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Abstract
The conjectures associatedwith the names of Zilber-Pink greatly generalize results associated
with the names of Manin-Mumford and Mordell-Lang, but unlike the latter they are almost
exclusively restricted to zero characteristic. Not so long ago the second author made a start on
removing this restriction by studying multiplicative groups over positive characteristic, and
recently both authors went further for additive groupswith extra Frobenius structure. Herewe
study additive groups with extra structure coming instead from the Carlitz module. We state
a conjecture for curves in general dimension and we prove it in three dimensions. The main
tool is a new relative version (for cyclotomic fields) of Denis’s analogue of Dobrowolski’s
classical lower bound for heights, as well as a suitable upper bound. We also work out a
couple of special cases in two dimensions: for example with respect to prime fields there are
exactly 23 Carlitz roots of unity whose reciprocals are also roots of unity.

Keywords Carlitz modules · Unlikely intersections

Mathematics Subject Classification 11G09 · 11G20 · 14G17

1 Introduction

For over two decades now much has been written on the study of what happens when a
fixed algebraic variety sitting inside a fixed commutative group variety is intersected with the
union of group subvarieties of suitable dimension.When the groupvariety is themultiplicative
groupGn

m, wemay refer to the work of Bombieri, Zannier and the second author (for example
the early paper [8] on curves, our later paper [11] on varieties of codimension 2, and our
paper [12] on planes) and the wide-ranging extension of Habegger to arbitrary varieties (see
[31] for example). When the group variety is projectively complete there are the results
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2 W. D. Brownawell, D. Masser

of Viada about powers of a fixed elliptic curve (see [58] for example) as well as those of
Rémond generalizing to abelian varieties (see [54] for example); see especially the paper
[32] of Habegger and Pila. There are also investigations of Zannier and the second author
inside varying group varieties such as elliptic and abelian schemes (see [45–47] for example).
All this work on “unlikely intersections" takes place over zero characteristic, and one may
consult the book [59] of Zannier for a comprehensive survey. The general conjectures are
due to Zilber [60] and Pink [51].

Over positive characteristic it is well-known that related simpler problems, such as those
associated with the names Manin-Mumford about torsion points, can become false. For
example over zero characteristic the equation

x + y = 1 (1)

has only two solutions in roots of unity x and y (involving primitive sixth roots). However
over characteristic p there are infinitely many; indeed we can take any x �= 0, 1 in the
algebraic closure Fp and then y accordingly.

Another special kind of unlikely intersection occurs when we intersect the variety with a
finitely generated group, an area often associated with the namesMordell-Lang. For example
over zero characteristic we can ask for solutions of (1) with x a power of 3 and y a power of
−2, amounting essentially to the equation 3a − 2b = 1. This has for centuries been known
to have only two solutions in integers a, b. However over characteristic p inside the function
field Fp(t), with x a power of t and y a power of 1 − t , we have infinitely many solutions

x = tq , y = (1 − t)q = 1 − tq (q = 1, p, p2, . . .).

Formuchmore see for example the papers [33] ofHrushovski and [49] ofMoosa and Scanlon.
And the torsion situation can be combinedwith the finitely generated situation by allowing

finite rank; under this heading see for example the papers [29] of Ghioca andMoosa and [26]
of Ghioca.

The second author [43] made a start on Zilber-Pink problems over positive characteristic,
formulating a conjecture for curves in Gn

m and proving it for G3
m.

Then in [15] we continued the study of such problems, but now for the additive groupGn
a .

Over zero characteristic the naive conjectures for Gn
a become false, because they implicitly

involve group subvarieties (of codimension 2), and there are simply far too many of these.
For example the union of all of codimension 1 (and even of codimension n − 1) is the whole
Gn

a .
Over positive characteristic it iswell-known that problems ofManin-Mumford orMordell-

Lang type can be formulated for Gn
a by imposing some extra structure. One immediately

thinks of Drinfeld modules (on which the literature is already substantial); but there is an
easier way using Frobenius (also see [26], in particular Theorem 2.6 p.3841). It is these
“Frobenius modules” or “F-modules” that we recently studied in [15].

In the present paper we go in the direction of Drinfeld, but we restrict ourselves to the
simplest and most attractive forerunner, the Carlitz module.

To fix ideas, let us first review the situation for the multiplicativeGn
m over zero character-

istic. The decisive result was obtained by Maurin [48] (see [7] also), and, taking into account
[13], we now know the following best possible result.

Theorem A Let K be an algebraically closed field of characteristic 0, and let C in Gn
m

be an irreducible curve defined over K . Assume for any non-zero (r1, . . . , rn) in Zn that
the monomial xr11 · · · xrnn is not identically 1 on C. Then there are at most finitely many
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Unlikely intersections for curves in products of Carlitz modules 3

(ξ1, . . . , ξn) in C(K ) for which there exist linearly independent (a1, . . . , an), (b1, . . . , bn)
in Zn such that

ξ
a1
1 · · · ξann = ξ

b1
1 · · · ξbnn = 1.

It was already pointed out in [43] (p.506) that the naive analogue of this over positive
characteristic is false, in that a (stronger) hypothesis about twomonomials, not one, is needed.
There is an exactly analogous situation in [15] for Gn

a with Frobenius structure associated
with x p .

Our Carlitz structure is associated with x p + t x instead, and it may be found surprising
that such a small change makes the situation revert back to that of the original multiplicative
result in Theorem A above, with only one monomial.

Let us now recall this Gn
a with Carlitz structure.

We use a distinguished parameter t .
Write C = tF0 + F1 where Fr is the Frobenius taking x to x pr . Thus C(x) = t x + x p;

or we shall usually write just Cx . We have the non-twisted R = Fp[C] inside the twisted
K{F1}, where K is any field of characteristic p. Of course K{F1} acts on Ga by

αx = a0x + a1x
p + a2x

p2 + · · ·
for α = a0F0 + a1F1 + a2F2 + · · · in K{F1}. Here we have used the same juxtaposition
notation for the module action, as in αx , and the field action, as in ax . In general throughout
this paper the first will be used mainly with greek letter coefficents, and the second mainly
with roman letter coefficients; and the two actions will rarely be side-by-side.

