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Abstract
We provide an explicit construction of global bases for quantum Borcherds–Bozec algebras
and their irreducible highest weight modules. Moreover, we give a new presentation for
quantum Borcherds–Bozec algebras in terms of primitive generators.
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1 Introduction

The quantum Borcherds–Bozec algebras were introduced by Bozec [1, 2] in terms of genera-
tors and relations when he solved a question asked by Lusztig in [15]. Namely, if we consider
a quiver with loops, the Grothendieck group arising from Lusztig sheaves on representation
varieties is generated by the elementary simple perverse sheaves F (n)

i with all vertices i
and n ∈ N. Bozec proved an analogue of Gabber–Kac theorem for the negative part U−

q (g)

of a quantum Borcherds–Bozec algebra, and showed that the above Grothendieck group is
isomorphic to U−

q (g), which gives a construction of its canonical basis.
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The canonical basis theory was first introduced by Lusztig in the simply-laced case in
[13], arising from his geometric construction of the negative parts of quantum groups, and it
has been generalized to symmetric Kac–Moody type in [14, 16]. On the other hand, Kashi-
wara constructed the crystal bases and global bases for quantum groups associated with
symmetrizable Kac–Moody algebras in an algebraic way [11, 12]. In [5], Grojnowski and
Lusztig proved that Kashiwara’s global bases coincide with Lusztig’s canonical bases. The
canonical/crystal basis theory has become one of the most central themes in combinatorial
and geometric representation theory of quantum groups because it provides us with very
powerful geometric and combinatorial tools to investigate the structure of quantum groups
and their integrable representations. In [7], Jeong, Kang, andKashiwara developed the crystal
basis theory for quantum Borcherds algebras, which were introduced in [8]. In [10], Kang
and Schiffmann gave a construction of canonical basis for quantum Borcherds algebras and
proved that, when all the diagonal entries of the corresponding Borcherds–Cartan matrices
are non-zero, the canonical bases coincide with global bases.

Bozec’s crystal basis theory for quantum Borcherds–Bozec algbras is based on primitive
generators ail , bil (i, l) ∈ I ∞, not on the Chevalley generators eil , fil (i, l) ∈ I ∞. The
primitive generators have simpler commutation relations than Chevalley generators. Bozec
defined the Kashiwara operators using primitive generators and proved several crucial the-
orems which are important steps for Kashiwara’s grand-loop argument [2, Lemma 3.33,
Lemma 3.34]. In this way, even though he did not check all the details, he was able to deduce
that there exist unique crystal bases for quantum Borcherds–Bozec algbras and their inte-
grable highest weight modules. Moreover, using Lusztig’s and Nakajima’s quiver varieties,
he also gave a geometric construction of B(∞), the crystal of the negative half U−

q (g), and
B(λ), the crystal of the integrable highest weight representation V (λ), respectively.

The main goal of this paper is to construct the global bases for quantum Borcherds–
Bozec algebras and their irreducible highest weight modules. As the first step, we give an
explicit description of the radical R of Lusztig’s bilinear form (Theorem 4). The higher
order Serre relations we obtained have more general forms than those given in [1]. As a
direct application, we give a new presentation of the quantum Borcherds–Bozec algebra
Uq(g) in terms of primitive generators (Proposition 7).

Then we set up the frame work that can be found in [7, 12]. However, we still need
more preparations. In the case of quantum Borcherds–Bozec algebras, for each I im, there
are infinitely many generators with higher degrees. Thus, compared with quantum Borcherds
algebras, we need to take a much more complicated approach to the construction of global
bases. To overcome these difficulties, we introduce a very natural and much expanded notion
of balanced triples corresponding to the compositions or partitions of each higher degree
of primitive generators (Proposition 22, Corollary 23). As can be expected, to prove our
assertions, the imaginary indices with higher degrees should be treated with special care. In
particular, the isotropic case (i.e., when aii = 0) requires very subtle and delicate treatments.

Now we can follow the steps given in [7, 12] and prove the existence and uniqueness of
global bases (Theorem 26). The key ingredients of our proof are Proposition 22 and Corollary
23.We conjecture that our global bases coincidewith (a variation of) Bozec’s canonical bases.

This paper is organized as follows. In Sect. 2, we give an explicit description of the
radical R of Lusztig’s bilinear form ( , )L via higher order quantum Serre relations in
quantum Borcherds–Bozec algebras. In Sect. 3, we give a new presentation of quantum
Borcherds–Bozec algebras in terms of primitive generators as an application of higher order
quantumSerre relations. In Sect. 4,we review the crystal basis theory for quantumBorcherds–
Bozec algebras and give canonical characterizations of the crystal bases (L(∞),B(∞)) and
(L(λ),B(λ)), respectively. We also define the quantum Boson algebraBq(g) for an arbitrary
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Global bases for quantum Borcherds–Bozec algebras 3729

Borcherds–Cartan datum. In Sect. 5, we define the A-forms UA(g) of Uq(g) and V (λ)A of
V (λ), respectively. We prove that UA(g) has the triangular decomposition and both U−

A
(g)

and V (λ)A are stable under the Kashiwara operators. In Sect. 6, we prove the existence
and uniqueness of global bases. As expected, most of this section is devoted to the proof of
Proposition 22 and Corollary 23.

2 Higher order quantum serre relations

Let I be an index set possibly countably infinite. An integer-valued matrix A = (ai j )i, j∈I is
called an even symmetrizable Borcherds–Cartan matrix if it satisfies the following conditions:

(i) aii = 2, 0,−2,−4, . . .,
(ii) ai j ∈ Z≤0 for i �= j ,
(iii) there is a diagonal matrix D = diag(ri ∈ Z>0 | i ∈ I ) such that D A is symmetric.

Let I re := {i ∈ I | aii = 2}, I im := {i ∈ I | aii ≤ 0}, and I iso := {i ∈ I | aii = 0}.
The elements of I re (resp. I im, I iso) are called real indices (resp. imaginary indices, isotropic
indices).

A Borcherds–Cartan datum consists of

(a) an even symmetrizable Borcherds–Cartan matrix A = (ai j )i, j∈I ,
(b) a free abelian group P∨ = (⊕i∈I Zhi

)⊕ (⊕i∈I Zdi
)
, the dual weight lattice,

(c) h = Q ⊗Z P∨, the Cartan subalgebra,
(d) P = {λ ∈ h∗ | λ(P∨) ⊆ Z}, the weight lattice,
(e) �∨ = {hi ∈ P∨ | i ∈ I }, the set of simple coroots,
(f) � = {αi ∈ P | i ∈ I }, the set of simple roots, which is linearly independent over Q and

satisfies

α j (hi ) = ai j , α j (di ) = δi j for all i, j ∈ I .

(g) for each i ∈ I , there is a �i ∈ P , called the fundamental weight, defined by

�i (h j ) = δi j , �i (d j ) = 0 for all i, j ∈ I .

We denote by P+ the set {λ ∈ P | λ(hi ) ≥ 0 for all i ∈ I } of dominant integral weights.
The free abelian group Q :=⊕i∈I Zαi is called the root lattice. Set Q+ =∑i∈I Z≥0αi and
Q− = −Q+. For β =∑ kiαi ∈ Q+, we define its height to be |β| :=∑ ki .

There is a non-degenerate symmetric bilinear form ( , ) on h∗ satisfying

(αi , λ) = riλ(hi ), (�i , λ) = riλ(di ) for any λ ∈ h∗ and i ∈ I ,

and therefore we have

(αi , α j ) = ri ai j = r j a ji for all i, j ∈ I .

For i ∈ I re, we define the simple reflection ωi ∈ GL(h∗) by

ωi (λ) = λ − λ(hi )αi

for all λ ∈ h∗. The subgroup W of GL(h∗) generated by ωi (i ∈ I re) is called the Weyl group
of the Borcherds–Cartan datum given above. Note that the symmetric bilinear form ( , ) is
W -invariant.
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Let I ∞ := (I re × {1}) ∪ (I im × Z>0). If i ∈ I re, we often write i for (i, 1). Let q be an
indeterminate and set

qi = qri , q(i) = q
(αi ,αi )

2 .

For each i ∈ I re and n ∈ Z≥0, we define

[n]i = qn
i − q−n

i

qi − q−1
i

, [n]i ! =
n∏

k=1

[k]i ,

[
n
k

]

i
= [n]i !

[k]i ![n − k]i ! .

Let F = Q(q)〈 fil | (i, l) ∈ I ∞〉 be the free associative algebra over Q(q) generated by
the symbols fil for (i, l) ∈ I ∞. By setting deg fil = −lαi ,F become a Q−-graded algebra.
For a homogeneous element u in F , we denote by |u| the degree of u, and for any subset
A ⊆ Q−, set FA = {x ∈ F | |x | ∈ A}.

We define a twisted multiplication on F ⊗ F by

(x1 ⊗ x2)(y1 ⊗ y2) = q−(|x2|,|y1|)x1y1 ⊗ x2y2,

for all homogeneous x1, x2, y1, y2 ∈ F , and equipF with a co-multiplication 	 defined by

	( fil) =
∑

m+n=l

q−mn
(i) fim ⊗ fin for (i, l) ∈ I ∞.

Here, we understand fi0 = 1 and fil = 0 for l < 0.

Proposition 1 [1, 2] For any family ν = (νil)(i,l)∈I ∞ of non-zero elements in Q(q), there
exists a symmetric bilinear form ( , )L : F × F → Q(q) such that

(a) (x, y)L = 0 if |x | �= |y|,
(b) (1, 1)L = 1,
(c) ( fil , fil)L = νil for all (i, l) ∈ I ∞,
(d) (x, yz)L = (	(x), y ⊗ z)L for all x, y, z ∈ F .

