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Abstract

We provide an explicit construction of global bases for quantum Borcherds—Bozec algebras
and their irreducible highest weight modules. Moreover, we give a new presentation for
quantum Borcherds—Bozec algebras in terms of primitive generators.

Keywords Quantum Borcherds—Bozec algebra - Crystal basis - Global basis

Mathematics Subject Classification 17B37 - 17B67 - 16G20

1 Introduction

The quantum Borcherds—Bozec algebras were introduced by Bozec [1, 2] in terms of genera-
tors and relations when he solved a question asked by Lusztig in [15]. Namely, if we consider
a quiver with loops, the Grothendieck group arising from Lusztig sheaves on representation
varieties is generated by the elementary simple perverse sheaves F. i(") with all vertices i
and n € N. Bozec proved an analogue of Gabber—Kac theorem for the negative part U, (g)
of a quantum Borcherds—Bozec algebra, and showed that the above Grothendieck group is
isomorphic to U, 7 (¢), which gives a construction of its canonical basis.

Seok-Jin Kang, Young Rock Kim, and Bolun Tong have contributed equally to this work.

B Young Rock Kim
rocky777@hufs.ac.kr

Zhaobing Fan
fanz@ksu.edu

Seok-Jin Kang
soccerkang @hotmail.com

Bolun Tong
tbl_2019@hrbeu.edu.cn
Department of Mathematics, Harbin Engineering University, Harbin 150009, Nangang, China

Department of Mathematics, Korea Research Institute of Arts and Mathematics, Asan-si,
Chungcheongnam-do 31551, Korea

Graduate School of Education, Hankuk University of Foreign Studies, 107 Imunro, Dongdaemungu,
Seoul 02450, Korea

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00209-022-03051-2&domain=pdf

3728 Z.Fanetal.

The canonical basis theory was first introduced by Lusztig in the simply-laced case in
[13], arising from his geometric construction of the negative parts of quantum groups, and it
has been generalized to symmetric Kac—Moody type in [14, 16]. On the other hand, Kashi-
wara constructed the crystal bases and global bases for quantum groups associated with
symmetrizable Kac-Moody algebras in an algebraic way [11, 12]. In [5], Grojnowski and
Lusztig proved that Kashiwara’s global bases coincide with Lusztig’s canonical bases. The
canonical/crystal basis theory has become one of the most central themes in combinatorial
and geometric representation theory of quantum groups because it provides us with very
powerful geometric and combinatorial tools to investigate the structure of quantum groups
and their integrable representations. In [7], Jeong, Kang, and Kashiwara developed the crystal
basis theory for quantum Borcherds algebras, which were introduced in [8]. In [10], Kang
and Schiffmann gave a construction of canonical basis for quantum Borcherds algebras and
proved that, when all the diagonal entries of the corresponding Borcherds—Cartan matrices
are non-zero, the canonical bases coincide with global bases.

Bozec’s crystal basis theory for quantum Borcherds—Bozec algbras is based on primitive
generators a;, by (i,1) € I°°, not on the Chevalley generators e;j;, fi (i,1) € I°°. The
primitive generators have simpler commutation relations than Chevalley generators. Bozec
defined the Kashiwara operators using primitive generators and proved several crucial the-
orems which are important steps for Kashiwara’s grand-loop argument [2, Lemma 3.33,
Lemma 3.34]. In this way, even though he did not check all the details, he was able to deduce
that there exist unique crystal bases for quantum Borcherds—Bozec algbras and their inte-
grable highest weight modules. Moreover, using Lusztig’s and Nakajima’s quiver varieties,
he also gave a geometric construction of 5(c0), the crystal of the negative half U 7 (9), and
B(A), the crystal of the integrable highest weight representation V (1), respectively.

The main goal of this paper is to construct the global bases for quantum Borcherds—
Bozec algebras and their irreducible highest weight modules. As the first step, we give an
explicit description of the radical % of Lusztig’s bilinear form (Theorem 4). The higher
order Serre relations we obtained have more general forms than those given in [1]. As a
direct application, we give a new presentation of the quantum Borcherds—Bozec algebra
U, (g) in terms of primitive generators (Proposition 7).

Then we set up the frame work that can be found in [7, 12]. However, we still need
more preparations. In the case of quantum Borcherds—-Bozec algebras, for each /™, there
are infinitely many generators with higher degrees. Thus, compared with quantum Borcherds
algebras, we need to take a much more complicated approach to the construction of global
bases. To overcome these difficulties, we introduce a very natural and much expanded notion
of balanced triples corresponding to the compositions or partitions of each higher degree
of primitive generators (Proposition 22, Corollary 23). As can be expected, to prove our
assertions, the imaginary indices with higher degrees should be treated with special care. In
particular, the isotropic case (i.e., when a;; = 0) requires very subtle and delicate treatments.

Now we can follow the steps given in [7, 12] and prove the existence and uniqueness of
global bases (Theorem 26). The key ingredients of our proof are Proposition 22 and Corollary
23. We conjecture that our global bases coincide with (a variation of) Bozec’s canonical bases.

This paper is organized as follows. In Sect. 2, we give an explicit description of the
radical # of Lusztig’s bilinear form ( , ); via higher order quantum Serre relations in
quantum Borcherds—Bozec algebras. In Sect. 3, we give a new presentation of quantum
Borcherds—Bozec algebras in terms of primitive generators as an application of higher order
quantum Serre relations. In Sect. 4, we review the crystal basis theory for quantum Borcherds—
Bozec algebras and give canonical characterizations of the crystal bases (L£(00), B(c0)) and
(L(X), B(%)), respectively. We also define the quantum Boson algebra %, (g) for an arbitrary

@ Springer



Global bases for quantum Borcherds-Bozec algebras 3729

Borcherds—Cartan datum. In Sect. 5, we define the A-forms Uy (g) of U, (g) and V()2 of
V (%), respectively. We prove that Ux (g) has the triangular decomposition and both U, (g)
and V(1)* are stable under the Kashiwara operators. In Sect. 6, we prove the existence
and uniqueness of global bases. As expected, most of this section is devoted to the proof of
Proposition 22 and Corollary 23.

2 Higher order quantum serre relations

Let I be an index set possibly countably infinite. An integer-valued matrix A = (a;;);,jes 1S
called an even symmetrizable Borcherds—Cartan matrix if it satisfies the following conditions:

1) ai; =2,0,-2,-4,...,
(ii) a;jj € Z<o fori # j,
(iii) there is a diagonal matrix D = diag(r; € Z-¢ | i € I) such that DA is symmetric.

Let I® :={iel|a;=2,1™:={iel|a; <0} and I :={i €I |a; =0}
The elements of 1™ (resp. I'™, 1'°) are called real indices (resp. imaginary indices, isotropic
indices).

A Borcherds—Cartan datum consists of

(a) an even symmetrizable Borcherds—Cartan matrix A = (a;;);, jer,

(b) a free abelian group PY = (@ie[ Zhi) &) (@iel Zdi), the dual weight lattice,

(c) b =Q ®z PV, the Cartan subalgebra,

(d) P ={xeb*| AM(PY) C Z}, the weight lattice,

(e) MY = {h; € PV | i € I}, the set of simple coroots,

() I ={o; € P |i € I}, the set of simple roots, which is linearly independent over Q and
satisfies

Olj(h,‘) = a;j, O{j(d,') = 8,‘]‘ foralli,j el.
(g) foreachi € I, thereis a A; € P, called the fundamental weight, defined by
Ai(hj) = 5,'1', Ai(dj) =0 foralli,j el.

We denote by Pt theset {A € P | A(h;) > 0 foralli € I} of dominant integral weights.
The free abelian group Q := P, ; Ze; is called the root lattice. Set O = Y, ; Z>oc; and
QO_ =—0Q4.For B = kiaj € Q4+, we define its height to be || := >_k;.

