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Abstract
We prove that on a compact almost Hermitian 4-manifold the space of ∂̄-harmonic (1, 1)-
forms always has dimension h1,1

∂̄
= b− + 1 or b−, whilst the space of Bott–Chern harmonic

(1, 1)-forms always has dimension h1,1
BC = b− + 1. We also perform calculations of h2,1

BC

and h1,2
BC on the Kodaira–Thurston manifold, thereby providing a full account of when h p,q

BC
is or is not invariant of the choice of almost Hermitian metrics. Finally, we introduce a
decomposition of the space of L2 functions on all torus bundles over S1, which has proven
useful for solving linear PDEs, and we demonstrate its use in the calculation of h p,q

∂̄
.
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48 T. Holt

1 Introduction

On an almost complex manifold (X , J ) endowed with an almost Hermitian metric, we can
define the spaces

Hp,q
∂̄

:= ker�∂̄ |Ap,q , Hp,q
BC := ker�BC |Ap,q

of ∂̄-harmonic andBott–Chern harmonic (p, q)-forms respectively. The corresponding lapla-
cians are both elliptic differential operators and so the dimensions of these spaces, denoted
by h p,q

∂̄
and h p,q

BC , are finite whenever X is compact.

In the case when J is integrable, i.e. J arises from a complex structure on X , Hp,q
∂̄

is
isomorphic to the Dolbeault cohomology

H p,q
∂̄

:= ker ∂̄

im ∂̄
,

whilst Hp,q
BC is isomorphic to the Bott–Chern cohomology

H p,q
BC := ker ∂ ∩ ker ∂̄

im ∂∂̄
.

One consequence of this is that on complex manifolds h p,q
∂̄

and h p,q
BC are both independent of

the choice of Hermitian metric. However, when J is non-integrable it is no longer the case
that ∂̄2 = 0 and so the cohomology groups are not well-defined. Indeed, in [6, 7] Zhang and
myself proved that h0,1

∂̄
can take different values on the same almost complex 4-manifold.

In [13] Tardini and Tomassini proved the same was true for h1,1
∂̄

, although they were able to

show that on compact almost Hermitian 4-manifolds h1,1
∂̄

has a lower bound of b−. In this
paper we will give an upper bound of b− + 1 and thereby obtain the result:

Theorem 3.1 If (X , J , ω) is a compact almost Hermitian 4-manifold we have either h1,1
∂̄

=
b− or b− + 1.

Following fromKodaira’s classification of complex surfaces (see [1]), alongwith the work
ofMiyaoka [9], Todorov [14] andSiu [12], it is awidely-known result thatwhen J is integrable
on a compact 4-manifold, b1 is even if and only if (M, J ) is Kähler, i.e. if and only if (X , J )

admits an Hermitian metric ω such that dω = 0. This result was later proven analytically
by Buchdahl [2] and Lamari [8]. An equivalent result states that h1,1

∂̄
= b− + 1 if and only

if (X , J ) is Kähler (see e.g. [4]). The Kähler criterion using b1 does not appear to extend
to non-integrable almost complex structures, however we still expect h1,1

∂̄
to detect almost

Kählerness (see Zhang’s survey [16]). It was shown in [13], that when an almost Hermitian
metric is globally conformal to an almost Kähler metric we have h1,1

∂̄
= b− + 1 and when

the metric is strictly locally conformal to an almost Kähler metric we have h1,1
∂̄

= b−. We
therefore ask the question

Question 3.3 On a compact almost Hermitian 4-manifold, does the value of h1,1
∂̄

give a full
description of whether an almost Hermitian metric is conformally almost Kähler? Specifi-
cally, in the case when the metric is not locally conformally almost Kähler (and thus also not
globally conformally almost Kähler) do we always have h1,1

∂̄
= b−? 1

1 In [11] Piovani andTomassini give examples of non locally conformally almostKähler structures on compact
4-manifolds, for which h1,1

∂̄
= b− + 1, thereby answering this question in the negative.
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Bott–Chern and ∂̄ harmonic forms… 49

Although the answer to this question is not yet known, we prove a similar result for the space
of d-harmonic (1, 1)-forms, which we denote h1,1

d .

Theorem 3.4 On a compact almost Hermitian 4-manifold (X , J , ω), h1,1
d = b− + 1 if ω is

in the conformal class of an almost Kähler metric, otherwise h1,1
d = b−.

At the end of Sect. 3 we calculate h1,1
∂̄

for a family of almost Hermitian structures on

a manifold M defined by �\Nil4, where � is a discrete subset acting on Nil4 by left
multiplication. We show that, at least for this example, Question 3.3 is answered positively.

In [10], Piovani and Tomassini prove that on a compact Hermitian 4-manifold h1,1
BC can

only ever be b− or b− + 1. They ask whether both of these values can be attained by some
choice of metric, a question we will answer in this paper with the following theorem.

Theorem 4.2 Given any compact almost Hermitian 4-manifold (X , J , ω), we have h1,1
BC =

b− + 1.

We also perform a calculation of h2,1
BC and h1,2

BC for a family of almost Hermitian structures
on the Kodaira–Thurston manifold using the method developed in [6] for turning PDEs
into a collection of ODE and number theory problems. From these results we conclude the
following

Theorem 4.5 On a compact almost Hermitian 4-manifold, when (p, q) = (0, 0), (1, 0),
(0, 1), (2, 0), (1, 1), (0, 2) or (2, 2), h p,q

BC is metric independent, but for (p, q) = (2, 1) and
(1, 2) there exist examples for which h p,q

BC does vary with the metric.

In addition to this, by building on some results of Chen and Zhang in [3] we will prove that
h p,0

BC = h0,p
BC are birational invariants for all values of p.

Theorem 4.6 Let u : X → Y be a degree one pseudoholomorphic map between compact
almost complex 4-manifolds. Then h p,0

BC (X) = h p,0
BC (Y ) for any p ∈ {0, 1, 2}.

In the papers [6, 7], Weiyi Zhang and myself present a calculation of h0,1
∂̄

on the Kodaira–
Thurston manifold, achieved through the introduction of a method for decomposing smooth
functionswhich proved useful for solving linear PDEs. The key ideawas to view themanifold
as a torus bundle over S1, thereby allowing for a Fourier expansion on each fibre. Further
information can then be gained by considering the behaviour of the Fourier coefficients when
travelling around the base space. In the last two sections of this paper we will show how the
techniques used to decompose functions on the Kodaira–Thurston manifold can be applied
to any torus bundle M over S1 given by R

n+1 with points identified by(
t
x

)
∼

(
t

x +
)

and

(
t
x

)
∼

(
t + ξ

Aξx

)
,

for all ξ ∈ Z, ∈ Z
n , with A ∈ GLn(Z). By partitioning Z

n into its orbits under the action of
the group generated by A and separating the finite orbits from the infinite orbits, we produce
the following decomposition of the space of L2 functions on M . Here Orby denotes the orbit
containing the element y ∈ Z

n .

Theorem 5.8 The space of L2 functions on M decomposes in the following way.

L2(M) =

⎛
⎜⎜⎜⎜⎝

⊕̂
Orby∈O∣∣Orby∣∣=∞

Hy

⎞
⎟⎟⎟⎟⎠ ⊕

⎛
⎜⎜⎜⎜⎝

⊕̂
Orby∈O∣∣Orby∣∣=N<∞

⊕̂
t0∈Z

Ht0,y

⎞
⎟⎟⎟⎟⎠ ,
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50 T. Holt

where

Hy =
⎧⎨
⎩

∑
ξ∈Z

f (t + ξ)e2π iy·Aξ x ∣∣ f ∈ L2(R)

⎫⎬
⎭

and

Ht0,y =
⎧⎨
⎩Ce2π i

t0 t
N

N−1∑
ξ=0

e
2π i

(
t0ξ

N +y·Aξ x
) ∣∣ C ∈ C

⎫⎬
⎭ .

Here ⊕̂ denotes the direct sum followed by the closure with respect to the L2 norm.