There is an action onGn
a by α(x1, . . . , xn) = (αx1, . . . , αxn). Any algebraic subgroup of

Gn
a that is an R-module is then defined by several equations of the form

α1x1 + · · · + αnxn = 0

where α1, . . . , αn are in R. The codimension is the rank of the various (α1, . . . , αn) in Rn .
We believe in the following version of Theorem A.

Conjecture Let K be an algebraically closed field containing Fp(t), and let C in Gn
a be

an irreducible curve defined over K . Assume for any non-zero (ρ1, . . . , ρn) in Rn that the
form ρ1x1 + · · · + ρnxn is not identically zero on C. Then there are at most finitely many
(ξ1, . . . , ξn) in C(K ) for which there exist linearly independent (α1, . . . , αn), (β1, . . . , βn)

in Rn such that

α1ξ1 + · · · + αnξn = β1ξ1 + · · · + βnξn = 0.

The case n = 1 is empty.
The case n = 2 amounts to an analogue of Manin-Mumford. It was proved in the general

context of Drinfeld modules by Scanlon [55], using techniques from model theory. Here we
will sketch a more elementary method in the Carlitz context.

Already the case n = 3, going beyond torsion, is in the sense of Zilber-Pink. The main
result of this paper is a proof for n = 3.

It is possible that the cases n = 4, 5 can be handled by adapting the methods of [10] and
the results of Amoroso and David [1].

But for n ≥ 6 quite different methods will probably be needed, maybe following [7, 48]
or [13].

Also for general n it may well be possible to prove a weaker form of the Conjecture under
the stronger hypothesis that ρ1x1 +· · ·+ρnxn is not identically constant on C (the analogue
of the hypothesis in [8] for zero characteristic Gn

m).
Anyway, we shall prove
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4 W. D. Brownawell, D. Masser

Theorem Let K be an algebraically closed field containing Fp(t), and let C in G3
a be an

irreducible curve defined over K . Assume for any non-zero (ρ1, ρ2, ρ3) in R3 that the form
ρ1x1+ρ2x2+ρ3x3 is not identically zero onC. Then there are atmost finitelymany (ξ1, ξ2, ξ3)

in C(K ) for which there exist linearly independent (α1, α2, α3), (β1, β2, β3) inR3 such that

α1ξ1 + α2ξ2 + α3ξ3 = β1ξ1 + β2ξ2 + β3ξ3 = 0.

In fact TheoremAabove for n = 3 and K = Qwas first proved in [8]. There the concept of
height was unavoidable, and we needed also results on upper bounds as well as considerably
deeper results on lower bounds.

By contrast the proofs in [43] and [15] do not use heights at all.
It turns out that the proof of our Theorem above follows much more closely [8] and in

particular we need heights h(ξ) on Fp(t) (see later).
Of course the condition of algebraic closure can be omitted in all the above statements,

but its retention is meant to emphasize that we are considering points of unbounded degree
(over Fp(t) for example).

Wewill prove the following upper bound, a Carlitz analogue of Theorem 1 of [8] (p.1120).

Proposition 1 For K = Fp(t) let C be an irreducible curve in Gn
a defined over K . Assume

for any non-zero (ρ1, . . . , ρn) inRn that the form ρ1x1+· · ·+ρnxn is not identically constant
on C. Then there is B such that

h(ξ1) + · · · + h(ξn) ≤ B

for all (ξ1, . . . , ξn) on C(K ) for which there exists non-zero (α1, . . . , αn) in Rn with

α1ξ1 + · · · + αnξn = 0.

For the lower bound we have to go beyond [8] with a Carlitz analogue of the Néron-Tate
height on a elliptic curve. This was constructed by Denis [21] (even for Drinfeld modules),
and we shall denote it by ĥ(ξ) ≥ 0 for ξ in Fp(t) (see later). It is well-known that ĥ(ζ ) = 0
if and only if ζ is torsion in the sense of Carlitz (see later). Then Fp(t, ζ ) is a cyclotomic
(see later) extension of Fp(t), and every cyclotomic extension Fc has this form (see later).
They are separable (see later). We have to consider extensions of Fc that are not necessarily
separable. Thus we will prove the following lower bound, where from now on we write
F0 = Fp(t).

Proposition 2 There is a positive constant c depending only on p with the following property.
Let Fc be a finite cyclotomic extension of F0 and let F be an extension of Fc of degree d.
Then for any non-torsion ξ in F we have

ĥ(ξ) ≥ c−1d−1 (log 16D)−3

(log log 16D)−2

where D = [F : F0].
In fact the lower bound can be multiplied by

min

{
(log 16D)3

log log 16D
, q2 log log 16D, q2

√
d

}
≥ 1,

where q is the inseparable degree of F over Fc; but this seems such a tiny improvement that
we did not bother to include the details.
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Unlikely intersections for curves in products of Carlitz modules 5

In the case Fc = F0 (so no cyclotomy) a very slightly stronger result with (log log 16D)−3

in place of (log log 16D)−2 was proved by Denis [21] as Théorème 2 (p.218); but only for
extensions which are regular (apparently not essential) and separable - a genuine restriction.
This restriction was lifted by Demangos [20], even for a class of Drinfeld modules including
Carlitz. The lower bound of his Theorem 2 (p.153) involves an extra negative power of the
inseparable degree of F over F0. But it has the advantage that all the constants appearing
are explicitly calculated. See also Bosser and Galateau [14] for several simplifications and
improvements, especially Theorem 1.8 (p.168).

In the case F = Fc (so only cyclotomy) David and Pacheco [19] have shown in Théorème
1.0.1 (p.1046) that in fact ĥ(ξ) ≥ c−1 (and even the generalizations to abelian extensions
and Drinfeld modules). See also Bauchère [4] for further generalizations.