There is a non-degenerate symmetric bilinear form (, ) on h* satisfying

iel

(ai, ) = rir(h;), (Aj, X)) =riA(d;) forany . € h* andi € I,
and therefore we have
(i, aj) =riajj =rjaj; foralli, j € I.
Fori € I, we define the simple reflection w; € GL(H*) by
wi(A) = A — A(hi)ey

forall A € h*. The subgroup W of GL(h*) generated by w; (i € I™) is called the Weyl group
of the Borcherds—Cartan datum given above. Note that the symmetric bilinear form (, ) is
W -invariant.
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Let I® := (I" x {1) U (I'™ x Z-0). If i € I'®, we often write i for (i, 1). Let ¢ be an
indeterminate and set

(aj,0;)

9 =9", qi=q ?

Foreachi € I"™ and n € Zx(, we define
—n

T[] =
[l = ["]”‘El[k]” [kl—[k],.z[n_k],-r

qi i

Let .7 = Q(q)(fi1 | (i,1) € I*°) be the free associative algebra over Q(g) generated by
the symbols fj; for (i, 1) € 1°°. By setting deg fi; = —la;, .7 become a Q _-graded algebra.
For a homogeneous element u in .%, we denote by |u| the degree of u, and for any subset
ACQO_,setFp={xeZF||x| €A}

We define a rwisted multiplication on . ® .% by

—(lx2l.Iy1D

(X1 ®x2)(y1 ®y2) =¢q X1y1 @ x2y2,

for all homogeneous x1, x2, y1, y2 € %, and equip .% with a co-multiplication o defined by
o(fid =Y 5" fim ® fin for (i,1) € I,
m-+n=I
Here, we understand fjo = 1 and f;; = 0 for/ < 0.

Proposition 1 [1, 2] For any family v = (vi;) nei= of non-zero elements in Q(q), there
exists a symmetric bilinear form (, ) : % x % — Q(q) such that

(@) (x,y)L =0if|x| # |yl

(b) (1, =1,

(c) (fu, finL =vii forall (i,1) € I*,

(d) (x,yz2)r = (0(x),y®2) forallx,y,z € Z.

Here, (x1 ® x2, y1 ® ¥2)1 = (x1, y1)L(x2, ¥2)1 for any x1, x2, y1, y2 € Z.

We denote by # the radical of (, ). _
Let C; be the set of compositions ¢ of /, and set fj ¢ = fic, - .. fic, for every i € I"™
and every ¢ = (cq, ..., cn) € C; . Assume C; = {¢, €2, ..., ¢}, wesee that fi¢,,..., fie
form a basis of .#_;,,. Hence, for any homogeneous element x in .7, o(x) can be written
into the forms
0(x) =x¢; ® fie, ++ -+ x¢, ® fie, + terms of bidegree notin Q_ x —lo;,
o(x) = fiq ®xé] + 4 fie ®xér + terms of bidegree notin —lo; x Q_.

We denote by o; ;(x), Qi*’(x): F — Z" the Q(q)-linear maps:
0i1(x) = (Xeyn .- Xe,)s 071 (X) = (x¢,. .. XL

If x, y are homogeneous elements such that g; x(y) = O for any k > 0, then we have

0i.1(xy) = q'®PPo; ;(x)y and 0;;(yx) = yoii(x).
Here, 0i1(x)y = (X¢;y.....%ey) and yoii(x) = (VX¢;,--., V%) if 0ii(x) =
(Xeps - -y X, ). Similarly, if Q‘*k(y) = 0 for any k > 0, we have

Lai.lyl)

0" (xy) = 0" (x)y and o' (yx) = ¢ yo'l(x).
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Fori € I'®, we define the Q(g)-linear maps g;, o' : & — % by
0i(1) = 0, 0:(fj4) = 8,761, and 0; (xy) = ¢“"PPo; (x)y +x0i (1),
o' (1) = 0,0'(fj.0) = 8. jk.1, and @' (xy) = o' (¥)y + ¢ xo’ (),
for all homogeneous x, y. Note that for any homogeneous x € .%, we have
o(x) = 0i(x) ® f; + terms of other bi-homogeneities,
o) = fi® Qi (x) + terms of other bi-homogeneities.

The following lemma can be derived directly from the definitions of o; ; and o'

Lemma 2

(a) Ifi € I'®, then for any x, y € F, we have

Ofi. L = (fio LG 0i . (fiy, L = (fis f)L(y, @' ()L
(b) Ifi € 1™, let x € .F with 0; ](x) = (X¢;, - » X¢,) and 0"/ (x) = (Xgys -+ » Xe,)- Then
forany x € F, we have
(yﬁlvx)L = (ﬁl! ﬁ,C|)L(yvxC|)L + -+ (.fil7 fi,c,)L()’»xc,)L,
(fily7x)L = (fiIa ﬁ,cl)L(yvxél)L +--+ (ﬁl! fi,c,)L(yvxé,)b

(c) Let x € F be a homogeneous element with |x| # 0, we have
(i) if 0i1(x) € Z forany (i,1) € I®, then x € %,
(ii) if o' (x) € % for any (i,1) € I, then x € Z.
Here, ifi € I'™, o"'!(x) € # means each component of o' (x) belongs to .

Foranyi € I" and n € N, we set

w_ S
=

By a similar argument in [16, 1.4.2], we can prove:

Lemma3 We have

Q(fl(n)) — Z qiipp/f[(p) ® fi(p,) (])

ptp'=n

foranyi € I'"* andn € N.

Theorem 4 Assume thati € 1'%, j € I andi # j. Letm € Lo, n € Lo withm > —a;;n.
Then for any ¢ € Cy, the following element of %

S (—an—m-+1)
Fijmmest = 3. (=Dg; VO g f 0 @

r+s=m

belongs to %. Here, we put fj . = f;’ for j eI
Proof If n = 0, then
+r(1—
Fi,j,m,O,c,:l:l — Z (_1)rql r( m)fl(r)fl(S)

r4+s=m

Since Z,.Jrszm(—l)’qiir(l*m) [T:I =0, we have F; j m.0.c,41 = 0.
i
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We shall only show it for j € I'™, and the case j € I™ can be shown similarly. By
Lemma 2 (c), it is enough to show each component of Qi/’k(Fi,J‘,m’n,c’il) belongs to Z. If
i’ #1i, j, there is nothing to show.

We first show it fori’ = j.For0 < k <nandc¢ = (ny,...,n;) € C,, we have

Qj,k(fi(’”)fj,cfi(s)) — Qj’k(fi(r)fj,c)fj(S) — qf(rot[,kaj)fi(r)gj,k(fj’c)fi(s)

e s , 3)
=9 (ra“kaj)fi(r) (:Bal ,,,,, a fj,(nl—m,...,n,—a,))alffll ----- ar=n; f,'(S)s
ay+--+ar=k
where
_ ZZ:]ah(ah_nh) 22]§p<q§t(ap7”p)aq
Bay,...ar = q) () .

Note that m > —a; jn > —a; j(n — k) and

—r(—aijjn—m+1) _(rq; . —r[—ajj(n—k)—m+1]
. J q (raikaj) _ q; J .