Projection onto each of the components of this decomposition is described by the maps
Fy : L2(M) → L2(R)

Fy( f )(t) =
∫

[0,1]n
f (t, x)e−2π iy·x dx

and Gt0,y : L2(M) → C

Gt0,y( f ) = 1

N

∫ N

0
Fy( f )(t)e− 2π i t0 t

N dt .

In [6, 7] this decomposition always leads to solving a combination of ODEs and lattice
counting problems. In the last section we demonstrate how this decomposition could also
reduce the PDEs deriving from the calculation of h0,1

∂̄
to a recurrence relation problem.

2 Preliminary results

In this section we will recall some important facts about almost Hermitian manifolds which
will be useful for proving the results of this paper in later sections. Let (X , J ) be an almost
complex manifold. The existence of the almost complex structure J induces a decomposition
of the space of complex valued k-forms Ak

C
into spaces of (p, q)-forms

Ak
C

=
⊕

p+q=k

Ap,q .

This in turn leads to a decomposition of the exterior derivative d : Ak → Ak+1 into the sum
of 4 components

d = μ + ∂ + ∂̄ + μ̄,

which change the bidegree of a (p, q)-forms by (+2,−1), (+1, 0), (0,+1) and (−1,+2)
respectively. We say that the almost complex structure J is integrable when μ = μ̄ = 0, in
which case it arises from a complex structure on X . Given an almost Hermitian metric we
define the d , ∂̄ and Bott–Chern laplacians by

�d = dd∗ + d∗d,

�∂̄ = ∂̄ ∂̄∗ + ∂̄∗∂̄,

�BC = ∂∂̄∂̄∗∂∗ + ∂̄∗∂∗∂∂̄ + ∂∗∂̄ ∂̄∗∂ + ∂̄∗∂∂∗∂̄ + ∂∗∂ + ∂̄∗∂̄,
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Bott–Chern and ∂̄ harmonic forms… 51

along with the spaces of harmonic formsHk
d = ker�d |Ak ,Hp,q

∂̄
= ker�∂̄ |Ap,q andHp,q

BC =
ker�BC |Ap,q . Here we define the adjoints of ∂ and ∂̄ to be ∂∗ = − ∗ ∂̄∗ and ∂̄∗ = − ∗ ∂∗
where ∗ denotes the Hodge star operator. The dimensions of the spaces of ∂̄ and Bott–Chern
harmonic (p, q)-forms are denoted by h p,q

∂̄
and h p,q

BC .

On a compact manifold the property of a general differential form s being d , ∂̄ or Bott–
Chern harmonic can be equated to a collection of conditions as follows

�ds = 0 ⇐⇒
{

ds = 0,

d ∗ s = 0,

�∂̄s = 0 ⇐⇒
{

∂̄s = 0,

∂ ∗ s = 0,
�BC s = 0 ⇐⇒

⎧⎪⎨
⎪⎩

∂s = 0,

∂̄s = 0,

∂∂̄ ∗ s = 0.

. (1)

At this point it should be noted that the existence of an almost Hermitian metric g is
equivalent to the existence of a compatible (1, 1)-form ω called the fundamental form, one
being derived from the other by the formula g(·, ·) = ω(·, J ·). Consequently in this paper,
as in many others, we will often refer to ω as if it were the corresponding almost Hermitian
metric. If on a compact almost Hermitian 4-manifold, ω is Gauduchon, i.e. ∂∂̄ω = 0, then a
result of Tardini and Tomassini [13] tells us that H1,1

∂̄
can be characterised by

H1,1
∂̄

= {aω + γ | a ∈ C, ∗γ = −γ, idcγ = adω}, (2)

whilst a result of Piovani and Tomassini [10] tells us that H1,1
BC can be characterised by

H1,1
BC = {aω − γ | a ∈ C, ∗γ = −γ, dγ = adω}. (3)

Here we define dc := J−1d J with J acting on a (p, q)-form as multiplication by i p−q .
For any two conformal metrics ω = f ω̃ on a 4-manifold, the two resulting Hodge stars

differ by ∗ω = f 2−p−q∗ω̃ when acting on a (p, q)-form. From (1) we can see that this means
H1,1

∂̄
and H1,1

BC are conformally invariant. Therefore, since a result of Gauduchon [5] states
that every conformal class contains a Gauduchon metric, we can apply (2) and (3) given any
almost Hermitian metric by finding the Gauduchon metric to which it is conformal.

For any almost Hermitian metric ω we have the property that

dω = α ∧ ω

for some 1-form α. This comes as a consequence of the well known fact that the map
Lk : An−k → An+k given by s �→ s ∧ ωk is bijective. Furthermore, α is an exact form if
and only if ω is globally conformal to an almost Kähler metric, while α is closed if and only
if ω is locally conformal to an almost Kähler metric.

3 @̄-harmonic (1, 1)-forms

From the characterisation (2) of H1,1
∂̄

we conclude the following.

Theorem 3.1 If (X , J , ω) is a compact almost Hermitian 4-manifold we have either h1,1
∂̄

=
b− or b− + 1.

123



52 T. Holt

Proof Since h1,1
∂̄

is a conformal invariant we assume without loss of generality that ω is a
Gauduchon metric.

From (1) we obtain the inclusion

H−
g ⊆ H1,1

∂̄
,

whereH−
g denotes the space of d-harmonic anti-self-dual (1, 1)-forms. When this inclusion

is an equality then clearly we have h1,1
∂̄

= b−. Suppose instead that H1,1
∂̄

has some element

a0ω+γ0 which is not inH−
g . Here a0 is a constant and γ0 is an anti-self-dual form satisfying

idcγ0 = a0dω. Note that a0 cannot be zero, as that would leave us with a d-harmonic anti-
self-dual form. A general element of H1,1

∂̄
given by aω + γ can then be rewritten as an

element of H−
g plus a multiple of the single additional element a0ω + γ0

aω + γ = a

a0
(a0ω + γ0) + 1

a0
(a0γ − aγ0) ,

thus giving us h1,1
∂̄

= b− + 1.
To see that the anti-self-dual form a0γ −aγ0 is indeed d-harmonic, first note that dc(a0γ −

aγ0) = a0dcγ − adcγ0 = 0. Then, since dc = J−1d J and J is the identity when acting on
(1, 1)-forms, it follows that d(a0γ − aγ0) = 0. As our form is anti-self-dual we therefore
also have d ∗ (a0γ − aγ0) = 0. ��
Corollary 3.2 If (X , J , ω) is a compact almost Hermitian 4-manifold where we assume ω is
Gauduchon, then h1,1

∂̄
= b− + 1 if and only if there exists an anti-self-dual (1, 1)-form γ

satisfying the equation

idcγ = dω. (4)

Proof If such a γ exists then ω + γ is ∂̄-harmonic, along with b− many linearly independent
elements of H−

g , therefore h1,1
∂̄

= b− + 1.

Conversely, if h1,1
∂̄

= b− + 1, then there must be some form in H1,1
∂̄

other than those

contained in H−
g , i.e. a form which can be written as a0ω + γ0 with a0 �= 0 such that

idcγ0 = a0dω. Thus γ = 1
a0

γ0 gives us the desired solution. ��
In [4], Draghici, Li and Zhang prove that, for integrable almost complexmanifolds (X , J ),

h1,1
∂̄

takes the value b− +1 when (X , J ) is Kähler and otherwise takes the value b−. Partially
extending this result to non-integrablemanifolds, in [13] itwas proven that if a compact almost
Hermitian 4-manifold (X , J , ω) is globally conformally almost Kähler then h1,1

∂̄
= b− + 1,

whereas if (X , J , ω) is strictly locally conformally almost Kähler then h1,1
∂̄

= b−. We
therefore ask the question:

Question 3.3 On a compact almost Hermitian 4-manifold, does the value of h1,1
∂̄

give a full
description of whether an almost Hermitian metric is conformally almost Kähler? Specifi-
cally, in the case when the metric is not locally conformally almost Kähler (and thus also not
globally conformally almost Kähler) do we have h1,1

∂̄
= b−?