We now describe our proofs.
That of our Conjecture for n = 2 follows one of the classical proofs over Q.
For n = 3, the proof of our Theorem for K = F0 follows the general strategy of [8], using

height upper and lower bounds.
We prove Proposition 1 by adopting the slightly simplified exposition in [42].
As for Proposition 2, it is an analogue of a result of Amoroso and Zannier [2] over Q

(they actually treated abelian extensions). We have at our disposal the proof in [21] for
Fc = F0; this is the natural analogue of the classical result of Dobrowolski [23]. But in
fact this proof in [21] resembles much more Laurent’s analogue [37] for elliptic curves
with complex multiplication. It was Ratazzi [53] who extended Laurent’s result to abelian
extensions. Meanwhile Pontreau [52] gave a simpler proof of the result of [2] restricted to
cyclotomic extensions (whose discriminants are known), and it is this that we adapt here
to the the Carlitz context. However our choice of parameters in the auxiliary polynomial is
rather different from his; for example we differentiate about d times and he only about log d
times.

In much of the early work it was possible in analogues of Proposition 2 to restrict to ξ

that are integral in some sense. But already this made some trouble in the elliptic case [37]
and in the original Carlitz work [21]. Here we are obliged to distinguish between valuations
of small and large ramification and exploit the known ramification properties of cyclotomic
extensions (this argument may fail for abelian extensions).

We have mentioned that over positive characteristic there may well be problems with
inseparability. In principle this causes trouble here, especially in the use of an analogue of
Siegel’s Lemma. We overcome this by adapting a version due to Thunder [57]. This version
also involves the genus of the function field Fc analogous to well-known results of Bombieri
and Vaaler [6] involving the discriminant; for us it is fortunate that the genus of Fc is also
known (just as for cyclotomic extensions of Q).

On the other hand inseparability can be an advantage, For example Theorem 6.6 (p.64) of
Ghioca [25] about Drinfeld modules implies that ĥ(ξ) ≥ p−19 for any non-torsion ξ in any
purely inseparable extension of F0. So there is no dependence at all on field degrees. In fact
here the only possible torsion ξ are 0 when p > 2 and 0, 1, t, t + 1 when p = 2 (see later).

In the earlier work [43] and [15] over positive characteristic it was relatively easy to extend
the results from F0 to general K by means of transcendence degree arguments. This does not
seem possible here. Instead we follow a specialization strategy of Bombieri, Zannier and the
second author in [9]. But the additive situation diverges somewhat from the multiplicative
situation and there are several new elements. For example the zeroes and poles of xa11 xa22 xa33
are on an equal footing, but this is not true of the Carlitz analogue f = α1x1 + α2x2 + α3x3,
whose poles are clear but whose zeroes are far from evident. In [9] we used Mason’s abc
inequality to settle similar problems. We do not yet have a Carlitz abc but we can exploit
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6 W. D. Brownawell, D. Masser

the underlying differentiating idea by noting that the derivative of t x + x p is just t . Using
certain systems of identities we can in this way show that the degree of f does not drop too
much under specialization. Also in [9] we made an innocent-looking appeal to a result in
Mumford [50] for counting inverse images of algebraic maps. This result used the concept of
topologically unibranch. In the literature we could not find a suitable positive characteristic
analogue and so we developed our own substitute.

The rest of our paper is arranged as follows.
In Sect. 2 we consider the case n = 2 of the Conjecture. After warming-up with a simple

explicit example, we turn to the general proof; but in view of previous work we feel justified
with just a sketch. It also follows from our Theorem by “lifting” the curve in G2

a to G3
a by

introducing a sufficiently general constant value of x3.
Then in Sect. 3 we prove Proposition 1, also after giving an explicit example.
We postpone the comparatively technical proof of Proposition 2, and in section 4 we show

that Propositions 1 and 2 imply the Theorem for K = F0.
Section 5 contains preliminary material on Siegel’s Lemma, and Sect. 6 more preparations

for the proof of Proposition 2, which then follows in Sect. 7.
In Sects. 8 and 9 we start some preliminaries for the general K , including the identities

mentioned above. After that Sect. 10 contains an extension of Proposition 1. The main
specialization arguments follow in Sect. 11.

We are then able almost to complete the proof in Sect. 12, with a final extra argument in
Sect. 13 because certain statements of Mordell-Lang type are not quite in the literature.

As amatter of fact inseparability turns out to be not quite such a problem for the application
to our Theorem, because we show in an Appendix that the relevant inseparable degree is
bounded. Nevertheless, we have to take it into account in the proof of Proposition 2.

It will be clear to the experts that everything in this paper extends immediately from Fp

to arbitrary finite fields.
And it should go without saying that all our results are effective, and indeed we shall make

no further reference to such matters.
We have mentioned Drinfeld modules several times already, so there naturally occurs the

problem of generalizing this paper to those (or even to t-modules). It is reasonable to expect
some sort of analogue of our Conjecture to hold.

We heartily thank Umberto Zannier for valuable correspondence regarding some of the
estimates in Sect. 8.

2 Manin-Mumford

As examples we start with an example for the line x + y = 1 as in (1) and also the hyperbola
xy = 1, with K arbitrary as in the Conjecture. In fact we go further and determine the
solutions for every p, as Leitner did in [38, 39] with G4

m (confirming an expectation of
Hrushovski [33] p.669). This leads to the 23 mentioned in the abstract.

Example 1 (a) If p > 2 then there are no ξ, η in K with ξ + η = 1 for which there exist
α �= 0, β �= 0 in R with αξ = βη = 0. If p = 2 then there are infinitely many solutions, all
obtained by choosing any torsion ξ and taking η = 1 − ξ .