Therefore each component of Qj’k(Fi,j,m,,,,c,,l) is a scalar multiple of F; ; ,; n—k ¢, —1 for
some ¢ € Cy_g.
We now show it for i’ = i. Since i € I™, we have

, g . L —(ro: o —s s—1
Ql (fl(r)f],Cf,(Y)) — Ql (fl(r)f],C)fl(Y) +q (r()l1+nol],0!,)qi1 sfi(r)fj,Cf[(Y )

)
1- -1 —(raj+na;j,a)  1- ) -1
=q, rfi(r )fj,Cfi(S) +q (raj+naj,o )qi Tf,'(r)fj,cfi(s )
Hence
. —r(—=ajjn—m+1) [_ —1 K
O Eijmme) = Y (=1)7g; a7 fe £
r4+s=m (5)
—r(—ajin—m+1) _(ro: Ca)  1— -1
+ Z (_l)rqi J q (rot,+na1,a,)qi Sﬁ(r)fj,Cﬁ(s ).
r+s=m
: (r) (s—=1) .
Note that the coefficient of f;"" f; ¢ f; is
qi—(r+])(—a,-jn—m+l)qi_, _ qi—r(—a,-jn—m-i—])q,(rai+naj,ai)qi1 —m+r
—(r+D)(=a;jn—m+1) _ —r(=ajjn—m+1) —2r—na;; |_
_ i(rJr)( ajjn m+)ir_ ir( aijn m+)i rnajqil m4r (6)
—r(—a;jn—m+2) a;jn+m—1 —2m—2na;;j+2
=g J ; J (a- q; T,
Therefore
P —2m—2na;;+2. ajjn+m—1
o' Fijmne—1)=1—gq ’ )4, !
—r(—ajjn—m+2)
Z (_l)rql J fl(r)fj,cfl(S)
r+s=m—1
) BFijm-1ne—1 if m>—ajn+1,
0 if m=—ajjn+1.
—2m—2naij+2, aijn+m—1 .
Here 8 = (1 — ¢, it )qf’“m is a constant.
By the induction and Lemma 2(c), theorem follows. O
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In particular, when m = 1 — la;j, n = [ and ¢ = (/), by Theorem 4, we conclude

Zr+x=171aij (_l)rfi(r) f]l‘fi(x) if j e I,
Zr+s=1—zai-(—l)rﬁ(r)szfi(x) if j e I'™,

]

Fijmne+l =

belongs to Z.
Lemma5 Let (i, k), (j,1) € I such that a;j = 0. Set X = fi fj1 — fj1 fik, Then X € Z.

Proof Note thatifi, j € I'®,then X = f; f; — f; fi. Since i and j cannot be equal, we have
X =-=Fij11,0)+l €Z.
Ifierl™ andj € Ilm, we haye X = fifjl — fjlfi = _Fi,j,l,l,c=(l),:|:l €.
We now assume thati, j € "™ and i = j € I"°. Note for any 0 < s < k + [, we have
0" (X) = 0" (fu fir — fuu fiw)

= (fisk=ar fii—ar — fid—ar fik—ar)ar<k,ar=<l -
aitax=s

By induction and Lemma 2, X eZ%.
Finally, if i, j € I"™ and i # j, thenforany 0 < s < kand 0 < ¢ <, we have

0" (X) = 0" (fuacfjt — firdie) = agy ™ Siks Fit = Fitfik—s)-
o (X) = 0¥ (fu fi1 — fufuu) = q(_jg(l_t)(ﬁkfj,zfz — fia—i fik)-

By induction and Lemma 2, X € %. O

3 Quantum Borcherds-Bozec algebras

From now on, we always assume that
vii € 1+ qZ>ollq]] forall (i,1) € I*°. (7)

Under this assumption, the bilinear form (, ) is non-degenerate on .% (i) = EBlz | F 1o
fori el im\I i50 Moreover, it has been showed in [1, Proposition 14] that the two-sided ideal
Z 1s generated by

Yo A fuf forie 1, (1) € I and i # (. D).
r+s=1-la;;

and fix fj1 — fji fix forall (i, k), (j, 1) € I®° witha;; =0

Given a Borcherds—Cartan datum (A, P, PV, I1, ITY), we denote by U the associative
algebra over Q(g) with 1, generated by the elements qh (h € PV)and ey, fi ((i,1) € I*)
with defining relations

=1, ¢"¢" =¢"" forh, i e PV
q"ejig" =g Pej, q" fugT" =g fj; forh e PV, (j,1) € I,

Y (=1 e el =0 fori € I, (j.1) € I and i # (j. D),
r+s=1-la;; ®)

S A £ =0 fori e I, (j.1) € 1% and i # (j. 1),

r+s=1 —la,-j

eixeji — ejieix = fir fj1 — fitfik =0 fora;; = 0.
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3734 Z.Fanetal.

We extend the grading by setting lg"| = 0 and |e;;| = lo;. R L
The algebra U is endowed with a co-multiplication A: U — U ® U given by

AgM =q"®4",
Aleir) = Z qzl)neim ® Kiimein’

m+n=I (9)
A=) 45" fimK} ® fin,

m+n=I[
where IS\, = qr"hf (iel). R
Let U=° be the subalgebra of U generated by f;; and ¢", for all (i,/) € I and h € P,
and U™ be the subalgebra generated by e forall (i,1) € I°°. Weextend (, )z toasymmetric
bilinear form (, ); on U U=0and on U+ by setting

(q ) I)L == 1’ (q ’fil)L :07
@" KL =q ", (10)
(x, )1 = (@), w(y) forallx,ye U+,

where w: U — U is the involution defined by
o(g") =q7" wen) = fi, o(fi) = ey forh e PV, (i,1) € I%.

For any x € U , we shall use the Sweedler’s notation, and write
AX) =) x1) ®X).

Definition 1 Following the Drinfeld double process, we define the guantum Borcherds—Bozec
algebra Uy (g) associated with a given Borcherds—Cartan datum (A, P, PY, IT, ITY) as the
quotient of U by the relations

Z(a(l), b(z))Lw(b(l))a(z) = Z(a(z), b(]))La(l)w(b(z)) for all a, b e 1750. (11)

Let U(;r (g) (resp. Uq’ (g)) be the subalgebra of U,(g) generated by e;; (resp. fj;) for
@i,1) € I%, and Uc(l)(g) the subalgebra of U,(g) generated by g" for h € PV. We shall
denote by U (resp. U™ and U ™) for U, (g) (resp. U;‘ (g) and Uq_ (g)) for simplicity. Then U
has the following triangular decomposition U = U~ @ U ‘eUt.

Proposition 6 [1,2] Foranyi € 1™ andl > 1, there exist unique elements bj; € U—_la,- and
a;; = w(by;) such that

(1) Q@) {full=1)=Q(g){bi |l = 1) and Q(g){eir | I = 1) = Q(g){air | = 1),
(2) (bir,z)r =0 forall z € Q@) fi1, ..., fii-1),
(air, 2)r =0 forall z € Q(g){ein, - ., €ii-1),
(3) bt — fu € Q@) {fix | k < 1) and aj; — eis € Q(g){eir | k < 1),
(4) bi = b1, @iy = air,
(5) obi)) =by @1 +1Q by, o(ai) =21 @1+ 1® ay,
(6) A(bir) =by ® 1 +K! @ by, Ala) = an @ K, +1® au,
(7) Stbi) = —K; b, S(ain) = —auK/.

Here, S is the antipode of U, and ~: U* — U% is the Q-algebra involution defined by
e =i, fy=fuandq=q"".
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Global bases for quantum Borcherds-Bozec algebras 3735

Set 7y = (air, air)L = (bir, bi) L, we have the following commutation relations in Uy (@)
aibjk — bjrai = 8ijdutiu(K! — K. (12)

The elements a;;’s and b;;’s are called the primitive generators. Let Cy (resp. Py) be the set
of compositions (resp. partitions) of /. For i € I'™, we define

¢ ifi e I'™\1'°,
%)iJ = o iso
P oifi e I1°.

and 6; = |_l;=¢ €i,i. Fori € I'®, we just put ¢; ; = {l}.
Assume thati € I'™. Lete = (cq,...,c;) € ¢:.; and set

bi,c = bicl s 'bic,7 aj,c = Qicy - -+ Ai¢, and Ti,e = Ticy « -+ Tigy»

Note that {bj ¢ | ¢ € €} forms a basis of U~ . Foreachi € I'®, we putb; = fi,ai =¢;
and 7; = v;.

