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Abstract
In this work we extend the L1-Björk-Sjölin theory of strongly singular convolution operators
to arbitrary gradedLie groups.Our criteria are presented in terms of the oscillatingHörmander
condition due to Björk and Sjölin of the kernel of the operator, and the decay of its group
Fourier transform is measured in terms of the infinitesimal representation of an arbitrary
Rockland operator. The historical result by Björk and Sjölin is re-obtained in the case of the
Euclidean space.
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1 Introduction

The aim of this manuscript is to extend the theory of strongly singular integrals by Björk and
Sjölin [1, 20] to arbitrary graded Lie groups. This family of Lie groups includes Heisenberg
type groups, stratified groups, and are characterised between the family of nilpotent Lie
groups by the existence of (Rockland operators) hypoelliptic left-invariant homogeneous
partial differential operators in view of the Helffer and Nourrigat solution of the Rockland
conjecture [11].

Oscillating singular integrals arise as generalisations of the oscillating Fourier multipliers.
In the euclidean setting they are used in PDE to estimate in the family of Sobolev spaces the
hyperbolic differential problems associated to the powers of elliptic operators, in particular

of the fractional (positive) Laplacian �
γ
2
x , where 0 < γ < 1.

In the Euclidean setting, oscillating Fourier multipliers are associated to symbols of the
form

̂K (ξ) = ψ(ξ)
ei |ξ |a

|ξ | nα
2

, ψ ∈ C∞(Rn), 0 < a < 1, (1.1)

where ψ vanishes near the origin and is equal to one for |ξ | large. It was proved by Wainger

[25] that K (x) is essentially equal to cn |x |−n−λeic
′
n |x |a′

, where λ = n(a−α)
2(1−a)

, and a′ = a
a−1 .

From this one can deduce that

|∇K (x)| � |x |−n−λ−1+a′
.

This gradient estimate shows that a kernel that satisfies (1.1) is outside of the theory of sin-
gular integrals due to Calderón and Zygmund [2]. Nevertheless, the boundedness of singular
integrals defined by kernels as in (1.1) was extensively investigated in the classical works of
Hardy [10], Hirschman [12] and Wainger [25] until the end-points estimates proved by [5,
6]. Further works on the subject in the setting of smooth manifolds and beyond can be found
in Seeger [15–17], Seeger and Sogge [18] and for the setting of Fourier integral operators,
we refer the reader to Seeger, Sogge and Stein [19] and Tao [23].

In [5, 6] Fefferman and Stein introduced a theory for oscillating Fourier multipliers which
are convolution operators with singular kernels satisfying the condition

A(θ) : sup
0<R<1

‖
∫

|x |≥2R1−θ

|K (x − y) − K (x)|dx‖L∞(B(0,R), dy) < ∞, (1.2)

for some 0 ≤ θ < 1, and its Fourier transform has order −nθ/2, that is

B(θ) : |̂K (ξ)| = O
(

(1 + |ξ |)− nθ
2

)

, 0 ≤ θ < 1. (1.3)

With θ = 0, Fefferman-Stein’s conditions agree with the one introduced by Hörmander [13]
for the standard Calderón-Zygmund operators [2]. However, with 0 < θ < 1, the conditions
above by Fefferman and Stein also consider the oscillating kernels as in (1.1).

The boundedness theory due to Fefferman and Stein can be summarised (by several
reasons, including the real and complex interpolation theory of continuous linear operators
on Lebesgue spaces) in the following theorem.

Theorem 1.1 (Fefferman and Stein [5, 6], 1970–1972) Assume that K ∈ L1
loc(R

n\{0}) is a
distribution with compact support satisfying the hypothesis A(θ) and B(θ) with 0 ≤ θ < 1.
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Björk–Sjölin condition for strongly ... 1959

Then the convolution operator

T : f 	→ f ∗ K ,

admits an extension of weak (1,1) type. Moreover, T admits a bounded extension from the
Hardy space H1(Rn) into L1(Rn).

On the other hand, answering a question by Björk in [1], Sjölin [20] developed the L1-
theory for the convolution operators T : f 	→ f ∗ K where the kernel K satisfies the two
conditions A(α) and B(θ) given by

A(θ) : sup
0<R<b

‖
∫

|x |≥2R1−θ

|K (x − y) − K (x)|dx‖L∞(B(0,R), dy) < ∞, (1.4)

where 0 < b < 1, and

B(α) : |̂K (ξ)| = O((1 + |ξ |)− nα
2 ), 0 ≤ α < 1, (1.5)

where 0 < α < θ < 1. In the standard terminology of harmonic analysis, a convolution
operator with kernel satisfying the conditions A(θ) and B(α) with 0 < α < θ < 1 is called
a strongly singular integral. The result in Sjölin [20] states the boundedness of this family of
operators in L1(Rn) as follows. Here, �x = −∑n

j=1 ∂2x j is the positive Laplacian on R
n,

and for any s ∈ R, L1
s (R

n) is the Sobolev space obtained from the closure of C∞
0 (Rn) by

the norm ‖ f ‖L1
s

:= ‖(1 + �x )
s
2 f ‖L1 .

Theorem 1.2 (Sjölin [20], 1976) Assume that K ∈ L1
loc(R

n\{0}) is a distribution with
compact support satisfying the hypothesis A(θ) and B(α) with 0 < α < θ < 1. Then,
T : H1(Rn) → L1−κ

(Rn) extends to a bounded operator provided that

κ ≥ n(θ − α)/[n(1 − θ) + 2], (1.6)

or equivalently,

(1 + �x )
− κ

2 T : H1(Rn) → L1(Rn)

admits a bounded extension.

In the recent works [3, 4] the authors have generalised on graded Lie groups (with the Fourier
transform criteria in terms of Rockland operators) the theory established by Fefferman and
Stein in [5, 6]. The following extension of Theorem 1.1 has been obtained as part of the
investigation done in [3, 4].

Theorem 1.3 ([3, 4]) Consider G to be a graded Lie group, let | · | be a homogeneous quasi-
norm on G and let Q be its homogeneous dimension. Let R be a Rockland operator of
homogeneous degree ν > 0. Assume that the kernel K of the convolution operator T : f 	→
f ∗ K , satisfies the estimate

sup
π∈̂G

‖̂K (π)(1 + π(R))
Qθ
2ν ‖op < ∞, (1.7)

and the kernel condition

[K ]′H∞,θ
:= sup

0<R<1
sup

|y|<R

∫

|x |≥2R1−θ

|K (y−1x) − K (x)|dx < ∞. (1.8)
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1960 D. Cardona, M. Ruzhansky

Then T : H1(G) → L1(G) extends to a bounded operator from the Hardy space H1(G)

into L1(G). Moreover, T : L1(G) → L1,∞(G) admits an extension of weak (1,1) type.

In this work we are going to extend in our main Theorem 1.4 the conditions A(θ) and B(α)

of (1.4) and (1.5) due to Björk and Sjölin to arbitrary graded Lie groups. To present the
statement of the theorem we introduce some notations.

Here, for any graded Lie group G, and s ∈ R, L1
s (G) is the closure of C∞

0 (G) by the
norm

‖ f ‖L1
s (G) := ‖(1 + R)

s
ν f ‖L1 ,

whereR is a positive Rockland operator of homogeneous degree v > 0, and L1,∞
s (G) is the

weak-L1
s (G) Sobolev space defined by the semi-norm

‖ f ‖L1,∞
s (G)

:= sup
λ>0

λ|{x ∈ G : |(1 + R)
s
ν f (x)| > λ} < ∞.

The main result of this work is the following.

