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Abstract
The aim of this article is to study the existence of invariant SKT structures on nilmanifolds.
More precisely, we give a negative answer to the question of whether there exist a k-step (k >

2) complex nilmanifold admitting an invariant SKT metric. We also provide a construction
which serves as a tool to generate examples of invariant SKT structures on 2-step nilmanifolds
in arbitrary dimensions.

1 Introduction

Let (M, J , g) be aHermitianmanifoldwith associated fundamental formω. Ifω is not closed,
it means that the manifold is not Kähler, then the Levi–Civita connection does not preserve
the complex structure. There are plenty of connections preserving both structures [11], but
there is only one such that the torsion 3-form is totally skew-symmetric, the so-called Bismut
connection. When the 3-torsion form is in addition closed, the Hermitian manifold (M, J , g)
is said to be strong Kähler with torsion (SKT for short) or pluriclosed.

We are interested in the study of invariant SKT structures on nilmanifolds. Here, M is a
compact quotient �\N , of a simply-connected nilpotent Lie group N by a co-compact lattice
�, and the Hermitian structure comes from a left-invariant Hermitian structure on the Lie
group N .

Over recent years, invariant SKT structures on nilmanifolds have been studied by many
authors, and remarkably, still not much is known about their existence. The classification in
dimensions 4, 6 and 8 was obtained in [5, 8, 12], respectively. Regarding higher dimensions,
a characterization of a class of SKT nilmanifolds was studied in [16], where the complex
structure is nilpotent and the compatible metric is Kähler-like. On the other hand, to the best
of our knowledge, the only non-existence results in arbitrary dimensions are given in [5].
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All known examples in the literature of nilmanifolds admitting an SKT structure are 2-step
nilpotent. In [5, Theorem 1.2], it is stated that the latter exhaust all the nilpotent examples.
Unfortunately, its proof has a gap (see [7]), leading to the following problem.

Problem 1.1 [3, 7, 9, 10] Does a k-step complex nilmanifold (k > 2) admitting an invariant
SKT structure exist?

The first partial negative answer to Problem 1.1 was given in [16], where the authors work
on Kähler-like structures on nilmanifolds assuming nilpotency on the complex structure.
The latter turn out to be 2-step nilmanifolds and the complex structure is necessarily abelian.
After that, in the recent work [9], a negative answer to the problem was obtained on complex
nilmanifolds with the abelian assumption in the complex structure.

Our main result gives a complete answer to Problem 1.1. As an important consequence,
[4, Theorem 2.3], [5, Theorem 1.1] and [6, Theorem 1.1] turn out to be valid. Moreover, the
long-time behaviour of the pluriclosed flow of invariant SKT structures on nilmanifolds is
now completely understood (see [1, Theorem A]).

Theorem 1.2 Any nilmanifold admitting an invariant SKT structure is either a torus or 2-step
nilpotent.

According to Theorem 1.2, the next move is to understand invariant SKT structures on
2-step nilmanifolds. The really hard problem is to reach new examples in higher dimensions,
and the lack of them motivated us to develop a method to construct families of invariant
SKT structures on nilmanifolds in higher dimensions starting with low dimensional ones
(see Sect. 5). This machinery provides explicit examples in every complex dimension. More-
over, as far as we know, we give the first examples of indecomposable SKT nilmanifolds
with non-abelian complex structure in higher dimensions. Here, by a indecomposable SKT
nilmanifold we mean a SKT nilmanifold which can not be decomposed as a product of two
SKT nilmanifolds of lower dimensions.

We now give some insight into our main results. Any invariant SKT structure on a nilman-
ifold is determined by the following infinitesimal data, which we call an SKT Lie algebra:
a nilpotent Lie algebra g, a complex structure J on g and an inner product on g satisfying a
system of equations on g due to the SKT condition. The key idea in the proof of Theorem 1.2
is to write g = span{e1, e2} ⊕ n, as the orthogonal sum of a subspace and an ideal n, where
both spaces are J -invariant (see [13, Corollary 1.4]), and to prove that (n, J |n, 〈·, ·〉|n) is
also SKT (see Sect. 4). Then, g is determined by

A := ad(e1)n, B := ad(e2)n, X := [e1, e2], and [·, ·]n,

where ad(ei )n denotes the projection of ad(ei )|n onto n, for i = 1, 2. If we apply induction
on n to dim g = 2n, then by induction hypothesis, the ideal n is forced to be abelian or 2-step
nilpotent (see Section 4.1). Therefore, n can be decomposed as n = v ⊕ z, where z is the
center of n and v := z⊥ (n = z when n is abelian). Since A, B ∈ Der(n), then

A =
[
Av 0
∗ Az

]
, B =

[
Bv 0
∗ Bz

]
.