(b) If p > 3 then there are no ξ, η in K with ξη = 1 for which there exist α �= 0, β �= 0
in R with αξ = βη = 0. If p = 3 there are twelve, corresponding to

ξ4 + tξ2 + 1 = 0, ξ4 + (t + 1)ξ2 + 1 = 0, ξ4 + (t + 2)ξ2 + 1 = 0. (2)
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Unlikely intersections for curves in products of Carlitz modules 7

If p = 2 there are eleven, corresponding to

ξ = 1, ξ2 + tξ + 1 = 0, ξ2 + (t + 1)ξ + 1 = 0 (3)

and

ξ3 + (t + 1)ξ2 + tξ + 1 = 0, ξ3 + tξ2 + (t + 1)ξ + 1 = 0. (4)

Verification. For (a) we start by checking that the line defined by x + y = 1 does not lie in a
proper Carlitz submodule of G2

a defined by say ρx + σ y = 0. Otherwise we would get

0 = ρx + σ y = ρx + σ(1 − x) = ρx + σ1 − σ x = (ρ − σ)x + σ1

identically in x . However if ρ − σ �= 0 then (ρ − σ)x involves x . Thus ρ − σ = 0 and we
are left with σ1 = 0. But if σ = S(C) for a non-constant polynomial S of degree d then
as p �= 2 we can quickly check that σ1 is a polynomial in t of degree pd−1. This fails for
p = 2 and indeed then σ01 = 0 for σ0 = C2 + C (compare [30] p.61). So here the line lies
in σ0x + σ0y = 0. This even makes the above example (a) fail for p = 2: simply take any
torsion element ξ then because 1 is torsion so also is η = 1 − ξ .

In fact this calculation proves (a) at once: if ξ, η are torsion then so is ξ + η = 1 (it is the
Carlitz analogue of say xy = 2 in zero characteristic G2

m).
For (b) it is clear that the hyperbola defined by xy = 1 does not lie in a proper Carlitz

submodule of G2
a defined by ρx + σ y = 0, because if ρ �= 0 then ρx has positive degree in

x and if σ �= 0 then σ y for y = 1/x has negative degree in x .
Now we proceed to the main argument, by diophantine approximation as in the classical

case of G2
m over zero characteristic. There is a monic polynomial N in Fp[X ] of minimal

degree, say n, such that the torsion elements ξ, η (if any) satisfy

N (C)ξ = N (C)η = 0. (5)

If ζ is a primitive N -torsion element, then there are polynomials R, S with

ξ = R(C)ζ, η = S(C)ζ (6)

(see for example [30] p.55); further we can assume R, S are of degree at most n − 1. We
can find polynomials A, B, D not all zero with AR + BS = DN ; and a simple counting
argument shows that we can take A, B, D of degree at most n/2. Indeed there are 3(1+[n/2])
coefficients at our disposal subject to n + [n/2] linear conditions, and the difference is

3 + 2
[n
2

]
− n ≥ 3 + 2

(
n

2
− 1

2

)
− n = 2.

It follows that

αξ + βη = 0, (7)

for α = A(C), β = B(C), an equation of total degree at most pn/2 in ξ, η. We can apply
Bezout to this and ξη = 1 by our opening observation. We find that for this particular N
there are at most 2pn/2 pairs (ξ, η).

On the other hand replacing ζ by any of its conjugates over F0 in (6) gives a conjugate pair
also on the same hyperbola. Further these pairs are all different, because by the minimality
of N and (5), (6) the polynomials R, S, N can have no common factor; and so we can solve
GR + HS + LN = 1 giving ζ = G(C)ξ + H(C)η.
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8 W. D. Brownawell, D. Masser

Now the degree of ζ over F0 is well-known to be the Carlitz-Euler φ(N ) (see [16] p.173).
It follows that

2pn/2 ≥ φ(N ). (8)

In terms of a prime factorization N = ∏r
i=1 N

ei
i it is

φ(N ) =
r∏

i=1

φ(Nei
i ) =

r∏
i=1

pei ni
(
1 − 1

pni

)
= pn

r∏
i=1

(
1 − 1

pni

)

with ni as the degree of Ni (i = 1, . . . , r). Thus

φ(N ) ≥ pn
(
1 − 1

p

)r

≥ (p − 1)n . (9)

So from (8) and the fact that 2p1/2 < p − 1 for p > 5 we reduce to the cases p = 2, 3, 5.
If p = 5 then 2pn/2 ≥ (p − 1)n forces n = 1, so N = X + a (a = 0, 1, 2, 3, 4). But the

polynomials N (C)T = T 5 + tT + a for a �= 0 are irreducible and non-reciprocal and none
is the reciprocal of another, and for a = 0 it is irreducible and non-reciprocal after dividing
by T . So by (5) there are no solutions if p = 5.

If p = 3 then 2pn/2 ≥ (p − 1)n forces n ≤ 4. Checking each of the 81 possibilities for
N we find that

N = X2 + 2, X2 + 2X , X2 + X

give rise via (5) to the solutions indicated in (2). We find no other ξ .
If p = 2 we have to work a bit harder, and we divide into eight cases according to which

of the three irreducible polynomials X , X + 1, X2 + X + 1 of degree at most 2 divide N .
The worst case is when all three divide N , say as N1, N2, N3 respectively. Thus r ≥ 3

and

φ(N ) = 2n
(
1

2

) (
1

2

) (
3

4

) r∏
i=4

(
1 − 1

2ni

)
.

In the product ni ≥ 3 so it is at least (7/8)r−3. But also

n = e1 + e2 + 2e3 +
r∑

i=4

ei ni ≥ 4 + 3(r − 3).

So now n ≥ 4 and we get

2(2n/2) ≥ 3(2n−4)

(
7

8

)(n−4)/3

,

which implies n ≤ 7. Therefore N = N1N2N3(X3 + aX2 + bX + c) leading to just eight
possibilities for N .