Theorem 1.4 Consider G to be a graded Lie group, let | · | be a homogeneous quasi-norm on
G and let Q be its homogeneous dimension. LetR be a Rockland operator of homogeneous
degree ν > 0. Let K ∈ L1

loc(G\{e}) be a distribution of compact support and let T :
f 	→ f ∗ K , be the corresponding integral operator associated to K . Assume that for
0 < α < θ < 1, K satisfies the Fourier transform estimate

sup
π∈̂G

‖̂K (π)(1 + π(R))
Qα
2ν ‖op < ∞, (1.9)

and the kernel condition

[K ]′H∞,θ,b
:= sup

0<R<b
sup

|y|<R

∫

|x |≥2R1−θ

|K (y−1x) − K (x)|dx < ∞, (1.10)

where 0 < b < 1. Then T : H1(G) → L1−κ
(G) extends to a bounded operator provided

that

κ ≥ Q(θ − α)/[Q(1 − θ) + 2], (1.11)

or equivalently,

(1 + R)−
κ

ν T : H1(G) → L1(G)

admits a bounded extension. Moreover, T : L1(G) → L1,∞
−κ

(G) extends to a bounded
operator, or equivalently,

(1 + R)−
κ

ν T : L1(G) → L1,∞(G)

admits an extension of weak (1, 1) type.

All this work will be dedicated to prove this statement. In Sect. 2 we record the aspects of
the Fourier analysis on graded Lie groups and the analysis of Rockland operators used in this
work and finally, in Sect. 3 we prove Theorem 1.4.
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Björk–Sjölin condition for strongly ... 1961

2 Fourier analysis on graded groups

The notation and terminology of this paper on the analysis of homogeneous Lie groups are
mostly taken from Folland and Stein [9]. For the analysis of Rockland operators we will
follow [8, Chapter 4].

2.1 Homogeneous and graded Lie groups

Let G be a homogeneous Lie group. This means that G is a connected and simply connected
Lie group whose Lie algebra g is endowed with a family of dilations Dg

r , r > 0, which are
automorphisms on g satisfying the following two conditions:

• For every r > 0, Dg
r is a map of the form

Dg
r = Exp(ln(r)A)

for some diagonalisable linear operator A ≡ diag[ν1, · · · , νn] on g.
• ∀X , Y ∈ g, and r > 0, [Dg

r X , Dg
r Y ] = Dg

r [X , Y ].
We call the eigenvalues of A, ν1, ν2, · · · , νn, the dilations weights or weights of G. The
homogeneous dimension of a homogeneous Lie group G is given by

Q = Tr(A) = ν1 + · · · + νn .

The dilations Dg
r of the Lie algebra g induce a family of maps on G defined via,

Dr := expG ◦Dg
r ◦ exp−1

G , r > 0,

where expG : g → G is the usual exponential mapping associated to the Lie group G. We
refer to the family Dr , r > 0, as dilations on the group. If we write r x = Dr (x), x ∈ G,

r > 0, then a relation on the homogeneous structure of G and the Haar measure dx on G is
given by

∫

G

( f ◦ Dr )(x)dx = r−Q
∫

G

f (x)dx .

A Lie group is graded if its Lie algebra g may be decomposed as the sum of subspaces
g = g1 ⊕ g2 ⊕ · · · ⊕ gs such that [gi , g j ] ⊂ gi+ j , and gi+ j = {0} if i + j > s. Examples of
such groups are the Heisenberg group H

n and more generally any stratified groups where the
Lie algebra g is generated by g1. Here, n is the topological dimension ofG, n = n1+· · ·+ns,
where nk = dimgk .

A Lie algebra admitting a family of dilations is nilpotent, and hence so is its associated
connected, simply connected Lie group. The converse does not hold, i.e., not every nilpotent
Lie group is homogeneous although they exhaust a large class, see [8] for details. Indeed,
the main class of Lie groups under our consideration is that of graded Lie groups. A graded
Lie group G is a homogeneous Lie group equipped with a family of weights ν j , all of them
positive rational numbers. Let us observe that if νi = ai

bi
with ai , bi integer numbers, and b

is the least common multiple of the b′
i s, the family of dilations

D
g
r = Exp(ln(rb)A) : g → g,

have integer weights, νi = ai b
bi

. So, in this paper we always assume that the weights ν j ,

defining the family of dilations are non-negative integer numbers which allow us to assume
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1962 D. Cardona, M. Ruzhansky

that the homogeneous dimension Q is a non-negative integer number. This is a natural context
for the study of Rockland operators (see Remark 4.1.4 of [8]).

2.2 Fourier analysis on nilpotent Lie groups

Let G be a simply connected nilpotent Lie group. Then the adjoint representation ad :
g → End(g) is nilpotent. Let us assume that π is a continuous, unitary and irreducible
representation of G, this means that,

• π ∈ Hom(G,U(Hπ )), for some separable Hilbert space Hπ , i.e. π(xy) = π(x)π(y)
and for the adjoint of π(x), π(x)∗ = π(x−1), for every x, y ∈ G.

• The map (x, v) 	→ π(x)v, from G × Hπ into Hπ is continuous.
• For every x ∈ G, and Wπ ⊂ Hπ , if π(x)Wπ ⊂ Wπ , then Wπ = Hπ or Wπ = ∅.

Let Rep(G) be the set of unitary, continuous and irreducible representations of G. The
relation,

π1 ∼ π2 if and only if, there exists A ∈ B(Hπ1 , Hπ2 ), such that Aπ1(x)A
−1 = π2(x),

for every x ∈ G, is an equivalence relation and the unitary dual of G, denoted by ̂G is
defined via ̂G := Rep(G)/∼. Let us denote by dπ the Plancherel measure on ̂G. The Fourier
transform of f ∈ S (G), (this means that f ◦ expG ∈ S (g), with g � R

dim(G)) at π ∈ ̂G,

is defined by

̂f (π) =
∫

G

f (x)π(x)∗dx : Hπ → Hπ , and FG : S (G) → S (̂G) := FG(S (G)).

If we identify one representation π with its equivalence class, [π] = {π ′ : π ∼ π ′}, for
every π ∈ ̂G, the Kirillov trace character �π defined by

(�π , f ) := Tr( ̂f (π)),

is a tempered distribution on S (G). In particular, the identity f (eG) = ∫

̂G(�π , f )dπ,

implies the Fourier inversion formula f = F−1
G ( ̂f ), where

(F−1
G σ)(x) :=

∫

̂G

Tr(π(x)σ (π))dπ, x ∈ G, F−1
G : S (̂G) → S (G),

is the inverse Fourier transform. In this context, the Plancherel theorem takes the form
‖ f ‖L2(G) = ‖ ̂f ‖L2(̂G), where

L2(̂G) :=
∫

̂G

Hπ ⊗ H∗
πdπ,

is the Hilbert space endowed with the norm: ‖σ‖L2(̂G) = (
∫

̂G ‖σ(π)‖2HSdπ)
1
2 .

2.3 Homogeneous linear operators and Rockland operators

A linear operator T : C∞(G) → D ′(G) is homogeneous of degree ν ∈ C if for every r > 0
the equality

T ( f ◦ Dr ) = rν(T f ) ◦ Dr
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Björk–Sjölin condition for strongly ... 1963

holds for every f ∈ D(G). If for every representation π ∈ ̂G, π : G → U (Hπ ), we denote
by H∞

π the set of smooth vectors, that is, the space of elements v ∈ Hπ such that the function
x 	→ π(x)v, x ∈ ̂G, is smooth, a Rockland operator is a left-invariant differential operatorR
which is homogeneous of positive degree ν = νR and such that, for every unitary irreducible
non-trivial representation π ∈ ̂G, π(R) is injective on H∞

π ; σR(π) = π(R) is the symbol
associated to R. It coincides with the infinitesimal representation of R as an element of
the universal enveloping algebra. It can be shown that a Lie group G is graded if and only
if there exists a differential Rockland operator on G. If the Rockland operator is formally
self-adjoint, thenR and π(R) admit self-adjoint extensions on L2(G) and Hπ , respectively.
Now if we preserve the same notation for their self-adjoint extensions and we denote by E
and Eπ their spectral measures, we will denote by

f (R) =
∞

∫

−∞
f (λ)dE(λ), and π( f (R)) ≡ f (π(R)) =

∞
∫

−∞
f (λ)dEπ (λ),

the functions defined by the functional calculus. In general, we will reserve the notation
{dEA(λ)}0≤λ<∞ for the spectral measure associated with a positive and self-adjoint operator
A on a Hilbert space H .