Although the answer to this is not known, we can prove a similar result for the dimension
of the space of d-harmonic (1, 1)-forms, which we will denote by h1,1

d .

Theorem 3.4 On a compact almost Hermitian 4-manifold (X , J , ω), h1,1
d = b− + 1 if ω is

in the conformal class of an almost Kähler metric, otherwise h1,1
d = b−.
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Bott–Chern and ∂̄ harmonic forms… 53

Proof As in the proof of the previous theorem,we use the fact that h1,1
d is a conformal invariant

and thereby assume ω is a Gauduchon metric. Furthermore, all almost Kähler metrics are
Gauduchon, so the conformal class of ω contains an almost Kähler metric if and only if ω is
almost Kähler itself.

On compact manifolds we know a differential form s is d-harmonic if and only if

ds = 0, d ∗ s = 0.

From this we can see that the Hodge star maps d-harmonic forms to d-harmonic forms,
meaning that if some (1, 1)-form s is in H1,1

d so too are its self-dual and anti-self-dual
components, 1

2 (s + ∗s) and 1
2 (s − ∗s). Furthermore, we have the inclusion

H1,1
d ⊆ H1,1

∂̄

and so from (2) we know we can write any d-harmonic (1, 1)-form as aω + γ with a ∈ C a
constant and γ an anti-self-dual form. But the self-dual component of this is only harmonic
if dω = 0 or a = 0 and so either ω is almost Kähler and we have h1,1

d = b− + 1 or all

d-harmonic (1, 1)-forms are anti-self-dual and we have h1,1
d = b−. ��

From this result we see that the above question is equivalent to asking whether h1,1
d and

h1,1
∂̄

are always equal on compact Hermitian 4-manifolds.

We conclude this section with a calculation of h1,1
∂̄

for a large family of almost complex
structures and compatible metrics. In doing so we will see that, at least for this family of
almost Hermitian structures, Question 3.3 has a positive answer.

Example 3.5 Let M be a compact manifold, given by identifying the points in R
4 by the

equivalence relations⎛
⎜⎜⎝

t
x
y
z

⎞
⎟⎟⎠ ∼

⎛
⎜⎜⎝

t
x + x0
y + y0
z + z0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

t
x
y
z

⎞
⎟⎟⎠ ∼

⎛
⎜⎜⎝

t + t0
x + t0y + 1

2 t20 z
y + t0z

z

⎞
⎟⎟⎠

for all t0, x0, y0, z0 ∈ Z. This is equivalent to the group Nil4 modulo the discrete subgroup
of elements with integer valued entries.

M has a smooth global frame given by

ε1 = ∂

∂t
, ε2 = ∂

∂x
, ε3 = t

∂

∂x
+ ∂

∂ y
, ε4 = 1

2
t2

∂

∂x
+ t

∂

∂ y
+ ∂

∂z
,

along with the dual frame

ε1 = dt, ε2 = dx − tdy + 1

2
t2dz, ε3 = dy − tdz, ε4 = dz.

We can then define an almost complex structure J , such that J ε1 = ε2 and J ε3 = ε4. A
pair of vector fields, spanning T 1,0

p M at every point p ∈ M , can then be defined by

V1 = 1

2
(ε0 − iε1) & V2 = 1

2
(ε2 − iε4),

along with their dual (1, 0)-forms, given by

φ1 = ε1 + iε2 & φ2 = ε3 + iε4.
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54 T. Holt

These forms satisfy the structure equations

dφ1 = −i ε1 ∧ ε3

= − i

4

(
φ12 + φ12̄ − φ21̄ + φ1̄2̄

)
,

dφ2 = −ε1 ∧ ε4

= i

4

(
φ12 − φ12̄ − φ21̄ − φ1̄2̄

)
,

with φi j̄ used here as shorthand for φ1 ∧ φ̄2. From this we can see that J is a non-integrable
almost complex structure, namely we have μ̄φ1 = μ̄φ2 = − i

4φ
1̄2̄ �= 0.

Now it only remains to choose a family of almost Hermitian metrics

ωλ = i
(
(1 + λ2)φ11̄ − λφ12̄ − λφ21̄ + φ22̄

)

varying over some λ ∈ R, defined such that V1 +λV2 and V2 form a unitary basis on T 1,0
p M .

Using the structure equations we can calculate

dωλ = λ

2

(
φ121̄ + φ11̄2̄

)
,

from which we can see firstly that ωλ is an almost Kähler metric if and only if λ = 0 and
secondly that ∂∂̄ωλ = 0, and thus ωλ is Gauduchon for all λ.

Furthermore, we can write

dωλ = αλ ∧ ωλ

with

αλ = −λ

2
i
(
λφ1 − φ2 − λφ̄1 + φ̄2

)

dαλ = −λ2

8

(
φ12 + φ12̄ − φ21̄ + φ1̄2̄

)
.

ωλ is therefore neither globally nor locally conformally almost Kähler except when λ = 0.
Finding h1,1

∂̄
then amounts to asking whether there exists an anti-self-dual γ solving

idcγ = dωλ.

Since J is the identity on (1, 1)-forms, this is equivalent to

i J−1dγ = dωλ.

If such a γ exists that would mean

Jdωλ = iλ

2

(
φ11̄2̄ − φ121̄

)

= 2λε1 ∧ ε2 ∧ ε3

= 2λdt ∧ (dx ∧ dy − tdx ∧ dz + 1

2
t2dy ∧ dz)

is an exact 3-form. But consider the closed submanifold given by z = 0. The pullback onto
this submanifold is 2λdt ∧ dx ∧ dy, which by Stokes’ theorem cannot be exact, since its
integral over the submanifold is non-zero, the only exception to this being when λ = 0.
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Bott–Chern and ∂̄ harmonic forms… 55

Thus, in all the cases when ωλ is not globally almost Kähler, there is no solution to (4) and
so h1,1

∂̄
= b−.

4 Bott–Chern harmonic forms

In this section we will give a collection of results which together will give a full description
of when h p,q

BC is or is not metric independent for compact 4-manifolds.
For many values of (p, q) proving the metric invariance of h p,q

BC is a relatively trivial affair
and so we will not spend too long on these cases.

Lemma 4.1 On any compact almost Hermitian 4-manifold h p,q
BC is metric independent when

(p, q) is equal to (2, 0), (0, 2), (1, 0), (0, 1), (0, 0) or (2, 2).

Proof Bott–Chern harmonic (0, 0)-forms are always just the constant functions, since �BC

is elliptic. Similarly Bott–Chern harmonic (2, 2)-forms are just constant functions times the
volume form so although H2,2

BC might change with the metric, h2,2
BC does not.

For the remaining cases recall that a (p, q)-form s is Bott–Chern harmonic if and only if
it satisfies the three conditions

∂s = 0, ∂̄s = 0, ∂∂̄ ∗ s = 0.

When (p, q) = (2, 0), (0, 2), (1, 0) or (0, 1) the third condition is always true leaving behind
the first two conditions which do not depend on the metric. ��

The more interesting cases are those when (p, q) = (1, 1), (2, 1) and (1, 2). We start
with the case of H1,1

BC . From the characterisation (3) of H1,1
BC , in [10] it is deduced that h1,1

BC
is either b− + 1 or b−, with the two cases corresponding, respectively, to the existence or
non-existence of an anti-self-dual solution γ to the equation

dγ = dω. (5)

Here ω is a Gauduchon metric conformal to the chosen Hermitian metric.
It turns out that solutions to the above equation can be found by making use of the Hodge

decomposition

Ak = dAk−1 ⊕ Hk
d ⊕ d∗Ak+1.

Theorem 4.2 Given any compact almost Hermitian 4-manifold (X , J , ω), we have h1,1
BC =

b− + 1.

Proof From the conformal invariance of h1,1
BC we may assume without losing generality that

ω is Gauduchon. Then taking the Hodge decomposition we can write

ω = dα + h + d∗β

for some α ∈ A1, h ∈ H2
d and β ∈ A3. By defining a 2-form

γ = d ∗ β + d∗β

we have

dω = dd∗β = dγ
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and thus γ is a solution to (5).
It only remains to show that γ is anti-self-dual. Using the definition of d∗ along with the

fact that the square of the Hodge star when applied to a k-form is given by ∗2 = (−1)k , we
can see that

∗γ = ∗d ∗ β − ∗ ∗ d ∗ β

= −d∗β − d ∗ β

= −γ.

