
) ⊆

Br1 (x0), where θ0(y) ≡ 1, θ1(y) ≡ 1 in Br2 (x0), supp
(
θ2
) ⊆ Br2 (x0), where θ1(y) ≡ 1,

123



Microlocal regularity of the analytic vectors 1993

and θ2(y) ≡ 1 in Br3 (x0), where r̃0 ≤ r3 < r2 < r1 < r0. We have

P2 (w, z) = 1

4!
∫∫

e−
λ
2 (w−s)2χ0(s)s

4e−
λ
2 (z−y)2θ0(y)

× P
[(

θ1 (y) + (1− θ1 (y)
))

Pu(y)
]
dsdy

= 1

4!
∫∫

e−
λ
2 (w−s)2χ0(s)s

4
(
P∗e−

λ
2 (z−y)2

)
θ1 (y) Pu(y) dsdy

+ 1

4!
∫∫

e−
λ
2 (w−s)2χ0(s)s

4
[
P∗ (e−

λ
2 (z−y)2θ0(y)

)]

× (1− θ1 (y)
)
Pu(y) dsdy

= 1

4!
∫∫

e−
λ
2 (w−s)2χ0(s)s

4
(
P∗e−

λ
2 (z−y)2

)
θ1 (y)

× P
[(

θ2 (y) + (1− θ2 (y)
))
u(y)

]
dsdy

+ 1

4!
∫∫

e−
λ
2 (w−s)2χ0(s)s

4
[
P∗ (e−

λ
2 (z−y)2θ0(y)

)]

× (1− θ1 (y)
)
Pu(y) dsdy

= 1

4!
∫∫

e−
λ
2 (w−s)2χ0(s)s

4
[(
P∗)2 e−

λ
2 (z−y)2

]
θ2 (y) u(y) dsdy

+ 1

4!
∫∫

e−
λ
2 (w−s)2χ0(s)s

4
[
P∗ ((P∗e−

λ
2 (z−y)2

)

×θ1 (y)
)] (

1− θ2 (y)
)
u(y) dsdy

+ 1

4!
∫∫

e−
λ
2 (w−s)2χ0(s)s

4
[
P∗ (e−

λ
2 (z−y)2θ0(y)

)]

× (1− θ1 (y)
)
Pu(y) dsdy. (3.18)

The idea is to introduce a sequence of cut-off functions, the support of the subsequent nested
where the previous is identically equal to one, in order to move all the powers of P on the
exponential function in a neighborhood of x0 with the purpose of taking advantage of (3.12).
However this will give rise to other terms which still involve powers of P acting on u, but in
a region far from x0. We handle the general case as above. We introduce a family of smooth
functions {θ j (y)}1≤ j≤N such that such that supp

(
θ j

) ⊆ Br j (x0) and θ j (y) ≡ 1 inBr j+1 (x0),
r̃0 ≤ rN+1 < rN < · · · < r2 < r1 < r0. So, we see that for every j less or equal than N+1,
one has that: i less than j implies θi ≡ 1 on a neighborhood of θ j . In order to construct the
functions θ j we follow the same strategy used to construct the Ehrenpreis-Hörmander cut-off
functions. More precisely we choose r j = r0 − (r0 − r̃0)

j
N+1 , we have r j − r j+1 = r0−r̃0

N+1 .
Let ψ be a function in D(Rn) with support in B1/4(0)

.= {y ∈ R
n : |y| ≤ 1/4} such that

ψ ≥ 0 and
∫

ψ dy = 1. For every γ > 0 we write ψγ (y) = γ−nψ
(
x
γ

)
. Let χ j be the

characteristic function of the set {y ∈ R
n : dist (y;Br j+1(x0)

)
< r0−r̃0

2(N+1) }. We set

θ j = ψ r0−r̃0
(N+1)

∗ ψ r0−r̃0
(N+1)

∗ χ j .
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1994 G. Chinni, M. Derridj

These functions have the desired properties. Moreover we have

‖Dyi θ j‖∞ ≤ ‖Dyi ψ r0−r̃0
(N+1)

‖L1‖ψ r0−r̃0
(N+1)

‖L1‖χ j‖∞ ≤ C0
N + 1

r0 − r̃0
,

‖Dyi Dyk θ j‖∞ ≤ ‖Dyi ψ r0−r̃0
(N+1)

‖L1‖Dykψ r0−r̃0
(N+1)

‖L1‖χ j‖∞ ≤
(
C0

N + 1

r0 − r̃0

)2

,

where C0 = sup1≤i≤n ‖Dyi ψ‖L1(B1/4(0)).