Here, (x1 ⊗ x2, y1 ⊗ y2)L = (x1, y1)L(x2, y2)L for any x1, x2, y1, y2 ∈ F .

We denote by R the radical of ( , )L .
Let Cl be the set of compositions c of l, and set fi,c = fic1 . . . ficm for every i ∈ I im

and every c = (c1, . . . , cm) ∈ Cl . Assume Cl = {c1, c2, . . . , cr }, we see that fi,c1 , . . . , fi,cr

form a basis of F−lαi . Hence, for any homogeneous element x in F , 	(x) can be written
into the forms

	(x) = xc1 ⊗ fi,c1 + · · · + xcr ⊗ fi,cr + terms of bidegree not in Q− × −lαi ,

	(x) = fi,c1 ⊗ x ′
c1 + · · · + fi,cr ⊗ x ′

cr
+ terms of bidegree not in − lαi × Q−.

We denote by 	i,l(x), 	i,l(x) : F → F r the Q(q)-linear maps:

	i,l(x) = (xc1 , . . . , xcr ), 	i,l(x) = (x ′
c1 , . . . , x ′

cr
).

If x, y are homogeneous elements such that 	i,k(y) = 0 for any k > 0, then we have

	i,l(xy) = ql(αi ,|y|)	i,l(x)y and 	i,l(yx) = y	i,l(x).

Here, 	i,l(x)y = (xc1 y, . . . , xcr y) and y	i,l(x) = (yxc1 , . . . , yxcr ) if 	i,l(x) =
(xc1 , . . . , xcr ). Similarly, if 	i,k(y) = 0 for any k > 0, we have

	i,l(xy) = 	i,l(x)y and 	i,l(yx) = ql(αi ,|y|)y	i,l(x).
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Global bases for quantum Borcherds–Bozec algebras 3731

For i ∈ I re, we define the Q(q)-linear maps 	i , 	
i : F → F by

	i (1) = 0, 	i ( f j,k) = δi, jδk,1, and 	i (xy) = q(αi ,|y|)	i (x)y + x	i (y),

	i (1) = 0, 	i ( f j,k) = δi, jδk,1, and 	i (xy) = 	i (x)y + q(αi ,|x |)x	i (y),

for all homogeneous x, y. Note that for any homogeneous x ∈ F , we have

	(x) = 	i (x) ⊗ fi + terms of other bi-homogeneities,

	(x) = fi ⊗ 	i (x) + terms of other bi-homogeneities.

The following lemma can be derived directly from the definitions of 	i,l and 	i,l .

Lemma 2

(a) If i ∈ I re, then for any x, y ∈ F , we have

(y fi , x)L = ( fi , fi )L(y, 	i (x))L , ( fi y, x)L = ( fi , fi )L(y, 	i (x))L .

(b) If i ∈ I im, let x ∈ F with 	i,l(x) = (xc1 , · · · , xcr ) and 	i,l(x) = (x ′
c1 , · · · , x ′

cr
). Then

for any x ∈ F , we have

(y fil , x)L = ( fil , fi,c1)L(y, xc1)L + · · · + ( fil , fi,cr )L(y, xcr )L ,

( fil y, x)L = ( fil , fi,c1)L(y, x ′
c1)L + · · · + ( fil , fi,cr )L(y, x ′

cr
)L .

(c) Let x ∈ F be a homogeneous element with |x | �= 0, we have
(i) if 	i,l(x) ∈ R for any (i, l) ∈ I ∞, then x ∈ R,

(ii) if 	i,l(x) ∈ R for any (i, l) ∈ I ∞, then x ∈ R.
Here, if i ∈ I im, 	i,l(x) ∈ R means each component of 	i,l(x) belongs to R.

For any i ∈ I re and n ∈ N, we set

f (n)
i = f n

i

[n]i ! .
By a similar argument in [16, 1.4.2], we can prove:

Lemma 3 We have

	( f (n)
i ) =

∑

p+p′=n

q−pp′
i f (p)

i ⊗ f (p′)
i (1)

for any i ∈ I re and n ∈ N.

Theorem 4 Assume that i ∈ I re, j ∈ I and i �= j . Let m ∈ Z>0, n ∈ Z≥0 with m > −ai j n.
Then for any c ∈ Cn, the following element of F

Fi, j,m,n,c,±1 =
∑

r+s=m

(−1)r q
±r(−ai j n−m+1)
i f (r)

i f j,c f (s)
i (2)

belongs to R. Here, we put f j,c = f n
j for j ∈ I re.

Proof If n = 0, then

Fi, j,m,0,c,±1 =
∑

r+s=m

(−1)r q±r(1−m)
i f (r)

i f (s)
i .

Since
∑

r+s=m(−1)r q±r(1−m)
i

[
m
r

]

i
= 0, we have Fi, j,m,0,c,±1 = 0.
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3732 Z. Fan et al.

We shall only show it for j ∈ I im, and the case j ∈ I re can be shown similarly. By
Lemma 2 (c), it is enough to show each component of 	i ′,k(Fi, j,m,n,c,±1) belongs to R. If
i ′ �= i, j , there is nothing to show.

We first show it for i ′ = j . For 0 < k ≤ n and c = (n1, . . . , nt ) ∈ Cn , we have

	 j,k( f (r)
i f j,c f (s)

i ) = 	 j,k( f (r)
i f j,c) f (s)

i = q−(rαi ,kα j ) f (r)
i 	 j,k( f j,c) f (s)

i

= q−(rαi ,kα j ) f (r)
i

(
βa1,...,at f j,(n1−a1,...,nt −at )

)
a1≤n1,...,at ≤nt

a1+···+at =k
f (s)
i ,

(3)

where

βa1,...,at = q
∑t

h=1 ah(ah−nh)

( j) q
2
∑

1≤p<q≤t (ap−n p)aq

( j) .

Note that m > −ai, j n ≥ −ai, j (n − k) and

q
−r(−ai j n−m+1)
i q−(rαi ,kα j ) = q

−r [−ai j (n−k)−m+1]
i .

Therefore each component of 	 j,k(Fi, j,m,n,c,−1) is a scalar multiple of Fi, j,m,n−k,c′,−1 for
some c′ ∈ Cn−k .

We now show it for i ′ = i . Since i ∈ I re, we have

	i ( f (r)
i f j,c f (s)

i ) = 	i ( f (r)
i f j,c) f (s)

i + q−(rαi +nα j ,αi )q1−s
i f (r)

i f j,c f (s−1)
i

= q1−r
i f (r−1)

i f j,c f (s)
i + q−(rαi +nα j ,αi )q1−s

i f (r)
i f j,c f (s−1)

i .
(4)

Hence

	i (Fi, j,m,n,c,−1) =
∑

r+s=m

(−1)r q
−r(−ai j n−m+1)
i q1−r

i f (r−1)
i f j,c f (s)

i

+
∑

r+s=m

(−1)r q
−r(−ai j n−m+1)
i q−(rαi +nα j ,αi )q1−s

i f (r)
i f j,c f (s−1)

i .
(5)

Note that the coefficient of f (r)
i f j,c f (s−1)

i is

q
−(r+1)(−ai j n−m+1)
i q−r

i − q
−r(−ai j n−m+1)
i q−(rαi +nα j ,αi )q1−m+r

i

= q
−(r+1)(−ai j n−m+1)
i q−r

i − q
−r(−ai j n−m+1)
i q

−2r−nai j
i q1−m+r

i

= q
−r(−ai j n−m+2)
i q

ai j n+m−1
i (1 − q

−2m−2nai j +2
i ).

(6)

Therefore

	i (Fi, j,m,n,c,−1) = (1 − q
−2m−2nai j +2
i )q

ai j n+m−1
i

·
∑

r+s=m−1

(−1)r q
−r(−ai j n−m+2)
i f (r)

i f j,c f (s)
i

=
{

βFi, j,m−1,n,c,−1 if m > −ai j n + 1,

0 if m = −ai j n + 1.

Here β = (1 − q
−2m−2nai j +2
i )q

ai j n+m−1
i is a constant.

By the induction and Lemma 2(c), theorem follows. ��
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In particular, when m = 1 − lai j , n = l and c = (l), by Theorem 4, we conclude

Fi, j,m,n,c,±1 =
{∑

r+s=1−lai j
(−1)r f (r)

i f l
j f (s)

i if j ∈ I re,
∑

r+s=1−lai j
(−1)r f (r)

i f jl f (s)
i if j ∈ I im,

belongs to R.

Lemma 5 Let (i, k), ( j, l) ∈ I ∞ such that ai j = 0. Set X = fik f jl − f jl fik , Then X ∈ R.

Proof Note that if i, j ∈ I re, then X = fi f j − f j fi . Since i and j cannot be equal, we have
X = −Fi, j,1,1,(1),±1 ∈ R.

If i ∈ I re and j ∈ I im, we have X = fi f jl − f jl fi = −Fi, j,1,l,c=(l),±1 ∈ R.
We now assume that i, j ∈ I im and i = j ∈ I iso. Note for any 0 < s ≤ k + l, we have

	i,s(X) = 	i,s( fik fil − fil fik)

= ( fi,k−a1 fi,l−a2 − fi,l−a2 fi,k−a1

)
a1≤k,a2≤l
a1+a2=s

.

By induction and Lemma 2, X ∈ R.
Finally, if i, j ∈ I im and i �= j , then for any 0 < s ≤ k and 0 < t ≤ l, we have

	i,s(X) = 	i,s( fik f jl − f jl fik) = q−s(k−s)
(i) ( fi,k−s f jl − f jl fi,k−s),

	 j,t (X) = 	 j,t ( fik f jl − f jl fik) = q−t(l−t)
( j) ( fik f j,l−t − f j,l−t fik).