We now recall a lemma on dilations on the unitary dual ̂G, which will be useful in our
analysis of spectral multipliers. For the proof, see Lemma 4.3 of [8].

Lemma 2.1 For every π ∈ ̂G let us define

π(r)(x) = Dr (π)(x) = (r · π)(x) = π(r · x) ≡ π(Dr (x)), x ∈ G, (2.1)

for every r > 0 and all x ∈ G. Then, if f ∈ L∞(R) then f (π(r)(R)) = f (rνπ(R)).

Remark 2.1 For instance, for any α ∈ N
n
0, and for an arbitrary family X1, · · · , Xn, of left-

invariant vector-fields we will use the notation

[α] :=
n

∑

j=1

ν jα j , (2.2)

for the homogeneity degree of the operator Xα := Xα1
1 · · · Xαn

n , whose order is |α| :=
∑n

j=1 α j .

Remark 2.2 By considering the dilation r ·x = Dr (x), x ∈ G, r > 0, then a relation between
the homogeneous structure of G and the Haar measure dx on G is given by (see [8, Page
100])

∫

G

( f ◦ Dr )(x)dx = r−Q
∫

G

f (x)dx .

Note that if fr := r−Q f (r−1·), then

̂fr (π) =
∫

G

r−Q f (r−1 · x)π(x)∗dx =
∫

G

f (y)π(r · y)∗dy = ̂f (r · π), (2.3)

for any π ∈ ̂G and all r > 0, with (r · π)(y) = π(r · y), y ∈ G, as in (2.1).
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1964 D. Cardona, M. Ruzhansky

3 Proof of themain theorem

We will start our analysis for the proof of Theorem 1.4 by analysing the operator Ga :=
(

R
1+R

) a
ν

, for any a > 0, as a convolution operator with a finite measure. This analysis will

be addressed in Lemma 3.1 below where we extend an observation done e.g. in Stein [22,
Page 133] in the case of the Laplace operator to general Rockland operators. During this
work we will denote by Bs to the right convolution kernel of the operator (1 + R)− s

ν , for
any s ∈ R.

3.1 The quotient between the Riesz and the Bessel potential

There is an intimate connection between the Bessel potential and the Riesz potentials of
Rockland operators. This affinity between the two is given in precision in the following
lemma.

Lemma 3.1 Let α > 0, and letR be a Rockland operator on G of homogeneity degree ν > 0.
There exists a finite measure μα on G such that its Fourier transform is given by

μ̂α(π) =
(

π(R)

1 + π(R)

) α
ν

, π ∈ ̂G. (3.1)

Proof For the proof of Lemma 3.1 let us use the expansion

(1 − t)α/ν = 1 +
∞
∑

m=1

Am,α/ν t
m, |t | < 1,

∞
∑

m=1

|Am,α/ν | < ∞, (3.2)

which is still valid when t → 1− because (1− t)α/ν remains bounded for α > 0. Let dEπ(R)

be the spectral measure of the operator π(R). With t = 1
1+λ

, λ ≥ 0, we have that

(

λ

1 + λ

) α
ν =

(

1 − 1

1 + λ

) α
ν = 1 +

∞
∑

m=1

Am,α/ν(1 + λ)−m,

and then the functional calculus of the operator π(R) implies that

(

π(R)

1 + π(R)

) α
ν =

∫ ∞

0

(

λ

1 + λ

) α
ν

dEπ(R)(λ) = 1 +
∞
∑

m=1

∫ ∞

0
Am,α/ν(1 + λ)−mdEπ(R)(λ)

= 1 +
∞
∑

m=1

Am,α/ν(1 + π(R))−m .

In consequence, the required measure μα is given by

μα = δ +
∞
∑

m=1

Am,α/νBmν(x)dx . (3.3)

Indeed, note that μα satisfies that μ̂α(π) = (π(R)/[1 + π(R)]) α
ν , π ∈ ̂G. The proof of

Lemma 3.1 is complete. ��
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Corollary 3.1 Let α > 0, and let R be a Rockland operator on G of homogeneity degree
ν > 0. Then the operator

( R
1 + R

) α
ν : L p(G) → L p(G), (3.4)

extends to a bounded operator for all 1 ≤ p ≤ ∞.

Proof The action of the operator
(

R
1+R

) α
ν
on functions in L1(G) is obtained from the right

convolution with the measure μα in (3.1). So,
(

R
1+R

) α
ν
is bounded from L1(G) into L1(G).

By the duality argument
(

R
1+R

) α
ν
is bounded from L∞(G) into L∞(G). Because

(

R
1+R

) α
ν

is bounded on L2(G), the Marcinkiewicz interpolation theorem implies the boundedness of
(

R
1+R

) α
ν : L p(G) → L p(G), for all 1 ≤ p ≤ ∞. ��

3.2 Boundedness of strongly singular integral operators

We are going to prove our main Theorem 1.4. For this, we precise the notations.

– Consider G to be a graded Lie group, let | · | be a homogeneous quasi-norm on G and let
Q be its homogeneous dimension.

– LetR be a Rockland operator of homogeneous degree ν > 0. Let K ∈ L1
loc(G\{e}) and

T : f 	→ f ∗ K , the corresponding integral operator associated to K .

– Assume that for 0 < α < θ < 1, K satisfies the Fourier transform estimate

sup
π∈̂G

‖̂K (π)(1 + π(R))
Qα
2ν ‖op < ∞, (3.5)

and the kernel condition

[K ]′H∞,θ,b
:= sup

0<R<b
sup

|y|<R

∫

|x |≥2R1−θ

|K (y−1x) − K (x)|dx < ∞, 0 < b < 1. (3.6)

We are going to prove that T : H1(G) → L1−κ
(G) extends to a bounded operator provided

that

κ ≥ Q(θ − α)/[Q(1 − θ) + 2], (3.7)

or equivalently, that

(1 + R)−
κ

ν T : H1(G) → L1(G)

admits a bounded extension. In the same way, we have to prove that

(1 + R)−
κ

ν T : L1(G) → L1,∞(G)

admits a bounded extension, which proves that T : L1(G) → L1,∞
−κ

(G) extends to a bounded
operator.

Proof of Theorem 1.4 It is suffice to consider the critical case

κ := Q(θ − α)

Q(1 − θ) + 2
.
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1966 D. Cardona, M. Ruzhansky

Indeed, having proved the boundedness of T : H1(G) → L1−κ
(G) and of T : L1(G) →

L1,∞
−κ

(G), for any κ
′ > κ = Q(θ−α)

Q(1−θ)+2 , we have the continuous inclusions

L1−κ
(G) ↪→ L1

−κ
′(G), L1,∞

−κ
(G) ↪→ L1,∞

−κ
′(G)

implying also the existence of the bounded extensions T : H1(G) → L1
−κ

′(G) and T :
L1(G) → L1,∞

−κ
′(G).

Let us choose φ ∈ C∞
0 (G) so that

φ ≥ 0, with supp[φ] ⊂ {x ∈ G : 1/2 < |x | < 2}, φ(x) = 1 if
3

4
< |x | < 1, (3.8)

and such that

∀x ∈ G, |x | < 1,
∞
∑

k=0

φ(2k · x) = 1.

Also, for x ∈ G, define φk(x) := φ(2k · x) and

ψ(x) =
∞
∑

k=0

φk(x).

The kernel of the operator (1 + R)− κ

ν T is given by K ∗ Bκ . Let us use the decomposition

K ∗ Bκ = K ∗ (Bκψ) + K ∗ (Bκ(1 − ψ)) = K1 + K2, K1 := K ∗ (Bκψ).

Let us prove that K2 = K ∗ (Bκ(1−ψ)) ∈ S (G) is a smooth function in L1(G). Indeed,
from the properties of φ, we have that ψ(x) = 1 for all x ∈ G with |x | < 1, and then
1 − ψ(x) ≡ 0 when |x | < 1.

On the other hand, the function Bκ decreases rapidly for |x | ≥ 1. Indeed, for any N ∈ N,

there is CN > 0, such that (see [8, Theorem 5.4.1])

|Bκ(x)| ≤ CN |x |−N , |x | > 1.