Example 1 (1) Each A € P can be written as the form A = 1*12*2 .. .[*, where }; are
non-negative integers such that Ay +2x, + --- +[A; = [. Fori € I'*°, we have

bi = fir — Z

7
AePA\(D) [Tz 24!

1
bi,)u

Note that assumption (7) implies v;; = 1 (mod ¢), hence we have t;; = % (mod g) by
the following equation

> =

) =
remy L=t B!

(2) Under the assumption (7), if i € I'™\ ™, it was shown in [2, Lemma 3.32] that t;; =
1 (mod ¢) for all/ > 1. Moreover, 7;; € 1 + gZ[[q]].

Let U be the associative algebra over Q(g) with 1 generated by the elements t;;, wi
((i,1) € I®) and ¢" (h € PV) with defining relations

=1, ¢"¢" =¢"" forh i e PV

g"tia" = a1 M, Mg = g7 Py forh e PY, (1) € 1%,
tiuwjx — wjkti = aijalkfil(K,'l - Kfl),
S Ot =0 fori e 1, (j.1) € I and i # (j. 1), (13)
r+s=1-la;;
> (—1)wi Dwjpw® =0 fori € I', (j, 1) € I® and i # (j, 1),
r+s=1-la;;

tiktjr — tjitik = wigwj; — wjwix =0 fora;; = 0.

Theorem 7 There exists a Q(g)-algebra isomorphism ©: U 5 U mapping aj to tjj, b to
w1, and g" to g".
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3736 Z.Fanetal.

Proof Recall that, for j € [ m j1 (resp. fj1)in U can be written as a homogeneous polyno-
mials in aj’s (resp. bjx’s) for 1 < k < [. We may write

ejl = Z Qcdj e, fjl = Z acbj e,

ceC c€C

and let ® : U — U be an algebra homomorphism sending qh — qh, e — tj, b = w;if
i €l™and

<I>(ejl) = Z oetje,

CG%./',]

O(fj) = Z aew; e, if j € 1™,

ce%’j,l

We shall show @ is well-defined. For each ¢ € €}, we have ¢"t ; ¢ ™" = ¢'*®t; . and
q"wjeq™" = g% Mw; o inU. Hence
®(q"ejig™" —q'1Wey) = dq" fug™" — g7 P fi) = 0.

For the Serre-type relations, if a;; # 0 we have

P Z (_1)rel~(r)eﬂel§s) - Zac Z (—l)rti(r)tj,ctfs)zo.

r+S=lfla,'j CE(tf‘jyl r+s=lfla[j

If a;; = 0, we have

Dleejn) = Y Aetic Y, Qetje= Y. Gutje Y detic=Plejieir).

CEL ik et el ceCik

The other half Serre-type relations can be shown similarly.

For the commutation relations, we first claim that ®(a;;) = t;; and @ (b;;) = w;; for any
(i,1) € I°°.If i € I'®, there is nothing to show. If i € [ im_we could show it by induction on
[.If ] = 1, it is obvious since ¢;1 = a;1. Assume the claim is true for all k < /. Since a;; =
ej] — Zce(gw,c;é(l) acdj,c, we have ®(a;)) = Zce(("i,/ Aetic = D ees e @etie = Eil.
And @ (b;;) = wj; can be shown similarly.

Now by the Drinfeld double process, the commutation relation in (11) is equivalent to the
one in (12) (cf. [17, Lemma 3.2]). Moreover, ®(a;;bjx —bjxai; —8;; 6k Tt (Kf — Kl._[)) =0.
This shows that ® is well-defined.

Since Theorem 4 yields the following relations in U

> (—D'aayal” =0 fori € I, (j.1) € I and i # (j. 1),

r+s=1—la,-j

> (—1)'b; Vb =0 fori € IS, (j,1) € I®andi # (j,1).

r+s:lfla,-j
We see that ® has an obvious inverse ¥ : ¢/ — U given by
W(ti) = ajr, W(wi) = by, ¥(g") =q",

for (i,l) € I*® and h € PV. O
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We note that Theorem 7 provides a new presentation of U with primitive generators. Now,
Proposition 6 provides a Hopf algebra structure on U/:

Alg") =q" ®q".

At =tu ® K, +1® ty,

AGwi) =wiy ® 1+ K! @wy, (14)
S(ti) = —tukKl, Swi) = =K wi, S(g") =q7",

e(ti) = e(wyp) =0, e(g") =1,

where A, S, and € denote the co-multiplication, antipode and counit, respectively.

4 Crystal bases and polarization

Definition 2 Fori € I'™ and ¢ € €}, we define the linear maps &; ¢, §¢: U~ — U~ by
o(x) = Z 0i,c(x) ® bj ¢ + terms of bidegree notin Q_ x —No;,
CE??,'
o(x) = Z bie® 8i’c(x) + terms of bidegree notin — No; x Q_,

CE%[

where x is a homogeneous element in U ™.

Leti € I'™ [ > 0, then for any homogeneous x, y,z € U~ and ¢ = (¢, ...,¢) € G,
we have the following equations

y ey =y 0y + "y (), (15)
i =203 k¢
yHoid =Y g5 T biea (16)
k:crk=l
[air, 21 = w (vis K] - K7y @), a7)
where ¢\cx = (c1,...,Ck, ..., ;) means removing ¢ from ¢. We will denote the operator

y'*! by e} , in the following.
Recall from [2] that every u € U™ can be written uniquely as

u= E bi,cuc,

cED
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where e;.l uc =0foralll > 1 and ¢ € %;. Moreover, if u is homogeneous, then every u is
homogeneous. Then the Kashiwara operators are defined by

D Dicve e ifi ¢ 1'%,
- c.c1=l
ejju = m (¢ .
S lz( Dby eite ifi € I,
CED
Z bi (,e)ue ifi ¢ Ii507
~ cEC;
SR Py '
— bieyte ifi € 1%,
e mi(e) + 1

where m;(c) = #{k | cx =1}.

Remark 1 Note that the square roots appear in the above definition. So we need to consider
an extension F of Q that contains all the necessary square roots (see [2, Remark 3.12]).

Let Ag = {f € F(g) | f is regular at g = 0}, and let L(c0) be the Ag-submodule of U™
generated lgvy the elements f;, ;, ... fi,;, 1 forr > 0 and (ix, Ix) € I*°, where the Kashiwara
operators f; fori € I™ have been defined in [12]. Set

B(©o) = {fiy.1y - fr,, 1 mod g L(00) | r = 0, (i, lx) € I} € L(00)/qL(c0),

then (L(o0), B(00)) is the crystal base of U ™.
By [2, Lemma 3.33] and [12, Proposition 5.1.2], we have the following proposition.

Proposition 8
(i) (L(00), L(00))L C Ag.
Let (, )(,1 denote the F-valued inner product on L£(00)/qL(00) induced by (', )L|4=0 on
L(c0).
(i) (@uu,v)? = (u, fi1v)} foru, v € L(00)/qL(c0) and (i, 1) € I*°.
(iii) B(oo) is an orthonormal base of ( , )% In particular, (, )% is positive definite.
(iv) L(o0) ={u e U™ | (u, L(00)) S Aot ={u e U™ | (u,u)r € Ao}.