We first show that Az = 0 and Bz = 0 by using the SKT condition (see Corollary 4.3 for
an abelian n and Lemma 4.2 for a 2-step nilpotent n). This fact together with the nilpotency
of g and the integrability of J are the ingredients to demonstrate that Av = 0, Bv = 0 and
X ∈ z, which proves that g is at most 2-step nilpotent.
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SKT structures... 1309

Our second main result is a method that provides new explicit examples of SKT Lie
algebras (see Sect. 5). We start with two SKT 2-step nilpotent Lie algebras (n1, J1, 〈·, ·〉1)
and (n2, J2, 〈·, ·〉2) of dimensions n1 and n2, respectively, satisfying

ni = vi ⊕ zi and dim zi > dim [ni , ni ], i = 1, 2,

where zi is the center of ni and vi := z⊥i , i = 1, 2, and we construct a new SKT Lie algebra
of dimension n1 + n2 + 2 by setting g = n1 ⊕ n2 ⊕ 〈Z ,W 〉 with Lie bracket given by

[·, ·]|n1×n1 = [·, ·]n1 , [·, ·]|n2×n2 = [·, ·]n2 , [Z ,W ] = Xn1 + Yn2 ,

where Xn1 ∈ z1 ∩ [n1, n1]⊥ and Yn2 ∈ z2 ∩ [n2, n2]⊥. The complex structure is defined as

J =

⎡
⎢⎢⎣
J1

J2
0 − 1
1 0

⎤
⎥⎥⎦ ,

and the inner product is the one that makes the above decomposition of g orthogonal while
extending 〈·, ·〉1 and 〈·, ·〉2. The SKT Lie algebra (g, J , 〈·, ·〉) is indecomposable, in the sense
that it is not a sum of two SKT Lie algebras, despite g is decomposable (see Sect. 5.1).

The organization of this article is as follows. In Section 2 we review some basic facts
about left-invariant SKT structures on Lie groups. In Sect. 3 we prove some useful results.
Then, we apply these results in Sect. 4, which is devoted to the proof of Theorem 1.2. Finally,
we present a construction in Sect. 5 and explicit examples are provided.

2 Preliminaries

Given (M2n, J ) a differentiable manifold of real dimension 2n endowed with a complex
structure, a Riemannian metric g on M is said to be Hermitian if g(J ·, J ·) = g(·, ·). The
pair (J , g) is called a Hermitian structure and ω(·, ·) = g(J ·, ·) is the fundamental 2-
form associated to the pair. The Bismut (or Strominger) connection ∇B on M is the unique
Hermitian connection (that is, J and g are parallel) with totally skew-symmetric torsion. That
is, the tensor

c(U , Y , Z) := g(U , T B(Y , Z)) (1)

is a 3-form, where T B(Y , Z) = ∇B
Y Z −∇B

Z Y −[Y , Z ] is the torsion of∇B (see [2, 14]). The
metric g (or ω) is called strong Kähler with torsion (SKT) or pluriclosed if its fundamental
2-form satisfies ∂∂̄ω = 0, or equivalently, the 3-form c is closed. In this case, (J , g) is called
a SKT-structure and the triple (M, J , g) is said to be SKT.

Weare interested in the studyof invariant SKT-structuresonLie groups.Here, the universal
cover M̃ of M is diffeomeophic to a simply-connected Lie group G and π∗ J and π∗g are
left-invariant tensors defining a Hermitian structure on G, where π : G → M denotes the
universal covering map.

2.1 Nilpotent Lie groups and Lie algebras

Given a Lie group G with Lie algebra (g, [·, ·]), for each X ∈ g we define the adjoint map
as the linear map ad(X) : g → g, given by ad(X)(Y ) = [X , Y ] and we denote by z(g) the
center of g, that is, z(g) = {X ∈ g | ad(X) = 0}.
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For a Lie algebra (g, [·, ·]), we define its descending central series by:
g0 = g, gi = [g, gi−1], for i ≥ 1.

A Lie algebra g is called nilpotent if there exists k ∈ N such that gk = 0. In addition, if
gk = 0 and gk−1 �= 0, the Lie algebra is said to be k-step nilpotent. A Lie group G is (k-step)
nilpotent if its Lie algebra is (k-step) nilpotent.

From now on, we simply denote by g the Lie algebra (g, [·, ·]).

2.2 Hermitian structures on Lie groups

Left-invariant Hermitian structures on simply-connected Lie groups (G, J , g) are completely
determined by (g, J (e), g(e)), where e is the identity of G. Here, if we denote by J := J (e)
and 〈·, ·〉 := g(e), then J is a linear endomorphism J : g → g satisfying J 2 = − Idg and
the integrability condition

[J ·, J ·] = [·, ·] + J [J ·, ·] + J [·, J ·],
and 〈·, ·〉 : g × g → R is an inner product on g such that 〈J ·, J ·〉 = 〈·, ·〉.

