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Abstract
We show that in the family of degree d ≥ 2 rational maps of the Riemann sphere, the
closure of strictly postcritically finite maps contains a (relatively) Baire generic subset of
maps displaying maximal non-statistical behavior: for a map f in this generic subset, the set
of accumulation points of the sequence of empirical measures of almost every point in the
phase space, is equal to the largest possible one, that is the set of all f -invariant measures.We
also introduce an abstract setting to study non-statistical dynamics and sufficient conditions
for their existence in a general family of maps. These sufficient conditions are related to the
notions of “statistical instability” and “statistical bifurcation” for which we give a general
formalization in the first section. The proof of our result in the family of rational maps is
based on a transversality argument which allows us to control the behavior of the orbits of
critical points for maps close to strictly postcritically finite rational maps. Using this property
and doing careful perturbations, we show that the closure of strictly postcritically finite maps
satisfies the sufficient conditions introduced in the abstract setting.
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590 A. Talebi

1 Introduction

Let X be a compact metric space with a reference Borel probability measure μ. For a point
x ∈ X and a map f : X → X , the nth empirical measure

e f
n (x) := 1

n

n−1∑

i=0

δ f i (x),

describes the distribution of the orbit of x up to the nth iteration in the phase space, which
asymptotically may or may not converge. Let us call a map f non-statistical if there is a pos-
itive measure set of points with non-convergent empirical measures. There are several (but
not too much) examples of differentiable dynamical systems showing this kind of behavior
in the literature. One of the first examples of the non-statistical maps is the so-called Bowen
eye [19]. It is the time one map of a vector field on R2 with an eye like open region such that
Lebesgue almost every point in this region is non-statistical. There is another example by
Colli and Vargas who have proved in [6] that on any surface there is a C∞ diffeomorphism
exhibiting a wandering domain and any point in this domain has non-convergent empirical
measures. Their construction was based on perturbations of a diffeomorphism having a lin-
ear horseshoe with stable and unstable manifolds which are relatively thick and in tangential
position. In this direction Kiriki and Soma in [12] showed that the existence of wandering
domain with non-statistical behavior happens densely in any Newhouse domain of Diffr (M)

with 2 ≤ r < ∞ on any surface M . Let us mention the work of Crovisier et al. [7] which con-
tains examples of non-statistical maps in the context of partially hyperbolic diffeomorphisms.
There is an explicit example of a non-statistical diffeomorphism of the annulus introduced
by Herman that can be found in [9]. In this direction, in [20] the author has introduced a class
of non-statistical dynamics in the context of the diffeomorphisms of the annulus and proved
the Baire genericity of this maps within the space of Anosov–Katok diffeomorphisms. In this
paper he has also developed an abstract setting to study the sufficient conditions for existence
of non-statistical maps in a given family of dynamics.

There are also examples of non-statistical maps in the world of more specific families of
dynamical systems (e.g. polynomial maps) where one looses the possibility of local pertur-
bations as a possible mechanism to control the statistical behavior of the orbits. Hofbauer
and Keller showed in [10] that in the one parameter family of logistic maps fλ = λx(1− x),
there exists uncountably many parameters λ ∈ [0, 4] such that almost every x ∈ [0, 1] has
non-convergent sequence of empirical measures. Indeed they showed in another paper [11]
that there are uncountably many maps in the logistic family with maximal oscillation prop-
erty: the empirical measures of almost every point in the phase space accumulates to each
invariant probabilitymeasure of the dynamics. Another example of rigid dynamics displaying
non-statistical behavior is the recent work of Berger and Biebler [2]. They prove the existence
of real polynomial automorphisms ofC2 having some wandering Fatou component on which
the dynamics has non-statistical behavior. Their work also contains a generalization of the
result of Kiriki–Soma [12] to the case of r = ∞ or ω and also the result in [13].

A natural direction to extend the result of Hofbauer and Keller is to go to the one dimen-
sional complex dynamics and ask if there is any non-statistical and maximally oscillating
rational map on the Riemann sphere. In this paper we show that the answer to this question
is positive. We also prove that these maps are Baire generic inside a closed subset of rational
maps which has positive measure, and so in particular there are uncountably many of these
maps.

123



Non-statistical rational maps 591

Statement of the result

Denote by Ratd the space of rational maps of degree d on the Riemann sphere Ĉ. A rational
map is called postcritically finite if all of its critical points have finite orbit. A map in Ratd
is called strictly postcritically finite if each of its critical points is eventually mapped to
a repelling periodic orbit (this is equivalent to say that this postcritically finite map has
no periodic critical point). The closure of strictly postcritically finite maps is a subset of
bifurcation locus and is called maximal bifurcation locus. Here is our main result in this
paper:

Main Theorem For a Baire generic map f in the maximal bifurcation locus, the set of accu-
mulation points of the sequence of empiricalmeasures is equal to the set of invariantmeasures
of f for Lebesgue almost every point.

Although the set of the strictly postcritically finite rational functions is a countable union
of 3-dimensional sub-varieties of Ratd , its closure—the maximal bifurcation locus—has
recently been shown to have positive measure w.r.t. the volume measure on the the space of
rational maps as a complex manifold (see [1]).

Let us mention that the ideas we used in this paper can be applied to the case of one
dimensional real dynamics as well, and provides us with another generalization of the result
of Hofbauer and Keller in [11]. In fact we can prove the Baire genericity of maximally
oscillatingmaps in a compact subset of parameter space of logistic family,which is of positive
Lebesgue measure.

Let us say a few words about the organization of the paper. In the first section the notion
of statistical bifurcation is introduced. This notion has been developed by the author in his
PhD thesis. The main theorem of this section is Theorem 2.14. At the end of this section
in Theorem 2.19, we describe a special scenario that if it happens in a family of dynamical
systems, then we can conclude the generic existence of maximally oscillating dynamics
within that family. In the rest of the paper we show that indeed this scenario happens for
the rational maps in the maximal bifurcation locus. In Sect. 3 we prove the main theorem of
this paper using two Propositions 3.2 and 3.3. In Proposition 3.2 we show that any map in
the maximal bifurcation locus statistically bifurcates toward the Dirac mass on an arbitrary
periodic measure. This proposition is proved in Sect. 4. In the last section, Proposition 3.3
is proved in which we show the periodic measures are dense in the set of invariant measures
for strictly postcritically finite maps.

2 Formalization of the concept of statistical instability and statistical
bifurcation

In this section we are going to introduce an abstract setting for dealing with statistical bifur-
cation of a dynamical system. First let us talk about some basic notations and preliminaries.