Let A € PT, and let V(1) be the irreducible highest weight U, (g)-module with highest
weight A and highest weight vector v,. Then we have a U 7 (g)-module isomorphism (cf. [3,

Rl

V() ~ U, () / Yuy@f M Y v (18)
ielr iel™ )(hj)=0
@i,h)el>®

Recall from [2] that, for any i € mandire Pt,oe V) 1 has a decomposition of the

following form
V= Z b cVe,
CEL
where ve € V(A) 4 cjo; and ejjve = 0 forall/ > 1 and ¢ € 4;. Moreover, if we omit the

terms b; ¢ve with |¢] # 0 and (1 + |e|o;, ;) = 0, which are equal to zero trivially, then the
decomposition of v is unique.
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Define the Kashiwara operators on V (1) by

> i Ve ifi ¢ ',
~ ccr=l
€|V = mi(c .
Z 7/ ll( )bi,c\lvc ifi € I'°,
cED
Z bi,¢,0)Ve ifi ¢ Iiso,
~ cEC;
Jiuv = Z ! .
———Dbj cuive ifi € I'™°.
cEY; ml(c) + !

Let L) =D, . er= Aofi, .. fuvs be an Ag-submodule of V (1) and let

B ={fi, ... fova L € IPN0} € L) /gL,

then (L(A), B())) is the crystal base of V().
There exists a unique symmetric bilinear form {—, —} on V(1) such that

{or, v} =1,
{g"v, v} = {v, ¢"V'},
{oiv, v} = —{v, Kla;') ifi e I'™,

{biv, v} = {v, Kja;v'} ifi e I'®,

a7 =1

1
for every v, v’ € V(A) and (i,1) € I*°.
Similarly, by [2, Lemma 3.34] and [12, Proposition 5.1.1], we have the following propo-

sition.

Proposition 9

(1) {LG), LIV} S Ao.

Let {, }o denote the F-valued inner product on L())/qL(}) induced by { , }|4=0 on
L),

(ii) {ejju, v}o = {u, fiyvlo foru,v € LA)/qL(A) and (i,1) € 1.

(iii) B(L) is an orthonormal base of { , }o. In particular, { , }o is positive definite.

(iv) L) ={we V) [{v,L0)} S Ao} ={ve V)| {v,v} € Ao}

The following proposition follows from Kashiwara’s grand-loop argument, which
describes the relations between B(co) and B(A).

Proposition 10 Let my, : Uq_ (@) — V(X)) be the Uq_ (g)-module homomorphism given by
P +— Pu,, then we have

(i) m (L(00)) = LX), hence 1), induces the surjective homomorphism
7Tyt L£(00)/qL(00) = L(A)/qL(A).

(ii) {b € B(oco) | 7w, (b) # 0} is isomorphic to B(A) under the map 7.
(iii) If b € B(oo) satisfies 7,.(b) # 0, then €7, (b) = 7, (€ub).
(iv) fiioTy =m0 fiu
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Let (i,1) € I®° and let P € U™, then there exist unique Q, R € U~ such that
[air, P1=tu(K{Q — K. 'R).
Note that e;’l(P) = R by (17). If we set elffl(P) = (, then we have
] by = 8ijdu +4; okl .
e 1bjk = 8ijdk + qiklaijbjke,/-f,,
and
el{’le;.”k = ql.kla"je;.”kel’-yl.

Definition3 Let %, (g) be the algebra over F(g) generated by e;’l, bi (i,1) € I°® with
defining relations

, —kla;; ,
e bjx =0bijé+q;  "bjke;
l—la,-j

>y [1 _rl“"f} ¢! MU 1T =0 fori € I"™andi # (1),
r=0 i

lfla;j

>y [1 _rl“"f} b; T4 ol =0 fori € I™and i # (j, 1),
r=0 i
ez/',ke/j,l — e;-’lel’-,k =bibji — bjibix = 0 for ajj = 0.

We call %, (g) the quantum boson algebra associated with g. One can show that %, (g)
is aleft U 7 (g)-module by the standard argument in [12]. Furthermore, we have

U, (9) = Z4(9) / > By,
(i,hHel>®
Lemma 11 Forall P, Q € U™ and (i,1) € I*°, we have
(Pbir, Q) =t (P, Kle] , 0K )L

Proof By (17), we have Kl.le;’JQ = Si,l(Q)Ki] and hence Ki]el"ilQKlfl = 8;1(Q). Thus we
obtain

(Pbir, Q)L = (P, 8;,1(Q)1 = tu (P, Kle[ ,OK; )L
as desired. O
Let x: Uy (g) — Uy (g) be the F(g)-linear anti-involution given by
e =eu, fi=fu, @H*=q"
Note that #* = id and *— = —x on UT, and a;;, b;; are stable under * for any (i,1) € I®.
Lemma 12 Forany P, Q € U™, we have

(P, 0% = (P, Q).
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Proof Note that ¢/ ,(Q*) = K; ' (¢ ;0)*K! and €/ ,(0*) = K/(e];0)*K;"'. We shall prove
this lemma by induction on |P|. If P = 1, our assertion is clear. By Lemma 11 and the
inductive hypothesis, we have

(Poi)*, 0" = (b P*, Q") = wr(P*, ¢ ;(Q")1
=1(P*, Kl (], 0)* K ),
=1(P. Kle] 0K ),

= (Pbiy;, O)r,

which proves our claim. O
The following corollary is an immediate consequence of Lemma 12 and Proposition 8.
Corollary 13 L(00)* = L(o0).
Proposition 14 Let P, Q € U, (g)—p for B € Q. If A > 0, we have
{Pvy, Qui} = (P, Q) (mod gAo)
Sfor some ¢ € Ag\gAy.
Proof We use the induction on |8]. If i € I'™, we have

{bir Pvy, Qua} = —{Puy, K,'lailQUA}
= —{Pv,, K} (Qay + tu(Kle!,0 — K¢/ ;0)vi)
= —7y{Pvi, K{'e] Qv — €}, Q)
= —1;{Puy, q?l()‘fﬁ)(h")el’-lev;t} + Ti{Puy. €; 1 Qua,
where P € U:ﬁ and Q € U:ﬁilm. Hence
{bir Pvy, Qui} = ti{ Pus, €/, Qui} = ¢ty (P, ef ; Q) = c(byy P, Q)1 (mod gAy).

if i € I'®, we have

{b; Pvy, Quy} =

5——{Pvy, Kiai Qu;.}
q; -1

1 _
= R {Pvy., KiTi(Kie] O — K; le,{Q)UA}

1

1 20— B) (hi 1
-5 lfi{va’qi( PR gr v} + p lri{Pv,\,e;QvA},
i i

where P € U:/3 and Q € U:ﬁiai. Hence

1 1
{bi Py, Qu,} = — Ti{Pvy, €;Qui} = 5——cti(P,¢;0)L
; 1 ; 1
1
- qz — lc(biP7 Q)L (mOd f]AO),

i

which completes the proof. O

Corollary 15 If 1. > 0 and Pv, € L(}), then P*v, € L(A).
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Proof If Pv, € L(1), then {Pvy, Pv,} € Ay by Proposition 9. Since {Pv;, Pv,} =
c(P, P)r (mod gAg) for some ¢ € Ay \ g Ay, we have (P, P);, € Ag. Hence P € L(o0)
and P* € L(c0) by Proposition 8 and Corollary 13. Now Proposition 10 yields 7, (£(00)) =
L(A). Thus we get P*v, € L(A) by applying ;.. O

5 A-form of U; (9)

Let A = Flg, ¢ '1and Ay, = {f € F(q) | f is regular at ¢ = co}. We denote by U, (9)
the A-subalgebra of U, (g) generated by bE") el n>0andb;y (i € '™, ][> 1).
For eachi € I™, set

Ai = ai/tiqi —a; ), (19)
which yields the following commutation relation
Ki—K !
Aib; —biAj = — . (20)
qi — 4;
Fori € I™and/ > 1, set A;; = a;;/7i;. Then we have
Aibi — birAy = K — K. @1

Let U (g) be the A-subalgebra of U, (g) generated by A;"), b;") (i € I',n > 0), A1, bis
- "
(iel™[>1)andqg" (h € PV), {K'q’ } (i eI',m e Zsp,n € Z), where

m 1
+l-s —1_—n—l+s
Kiqi'| _ 1 ﬁ Kig/m " —K; ¢, 22)
m |7 [m]! | :
i LR qi 4q;

Let Ug (g) (resp. Ug(g)) be the A-subalgebra of U, (g) generated by A;”) (i € I'®) and
. g
Ay (i € I'™,1 > 1) (resp. qh, {K’f’ forh € PY,m € Z>o,n € Zand i € I"). Then

using the commutations relations (20), (121) and the definition (22), one can prove that Uy (g)
has the triangular decomposition (see also [12, Section 1], [6, Exercise 3.6])

Ua(g) = Uy (9) @ U (9) ® U ().