Since, x ∈ supp(φk) implies that |2k · x | ∈ (1/2, 2), then

∀k ≥ 0, supp(φk) ⊂
{

x ∈ G : 2−k−1 < |x | < 2−k+1
}

. (3.9)

So, for any x ∈ G : |x | > 2, ψ(x) = ∑∞
k=0 φ(2k · x) = 0.

In conclusion the function (1 − ψ)Bκ has its support in the complement of the set {x ∈
G : |x | < 1} and (1 − φ)Bκ ∈ L1(G) ∩ C∞({x ∈ G : |x | > 1}).

So, the left convolution operator TK2 associated to K2 is bounded from L1(G) into L1(G).

The embedding H1(G) ↪→ L1(G) implies that TK2 : H1(G) ↪→ L1(G) is bounded. Note
also that the boundedness of TK2 from L1(G) into L1(G) implies its boundedness from
L1(G) into L1,∞(G) in view of the inclusion L1(G) ↪→ L1,∞(G).

Now, to continue with the proof it suffices to demonstrate the boundedness of TK1 =
T − TK2 from H1(G) into L1(G), and from L1(G) into L1,∞(G). For this, we will prove
that K1 = K ∗ (Bκψ) satisfies the conditions

sup
π∈̂G

‖̂K1(π)(1 + π(R))
Qa
2ν ‖op < ∞, (3.10)
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and the kernel condition

[K ]′H∞,θ
:= sup

0<R<1
sup

|y|<R

∫

|x |≥2R1−a

|K1(y
−1x) − K1(x)|dx < ∞, (3.11)

with

a := Qα(1 − θ) + 2θ

Q(1 − θ) + 2
∈ (0, 1). (3.12)

Note also that the hypothesis α < θ, implies that Qα(1 − θ) + 2θ < Qθ(1 − θ) + 2θ =
θ [Q(1 − θ) + 2] which (by dividing both sides of this inequality by Q(1 − θ) + 2) implies
the estimate

0 < a = Qα(1 − θ) + 2θ

Q(1 − θ) + 2
< θ, (3.13)

allowing the use of Theorem 1.3.
For the proof of (3.10) let use thatψ vanishes for |x | > 2. So,ψBκ is of compact support

of G, and for all r ∈ R,

(1 + R)r/ν[ψBκ] ∈ L1(G).

Indeed, for any r ∈ R, (1 + R)r/ν maps the Schwartz space S (G) into the Schwartz space
S (G). So, for all r ∈ R, (1 + R)r/ν[ψBκ] is the right-convolution kernel of a bounded
operator on L2(G). Indeed, the Hausdorff-Young inequality gives

∀ f ∈ L2(G), ‖ f ∗ (1 + R)r/ν[ψBκ]‖L2(G) ≤ ‖ f ‖L2(G)‖(1 + R)r/ν[ψBκ]‖L1(G).

(3.14)

However, the Plancherel theorem indicates that for any r ∈ R,

sup
π∈̂G

‖F [(1 + R)r/ν[ψBκ]](π)‖op = sup
π∈̂G

‖(1 + π(R))r/ν̂ψB
κ

(π)‖op < ∞.

In a similar way, we have that

∀r ∈ R, sup
π∈̂G

‖̂ψB
κ

(π)(1 + π(R))r/ν‖op < ∞.

In consequence, for any s > 0,

sup
π∈̂G

‖̂K1(π)(1 + π(R))
Qa
2ν ‖op

= sup
π∈̂G

‖B̂κψ(π)̂K (π)(1 + π(R))
Qa
2ν ‖op

= sup
π∈̂G

‖B̂κψ(π)(1 + π(R))s/ν(1 + π(R))−s/ν
̂K (π)(1 + π(R))

Qa
2ν ‖op

≤ sup
π∈̂G

‖B̂κψ(π)(1 + π(R))s/ν‖op‖(1 + π(R))−s/ν
̂K (π)(1 + π(R))

Qa
2ν ‖op

�s ‖(1 + π(R))−s/ν‖op‖̂K (π)(1 + π(R))
Qa
2ν ‖op < ∞

which demonstrate (3.10). Now, we are going to prove (3.11). Define

Gκ,k := φkBκ .

123



1968 D. Cardona, M. Ruzhansky

Then,

K ∗ (ψBκ) =
∞
∑

k=0

K ∗ Gκ,k .

To do so, take y ∈ G such that |y| < min{b, 1
2 }. For any k ∈ N0, let

Ik :=
∫

|x |>2|y|1−a

|K ∗ Gκ,k(y
−1x) − K ∗ Gκ,k(x)|dx . (3.15)

Now, let us make an analysis of the last integral above when t ∈ supp(Gκ,k). In that case
|2k · t | = 2k |t | ∈ (1/2, 2) that is 2−k−1 < |t | < 2−k+1. Note that the changes of variables
z = xt−1 implies the inequalities

Ik =
∫

|x |>2|y|1−a

|K ∗ Gκ,k(y
−1x) − K ∗ Gκ,k(x)|dx

=
∫

|x |>2|y|1−a

|
∫

G

(K (y−1xt−1)Gκ,k(t) − K (xt−1)Gκ,k(t))dt |dx

≤
∫

G

|Gκ,k(t)|
∫

|x |>2|y|1−a

|K (y−1xt−1) − K (xt−1)|dxdt

≤
∫

G

|Gκ,k(t)|
∫

|zt |>2|y|1−a

|K (y−1z) − K (z)|dzdt .

So, we have proved the estimate

Ik ≤
∫

G

|Gκ,k(t)|
∫

|zt |>2|y|1−a

|K (y−1z) − K (z)|dz dt, (3.16)

where |y| ≤ b < 1. To continue, let us estimate the integral

‖Gκ,k‖L1(G) =
∫

G

|Gκ,k(t)|dt .

First, observe that Bκ is the right-convolution kernel of the pseudo-differential operator
(1+R)− κ

ν ∈ �−κ

1,0 (G × ̂G). Note that 0 < κ < Q, which can be proved by observing that

Q(θ − α) < 2Q < Q2(1 − θ) + 2Q = Q(Q(1 − θ) + 2)

implying that κ = Q(θ − α)/[Q(1 − θ) + 2] < Q. So, Bκ satisfies the estimate (see [8,
Theorem 5.4.1])

|Bκ(t)| ≤ Cκ |t |−(Q−κ), |t | � 1.

In consequence the change of variable u = 2k t has the effect in theHaarmeasure du = 2kQdt
and then dt = 2−kQdu, implying the following estimates
∫

G

|Gκ,k(t)|dt =
∫

G

|Bκ(t)φ(2k t)|dt �
∫

|2k t |<2

|Bκ(t)φ(2k t)|dt �
∫

|2k t |<2

|t |−(Q−κ)φ(2k t)|dt
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Fig. 1 Concentric
decompositions of the group

Fig. 2 The sequence of points of
the topological algorithm

=
∫

|u|<2

|2−ku|−(Q−κ)φ(u)|2−kQdu = 2kQ−kκ−kQ
∫

|u|<2

|u|−(Q−κ)φ(u)du

� φ2
−kκ .

The analysis above shows the validity of the inequality
∫

G

|Gκ,k(t)|dt ≤ Cφ2
−kκ, (3.17)

for some Cφ > 0. In particular, as 0 < 1 − a < 1, we have that |y| ≤ |y|1−a . Now, we will
analyse (3.16) in three cases. Indeed, for any k,wewill analyse the situation when r = 2−k is

inside of the interval [0, |y|/2), or, in the interval [|y|/2, |y| 1−θ
1−α ) and finally, the case where

r = 2−k is inside of the set (|y| 1−θ
1−α ,∞). See Fig. 2 below.