From now on, we denote the Hermitian manifold (G, J , g) by (g, J , 〈·, ·〉).

2.3 SKTmetrics on Lie groups

The torsion 3-form of the Bismut connection of a left-invariant Hermitian manifold
(g, J , 〈·, ·〉) can be computed by (see [5, (3.2)])

c(U , Y , Z) = −〈[JU , JY ], Z〉 − 〈[JY , J Z ],U 〉 − 〈[J Z , JU ], Y 〉, U , Y , Z ∈ g, (2)

and its exterior derivative is thus given by

dc(W ,U , Y , Z) =〈[J [W ,U ], JY ], Z〉 + 〈[JY , J Z ], [W ,U ]〉 + 〈[J Z , J [W ,U ]], Y 〉
− 〈[J [W , Y ], JU ], Z〉 − 〈[JU , J Z ], [W , Y ]〉 − 〈[J Z , J [W , Y ]],U 〉
+ 〈[J [W , Z ], JU ], Y 〉 + 〈[JU , JY ], [W , Z ]〉 + 〈[JY , J [W , Z ]],U 〉
+ 〈[J [U , Y ], JW ], Z〉 + 〈[JW , J Z ], [U , Y ]〉 + 〈[J Z , J [U , Y ]],W 〉
− 〈[J [U , Z ], JW ], Y 〉 − 〈[JW , JY ], [U , Z ]〉 − 〈[JY , J [U , Z ]],W 〉
+ 〈[J [Y , Z ], JW ],U 〉 + 〈[JW , JU ], [Y , Z ]〉 + 〈[JU , J [Y , Z ]],W 〉.

(3)

Then, the SKT condition dc = 0 can be written as a system of equations on g involving
the Lie bracket, the complex structure and the inner product.

Fromnowon,wewill say that (g, J , 〈·, ·〉) is SKT or an SKTLie algebra if it is aHermitian
manifold with (3) vanishes.

3 SKT nilmanifolds

The aim of this section is to prove two helpful results for the following sections. We also
recall a result from [5] and set up some notation.

Proposition 3.1 [5, Proposition 3.1] If (g, J , 〈·, ·〉) is SKT with g nilpotent, then z(g) is
J -invariant.
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Notation 3.2 Let V be a vector space. If T ∈ gl(V ) and W is a subspace of V , then TW
denotes the projection of T |W onto W .

Proposition 3.3 If (g, J , 〈·, ·〉) is SKT and n is a J -invariant subalgebra of g, then
(n, Jn, 〈·, ·〉|n) is SKT.

Proof Let ι : n → g be the inclusion map. Then, ι∗dg = dnι∗, since ι is a Lie algebra
homomorphism. Moreover, Jn = J |n = J ◦ ι due to the J -invariance of n and so ι ◦ Jn =
Jn = J ◦ ι. Then, the corresponding pullbacks also commute and

dncn = dn J |∗ndnω|n = dn J |∗ndnι∗ωg = ι∗dg J ∗dgωg = ι∗dgcg = 0,

which concludes the proof. ��
Lemma 3.4 Let (n, J , 〈·, ·〉)be an SKTLie algebrawheren is2-step nilpotent. Then, Y ∈ z(n)

if and only if [Y , JY ] = 0.

Proof Let W , Y ∈ n, then by (3),

dc(W , JW , Y , JY ) = +〈[J [W , JW ], JY ], JY 〉 − 〈[JY , Y ], [W , JW ]〉
−〈[Y , J [W , JW ]], Y 〉 + 〈[J [W , Y ],W ], JY 〉 − 〈[W , Y ], [W , Y ]〉
+〈[Y , J [W , Y ]], JW 〉 − 〈[J [W , JY ],W ], Y 〉
−〈[W , JY ], [W , JY ]〉 + 〈[JY , J [W , JY ]], JW 〉
+〈[J [JW , Y ], JW ], JY 〉 − 〈[JW , Y ], [JW , Y ]〉
−〈[Y , J [JW , Y ]],W 〉 − 〈[J [JW , JY ], JW ], Y 〉
−〈[JW , JY ], [JW , JY ]〉 − 〈[JY , J [JW , JY ]],W 〉
+〈[J [Y , JY ], JW ], JW 〉 − 〈[JW ,W ], [Y , JY ]〉
−〈[W , J [Y , JY ]],W 〉.

Since [n, n] ⊆ z(n) and z(n) is J -invariant by Proposition 3.1, we have that

0 = dc(W , JW , Y , JY ) = −〈[JY , Y ], [W , JW ]〉 − 〈[W , Y ], [W , Y ]〉
−〈[W , JY ], [W , JY ]〉 − 〈[JW , Y ], [JW , Y ]〉
−〈[JW , JY ], [JW , JY ]〉 − 〈[JW ,W ], [Y , JY ]〉.