Remark 3.2 One may also choose a sequence of θ j independent of N , by repeating the above
construction and taking the convolution with ψ(r0−r̃0)/2 j .
Moreover the θ j can be constructed by just one convolution, i.e. θ j = ψ r0−r̃0

2 j
∗ χ . This will

be more evident in the next few steps.

We set X j (x, D) =
n∑

�=1

a�, j (x)Di . We have

PN (w, z) = 1

(2N )!
∫∫

e−
λ
2 (w−s)2e−

λ
2 (z−y)2χ0(s)θ0(y)s

2N PNu(y) dsdy

= 1

(2N )!
∫∫

e−
λ
2 (w−s)2χ0(s)s

2N
[(
P∗)N e−

λ
2 (z−y)2

]
θN (y)u(y) dsdy

+ 1

(2N )!
N∑

j=1

∫∫
e−

λ
2 (w−s)2χ0(s)s

2N
{
P∗[((P∗) j−1

e−
λ
2 (z−y)2

)
θ j−1(y)

]}

× (1− θ j (y)
)
PN− j u(y) dsdy

= 1

(2N )!
∫∫

e−
λ
2 (w−s)2χ0(s)s

2N
[(
P∗)N e−

λ
2 (z−y)2

]
θN (y)u(y) dsdy

+ 1

(2N )!
N∑

j=1

∫∫
e−

λ
2 (w−s)2χ0(s)s

2N
((

P∗) j e−
λ
2 (z−y)2

)
θ j−1(y)

× (1− θ j (y)
)
PN− j u(y) dsdy

+ 1

(2N )!
N∑

j=1

∫∫
e−

λ
2 (w−s)2χ0(s)s

2N
((

P∗) j−1
e−

λ
2 (z−y)2

) (
Pθ j−1(y)

)

× (1− θ j (y)
)
PN− j u(y) dsdy

+ 1

(2N )!
N∑

j=1

∫∫
e−

λ
2 (w−s)2χ0(s)s

2N

[
m∑

k=1

(
Xk
(
P∗) j−1

e−
λ
2 (z−y)2

)

× (Xkθ j−1(y)
) ] (

1− θ j (y)
)
PN− j u(y) dsdy

+ 2

(2N )!
N∑

j=1

∫∫
e−

λ
2 (w−s)2χ0(s)s

2N
[((

P∗) j−1
e−

λ
2 (z−y)2

)

×
m∑

k=1

fk
(
Xkθ j−1(y)

)
]
(
1− θ j (y)

)
PN− j u(y) dsdy

= I1 + I2 + I3 + I4 + I5, (3.19)
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where fk = 1
i

∑n
�=1 a

(e�)
�,k (y), e�, �,= 1, . . . , n, in the upper index denotes the derivatives in

the direction �.
Before estimating the above terms a few remarks are in order:

(i) each step no more than two derivatives act on θ j (y);
(ii) let y ∈ supp(θ(α)

j−1
) ∩ supp

(
1− θ j

)
, 0 ≤ |α| ≤ 2, since � is a complex neighborhood of

x0 − iξ0 such that πz′ (�) ⊂ Br̃0−ε , we have that (z′ − y)2 ≥ ε2;
(iii) without loss of generality we may write

(
P∗(y, D)

)N =
∑

|β|≤2N
a2N ,β

(y)Dβ

where a2N ,β
(y) are analytic functions such that for any compact set K in U we have

∣∣∣a(γ )
2N ,β

(y)
∣∣∣ ≤ C3N−|β|+|γ |

K (2N − |β| + |γ |)! ∀ y ∈ K and γ ∈ Z
n+. (3.20)

iv) the following identity holds

(
d

dyk

)βk

e−
λ
2 (zk−yk )2 = e−

λ
2 (zk−yk )2

� βk
2 �∑

�k=0

βk !(i)2(βk−�k )

�k ! (βk − 2�k)!2�k
λβk−�k (zk − yk)

βk−2�k

= e−
λ
2 (zk−yk )2(i)βk

(
λ

2

)βk/2 � βk
2 �∑

�k=0

βk !
�k ! (βk − 2�k)!