By induction and Lemma 2, X ∈ R. ��

3 Quantum Borcherds–Bozec algebras

From now on, we always assume that

νil ∈ 1 + qZ≥0[[q]] for all (i, l) ∈ I ∞. (7)

Under this assumption, the bilinear form ( , )L is non-degenerate on F (i) = ⊕l≥1 F−lαi

for i ∈ I im\I iso. Moreover, it has been showed in [1, Proposition 14] that the two-sided ideal
R is generated by

∑

r+s=1−lai j

(−1)r f (r)
i f jl f (s)

i for i ∈ I re, ( j, l) ∈ I ∞ and i �= ( j, l),

and fik f jl − f jl fik for all (i, k), ( j, l) ∈ I ∞ with ai j = 0
Given a Borcherds–Cartan datum (A, P, P∨,�,�∨), we denote by Û the associative

algebra over Q(q) with 1, generated by the elements qh (h ∈ P∨) and eil , fil ((i, l) ∈ I ∞)

with defining relations

q0 = 1, qhqh′ = qh+h′
for h, h′ ∈ P∨

qhe jlq
−h = qlα j (h)e jl , qh f jlq

−h = q−lα j (h) f jl for h ∈ P∨, ( j, l) ∈ I ∞,
∑

r+s=1−lai j

(−1)r ei
(r)e jle

(s)
i = 0 for i ∈ I re, ( j, l) ∈ I ∞ and i �= ( j, l),

∑

r+s=1−lai j

(−1)r fi
(r) f jl f (s)

i = 0 for i ∈ I re, ( j, l) ∈ I ∞ and i �= ( j, l),

eike jl − e jleik = fik f jl − f jl fik = 0 for ai j = 0.

(8)
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We extend the grading by setting |qh | = 0 and |eil | = lαi .
The algebra Û is endowed with a co-multiplication � : Û → Û ⊗ Û given by

�(qh) = qh ⊗ qh,

�(eil) =
∑

m+n=l

qmn
(i) eim ⊗ K −m

i ein,

�( fil) =
∑

m+n=l

q−mn
(i) fim K n

i ⊗ fin,

(9)

where Ki = qri hi (i ∈ I ).
Let Û≤0 be the subalgebra of Û generated by fil and qh , for all (i, l) ∈ I ∞ and h ∈ P∨,

and Û+ be the subalgebra generated by eil for all (i, l) ∈ I ∞.We extend ( , )L to a symmetric
bilinear form ( , )L on Û≤0 and on Û+ by setting

(qh, 1)L = 1, (qh, fil)L = 0,

(qh, K j )L = q−α j (h),

(x, y)L = (ω(x), ω(y))L for all x, y ∈ Û+,

(10)

where ω : Û → Û is the involution defined by

ω(qh) = q−h, ω(eil) = fil , ω( fil) = eil for h ∈ P∨, (i, l) ∈ I ∞.

For any x ∈ Û , we shall use the Sweedler’s notation, and write

�(x) =
∑

x(1) ⊗ x(2).

Definition 1 Following theDrinfeld double process,we define thequantum Borcherds–Bozec
algebra Uq(g) associated with a given Borcherds–Cartan datum (A, P, P∨,�,�∨) as the
quotient of Û by the relations

∑
(a(1), b(2))Lω(b(1))a(2) =

∑
(a(2), b(1))La(1)ω(b(2)) for all a, b ∈ Û≤0. (11)

Let U+
q (g) (resp. U−

q (g)) be the subalgebra of Uq(g) generated by eil (resp. fil ) for

(i, l) ∈ I ∞, and U 0
q (g) the subalgebra of Uq(g) generated by qh for h ∈ P∨. We shall

denote by U (resp. U+ and U−) for Uq(g) (resp. U+
q (g) and U−

q (g)) for simplicity. Then U

has the following triangular decomposition U ∼= U− ⊗ U 0 ⊗ U+.

Proposition 6 [1, 2] For any i ∈ I im and l ≥ 1, there exist unique elements bil ∈ U−
−lαi

and
ail = ω(bil) such that

(1) Q(q)〈 fil | l ≥ 1〉 = Q(q)〈bil | l ≥ 1〉 and Q(q)〈eil | l ≥ 1〉 = Q(q)〈ail | l ≥ 1〉,
(2) (bil , z)L = 0 for all z ∈ Q(q)〈 fi1, . . . , fi,l−1〉,

(ail , z)L = 0 for all z ∈ Q(q)〈ei1, . . . , ei,l−1〉,
(3) bil − fil ∈ Q(q)〈 fik | k < l〉 and ail − eil ∈ Q(q)〈eik | k < l〉,
(4) bil = bil , ail = ail ,
(5) 	(bil) = bil ⊗ 1 + 1 ⊗ bil , 	(ail) = ail ⊗ 1 + 1 ⊗ ail ,
(6) �(bil) = bil ⊗ 1 + K l

i ⊗ bil , �(ail) = ail ⊗ K −l
i + 1 ⊗ ail ,

(7) S(bil) = −K −l
i bil , S(ail) = −ail K l

i .

Here, S is the antipode of U, and − : U± → U± is the Q-algebra involution defined by
eil = eil , f il = fil and q = q−1.
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Set τil = (ail ,ail)L = (bil ,bil)L , we have the following commutation relations inUq(g)

ailb jk − b jkail = δi jδlkτil(K l
i − K −l

i ). (12)

The elements ail ’s and bil ’s are called the primitive generators. Let Cl (resp. Pl ) be the set
of compositions (resp. partitions) of l. For i ∈ I im, we define

Ci,l =
{
Cl if i ∈ I im\I iso,

Pl if i ∈ I iso.

and Ci =⊔l≥0 Ci,l . For i ∈ I re, we just put Ci,l = {l}.
Assume that i ∈ I im. Let c = (c1, . . . , ct ) ∈ Ci,l and set

bi,c = bic1 · · ·bict , ai,c = aic1 . . .aict and τi,c = τic1 . . . τict .

Note that {bi,c | c ∈ Ci,l} forms a basis of U−
−lαi

. For each i ∈ I re, we put bi = fi , ai = ei

and τi = νi .

Example 1 (1) Each λ ∈ Pl can be written as the form λ = 1λ12λ2 . . . lλl , where λk are
non-negative integers such that λ1 + 2λ2 + · · · + lλl = l. For i ∈ I iso, we have

bil = fil −
∑

λ∈Pl\(l)

1
∏l

k=1 λk !
bi,λ.

Note that assumption (7) implies νil ≡ 1 (mod q), hence we have τil ≡ 1
l (mod q) by

the following equation

∑

λ∈Pl

1
∏l

k=1 kλk λk !
= 1.

(2) Under the assumption (7), if i ∈ I im\I iso, it was shown in [2, Lemma 3.32] that τil ≡
1 (mod q) for all l ≥ 1. Moreover, τil ∈ 1 + qZ[[q]].

Let U be the associative algebra over Q(q) with 1 generated by the elements til ,wil

((i, l) ∈ I ∞) and qh (h ∈ P∨) with defining relations

q0 = 1, qhqh′ = qh+h′
for h, h′ ∈ P∨

qht jlq
−h = qlα j (h)t jl , qhw jlq

−h = q−lα j (h)w jl for h ∈ P∨, ( j, l) ∈ I ∞,

tilw jk − w jktil = δi jδlkτil(K l
i − K −l

i ),
∑

r+s=1−lai j

(−1)rti
(r)t jlt

(s)
i = 0 for i ∈ I re, ( j, l) ∈ I ∞ and i �= ( j, l),

∑

r+s=1−lai j

(−1)rwi
(r)w jlw

(s)
i = 0 for i ∈ I re, ( j, l) ∈ I ∞ and i �= ( j, l),

tikt jl − t jltik = wikw jl − w jlwik = 0 for ai j = 0.

(13)

Theorem 7 There exists a Q(q)-algebra isomorphism 
 : U
∼−→ U mapping ail to til , bil to

wil , and qh to qh.

123



3736 Z. Fan et al.

Proof Recall that, for j ∈ I im, e jl (resp. f jl ) in U can be written as a homogeneous polyno-
mials in a jk’s (resp. b jk’s) for 1 ≤ k ≤ l. We may write

e jl =
∑

c∈C j,l

αca j,c, f jl =
∑

c∈C j,l

αcb j,c,

and let 
 : U → U be an algebra homomorphism sending qh �→ qh , ei �→ ti , bi �→ wi if
i ∈ I re and


(e jl) =
∑

c∈C j,l

αct j,c,


( f jl) =
∑

c∈C j,l

αcw j,c, if j ∈ I im.

We shall show 
 is well-defined. For each c ∈ C j,l , we have qht j,cq−h = qlα j (h)t j,c and
qhw j,cq−h = q−lα j (h)w j,c in U. Hence


(qhe jlq
−h − qlα j (h)e jl) = 
(qh f jlq

−h − q−lα j (h) f jl) = 0.

For the Serre-type relations, if ai j �= 0 we have




⎛

⎝
∑

r+s=1−lai j

(−1)r ei
(r)e jle

(s)
i

⎞

⎠ =
∑

c∈C j,l

αc

∑

r+s=1−lai j

(−1)rti
(r)t j,ct

(s)
i = 0.

If ai j = 0, we have


(eike jl) =
∑

c∈C i,k

αcti,c

∑

c′∈C j,l

αc′t j,c′ =
∑

c′∈C j,l

αc′t j,c′
∑

c∈C i,k

αcti,c = 
(e jl eik).