That means

−2〈[Y , JY ], [W , JW ]〉 = −‖[W , Y ]‖2 − ‖[W , JY ]‖2 − ‖[JW , Y ]‖2 − ‖[JW , JY ]‖2.
Therefore, [Y , JY ] = 0 if and only if [W , Y ] = 0 for all W ∈ n, that is Y ∈ z(n). ��

4 Proof of Theorem 1.2

Let (g, J , 〈·, ·〉) be a 2n-dimensional real nilpotent Lie algebra endowed with a Hermitian
structure. Using [13, Corollary 1.4], there exists an orthonormal basis {e1, . . . , e2n} of g∗
satisfying that Je1 = e2 and

dei =
∑
j,k<i

cijke
jk, (4)

where −cijk denote the structural constants of the Lie bracket on g. In particular, de1 = 0,

de2 = 0 and n := span{e1, e2}⊥ is a J -invariant ideal of g. Then, the Lie bracket of g is
determined by

A := ad(e1)n, B := ad(e2)n, X := [e1, e2], and [·, ·]n. (5)
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1312 R. M. Arroyo, M. Nicolini

In particular, (n, Jn, 〈·, ·〉|n) is a (2n − 2)-dimensional real nilpotent Lie algebra endowed
with a Hermitian structure. Moreover, if (g, J , 〈·, ·〉) is SKT, then (n, Jn, 〈·, ·〉|n) turns out
to be SKT by Proposition 3.3.

Remark 4.1 The integrability condition implies that

[Je1, JY ] = [e1, Y ] + J [Je1, Y ] + J [e1, JY ], ∀Y ∈ n, i.e. [J , A] = J [B, J ].
From now on, we will denote by (gA,B,X ,n, J , 〈·, ·〉) the Hermitian manifold such that

gA,B,X ,n is the nilpotent Lie algebra defined as in (5), Je1 = e2, Jn ⊆ n, and 〈·, ·〉 satisfies
that 〈e1, e2〉 = 0 and {e1, e2} ⊥ n.

4.1 2-step nilpotent ideal of codimension 2

The aim of this section is to prove Theorem 1.2 for (gA,B,X ,n, J , 〈·, ·〉) in the case that n is
2-step nilpotent.

Assume that (gA,B,X ,n, J , 〈·, ·〉) is an SKT Lie algebra and n is 2-step nilpotent. By
Proposition 3.3, (n, Jn, 〈·, ·〉|n) is SKT. Hence, we can decompose n as

n = v ⊕ z,

where z := z(n) is the center of n and v := z⊥. Note that z and v are invariant by J and
[v, v]n ⊆ z. According to the above decomposition, Jn is determined by Jv and Jz (see
Notation 3.2). In addition, since A, B ∈ Der(n), then

A = [
Av 0∗ Az

]
, B = [

Bv 0∗ Bz
]
.

Lemma 4.2 If (gA,B,X ,n, J , 〈·, ·〉) is SKT, then Az = 0 and Bz = 0.

Proof According to (2), for Z ∈ z we have that

dc(e1, e2, Z , J Z) =
= −c(X , Z , J Z) + c(AZ , e2, J Z) − c(AJ Z , e2, Z) − c(BZ , e1, J Z) + c(BJ Z , e1, Z)

= 〈(J AJ A + AJ AJ + J B J B + BJ B J )Z , Z〉 − |AZ |2 − |AJ Z |2 − |BZ |2 − |BJ Z |2
= 〈(J [A, B] + [A, B]J + 2(BJ A − AJ B − A2 − B2))Z , Z〉 − |AZ |2

− |AJ Z |2 − |BZ |2 − |BJ Z |2.
The last equation follows from Remark 4.1. On the other hand, since [A, B] = ad(X), for
all Z ∈ z we have that [A, B]Z and [A, B]J Z vanish. Hence, the SKT condition yields

0 = 〈(BJ A − AJ B)Z , Z〉 − 〈A2Z , Z〉 − 〈B2Z , Z〉
−1

2
(|AZ |2 + |AJ Z |2 + |BZ |2 + |BJ Z |2), (6)

for every Z ∈ z. If we sum over any orthonormal basis of z, then (6) gives us

0 = tr(Bz JzAz − Az JzBz) − tr A2
z − tr B2

z − |Az|2 − |Bz|2. (7)

By the Jacobi condition, Az and Bz commute and since they are nilpotent, (7) implies that

0 = |Az|2 + |Bz|2,
then Az = Bz = 0. ��
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Corollary 4.3 If (gA,B,X ,n, J , 〈·, ·〉) is SKT and n is abelian, then gA,B,X ,n is at most 2-step
nilpotent.