Case 1: 2−k < |y|/2. In consequence, for the integral in (3.16), the inequality |zt | > 2|y|1−a

implies that |z| + |t | > 2|y|1−a and then

|z| > 2|y|1−a − |t | > 2|y|1−a − 2−k+1.
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The inequality |y|1−a − |y| ≥ 0, and the fact that 2−k+1 < |y| imply that

2|y|1−a − 2−k+1 > |y|1−a + (|y|1−a − |y|) ≥ |y|1−a,

and in this case |z| > |y|1−a . We have proved that

{z ∈ G : ∀t ∈ supp(Gκ,k), |zt | > 2|y|1−a } ⊂ {z ∈ G : |z| > |y|1−a }. (3.18)

So, we can estimate

Ik ≤
∫

G

|Gκ,k(t)|
∫

|zt |>2|y|1−a

|K (y−1z) − K (z)|dzdt

≤
∫

G

|Gκ,k(t)|dt
∫

|z|>|y|1−a

|K (y−1z) − K (z)|dz

�φ 2−kκ

∫

|z|>|y|1−a

|K (y−1z) − K (z)|dz.

Let us consider a sequence of points yi , 0 ≤ i ≤ m, 0 < 1/m < b, such that

y0 = e, . . . , ym = y, d(yi , yi+1) < 1/m, 0 ≤ i ≤ m − 1.

- The topological algorithm for the choice of the yi ’s. For constructing this family
of points, we consider the curve

y(t) : [0,m] → G, y(t) = t

m
· y, (3.19)

and the yi ’s will belong to its graph. Note that y(0) = e, y(m) = y, and that the
derivative y′(t) of the function y(t) is the constant function

y′(t) = 1

m
· y.

We illustrate the choice of the points yi ’s in Fig. 1 below.

The topological algorithm to choose the points yi is as follows. Observe that the
length of the curve � is ≤ 1. Indeed,

� :=
m

∫

0

|y′(t)|dt =
m

∫

0

|1/m · y|dt ≤ m(1/m)b ≤ 1.

Note that we can cover the graph of y(t) with N0 balls Bi = B(yi , ri ) of radius
ri = 1/m, such that y0 = e, yi−i ∈ Bi for i ≥ 2, ym = y, and N0 ∼ 2m. To
guarantee that d(yi , yi+1) < 1/m we can take

zi+1 ∈ ∂Bi ∩ {y(t) : 0 ≤ t ≤ m}
and choose yi+1 ∈ Bi such that d(yi+1, zi+1) < 1

2m . This inductive process ends
when one of the balls Bi contains the point y in its interior and the distance between
y and the center of ball is less than 1/m.
Having fixed the sequence yi now let us choose a suitablem. Indeed, considerm ≥ 2
as the least positive integer such that

2

m1−θ
< |y|1−a − |y| <

2

(m − 1)1−θ
.
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Then we have that

|y|1−a − |y| ∼ 2

m1−θ
= 2 ×

(

1

m

)1−θ

∼ 2d(yi , yi+1)
1−θ = 2|y−1

i yi+1|1−θ ,

for all 0 ≤ i ≤ m−1. The previous analysis and the changes of variables x = y−1
i−1z

implies that

Ik ≤
∫

G

|Gκ,k(t)|dt
∫

|z|>|y|1−a

|K (y−1z) − K (z)|dz

� φ2
−kκ

m
∑

i=1

∫

|z|>|y|1−a

|K
(

y−1
i z

)

− K
(

y−1
i−1z

)

|dz

= 2−kκ

m
∑

i=1

∫

|yi−1·x |>|y|1−a

|K (y−1
i yi−1x) − K (x)|dx

� 2−kκ

m
∑

i=1

∫

|x |>2|y−1
i−1yi |1−θ

|K (y−1
i yi−1x) − K (x)|dx

= 2−kκ

m
∑

i=1

∫

|x |>2|y−1
i−1yi |1−θ

|K ((y−1
i−1yi )

−1x) − K (x)|dx

� 2−kκ

m
∑

i=1

[K ]′H∞,θ,b
= 2−kκm[K ]′H∞,θ,b

.

Indeed, in the previous inequality we have used the estimate
∫

|yi−1·x |>|y|1−a

|K (y−1
i yi−1x) − K (x)|dx �

∫

|x |>2|y−1
i−1yi |1−θ

|K (y−1
i yi−1x) − K (x)|dx .

Indeed, estimating |yi−1| ∼ |y|(i−1)/m < |y|,we have that the estimate |yi−1x | ≥
|y|1−a implies that

|x | > |y|1−a − |yi−1| � |y|1−a − |y| � 2|y−1
i−1yi |1−θ .

The choice of m implies that d(yi , yi+1) ∼ |y|
m and then

d(yi , yi+1)
1−θ ∼

( |y|
m

)1−θ

∼ |y|1−a − |y|.

Then 1/m ∼ (|y|1−a)
1

1−θ /|y|. We then can estimate m ∼ |y|1− 1−a
1−θ . So, to finish

our analysis in Case 1, note that |y|−1 � 2k which implies that
∑

k:2−k<|y|/2
Ik �

∑

k:2−k<|y|/2
2−kκm � |y|1− 1−a

1−θ

∑

k:2−k<|y|/2
2−kκ ∼ |y|1− 1−a

1−θ |y|κ .

(3.20)

Since κ + 1 − 1−a
1−θ

= 0, we have that
∑

k:2−k<|y|/2 Ik � 1.
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Case 2: |y|/2 ≤ 2−k < |y| 1−θ
1−α . Define

δk := 5|y|2(1−θ)/λ2−kQ(1−α)(1−θ)/λ,

where

λ := Q(1 − θ) + 2.

Then we have the upper and the lower bound

5 × 2−k < δk < 5|y|1−θ .

Split Ik as follows,

Ik :=
∫

|x |>2|y|1−a

|K ∗ Gκ,k(y
−1x) − K ∗ Gκ,k(x)|dx = J1,k + J2,k,

where

J1,k =
∫

{|x |>2|y|1−a}∩{x :|x |≤δk }
|K ∗ Gκ,k(y

−1x) − K ∗ Gκ,k(x)|dx (3.21)

and

J2,k =
∫

{|x |>2|y|1−a}∩{x :|x |>δk }
|K ∗ Gκ,k(y

−1x) − K ∗ Gκ,k(x)|dx . (3.22)

Now, let us estimate J2,k . Indeed, the change of variable z = xt−1, for t ∈
supp(Gκ,k) implies

J2,k =
∫

{|x |>2|y|1−a}∩{x :|x |>δk }
|K ∗ Gκ,k(y

−1x) − K ∗ Gκ,k(x)|dx

=
∫

{|x |>2|y|1−a}∩{x :|x |>δk }
|
∫

G

(K (y−1xt−1)Gκ,k(t) − K (xt−1)Gκ,k(t))dt |dx

≤
∫

G

|Gκ,k(t)|
∫

{|x |>2|y|1−a}∩{x :|x |>δk }
|K (y−1xt−1) − K (xt−1)|dxdt

≤
∫

G

|Gκ,k(t)|
∫

{|zt |>2|y|1−a}∩{z:|zt |>δk }
|K (y−1z) − K (z)|dzdt

≤
∫

G

|Gκ,k(t)|
∫

{z:|zt |>δk }
|K (y−1z) − K (z)|dzdt .

Note that when |zt | > δk, we have |t | + |z| ≥ |zt | > δk and with t ∈ supp(Gκ,k),

|t | < 2−k+1 from which ones deduce the inclusion of sets

{z : |zt | > δk} ⊂ {z : |z| > δk − 2−k+1},
and the estimate

∫

{z:|zt |>δk }
|K (y−1z) − K (z)|dz ≤

∫

{z:|z|>δk−2−k+1}
|K (y−1z) − K (z)|dz.
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So, the previous analysis together with (3.17) gives

J2,k � 2−kκ

∫

{z:|z|>δk−2−k+1}
|K (y−1z) − K (z)|dz. (3.23)

To continue, let us make use of the argument illustrated in Fig. 1. Using this con-
struction we consider a sequence of points yi , 0 ≤ i ≤ m, 0 < 1/m < b, such
that

y0 = e, · · · , ym = y, d(yi , yi+1) ∼ |y|/m, 0 ≤ i ≤ m − 1,

on the curve y(t) = t
m · y, t ∈ [0,m], and we consider again the topological

construction done in Case 1 in order to obtain the required family of points yi . From
now, assume that m is the least integer such that

2d(yi , yi+1)
1−θ ∼ 2(|y|/m)1−θ < δk − 2−k+2.