_ Letae P and consider an F-linear automorphism ~: V(1) — V(L) given by Pvj, >
P for P € Uy(g). Set L(A)™ = L(X). Then L(A) (resp. L(X)7) is a free Ao-lattice (resp.
free Ao-lattice) of V()).

Since
.l .
{K,qi } v = [“”ﬁl*”} v €Zlg,q " v,
i i

m
we get Ug (g)v,, = Awv,. This leads us to give the following definition
V)™ = Un(@)vr = Uy (@)vs.

Note that b;; = by for all (i,I) € I*°. Hence U, (g) and V(A)A are stable under —.
Also, since U, (g) is graded by Q_, we have V()»)A = @MS/\ V(A)A, where V()»)f} =
VANV,
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Fix i € I.1In [2], Bozec proved that every u € U, (g) has the following decomposition.
Y s0 bf")un with i € I™ and e/u, = 0 foralln > 0, 23)
u= = )
ZCG% bjctte withi € I' and ¢j,u. = 0foralll > 0, ¢ € %;.

Lemma 16 Foreachi € I andu € U, (@), consider the decomposition (23). If u € U (@),
then all uy, uc € Uy (9).

Proof We first prove that e} U, (g) € U, (g) forall (i,1) € I*°.
. —kla;;
Since el’,’lbjk =38ijdu +q; a’bjkel/.’l, we have
elb; = 1+ q; *bje] fori e I™.
It follows that
e;bE") = ql.l_”bf"*l) + qi_znbE")e;.
Furthermore, by a direct calculation, we have

m—k
i £

n
(m) —2nm+(m+n)k—k(k—=1)/2 |1 | - (m—k)
e = § :qi [k]bi €
k=0

4

where bgr) = 0if r < 0. These imply our assertion.
Fori € I, let

—n(n—1)/2, (n) m
P = Z(—l)"qi ne b, Ve,
n>0
Then we obtain (cf. [12, Section 3.2]):
(i) Pb; =0, ¢;P =0,
@) Tog P50 per = 1,
(i) Pef'u=q; """V u, foru e Uy (g).

1

Hence, if u € U, (g), thenu, € U, (g) foralln > 0.

Fori € I'™, we use a similar argument in [1, Proposition 3.11]. Assume that u € Uy (9)
has the form u = mb; (m’ for some ¢ € %; and homogeneous elements m, m’ € K; N Uy (9),
where KC; = /.0 ker el’.’ ;- We shall show that u can be written into the form

u= Z b; e withuy € K NU, (g).

et
If |c| =0, thenu = mm’' € K; N U, (g). Otherwise, we have
u = (mbie, — g "o myb; v eym’ + ¢TI0 mb; oy m'

where mb;¢, —q“! qm"“")bic, m € K;NUy (g). Now our claim follows by using the induction
on |[c|.
We next show that if u € U, (g), then u can be written into the form

u= Z bjctte Withue € K; NU, (g).
CG%),'

@ Springer



3744 Z.Fanetal.

We will use the induction on —|u|.
Assume that « is a monomial in U (g). Then there exists some monomial u € U, (9)

such that u = by’)u’ for some j € I™ or u = bju’ for some j € I'™. By induction
hypothesis, u’ = Zce(g,- by ctte Withue € K;NU, (). If j # i, thenu = Zce(&_ b;")b,-,c Ue
oru = Zce% bjib; cute is of the form mb; ¢m' with m, m’ € K; N U, (g). If i = j, then
U =3 ccq; Pi.(,oUc is already in the form we wanted.

Thus, our assertion follows from the uniquesness of the decomposition. O

Define
(0] U, (@)™ :=Db}U; (9) N U, (g) fori e ®andn > 1,
(bieUy (@)* :=bi Uy (g) U, (g) fori € '™ and c € €\{0).

By the above lemma, U, (g) is stable under the Kashiwara operators ¢;; and ﬁ 1. Moreover,
we have the following corollary.

Corollary 17
(i) Fori € I, (B'U; (@)* = Yoy BOUL (9) = @pa B (U (8) Nkere)).
Fori e I'™, (bi,ch_(El))A = bi Uy (8) = Doy, bie.c)(Uy (9) NK)).
(ii) Fori € I, (B'V ()™ i= (BU; (@) v = Ype B VOOE.
Fori e I'™, (b VO™ i= (b Uy (@) vy = b V(W™

6 Existence of global bases

Let V be a finite-dimensional vector space over F(g), M be an A-submodule of V, and
Lo (resp. L) be a free Ag-submodule (resp. free Aoo-submodule) of V such that V =
F(g) ®ay Lo =F(q) ®py Loo-

Definition 4 The triple (VA, Ly, Lso) is called an balanced triple for V if the canonical
linear map VAN LoN Ly — Lo/qLo is an isomorphism.
Lemma 18 [12, Lemma 7.1.1] Let V, M, L, L be as above.

(i) Assume that the canonical map M N Ly N Ly — M N Lo/M N qLg is an isomorphism.
Then

M N Lo = Fg] Qp (M N LoN Ly,
MN Lo ZFg 1®F (MNLyN Lay),
MZ=ZA®p(MNLyN Ly),
MNLyN Lo = (MNLs)/(MNg 'Lao),
MNLoN Lo = (F(g) ® M) N Lo/(F(g) ®4 M) NqLo.

(ii) Let E be an F-vector space and ¢: E — M N Lo N Ly, a homomorphism. Assume
that M = A@(E) and E — Lo/qLo, E — Loo/q 'Loo are injective. Then E —
MNLyNLs — M N Lo/M N qLy is an isomorphism.

Lemma 19 [12,Lemma7.1.2] Let V, M, Ly, L~ be as above and let N be an A-submodule
of M. Assume that
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(1) NNLoNLs =NNLy/NNgLo.

(2) There existanF-vector space F and a homomorphismo: F — MN(Lo+N)N(Loo+N)
such that

(a) M = Ap(F) + N,

(b) the induced homomorphisms ¢y: F — (Lo + N)/(qLo + N) and ¢9oo: F — (Loo +
N)/(q 'Loo + N) are injective.

Then the following statements hold.
(i) MNLoNLeo — M N Ly/M N gLy is an isomorphism.
(ii) MNLo/MNgLy = F & (NNLy/NNgLo).

Forr > 0, set

Q1) ={a e Qy|laf =r}

We will prove the following inductive statements on r > 0.
A(r): For any « € Q4(r), we have the following canonical isomorphism

Uy (@)—a N L(00)
Uy (@)—a NgL(c0)

We denote by G« the inverse of this isomorphism.
B(r): Forany @ € Q. (r) and A € PT, we have the following canonical isomorphism

Uy (8)—a N L(00) N L(c0)” — = L(00)—a/qL(00)—q.

VL, NLO)

— et T S LW Mi—a-
VoOh NaLoy — L(AW)r—a/q L)

VDR, NLG)NLG)™ >

We denote by G, the inverse of this isomorphism. _
C(r):Fora € Qy(r), (i,1) € I*°,and n > 0, assume that b € f} B(00) g tine;- Then we
have

Goo(b) € B Uy (9).