Let X be a compact metric space endowed with a reference Borel probability measure μ.
For a compact metric space (X , d), let us denote the space of probability measures on X by
M1(X). This space can be endowed with weak-∗ topology which is metrizable, for instance
with Wasserstien metric dw:

dw(ν1, ν2) := inf
ζ∈π(ν1,ν2)

∫

X×X
d(x, y)dζ,
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592 A. Talebi

where ν1 and ν2 are two probability measures and π(ν1, ν2) is the set of all probability
measures on X × X which their projections on the first coordinate is equal to ν1 and on
the second coordinate is equal to ν2. The Wasserstein distance induce the weak-∗ topology
on M1(X) and hence the compactness of (X , d) implies that (M1(x), dw) is a compact and
complete metric space. We should note that our results and arguments in the rest of this note
hold for any other metric inducing the weak-∗ topology on the space of probability measures.

For a point x ∈ X and a map f : X → X , the empirical measure

e f
n (x) := 1

n

n−1∑

i=0

δ f i (x)

describes the distribution of the orbit of x up to the nth iteration in the phase space, which
asymptotically may or may not converge.For a point x ∈ X the set of accumulation points
of the sequence of empirical measures {e f

n (x)}n is always non-empty. If this sequence is
convergent, we denote its limit by e f∞(x). In general this sequence may have a large set of
accumulation points which we denote by acc({e f

n (x)}n). We recall the following fact:

Remark 2.1 For any x ∈ X we have acc({e f
n (x)}n) ⊂ M1( f ).

Nowwe come back to introduce our formalization for the concept of statistical bifurcation.
Up to a fixed iteration, different points in the phase space have different empirical measures.
We can investigate how the empirical measures e f

n (x) are distributed inM1(X) with respect
to the reference measure μ on X and what is the asymptotic behavior of these distributions.
To this aim consider the map e f

n : X → M1(X) which sends each point x ∈ X to its nth

empirical measure, and push forward the measure μ to the set of probability measures on X
using this map:

ên( f ) := (e f
n )∗(μ).

The measure ên( f ) is a probability measure on the space of probability measures on X .
We denote the space of probability measures on the space of probability measures by
M1(M1(X)). We endow this space with the Wasserestein metric. Note that the compact-
ness of X implies the compactness of M1(X) and hence the compactness of M1(M1(X)).
So the sequence {ên( f )}n∈N lives in a compact space and have one or possibly more than
one accumulation points.

Example 2.2 For any μ preserving map f : X → X , the sequence {ên( f )}n∈N converges to
a measure μ̂ which is the ergodic decomposition of the measure μ.

Example 2.3 If ν is a physical measure for the map f : X → X whose basin coversμ-almost
every point, the sequence {ên( f )}n∈N converges to the Dirac mass concentrated on the point
μ ∈ M1(X), which we denote by δμ.

Definition 2.4 We say a map f is non-statistical in law if the sequence {ên( f )}n∈N does not
converge.

Now let � be a Baire space of self-mappings of X endowed with a topology finer than
C0-topology. For each f ∈ � the accumulation points of the sequence {ên( f )}n∈N form a
compact subset of M1(M1(X)) which we denote it by acc({ên( f )}n∈N). This set can vary
dramatically by small perturbations of f in �:
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Non-statistical rational maps 593

Example 2.5 Let � be the set of rigid rotations on S1 and consider the Lebesgue measure as
a reference measure. For the identity map id on S

1, the sequence {ên(id)}n∈N is a constant
sequence. Indeed for every n ∈ N we have:

ên(id) =
∫

S1
δδx dLeb. (2.1)

So acc({ên(id)}n∈N) is equal to {∫
S1

δδx dLeb}. But for any irrational rotation Rθ (arbitrary
close to the identity map), the sequence {ên(Rθ )}n∈N converges to δLeb which is a different
accumulation point.

In the previous example, for an irrational rotation Rθ close to the identity map, the empir-
ical measures of almost every point start to go toward the Lebesgue measure, and hence
the sequence {ên(Rθ )}n∈N goes toward δLeb. To study the same phenomenon for the other
dynamical systems, we propose the following definition. We recall that � is a Baire space
of self-mappings of X endowed with a topology finer than C0-topology and μ is a reference
measure on X .

Definition 2.6 For a map f ∈ � and a probability measure ν̂ ∈ M1(M1(X)), we say f
statistically bifurcates toward ν̂ through perturbations in �, if there is a sequence of maps
{ fk}k in � converging to f and a sequence of natural numbers {nk}k converging to infinity
such that the sequence {ênk ( fk)}k converges to ν̂ ∈ M1(M1(X)).

For the sake of simplicity, when the space � in which we are allowed to perturb our
dynamics is fixed, we say f statistically bifurcates toward ν̂.

For any map f ∈ �, by B�, f we denote the set of those measures ν̂ ∈ M1(M1(X)) that
f statistically bifurcates toward ν̂ through perturbations in �.

Definition 2.7 We say a map f is statistically stable in law if the set B�, f has only one
element. Otherwise we say f is statistically unstable in law.

Remark 2.8 By definition, it holds true that acc({ê f
n }n) ⊂ B�, f .

Let us remind some definitions that we need in the rest of this section. Let X and Y be
two topological spaces with Y compact. Denote the set of all compact subsets of Y byK(Y ).
A map φ : X → K(Y ) is called lower semi-continuous if for any x ∈ X and any V open
subset of Y with φ(x)∩ V 
= ∅, there is a neighbourhoodU of x such that for any y ∈ U the
intersection φ(y) ∩ V is non-empty. The map φ is called upper semi-continuous if for any
x ∈ X and any V open subset of Y with φ(x) ⊂ V , there is a neighbourhood U of x such
that for any y ∈ U the set φ(y) is contained in V . And finally φ is called continuous at x if
it is both upper and lower semi-continuous at x . To say x is a continuity point of a set valued
map φ : X → K(Y ) with the above definition, is indeed equal to say x is a continuity point
of φ with considering K(Y ) as a topological space endowed with Hausdorff topology. We
recall the following theorem of Fort [8] which generalizes a theorem related to real valued
semi-continuous maps to the case of set valued semi-continuous maps:

Theorem (Fort) For any Baire topological space X and compact topological space Y , the
set of continuity points of a semi-continuous map from X to K(Y ) is a Baire generic subset
of X.

Now we study the properties of the map sending f to the set B�, f :

Lemma 2.9 The set B�, f is a compact subset ofM1(M1(X)).
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594 A. Talebi

Proof By definition it is clear that the setB�, f is closed. The compactness is a consequence
of compactness ofM1(M1(X)). �
Fixing a set of dynamics �, recall that by Lemma 2.9 the set B�, f is a compact set. We can
ask about dependence of the set B�, f on the map f . The following lemma shows that this
dependency is semi-continuous:

Lemma 2.10 The map sending f ∈ � to the set B�, f is upper semi-continuous.