We therefore find that

H1,1
BC = H−

g ⊕ C〈ω − γ 〉
and so h1,1

BC is always b− + 1. ��
Wewill now use the following example to show that h2,1

BC and h1,2
BC may, in general, depend

on the choice of almost Hermitian metric.

4.1 Calculating h2,1BC and h1,2BC on the Kodaira–Thurstonmanifold

Briefly we recall the definition of the Kodaira–Thurston manifold K T 4 = �\G as the group
G = R × Nil3 modulo the subgroup � of elements with integer valued entries, acting on
G by left multiplication. This is equivalent to R

4 with points identified by the equivalence
relation ⎛

⎜⎜⎝
t
x
y
z

⎞
⎟⎟⎠ ∼

⎛
⎜⎜⎝

t + t0
x + x0
y + y0

z + z0 + t0y

⎞
⎟⎟⎠ ,

for all t0, x0, y0, z0 ∈ Z.
R × Nil3 has a smooth global frame given by

∂

∂t

∂

∂x

∂

∂ y
+ t

∂

∂z

∂

∂z

which descends to a global frame for K T 4 since all of the above vector fields are invariant
under the action of �. We can define an almost complex structure acting on this frame by the
matrix

Ja,b =

⎛
⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 a b
0 0 c −a

⎞
⎟⎟⎠ ,

with a, b ∈ R, b �= 0 and c = − a2+1
b . A pair of vector fields

V1 = 1

2

(
∂

∂x
− i

∂

∂t

)
& V2 = 1

2

((
∂

∂ y
+ t

∂

∂z

)
− a − i

b

∂

∂z

)

can then be defined, spanning T 1,0
p K T 4 at every point p ∈ K T 4. Their dual (1, 0)-forms are

given by

φ1 = dx + idt & φ2 = (1 − ai)dy − ib(dz − tdy).
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These forms satisfy the structure equations

dφ1 = 0, dφ2 = b

4

(
φ12 + φ12̄ + φ21̄ − φ1̄2̄

)
.

We can see that Ja,b is a non-integrable almost complex structure, for all values of a and b,
by noting that μ̄φ2 = − b

4φ1̄2̄ �= 0.
In the following examples, the metric we will be using is given by

ωρ = i
(
φ11̄ + ρφ22̄

)
,

for which V 1, V̄ 1, 1√
ρ

V 2 and 1√
ρ

V̄ 2 form an orthonormal basis. This is essentially the same
metric as was used in [7] and in fact what follows is a more general, completed version of a
calculation in [10].

Example 4.3 Let a general (2, 1)-form be given by f φ121̄ + gφ122̄. Then from the conditions
∂̄s = 0 and ∂∂̄ ∗ s = 0 we see that s ∈ H2,1

BC if and only if the following PDEs hold.
⎧⎪⎨
⎪⎩

ρV1V̄1( f ) + V2V̄1(g) − b
4ρV1( f ) + b

4ρV̄1( f ) − b
4 V̄2(g) − b2

8 ρ f = 0,

ρV1V̄2( f ) + V2V̄2(g) + b
4ρV2( f ) = 0,

V̄1(g) − V̄2( f ) = 0.

(6)

Using the same method as in [7] we can perform a Fourier expansion with respect to x, y
and z to simplify the above equations. We will write

f (t, x, y, z) =
∑
l,m,n

Fl,m,n( f )(t)e2π i(lx+my+nz)

where

Fl,m,n( f )(t) =
∫

[0,1]3
f (t, x, y, z)e−2π i(lx+my+nz) dx dy dz.

Applying a Fourier expansion to the second and third PDEs we obtain the ODE system

d

dt

(Fl,m,n( f )

Fl,m,n(g)

)
= 2π

[(
0 n

ρ

n 0

)
t +

(
l − b

4π i 1
ρ

(
m − n a−i

b

)
m − n a+i

b −l

)](Fl,m,n( f )

Fl,m,n(g)

)
(7)

for every l, m, n ∈ Z. The ODE given by expanding our first PDE can be derived from the
above ODE system and so adds no new information.

As was proven in [7], the solutions to (6) can be split into two cases:
Firstly if two smooth functions Fl,m,n( f ), Fl,m,n(g) ∈ C∞(R) satisfy the ODE (7) with

n �= 0 and 0 ≤ m <
∣∣n∣∣ then we have a solution to (6) given by

f =
∑
ξ∈Z

Fl,m,n( f )(t + ξ)e2π i(lx+(m+nξ)y+nz)

g =
∑
ξ∈Z

Fl,m,n(g)(t + ξ)e2π i(lx+(m+nξ)y+nz)

if and only if the two functions Fl,m,n( f ) and Fl,m,n(g) are Schwartz.
Secondly, if Fl,m,n( f ), Fl,m,n(g) ∈ C∞(R) satisfy the ODE (7) with n = 0 then we have

a solution to (6) given by

f = Fl,m,0( f )e2π i(lx+my)
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g = Fl,m,0(g)e2π i(lx+my)

if and only if the two functions Fl,m,n( f ) and Fl,m,n(g) are periodic with a period of 1.
Finding solutions in the first case amounts to solving a Stokes phenomenon problem. This

can be tricky to do in general, but this problem has been solved for the ODE (7) in Theorem
3.1 of [6]. It turns out we have a solution for all 0 ≤ m <

∣∣n∣∣ whenever l = 0 and n satisfies

64π2n2 − 64πnub2
√

ρ − b4ρ = 0

for some negative integer u. Or equivalently, if we set d = b
8π ,

n2 − 64πnud2√ρ − 64π2d4ρ = 0.

Note that if d and ρ are both rational this case gives us no solutions as π is transcendental.
For the second case, since we are working with periodic functions, we can take another

Fourier expansion with respect to t , writing

Gk,l,m,0( f ) =
∫ 1

0
Fl,m,0( f )(t)e−2π ikt dt .

Applying this expansion to (7) we obtain the equations

ρ

(
l − ik − b

4π
i

)
Gk,l,m,0( f ) + mGk,l,m,0(g) = 0,

mGk,l,m,0( f ) = (l + ik)Gk,l,m,0(g).

This can be solved directly to find the solution

s = φ122̄

when k = 0, and the solution

s = ike2π i(kt+my)φ121̄ + me2π i(kt+my)φ122̄

when k �= 0 and k, m ∈ Z satisfy

m2

ρ
+ (k + d)2 = d2.

Here we again set d = b
8π . Notice that when d = 1 and ρ = 1 we have 4 solutions given

by (k, m) = (−1, 1), (−1,−1)(−2, 0) and (0, 0), however when we take ρ = 1
2 , leaving

d unchanged, we only have the two solutions (k, m) = (−1, 0) and (0, 0). Therefore we
conclude that on the Kodaira–Thurston manifold the value of h2,1

BC may depend on the choice
of almost Hermitian metric.

Example 4.4 Now let a general (1, 2)-form be given by f φ11̄2̄ + gφ21̄2̄. Then from the
conditions ∂s = 0 and ∂∂̄ ∗ s = 0 we see that s ∈ H1,2

BC if and only if the following
PDEs hold.⎧⎪⎨

⎪⎩
ρV1V̄1( f ) + V1V̄2(g) + b

4ρV1( f ) − b
4ρV̄1( f ) − b

4 V̄2(g) − b2
16ρ f = 0,

ρV2V̄1( f ) + V2V̄2(g) + b
4ρV2( f ) = 0,

V1(g) − V2( f ) = 0.

(8)
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Applying the same Fourier expansion as before, the second and third equations give us the
ODE system

d

dt

(Fl,m,n( f )

Fl,m,n(g)

)
= 2π

[(
0 n

ρ

n 0

)
t +

(
−l + b

4π i − 1
ρ

(
m − n a+i

b

)
−m + n a−i

b l

)](Fl,m,n( f )

Fl,m,n(g)

)
.