The other half Serre-type relations can be shown similarly.
For the commutation relations, we first claim that 
(ail) = til and 
(bil) = wil for any

(i, l) ∈ I ∞. If i ∈ I re, there is nothing to show. If i ∈ I im, we could show it by induction on
l. If l = 1, it is obvious since ei1 = ai1. Assume the claim is true for all k < l. Since ail =
eil −∑c∈C i,l ,c �=(l) αcai,c, we have 
(ail) = ∑c∈C i,l

αcti,c −∑c∈C i,l ,c �=(i) αcti,c = til .
And 
(bil) = wil can be shown similarly.

Now by the Drinfeld double process, the commutation relation in (11) is equivalent to the
one in (12) (cf. [17, Lemma 3.2]). Moreover,
(ailb jk −b jkail −δi jδlkτil(K l

i − K −l
i )) = 0.

This shows that 
 is well-defined.
Since Theorem 4 yields the following relations in U

∑

r+s=1−lai j

(−1)rai
(r)a jla

(s)
i = 0 for i ∈ I re, ( j, l) ∈ I ∞ and i �= ( j, l),

∑

r+s=1−lai j

(−1)rbi
(r)b jlb

(s)
i = 0 for i ∈ I re, ( j, l) ∈ I ∞ and i �= ( j, l).

We see that 
 has an obvious inverse � : U → U given by

�(til) = ail , �(wil) = bil , �(qh) = qh,

for (i, l) ∈ I ∞ and h ∈ P∨. ��

123



Global bases for quantum Borcherds–Bozec algebras 3737

We note that Theorem 7 provides a new presentation ofU with primitive generators. Now,
Proposition 6 provides a Hopf algebra structure on U:

�(qh) = qh ⊗ qh,

�(til) = til ⊗ K −l
i + 1 ⊗ til ,

�(wil) = wil ⊗ 1 + K l
i ⊗ wil ,

S(til) = −til K l
i , S(wil) = −K −l

i wil , S(qh) = q−h,

ε(til) = ε(wil) = 0, ε(qh) = 1,

(14)

where �, S, and ε denote the co-multiplication, antipode and counit, respectively.

4 Crystal bases and polarization

Definition 2 For i ∈ I im and c ∈ Ci , we define the linear maps δi,c, δ
i,c : U− → U− by

	(x) =
∑

c∈C i

δi,c(x) ⊗ bi,c + terms of bidegree not in Q− × −Nαi ,

	(x) =
∑

c∈C i

bi,c ⊗ δi,c(x) + terms of bidegree not in − Nαi × Q−,

where x is a homogeneous element in U−.

Let i ∈ I im, l > 0, then for any homogeneous x, y, z ∈ U− and c = (c1, . . . , ct ) ∈ Ci ,
we have the following equations

γ i,l(xy) = γ i,l(x)y + ql(αi ,|x |)xγ i,l(y), (15)

γ i,l(bi,c) =
∑

k:ck=l

q
−2l
∑

j<k c j

(i) bi,c\ck , (16)

[ail , z] = τil

(
γi,l(z)K l

i − K −l
i γ i,l(z)

)
, (17)

where c\ck = (c1, . . . , ĉk, . . . , cr ) means removing ck from c. We will denote the operator
γ i,l by e′

i,l in the following.
Recall from [2] that every u ∈ U− can be written uniquely as

u =
∑

c∈C i

bi,cuc,
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where e′
i,l uc = 0 for all l ≥ 1 and c ∈ Ci . Moreover, if u is homogeneous, then every uc is

homogeneous. Then the Kashiwara operators are defined by

ẽil u =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

c:c1=l

bi,c\c1uc if i /∈ I iso,

∑

c∈C i

√
ml(c)

l
bi,c\luc if i ∈ I iso,

f̃il u =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

c∈C i

bi,(l,c)uc if i /∈ I iso,

∑

c∈C i

√
l

ml(c) + 1
bi,c∪luc if i ∈ I iso,

where ml(c) = #{k | ck = l}.
Remark 1 Note that the square roots appear in the above definition. So we need to consider
an extension F of Q that contains all the necessary square roots (see [2, Remark 3.12]).

Let A0 = { f ∈ F(q) | f is regular at q = 0}, and let L(∞) be the A0-submodule of U−
generated by the elements f̃i1,l1 . . . f̃ir ,lr 1 for r ≥ 0 and (ik, lk) ∈ I ∞, where the Kashiwara
operators f̃i for i ∈ I re have been defined in [12]. Set

B(∞) = { f̃i1,l1 . . . f̃ir ,lr 1 mod qL(∞) | r ≥ 0, (ik, lk) ∈ I ∞} ⊆ L(∞)/qL(∞),

then (L(∞),B(∞)) is the crystal base of U−.
By [2, Lemma 3.33] and [12, Proposition 5.1.2], we have the following proposition.

Proposition 8

(i) (L(∞),L(∞))L ⊆ A0.

Let ( , )0L denote the F-valued inner product on L(∞)/qL(∞) induced by ( , )L |q=0 on
L(∞).

(ii) (̃eilu, v)0L = (u, f̃ilv)0L for u, v ∈ L(∞)/qL(∞) and (i, l) ∈ I ∞.
(iii) B(∞) is an orthonormal base of ( , )0L . In particular, ( , )0L is positive definite.
(iv) L(∞) = {u ∈ U− | (u,L(∞))L ⊆ A0} = {u ∈ U− | (u, u)L ∈ A0}.

Let λ ∈ P+, and let V (λ) be the irreducible highest weight Uq(g)-module with highest
weight λ and highest weight vector vλ. Then we have a U−

q (g)-module isomorphism (cf. [3,
9])

V (λ) � U−
q (g)

/
⎛

⎜⎜⎜
⎝

∑

i∈I re
U−

q (g) f λ(hi )+1
i +

∑

i∈I im,λ(hi )=0
(i,l)∈I ∞

U−
q (g) fil

⎞

⎟⎟⎟
⎠

. (18)

Recall from [2] that, for any i ∈ I im and λ ∈ P+, v ∈ V (λ)μ has a decomposition of the
following form

v =
∑

c∈C i

bi,cvc,

where vc ∈ V (λ)μ+|c|αi and eilvc = 0 for all l ≥ 1 and c ∈ Ci . Moreover, if we omit the
terms bi,cvc with |c| �= 0 and (μ + |c|αi , αi ) = 0, which are equal to zero trivially, then the
decomposition of v is unique.
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Define the Kashiwara operators on V (λ) by

ẽilv =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

c:c1=l

bi,c\c1vc if i /∈ I iso,

∑

c∈C i

√
ml(c)

l
bi,c\lvc if i ∈ I iso,

f̃ilv =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

c∈C i

bi,(l,c)vc if i /∈ I iso,

∑

c∈C i

√
l

ml(c) + 1
bi,c∪lvc if i ∈ I iso.

Let L(λ) =∑ι1,...,ιs∈I ∞ A0 f̃ι1 . . . f̃ιs vλ be an A0-submodule of V (λ) and let

B(λ) = { f̃ι1 . . . f̃ιs vλ | ιk ∈ I ∞}\{0} ⊆ L(λ)/qL(λ),

then (L(λ),B(λ)) is the crystal base of V (λ).
There exists a unique symmetric bilinear form {−,−} on V (λ) such that

{vλ, vλ} = 1,

{qhv, v′} = {v, qhv′},
{bilv, v′} = −{v, K l

i ailv
′} if i ∈ I im,

{biv, v′} = 1

q2
i − 1

{v, Kiaiv
′} if i ∈ I re,

for every v, v′ ∈ V (λ) and (i, l) ∈ I ∞.
Similarly, by [2, Lemma 3.34] and [12, Proposition 5.1.1], we have the following propo-

sition.

Proposition 9

(i) {L(λ),L(λ)} ⊆ A0.

Let { , }0 denote the F-valued inner product on L(λ)/qL(λ) induced by { , }|q=0 on
L(λ).

(ii) {̃eilu, v}0 = {u, f̃ilv}0 for u, v ∈ L(λ)/qL(λ) and (i, l) ∈ I ∞.
(iii) B(λ) is an orthonormal base of { , }0. In particular, { , }0 is positive definite.
(iv) L(λ) = {v ∈ V (λ) | {v,L(λ)} ⊆ A0} = {v ∈ V (λ) | {v, v} ∈ A0}.

The following proposition follows from Kashiwara’s grand-loop argument, which
describes the relations between B(∞) and B(λ).

Proposition 10 Let πλ : U−
q (g) → V (λ) be the U−

q (g)-module homomorphism given by
P �→ Pvλ, then we have

(i) πλ(L(∞)) = L(λ), hence πλ induces the surjective homomorphism

πλ : L(∞)/qL(∞) → L(λ)/qL(λ).

(ii) {b ∈ B(∞) | πλ(b) �= 0} is isomorphic to B(λ) under the map πλ.
(iii) If b ∈ B(∞) satisfies πλ(b) �= 0, then ẽilπλ(b) = πλ(̃eilb).
(iv) f̃il ◦ πλ = πλ ◦ f̃il .
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Let (i, l) ∈ I ∞ and let P ∈ U−, then there exist unique Q, R ∈ U− such that

[ail , P] = τil(K l
i Q − K −l

i R).

Note that e′
i,l(P) = R by (17). If we set e′′

i,l(P) = Q, then we have

e′
i,lb jk = δi jδkl + q

−klai j
i b jke′

i,l ,

e′′
i,lb jk = δi jδkl + q

klai j
i b jke′′

i,l ,

and

e′
i,l e

′′
j,k = q

klai j
i e′′

j,ke′
i,l .