[
i
√
2λ (zk − yk)

]βk−2�k
.

Estimate of the term I2. Since we are far from x0 we expect exponential decay. We have

I2 = 1

(2N )!
N∑

j=1

∫
e−

λ
2 (w−s)2χ0(s)s

2Nds
∫ ∑

|β|≤2 j

1

(i)|β|
a2 j,β (y)e

λ
2 (z′′)2+iλ(y−z′)z′′

×
⎡

⎢⎣
n∏

ν=1

⎛

⎜⎝
� βν

2 �∑

γν=0

βν !i2(βν−γν)

γν ! (βν − 2γν)!2|γν |
(
λβν−γν (zν − yν)

βν−2γν
)
e−

λ
2 (zν−yν )2

⎞

⎟⎠

⎤

⎥⎦

× θ j−1(y)
(
1− θ j (y)

)
PN− j u(y) dy.

We remark that the integral with respect the variable s is the FBI transform of χ0(s)s2N . We
take �(w) ∈] − δ2 −

√
ε̃0, δ2 +

√
ε̃0[, ε̃0 sufficiently small positive constant. Splitting the

domain of integration in the regions where χ0(s) �= 1 and χ0(s) = 1 and changing, in the
last one region, the integration path as in the Remark 3.3, so that it is in the strip σ = s+ iσ ′′,
|σ ′′| < δ2/2, where we consider the holomorphic extension of s2N , we can conclude that
there is a positive constants A such that

∣∣∣∣
∫

e−
λ
2 (w−s)2χ0(s)s

2Nds

∣∣∣∣ ≤ e
λ
2 (w

′′)2 Aδ2N1 e−λε̃0 .

Since y ∈ Br j−1(x0)\Br j+1 (x0) we have (z′ − y)2 ≥ ε0. We obtain
∣∣∣λβν−γν (zν − yν)

βν−2γν e−
λ
2 (z′ν−yν )2

∣∣∣

≤ 2 · 2 3
2 (βν−2γν)

(
8

ε0

)βν−γν

(βν !) 1
2
[
(βν − 2γν)!

] 1
2 e−

ε0
16 λ,
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where we can assume that |z′′ν | ≤ 1. Since βν ! ≤ 2βν+2γν
[
(βν − 2γν)!

]
(γν !)2, we have

� βν
2 �∑

γν=0

βν !
γν ! (βν − 2γν)!2|γν |

∣∣∣
(
λβν−γν (zν − yν)

βν−2γν
)
e−

λ
2 (zν−yν )2

∣∣∣

≤ 4 · (βν !)
(
32

ε0

)βν

e−
nε0
16 λ,

then

n∏

ν=1

⎛

⎜⎝
� βν

2 �∑

γν=0

βν !
γν ! (βν − 2γν)!2|γν |

∣∣∣
(
λβν−γν (zν − yν)

βν−2γν
)
e−

λ
2 (zν−yν )2

∣∣∣

⎞

⎟⎠

≤ 4n (β!)
(
32

ε0

)|β|
e−

nε0
16 λ.

We obtain

|e−λφ0(w,z) I2| ≤ 4n A
(2π)nrn−1

0

�
( n
2

) e−ε̃0λ e−
nε0
16 λδN1

×
N∑

j=1

1

(2N )!

⎛

⎝
∑

|β|≤2 j
C3 j−|β|+1
1 (2 j − |β|)!β!

(
32

ε0

)|β|
⎞

⎠ C̃2(N− j)+1
2 [2(N − j)]!,

where C1 and C̃2 are the constants in (3.20) and in (3.11), respectively, with K = Br0(x0).
Without loss of generality we may assume that C1 and C̃2 are greater then 2. Since
(2 j − |β|)! ≤ (2 j)! (|β|!)−1 and [2(N − j)]! ≤ (2N )! ((2 j)!)−1, we have

|e−λφ0(w,z) I2| ≤ 2 · 8n (2π)nrn−1
0

�
( n
2

) AC1C̃2 e
−ε̃0λ e−

nε0
16 λδN1

⎛

⎝32C
3
2
1 C̃2

ε0

⎞

⎠
2N

.