The changes of variables x = y−1
i−1z in any term of the sums below implies that

J2,k � 2−kκ

∫

{z:|z|>δk−2−k+1}
|K (y−1z) − K (z)|dz

� φ2
−kκ

m
∑

i=1

∫

{z:|z|>δk−2−k+1}
|K

(

y−1
i z

)

− K
(

y−1
i−1z

)

|dz

= 2−kκ

m
∑

i=1

∫

{x :|yi−1·x |>δk−2−k+1}
|K (y−1

i yi−1x) − K (x)|dx .

Note that for |yi−1 ·x | > δk−2−k+1, |y|+|x | > δk−2−k+1 and then, the hypothesis
|y|/2 < 2−k

|x | > δk − 2−k+1 − |y| > δk − 2−k+1 − 2−k+1 = δk − 2−k+2 � 2d(yi , yi+1)
1−θ

from which we have proved that
∫

{x :|yi−1·x |>δk−2−k+1}
|K (y−1

i yi−1x) − K (x)|dx �
∫

|x |>2|y−1
i−1yi |1−θ

|K (y−1
i yi−1x) − K (x)|dx .

In consequence,

J2,k � 2−kκ

m
∑

i=1

∫

|x |>2|y−1
i−1yi |1−θ

|K (y−1
i yi−1x) − K (x)|dx

= 2−kκ

m
∑

i=1

∫

|z|>2|y−1
i−1yi |1−θ

|K ((y−1
i−1yi )

−1x) − K (x)|dx

� 2−kκ

m
∑

i=1

[K ]′H∞,θ,b
= 2−kκm[K ]′H∞,θ,b

.
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It follows that m � |y|Q(1−θ)/λ2kQ(1−θ)/λ, and in this Case 2,

J2,k � 2−kκ |y|Q(1−θ)/λ2kQ(1−θ)/λ,

where

λ := Q(1 − θ) + 2.

Now, let us estimate J1,k . In view of the Schwarz inequality we have the estimate:

J1,k ≤ 2
∫

|x |≤δk

|K ∗ Gκ,k(x)|dx � δ
Q
2
k ‖K ∗ Gκ,k‖L2(G) = δ

Q
2
k ‖̂Gκ,k ̂K‖L2(̂G)

≤ δ
Q
2
k ‖̂Gκ,kφ((2−k · π)(R))̂K‖L2(̂G) + δ

Q
2
k ‖̂Gκ,k(1 − φ)((2−k · π)(R))̂K‖L2(̂G),

with φ as in (3.8). Since,

‖̂Gκ,kφ((2−k · π)(R))̂K‖2
L2(̂G)

=
∫

̂G

‖̂Gκ,k(π)φ((2−k · π)(R))̂K (π)‖2HSdπ

≤ ‖̂Gκ,k‖2L∞(̂G)

∫

̂G

‖φ((2−k · π)(R))̂K (π)‖2HSdπ.

Using (3.17) we have that ‖̂Gκ,k‖2L∞(̂G)
≤ ‖Gκ,k‖2L1(̂G)

� 2−2kκ and then

‖̂Gκ,kφ((2−k · π)(R))̂K‖2
L2(̂G)

� 2−2kκ‖φ((2−k · π)(R))̂K (π)‖L2(̂G).

Using (1.9), that is,

sup
π∈̂G

‖(1 + π(R))
Qα
2ν ̂K (π)‖op < ∞, (3.24)

we have that

‖φ((2−k · π)(R))̂K (π)‖L2(̂G) = ‖φ((2−k · π)(R))(1 + π(R))
− Qα

2ν (1 + π(R))
Qα
2ν ̂K (π)‖L2(̂G)

≤ sup
π∈̂G

‖(1 + π(R))
Qα
2ν ̂K (π)‖op

×‖φ((2−k · π)(R))(1 + π(R))
− Qα

2ν ‖L2(̂G)

� ‖φ((2−k · π)(R))(1 + π(R))
− Qα

2ν ‖L2(̂G)

� ‖φ((2−k · π)(R))π(R)
− Qα

2ν ‖L2(̂G)

= ‖π(R)
− Qα

2ν φ((2−k · π)(R))‖L2(̂G).

Note that in the last line we have used the commutativity identity

φ((2−k · π)(R))π(R)−
Qα
2ν = π(R)−

Qα
2ν φ((2−k · π)(R))

in view of the functional calculus of R, and the estimate

‖φ((2−k · π)(R))(1 + π(R))−
Qα
2ν ‖L2(̂G) � ‖φ((2−k · π)(R))π(R)−

Qα
2ν ‖L2(̂G).

(3.25)
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Indeed,

‖φ((2−k · π)(R))(1 + π(R))−
Qα
2ν ‖L2(̂G)

= ‖φ((2−k · π)(R))π(R)−
Qα
2ν π(R)

Qα
2ν (1 + π(R))−

Qα
2ν ‖L2(̂G)

≤ sup
π∈̂G

‖π(R)
Qα
2ν (1 + π(R))−

Qα
2ν ‖op‖φ((2−k · π)(R))π(R)−

Qα
2ν ‖L2(̂G)

� ‖φ((2−k · π)(R))π(R)−
Qα
2ν ‖L2(̂G).

Note that we have used the fact that, in view of the L2(G)-boundedness of the

operator R Qα
2ν (1 + R)−

Qα
2ν , the sup

sup
π∈̂G

‖π(R)
Qα
2ν (1 + π(R))−

Qα
2ν ‖op < ∞, (3.26)

is finite. On the other hand, using the Plancherel theorem we get

‖π(R)−
Qα
2ν φ((2−k · π)(R))‖L2(̂G) = ‖R− Qα

2ν F−1
G [φ((2−k · π)(R))]‖L2(G). (3.27)

With r = 2−k, and �r = r−Qφ(R)δ(r−1·), ̂�r (π) = ̂�1(r · π). In consequence

φ((2−k · π)(R)) = φ((r · π)(R)) = φ̂(Rδ)(r · π) = ̂�1(r · π)

and

R− Qα
2ν F−1

G [φ((2−k · π)(R))] = R− Qα
2ν F−1

G [φ((r · π)(R))] = R− Qα
2ν F−1

G [̂�r (π)]

= R− Qα
2ν �r .

As 0 < Qα/2 < Q, in view of Corollary 4.3.11 of [8], the right-convolution kernel

of R− Qα
2ν is homogeneous of order Qα

2 − Q, and in consequence of [8, Lemma

3.2.7] R− Qα
2ν has homogeneous degree equal to −Qα/2. So, we have that

‖R− Qα
2ν F−1

G [φ((2−k · π)(R))]‖L2(G) = ‖R− Qα
2ν �r‖L2(G) = r−Q‖R− Qα

2ν [φ(R)δ(r−1·)]‖L2(G)

= r−Qr
Qα
2 ‖R− Qα

2ν [φ(R)δ](r−1·)‖L2(G)

= r−Qr
Qα
2 r

Q
2 ‖R− Qα

2ν [φ(R)δ](·)‖L2(G)

= 2−k( Qα
2 − Q

2 )‖R− Qα
2ν [φ(R)δ](·)‖L2(G).

In view of the Hulanicki theorem in [8], φ(R)δ ∈ S (G) and then

‖R− Qα
2ν [φ(R)δ](·)‖L2(G) < ∞,

in view of Corollary 4.3.11 in [8]. All the analysis above implies that

J1,k ≤ δ
Q
2
k ‖̂Gκ,kφ((2−k · π)(R))̂K‖L2(̂G) + δ

Q
2
k ‖̂Gκ,k(1 − φ)((2−k · π)(R))̂K‖L2(̂G)

� δ
Q
2
k 2−kκ2−k( Qα

2 − Q
2 ) + δ

Q
2
k ‖̂Gκ,k(1 − φ)((2−k · π)(R))̂K‖L2(̂G)

� δ
Q
2
k 2−k(κ+ Q(α−1)

2 ) + δ
Q
2
k ‖̂Gκ,k(1 − φ)((2−k · π)(R))̂K‖L2(̂G)
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= δ
Q
2
k 2− kQ(a−1)

2 + δ
Q
2
k ‖̂Gκ,k(1 − φ)((2−k · π)(R))̂K‖L2(̂G).