Definition 3 Let Bq(g) be the algebra over F(q) generated by e′
i,l , bil (i, l) ∈ I ∞ with

defining relations

e′
i,lb jk = δi jδkl + q

−klai j
i b jke′

i,l ,

1−lai j∑

r=0

(−1)r
[
1 − lai j

r

]

i
e′

i
1−lai j −r e′

j,l e
′r
i = 0 for i ∈ I re and i �= ( j, l),

1−lai j∑

r=0

(−1)r
[
1 − lai j

r

]

i
bi

1−lai j −rb j,lb
r
i = 0 for i ∈ I re and i �= ( j, l),

e′
i,ke′

j,l − e′
j,l e

′
i,k = bikb jl − b jlbik = 0 for ai j = 0.

We call Bq(g) the quantum boson algebra associated with g. One can show that Bq(g)

is a left U−
q (g)-module by the standard argument in [12]. Furthermore, we have

U−
q (g) ∼= Bq(g)

/ ∑

(i,l)∈I ∞
Bq(g)e′

i,l .

Lemma 11 For all P, Q ∈ U− and (i, l) ∈ I ∞, we have

(Pbil , Q)L = τil(P, K l
i e′′

i,l QK −l
i )L .

Proof By (17), we have K l
i e′′

i,l Q = δi,l(Q)K l
i and hence K l

i e′′
i,l QK −l

i = δi,l(Q). Thus we
obtain

(Pbil , Q)L = τil(P, δi,l(Q))L = τil(P, K l
i e′′

i,l QK −l
i )L

as desired. ��
Let ∗: Uq(g) → Uq(g) be the F(q)-linear anti-involution given by

e∗
il = eil , f ∗

il = fil , (qh)∗ = q−h .

Note that ∗∗ = id and ∗− = −∗ on U±, and ail ,bil are stable under ∗ for any (i, l) ∈ I ∞.

Lemma 12 For any P, Q ∈ U−, we have

(P∗, Q∗)L = (P, Q)L .
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Proof Note that e′′
i,l(Q∗) = K −l

i (e′
i,l Q)∗K l

i and e′
i,l(Q∗) = K l

i (e
′′
i,l Q)∗K −l

i . We shall prove
this lemma by induction on |P|. If P = 1, our assertion is clear. By Lemma 11 and the
inductive hypothesis, we have

((Pbil)
∗, Q∗)L = (bil P∗, Q∗)L = τil(P∗, e′

i,l(Q∗))L

= τil(P∗, K l
i (e

′′
i,l Q)∗K −l

i )L

= τil(P, K l
i e′′

i,l QK −l
i )L

= (Pbil , Q)L ,

which proves our claim. ��
The following corollary is an immediate consequence of Lemma 12 and Proposition 8.

Corollary 13 L(∞)∗ = L(∞).

Proposition 14 Let P, Q ∈ U−
q (g)−β for β ∈ Q+. If λ � 0, we have

{Pvλ, Qvλ} ≡ c(P, Q)L (mod qA0)

for some c ∈ A0\qA0.

Proof We use the induction on |β|. If i ∈ I im, we have

{bil Pvλ, Qvλ} = −{Pvλ, K l
i ail Qvλ}

= −{Pvλ, K l
i (Qail + τil(K l

i e′′
i,l Q − K −l

i e′
i,l Q))vλ}

= −τil{Pvλ, K 2l
i e′′

i,l Qvλ − e′
i,l Qvλ}

= −τil{Pvλ, q2l(λ−β)(hi )
i e′′

i,l Qvλ} + τil{Pvλ, e′
i,l Qvλ},

where P ∈ U−
−β and Q ∈ U−

−β−lαi
. Hence

{bil Pvλ, Qvλ} ≡ τil{Pvλ, e′
il Qvλ} ≡ cτil(P, e′

i,l Q)L = c(bil P, Q)L (mod qA0).

if i ∈ I re, we have

{bi Pvλ, Qvλ} = 1

q2
i − 1

{Pvλ, Kiai Qvλ}

= 1

q2
i − 1

{Pvλ, Kiτi (Ki e
′′
i Q − K −1

i e′
i Q)vλ}

= 1

q2
i − 1

τi {Pvλ, q2(λ−β)(hi )
i e′′

il Qvλ} + 1

q2
i − 1

τi {Pvλ, e′
i Qvλ},

where P ∈ U−
−β and Q ∈ U−

−β−αi
. Hence

{bi Pvλ, Qvλ} ≡ 1

q2
i − 1

τi {Pvλ, e′
i Qvλ} ≡ 1

q2
i − 1

cτi (P, e′
i Q)L

= 1

q2
i − 1

c(bi P, Q)L (mod qA0),

which completes the proof. ��
Corollary 15 If λ � 0 and Pvλ ∈ L(λ), then P∗vλ ∈ L(λ).
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Proof If Pvλ ∈ L(λ), then {Pvλ, Pvλ} ∈ A0 by Proposition 9. Since {Pvλ, Pvλ} ≡
c(P, P)L (mod qA0) for some c ∈ A0 \ q A0, we have (P, P)L ∈ A0. Hence P ∈ L(∞)

and P∗ ∈ L(∞) by Proposition 8 and Corollary 13. Now Proposition 10 yields πλ(L(∞)) =
L(λ). Thus we get P∗vλ ∈ L(λ) by applying πλ. ��

5 A-form of U−
q (g)

Let A = F[q, q−1] and A∞ = { f ∈ F(q) | f is regular at q = ∞}. We denote by U−
A

(g)

the A-subalgebra of Uq(g) generated by b(n)
i (i ∈ I re, n ≥ 0) and bil (i ∈ I im, l ≥ 1).

For each i ∈ I re, set

Ai = ai/τi (qi − q−1
i ), (19)

which yields the following commutation relation

Aibi − bi Ai = Ki − K −1
i

qi − q−1
i

. (20)

For i ∈ I im and l ≥ 1, set Ail = ail/τil . Then we have

Ailbil − bil Ail = K l
i − K −l

i . (21)

Let UA(g) be theA-subalgebra of Uq(g) generated by A(n)
i ,b(n)

i (i ∈ I re, n ≥ 0), Ail ,bil

(i ∈ I im, l ≥ 1) and qh (h ∈ P∨),

{
Ki qn

i
m

}

i
(i ∈ I re, m ∈ Z≥0, n ∈ Z), where

{
Ki qn

i
m

}

i
= 1

[m]i !
m∏

s=1

Ki q
n+1−s
i − K −1

i q−n−1+s
i

qi − q−1
i

. (22)

Let U+
A

(g) (resp. U 0
A
(g)) be the A-subalgebra of Uq(g) generated by A(n)

i (i ∈ I re) and

Ail (i ∈ I im, l ≥ 1) (resp. qh,

{
Ki qn

i
m

}

i
for h ∈ P∨, m ∈ Z≥0, n ∈ Z and i ∈ I re ). Then

using the commutations relations (20), (21) and the definition (22), one can prove that UA(g)

has the triangular decomposition (see also [12, Section 1], [6, Exercise 3.6])

UA(g) ∼= U−
A

(g) ⊗ U 0
A
(g) ⊗ U+

A
(g).

Let λ ∈ P+ and consider an F-linear automorphism − : V (λ) → V (λ) given by Pvλ �→
Pvλ for P ∈ Uq(g). Set L(λ)− = L(λ). Then L(λ) (resp. L(λ)−) is a free A0-lattice (resp.
free A∞-lattice) of V (λ).

Since
{

Ki qn
i

m

}

i
vλ =

[
λ(hi ) + n

m

]

i
vλ ∈ Z[q, q−1]vλ,

we get U 0
A
(g)vλ = Avλ. This leads us to give the following definition

V (λ)A := UA(g)vλ = U−
A

(g)vλ.

Note that bil = bil for all (i, l) ∈ I ∞. Hence U−
A

(g) and V (λ)A are stable under −.
Also, since U−

A
(g) is graded by Q−, we have V (λ)A = ⊕μ≤λ V (λ)Aμ , where V (λ)Aμ =

V (λ)A ∩ V (λ)μ.
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Fix i ∈ I . In [2], Bozec proved that every u ∈ U−
q (g) has the following decomposition.

u =
{∑

n≥0 b
(n)
i un with i ∈ I re and e′

i un = 0 for all n ≥ 0,
∑

c∈C i
bi,cuc with i ∈ I im and e′

il uc = 0 for all l > 0, c ∈ Ci .
(23)

Lemma 16 For each i ∈ I and u ∈ U−
q (g), consider the decomposition (23). If u ∈ U−

A
(g),

then all un, uc ∈ U−
A

(g).

Proof We first prove that e′
i,lU

−
A

(g) ⊆ U−
A

(g) for all (i, l) ∈ I ∞.

Since e′
i,lb jk = δi jδkl + q

−klai j
i b jke′

i,l , we have

e′
ibi = 1 + q−2

i bi e
′
i for i ∈ I re.

It follows that

e′
ib

(n)
i = q1−n

i b(n−1)
i + q−2n

i b(n)
i e′

i .

Furthermore, by a direct calculation, we have

e′n
i b(m)

i =
n∑

k=0

q−2nm+(m+n)k−k(k−1)/2
i

[
n
k

]

i
b(m−k)

i e′n−k
i ,

where b(r)
i = 0 if r < 0. These imply our assertion.

For i ∈ I re, let

P =
∑

n≥0

(−1)nq−n(n−1)/2
i b(n)

i e′n
i .