Taking δ1 small enough we conclude that there are two positive constants C2 and ε2, inde-
pendent by N , such that

|e−λφ0(w,z) I2| ≤ C2

(
1

2

)N

e−ε2λ. (3.21)

Estimate of the terms I3, I4 and I5. The only difference from I2 is that either two derivatives
or one derivative act on the functions θ j (y). These terms are treated analogously to the term
I2. Then there are positive constants, C3, C4 and C5, independent of N , such that

|e−λφ0(w,z) I3| ≤ C3(N + 1)2
(
1

2

)N

e−ε2λ, (3.22)

and

|e−λφ0(w,z) I4| ≤ C4(N + 1)

(
1

2

)N

e−ε2λ (3.23)

and

|e−λφ0(w,z) I4| ≤ C5(N + 1)

(
1

2

)N

e−ε2λ. (3.24)
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Estimate of the term I1. Roughly speaking we are studying the micro-local regularity of
the product of an analytic function with u at the point (x0, ξ0). In order to estimate this term
we take advantage from the following theorem which characterizes micro-local smoothness
in terms of (s0 − 1)-almost analytic extendability in certain wedges.

Theorem 3.1 (see Theorem 2.3 in [3]). Let u ∈ D ′ (U ). Then (x0, ξ0) /∈ WFs0(u) if and
only if there exist a neighborhood U0 of x0, open acute cones �1, . . . , �k in R

n\{0} and
(s0− 1)-almost analytic functions f j on U0+ i� j

ε1 , �
j
ε1 = � j ∩ {ξ : |ξ | < ε1}, of temperate

growth such that u =∑k
j=1 b f j near x0 and ξ0 · � j < 0 for all j .

Analogous results in the smooth and analytic category can be found in [4, 5]. We point
out that in the analytic case the f j are holomorphic functions. We recall

Definition 3.1 Let f ∈ Gs0 (U ),U open subset ofRn , and suppose Ũ is a open neighborhood
of U in Cn . A function f̃ (y, η) ∈ C∞(Ũ ) is called an (s0 − 1)-almost analytic extension of
f if f̃ (y, 0) = f (y)∀ y ∈ U and for every compact K in U there exists positive constants
CK and small εK such that

∣∣∣∂z̄ j f̃
∣∣∣ ≤ CK e

−εK |η|−
1

s0−1
, j = 1, . . . , n,

holds for y ∈ K and η in ball of radius εK .

The (s0 − 1)-almost analytic extension of a Gevrey function f can be obtained in the
following way

f̃ (y + iη) =
∑

γ

f (γ )(y)
i |γ |yγ

γ ! �
(
c̃|γ |s0−1|η|) ,

where � is in C∞
0 (R) such that supp� ⊂ [−1, 1] and �(y) ≡ 1 on [−1/2, 1/2]. For other

details see [10] or [3]. We point out that, by hypothesis, we can construct in a suitable region
an (s0 − 1)-almost analytic extension of u. We have to estimate

I1 = 1

(2N )!
∫

e−
λ
2 (w−s)2χ0(s)s

2Nds
∑

|β|≤2N

∑

γ≤� β
2 �

γ∈Zn+

β! i |β|−2|γ |

γ ! (β − 2γ !) 2γ
λ|β|−|γ |

×
∫

a2N ,β
(y)e−

λ
2 (z−y)2

n∏

ν=1

(zν − yν)
βν−2γν θN (y)u(y) dy. (3.25)

In order to handle the integral with respect the variable y we follow the classical strat-
egy developed by Bros and Iagolnitzer, [21]. We split the integration domain in two parts:
BrN (x0)\Br̃0(x0) and Br̃0(x0). We have