Proof The proof follows immediately from Lemma 4.2 since n = z when it is abelian. ��
Remark 4.4 It follows from A, B ∈ Der(n), Az = Bz = 0 and [n, n] ⊂ z, that

[AY , Z ] = −[Y , AZ ], [BY , Z ] = −[Y , BZ ], ∀Y , Z ∈ n. (8)

Lemma 4.5 For any Y ∈ v, [AY , BY ] = 0.

Proof Given Y ∈ v, then [AY , BY ] = −[BAY , Y ] from (8). Since n = v ⊕ z and Az =
Bz = 0, it follows that

[BAY , Y ] = [BvAvY , Y ].
From the Jacobi condition, we know that [A, B]v = 0 and therefore [Av, Bv] = 0. Hence,

[AY , BY ] = −[BAY , Y ] = −[BvAvY , Y ] = −[AvBvY , Y ]
= −[ABY , Y ] = [BY , AY ] = −[AY , BY ],

and the assertion follows. ��
Lemma 4.6 If (gA,B,X ,n, J , 〈·, ·〉) is SKT, then Av = Bv = 0 and X ∈ z.

Proof Since Av and Bv are nilpotent and commute, we can take a non-zero Y ∈ v such that
AvY = BvY = 0, or equivalently, AY ∈ z and BY ∈ z. We now proceed by showing that
JY satisfies the same conditions. Recall that from Lemma 3.4, it is sufficient to prove that
0 = [AJY , J AJY ] = [BJY , J B JY ]. By Remark 4.1,

[AJY , J AJY ] = [AJY , (BJ − J B − A)Y ]
= [AJY , BJY ] − [AJY , J BY ] − [AJY , AY ], (9)

which vanishes by Lemma 4.5 and Proposition 3.1 applied to (n, Jn). Hence, Av JY = 0,
and it analogously follows that Bv JY = 0.

Furthermore, setting b := Ker(Av) ∩ Ker(Bv) �= 0, we showed that b is J -invariant. If
we prove that b = v, the assertion follows.

On the contrary, suppose that a := (Ker(Av) ∩ Ker(Bv))⊥ �= {0} and Aa and Ba are
defined according to Notation 3.2. It can be easily seen that Aa and Ba are nilpotent and
commute, therefore, there exists 0 �= W ∈ a such that AaW = BaW = 0. In other words,
AW , BW ∈ b ⊕ z.

In the same way as we proceed after equation (9), we can show that

[AJW , J AJW ] = [JW , AJ BW ] + [JW , A2W ].
From the fact that A(b ⊕ z) ⊆ z and b ⊕ z is J -invariant, it follows that AJW ∈ z. In the
samemanner we can prove that BJW ∈ z. Therefore, JW ∈ bwhich leads to a contradiction
since b is J -invariant and W ∈ a. We conclude that Av = Bv = 0, so

A =
[
0 0
∗ 0

]
, B =

[
0 0
∗ 0

]
.

The fact that X lies in z follows immediately from the Jacobi condition, i.e. [A, B] = ad(X).
��

An immediate consequence of the Lie algebra structure of gA,B,X ,n given in (5) and the
above lemma is the following result.

Corollary 4.7 If (gA,B,X ,n, J , 〈·, ·〉) is SKT, then gA,B,X ,n is at most 2-step nilpotent.
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1314 R. M. Arroyo, M. Nicolini

4.2 General case

In the above section we proved Theorem 1.2 for two particular cases. We are now in position
to prove Theorem 1.2 in the general case, which is the main result of this article.

Theorem 4.8 If (g, J , 〈·, ·〉) is SKT with g nilpotent, then g is at most 2-step nilpotent.

Proof The proof is by induction on n, where dim g = 2n. It is clear that the assertion is true
for n = 1. Suppose that it holds for every SKT nilpotent Lie algebra of dimension 2k, with
k < n.

By the discussion at the beginning of Sect. 4 there exists A, B ∈ gl(2(n − 1),R), X ∈
R
2(n−1) and n ideal of g of dimension 2(n − 1) such that

g = gA,B,X ,n.

By Proposition 3.3, (n, Jn, 〈·, ·〉|n) is SKT and of course nilpotent. Then, by hypothesis, n is
at most 2-step nilpotent. We are now under the hypothesis of Corollary 4.3 or Corollary 4.7,
and this implies that g is at most 2-step nilpotent. ��

5 Construction of examples

In this section we present a method to construct examples of SKT Lie algebras of arbitrary
dimensions. The idea is to start with two SKT Lie algebras of dimension n1 and n2 that
satisfy certain condition, and to construct a new SKT Lie algebra of dimension n1 + n2 + 2.
With this method and some already known examples, we can provide an example of an SKT
Lie algebra of any even-dimension.