Now, we will prove the estimate

‖̂Gκ,k(1 − φ)((2−k · π)(R))̂K‖L2(̂G) � 2− kQ(a−1)
2 , (3.28)

in order to have the following upper bound for J1,k,

J1,k � δ
Q
2
k 2−k(κ+ Q(α−1)

2 ) = δ
Q
2
k 2− kQ(1−a)

2 ). (3.29)

For the proof of (3.28) note that

‖̂Gκ,k(1 − φ)((2−k · π)(R))̂K‖L2(̂G)

= ‖̂Gκ,k(1 − φ)((2−k · π)(R))(1 + π(R))−
Qα
2ν (1 + π(R))

Qα
2ν ̂K‖L2(̂G)

≤ sup
π∈̂G

‖(1 + π(R))
Qα
2ν ̂K (π)‖op‖̂Gκ,k(1 − φ)((2−k · π)(R))(1 + π(R))−

Qα
2ν ‖L2(̂G)

� ‖̂Gκ,k(1 − φ)((2−k · π)(R))(1 + π(R))−
Qα
2ν ‖L2(̂G).

Using again the estimate in (3.26) we have that

‖̂Gκ,k(1 − φ)((2−k · π)(R))(1 + π(R))−
Qα
2ν ‖L2(̂G)

= ‖̂Gκ,k(1 − φ)((2−k · π)(R))π(R)−
Qα
2ν π(R)

Qα
2ν (1 + π(R))−

Qα
2ν ‖L2(̂G)

� ‖̂Gκ,k(1 − φ)((2−k · π)(R))π(R)−
Qα
2ν ‖L2(̂G).

Now, let us use the functional calculus of R. For any continuous function κ(t) on
R

+ one has that

∀r > 0, κ(rνR)δ = r−Q[κ(R)δ](r−1·). (3.30)

Taking in both sides the group Fourier transform one has

κ(rνπ(R)) = κ((r · π)(R)).

The previous identity with κ(t) = t−
Q
2ν gives

∀r > 0, (rνπ(R))−
Qα
2ν = ((r · π)(R))−

Qα
2ν . (3.31)

Using the previous property, and the changes of variables π ′ = 2−k · π, we have
the effect in the Borel measure dπ ′ = 2−kQdπ on the unitary dual ̂G and we can
estimate

‖̂Gκ,k(1 − φ)((2−k · π)(R))π(R)−
Qα
2ν ‖2

L2(̂G)

=
∫

̂G

‖̂Gκ,k(π)(1 − φ)((2−k · π)(R))π(R)−
Qα
2ν ‖2HSdπ

=
∫

̂G

‖̂Gκ,k(2
k · π ′)(1 − φ)(π ′(R))((2k · π ′)(R))−

Qα
2ν ‖2HS2kQdπ ′

=
∫

̂G

‖̂Gκ,k(2
k · π ′)(1 − φ)(π ′(R))(2kνπ(R))−

Qα
2ν ‖2HS2kQdπ ′
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=
∫

̂G

‖̂Gκ,k(2
k · π ′)(1 − φ)(π ′(R))(π ′(R))−

Qα
2ν ‖2HS2k(Q−Qα)dπ ′

�
∫

̂G

‖̂Gκ,k(2
k · π ′)(1 − φ)(π ′(R))(1 + π ′(R))−

Qα
2ν ‖2HS2k(Q−Qα)dπ ′.

Then, we have estimated

‖̂Gκ,k(1 − φ)((2−k · π)(R))π(R)−
Qα
2ν ‖2

L2(̂G)

�
∫

̂G

‖̂Gκ,k(2
k · π ′)(1 − φ)(π ′(R))(1 + π ′(R))−

Qα
2ν ‖2HS2k(Q−Qα)dπ ′.

Now, let us use the identity

(1 − φ) = (1 − φ)2 + φ(1 − φ).

We have that

‖̂Gκ,k(2
k · π ′)(1 − φ)(π ′(R))(1 + π ′(R))−

Qα
2ν ‖L2(̂G)

≤ ‖̂Gκ,k(2
k · π ′)(1 − φ)2(π ′(R))(1 + π ′(R))−

Qα
2ν ‖L2(̂G)

+ ‖̂Gκ,k(2
k · π ′)φ(1 − φ)(π ′(R))(1 + π ′(R))−

Qα
2ν ‖L2(̂G) = R1 + R2.

Let us estimate R2, that is the last term of the previous inequality.

R2 = ‖̂Gκ,k(2
k · π ′)φ(1 − φ)(π ′(R))(1 + π ′(R))−

Qα
2ν ‖L2(̂G)

� ‖̂Gκ,k‖L∞(̂G)‖(1 + π ′(R))−
Qα
2ν φ(1 − φ)(π ′(R))‖L2(̂G)

� ‖Gκ,k‖L1(G)‖(1 + R)−
Qα
2ν [[φ(1 − φ)](R)δ‖L2(G).

In view of the Hulanicki theorem in [8], we have that [φ(1−φ)](R)δ ∈ S (G), and

‖(1 + R)−
Qα
2ν [[φ(1 − φ)](R)δ‖L2(G) = ‖φ(1 − φ)](R)δ‖L2

− Qα
2

(G) < ∞.

So, we have proved that

R2 � ‖Gκ,k‖L1(G) � 2−kκ .

Now, let N = n0ν > Q/2, where n0 ∈ N. Let us consider and let BN be the Bessel

potential defined by ̂BN (π) = (1 + π(R))
N
ν . We can estimate

R1 =
∫

̂G

‖̂Gκ,k(2
k · π ′)(1 − φ)2(π ′(R))(1 + π ′(R))−

Qα
2ν ‖2HSdπ ′

≤
∫

̂G

‖̂Gκ,k(2
k · π ′)(1 − φ)2(π ′(R))‖2HSdπ ′

=
∫

̂G

‖̂Gκ,k(2
k · π ′)(1 − φ)(π ′(R))(1 + π ′(R))

N
ν (1 − φ)(π ′(R))(1 + π ′(R))−

N
ν ‖2HSdπ ′.
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Note that the pseudo-differential operator (1− φ)(R)(1+R)− N
ν is smoothing and

then its right-convolution kernel kN belongs to the Schwartz spaceS (G).Note also
that

‖(1 − φ)(π ′(R))‖L∞(̂G) = sup
π ′∈̂G

‖(1 − φ)(π ′(R))‖op ≤ ‖1 − φ‖L∞(R+) � 1,

in view of the Functional calculus of the operator π ′(R), π ′ ∈ ̂G, and the properties
of φ in (3.8). So, using the Plancherel theorem we estimate

R1 =
∫

̂G

‖̂Gκ,k(2
k · π ′)(1 − φ)(π ′(R))(1 + π ′(R))

N
ν (1 − φ)(π ′(R))

× (1 + π ′(R))−
N
ν ‖2HSdπ ′

≤ ‖̂Gκ,k‖2L∞(̂G)
‖(1 − φ)(π ′(R))‖2

L∞(̂G)

∫

̂G

‖(1 + π ′(R))
N
ν

× (1 − φ)(π ′(R))(1 + π ′(R))−
N
ν ‖2HSdπ ′

≤ ‖̂Gκ,k‖2L∞(̂G)
‖(1 − φ)(π ′(R))‖2

L∞(̂G)

∫

̂G

‖(1 + π ′(R))
N
ν ̂kN (π ′)‖2HSdπ ′

� 2−2kκ

∫

̂G

‖(1 + π ′(R))
N
ν ̂kN (π ′)‖2HSdπ ′

= 2−2kκ

∫

̂G

‖(1 + R)
N
ν kN‖2L2(G)

.