Again splitting the solutions into two cases we find that firstly we have a solution for all
n �= 0 and 0 ≤ m <

∣∣n∣∣ which satisfy

n2 − 64πnud2√ρ − 64π2d4ρ = 0

for some negative integer u. Secondly, for n = 0 we have solutions

s = φ21̄2̄

and

s = ike2π i(kt+my)φ11̄2̄ − me2π i(kt+my)φ21̄2̄

for all k, m ∈ Z, with k �= 0, satisfying

m2

ρ
+ (k − d)2 = d2.

From the abovewe see that for this family of almostHermitian structureswe have h1,2
BC = h2,1

BC

(although this need not always be the case). Thus the value of h1,2
BC may also depend on the

choice of almost Hermitian metric.
Furthermore, when ρ = 1, the calculation of Theorem 4.1 in [6] tells us that h2,1

BC and h1,2
BC

here are both equal to h0,1
∂̄

defined using the same family of almost complex structures Ja,b.

In particular, h2,1
BC and h1,2

BC can both be made arbitrarily large by varying the value of b.

We can now bring the results of this section together into the following theorem.

Theorem 4.5 On a compact almost Hermitian 4-manifold, when (p, q) = (0, 0), (1, 0),
(0, 1), (2, 0), (1, 1), (0, 2) or (2, 2), h p,q

BC is metric independent, but for (p, q) = (2, 1) and
(1, 2) there exist examples for which h p,q

BC does vary with the metric.

4.2 Birational invariance of hp,0BC

It is known from Theorem 5.5 in [3] that h p,0
∂̄

is birationally invariant on compact 4-
manifolds for any p ∈ {0, 1, 2}. This means that if we have a sequence of almost complex
4-manifolds X0, X1, X2 . . . , Xk+1 along with a sequence of degree one pseudoholomor-
phic maps u0, . . . uk such that u2i−1 : X2i−1 → X2i and u2i : X2i+1 → X2i then
h p,0

∂̄
(X) = h p,0

∂̄
(Y ). It turns out this result can be extended to show that the numbers h p,0

BC
are also birational invariants.

Theorem 4.6 Let u : X → Y be a degree one pseudoholomorphic map between compact
almost complex 4-manifolds. Then h p,0

BC (X) = h p,0
BC (Y ) for any p ∈ {0, 1, 2}.

Proof From [3] we know that the pullback with respect to u describes a bijection

u∗ : Hp,0
∂̄

(Y ) → Hp,0
∂̄

(X).
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Restricting this to the forms s ∈ Hp,0
∂̄

(Y ) which satisfy ∂s = 0 gives us

u∗ : Hp,0
BC (Y ) → Hp,0

BC (X).

The injectivity of this map follows directly from the injectivity of u∗ acting on Hp,0
∂̄

(Y ), so
it only remains to prove surjectivity.

Since u∗ is invertible when acting on Hp,0
∂̄

(Y ) we know that for any s ∈ Hp,0
BC (X) there

is some t ∈ Hp,0
∂̄

(Y ) such that u∗t = s. By Theorem 1.5 in [15] we know there is a finite set
Y1 ⊂ Y such that the restriction

u : X\u−1(Y1) → Y\Y1

is a diffeomorphism. This means we have

t
∣∣

X\u−1(Y1)
= (u−1)∗s

∣∣
Y\Y1

and so ∂t = 0 on Y\Y1. But since t is smooth and Y\Y1 = Y , we must have ∂t = 0 on all
of Y , thus t ∈ Hp,0

BC (Y ) and u∗∣∣
Hp,0

BC (Y )
is surjective. ��

Corollary 4.7 h0,p
BC is a birational invariant on compact almost complex 4-manifolds for any

p = 0, 1 or 2.

Proof Recall that s ∈ Hp,q
BC if and only if the following conditions hold

∂̄s = 0 ∂s = 0 ∂∂̄ ∗ s = 0.

If s is either a (p, 0)-form or a (0, p)-form for any p = 0, 1 or 2 then the third condition is
always true for reasons of bidegree. The remaining two conditions, when taken together, are
unchanged by a conjugation of s. The corollary therefore follows simply from the fact that

H0,p
BC = Hp,0

BC . ��

5 Harmonic analysis on Torus bundles over S1

In this section we introduce a technique which may be used to simplify or solve certain
linear PDEs on torus bundles over S1. Special cases of this technique have already proven
useful in the calculation of h p,q

∂̄
on the Kodaira–Thurston manifold [6]. We will start by first

describing a decomposition of smooth functions. Then, by considering a specific example of
calculating h0,1

∂̄
on a torus bundle with Euclidean geometry, we will see how PDEs can be

simplified through the application of this decomposition. In our example it will simplify to
a recurrence relation.

5.1 Decomposition of functions

Let M be any n-torus bundle over S1. This can be described as the mapping torus of an
n-torus determined by a matrix A ∈ GLn(Z). In other words, M is given by R

n+1 with
points identified by (

t
x

)
∼

(
t

x +
)

and

(
t
x

)
∼

(
t + ξ

Aξx

)
(9)
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for all ξ ∈ Z, ∈ Z
n .

When t is fixed, x describes a point on a torus. This means any smooth function f ∈
C∞(M), when viewed as a function on R

n+1 satisfying

f (t, x) = f (t, x + ) and f (t, x) = f (t + ξ, Aξx) (10)

can be decomposed into the Fourier series

f (t, x) =
∑
x0∈Zn

Fx0( f )(t)e2π ix0·x

where we define

Fx0( f )(t) =
∫

[0,1]n
f (t, x)e−2π ix0·x dx.

Here we have to be careful: notice that we have no guarantee that the summands
Fx0( f )e2π ix0·x will satisfy the same condition (10) as f , and so the summands are not
themselves smooth functions on M . In particular, it is the second condition of (10) that may
fail. We do however have the following result.

Proposition 5.1 A function f ∈ C∞(Rn+1) satisfies (10) if and only if it can be written as
the Fourier series

f (t, x) =
∑
x0∈Zn

Fx0( f )(t)e2π ix0·x

such that

F(AT )ξ x0( f )(t) = Fx0( f )(t + ξ)

for all ξ ∈ Z.

Proof It is clear that f has a Fourier expansion if and only if it satisfies the first condition of
(10). Taking the expansion of the second condition we see that∑

x0∈Zn

Fx0( f )(t)e2π ix0·x =
∑
x0∈Zn

Fx0( f )(t + ξ)e2π ix0·Aξ x

or equivalently∑
x0∈Zn

Fx0( f )(t)e2π ix0·x =
∑
x0∈Zn

F(AT )−ξ x0( f )(t + ξ)e2π ix0·x.

By the uniqueness of Fourier coefficients, this is identical to requiring

F(AT )ξ x0(t) = Fx0( f )(t + ξ).

��
This proposition suggests that by grouping together terms in the expansion, wemay obtain

a decomposition of f into smooth functions on M .

Definition 5.2 Let Orby denote the orbit of the point y ∈ Z
n being acted on by the group

generated by the transpose matrix AT . That is to say we have

Orby = {(AT )ξy | ξ ∈ Z}.
We use these orbits to partition Z

n and define O to be the set of all such orbits.
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Proposition 5.3 Any f ∈ C∞(M) can be written as the series

∑
Orby∈O∣∣Orby∣∣=∞

⎛
⎝∑

ξ∈Z
Fy( f )(t + ξ)e2π iy·Aξ x

⎞
⎠ +

∑
Orby∈O∣∣Orby∣∣=N<∞

⎛
⎝N−1∑

ξ=0

Fy( f )(t + ξ)e2π iy·Aξ x

⎞
⎠

and we have ⎛
⎝∑

ξ∈Z
Fy( f )(t + ξ)e2π iy·Aξ x

⎞
⎠ ∈ C∞(M)

⎛
⎝N−1∑

ξ=0

Fy( f )(t + ξ)e2π iy·Aξ x

⎞
⎠ ∈ C∞(M)

in the cases where y ∈ Z
n satisfies

∣∣Orby∣∣ = ∞, respectively
∣∣Orby∣∣ = N < ∞.