5.1 A new construction

For i = 1, 2, let (ni , Ji , 〈·, ·〉i ) be an indecomposable 2-step nilpotent SKT Lie algebra. It is
to say, ni can not be decomposed as an orthogonal sum of J -invariant ideals, or equivalently,
it is not a sum of SKT Lie algebras of lower dimensions (see Proposition 3.3). Suppose in
addition that for each i = 1, 2,

ni = vi ⊕ zi and dim zi > dim [ni , ni ].

Set ni := dim ni , for i = 1, 2, and let {X1, . . . , Xn1} and {Y1, . . . , Yn2} be orthonormal bases
of (n1, 〈·, ·〉1) and (n2, 〈·, ·〉2), respectively. There is no loss of generality in assuming that

Xn1 ∈ z1 ∩ [n1, n1]⊥, Yn2 ∈ z2 ∩ [n2, n2]⊥.

Let g be the Lie algebra with underlying vector space n1 ⊕ n2 ⊕R
2. Take Z ,W ∈ g such

that {X1, . . . , Xn1 , Y1, . . . , Yn2 , Z ,W } is a basis of g, and consider 〈·, ·〉 which makes it an
orthonormal basis. It is obvious that 〈·, ·〉|n1×n1 = 〈·, ·〉1 and 〈·, ·〉|n2×n2 = 〈·, ·〉2.

Let the Lie bracket on g be determined by

[·, ·]|n1×n1 = [·, ·]n1 , [·, ·]|n2×n2 = [·, ·]n2 , [Z ,W ] = Xn1 + Yn2 , (10)
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and the complex structure defined as

J =

⎡
⎢⎢⎣
J1

J2
0 − 1
1 0

⎤
⎥⎥⎦

In particular J Z = W and [Z , J Z ] ∈ ([n1, n1] ⊕ [n2, n2])⊥.
In order to prove that (g, J , 〈·, ·〉) is SKT, we only have to check that

0 = dc(Z , J Z ,W1,W2) = dc(Z ,W1,W2,W3)

= dc(J Z ,W1,W2,W3), W1,W2,W3 ∈ n1 ∪ n2.

Indeed, by (3)

dc(Z , J Z ,W1,W2) = 〈[J [Z , J Z ], JW1],W2〉 + 〈[JW1, JW2], [Z , J Z ]〉
+ 〈[JW2, J [Z , J Z ]],W1〉 + 〈[J [W1,W2], J Z ], J Z〉
+ 〈[J Z , J J Z ], [W1,W2]〉 + 〈[J J Z , J [W1,W2]], Z〉,

which vanishes because J preserve z1 ⊕ z2, g is 2-step nilpotent and [Z , J Z ] is orthogonal to
[n1, n1] ⊕ [n2, n2]. On the other hand, it is immediate from (3) and the Lie algebra structure
of g, that dc(Z ,W1,W2,W3) and dc(J Z ,W1,W2,W3) vanish.

It only remains to see that (g, J , 〈·, ·〉) is indecomposable. Suppose that there exists an
orthogonal J -invariant decomposition of ideals

g = a ⊕ b,

where a is indecomposable. If n1 ∩ a �= {0}, then it is a J -invariant ideal contained in a

indecomposable. Therefore, a = n1 and b = n2 ⊕ span{Z , J Z}. This contradicts the fact
that b is an ideal, since [Z , J Z ] = Xn1 + Yn2 ∈ n1 ⊕ n2. If n2 ∩ a �= {0}, we can proceed
analogously and to get a contradiction. Finally, if ni ∩ a = {0} for i = 1, 2, it follows that
(n1 ⊕n2)∩a = {0} by using that it is an ideal of a and a is indecomposable. Then a has to be
zero. Indeed, if A ∈ a, A = N1 + N2 + αZ + β J Z , with α �= 0 or β �= 0. Then, [A, Z ] ∈ a

and [A, J Z ] ∈ a, which means that Xn1 + Yn2 ∈ a, and we obtain a contradiction.

Remark 5.1 Observe that a quick computation shows that the SKT Lie algebra (g, J , 〈·, ·〉)
obtained by the above construction satisfies dim z(g) > dim[g, g]. To the obtained example,
we can apply the construction again in order to get higher dimensional examples.

Remark 5.2 Setting [Z ,W ] = r Xn1 + sYn2 , for s, t ∈ R\{0}, instead of [Z ,W ] = Xn1 +Yn2
in (10), we obtain a family of examples of SKT Lie algebras. An interesting question is
whether they are pairwise non-equivalent.

Remark 5.3 In the previous construction, if both J1 and J2 are abelian, then J results abelian,
and if one of them is not, then J is not abelian. Recall that a complex structure J on g is
called abelian if [J X , JY ] = [X , Y ] for all X , Y ∈ g.