Proof Let { fn}n be a sequence converging to f ∈ �. We need to prove that if for each n ∈ N,
the map fn statistically bifurcates toward a measure ν̂n ∈ M1(M1(X)) through perturbations
in � and the sequence {ν̂n}n is convergent to a measure ν̂, then the map f statistically
bifurcates toward ν̂ through perturbations in �. So the proof is finished by observing that for
n large enough, small perturbations of the map fn are small perturbations of the map f , and
ν̂n is close to ν̂. �

To each map f ∈ �, one can associate the set of accumulation points of the sequence
{ên( f )}n∈N which is a compact subset of M1(M1(X)). By looking more carefully at
the Example 2.5, we see that this map is neither upper semi-continuous nor lower semi-
continuous. However if we add all of the points of this sequence except finite ones, to its
accumulation points, we obtain a semi-continuous map:

Lemma 2.11 The map Ek : � → K(M1(M1(X))) defined as

Ek( f ) := {ên( f )|n ∈ N, n > k},
is lower semi-continuous.

Proof Let V be an open subset ofM1(M1(X)) intersectingEk( f ). So there is n ∈ N such that
ên( f ) ∈ V . But note that the map f �→ ên( f ) is continuous and so there is a neighborhood
U of f so that for any g ∈ U , we have ên(g) ∈ V and so Ek(g) intersects the set V . This
shows that Ek is lower semi-continuous. �

The following lemma is an interesting consequence of Lemma 2.11 which shows how the
set Ek( f ) depends on the dynamics f .

Lemma 2.12 For any k ∈ N the set of continuity points of the map Ek is a Baire generic
subset of �.

This lemma gives a view to the statistical behaviors of generic maps in any Baire space
of dynamics: for a generic map, the statistical behavior that can be observed for times close
to infinity can not be changed dramatically by small perturbations.

Proof Using Lemma 2.11, this is a direct consequence of Fort’s theorem. �
Lemma 2.13 For a Baire generic map f ∈ � it holds true that B�, f ⊂ Ek( f ).

Proof Observe that by Lemma 2.12, for a generic map f ∈ � we have

lim sup
g→ f

Ek(g) = Ek( f ).

On the other hand according to the definition of B�, f for any k ∈ N

B�, f ⊂ lim sup
g→ f

Ek(g),

and this finishes the proof. �
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Non-statistical rational maps 595

The following theorem reveals how two notions of statistical instability in law and being
non-statistical in law are connected.

Theorem 2.14 Baire generically, B�, f is equal to acc({ê f
n }n).

Proof First note that acc({ê f
n }n) = ⋂

k∈N Ek . By Lemma 2.13 the set B�, f is included in
Ek for generic f ∈ � and hence as the intersection of countably many generic set is generic,
for a generic map f it holds true that

B�, f ⊂
⋂

k∈N
Ek = acc({ê f

n }n).

The other side of the inclusion acc({ê f
n }n) ⊂ B�, f follows from the definition. �

This short and simple proof was suggested by Pierre Berger. There is also a different proof
of this theorem in the PhD thesis of the author [20].

Now note that if we have any information about the setB�, f then by using Theorem 2.14

wemay translate it to some information about acc({e f
n (x)}n) for generic f ∈ �. In particular

we obtain the following corollary:

Corollary 2.15 The set� contains a Baire generic subset of maps that are statistically unsta-
ble in law iff it contains a Baire generic subset of maps which are non-statistical in law.

In the following, we explain a scenario through which this lemma can be used to deduce
information about the behavior of generic maps. This scenario is indeed what happens in the
example of non-statistical rational maps we introduce in this paper.

Suppose the initial map f ∈ � has an invariantmeasure ν such that by a small perturbation
of the map, the empirical measures of arbitrary large subset of points is close to ν for an
iteration close to infinity. For instance you can think of the identity map on S

1 which can
be perturbed to an irrational rotation for which the empirical measures of almost every point
converges to the Lebesgue measure or it can be perturbed to a Morse–Smale map having one
attracting fixed point and so the empirical measures of almost every point converges to the
Dirac mass on that attracting fixed point. These measures could be interpreted as potential
physical measures with full basin for our initial dynamics. We denote this set of measures by
M�, f which are defined more precisely as bellow:

M�, f := {ν ∈ M1(X)|δν ∈ B�, f }.

Theorem 2.16 Let � be a Baire space of self-mappings of X endowed with a topology finer
than C0-topology. For a Baire generic map f ∈ � the empirical measures of μ almost every
point x ∈ X, accumulates to each measure in M�, f or in other words:

f or μ − a.e. x ∈ X , M�, f ⊂ acc({e f
n (x)}n). (2.2)

Proof To prove the theorem it suffices to show that if f ∈ � is a continuity point of the map
E1 it satisfies condition (2.2). Indeed, by Corollary 2.12 the continuity points of the map E1

form a Baire generic subset of �.
Take any measure ν inside M�, f . Theorem 2.14 implies that δν ∈ E1( f ). Now there are

two possibilities, either there is a number n ∈ N such that ên( f ) = δν or not. If not, there is
a sequence {ni }i converging to infinity such that

lim
i→∞ êni ( f ) = δν.
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In this case for a small neighbourhood U ⊂ M1(X) of ν, we have:

lim
i→∞ êni ( f )(U ) = δν(U ) = 1.

Noting that we can write ên( f ) as below

êni ( f ) =
(∫

X
δ
e f
ni (x)

dμ

)
, (2.3)

we obtain

lim
i→∞

(∫

X
δ
e f
ni (x)

dμ

)
(U ) = 1.

So for μ-almost every point x ∈ X we have:

lim
i→∞ δ

e f
ni (x)

(U ) = 1.

SinceU is an arbitrary neighbourhood, we can conclude that forμ-almost every point x ∈ X ,
the measure δν is contained in the accumulation points of the sequence {δ

e f
ni (x)

}i . But this is
equal to say that ν is in the accumulation points of the sequence {e f

ni (x)}i . So the measure ν

is an accumulation point of the sequence {e f
n (x)}n , which is what we sought.

It remains to check the case that there is a number n ∈ N such that ên( f ) = δν . In this
case, using Eq. (2.3) we obtain:

∫

X
δ
e f
n (x)

dμ = δν,

so μ-almost every x ∈ X has the property that the measure e f
n (x) is equal to ν. Recalling

that ν is an f -invariant measure, every point x with this property should be a periodic point
and ν should be the invariant probability measure supported on the orbit of x . So obviously
the measure ν lies in the accumulation points of the sequence {e f

n (x)}n . This finishes the
proof. �

Using Theorem 2.16 we are able to translate any information about the setM�, f for f in
a generic subset of maps in � to information about the statistical behavior of μ-almost every
point for a generic subset of maps.