Proof By partitioning Z
n into the orbits Orby we can write∑

x0∈Zn

Fx0( f )(t)e2π ix0·x =
∑

Orby∈O

∑
x0∈Orby

Fx0( f )(t)e2π ix0·x.

Then by Proposition 5.1, if we have x0 = (AT )ξy for some ξ ∈ Z, then we can write

Fx0( f )(t) = Fy( f )(t + ξ)

and thus ∑
x0∈Orby

Fx0( f )(t)e2π ix0·x =
∑
ξ

Fy( f )(t + ξ)e2π iy·Aξ x

with ξ ranging over different values depending on the size of Orby. ��
In the case when

∣∣Orby∣∣ = N for some N < ∞ the functionFy( f ) is periodic with period
N , and so we can further decompose it as follows

Proposition 5.4 Given f ∈ C∞(M) and any y ∈ Z
n such that

∣∣Orby∣∣ = N < ∞, we can
write

Fy( f )(t) =
∑
t0∈Z

Gt0,y( f )e
2π i t0 t

N

where Gt0,y ∈ C is defined by

Gt0,y( f ) = 1

N

∫ N

0
Fy( f )(t)e− 2π i t0 t

N dt .

Proof This is simply the Fourier expansion of the periodic function Fy( f )(t). ��
Corollary 5.5 In the decomposition of f in Proposition 5.3, the summand⎛

⎝N−1∑
ξ=0

Fy( f )(t + ξ)e2π iy·Aξ x

⎞
⎠ ∈ C∞(M)
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can be further decomposed into

∑
t0∈Z

⎛
⎝Gt0,y( f )e2π i

t0 t
N

N−1∑
ξ=0

e
2π i

(
t0ξ

N +y·Aξ x
)⎞
⎠

such that each term ⎛
⎝Gt0,y( f )e2π i

t0 t
N

N−1∑
ξ=0

e
2π i

(
t0ξ

N +y·Aξ x
)⎞
⎠

is itself a smooth function on M.

Proof This result is achieved by substituting the expression forFy( f ) in Proposition 5.4 into
the summand. That the terms of the decomposition are themselves smooth functions on M
can be verified through the use of Proposition 5.1. ��

In the case when
∣∣Orby∣∣ = ∞ there does not seem to be any further useful decomposition

of F , however there are additional properties which F must satisfy.

Proposition 5.6 For any f ∈ C∞(M) and any y ∈ Z
n such that

∣∣Orby∣∣ = ∞, we require
that all derivatives of Fy( f )(t) tend to zero as t → ±∞ faster than any power of

∣∣(AT )ξy
∣∣

grows as ξ → ±∞. Specifically, for any compact set K ⊂ R we require

sup
t∈K
ξ∈Z

∣∣||(AT )ξy||p dq

dtq
Fy( f )(t + ξ)

∣∣ < ∞

for all p, q ∈ N.

Proof Let f be a function in C∞(Rn+1) satisfying (10), i.e. f ∈ C∞(M). First, note that
since f is smooth on R

n+1, all its derivatives must be bounded over any compact K̃ ⊂ R
n+1.

If we then take K̃ = [0, 1]n × K , we see that the Fourier coefficientsFx0 of all the derivatives
of f must be bounded for t ranging over K . Importantly, this bound is independent of x0 ∈ Z

n .
The Fourier coefficients of the derivatives of f can take the form of M(x0) dq

dtq

(Fx0( f )(t)
)

for any monomial M and any q ∈ N. This means for all monomials M and all q ∈ N we
require

sup
t∈K
x0∈Zn

∣∣M(x0)
dq

dtq
Fx0( f )(t)

∣∣ < ∞

and thus if we restrict our attention to x0 ∈ Orby we require

sup
t∈K

x0∈Orby

∣∣M(x0)
dq

dtq
Fx0( f )(t)

∣∣ = sup
t∈K
ξ∈Z

∣∣M((AT )ξy)
dq

dtq
Fy( f )(t + ξ)

∣∣ < ∞.

M(x0) can then be chosen to be ||x0||p for arbitrarily large p ∈ N, giving us the desired
result. ��
Corollary 5.7 For any f ∈ C∞(M) and any y ∈ Z

n such that
∣∣Orby∣∣ = ∞, we require that

Fy( f )(t) ∈ S(R). Here S(R) denotes the space of Schwartz functions

S(R) =
{

h(t) ∈ C∞(R)
∣∣ sup

t∈R

∣∣t p dq

dtq
h(t)

∣∣ < ∞, for all p, q ∈ N

}
.
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Proof If
∣∣Orby∣∣ = ∞ then ||(AT )ξy|| must blow up as ξ → ±∞, since an infinite orbit

cannot repeat the same point twice. Furthermore, since the number of lattice points within a
bounded region of Z

n grows like R2 with the radius R of the region, it must be the case that

||(AT )ξy|| blows up at least as fast as ∣∣ξ ∣∣ 12 . Substituting this speed of growth into the above
proposition gives the definition of S(R).

Note that if ||(AT )ξy|| blows up faster than polynomially, then the Proposition yields an
even stricter condition on Fy than Schwartz. ��
Theorem 5.8 The space of L2 functions on M decomposes in the following way.

L2(M) =

⎛
⎜⎜⎜⎜⎝

⊕̂
Orby∈O∣∣Orby∣∣=∞

Hy

⎞
⎟⎟⎟⎟⎠ ⊕

⎛
⎜⎜⎜⎜⎝

⊕̂
Orby∈O∣∣Orby∣∣=N<∞

⊕̂
t0∈Z

Ht0,y

⎞
⎟⎟⎟⎟⎠ ,

where

Hy =
⎧⎨
⎩

∑
ξ∈Z

f (t + ξ)e2π iy·Aξ x ∣∣ f ∈ L2(R)

⎫⎬
⎭

and

Ht0,y =
⎧⎨
⎩Ce2π i

t0 t
N

N−1∑
ξ=0

e
2π i

(
t0ξ

N +y·Aξ x
) ∣∣ C ∈ C

⎫⎬
⎭ .

Here ⊕̂ denotes the direct sum followed by the closure with respect to the L2 norm.

Proof From Propositions 5.3 and 5.4 we see that any smooth function can be decomposed in
the way described above and so, since L2(M) is the closure of C∞(M) with respect to the
L2 norm, we obtain the desired result. ��

It will be useful now to consider what the orbits of y ∈ Z
n actually look like. In particular,

when exactly is
∣∣Orby∣∣ < ∞. First, we define the generalised eigenvectors of A.

Definition 5.9 Let λ1, . . . , λk ∈ C be the eigenvalues of A ∈ GLn(Z) with values repeated
for geometric multiplicity. Then any n linearly independent vectors vi, j ∈ C

n with i =
1, . . . , k and j = 1, . . . , mi such that

(A − λi )
jvi, j = 0 but (A − λi )

j−1vi, j �= 0

are called generalised eigenvectors of A. Note that when j = 1 we just have the standard
eigenvectors of A. Furthermore, we can make a choice of vi, j so that when i is fixed, the
sequence vi,1, vi,2, . . . , vi,mi forms a Jordan chain of length mi . This means for all j �= 1
we have

(A − λi )vi, j = vi, j−1 (11)

and for j = 1 we have

(A − λi )vi,1 = 0. (12)

These vi, j can be used to describe when the orbit of the group generated by AT acting on
y ∈ Z

n is finite.
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Proposition 5.10 Let vi, j be the generalised eigenvectors of A ∈ GLn(Z) as defined above,
with corresponding eigenvalues λ1, . . . , λk . Given y ∈ Z

n, if
∣∣Orby∣∣ = N < ∞ it must be

the case that vi, j · y = 0 except for when i and j are chosen such that λN
i = 1 and j = mi .