Then we obtain (cf. [12, Section 3.2]):

(i) Pbi = 0, e′
i P = 0,

(ii)
∑

n≥0 qn(n−1)/2
i b(n)

i Pe′n
i = 1,

(iii) Pe′n
i u = q−n(n−1)/2

i un for u ∈ U−
q (g).

Hence, if u ∈ U−
A

(g), then un ∈ U−
A

(g) for all n ≥ 0.
For i ∈ I im, we use a similar argument in [1, Proposition 3.11]. Assume that u ∈ U−

A
(g)

has the form u = mbi,cm′ for some c ∈ Ci and homogeneous elements m, m′ ∈ Ki ∩U−
A

(g),
where Ki =⋂l>0 ker e′

i,l . We shall show that u can be written into the form

u =
∑

c′∈C i

bi,c′uc′ with uc′ ∈ Ki ∩ U−
A

(g).

If |c| = 0, then u = mm′ ∈ Ki ∩ U−
A

(g). Otherwise, we have

u = (mbic1 − qc1(|m|,αi )bic1m)bi,c\c1m′ + qc1(|m|,αi )bic1mbi,c\c1m′,

where mbic1 −qc1(|m|,αi )bic1m ∈ Ki ∩U−
A

(g). Now our claim follows by using the induction
on |c|.

We next show that if u ∈ U−
A

(g), then u can be written into the form

u =
∑

c∈C i

bi,cuc with uc ∈ Ki ∩ U−
A

(g).
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We will use the induction on −|u|.
Assume that u is a monomial in U−

A
(g). Then there exists some monomial u′ ∈ U−

A
(g)

such that u = b(n)
j u′ for some j ∈ I re or u = b jlu′ for some j ∈ I im. By induction

hypothesis, u′ =∑c∈C i
bi,cuc with uc ∈ Ki ∩U−

A
(g). If j �= i , then u =∑c∈C i

b(n)
j bi,c uc

or u = ∑c∈C i
b jlbi,cuc is of the form mbi,cm′ with m, m′ ∈ Ki ∩ U−

A
(g). If i = j , then

u =∑c∈C i
bi,(l,c)uc is already in the form we wanted.

Thus, our assertion follows from the uniquesness of the decomposition. ��
Define

(bn
i U−

q (g))A := bn
i U−

q (g) ∩ U−
A

(g) for i ∈ I re and n ≥ 1,

(bi,cU
−
q (g))A := bi,cU

−
q (g) ∩ U−

A
(g) for i ∈ I im and c ∈ Ci\{0}.

By the above lemma,U−
A

(g) is stable under the Kashiwara operators ẽil and f̃il . Moreover,
we have the following corollary.

Corollary 17

(i) For i ∈ I re, (bn
i U−

q (g))A =∑k≥n b
(k)
i U−

A
(g) =⊕k≥n b

(k)
i (U−

A
(g) ∩ ker e′

i ).

For i ∈ I im, (bi,cU−
q (g))A = bi,cU

−
A

(g) =⊕c′∈C i
bi,(c,c′)(U

−
A

(g) ∩ Ki ).

(ii) For i ∈ I re, (bn
i V (λ))A := (bn

i U−
q (g))Avλ =∑k≥n b

(k)
i V (λ)A.

For i ∈ I im, (bi,cV (λ))A := (bi,cU−
q (g))Avλ = bi,cV (λ)A.

6 Existence of global bases

Let V be a finite-dimensional vector space over F(q), M be an A-submodule of V , and
L0 (resp. L∞) be a free A0-submodule (resp. free A∞-submodule) of V such that V ∼=
F(q) ⊗A0 L0 ∼= F(q) ⊗A∞ L∞.

Definition 4 The triple (VA, L0, L∞) is called an balanced triple for V if the canonical
linear map VA ∩ L0 ∩ L∞ −→ L0

/
q L0 is an isomorphism.

Lemma 18 [12, Lemma 7.1.1] Let V , M, L0, L∞ be as above.

(i) Assume that the canonical map M ∩ L0 ∩ L∞ → M ∩ L0/M ∩ q L0 is an isomorphism.
Then

M ∩ L0 ∼= F[q] ⊗F (M ∩ L0 ∩ L∞),

M ∩ L∞ ∼= F[q−1] ⊗F (M ∩ L0 ∩ L∞),

M ∼= A ⊗F (M ∩ L0 ∩ L∞),

M ∩ L0 ∩ L∞ ∼= (M ∩ L∞)/(M ∩ q−1L∞),

M ∩ L0 ∩ L∞ ∼= (F(q) ⊗A M) ∩ L0/(F(q) ⊗A M) ∩ q L0.

(ii) Let E be an F-vector space and ϕ : E → M ∩ L0 ∩ L∞ a homomorphism. Assume
that M = Aϕ(E) and E → L0/q L0, E → L∞/q−1L∞ are injective. Then E →
M ∩ L0 ∩ L∞ → M ∩ L0/M ∩ q L0 is an isomorphism.

Lemma 19 [12, Lemma 7.1.2] Let V , M, L0, L∞ be as above and let N be an A-submodule
of M. Assume that
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(1) N ∩ L0 ∩ L∞ ∼= N ∩ L0/N ∩ q L0.
(2) There exist anF-vector space F and a homomorphism ϕ : F → M∩(L0+N )∩(L∞+N )

such that
(a) M = Aϕ(F) + N,
(b) the induced homomorphisms ϕ0 : F → (L0 + N )/(q L0 + N ) and ϕ∞ : F → (L∞ +

N )/(q−1L∞ + N ) are injective.

Then the following statements hold.

(i) M ∩ L0 ∩ L∞ → M ∩ L0/M ∩ q L0 is an isomorphism.
(ii) M ∩ L0/M ∩ q L0 ∼= F ⊕ (N ∩ L0/N ∩ q L0).

For r ≥ 0, set

Q+(r) = {α ∈ Q+ | |α| ≤ r}.
We will prove the following inductive statements on r ≥ 0.

A(r ): For any α ∈ Q+(r), we have the following canonical isomorphism

U−
A

(g)−α ∩ L(∞) ∩ L(∞)− ∼−→ U−
A

(g)−α ∩ L(∞)

U−
A

(g)−α ∩ qL(∞)

∼−→ L(∞)−α/qL(∞)−α.

We denote by G∞ the inverse of this isomorphism.
B(r ): For any α ∈ Q+(r) and λ ∈ P+, we have the following canonical isomorphism

V (λ)Aλ−α ∩ L(λ) ∩ L(λ)− ∼−→ V (λ)Aλ−α ∩ L(λ)

V (λ)Aλ−α ∩ qL(λ)

∼−→ L(λ)λ−α/qL(λ)λ−α.

We denote by Gλ the inverse of this isomorphism.
C(r ): For α ∈ Q+(r), (i, l) ∈ I ∞, and n ≥ 0, assume that b ∈ f̃ n

il B(∞)−α+lnαi . Then we
have

G∞(b) ∈ bn
il U−

q (g).

If r = 0, our assertions are obvious. Now we assume that A(r −1), B(r −1) and C(r −1)
are true. Then Lemma 18 and Proposition 10 imply the following result.

Lemma 20 For α ∈ Q+(r − 1), we have

U−
A

(g)−α ∩ L(∞) =
⊕

b∈B(∞)−α

F[q]G∞(b), U−
A

(g)−α =
⊕

b∈B(∞)−α

AG∞(b),

V (λ)Aλ−α ∩ L(λ) =
⊕

b∈B(λ)λ−α

F[q]Gλ(b), V (λ)Aλ−α =
⊕

b∈B(λ)λ−α

AGλ(b),

and

G∞(b)vλ = Gλ(πλ(b)).

Lemma 21 Forα ∈ Q+(r−1), b ∈ B(∞)−α (resp. b ∈ B(λ)λ−α), we have G∞(b) = G∞(b)

(resp. Gλ(b) = Gλ(b)).

Proof Let Q = (G∞(b) − G∞(b))/(q − q−1). Then we have Q ∈ U−
A

(g)−α ∩ qL(∞) ∩
L(∞)− since 1/(q − q−1) ∈ qA0. ��
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Let i ∈ I iso, λ ∈ P+ and α ∈ Q+. For each partition c = (1l12l2 · · · klk · · · ), we define
(bi,c ∗ U−

q (g))A−α :=
∑

k≥1

(blk
i,kU−

q (g))A−α =
∑

k≥1

blk
i,k(U

−
A

(g)−α+klkαi ),

(bi,c ∗ V (λ))Aλ−α :=
∑

k≥1

(blk
i,k V (λ))Aλ−α =

∑

k≥1

blk
i,k(V (λ)Aλ−α+klkαi

).

Here (blk
i,kU−

q (g))A−α = (blk
i,k V (λ))Aλ−α = 0 if lk = 0.

Proposition 22 Let α ∈ Q+(r) and λ ∈ P+.

(i) For i ∈ I re and n ≥ 1, we have

(bn
i V (λ))Aλ−α ∩ L(λ) ∩ L(λ)− ∼−→ (bn

i V (λ))Aλ−α ∩ L(λ)

(bn
i V (λ))Aλ−α ∩ qL(λ)

∼=
⊕

b∈B(λ)λ−α∩ f̃ n
i B(λ)

Fb.

(ii) For i ∈ I im\I iso and any composition c with |c| �= 0, we have

(bi,cV (λ))Aλ−α ∩ L(λ) ∩ L(λ)− ∼−→ (bi,cV (λ))Aλ−α ∩ L(λ)

(bi,cV (λ))Aλ−α ∩ qL(λ)
∼=

⊕

b∈B(λ)λ−α∩ f̃i,cB(λ)

Fb.