The other seven cases lead to n ≤ 6 and better. For example when none of N1, N2, N3

divide N , then every ni ≥ 3 and so the above product is at least (7/8)n .
Here the factorization of each N (C)T on Maple can take up to two hours. Spotting recip-

rocal factors or reciprocal pairs by eye is not too easy and so ad hocmethods using resultants
were developed. Thus if the resultant of N (C)T and its own reciprocal is non-zero, then such
factors cannot exist. Already all solutions come from

N = X2 + X , X3 + X2, X3 + X , X4 + X .
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Unlikely intersections for curves in products of Carlitz modules 9

The first N gives ξ = 1 of course in (3) and the next two give the next two there; but the last
N provides the reciprocal pair

T 3 + (t + 1)T 2 + tT + 1, T 3 + tT 2 + (t + 1)T + 1

leading to the last two in (4).
This completes the verification of Example 1 (we checked that allowing powers of primes

does not yield any additional solutions).
It is not much more difficult to prove the general conjecture above in G2

a by these means.
We just sketch the details, as it also follows rather easily from our Theorem by “lifting” the
curve in G2

a to G3
a by introducing a sufficiently general constant value of x3.

It suffices to treat the case K = F0.We can assume thatC is defined over a finite extension
F of F0, otherwise it contains anyway at most finitely many points algebraic over F0 and
in particular torsion points. We obtain as above (7) and now it is by assumption that we can
apply Bezout. This time we are allowed to use the conjugates of ζ only over F , but that hardly
affects their number. However as in Example 1 we need a lower bound for φ(N ) better than
(9) and at least of the form c(pn)θ for some θ > 1

2 . The only trouble is at p = 2 but in
general we can argue

r∏
i=1

(
1 − 1

pni

)
≥

n∏
j=1

(
1 − 1

p j

)r j

for the number r j of monic irreducible polynomials of degree j in F0. Taking logarithms,
using − log(1 − x) ≤ 2x for 0 ≤ x ≤ 1

2 , and also

r j = 1

j

∑
d| j

μ(d)p j/d ≤ p j

j

⎛
⎝1 +

∑
6≤d| j

1

p j(1−1/d)

⎞
⎠ ≤ p j

j

(
1 + j

25 j/6

)
≤ 2

p j

j
(10)

as well as
∑n

j=1 1/ j ≤ log n + 1 we find

φ(N ) ≥ pn

55n4
(11)

(with n as the degree of N ) comfortably of the required form. We shall need both (10) and
(11) later.

It will now be seen that ‖N‖ is a useful notation for pn .

3 Proof of Proposition 1

We use the standard height function h on F0 = Fp(t) normalized to h(td) = d . Thus if ξ0 is
in F0 we have

h(ξ0) =
∑
w

logmax{1, |ξ0|w}

taken over all w on F0 (which correspond to monic irreducible P in F0, with |P|P = e−d

for d the degree of P , and |t |∞ = e). We extend it in the usual way to the algebraic closure,
so that if ξ is in an extension F of degree D over F0, then

h(ξ) = 1

D

∑
v

Dv logmax{1, |ξ |v} (12)
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10 W. D. Brownawell, D. Masser

over all valuations v on F which extend those on F0 (that is, for all x in F0 we have |x |v = |x |w
for some w as above) and Dv = ev fv the local degrees. We shall often say that v divides P
or ∞.

For example

h(tθ ) = |θ | (13)

when θ is rational.
First here is an illustration in the spirit of Example 1. However we cannot use the line

x + y = 1 here because 1x + 1y is constant on it. And indeed the points with coordinates

ξ = Cm1, η = 1 − Cm1 = (1 − Cm)1

have h(ξ) = pm−1 going to infinity with m provided p �= 2, in view of our remarks above
about the degree of σ1 (again the analogue of xy = 2 in zero characteristic G2

m). But the
(Carlitz) hyperbola xy = 1 is fine.

Example 2 If ξ, η are in F0 with ξη = 1 for which there exist α, β not both zero in R with
αξ = βη then h(ξ) + h(η) ≤ 18.

Verification. We use the canonical height introduced by Denis for Drinfeld modules (for
which he proved his lower bound, at least in the Carlitz case). This is defined as

ĥ(ξ) = lim
m→∞

h(Cmξ)

pm
.

Not only do we have the obvious ĥ(Cξ) = pĥ(ξ) but even (in the notation at the end of
Sect. 2)

ĥ(P(C)ξ) = ‖P‖ĥ(ξ) (14)

for any non-zero P in Fp[X ]. Also since C is additive we get

ĥ(ξ + η) ≤ ĥ(ξ) + ĥ(η) (15)

(but not ĥ(ξη) ≤ ĥ(ξ) + ĥ(η) or even ĥ(ξ2) ≤ 2ĥ(ξ), for example ξ can be torsion while
ξ2 is not, as for ξ = √−t with p = 3; and even ĥ(1/ξ) need not be ĥ(ξ), as for ξ = t with
p = 2).

To compare with (13), it may be shown for p = 2 that

ĥ(tθ ) = θ, 0,
1 + θ

2
, − θ + 2[θ ]−1(θ − [θ ] + 1), − θ

when

θ > 1, θ = 1, 0 < θ < 1, 0 ≥ θ /∈ Z, 0 ≥ θ ∈ Z

respectively (we shall not need these values).
Denis showed that ĥ(ξ) differs from h(ξ) by a bounded amount, and indeed we now check

that

|ĥ(ξ) − h(ξ)| ≤ 3 (16)

independently of p.
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Unlikely intersections for curves in products of Carlitz modules 11

In the first place we have an upper bound

h(Cξ) = h
(
ξ

(
t + ξ p−1)) ≤ h(ξ) + h

(
t + ξ p−1)

≤ h(ξ) + 1 + (p − 1)h(ξ) = ph(ξ) + 1.

For a corresponding lower bound we use the standard Nullstellensatz argument. With ρ =
ξ t p+1 and

σ = ξ (p−1)p − tξ (p−1)(p−1) + t2ξ (p−1)(p−2) · · · − t p = (ξ p−1)p+1 − (−t)p+1

ξ p−1 − (−t)

we have

ρ + σ(ξ p + tξ) = ξ p2 .