Proof If Orby is a finite subset of Z
n , then (AT )ξymust be bounded over ξ ∈ Z. This means

vi, j · ((AT )ξy) = (Aξvi, j ) · y must be bounded over ξ ∈ Z for all vi, j .
From (12) we know that Avi,1 = λvi,1 and thus

Aξvi,1 · y = λξvi,1 · y.
But if

∣∣λi
∣∣ > 1 then λ

ξ
i will blow up as ξ → ∞ and if

∣∣λi
∣∣ < 1 then it will blow up as

ξ → −∞. From this we conclude that
∣∣Orby∣∣ < ∞ only if vi,1 · y = 0 for all i such that∣∣λi

∣∣ �= 1. Rewriting (11) as Avi, j = λvi, j + vi, j−1 and using vi,1 · y = 0 we can apply the
above argument again to prove the same result for vi,2. In fact, continuing by induction, we
see that

∣∣Orby∣∣ is finite only if vi, j · y = 0 for all i and j such that
∣∣λi

∣∣ �= 1.
Now, consider the case when

∣∣λi
∣∣ = 1. From (11) we can see that when mi ≥ 2 then

Aξvi,2 = λξvi,2 + ξλξ−1vi,1.

This means Aξvi,2 · y will blow up as ξ → ±∞ unless vi,1 · y = 0. Similarly, if vi,1 · y = 0
then the same argument works to show Aξvi,3 · y will blow up unless vi,2 · y = 0, provided
mi ≥ 3. Repeating this procedure, we find that

∣∣Orby∣∣ < ∞ implies that vi, j · y = 0 for all
i and j such that

∣∣λi
∣∣ = 1 and j < mi

Finally, it remains to consider the case of vi,mi . If
∣∣Orby∣∣ = N then we know that

(AT )Ny = y, and also we have shown that vi, j · y = 0 for all j �= mi . The following
must therefore hold:

vi,mi · y = vi,mi · (AT )Ny

= ANvi,mi · y
= λN

i vi,mi · y.
Thus

∣∣Orby∣∣ = N requires that for all i , either vi,mi · y = 0 or λN
i = 1. ��

Corollary 5.11 Whenever
∣∣Orby∣∣ = N < ∞, it holds that

Avi, j · y =
{

e2π iθi vi, j · y if λN
i = 1 and j = mi

0 otherwise

where θi ∈ Q ∩ (− 1
2 ,

1
2 ] is some rational number depending on i satisfying Nθi ∈ Z.

5.2 Properties of the decomposition

We would now like to consider some of the properties of this decomposition, which will be
useful when considering the example in the following section. But in order to do this we
must first construct a special frame on M .

Definition 5.12 Given any invertible matrix A ∈ GLn(Z), then for some choice of matrix
logarithm ln A we can define the power At := et ln A for all t ∈ R. Note that such a logarithm
always exists, but may be complex valued.
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Throughout this paper, the choice of ln A will always be made such that

Atvi, j · y =
{

e2π iθi tvi, j · y if λN
i = 1 and j = mi

0 otherwise

for θi ∈ Q ∩ (− 1
2 ,

1
2 ].

Using the generalised eigenvectors of A given by vi, j , a smooth frame for the complexified
tangent bundle of M can be given by

ε0 = ∂

∂t
εi, j = Atvi, j · ∇x.

Here we are using ∇x = ( ∂
∂x1

, ∂
∂x2

, . . . , ∂
∂xn

) to denote the gradient excluding the variable t .
We verify that this is indeed a well defined frame on M in following proposition.

Proposition 5.13 Viewing M as a torus bundle over S1, any smooth frame of the complexified
tangent bundle on a single fibre may be extended to a smooth frame on all of M.

Proof We can assume, without loss of generality, that we are starting with a frame on the
t = 0 fibre, where t is parametrising the base space S1, as in the definition of M (9).

Let a1, a2, . . . , an : R
n/Z

n → C
n be smooth maps sending each point x ∈ T

n to n
linearly independent vectors. Then the collection {ai · ∇x}i=1,...,n defines a general frame
on the t = 0 fibre. A frame for TCM is then given by u0 = ∂

∂t and ui = Atai · ∇x with
i = 1, . . . , n.

These are indeed all well defined vector fields on M , in particular they do not conflict with
the identification of points given in (9). To check the first identification, simply note that the
maps ai (x) are defined on the torus. For the second we consider the map

φξ :
(

t
x

)
�→

(
t + ξ

Aξx

)

with ξ ∈ Z and try to show that ui are invariant under the pushforward. Certainly this is true
of ∂

∂t , and we also know that, for i = 1, . . . , n, we have

(φξ )∗(ei · ∇x) = (φξ )∗
∂

∂xi

= Aξ ei · ∇x

with ei signifying the standard basis vector (0, . . . , 1, . . . , 0) with a 1 in the i th position.
Therefore

(φξ )∗ui (t) = (φξ )∗(Atai · ∇x)

= At+ξai · ∇x

= ui (t + ξ).

��
It should be noted that if A has a real-valued logarithm and we choose ai to be maps into

R
n , then the construction in the above proof will give us a smooth frame on the standard,

non-complexified tangent bundle.

Proposition 5.14 Given any y ∈ Z
n and any f ∈ C∞(M), Fy has the properties
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i)

Fy(ε0 f )(t) = ε0 Fy( f )(t),

ii)

Fy(εi, j f )(t) = 2π i Atvi, j · yFy( f ).

Proof Since Fy( f ) is just one of the Fourier coefficients of f in the standard expansion

f (t, x) =
∑
y∈Zn

Fy( f )(t)e2π iy·x

this proposition is simply restating results from classical Fourier analysis. ��
Proposition 5.15 Given any y ∈ Z

n such that
∣∣Orby∣∣ = N < ∞ and any f ∈ C∞(M),Gt0,y

has the properties

i)

Gt0,y(ε0 f )(t) = 2π i
t0
N

Gt0,y( f ),

ii)

Gt0,y(εi, j f ) =
{
2π ivi, j · y Gt0+Nθi ,y( f ) if λN

i = 1 and j = mi

0 otherwise
,

with θi defined as in Corollary 5.11.

Proof For part i), we make use of the result i) in the previous proposition along with the
definition of Gt0,y to write

Gt0,y(ε0 f )(t) = 1

N

∫ N

0
Fy(ε0 f )e− 2π i t0 t

N dt

= 1

N

∫ N

0

(
ε0Fy( f )

)
e− 2π i t0 t

N dt .

Then, since Fy( f )(t) is periodic with period N , we can make use of integration by parts to
get

1

N

∫ N

0

(
ε0Fy( f )

)
e− 2π i t0 t

N dt = − 1

N

∫ N

0
Fy( f )

(
ε0e− 2π i t0 t

N

)
dt

= 2π i
t0
N

1

N

∫ N

0
Fy( f )e− 2π i t0 t

N dt

= 2π i
t0
N
Gt0,y( f ).

For part i i), we make use of the result i i) in the previous proposition to write

Gt0,y(εi, j f ) = 1

N

∫ N

0
Fy(εi, j f )e− 2π i t0 t

N dt

= 1

N

∫ N

0
2π i Atvi, j · yFy( f )e− 2π i t0 t

N dt .
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Then, because of the way At was defined in Definition 5.12, we get

1

N

∫ N

0
2π i Atvi, j · yFy( f )e− 2π i t0 t

N dt = 0

unless λN
i = 1 and j = mi , in which case

1

N

∫ N

0
2π i Atvi, j · yFy( f )e− 2π i t0 t

N dt = 2π ivi, j · y 1

N

∫ N

0
Fy( f )e− 2π i(t0+Nθi )t

N dt

= 2π ivi, j · y Gt0+Nθi ,y( f ).

��

6 Calculating h0,1
@̄

using harmonic analysis

It should be noted the Kodaira–Thurston manifold K T 4 can be viewed as a torus bundle over

S1 with A =
⎛
⎝1 0 0
0 1 1
0 0 1

⎞
⎠. The calculations done on K T 4 in Sect. 4.1 can be thought of as

an application of the above results, with the case when n �= 0 corresponding to an infinite
orbit and the case when n = 0 corresponding to a finite orbit of length 1.