The following lemma shows how the setM�, f depends on the map f :

Lemma 2.17 The map sending f ∈ � to the set M�, f is upper semi-continuous.

Proof Let { fn}n be a sequence converging to f ∈ �. We need to prove that if for each n ∈ N,
the map fn statistically bifurcates toward a measure δνn ∈ M�, fn through perturbations in �

and the sequence {νn}n is convergent to a measure ν, then the map f statistically bifurcates
toward δν through perturbations in �. Considering the fact that for n large enough, small
perturbations of the map fn are small perturbations of the map f , the rest of the proof is
straight forward. �
Now let us see what is the consequence of this lemma and Theorem 2.16 together with the
assumption of density of maps in � for which the dynamics statistically bifurcates toward
the Dirac mass on any invariant measure. Before that, we introduce the following definition
which was used for the first time by Hofbauer and Keller in [11]:
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Non-statistical rational maps 597

Definition 2.18 A map f ∈ � is said to have maximal oscillation if the empirical measures
of almost every point accumulates to all of the invariant measures inM1( f ).

Theorem 2.19 (Maximal oscillation) Assume that there exist a dense set D in � such that
for every f ∈ D it holds true that M�, f = M1( f ). Then a Baire generic g ∈ � has maximal
oscillation.

Proof By Proposition 2.17 the map sending f toM�, f is semi-continuous. The map sending
f toM1( f ) is also upper semi-continuous. So by applying Fort’s theoremwe can find a Baire
generic subsetB ⊂ � such that any f in this set is a continuity point for each of these maps.
Now we can approach each map f in B by maps g in D, for which we know M1(g) and
M�,g co-inside. SoM1( f ) andM�, f co-inside as well. By Theorem 2.16 we know there is
a Baire generic subset of � that for any map f in this set the empirical measures of μ almost
every point x ∈ X accumulates to each of measures in M�, f . The intersection of this Baire
generic set withB is still a Baire generic set and for a map f in this intersection the empirical
measures of μ almost every point x ∈ X accumulates to each of measures in M1( f ). �

3 Proof of main theorem

First let us introduce the following definitions and notations that we use while dealing with
the dynamics of rational maps.We say a point x ∈ X is preperiodic if it is mapped to a
periodic point p after some iterations. In this case we may say the point x is preperiodic to
the periodic point p. We say a measure μ ∈ M1( f ) is an invariant periodic measure if it is
supported on the orbit of a periodic point.

The space of degree d rational maps Ratd is a 2d + 1 dimensional complex manifold. To
see this, note that we can parametrize it around any element P

Q ∈ Ratd using the coefficients
of the polynomials P and Q. These two polynomials have terms up to degree d so there is
2d + 2 coefficients. But note that multiplying both P and Q by a constant does not change
the rational map, so the dimension is 2d + 1.

Remark 3.1 Any degree d rational map has 2d − 2 critical points counting with multiplicity.

Here are some notations:

• Per( f ) for the set of the periodic points of a map f .
• C( f ) for the set of critical points of a rational map f .
• P( f ) for the postcritical set of a rational map which is defined as follows:

P( f ) :=
⋃

n≥1

f n(C).

• κd for the set of those maps in Ratd which has no periodic critical points (or no attracting
periodic point).

• κ∗
d for the set of those maps in κd for which all the critical points are simple and the
postcritical set does not contain any critical point.

To prove the main theorem we show that the maps in κd enjoy from two nice properties
stated in the following propositions. The proofs of these propositions is postponed to the next
sections.

The first proposition is related to the statistical behavior of perturbations of the maps in
κd within the maximal bifurcation locus κd .
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Proposition 3.2 Assume f is a map in κd . Then for any periodic point p ∈ Per( f ), f
statistically bifurcates toward δ

e f∞(p)
through perturbations in κd .

Note that a rational map of degree greater than one, has always (infinitely) many different
periodic orbits, and in fact, the set of periodic points is dense in the Julia set. So the set
of periodic measures contains infinitely many elements, each one corresponds to a periodic
cycle. The next proposition states that for a map in κd , the set of periodic measures is in some
sense maximal.

Proposition 3.3 For any strictly postcritically finite rational map f , the set of invariant
probability measures which are supported on the orbit of a periodic point, is dense in the set
of all invariant measuresM1( f ).

Remark 3.4 In the proof of Proposition 3.3 we will see that every periodic point for a strictly
postcritically finite map is repelling.

From these two propositions we conclude that for a map in κd the set of measures to which
f statistically bifurcates is maximal.

Corollary 3.5 Any map in κd statistically bifurcates toward the Dirac mass on any of its
invariant measures through perturbations in κd or in other word:

∀ f ∈ κd , {ν ∈ M1(X)|δν ∈ B�, f } = M1( f ).

Remark 3.6 We use the word maximal because a map f cannot statistically bifurcates toward
the Dirac mass on a measure that is not f -invariant.

Let us show how this corollary together with Proposition 2.19 implies the main theorem.

End of proof of Main Theorem By Corollary 3.5, every map in κd bifurcates toward the Dirac
mass on each of its invariant measures. So by Proposition 2.19, for a generic f in κd , the set
of accumulation points of the sequence of empirical measures of Leb-almost every point, is
equal to the whole set of invariant measures. This finishes the proof. �

4 Statistical bifurcation toward Dirac masses on periodic measures

The aim of this section is to prove Proposition 3.2. First let us recall the following two
theorems from [4] and [5].

We recall that a Lattès map f is a postcritically finite map which is semi-conjugated to
an affine map A : z �→ az + b on a complex torus T, via a finite to one holomorphic semi
conjugacy � :

� ◦ A = f ◦ �.

A lattès map f is flexible if we can choose � with degree 2 and A with a > 1 integer.
We denote by Ld the set of flexible Lattès maps of degree d . We refer the reader to the

paper of Milnor [16] for further discussion on Lattés maps.
We observe that:

Ld ⊂ κ∗
d ⊂ κd .

On the other hand:
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Fig. 1 The dynamics of the initial
map f ∈ κ∗

d \ Ld

Theorem (Buff–Epstein) The following inclusion holds true:

κd \ Ld ⊂ κ∗
d \ Ld .

This theorem is a part of the main theorem of [4], whereas the following one is the main
theorem of [5].