5.2 Known examples

In this section, we present some known examples of SKTLie algebras to set up some notation.
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Example 5.4 [12] Consider the 4-dimensional Lie algebra n1 with basis {e1, . . . , e4} and Lie
bracket determined by

de3 = −e12.

Let 〈·, ·〉1 be the inner product such that the basis is orthonormal, and the abelian complex
structure J1 is defined by,

J1e1 = e2, J1e3 = e4.

The Hermitian manifold (n1, J1, 〈·, ·〉1) has the following torsion 3-form of the Bismut con-
nection

c = −e123,

which turns out to be closed and therefore (n1, J1, 〈·, ·〉1) is an SKT Lie algebra. Note that
if z1 is the center of n1, then z1 ∩ [n1, n1]⊥ = span{e4}.

Example 5.5 [8, 15] Let n2 be the 6-dimensional Lie algebra with basis { f1, . . . , f6} and Lie
bracket determined by

d f 5 = − f 12 + f 14 − f 23 − f 34.

Let 〈·, ·〉2 be the inner product such that the basis is orthonormal, and the abelian complex
structure J2 is defined by,

J2 f1 = f2, J2 f3 = f4, J2 f5 = f6.

Then, the torsion 3-form of the Bismut connection of (n2, J2, 〈·, ·〉2) is
c = − f 125 + f 145 − f 235 − f 345,

and it is closed, so (n2, J2, 〈·, ·〉2) is SKT. Observe that if z2 is the center of n2, then z2 ∩
[n2, n2]⊥ = span{ f6}.

Example 5.6 [5] Consider the 8-dimensional Lie algebra n3 with basis {v1, . . . , v8} and Lie
bracket determined by

dv5 = −2v12 + v14 − v34, dv6 = −v13, dv7 = −v12 + v34.

Let 〈·, ·〉3 be the inner product such that the basis is orthonormal, and the non-abelian complex
structure J3 defined by,

J3v1 = v2, J3v3 = v4, J3v5 = v6, J3v7 = v8.

The Hermitian manifold (n3, J3, 〈·, ·〉3) has the following torsion 3-form of the Bismut con-
nection

c = −2v125 − v127 − v235 − v246 − v345 + v347,

which is closed, and therefore (n3, J3, 〈·, ·〉3) is SKT. Note that if z3 is the center of n3, then
z3 ∩ [n3, n3]⊥ = span{v8}.
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5.3 Applications

The aim of this section is to apply the construction given in Sect. 5.1. We provide two new
examples of SKT Lie algebras by using Examples 5.4, 5.5 and 5.6.

Example 5.7 Let (n1, J1, 〈·, ·〉1) and (n2, J2, 〈·, ·〉2) be the indecomposable SKTLie algebras
defined in Examples 5.4 and 5.5, respectively. According to the method presented in Section
5.1, we can construct a (4 + 6 + 2)-dimensional SKT Lie algebra g with orthonormal basis
{e1, . . . , e4, f1, . . . , f6, w1, w2}, Lie bracket determined by,

de3 = −e12, d f 5 = − f 12 + f 14 − f 23 − f 34, de4 = −w12, d f 6 = −w12

and complex structure

J |n1 = J1, J |n2 = J2, Jw1 = w2.

Indeed, the resulting torsion 3-form of the Bismut connection is

c = −e123 − 2v125 − v127 − v235 − v246 − v345 + v347 − e4 ∧ w12 − f 6 ∧ w12,

which is closed and therefore (g, J , 〈·, ·〉) is SKT. An easy computation shows that J is
abelian, which is consistent with Remark 5.3.

Example 5.8 Let (n1, J1, 〈·, ·〉1) and (n3, J3, 〈·, ·〉3) be the indecomposable SKT Lie alge-
bras defined in Examples 5.4 and 5.6, respectively. As we did in the previous example,
we construct a (4 + 8 + 2)-dimensional SKT Lie algebra g with orthonormal basis
{e1, . . . , e4, v1, . . . , v8, w1, w2}, Lie bracket determined by,

de3 = −e12, dv5 = −2v12 + v14 − v34, dv6 = −v13,

dv7 = −v12 + v34, de4 = −w12, dv8 = −w12,

and complex structure:

J |n1 = J1, J |n3 = J3, Jw1 = w2.

Indeed, the resulting torsion 3-form of the Bismut connection is

c = −e123 − 2v125 − v127 − v235 − v246 − v345 + v347 − e4 ∧ w12 − v8 ∧ w12,

which is closed and therefore (g, J , 〈·, ·〉) is SKT. Note that J is not abelian since J3 is not
abelian.