In this section we will see what it looks like to use our decomposition to perform calcula-
tions on a manifold for which we have a finite orbit with length greater that 1. Specifically,
we will show how the decomposition might be used in the calculation of h0,1

∂̄
on an almost

Hermitian manifold defined by setting

A =
⎛
⎝0 0 1
1 0 0
0 1 0

⎞
⎠

and identifying points in R
4 by(

t
x

)
∼

(
t

x + x0

)
and

(
t
x

)
∼

(
t + ξ

Aξx

)

for all x0 ∈ Z
3 and all ξ ∈ Z. The matrix A has eigenvalues of 1, e− 2

3π i and e
2
3π i correspond-

ing to eigenvectors

⎛
⎝1
1
1

⎞
⎠,

⎛
⎜⎝

e
2
3π i

e− 2
3π i

1

⎞
⎟⎠ and

⎛
⎜⎝

e− 2
3π i

e
2
3π i

1

⎞
⎟⎠. We therefore define a smooth frame on

the complexified tangent bundle by

ε0 = ∂

∂t
ε1 =

⎛
⎝1
1
1

⎞
⎠ · ∇x ε2 = e− 2

3π i t

⎛
⎜⎝

e
2
3π i

e− 2
3π i

1

⎞
⎟⎠ · ∇x ε3 = e

2
3π i t

⎛
⎜⎝

e− 2
3π i

e
2
3π i

1

⎞
⎟⎠ · ∇x

where we define ∇x :=
⎛
⎝∂x

∂y

∂z

⎞
⎠. The dual frame is given by

ε0 = dt, ε1 = 1

3
(dx + dy + dz) ,
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ε2 = e
2
3π i t

3

(
e− 2

3π idx + e
2
3π idy + dz

)
, ε3 = e− 2

3π i t

3

(
e
2
3π idx + e− 2

3π idy + dz
)

.

Let an almost complex structure J be defined by the mapping

ε0 �→ 1

2
(ε2 + ε3) and ε1 �→ − i

2
(ε2 − ε3).

We can then find a pair of vectors fields spanning T 1,0
p M at all points p ∈ M

V1 = 1

2

(
ε0 − i

2
(ε2 + ε3)

)
V2 = 1

2

(
ε1 − 1

2
(ε2 − ε3)

)

with dual (1, 0)-forms given by

φ1 = ε0 + i(ε2 + ε3) φ2 = ε1 − ε2 + ε3

which satisfy the structure equations

dφ1 = π

6

(
φ12 − φ12̄ − φ21̄ − φ1̄2̄

)

dφ2 = π

3
φ11̄.

The metric can be chosen so that V1 and V2 form a unitary basis.

6.1 Deriving the equations

Let a general (0, 1)-form be written as s = f φ̄1 + gφ̄2. The two requirements

∂̄s = 0 and ∂ ∗ s = 0

which are equivalent to s being ∂̄-harmonic, give rise to the two PDEs

−(V̄2 − π

6
) f + V̄1g = 0,

V1 f + V2g = 0.

We will now try taking a Fourier expansion. If f is a smooth function on M we know from
Proposition 5.1 that we can write it as

f (t, x, y, z) =
∑

l,m,n∈Z
Fl,m,n( f )(t)e2π i(lx+my+nz),

with Fl,m,n( f ) satisfying the property

Fm,n,l(t) = Fl,m,n( f )(t + ξ),

for all ξ ∈ Z. This gives us two cases: if l = m = n then Fl,m,n( f ) is periodic with period
length 1, and otherwise it is periodic with period length 3. So in both cases we can further
expand the function with respect to the variable t .
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6.1.1 The orbits of length 1

Here we have a standard Fourier expansion in all 4 variables, with

Fn,n,n( f ) =
∑
k∈Z

Gk,n,n,n( f )(t)e2π ikt .

In this case by Proposition 5.15 we see that Gk,n,n,n satisfies the properties

Gk,n,n,n(ε0 f ) = 2π ikGk,n,n,n( f ),

Gk,n,n,n(ε1 f ) = 2π i(n + n + n)Gk,n,n,n( f ) = 6π inGk,n,n,n( f ),

Gk,n,n,n(ε2 f ) = 2π i(e
2
3π i n + e− 2

3π i n + n)Gk−1,n,n,n( f ) = 0,

Gk,n,n,n(ε3 f ) = 2π i(e− 2
3π i n + e

2
3π i n + n)Gk+1,n,n,n( f ) = 0,

which we can use to rewrite our two PDEs into the form(
k 3n

−3n − i
6 k

)(G( f )

G(g)

)
= 0.

This has non-trivial solutions if and only if the matrix has zero determinant, i.e.

k2 + 9n2 + 3n
i

6
= 0

which is only the case when k = n = 0. Corresponding to this case we have the solution

f = 0 g = const .

6.1.2 The orbits of length 3

In the case where l, m and n are not all equal, Fl,m,n( f ) is still periodic, but with period 3
and so our expansion now looks like

Fl,m,n( f )(t) =
∑
k∈Z

Gk,l,m,n( f )e
2π ikt
3 .

For the sake of notational simplicity we define

α1 = l + m + n α2 = e
2
3π i l + e− 2

3π i m + n α3 = e− 2
3π i l + e

2
3π i m + n

and also we will use Gk( f ) to denote Gk,l,m,n( f ). Then by Proposition 5.15 we can say that
Gk( f ) satisfies

Gk(ε0 f ) = 2π ikGk( f ),

Gk(ε1 f ) = 2π iα1Gk( f ),

Gk(ε2 f ) = 2π iα2Gk−1( f ),

Gk(ε3 f ) = 2π iα3Gk+1( f ).

Applying these properties to our two PDEs gives us a pair of equations
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α3

2
Gk−1( f ) − (α1 + i

6
)Gk( f ) − α2

2
Gk+1( f )

+ iα3

2
Gk−1(g) + k

3
Gk(g) + iα2

2
Gk+1(g) = 0,

− iα3

2
Gk−1( f ) + k

3
Gk( f ) − iα2

2
Gk+1( f )

+ α3

2
Gk−1(g) + α1Gk(g) − α2

2
Gk+1(g) = 0.

By choosing to cancel either the terms Gk−1( f ) & Gk−1(g) or the terms Gk+1( f ) & Gk+1(g)

we can simplify to the pair of equations(
k

3
+ 1

6
− iα1

)
Gk( f ) − iα2Gk+1( f ) + i

(
k

3
− iα1

)
Gk(g) + α2Gk+1(g) = 0,

−iα3Gk−1( f ) +
(

k

3
− 1

6
+ iα1

)
Gk( f ) + α3Gk−1(g) − i

(
k

3
+ iα1

)
Gk(g) = 0.

Evaluating the second of these at k + 1 instead of k we can cancel either the Gk+1( f ) term
or the Gk+1(g) term. In this way we can write our equations as the recurrence relation(Gk+1( f )

Gk+1(g)

)
= 6

(4k + 3 + 12iα1)
Bk

(Gk( f )

Gk(g)

)

where

Bk =
(−i

[( k
3 + 1

6

) ( k
3 + 1

3

) + α2
1 − 1

6 iα1 − α2α3
] [ k

3

( k
3 + 1

3

) + α2
1 − 1

3 iα1 − α2α3
]

−
[( k

3 + 1
6

)2 + α2
1 + α2α3

]
−i

[ k
3

( k
3 + 1

6

) + α2
1 − 1

6 iα1 + α2α3
]
)

,

and so the values of Gk( f ) and Gk(g) for all k ∈ Z are determined by a choice for G0( f ) and
G0(g). Since we are looking for smooth solutions f and g, we require that Fl,m,n( f )(t) =∑

k∈Z Gk,l,m,n( f )e
2π ikt
3 be smooth, and likewise forFl,m,n(g)(t). This is equivalent to asking

that the sequences Gk( f ) and Gk(g) are Schwartz, i.e. they are contained in

S(Z) =
{
(ak)k∈Z

∣∣ sup
k∈Z

∣∣k pak
∣∣ < ∞ for all p ∈ N

}
.
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