Theorem (Buff–Gauthier)AflexibleLattèsmapcanbeapproximatedby strictly postcritically
finite rational maps which are not a flexible Lattès map:

Ld ⊂ κd \ Ld .

These two theorems imply:

Corollary 4.1 Any strictly postcritically finite rational map f ∈ κd can be approximated by
maps in κ∗

d which are not flexible Lattès map:

κd ⊂ κ∗
d \ Ld .

Proof By Proposition 4, if f is not a flexible Lattès map we are done. If f is a flexible Lattès
map, then first by Proposition 4, it can be approximated by a strictly postcritically finite map
which is not a flexible Lattès map. Now using Proposition 4 again, we are done. �
Corollary 4.1 enables us to transfer the following property of maps in κ∗

d \Ld to those in κd ,
in order to deduce Proposition 3.2.

Lemma 4.2 (Main lemma)Let f be amap in κ∗
d \Ld . Then for any periodic point q ∈ Per( f ),

f statistically bifurcates toward δ
e f∞(q)

through perturbations in κd .

We will prove this lemma below, before this let us prove Proposition 3.2.

Proof of Proposition 3.2 For any map f in κd , any periodic point p is repelling, and its hyper-
bolic continuation is well defined and so the periodic measure supported on its cycle has a
well defined continuation for f ′ close to f .
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Hence, to show that f statistically bifurcates toward δ
e f∞(p)

through perturbations in κd ,

it is enough to show that there is some map f ′ in κd arbitrary close to f that statistically

bifurcates toward theDiracmass on the continuation e f ′
∞(p) of thismeasure. But byCorollary

4.1, arbitrary close to f we can find elements of κ∗
d \ Ld , and by Main lemma, these maps

statistically bifurcate toward the Dirac mass on any of their periodic measures, in particular,

to the Dirac mass on the continuation e f ′
∞(p). This finishes the proof of Proposition 3.2. �

Proof of Lemma 4.2 Denote by c1( f ), . . . , c2d−2( f ) the 2d − 2 distinct critical points of f .
There are repelling periodic points p1( f ), . . . , p2d−2( f ) and positive integers n1, . . . , n2d−2

such that as it is shown in Fig. 1

f ni (ci ( f )) = pi ( f ), 1 ≤ i ≤ 2d − 2

The critical points are simple and periodic points are repelling so by the implicit function
theorem, for any 1 ≤ i ≤ 2d − 2 there are

• analytic germ ci : (Ratd , f ) → Ĉ following the critical point of f as g ranges in a
neighbourhood of f in Ratd and

• analytic germ pi : (Ratd , f ) → Ĉ following the periodic point of f as g range in a
neighbourhood of f in Ratd .

Let F : (Ratd , f ) → C
2d−2 and P : (Ratd , f ) → C

2d−2 be defined by:

F(g) =
⎛

⎜⎝
F1(g)

...

F2d−2(g)

⎞

⎟⎠ with Fj (g) := f n j (c j (g)) and P(g) =
⎛

⎜⎝
p1(g)

...

p2d−2(g)

⎞

⎟⎠ .

Denote by D f F and D f P the differentials of F and P at f . The following transversality
result has been proved many times, see for example [21]. We recall a version which is
presented in [4]:

Proposition 4.3 (Epstein) The linear map

D f F − D f P : T f Ratd → Tp1( f )Ĉ × · · · × Tp2d−2( f )Ĉ

has rank 2d −2. The kernel of D f F − D f P is the tangent space to the subset of Ratd which
is formed by those maps that are conjugate to f by a Möbius transformation.

This nice property enables us to have control on the orbits of the critical points while per-
turbing the dynamics.

Proposition 4.4 For any map in f ∈ κ∗
d which is not a flexible Lattès map, there is a holo-

morphic, one-dimensional family { f�}�∈D such that f0 = f , and except c1( f0), the other
critical points are persistently preperiodic through this family.

Proof For any 1 ≤ i ≤ 2d − 2 let the map φi : Ui → C be a local coordinate around pi ( f ),
such that φi (pi ( f )) = 0. Then by the previous proposition the derivative of the map

 :=
⎛

⎜⎝
φ1 ◦ F1 − φ1 ◦ p1

...

φ2d−2 ◦ F2d−2 − φ2d−2 ◦ p2d−2

⎞

⎟⎠ .

at f has full rank, so if we denote the ε-neighbourhood of zero in the complex plane by Cε ,
then by Rank theorem there is a one dimensional holomorphic family { fλ}λ∈Dε

for ε > 0
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Fig. 2 For the map fλ∗ which is a suitable perturbation of f0 = f , the orbit of the critical point c1 is repelled
by the cycle of the periodic point p1 and eventually land on q (see Lemma 4.8)

sufficiently small, such that ( fλ) = (λ, 0, 0, . . . , 0). So for any λ ∈ Dε and for any j 
= 1
we have f

n j
λ (c j ( fλ)) = p j ( fλ). And obviously this equality does not hold true for critical

point c1( fλ). By reparameterizing the family, we obtain a family { fλ}λ∈D enjoying the desired
properties. �

Let us consider a family { fλ}λ∈D coming from Proposition 4.4, and denote the bifurcation
locus of this family by B recalling that:

Definition 4.5 The bifurcation locus of a family consists of those parameters that the dynam-
ics is not structurally stable within that family.

Remark 4.6 The bifurcation locus B is non-empty and in particular contains 0.

Proof The family we are considering is so that c1( fλ) is sent to p1( fλ) by n1 iteration for
λ = 0, but this does not happen for λ 
= 0. So f0 is not structurally stable in this family. �
Remark 4.7 Since for every λ sufficiently close to zero the orbit of each critical point other
than c1( f0) is finite, c1( fλ) is disjoint from the orbit of the other critical points. So by
reparameterizing the maps associated to the parameters close to zero, we can assume that
every map in the family satisfies this property. This is a technical assumption that we will
use later.

Lemma 4.8 For every periodic point q( f0) of the map f0, there is a parameter λ∗ in the
bifurcation locus B arbitrary close to zero, such that c1( fλ∗) is preperiodic to q( fλ∗) (Fig. 2).

Proof The proof uses the well known normal family argument. Let U be a small neighbour-
hood around 0 ∈ D. Recalling that the parameter zero is in the bifurcation locus, by Theorem
4.2 of McMullen’s paper [14], there is j for which the family {λ ∈ U �→ f nλ (c j ( fλ))}n∈N is
not normal. But by Proposition 4.4, this family is eventually periodic for j 
= 1 and hence it
is normal. So for j = 1, it is not normal. Using this we are going to find λ∗ in U such that
c1( fλ∗) is preperiodic to q( fλ∗). If this holds for λ∗ = 0 we are done. If not:

Claim 4.9 If c1( f0) is not preperiodic to q( f0), then any pre-image of q( f0) depends holo-
morphically on the parameter in a neighbourhood of zero.