∫
a2N ,β

(y)e−
λ
2 (z−y)2

n∏

ν=1

(zν − yν)
βν−2γν θN (y)u(y) dy

=
∫

B rN (x0)\B r̃0 (x0)
a2N ,β

(y)e−
λ
2 (z−y)2

n∏

ν=1

(zν − yν)
βν−2γν θN (y)u(y) dy

+
∫

B r̃0 (x0)
a2N ,β

(y)e−
λ
2 (z−y)2

n∏

ν=1

(zν − yν)
βν−2γν u(y) dy. (3.26)
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In the first region
(
z′ − y

)2 ≥ ε0, this will give the analytic exponential decay in this region.
Our purpose is to verify that the second integral gives the desired Gevrey exponential decay.
Since (x0, ξ0) /∈ WFs0(u) without loss of generality we may assume that u is a boundary
value of ũ(ζ ), (s0−1)-almost analytic function onBr̃0(x0)+i�ε2 ,�ε2 = {η ∈ � : |η| < ε2},
where � is an open cone such that η · ξ0 < 0 for all η ∈ �. We point out that, for a fixed
a neighborhood of ξ0, we can choose � such that η · ξ < 0 for all η ∈ � and ξ in the
neighborhood of ξ0. On the other hand a2N ,β

(y) are analytic functions, we can construct their
holomorphic extension ã2N ,β

(ζ ) in Cn
ζ , where ζ = y+ iη and |η| ≤ ε3. We take ε2 such that

ε2 ≤ ε3.
Let ϑ(y) ∈ C∞

0 (Rn) with support equal toBr̃0 (x0) such that 0 ≤ ϑ(y) ≤ 1 and ϑ(x0) = 1.
Let η0 ∈ �ε2 , we define the n-dimensional manifold, Sη0,ε4

, in C
n
ζ , ζ = y + iη, given by

y �→ ζ = y + iε4ϑ(y)η0,

where ε4 ∈ R+ and is sufficiently small so that Sη0,ε4
is contained in Br̃0(x0) + i�ε2 . We

remark that the boundary of Sη0,ε4
is equal to ∂Br̃0(x0). By the Stokes theorem we have

∫

B r̃0 (x0)
a2N ,β

(y)e−
λ
2 (z−y)2

n∏

ν=1

(zν − yν)
βν−2γν u(y) dy

= −
∫

S
η0,ε4

ã2N ,β
(ζ )e−

λ
2 (z−ζ )2

n∏

ν=1

(zν − ζν)
βν−2γν ũ(ζ ) dζ

+
∫

D
η0

d

(
ã2N ,β

(ζ )e−
λ
2 (z−ζ )2

n∏

ν=1

(zν − ζν)
βν−2γν ũ(ζ )

)
∧ dζ,

where Dη0 =
⋃

0<t<ε4

Sη0,t ⊆ Br̃0(x0) + i�ε2 and ∂Dη0 = Br̃0(x0) ∪ Sη0,ε4
.

Since

dζ j =
n∑

k=1
k �= j

(i t ϑ(ek )(y) η0j )dyk + (1+ i t ϑ(e j )(y) η0j )dy j + (i ϑ(y) η0j )dt,

d ζ̄i =
n∑

k=1
k �= j

(−i t ϑ(ek )(y) η0j )dyk + (1− i t ϑ(e j )(y) η0j )dy j − (i ϑ(y) η0j )dt,

where ϑ(e j )(y) = (
∂y j ϑ

)
(y), and ã2N ,β

(ζ ) are holomorphic functions, analytic extensions
of a2N ,β

(y), in Dη0 , we have
(
d

(
ã2N ,β

(ζ )e−
λ
2 (z−ζ )2

n∏

ν=1

(zν − ζν)
βν−2γν ũ(ζ )

)
∧ dζ

)

|S
η0,t

=
n∑

j=1

(
ã2N ,β

(ζ )e−
λ
2 (z−ζ )2

n∏

ν=1

(zν − ζν)
βν−2γν

∂ ũ

∂ζ̄ j
(ζ )d ζ̄ j ∧ dζ

)

|S
η0,t

=
n∑

j=1

(
ã2N ,β

(ζ )e−
λ
2 (z−ζ )2

n∏

ν=1

(zν − ζν)
βν−2γν

∂ ũ

∂ζ̄i
(ζ )