(iii) For i ∈ I iso and any partition c = 1l12l2 · · · klk · · · , we have

(bi,c ∗ V (λ))Aλ−α ∩ L(λ) ∩ L(λ)− ∼−→ (bi,c ∗ V (λ))Aλ−α ∩ L(λ)

(bi,c ∗ V (λ))Aλ−α ∩ qL(λ)

∼=
⊕

b∈B(λ)λ−α∩( f̃i,c∗B(λ))

Fb,

where f̃i,c ∗ B(λ) :=⋃k≥1 f̃ lk
i,kB(λ).

Proof Our assertion (i) has been proved in [12, Proposition 7.4.1].
Assume i ∈ I im\I iso. Let c ∈ Ci such that |c| = n > 0. Recall that (bi,cV (λ))Aλ−α =

bi,c(V (λ)Aλ−α+nαi
). If (λ − α + nαi )(hi ) = 0, then (bi,cV (λ))Aλ−α = 0, and hence our

assertion is trivial. Thus we may assume that (λ − α + nαi )(hi ) > 0. In this case, for any
b ∈ B(λ)λ−α+nαi , we have f̃i,cb �= 0.

By B(r − 1), we have V (λ)Aλ−α+nαi
=⊕b∈B(λ)λ−α+nαi

AGλ(b). Hence

(bi,cV (λ))Aλ−α =
∑

b∈B(λ)λ−α+nαi

Abi,cGλ(b).

Let F =∑b∈B(λ)λ−α+nαi
Fbi,cGλ(b). We first show that F is a direct sum. Assume that

∑

b∈B(λ)λ−α+nαi

βbbi,cGλ(b) = 0 for some βb ∈ F.

Since f̃i,cGλ(b) = bi,cGλ(b) and Gλ(b) ≡ b (mod qL(λ)) for any b ∈ B(λ)λ−α+nαi , we
obtain

∑

b∈B(λ)λ−α+nαi

βb f̃i,cb = 0.
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By applying ẽi ,̃c, we get
∑

b∈B(λ)λ−α+nαi
βbb = 0, which implies βb = 0 for all b ∈

B(λ)λ−α+nαi .
Let N = 0, M = (bi,cV (λ))Aλ−α , L0 = L(λ)λ−α and L∞ = L(λ)−λ−α . Set ϕ : F →

M ∩ L0 ∩ L∞ be the F-linear map given by

bi,cGλ(b) �−→ bi,cGλ(b) = f̃i,cGλ(b).

Then, it is easy to check F, N , M, L0, L∞ and ϕ satisfy the conditions in Lemma 19, and
hence we get

M ∩ L0 ∩ L∞
∼−→ M ∩ L0/M ∩ q L0 ∼=

⊕

b∈B(λ)λ−α+nαi

F f̃i,cb =
⊕

b∈B(λ)λ−α∩ f̃i,cB(λ)

Fb

as desired.
Now, we shall prove (iii). Let i ∈ I iso. If lk is sufficient large, then (blk

ikU−
q (g))A−α = 0.

Hence we can use descending induction on N = ∑k≥1 lk . Without loss of generality, we
may assume that l1 �= 0 and (λ − α)(hi ) > 0. Then, by A(r − 1) and B(r − 1), we have

(bi,c ∗ V (λ))Aλ−α = bl1
i,1V (λ)Aλ−α+l1αi

+
∑

k≥2

(blk
i,k V (λ))Aλ−α

and

V (λ)Aλ−α+l1αi
=

⊕

b∈B(λ)λ−α+l1αi

AGλ(b) =
⊕

b∈B(∞)−α+l1αi
πλ(b)�=0

AG∞(b)vλ.

Let b ∈ B(∞)−α+l1αi with ẽi1b �= 0. Then b ∈ f̃i1B(∞) ∩ B(∞)−α+l1αi , which implies
G∞(b) ∈ bi1U−

q (g)∩U−
A

(g) byC(r −1). Hencebl1
i1G∞(b)vλ ∈ (bl1+1

i1 V (λ))Aλ−α . For k �= 1

with lk �= 0, if b ∈ f̃ lk
ikB(∞), then G∞(b) ∈ blk

ikU−
q (g) ∩ U−

A
(g) by C(r − 1). Therefore

bl1
i,1G∞(b)vλ ∈ (blk

i,k V (λ))Aλ−α . Hence we have

(bi,c ∗ V (λ))Aλ−α =
∑

b∈S

Abl1
i,1G∞(b)vλ + (bi,c∪{1} ∗ V (λ))Aλ−α,

where

S =
⎧
⎨

⎩
b ∈ B(∞)−α+l1αi | πλ(b) �= 0, ẽi,1b = 0, b /∈

⋃

k≥2

f̃ lk
i,kB(∞)

⎫
⎬

⎭

πλ∼−→
⎧
⎨

⎩
b ∈ B(λ)λ−α+l1αi | ẽi,1b = 0, b /∈

⋃

k≥2

f̃ lk
i,kB(λ)

⎫
⎬

⎭

f̃
l1
i,1∼−−→ B(λ)λ−α ∩

(
f̃ l1
i,1B(λ)\( f̃i,c∪{1} ∗ B(λ))

)
.

(24)

The last isomorphism follows from the fact that f̃il ẽil ′ = ẽil ′ f̃il and f̃il f̃il ′ = f̃il ′ f̃il for any
l, l ′ ≥ 1 with l �= l ′.

Let V = V (λ)λ−α , M = (bi,c ∗ V (λ))Aλ−α , N = (bi,c∪{1} ∗ V (λ))Aλ−α , L0 = L(λ)λ−α ,
L∞ = L(λ)−λ−α and

F =
∑

b∈S

Fbl1
i1G∞(b)vλ.
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For b ∈ S, we have b = G∞(b) + qL(∞). Assume that G∞(b) has the decomposition

G∞(b) =
∑

c∈C i

bi,cuc ∈ U−
A

(g)−α+l1αi ∩ L(∞) ∩ L(∞)−.

Then we have

f̃i1ẽi1G∞(b) = G∞(b) −
∑

c∈C i ;1/∈c
bi,cuc = G∞(b) − ub ∈ qL(∞).

Hence we obtain

(i) bl1
i1G∞(b) ≡ bl1

i1ub mod (bl1+1
i1 U−

q (g))A, which implies

bl1
i1G∞(b)vλ ∈ M ∩ (N + L0) ∩ (N + L∞). (25)

(ii) f̃ l1
i1b = βbb

l1
i1ub + qL(∞) for some βb ∈ F∗, which implies

πλ( f̃ l1
i1b) = βbb

l1
i1ubvλ + qL(λ). (26)

Set

H := (N + L0)/(N + q L0) ∼= L0/q L0

N ∩ L0/N ∩ q L0
.

By induction hypothesis, we have H ∼= ⊕b∈B(λ)λ−α\( f̃i,c∪{1}∗B(λ)) Fb. Hence (24), (25) and
(26) imply that the following canonical maps are injective:

ϕ0 : F
ϕ−→ M ∩ (L0 + N ) ∩ (L∞ + N ) → N + L0

N + q L0

∼−→ H

bl1
i1G∞(b)vλ �→ bl1

i1G∞(b)vλ �→ bl1
i1ubvλ + (N + q L0) �→ 1

βb
πλ( f̃ l1

i1b)

(27)

By taking −, the following canonical map is injective

ϕ∞ : F
ϕ−→ M ∩ (L0 + N ) ∩ (L∞ + N ) → N + L∞

N + q−1L∞
.

Note that M = Aϕ(F) + N . Hence Lemma 19 yields

M ∩ L0 ∩ L∞
∼−→ (M ∩ L0)/(M ∩ q L0) ∼= F ⊕ (N ∩ L0/N ∩ q L0),

where

F ⊕ (N ∩ L0/N ∩ q L0) ∼=
⊕

S�(B(λ)λ−α∩ f̃i,c∪{1}∗B(λ))

Fb

=
⊕

B(λ)λ−α∩( f̃i,c∗B(λ))

Fb.

This completes the proof. ��

Corollary 23 Let α ∈ Q+(r).
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(i) For i ∈ I re and n ≥ 1, we have

(bn
i U−

q (g))A−α ∩ L(∞) ∩ L(∞)− ∼−→ (bn
i U−

q (g))A−α ∩ L(∞)

(bn
i U−

q (g))A−α ∩ qL(∞)

∼=
⊕

b∈B(∞)−α∩ f̃ n
i B(∞)

Fb.

(ii) For i ∈ I im\I iso and |c| �= 0, we have

(bi,cU
−
q (g))A−α ∩ L(∞) ∩ L(∞)− ∼−→ (bi,cU−

q (g))A−α ∩ L(∞)

(bi,cU
−
q (g))A−α ∩ qL(∞)

∼=
⊕

b∈B(∞)−α∩ f̃i,cB(∞)

Fb.

(iii) For i ∈ I iso and any partition c = (1l12l2 · · · klk · · · ), we have

(bi,c ∗ U−
q (g))A−α ∩ L(∞) ∩ L(∞)− ∼−→ (bi,c ∗ U−

q (g))A−α ∩ L(∞)

(bi,c ∗ U−
q (g))A−α ∩ qL(∞)

∼=
⊕

b∈B(∞)−α∩( f̃i,c∗B(∞))

Fb,

where f̃i,c ∗ B(∞) =⋃k≥1 f̃ lk
ikB(∞).

Proof We shall prove (iii) only. The proof of (i) and (ii) are similar. For λ � 0, we have

U−
q (g)−α

∼−→ V (λ)λ−α, (bi,c ∗ U−
q (g))A−α

∼−→ (bi,c ∗ V (λ))Aλ−α,

L(∞)−α
∼−→ L(λ)λ−α, L(∞)−−α

∼−→ L(λ)−λ−α,

and
⊕

b∈B(∞)−α∩( f̃i,c∗B(∞))

Fb
∼−→

⊕

b∈B(λ)λ−α∩( f̃i,c∗B(λ))

Fb.