Proof Take q ′( f0) to be a pre-image of q( f0). If q ′( f0) does not meet any critical point
before landing on q( f0), obviously it depends analytically on the parameter. Otherwise there
exists j 
= 1 such that q ′( f0) is sent to c j ( f0) and c j ( f0) is sent to q( f0). Proposition 4.4
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implies that for every parameter λ ∈ D, c j ( fλ) is preperiodic to q( fλ), and so q ′( fλ) is indeed
a preimage of c j ( fλ). Since the latter depends analytically on the parameter, its preimage
depends analytically as well. �
Now take q1( f0), q2( f0) and q3( f0) to be three distinct preimages of q( f0). There exists an
analytic family of Möbius maps �λ sending back the continuation of these three preimages
to themselves:

�λ(qm( fλ))) = qm( fλ) m ∈ {1, 2, 3}.
Since composing with Möbius maps does not affect normality, the family {λ ∈ U �→
�−1

λ ( f nλ (c1( fλ)))}n∈N is not a normal family as well, so by Montel’s theorem, it cannot
avoid all of the three points q1( f0), q2( f0) and q3( f0). Hence, there is a parameter λ∗, a
natural number l ∈ N and m ∈ {1, 2, 3} such that the following equality holds:

�−1
λ∗ ( f lλ∗(c1( fλ∗))) = qm( f0). (4.1)

So f lλ∗(c1(λ∗)) = qm( fλ∗) which means the critical point c1( fλ∗) is preperiodic to q( fλ∗).
To prove that the parameter λ∗ is in the bifurcation locus, note that the Eq. (4.1) cannot

holds true in a neighbourhood of λ∗, since otherwise it holds true for any parameter inU but
we have assumed that c1( f0) is not preperiodic to q( f0). �

Now let the parameter λ∗ is chosen so that c1( fλ∗) is preperiodic to the periodic point
q( fλ∗) which is the continuation of the periodic point q in the statement of the main lemma.

Lemma 4.10 Arbitrary close to the parameter λ∗, there is a parameter λ̂ such that f
λ̂
has a

parabolic periodic point q̂( f
λ̂
) and the invariant probability measure supported on the orbit

of q̂( f
λ̂
) is arbitrary close to the invariant probability measure supported on the orbit of

q( fλ∗) (Fig. 3).

Proof For simplicity, after reparameterizing the family, we may assume that λ∗ is equal to
zero. Without loss of generality, we may also assume that the period of q( fλ) is equal to one
and so it is a fixed point. Otherwisewe can repeat the following arguments for a family formed
by an iteration of fλ. Conjugating the family byMöbius maps, we can assume that q remains
a fixed point for all maps in this family. Up to a holomorphic change of local coordinates we
can also assume that fλ is linear in a neighbourhood of q and has the following form:

fλ(q + z) = γλz + q, (4.2)

where γλ is the multiplier of the repelling fixed point q for the map fλ. Next note that since
for the map f0 the pre-images of any point accumulates to any point in the Julia set, and
the Julia set is the whole Riemann sphere, arbitrary close to q , there are pre-images of the
critical point c1( f ). We choose one of this pre-images c̃, which is in the linearization domain
of q . We can also assume the change of coordinates around q is so that the point c̃ stays a
preimage of c1( fλ) for λ close to zero.

Since c1( f0) is preperiodic to q , there is a natural number N ∈ N such that f N0 (c̃) = q ,
and also since c̃ meets only one critical point c1( f0) (which is simple) before landing on q ,
the Taylor expansion of f Nλ (z) around z = c̃ and λ = 0 has the following form:

f Nλ (c̃ + z) = q + Aλ + Bλz
2 + z3ελ(z), (4.3)

where Aλ, Bλ and ελ(z) depend holomorphically on λ and z. Aλ is zero at λ = 0 but it is not
identically zero in a neighbourhood of λ = 0. This is true because c1( fλ) is not persistently
preperiodic to q , and so Aλ = λ j Â(λ), for some holomorphic map Â with Â(0) 
= 0 and for
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Fig. 3 For the map f
λ̂
which is a suitable perturbation of fλ∗ , the orbit of the critical point c1, after staying a

long time close to q, returns to a small neighbourhood of itself and a parabolic periodic point appears which
shadows the orbit of the critical point (see Lemma 4.10)

some natural number j ∈ N. On the other hand since c̃ meets only one critical point, which
is simple, before landing on q , there is no first order term in Eq. (4.3) and also B0 
= 0.

By Eq. (4.2)

f N+n
λ (c̃ + z) = q + γ n

λ Aλ + γ n
λ Bλz

2 + γ n
λ z

3ελ(z). (4.4)

Now for each n � 1, we are going to find a parameter λn close to zero such that the map
fλn has a parabolic periodic point close to c̃ with period n + N and multiplier equal to one.
We find this parameter so that the parabolic periodic point spends most of its time close to
the fixed point q . For this purpose we need to solve the following system of equations:

f N+n
λ (c̃ + z) = c̃ + z, (4.5)

(
f n+N
λ

)′
(c̃ + z) = 2γ n

λ Bλz + 3γ n
λ z

2ελ(z) + γ n
λ z

3 (ελ)
′ (z) = 1. (4.6)

From the second equation we obtain

z = 1

2γ n
λ Bλ

− 3z2ελ(z) − z3ε′
λ(z)

2Bλ

:= Gn,λ(z). (4.7)

Using this equation we can find z implicitly in terms of λ . Fix a sufficiently small neigh-
bourhood U of λ = 0 and a small neighbourhood W of z = 0 such that for large n and for
any λ ∈ U the map Gn,λ is uniformly contracting on W . So for each n and λ the map Gn,λ

has a unique fixed point zn(λ). To estimate the norm of this fixed point, using the Eq. (4.7)
we obtain

zn(λ)

(
1 + 3zn(λ)ελ(zn(λ)) − z2n(λ)ε′

λ(zn(λ))

2Bλ

)
= 1

2γ n
λ Bλ

,

so the norm of zn(λ) is of O( 1
|γ n

λ | ). Now to find λn we insert zn(λ) into Eq. (4.5):

zn(λ) + c̃ − q

γ n
λ

− Bλz
2
n(λ) − z3n(λ)ελ(zn(λ)) = Aλ = Âλλ

j .
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So

λ j = 1

Âλ

(
c̃ − q

γ n
λ

+ zn(λ)

γ n
λ

− Bλz
2
n(λ) − z3n(λ)ελ(zn(λ))

)
:= Hn(λ). (4.8)

since the sequence of maps λ j − Hn(λ) converges uniformly onU to the map λ j , by Hurwitz
theorem we conclude that for n large enough, the equation λ j − Hn(λ) = 0, has j solutions
counted with multiplicity. Let λn be one of these solutions. The pair (λn, z(λn)) solves both
Eqs. (4.5) and (4.6) so zn(λn) is a parabolic periodic point of fλn with period n + N . It
remains to show that this periodic point spends most of its time close to the fixed point q .