)

|S
η0,t

det
(
A j (y, t, η

0)
)
dt dy,

123



Microlocal regularity of the analytic vectors 1999

where A j (y, t, η0) is the (n + 1) × (n + 1)−matrix

⎛

⎜⎜⎜⎝

−i tϑ(e1)(y)η0j · · · −i tϑ
(e j−1)

(y)η0j 1− i tϑ
(e j )(y)η0j −i tϑ

(e j+1)
(y)η0j · · · −iϑ(y)η0j

1+ i t ϑ(e1)(y)η01 i tϑ(e2)(y)η01 · · · · · · · · · · · · iϑ(y)η01
i tϑ(e1)(y)η01 1+ i tϑ(e2)(y)η02 i tϑ(e3)(y)η02 · · · · · · · · · iϑ(y)η02

.

.

.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.

.

.

i tϑ(e1)(y)η0n · · · · · · · · · i tϑ(en−1)
(y)η0n 1+ i tϑ(en )(y)η0n iϑ(y)η0n

⎞

⎟⎟⎟⎠

We obtain

e−λφ0(w,z) I1 = e−λφ0(w,z) I1,1 + e−λφ0(w,z) I1,2 + e−λφ0(w,z) I1,3,

where

e−λφ0(w,z) I1,1 = 1

(2N )! e
− λ

2

[
(w′′)2+(z′′)2

] ∫
e−

λ
2 (w−s)2χ0(s)s

2Nds

×
∑

|β|≤2N

∑

γ≤� β
2 �

γ∈Zn+

β! i |β|−2|γ |

γ ! (β − 2γ !) 2γ
λ|β|−|γ |

∫

B rN (x0)\B r̃0 (x0)
e−

λ
2 (z−y)2a2N ,β

(y)

×
n∏

ν=1

(zν − yν)
βν−2γν θN (y)u(y) dy,

e−λφ0(w,z) I1,2 = 1

(2N )! e
− λ

2

[
(w′′)2+(z′′)2

]

×
∫

e−
λ
2 (w−s)2χ0(s)s

2Nds
∑

|β|≤2N

∑

γ≤� β
2 �

γ∈Zn+

β! i |β|−2|γ |

γ ! (β − 2γ !) 2γ
λ|β|−|γ |

×
∫

B r̃0 (x0)

[
e−

λ
2 (z−ζ )2 ã2N ,β(ζ )

n∏

ν=1

(zν − ζν)
βν−2γν ũ(ζ )

]

ζ=y+iε4ϑ(y)η0

det
(
B(y, ε4, η

0)
)
dy,

where B(y, ε4, η0) is the n × n-matrix

⎛

⎜⎝

1+ iε4 ϑ(e1)(y)η01 iε4ϑ(e2)(y)η01 · · · · · · · · · iε4ϑ(en )(y)η01
iε4ϑ(e1)(y)η01 1+ iε4ϑ(e2)(y)η02 iε4ϑ(e3)(y)η02 · · · · · · iε4ϑ(en )(y)η02

.

.

.

.
.
.

.
.
.

.
.
.

.
.
.

.

.

.

iε4ϑ(e1)(y)η0n · · · · · · · · · iε4ϑ
(en−1)

(y)η0n 1+ iε4ϑ(en )(y)η0n

⎞

⎟⎠

and

e−λφ0(w,z) I1,3 = 1

(2N )!e
− λ

2

[
(w′′)2+(z′′)2

] ∫
e−

λ
2 (w−s)2χ0(s)s

2Nds

×
∑

|β|≤2N

∑

γ≤� β
2 �

γ∈Zn+

β! i |β|−2|γ |

γ ! (β − 2γ !) 2γ
λ|β|−|γ |

n∑

�=1

I1,3,β,γ,�,
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where

I1,3,β,γ,� =
∫ ε4

0

∫

S
η0,t

e−
λ
2 (z−ζ )2 ã2N ,β(ζ )

n∏

ν=1

(zν − ζν)
βν−2γν

(
∂̄ ũ
)
(ζ ) (iϑ

(
ζ + ζ̄

2

)
η0�) dt ∧ dζ

=
∫ ε4

0

∫

B r̃0 (x0)
e−

λ
2 (z−y−i tϑ(y)η0)2 ã2N ,β

(
y + i tϑ(y)η0

) (
∂̄ ũ
)
(y + i tϑ(y)η0)

×
n∏

ν=1

(
zν − yν − i tϑ(y)η0ν

)βν−2γν det
(
A�(y, t, η

0)
)
dt dy.