Hence our assertion follows immediately. ��

For α ∈ Q+(r) and (i, l) ∈ I ∞, let us denote by Gil the inverse of the isomorphism

(bilU
−
q (g))A−α ∩ L(∞) ∩ L(∞)− ∼−→

⊕

b∈B(∞)−α∩ f̃ilB(∞)

Fb.

Then Corollary 23 implies (bn
ilU

−
q (g))A−α =⊕b∈B(∞)−α∩ f̃ n

il B(∞) AGil(b) for any n ≥ 1.

Lemma 24 Let (i, l), ( j, s) ∈ I ∞, α ∈ Q+(r) and b ∈ f̃ilB(∞) ∩ f̃ j sB(∞) ∩ B(∞)−α .
Then we have

Gil(b) = G js(b).
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Proof Let us write b = f̃il . . . f̃km · 1, where (k, m) ∈ I ∞. If k ∈ I re, then our claim was
proved in [12]. So we will assume that k ∈ I im. Take λ ∈ P+ with λ(hk) = 0 and λ(h j ) � 0
for all j ∈ I\{k}. Then (18) yields

V (λ)λ−α � U−
q (g)−α

/∑

n≥1

U−
q (g)−α+nαkbkn .

The same argument in [12, Lemma 7.5.1] shows that

Q = Gil(b) − G js(b) ∈
⎛

⎝
∑

n≥1

U−
q (g)−α+nαkbkn

⎞

⎠ ∩ U−
A

(g)−α ∩ qL(∞) ∩ L(∞)−.

Then Corollary 13 implies

Q∗ ∈
⎛

⎝
∑

n≥1

bknU−
q (g)−α+nαk

⎞

⎠ ∩ U−
A

(g)−α ∩ qL(∞) ∩ L(∞)−.

If k ∈ I im\I iso, we assume that Q∗ = bk1u1+· · ·+bkt ut . Since Q∗ = Q
∗ = Q∗, we have

Q∗ = bk1u1 + · · ·+bkt ut . Note that for each 1 ≤ j ≤ t , bk j u j = f̃k j ẽk j Q∗ ∈ bk j U−
q (g)∩

U−
A

(g)−α∩qL(∞) andu j = u j = ẽk j Q∗. Hencebkj u j ∈ (bk j U−
q (g))A−α∩qL(∞)∩L(∞)−

and Corollary 23 (ii) implies Q∗ = 0.
If k ∈ I iso, since Q∗ ∈ (

∑
n≥1 bknU−

q (g)−α+nαk ) ∩ U−
A

(g)−α , the decomposition of Q∗
can be expressed as the form Q∗ = bk1u1 + · · · + bkt ut with

u j =
∑

c∈C k and
c contains no j+1,...,s

bk,cuc.

For every 1 ≤ j ≤ t , we have

bk j u j = f̃k j ẽk j (Q∗ −
∑

j<p≤s

bkpu p) ∈ (bk j U
−
q (g))A−α.

Hence Q∗ ∈ (bk,(1121...t1) ∗ U−
q (g))A−α , and Corollary 23 (iii) implies Q∗ = 0. ��

Thus we can define

G : L(∞)−α/qL(∞)−α → U−
A

(g)−α ∩ L(∞) ∩ L(∞)−

by

b �→ Gil(b) for b ∈ f̃ilB(∞) ∩ B(∞)−α, (i, l) ∈ I ∞.

Then we have b = G(b) + qL(∞) and

(bn
ilU

−
q (g))A−α =

⊕

b∈B(∞)−α∩ f̃ n
il B(∞)

AG(b) (28)

for any n ≥ 1. Since U−
A

(g)−α =∑(i,l)∈I ∞(bilU−
q (g))A−α , we obtain

U−
A

(g)−α =
∑

b∈B(∞)−α

AG(b).
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Let E = L(∞)−α/qL(∞)−α and M = U−
A

(g)−α . Then by Lemma 18(ii), we deduce that

L(∞)−α/qL(∞)−α
G−→ U−

A
(g)−α ∩ L(∞) ∩ L(∞)− → U−

A
(g)−α ∩ L(∞)

U−
A

(g)−α ∩ qL(∞)

is an isomorphism, which proves A(r ). Now C(r ) follows from (28). Finally, we shall prove
B(r ).

Lemma 25 Let α ∈ Q+(r), b ∈ B(∞)−α and λ ∈ P+. If πλ(b) = 0, then G(b)vλ = 0.

Proof Take (i, l) ∈ I ∞ with ẽilb �= 0. Then G(b)vλ ∈ (bil V (λ))Aλ−α ∩ qL(λ) ∩ L(λ)− by
Proposition 22. ��

By this lemma, we have V (λ)Aλ−α =∑b∈B(∞)−α

πλ(b)�=0
AG(b)vλ. Let

E =
∑

b∈B(∞)−α

πλ(b)�=0

FG(b)vλ ⊆ V (λ)Aλ−α ∩ L(λ) ∩ L(λ)−.

Since {b ∈ B(∞)−α | πλ(b) �= 0} ∼−→ B(λ)λ−α , we have

E
∼−→ L(λ)λ−α/qL(λ)λ−α

given by

G(b)vλ �−→ G(b)vλ + qL(λ) = πλ(b).

By Lemma 18(ii), we get

E
∼−→ V (λ)Aλ−α ∩ L(λ) ∩ L(λ)− ∼−→ V (λ)Aλ−α ∩ L(λ)

V (λ)Aλ−α ∩ qL(λ)
∼= L(λ)λ−α/qL(λ)λ−α,

which proves B(r ).
To summarize, we obtain the main goal of this paper.

Theorem 26 There exist canonical isomorphisms

U−
A

(g) ∩ L(∞) ∩ L(∞)− ∼−→ L(∞)/qL(∞),

V (λ)A ∩ L(λ) ∩ L(λ)− ∼−→ L(λ)/qL(λ) (λ ∈ P+).

Definition 5 (a) B := {G(b) | b ∈ B(∞)} is called the global basis ofU−
A

(g) corresponding
to B(∞).

(b) Bλ := {Gλ(b) | b ∈ B(λ)} is called the global basis of V (λ)A corresponding to B(λ).

Remark 2 The global bases B and Bλ are unique because they are stable under the bar
involution.

We conjecture that our global bases coincide with (a variation of) Bozec’s canonical bases.
The following proposition would be a key ingredient of the proof.

Proposition 27 Let i ∈ I im \ I iso, α ∈ Q+, l ≥ 0 and λ ∈ P+. Define

Bα,i,≥l :=
⋃

|c|=l

f̃i,c(B(∞)−α), Bα,i,l := Bα,i,≥l \ Bα,i,≥l+1,

Bλ
α,i,≥l :=

⋃

|c|=l

f̃i,c(B(λ)λ−α), Bλ
α,i,l = Bλ

α,i,≥l \ Bλ
α,i,≥l+1.

(29)
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(a) For any b ∈ Bα,i,l , there exist an element b0 ∈ Bα−lαi ,i,0 and a composition c of l such
that

bi,cG(b0) − G(b) ∈
⊕

b′∈Bα,i,≥l+1

AG(b′).

(b) For any b ∈ Bλ
α,i,l , there exist an element b0 ∈ Bλ

α−lαi ,i,0
and a composition c of l such

that

bi,cGλ(b0) − Gλ(b) ∈
⊕

b′∈Bλ
α,i,≥l+1

AGλ(b′).

Proof We will prove (a) only. The proof of (b) is similar. Recall that

U−
A

(g) =
⊕

c

bı,cKi , where K :=
⋂

l>0

ker e′
il .

Let Pi : U−
A

(g) −→ Ki be the projection. Then, for u ∈ UA, we have

f̃il(u) = bi,l Pi (u) mod

⎛

⎝
∑

|c′|≥l+1

bi,c′ U−
A

(g)

⎞

⎠ . (30)

By the crystal basis theory, for any b ∈ Bα,i,l , there exist an element b0 ∈ Bα−lαi ,i,0 and
a composition c of l such that f̃i,cb0 = b. Thus we have

bi,cG(b0) =aG(b) + a1G(b1) + · · · + ar G(br )

mod

⎛

⎝
∑

|c′|≥l+1

bi,c′U−
A

(g)

⎞

⎠ ,
(31)

where a, a1, . . . , ar ∈ A, b1, . . . , br ∈ Bα−lαi ,i,0.
Since the left-hand side and right-hand side of (31) are invariant under the bar involution,

we have

a = a, a1 = a1, . . . , ar = ar .

We know

f̃i,c G(b0) = G(b) mod qL(∞). (32)

On the other hand, as in (31),we have

f̃i,cG(b0) = bi,c(Pi G(b0) mod

⎛

⎝
∑

|c′|≥l+1

bi,c′U−
A

(g)

⎞

⎠

= bi,cG(b0) mod

⎛

⎝
∑

|c′|≥l+1

bi,c′U−
A

(g)

⎞

⎠

= (aG(b) + a1G(b1) + · · · + ar G(br ) mod

⎛

⎝
∑

|c′|≥l+1

bi,c′U−
A

(g)

⎞

⎠ .

(33)

Comparing with (32), we get

a = 1, a1 = · · · = ar = 0 mod qL(∞).
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Since a, a1, . . . , ar are all bar-invariant, we conclude a = 1, a1 = · · · = ar = 0 in A.
Thus we have finished our proof. ��
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