Thus for any ultrametric valuation we deduce

max
{
1, |ξ |p2

}
≤ max{1, |Cξ |}max

{
1, |ξ |p2−p

}
max

{
1, |t |p+1} .

Cancelling and taking the product with suitable exponents leads in the usual way to

h(Cξ) ≥ ph(ξ) − (p + 1).

The standard telescoping sum gives

|ĥ(ξ) − h(ξ)| ≤ (p + 1)
∞∑
i=1

p−i = p + 1

p − 1
≤ 3.

Now take ξ, η as in Example 2. If α = 0 then η is torsion so h(η) ≤ 3 by (16). Thus
h(ξ) = h(η) ≤ 3 too, and we are done. Similarly if β = 0; so we will henceforth assume
that α �= 0, β �= 0. Write α = A(C), β = B(C). Then (14) leads to

pl ĥ(ξ) = pmĥ(η)

with l the degree of A and m the degree of B. As in the situation over Q (see for example
Theorem 14.9 of [44] p.176) everything depends on the relation between l and m. We note
from (16) that

ĥ(η) = ĥ(1/ξ) ≤ h(1/ξ) + 3 = h(ξ) + 3 ≤ ĥ(ξ) + 6. (17)

First suppose l > m. Then pĥ(ξ) ≤ ĥ(η) which by (17) leads to ĥ(ξ) ≤ 6 and so
h(ξ) ≤ 9; further h(η) = h(ξ) ≤ 9 as well. So

h(ξ) + h(η) ≤ 18. (18)

By symmetry we get the same result if l < m. So it remains only to consider l = m.
We can now write

α = α0 + aCm, β = β0 + bCm

with nonzero a, b in Fp and α0, β0 of degree in C smaller than m. Then

α0ξ − β0η = bCmη − aCmξ

and we proceed to compare the canonical heights.
To begin with the left-hand side, (15) gives

ĥ(α0ξ − β0η) ≤ ĥ(α0ξ) + ĥ(β0η)
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12 W. D. Brownawell, D. Masser

which is by (14) and (17) at most

pm−1
(
ĥ(ξ) + ĥ(η)

)
≤ pm−1(2h + 6) (19)

with h = h(ξ).
To continue with the right-hand side

ĥ(bCmη − aCmξ) = pmĥ(bη − aξ)

and

ĥ(bη − aξ) ≥ h(bη − aξ) − 3 = h(b/ξ − aξ) − 3 = 2h − 3

(here we used ab �= 0). Comparison with (19) gives

h ≤ 3p + 6

2p − 2
≤ 6.

The same argument gives the same bound for h(η) and by addition we get something stronger
than (18). So the verification is complete.

Next we need an analogue of Lemma 2.1 of [42] (p.327).

Lemma 1 If ξ1, . . . , ξn are in F0 for which there exist α1, . . . , αn not all zero in R with
α1ξ1 + · · · + αnξn = 0, then for any non-negative integer m there are β1, . . . , βn in R, not
all zero, such that

ĥ(β1ξ1 + · · · + βnξn) ≤ p−m/n(ĥ(ξ1) + · · · + ĥ(ξn))

with β1 = B1(C), . . . , βn = Bn(C) for

max{‖B1‖, . . . , ‖Bn‖} ≤ pm .

Proof Write αi = Ai (C) (i = 1, . . . , n)with pd = max{‖A1‖, . . . , ‖An‖}. Choose any A in
Fp[X ]with degree exactly d . Then the Ai/A (i = 1, . . . , n) are in the completion Fp[[1/X ]]
of Fp[X ]. It follows that for any positive integer l we can find Q �= 0, B1, . . . , Bn in Fp[X ]
of degree at most m such that

Q
Ai

A
− Bi is in X−lFp[[1/X ]] (i = 1, . . . , n) (20)

as long asm+1 > n(l−1). Thus we can choose l = [m/n]+1 > m/n. Now the polynomials
Ci = QAi − ABi (i = 1, . . . , n) have degrees at most d − l.

We now put

βi = Bi (C), γi = Ci (C) (i = 1, . . . , n)

and note that

− A(C)(β1ξ1 + · · · + βnξn) = γ1ξ1 + · · · + γnξn . (21)

Taking canonical heights gives

pd ĥ(β1ξ1 + · · · + βnξn) = ĥ(γ1ξ1 + · · · + γnξn) ≤ pd−l
(
ĥ(ξ1) + · · · + ĥ(ξn)

)
.

This is the required result since l > m/n. Note that β1, . . . , βn are indeed not all zero
otherwise (20) would give a contradiction, because l > 0 and some Ai has the same degree
as A. 
�
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Unlikely intersections for curves in products of Carlitz modules 13

We can now prove Proposition 1. Suppose that C is defined over a finite extension F of
F0. We fix some m with

pm/n ≥ 2nd (22)

where now d is the degree of the curveC . For any point P = (ξ1, . . . , ξn) as therewe construct
βi = Bi (C) (i = 1, . . . , n) as in Lemma 1. Then the function y = β1x1 + · · · + βnxn is
not constant on C by hypothesis. Thus for any i there is a polynomial �i (Y , X) in F[Y , X ],
of positive degree in X , such that �i (y, xi ) = 0 on C ; further we can take the degree in Y
to be at most d . By specialization there follows �i (η, ξi ) = 0 for η = β1ξ1 + · · · + βnξn .
Standard height estimates give now h(ξi ) ≤ dh(η) + c for some c independent of P . So for
h = h(ξ1) + · · · + h(ξn) we get by Lemma 1 and (16)

h ≤ n(dh(η) + c) ≤ ndĥ(η) + c′

≤ ndp−m/n(ĥ(ξ1) + · · · + ĥ(ξn)) + c′ ≤ ndp−m/nh + c′′

for c′, c′′ also independent of P . The required result h ≤ 2c′′ now follows from (22). This
completes the proof of Proposition 1.

4 Proof of Theorem for K = F0

Herewe deduce the Theorem for K = F0 fromProposition 1 just proved togetherwith Propo-
sition 2 whose proof will follow in Sect. 7. To avoid logarithmic pedantries we reformulate
Proposition 2 as follows.