Since
(
z′ − y

)2 ≥ ε0 in BrN (x0)\Br̃0(x0), using the same strategy as for the term I2, we
obtain

∣∣∣e−λφ0(w,z) I1,1
∣∣∣ ≤ C5

(
1

2

)N

e−ε2λ,

where C5 is a positive constant independent of N .
A quick inspection of the terms I1,2 and I1,3 highlights that the main differences with respect
to the already treated terms, are the behavior of the phase function on the integration path as
well as the presence of ∂̄u. We point out that setting a�

p,q(y, t, η
0) and bk,m(y, ε4, η0), p, q ∈

{1, . . . , n + 1} and k,m ∈ {1, . . . , n}, the entries of thematrixes A�(y, t, η0) and B(y, ε4, η0)
respectively, since we can estimate the entries |a�

p,q(y, t, η
0)| and |bk,m(y, ε4, η0)| by (1 +

supi ‖ϑ(ei )‖∞) we have

∣∣det
(
A�(y, t, η

0)
)∣∣ ≤

∑

σ∈Sn+1

n+1∏

p=1

∣∣∣a�
p,σ (q)(y, t, η

0)

∣∣∣

≤ (n + 1)! [(n + 1)! + 1]

2
(1+ sup

i
‖ϑ(ei )‖∞)n+1,

∣∣det
(
B(y, ε4, η

0)
)∣∣ ≤

∑

σ∈Sn

n∏

k=1

∣∣bk,σ (k)(y, ε4, η
0)
∣∣

≤ n! (n! + 1)

2
(1+ sup

i
‖ϑ(ei )‖∞)n .

We focus on the exponential function:

e−
λ
2�(z−y−i tϑ(y)η0)2 = e

λ
2 (z

′′)2e−
λ
2 (z

′−y)
2
e−λtϑ(y)z′′η0+ λ

2 (tϑ(y))2|η0|2 .

Since z′′ is in a neighborhood of−ξ0 then z′′η0 > 0. Hence there is a positive constant c such
that z′′η0 > c|z′′||η0|; moreover since we can assume that there is a strictly positive constant
a such that |z′′| ≥ a then z′′η0 > c1|η0|, c1 > 0. We can estimate the above quantity with

e
λ
2 (z

′′)2e
− λ

2

[
(z′−y)

2+tϑ(y)|η0|(2c1−tϑ(y)|η0|)
]

.

Choosing t sufficiently small we have that 2c1− tϑ(y)|η0| > 0. In the case t = ε4, we obtain
the analytic exponential decay for I1,2; more precisely the same strategy used to handle the
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term I2 gives that there are two positive constants C6 and ε̃2, independent of N , such that

∣∣∣e−λφ0(w,z) I1,2
∣∣∣ ≤ C6

(
1

2

)N

e−ε̃2λ.

In order to estimate the last term,
∣∣e−λφ0(w,z) I1,3

∣∣, we can apply once again the strategy used to
estimate I2. The only difference is thatwe have to take care of the term

∣∣(∂̄ ũ
)
(y + i tϑ(y)η0)

∣∣.
Keeping in mind that ũ is an (s0 − 1)-almost analytic extension of u, we have

∣∣∣e−
λ
2 (z−ζ )2

∣∣∣
∣∣(∂̄ ũ

)
(y + i tϑ(y)η0)

∣∣

≤ Ce
λ
2 (z

′′)2e−
λ
2 (z

′−y)
2
e−λc2tϑ(y)|η0|e−εK

(
tϑ(y)|η0|)−

1
s0−1

≤ Ce
λ
2 (z

′′)2− λ
2 (z

′−y)
2
e−ε̃K λ1/s0 ,

where ε̃K = c2γ
(s0−1)/s0
1 + γ

−1/s0
1 , γ1 = εK /(c2(s0 − 1)), and εK is as in the Def-

inition 3.1 with K = Br̃0(x0). The estimate in the exponential is obtained taking

inf
b

(
λc1b + εK b

− 1
s0−1

)
, where b = tϑ(y)|η0|. Using this estimate we conclude that there

are two positive constants C7 and ε4 such that

∣∣∣e−λφ0(w,z) I1,3
∣∣∣ ≤ C7

(
1

2

)N

e−ε4λ
1/s0

.