So, we have proved that

R1 � ‖Gκ,k‖L1(G) � 2−kκ .

The analysis above allows us to conclude that

‖̂Gκ,k(1 − φ)((2−k · π)(R))̂K‖L2(̂G) � 2−k( Q(1−α)
2 +κ) = 2

kQ(1−a)
2 ,

as well as the estimate (3.29). It follows then that

J1,k � 2−kκ |y|Q(1−θ)/λ2kQ(1−θ)/λ.

So, to finish our proof in Case 2, note that |y|−1 � 2k which implies that
∑

k:|y|/2≤2−k<|y| 1−θ
1−α

Ik �
∑

k:|y|/2≤2−k<|y| 1−θ
1−α

2−kκ |y|Q(1−θ)/λ2kQ(1−θ)/λ � 1. (3.32)

Case 3: |y| 1−θ
1−α ≤ 2−k . Define

δk := 4 · 2−k(1−α).

Note that

δk/2 ≥ 2|y|1−θ .
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Split Ik as follows,

Ik :=
∫

|x |>2|y|1−a

|K ∗ Gκ,k(y
−1x) − K ∗ Gκ,k(x)|dx = J1,k + J2,k,

where

J1,k =
∫

{|x |>2|y|1−a}∩{x :|x |≤δk }
|K ∗ Gκ,k(y

−1x) − K ∗ Gκ,k(x)|dx (3.33)

and

J2,k =
∫

{|x |>2|y|1−a}∩{x :|x |>δk }
|K ∗ Gκ,k(y

−1x) − K ∗ Gκ,k(x)|dx . (3.34)

Now, let us estimate J2,k . Indeed, the change of variable z = xt−1, for t ∈
supp(Gκ,k) implies

J2,k =
∫

{|x |>2|y|1−a}∩{x :|x |>δk }
|K ∗ Gκ,k(y

−1x) − K ∗ Gκ,k(x)|dx

=
∫

{|x |>2|y|1−a}∩{x :|x |>δk }
|
∫

G

(K (y−1xt−1)Gκ,k(t) − K (xt−1)Gκ,k(t))dt |dx

≤
∫

G

|Gκ,k(t)|
∫

{|x |>2|y|1−a}∩{x :|x |>δk }
|K (y−1xt−1) − K (xt−1)|dxdt

≤
∫

G

|Gκ,k(t)|
∫

{|zt |>2|y|1−a}∩{z:|zt |>δk }
|K (y−1z) − K (z)|dzdt

≤
∫

G

|Gκ,k(t)|
∫

{z:|zt |>δk }
|K (y−1z) − K (z)|dzdt .

Note that when |zt | > δk, we have |t | + |z| ≥ |zt | > δk and with t ∈ supp(Gκ,k),

|t | < 2−k+1 from which ones deduce the inclusion of sets

{z : |zt | > δk} ⊂ {z : |z| > δk − 2−k+1},
and the estimate

∫

{z:|zt |>δk }
|K (y−1z) − K (z)|dz ≤

∫

{z:|z|>δk−2−k+1}
|K (y−1z) − K (z)|dz

≤
∫

{z:|z|>δk/2}
|K (y−1z) − K (z)|dz

≤
∫

{z:|z|>2|y|1−θ }
|K (y−1z) − K (z)|dz,
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where we have used that δk/2 ≥ 2|y|1−θ . So, the previous analysis together with
(3.17) gives

J2,k � 2−kκ

∫

{z:|z|>2|y|1−θ }
|K (y−1z) − K (z)|dz � 2−kκ . (3.35)

The same analysis done in Case 2, allows us to deduce the estimate

J1,k ≤ Cδ
Q
2
k 2−kQ(a−1)/2 ≤ C2−kκ .

So, to finish Case 3, note that
∑

k:|y| 1−θ
1−α <2−k

Ik �
∑

k:|y| 1−θ
1−α <2−k

2−kκ � 1. (3.36)

The proof of Theorem 1.4 is complete. ��

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Björk, J.-E.: L p estimates for convolution operators defined by compactly supported distributions in Rn.
Math. Scand. 34, 129–136 (1974)

2. Calderón, A.P., Zygmund, A.: On the existence of certain singular integrals. ActaMath. 88, 85–139 (1952)
3. Cardona, D. Ruzhansky, M.: Boundedness of oscillating singular integrals on Lie groups of polynomial

growth. (2022). arXiv:2201.12883
4. Cardona, D. Ruzhansky,M. Oscillating singular integral operators on graded Lie groups revisited. (2022).

arXiv:2201.12881
5. Fefferman, C.: Inequalities for strongly singular integral operators. Acta Math. 24, 9–36 (1970)
6. Fefferman, C., Stein, E.: H p spaces of several variables. Acta Math. 129, 137–193 (1972)
7. Fefferman, C.: L p-bounds for pseudo-differential operators. Isr. J. Math. 14, 413–417 (1973)
8. Fischer, V., Ruzhansky, M.: Quantization on nilpotent Lie groups. Progress in Mathematics, Vol. 314,

Birkhauser, (2016)
9. Folland, G., Stein, E.: Hardy Spaces on Homogeneous Groups. Princeton University Press, Princeton

(1982)
10. Hardy, G.H.: A theorem concerning Taylor’s series. Quart. J. Pure Appl. Math. 44, 147–160 (1913)
11. Helffer, B., Nourrigat, J.: Caracterisation des operateurs hypoelliptiques homogenes invariants a gauche

sur un groupe de Lie nilpotent gradue. Comm. Partial Differ. Eqs. 4(8), 899–958 (1979)
12. Hirschman, I.I.: Multiplier transformations I. Duke Math. J. 26, 222–242 (1956)
13. Hörmander, L.: Estimates for translation invariant operators in Lp spaces. Acta Math. 104, 93–139 (1960)
14. Rothschild, L.P., Stein, E.M.: Hypoelliptic differential operators and nilpotent groups. Acta Math. 137(3–

4), 247–320 (1976)
15. Seeger, A.: Some inequalities for singular convolution operators in Lp-spaces. Trans. Am. Math. Soc.

308(1), 259–272 (1988)
16. Seeger, A.: Remarks on singular convolution operators. Studia Math. 97(2), 91–114 (1990)
17. Seeger, A.: Endpoint estimates for multiplier transformations on compact manifolds. Indiana Univ. Math.

J. 40(2), 471–533 (1991)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2201.12883
http://arxiv.org/abs/2201.12881


Björk–Sjölin condition for strongly ... 1981

18. Seeger, A., Sogge, C.D.: On the boundedness of functions of (pseudo-) differential operators on compact
manifolds. Duke Math. J. 59(3), 709–736 (1989)

19. Seeger, A., Sogge, C.D., Stein, E.M.: Regularity properties of Fourier integral operators. Ann. Math.
134(2), 231–251 (1991)

20. Sjölin, P.: L p estimates for strongly singular convolution operators in R
n . Ark. Mat. 14(1), 59–64 (1976)

21. Stein, E.M.: Singular integrals: the roles of Calderón and Zygmund. Notices Am. Math. Soc. 45, 1130–
1140 (1998)

22. Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton Press, Princeton
(1970)

23. Tao, T.: The weak-type (1, 1) of Fourier integral operators of order −(n − 1)/2,. J. Aust. Math. Soc.
76(1), 1–21 (2004)

24. Taylor, M.: Pseudo-differential Operators. Princeton Univ. Press, Princeton (1981)
25. Wainger, S.: Special trigonometric series in k-dimensions. Mem. Am. Math. Soc. 59 (1965)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Björk–Sjölin condition for strongly singular convolution operators on graded Lie groups
	Abstract
	1 Introduction
	2 Fourier analysis on graded groups
	2.1 Homogeneous and graded Lie groups
	2.2 Fourier analysis on nilpotent Lie groups
	2.3 Homogeneous linear operators and Rockland operators

	3 Proof of the main theorem
	3.1 The quotient between the Riesz and the Bessel potential
	3.2 Boundedness of strongly singular integral operators

	References