Considering the fact that the norm of zn(λ) is of O( 1
|γ n

λ | ) the Eq. (4.8) implies that the norm

of λ
j
n and hence the norm of Aλn are of O( 1

|γ n
λ | ) and so the distance between f Nλn (c̃+ zn(λn))

and the fixed point q is of this order as well. This shows that the orbit of zn(λn) stays n−O(1)
iterations close to q . Note that since N is fixed, by increasing n the proportion of times that
this parabolic periodic point spends close to q tends to 1 and so we are done. �

The following lemma describes the statistical behavior of Lebesgue a.e. point for the
dynamics f

λ̂
, where the parameter λ̂ is given by Lemma 4.10.

Lemma 4.11 Under the iteration of the map f
λ̂
the empirical measures of Lebesgue almost

every point converges to the invariant probability measure supported on the orbit of the
parabolic periodic point q̂( f

λ̂
).

Proof Let Ũ be an immediate basin of attraction of the parabolic periodic point q̂( f
λ̂
). By

Theorem 10.15 in [15], the domain Ũ contains a critical point of the map f
λ̂
. The only critical

point which can live in Ũ is c1(λ̂), because the other ones are preperiodic to repelling periodic
points and so are in the Julia set. Assume for the sake of contradiction that there exists a Fatou
component Ṽ of f

λ̂
which has an orbit disjoint from Ũ . By Sullivan’s classification of Fatou

components for rational maps (see [17, Theorem 16.1]), the domain Ṽ should be a preimage
of a periodic Fatou component W̃ . The component W̃ cannot be neither a component of the
immediate attracting basin of an attracting periodic point nor a component of an immediate
attracting basin of a parabolic periodic point, because otherwise it should contain a critical
point other than c1(λ̂) in its forward orbit which is not possible. Since the boundary of a
Siegel disk or a Herman ring is accumulated by the orbit of a critical point, the component
W̃ cannot be neither of these cases as well. But these are the only possible cases, which is a
contradiction.

Consequently, the set
⋃

n≥0 f −n
λ̂

(Ũ ) is the whole Fatou set. Next note that every critical
point of f

λ̂
is non-recurrent. In [18] it is proved that a rational map with no recurrent critical

point has a Julia set with Hausdorff dimension less than two or a Julia set equal to Ĉ. As the
Fatou set of f

λ̂
is non empty, the Julia set of f

λ̂
has Hausdorff dimension less than two and in

particular has zero Lebesgue measure. This means that almost every point x ∈ Ĉ eventually
fall into Ũ , and will be attracted by the orbit of q̂( f

λ̂
). �

Remark 4.12 The map f
λ̂
is in the set κd .

Proof Since the parabolic periodic point for f
λ̂
is not persistent, the parameter λ̂ is in the

bifurcation locus B. So again using a normal family argument as in Lemma 4.8, it can be
shown that f

λ̂
is approximated by maps fλ, for which the critical point c1( fλ) is preperiodic

to a repelling periodic point. This means that fλ ∈ κd and hence f
λ̂

∈ κd . �
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To finish the proof of the main lemma, note that by Lemmas 4.11 and 4.10, the limit of the
empirical measures of almost every point for the map f

λ̂
is close to e f∞(q). And moreover,

by the previous remark, f
λ̂
is in κd . So the map f statistically bifurcates toward δ

e f∞(q)
with

perturbations in κd . �

5 Periodic measures are dense inM1(f )

The aim of this section is to prove Proposition 3.3. Through out this section we assume that f
is a strictly postcritically finite rational map of degree d ≥ 2. Since f has no periodic critical
point, it has at least one critical point c ∈ C( f ) which is not in the post critical set P( f ). So
the set f −1({c}) has d elements, and since d ≥ 2, the setA := P( f ) ∪C( f ) ∪ f −1({c}) has
at least three elements. The Riemann surface Ĉ \ A is hence a hyperbolic Riemann surface
and has the Poincaré disk D as a universal cover. Let us fix a covering map π : D → Ĉ \ A.

For any point x ∈ Ĉ\A and any of its d preimages y, the map f is a local diffeomorphism
from a neighborhood of y onto a neighborhood of x . Thus its inverse branch is well defined
and can be locally lifted to the universal covering. We claim that this map can be extended
to a map F : D → D satisfying the following property:

f ◦ π ◦ F = π. (5.1)

To see this, choose x̃ ∈ π−1({x}) and ỹ ∈ π−1({y}), and define F(x̃) = ỹ. To define F on
an arbitrary point z̃ ∈ D, consider a curve γ : [0, 1] → Dwith γ (0) = x̃ and γ (1) = z̃. Then
by projecting this curve to Ĉ \ A and using the continuation of the inverse branch sending
x to y, we obtain a curve in Ĉ \ A starting at y and ending at a point in f −1({π(z̃)}). This
new curve has a lift to the universal cover, which starts at ỹ. We define F(z̃) as the endpoint
of the latter curve. The map F is well defined since for any other curve γ ′ joining x̃ to z̃, the
loop (γ ′)−1 ◦ γ is contractible in D, so its projection π((γ ′)−1 ◦ γ ), is a contractible loop in
Ĉ \ A as well. The inverse image of this loop under the continuation of the branch of f −1

sending x to y is then contractible in Ĉ \ A, and so lifts to a closed loop in D, starting from
ỹ. This Shows that we obtain the same points for F(z̃) using both γ and γ ′, and hence F is
well defined. By definition, it is obvious that Eq. (5.1) holds for F .

We denote the hyperbolic metric on the Poincaré disk D by d̃h . Recall that any Deck
transformation of the covering π : D → Ĉ \ A is a biholomorphism, and so it leaves
invariant the Poincaré metric d̃h . Thus we can push forward the metric d̃h and obtain a metric
dh on Ĉ \ A.

Lemma 5.1 For the metric d̃h , the derivative DF(z) is contracting at every z ∈ D.