If » = 0, our assertions are obvious. Now we assume that A(r — 1), B(r — 1) and C(r — 1)
are true. Then Lemma 18 and Proposition 10 imply the following result.

Lemma20 Fora € Q4 (r — 1), we have

Up@-«NL) = P FiglGu®), Us@-ua= P AGxD),

beB(00)_y beB(00) g
VL, NLG) = P FlglGib), Vi, = P AG.®).
beB(M)x—a beB(A)—q

and
Goo(b)vi = G,.(T (D).

Lemma 21 Fora € Q4 (r—1),b € B(co)_y (resp.b € B(X))—y), we have G oo (b) = G oo (b)
(resp. G, (b) = G,.(b)).

Proof Let O = (Goo(b) — Goo(b)) /(g — g~"). Then we have Q € Uy (@)-a NgL(co) N
L(00)~ since 1/(g —g~) € gAy. O
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Leti € I, 0 e Ptanda € Q. For each partition ¢ = (1h2k gtk .. ) we define

(e * Uy (@) = Y 01 U7 @2, = Bl (U () —akiiar)-

k>1 k>1
/ /
i # VODI_o i= ) BN VDI = DBV aiiya)-
k>1 k>1

Here (b, Uy (@)%, = B}, VO, = 0if ik = 0.
Proposition22 Leta € Q (r) and . € PT.

(i) Fori € I' andn > 1, we have

BV, NLG)

i = &
(B} V(A))i—g NGLA) beB(Mx—aN I B(.)

BV OGe NLO)N LG — o
(ii) Fori € I'"™\I'° and any composition ¢ with |¢| # 0, we have

(BiVONE ,NLR)

= Fb.
oA D
BV natey —,

(Bi VO, NLO)N LG —

(iii) Fori € I'° and any partition ¢ = 11122 ... k% ... we have

~ (BiexVODE NLO)
o e ML) NLG)” : -
Brex Ve LM ML) = Gk NaLy

~ @ Fb,

beB(Mi—aN(fi c*B())

where f,c * B = U= ﬁf‘kB(A).

Proof Our assertion (i) has been proved in [12, Proposition 7.4.1].

Assume i € ['™\]%°, Let ¢ € %; such that |¢| = n > 0. Recall that (b; ¢V (V)2 =
Bie(VOIE_yine,)- I O — & + ney)(hy) = 0, then (b; ¢V (M)}, = 0, and hence our
assertion is trivial. Thus we may assume that (A — o + no;)(h;) > 0. In this case, for any
b € B(\))—atna:» we have f; cb # 0.

By B(r — 1), we have V(Do 1, = Bpesn, o, ACG1 (). Hence

O VO = Y,  AbiGib).
beBO‘)A—OH—mXI-

Let F = Zbe BOYs—a e Fb; G (b). We first show that F is a direct sum. Assume that

> BybicGa(b) =0 forsome By € F.
bEB(A)k—a+nai

Since fi,cG;\(b) = b;.¢G(b) and G, (b) = b (mod gL (1)) for any b € B(A)y—g+na;» We
obtain

Y Bficb=0.

beB()\)kfot+not,-
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By applying ¢z, we get Y .50, ... Bbb = 0, which implies B, = 0 for all b €

B()‘)AfaJrna[ .
Let N = 0, M = (b;,cV(W))L . Lo = L(A)s—a and Lo = L(A);_,. Set ¢: F —
M N Ly N Ly be the F-linear map given by

b; G (b) —> b; G (b) = fi G1(b).

Then, it is easy to check F', N, M, Lo, L~ and ¢ satisfy the conditions in Lemma 19, and
hence we get

MNLyNLo > MNLy/MNgLe= P  Ffichb= &P Fb
beBMi—a-+na; beBOYs—aNfi.cBOY)

as desired.

Now, we shall prove (iii). Let i € I'°. If [ is sufficient large, then (bf»’}c U, @)t, =0.
Hence we can use descending induction on N = )", lx. Without loss of generality, we
may assume that /; # 0 and (A — a)(h;) > 0. Then, by A(r — 1) and B(r — 1), we have

Bie* VNI =B VO g + 2BV OGN,

k>2
and
VO e = P AG = @ AGob)v.
bGB(}\)Afa+/1(xi bEB(OO)foHr/lai
75.(b) #0

Let b € B(00)—g+1,o; With€;1b # 0. Then b € filB(oo) N B(00) —+1,a;» Which implies
Goo(b) € iU, (g)NU () by C(r—1). Hence b} Gos (b)vz € (01} V ()%, Fork # 1
with [ # 0, if b € fi{ B(00), then Goo(b) € bk U, (@) N Uy () by Cr — 1). Therefore
béflGoo(b)v;L € (bﬁ’ka(k))f_a. Hence we have

Mre* VONE , = Y AB Goo(B)vs + (drcupn) * VL,
beS

where

S =1{b € B00) atna; | T2 () #0, Ti1b =0, b ¢ | J f5B(c0)
k>2

A

~

=5 b € Bi—atii; | G1b =0, b ¢ | J 75 Bk (24)
k>2

2 .

—> BOia N (T4 BONG vty + BGY))

The last isomorphism follows from the fact that ﬁ[e‘ﬂ/ =e ﬂ; and fil fﬂ/ = ﬁl/ fﬂ for any
I,I' > 1withl # 1.

Let V = V(Mi—as M = (Bic ¥ VO, N = (i eupt) * VONL 40 Lo = LW i
Lo = L();_,, and

F = Fb}|Goo(b)v:.
beS
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For b € §, we have b = G (b) + qL(00). Assume that G~ (b) has the decomposition
Goo(b) = ) bjclte € Uy (8)—a-iy; N L£(00) N L(00)" .
CEW,’

Then we have

fi1@1Goo(b) = Goo(b) = Y Dy cte = Goo(b) — up € gL(00).
cet;l¢e
Hence we obtain

(i) b} Goo(b) = biiup mod (b7 U (g))*, which implies

by} Goo(b)vi € M N (N + Lo) N (N + Loo). (25)
(ii) flil‘b = ,Bbbﬁllub + g L(00) for some B, € F*, which implies
Ta(fi1b) = Bybiiupvs + g L) (26)
Set
Lo/qLo

H:=(N+1L N L) —-n--= ————
(N + Lo)/(N +qLo) N0 Lo/N NaLo

By induction hypothesis, we have H = ®bEB()\)A—a\(ﬁ,cu(l)*s()\)) Fb. Hence (24), (25) and
(26) imply that the following canonical maps are injective:

[% N+Ly ~
wo: F>MN(Lo+N)N(Looc+N) > —— —
N+ aqlLo 27)
1 _
b\ GooBvn = bj} Goo B)un > Bijupvs + (N +gLo) = 2-Tu(J]1b)
By taking —, the following canonical map is injective
[Z N+ L
:F—> MnN(Lo+N)N(L N _
Poo - (Lo+N)N(Loo + )_)N-l-q_lLoo
Note that M = A¢(F) 4+ N. Hence Lemma 19 yields
MNLyNLe — (M0 Lo)/(MNgLo) = F @& (NN Ly/NNgqLy),
where
F® (NNLy/NNgLy) = ) Fb
SU(BMi—aNfi e +B())
= D Fb.
B()i—aN(fic*B(1))
This completes the proof. O

Corollary 23 Let o € Q4 (7).
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(i) Fori € I andn > 1, we have
_ o~ (BUS(@)A, N L(oo)
(B U, (@)™, N L(co) N L(co)™ — g

BU; ()%, NgL(co)
EB Fb.
beB(00)—_aN [} B(co)

~

(ii) Fori € I'"™\I"° and |c| # 0, we have
~ (b US éa N L(oco
(Br Uy (@) N £(00) N £(o0)~ 5 ~2eVa @)= N1£(09)

(bi Uy (@)%, NgL(00)
EB Fb.
beB(00) —aN f e B(00)

~

(iii) Fori € I™° and any partition ¢ = (1125 k) we have
~ (Biex Uy (@)%, N L(co)
(br.e % Uy (@)%, N L(00) N L(o0)™ > ——4 9o

(bic * Uy ()2, NqL(c0)
® w
beB(00) —aN(f;.cxB(c0))

~

where fi.c % B(00) = Uys [ B(00).