Assertion. Given ε > 0, there is a positive constant c depending only on p and ε with the
following property. Let Fc be a finite cyclotomic extension of F0 and let F be a finite extension
of Fc. Then for any non-torsion ξ in F we have

ĥ(ξ) ≥ c−1[F : Fc]−1−ε[Fc : F0]−ε.

It will be clear that all we need is any ε < 1/3. But during this section we will use 
instead of c.

In what follows we shall be relatively brief, as it follows the strategy over Q (see for
example [42] p.330).

Given (ξ1, ξ2, ξ3) as in the Theorem, we can find ξ and a torsion point ζ such that

F0(ξ1, ξ2, ξ3) = F0(ζ, ξ) (23)

and

ξ1 = σ1ξ + τ1ζ, ξ2 = σ2ξ + τ2ζ, ξ3 = σ3ξ + τ3ζ (24)

for σ1, τ1, σ2, τ2, σ3, τ3 in R, somewhat as in (6). Here it is because the R-module generated
by ξ1, ξ2, ξ3 in F0 has rank at most 1, and so is Rξ + Z for a finitely generated torsion
module Z, which further has the form Rζ . And if ζ has order ν then we can take τ1, τ2, τ3
as polynomials in C of degree less than that of ν.

We now want to find small γ1, γ2, γ3, δ in R, not all zero, such that

γ1σ1 + γ2σ2 + γ3σ3 = 0, γ1τ1 + γ2τ2 + γ3τ3 = δν.
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14 W. D. Brownawell, D. Masser

Using any form of Siegel’s Lemma over Fp[X ], or by counting as above, we find a solution
with

max{‖γ1‖, ‖γ2‖, ‖γ3‖}  (‖ν‖M)1/2, M = max{‖σ1‖, ‖σ2‖, ‖σ3‖}.
It follows from (24) that

γ1ξ1 + γ2ξ2 + γ2ξ3 = 0. (25)

Clearly γ1, γ2, γ3 are not all zero, and we deduce from (25) and Bezout that

D = [F0(ξ1, ξ2, ξ3) : F0]  (‖ν‖M)1/2. (26)

On the other hand (24) gives

ĥ(ξ1) = ‖σ1‖ĥ(ξ), ĥ(ξ2) = ‖σ2‖ĥ(ξ), ĥ(ξ3) = ‖σ3‖ĥ(ξ).

Let us temporarily assume that no non-trivial ρ1x1 + ρ2x2 + ρ3x3 is constant on our curve
C , as in Proposition 1. Then summing we get

ĥ(ξ)  M−1.

Assuming further that ξ is non-torsion, we are now set up to apply the Assertion, with
F = F0(ξ1, ξ2, ξ3) = Fc(ξ) for Fc = F0(ζ ). We get

ĥ(ξ) � (D/φ(ν))−1−ε(φ(ν))−ε = D−1−εφ(ν).

By (11) we have φ(ν) � ‖ν‖1−ε, and comparison gives ‖ν‖1−εM  D1+ε . But for ε < 1/3
this contradicts (26) or better gives an upper bound for D which implies everything (by the
usual Northcott).

If ξ is torsion, then ξ1, ξ2, ξ3 are, and Manin-Mumford on a suitable projection to two
dimensions settles the thing.

Finally, what if some non-trivial ρ1x1 + ρ2x2 + ρ3x3 is constant on C? We can assume
the coefficients are coprime in R and then use GL3(R) to assume that it is x3 that is some
constant, which we can call ξ3. Then ξ3 is non-torsion. Now the thing reduces to Mordell-
Lang in two dimensions, that is, a group of finite Q-dimension (in fact dimension 1). This
was done by Ghioca [27]. But we can too. Namely, we can just eliminate ξ3 from the two
relations between ξ1, ξ2, ξ3 to get a relation between ξ1, ξ2 on the projected curve C ′ in G2

a .
By Proposition 1 for this projection we see that ξ1, ξ2 have bounded heights (unless some
non-trivial φ = κ1x1 + κ2x2 is constant on C ′); and of course so does ξ3. We still have (24)
and we can argue as before. And really finally, if some non-trivial φ is constant on C ′ then
it may as well be x2 = ξ2. But now ξ2, ξ3 must be independent and we cannot have two
relations. All this is exactly parallel to the situation over Q.

5 Siegel’s Lemma

Denis [21] and others use an ad hoc version for function fields, rather as in the proof of our
Lemma 1. We need a relative version. That for number fields involves discriminants. The
correct analogue for function fields involves the genus and was found by Thunder [57].

We stick with our F0 = Fp(t), and a finite extension F of F0. We have a genus g(F) (see
[3] for this and much more). In [57] (pp.148,150) a projective absolute height hP on Fn is
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Unlikely intersections for curves in products of Carlitz modules 15

defined; it involves the integer

m(F, F0) = [F : F0]
[F : Fp]

where F is the algebraic closure of Fp in F . It is not hard to see that it coincides with the
natural extension of (12) to non-zero vectors by

hP(ξ1, . . . , ξn) = 1

D

∑
v

Dv logmax{|ξ1|v, . . . , |ξn |v}. (27)

Also it is convenient to define the height of the zero vector as zero.
We have the following extension of Corollary 3 of [57] (p.149), in which a condition

about full rank is eliminated. Of course we cannot afford the luxury of a Grassmannian
height anymore.

Lemma 2 Let F∗ be a finite extension of F0 and let Fs be a separable extension of F∗ of
degree r . Let M be a matrix with m ≥ 1 rows R1, . . . , Rm and n columns with entries in
Fs. If l = n − rm ≥ 1 then there are linearly independent rows b = b1, . . . ,bl in Fn∗ with
Mbt = 0 that satisfy

l∑
ν=1

hP(bν) ≤ rm max
μ=1,...,m

hP(Rμ) + l
g + m

m

where g = g(F∗) and m = m(F∗, F0).