Proof Schwarz lemma implies that if F is not an isomorphism of the Poincaré disk, then
DF(z) is d̃h-contracting for every z ∈ D. We are going to show that f is not surjective and
hence can not be an isomorphism. Choose a point x ∈ A which is a preimage of the critical
point c. Let y be a preimage of x . We recall that c is not in the postcritical set, so y cannot
be in A. Now take any point ỹ ∈ π−1(y). Since we have

f ◦ π ◦ F(D) = π(D) = Ĉ \ A,

ỹ cannot be in the range of F . �

The following corollaries are immediate consequences of the previous lemma:
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Corollary 5.2 At every point x ∈ Ĉ\A, any inverse branch of f has a contracting derivative
for the metric dh.

Corollary 5.3 Any periodic point of f is repelling.

Proof of Proposition 3.3 We shall prove that every probability measure of f can be approxi-
mated by invariant probability measures supported on the orbit of a periodic point. First let
us show this for the case where the probability measure is ergodic.

Lemma 5.4 Any ergodic invariant probability measure μ ∈ M1( f ), can be approximated
by invariant probability measures supported on the orbit of a periodic point.

Proof Since μ is ergodic, we can find a point x in the support of μ which is regular for μ

meaning that the sequence of the empirical measures {e f
n (x)}n∈N converges to μ. If the orbit

of x intersects the set A, the point x is eventually periodic and in fact is a periodic point in
A. In this case, the measure μ is itself a measure supported on the orbit of the periodic point
x . So let us assume that the orbit of x is disjoint from A. For small r > 0, let Br (x) be the
ball of radius r about x with respect to the metric dh . Since the metric dh is complete, the
closure of Br (x) is included in Ĉ \ A. Note that there are only finite inverse branches of f ,
and we can use Corollary 5.2 to conclude that there is a number 0 < α < 1 such that any
inverse branch of f over Br (x) is at least α-contracting.

On the other hand, since x is in the support of μ, and also a regular point for this measure,
its orbit returns infinitely many times to its hyperbolic r

4 -neighbourhood. Let m ∈ N be such
that αm < 1

2 . Choose n ∈ N such that the orbit of x up to n iterations contains at least m + 1
points inside Br

4
(x), including f n(x). Let U0 := Br/2( f n(x)), and for each 1 ≤ i ≤ n,

denote the connected component of f −i (U0) containing f n−i (x) by Ui . Since any inverse
branch of f is non-expanding, anyUi is contained in a ball of radius r

2 around f n−i (x). And
so when f n−i (x) is r

4 close to x , Ui is contained in Br (x). This implies that f −1 sending
Ui to Ui+1 is α-contracting and so the branch g of f −n from U0 to Un is αm-contracting.
Recalling that αm < 1

2 , this implies that Un is in r
4 -neighbourhood of x . But U0 covers the

r
4 -neighbourhood of x , so g sends U0 into itself, and is αm-contracting. Thus there is a a
fixed point p of g in the closure ofU0. This fixed point is an n-periodic point of f satisfying:

∀i ∈ {0, . . . , n}, dh( f
i (x), f i (p)) <

r

2
. (5.2)

But there is a constant C > 0 (depending only on A) such that for any two points x and
y in Ĉ \ A we have:

d(x, y) < Cdh(x, y),

where d(x, y) is the standard spherical metric between x and y in Ĉ. We refer the reader to
[3]. So the orbit of x and the periodic point p are close to each other in the spherical metric:

∀i ∈ {0, . . . , n}, d( f i (x), f i (p)) < C
r

2
,

and hence

dw(e f
n (x), e f

n (p)) < C
r

2
.

By choosing r small enough and n large enough, we can guarantee that e f
n (x) is close to μ.

This shows that μ can be approximated by the invariant measures supported on the orbit of
periodic points. �
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The final step in the proof of Proposition 3.3 is to show that every invariant measure of f
can be approximated by the invariant measures supported on the orbit of only one periodic
point. For this we show that any finite convex combination of ergodic invariant measures
of f can be approximated by such measures, and since, the finite convex combinations of
ergodic invariant measures are dense in the set of invariant measures of f (according to
ergodic decomposition theorem, any invariant measure cam be written as an integral of erg),
Proposition 3.3 follows.

Let μ1, . . . , μk be k ergodic invariant measures, and μ = ∑k
i=1 ciμi a convex combi-

nation of these measures for some 0 ≤ ci ≤ 1 with
∑k

i=1 ci = 1. By Lemma 5.4 for each

1 ≤ i ≤ k, there exists a periodic point pi such that dw(μi , e
f∞(pi )) is arbitrary small and

hence dw(μ,
∑k

i=1 ci e
f∞(pi )) is small. So for our purpose, it is enough to show that the

measure
∑k

i=1 ci e
f∞(pi ) can be approximated by invariant probability measures which are

supported on the orbit of only one periodic point. To show this, For technical reasons it is
better to bring into play another repelling periodic point p0, which is not in the post critical
set P( f ).

Since the Julia set of f is the whole Riemann sphere, the set of all preimages of each
periodic point pi is dense in Ĉ, and in particular has a point in the linearization domain of the
other k periodic points. So we can find ε > 0 such that the preimages of ε-neighbourhood
of pi has a connected component in the linearization domain of pi+1 (for i=k, consider p0
instead of pi+1). Let us denote the ε-neighbourhood of pi by Ui . Now note that preimages
of Ui has indeed a connected component in Ui+1 because any subset of the linearization
domain, has preimages converging to the periodic point pi . Take li ∈ N such that f −li (Ui )

has a connected component in Ui+1 (in U0, for i = k).
Nowwe find a periodic point, in a backward orbit ofU0 which returns to itself. For each set

of natural numbers {n1, . . . , nk} ⊂ N such that ni is divisible by the period of pi , consider the
following backward orbit of U0: the set U0 is sent by f −l0 into U1. Then for each 1 ≤ i ≤ k
spends ni backward iterations in the linearization domain of pi , and then by f −li goes from
Ui to Ui+1 (to U0 for i = k). So finally, we will obtain a preimage Ũ0 of U0 in itself. Since
U0 does not intersect the post critical set, there is no critical point in the preimages of this set,
and the inverse branch sendingU0 to Ũ0 is a homeomorphism, and in particular, by Brouwer
fixed point theorem, it has a fixed point p. This fixed point is a periodic point for the map
f with the period equal to N := l0 + ∑k

i=1 li + ni . This periodic point spends ni iteration
close to the orbit of pi , so since the sum

∑k
i=0 li is bounded, by choosing very large integers

ni such that for each i , the number ni
N is close ci , we can guarantee that e f

N (p) is arbitrarily

close to
∑k

i=1 ci e
f∞(pi ). This finishes the proof of Proposition 3.3. �
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