We deduce that there is a positive constant C8 such that

|e−λφ0(w,z) I1| ≤ C8

(
1

2

)N

e−ε4λ
1/s0

. (3.27)

Remark 3.3 The estimate of the second term on the right hand side of (3.26), i.e. in the region
Br̃0(x0), can be obtained in a similar way introducing the family of homeomorphisms

Ht : Br̃0(x0) � y → (
y1 + i tη01, . . . , yn + i tη0n

) ∈ C
n
ζ ,

where η0 ∈ �ε2 . Also in this caseHt
(
Br̃0(x0)

)
is a n-dimensional manifold of Cn

ζ for every
t ∈ [0, 1]. Setting

V (y, tη0) = ã2N ,β
(y + i tη0)e−

λ
2 (z−y−i tη0)2×

n∏

ν=1

(
zν − yν − i tη0ν

)βν−2γν ũ(y + i tη0),

and applying, also in this case, the Stokes’ theorem
∫

H 1

(
B r̃0 (x0)

) V (ζ ) dζ −
∫

H 0

(
B r̃0 (x0)

) V (ζ ) dζ =
∫

V
d (V (ζ )) ∧ dζ,

where V = [0, 1] × H0
(
Br̃0(x0)

)
, the estimate (3.27) can be obtained following step by

step the strategy employed above.
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By (3.21), (3.22), (3.23), (3.24) and (3.27) we have

|e−λφ0(w,z)PN (w, z)| ≤ C8

(
1

2

)N

e−ε4λ
1/s0 + C2

(
1

2

)N

e−ε2λ

+ [C3(N + 1) + C4 + C5] (N + 1)

(
1

2

)N

e−ε2λ.

Summing up we obtain that there are two positive constants C and ε such that

|e−λφ0(w,z)T (χU ) (w, z, λ)| ≤ Ce−ελ1/s0 ,

for all (w, z) in a neighborhood of (0, x0 − iξ0) ∈ C
1+n .

Step two: if (0, x0, 0, ξ0) /∈ WFs0(U ) then (x0, ξ0) /∈ WFs0(u). In the analytic category
the result was obtained in [8] via Fourier transform and taking advantage from the Theorem
8.2.4 in [20]. Via FBI transform it is a consequence of a result in [21] on the restriction
of a distribution to a sub-manifold. More precisely we remark that for every τ0 �= 0 the
points of the form (t0, x0, τ0, ξ0) do not belong to WFs0(U ) for every s0 ≥ 1. This can
be obtained ether via FBI transform, performing the classical deformation argument of the
integral path with respect to the t-variable, or noticing that the operator Q is elliptic for
τ �= 0. SinceWFs0 (δ(t)) = {(x, 0, 0, τ ) : x ∈ R

n and τ ∈ R\{0}}we have thatWFs0(U )∩
WFs0 (δ(t)) = ∅, or equivalently that the normal to the manifold t = 0 does not intersect
the WFs0(U ), then the product of U and δ(t) is well defined. This allow us to consider
u(x) as U (t, x) × δ(t) in the sense of distributions. More in general we can define the
map π : {U ∈ E ′(Rn+1) : WFs0(U ) ∩ WFs0 (δ(t)) = ∅} → E ′(Rn) in the following
way u(φ0) = π(U )(φ0) = U (φ1δ(t)) for all φ0 ∈ C∞

0 (Rn) where φ1 ∈ C∞
0 (Rn+1) and

π(φ1) = φ0. Following the same strategy used in [20] we have thatWFs0(u) = WFs0(π(U ))

which is contained in {(x, ξ) ∈ R
n × R

n\{0} : ∃τ ∈ R with (x, 0, ξ, τ ) ∈ WFs0(U )}.
This concludes the proof of Theorem 1.1.
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