Remark 5.9 It is worth pointing out that at least one example of an indecomposable SKT Lie
algebra on any dimension can be reached by applying the construction repeatedly toExamples
5.4, 5.5 and 5.6 (see Remark 5.1). For instance, in order to obtain an example of dimension
4+ 6m, with m ∈ N, the only needed SKT Lie algebra is (n1, J1, 〈·, ·〉1) of Example 5.4. In
fact, applying the construction to (n1, J1, 〈·, ·〉1) and (n1, J1, 〈·, ·〉1), an SKT Lie algebra of
dimension 10 is obtained. Using the new SKT Lie algebra and again (n1, J1, 〈·, ·〉1), an SKT
Lie algebra of dimension 16 is constructed, and go on. Analogously, examples of dimensions
6 + 6m and 8 + 6m, with m ∈ N, can be obtained from (n1, J1, 〈·, ·〉1) and (n2, J2, 〈·, ·〉2)
given in Examples 5.4 and 5.5, and (n1, J1, 〈·, ·〉1) and (n3, J3, 〈·, ·〉3) given in Examples 5.4
and 5.6, respectively.
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5.4 More examples of SKT Lie algebras with non-abelian complex structures

Example 5.10 [8, 15] Let n be the 6-dimensional Lie algebra with basis {e1, . . . , e6} and Lie
bracket determined by

de5 = −e12 − e14 − e34, de6 = e13.

Let 〈·, ·〉 be the inner product such that the basis is orthonormal, and the non-abelian complex
structure J defined by,

Je1 = e2, Je3 = e4, Je5 = e6.

The torsion 3-form of the Bismut connection of (n, J , 〈·, ·〉) is
c = −e125 + e235 + e246 − e345,

and it is closed. Therefore (n, J , 〈·, ·〉) is SKT. Note that if z is the center of n, then z =
[n, n] = span{e5, e6}.
Example 5.11 Consider the 10-dimensional Lie algebra n with basis {e1, . . . , e10} and Lie
bracket determined by

de7 = −e12 + e24 − e34 − 2e36, de8 = −e14 − 5
2 e

34 + 2e35 − 2e56,

de9 = −e12 + e16 − e25 + e36 − e45 − e56.

Let 〈·, ·〉 be the inner product such that the basis is orthonormal, and the non-abelian complex
structure J defined by,

Je2i−1 = e2i , ∀i ∈ {1, . . . , 5}.
The Hermitian manifold (n, J , 〈·, ·〉) has the following torsion 3-form of the Bismut connec-
tion

c = −e127 − e129 + e137 + e169 + e238 − e259 − e347 − 5
2e

348

+e369 + 2e457 − e459 + 2e468 − 2e568 − e569,

which turns out to be closed and therefore (n, J , 〈·, ·〉) is SKT. Observe that if z is the center
of n, then z ∩ [n, n]⊥ = span{e10}.
Example 5.12 Consider the 12-dimensional Lie algebra n with basis {e1, . . . , e12} and Lie
bracket determined by

de7 = −e12 + e24, de8 = −e14 + 2e16 − 2e25, de9 = −e12 − e34 − e56,
de10 = −e34, de11 = −e12 + e36 − e45 − 3e56.

Let 〈·, ·〉 be the inner product such that the basis is orthonormal, and the non-abelian complex
structure J defined by,

Je2i−1 = e2i , ∀i ∈ {1, . . . , 6}.
The the Bismut connection of (n, J , 〈·, ·〉) has the following torsion 3-form

c = −e127 − e129 − e12 11 + e137 + 2e168 + e238 − 2e258

−e349 − e34 10 + e36 11 − e45 11 − e569 − 3e56 11,

which is closed, and so (n, J , 〈·, ·〉) is SKT. Note that if z is the center of n, then z∩[n, n]⊥ =
span{e12}.
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Proposition 5.13 For each natural n ≥ 3, there exists at least one 2n-dimensional SKT Lie
algebra with non-abelian complex structure.

Proof For n = 3, 4, 5, 6, see Examples 5.10, 5.6, 5.11 and 5.12. In order to obtain examples
of higher dimensions, the construction described above can be repeatedly applied, starting
with one SKT Lie algebra with J non-abelian. For instance, in order to obtain an example
of dimension 14, the construction can be applied to the SKT Lie algebras (n1, J1, 〈·, ·〉1)
and (n3, J3, 〈·, ·〉3) from Examples 5.4 and 5.6, respectively. Then, using the new SKT Lie
algebra and Example 5.4, a new SKT Lie algebra of dimension 20 is obtained, and with
an inductive argument, SKT Lie algebras of dimension 8 + 6m, with m ∈ N are reached.
Analogously, examples of dimensions 10+6m and 12+6m, withm ∈ N, are obtained from
Examples 5.4 and 5.11, and Examples 5.4 and 5.12, respectively. ��
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