Proof We shall prove (iii) only. The proof of (i) and (ii) are similar. For A > 0, we have

Uy (@0 = Vrar Bie* Uy @)%, = Bic* VL,

L(00)—g = LW i—as L(00) T4 = L),
and

EB Fb >

beB(00)—N(f; c¥B(00))

Hence our assertion follows immediately.

@ Fb.

beB(M)i—aN(fi c*BM))

Fora € Q4 (r) and (i,[) € I, let us denote by G;; the inverse of the isomorphism

E Fb.

beB(00)—a N fitB(00)
Then Corollary 23 implies (b};Uy ()2, = @pepioo) o500 AGi (B) forany n > 1.

(o Uy (@)%, N L(00) N L(o0)™ =

Lemma24 Let (i,1), (j,s) € I®, a € Q4(r) and b € f;18(c0) N fisB(00) N B(00)_g.
Then we have

Gii(b) = Gjs(b).
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Proof Let us write b = .)?,71 e ﬁm - 1, where (k, m) € I°.If k € I™, then our claim was
proved in [12]. So we will assume that k € I'™. Take A € PT with A(h;) = 0 and Ahj) >0
for all j € I'\{k}. Then (18) yields

V(W)r—a = U;(g)—a/z U;(g)—a—&-nakbkn-
n>1

The same argument in [12, Lemma 7.5.1] shows that

0=Gb) — st(b) € Z U;(g)—a+nakbkn N U&(g)—a NgL(oo) N L(co)™.

n>1

Then Corollary 13 implies

0* € [ Y U, (@) -atney | N UL (@) -0 NgL(00) N L(o0).

n>1

Ifk € 1™\ [0, we assume that O* = byju|+- - -+byuy. Since 0* = Q" = Q*, we have
Q* =byiu1 + - - - +byu,. Note that foreach 1 < j < t,oyju; = fk‘,?k‘,-Q* €byiU, (9N
Uj (9)—aNgL(00) anduj =i} = & Q*. Hence byju; € (b Uy (8)2,NgL(00)NL(00)~
and Corollary 23 (ii) implies Q* = 0.

If k € I'*°, since Q* € (anl b Uy (@) —atne) N Uy (8)—a, the decomposition of Q*
can be expressed as the form Q* = byju; + - - - + bysu, with

uj = Z bk cle-

ce6 and
¢ contains no j+1,....s

Forevery 1 < j <t, we have

brjuj = fijri(Q* = Y bipup) € (or; Uy (@)™,

j<pss
Hence Q* € Ok, 12141y * Uq’ (g))‘ﬁa, and Corollary 23 (iii) implies Q* = 0. ]
Thus we can define
G: L(00)—o/qL(00)—q = U (g)—a N L(00) N L(00)™
by
b > Gi(b) forb e fiB(c0) N B(00)_a, (i,1) € I°°.
Then we have b = G (b) + g L(c0) and

©HU, (@), = b AG(b) (28)

beB(00)—aN f]B(c0)

forany n > 1. Since U (9)—o = Z(M)elm (bi[Uq_ (g))‘ﬁa, we obtain

Us@-a= Y. AG®).

beB(00)_y
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Let E = £(00)—a/qL(00)— and M = U, (g)—o. Then by Lemma 18(ii), we deduce that
Uy (8)—a N L(00)
Uy (9)—a NgL(c0)

is an isomorphism, which proves A(r). Now C(r) follows from (28). Finally, we shall prove
B(r).

Lemma25 Leta € Q. (r), b € B(oo)_o and . € P¥. If 5 (b) = 0, then G(b)vy, = 0.
Proof Take (i,[) € I*° with ¢;;b # 0. Then G(b)v;, € (bilV(A))f_a NgLO) N LA)™ by

L£(00) o /qL(00) ¢ ~> Uy (8)—a N L(00) N L(00) ™ —

Proposition 22. O
By this lemma, we have V(A)f_a = beBoo)_o AG(D)v). Let
T.(b)#0
E= Y FGhu, SV ,NLA)NLA) .
beB(00) g
T3 (b)#0

Since {b € B(c0)_y | T, (b) # 0} = B(L))._a, we have
E = L(Wi-a/9L0M)—
given by
G(b)vy, > GD)vi +qL(A) =T,.(D).
By Lemma 18(ii), we get
VWL, NLM)

ES v A T hme T
S VL, NLONLO)™ > OOk MaZy

= L(Ma-a/qLM)j—as
which proves B(r).
To summarize, we obtain the main goal of this paper.
Theorem 26 There exist canonical isomorphisms
Uy (9) N L(00) N L(00)~ = L(00)/qL(00),
VR NLO)NLO)™ = LA)/gLA) (e Ph).

Definition 5 (a) B := {G(b) | b € B(00)} is called the global basis of U, (g) corresponding
to B(o0).
(b) B* := {G*(b) | b € B())} is called the global basis of V (1) corresponding to B(1).

Remark2 The global bases B and B” are unique because they are stable under the bar
involution.

‘We conjecture that our global bases coincide with (a variation of) Bozec’s canonical bases.
The following proposition would be a key ingredient of the proof.

Proposition 27 Leti € 1™\ I*°, o € Q,,1 > 0and » € P*. Define
Buizi = | fie(B(00) ), Buis:=Buizi\ Buizit1,
le|=1

B o= U JieB)i—a), Bl =By =1\ By

le|=l

29
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(a) Foranyb € By, there exist an element by € By_jq; i,0 and a composition ¢ of | such
that

biGbo) =Gy e P AGD).
b'€Bu,i z1+1

A

(b) Foranyb € B’ ., there exist an element by € Bot—loz,- ;

i D o and a composition ¢ of | such
that
b G (bo) —G*b)e P AGHD).
h/EBo);,i,zHl
Proof We will prove (a) only. The proof of (b) is similar. Recall that
Uy (9) = @b,,chi, where K := mker el
c >0

Let P; : U, (9) —> K; be the projection. Then, for u € Uy, we have

fu@) =T, Piw) mod [ Y by Up(e) |- (30)
[¢/|>1+1

By the crystal basis theory, for any b € B, ; ;, there exist an element by € By—_q;,i,0 and
a composition ¢ of [ such that f; ¢bp = b. Thus we have

bi G (bo) =aG) +ai1Gb1) +---+a,G(by)

_ (31
mod Z biceUy (9],
[¢/|>1+1
where a, ay,...,a, € A, by, ..., b, € By_1q;.,i 0.

Since the left-hand side and right-hand side of (31) are invariant under the bar involution,
we have

a=a,ay =4ag,...,d, =a.
‘We know
fieGbg) = G(b) mod gL(c0). (32)

On the other hand, as in (31),we have

fi.eG(bo) =i e(PiG(bo) mod [ Y b Uy (8)
[e/|=1+1

=biG(bo) mod [ Y b; Uy (g) (33)
|e/|=1+1

= @G®) +ar1Gb) + - +a:G(by) mod | Y bieUy (g)
|¢/|=1+1

Comparing with (32), we get

a=1l,a=---=a, =0 mod ¢gL().
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Since a, ay, . . ., a, are all bar-invariant, we concludea = 1,a; = --- =a, = 0in A.
Thus we have finished our proof. O
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