Proof If M = 0 the result is obvious (for example with any l standard basis elements of Fn∗ ),
so we assume M �= 0. We follow the argument of Bombieri and Gubler [5] (pp.75,79,80).
For that we define hP(M ′) for any matrix M ′ with m′ rows and n′ columns and m′ < n′ of
rank s ≥ 1 to be the Grassmannian height hP(M̂) as in [57] (p.151), where M̂ consists of
any s independent rows of M ′. This is the analogue of the definition in [5] (p.75).

Pick a basis (λ1, . . . , λr ) of Fs/F∗ and write M = λ1M1 + · · ·+ λr Mr with M1, . . . , Mr

over F∗. Let σ1, . . . , σr be the different (here we use separability) embeddings of Fs, fixing
F∗, into the algebraic closure of F∗. Then we check that σ(M) = �Mσ for

σ(M) =
⎛
⎜⎝

σ1(M)
...

σr (M)

⎞
⎟⎠ , Mσ =

⎛
⎜⎝
M1
...

Mr

⎞
⎟⎠

with invertible �.
Let j ≥ l be the dimension of the space B of all b in Fn∗ with Mbt = 0. Thus we see that

Mσ has rank n − j > 0. Thus σ(M) too. Let M̂σ be a submatrix of Mσ consisting of n − j
independent rows. By Corollary 2 of [57] (p.148) there are linearly independent b1, . . . ,b j

in Fn∗ with M̂σbt = 0 that satisfy

j∑
ν=1

hP(bν) ≤ hP(M̂σ ) + jG

with G = (g − 1 + m)/m. These form of course a basis of B. Also by definition hP(M̂σ ) =
hP(Mσ ) and it is not difficult to see that hP(Mσ ) = hP(σ (M)). We can calculate this last
height by choosing any n − j independent rows. These have the form R = σρ(Rμ) with

hP(R) = hP(Rμ) ≤ max
μ=1,...,m

hP(Rμ) = H

123



16 W. D. Brownawell, D. Masser

(say), and because hP(M̂σ ) is at most the sum of the heights of its rows we get

j∑
ν=1

hP(bν) ≤ (n − j)H + jG.

Ordering by increasing height we deduce

l∑
ν=1

hP(bν) ≤ l

j
((n − j)H + jG) = l

n − j

j
H + lG,

and finally recalling j ≥ l we get the required result. 
�
We next drop to a single solution.

Lemma 3 Let F∗ be a finite extension of F0 and let Fs be a separable extension of F∗ of
degree r . Let M be a matrix with m ≥ 1 rows R1, . . . , Rm and n columns with entries in Fs.
If n > rm then there is non-zero b in Fn∗ with Mbt = 0 that satisfies

hP(b) ≤ rm

n − rm
max

μ=1,...,m
hP(Rμ) + g + m

m

where g = g(F∗) and m = m(F∗, F0).

Proof This follows from Lemma 2 after taking the bν with smallest height. 
�
Finally we allow inseparable extensions. This seems to be new.

Lemma 4 Let F∗ be a finite extension of F0 and let F be an extension of F∗ of degree d and
inseparable degree q. Let M be a matrix with m ≥ 1 rows R1, . . . , Rm and n columns with
entries in F. If qn > dm then there is non-zero b in (F1/q∗ )n with Mbt = 0 that satisfies

hP(b) ≤ dm

qn − dm
max

μ=1,...,m
hP(Rμ) + g + m

m

where g = g(F∗) and m = m(F∗, F0).

Proof We first solve Mqct = 0 using Lemma 3, where Mq is not the q-th power but just
has entries the q-th powers of those of M . Now we are over the separable extension Fq of
degree r = d/q and so there is a non-zero solution c in Fn∗ with

hP(c) ≤ rm

n − rm
max

μ=1,...,m
qhP(Rμ) + g + m

m
.

To finish we take b = c1/q , so that the height gets divided by q . 
�

6 More preliminaries

Some of these are analogues of those occurring in the original Dobrowolski proof [23]. We
write O0 for the ring of integers Fp[t] of F0 = Fp(t).

Lemma 5 For j ≥ 8 the number r j of monic irreducible Q in O0 of degree j satisfies

1

2

p j

j
≤ r j ≤ 2

p j

j
.
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Unlikely intersections for curves in products of Carlitz modules 17

Proof The upper bound is (10) and the lower bound follows by similar arguments. Of course
the Prime Number Theorem for O0 suffices for our purpose. 
�
From now on we find it more convenient to use the notation ξ Q instead of Q(C)ξ for our
Carlitz C.

Lemma 6 Let F∗ be an extension of F0 of degree d and let F be an extension of F∗. Suppose
ξ �= 0 in F is not torsion.

(a) As Q runs over all monic irreducible polynomials in O0, the ξQ are all non-conjugate
over F∗.

(b) As Q runs over all monic irreducible polynomials in O0, we have [F∗(ξQ) : F∗] =
[F∗(ξ) : F∗] with at most (log d)/(log 2) exceptions.

Proof This is essentially Lemma 4 of [21] (p.219), where it is merely said that the proof is
identical to Dobrowolski’s (and was for the separable case). We supply some details.

For (a) suppose ξQ1 , ξQ2 are conjugate. Then so are (ξ Q1)Q1 = ξQ2
1 and (ξQ2)Q1 =

ξQ1Q2 , and so are (ξQ1)Q2 = ξQ2Q1 = ξQ1Q2 and (ξQ2)Q2 = ξQ2
2 . Iterating we find that

the d + 1 elements ξ Qd
1 , ξQd−1

1 Q2 , . . . , ξ Qd
2 are all conjugate over F∗. So two must coincide.

As ξ is non-torsion this leads to Ql
1 = Ql

2 for some positive integer l. And as Q1, Q2 are
monic this leads to Q1 = Q2.

For (b) suppose Q1, . . . , Qm are different with

[F∗(ξQi ) : F∗] �= [F∗(ξ) : F∗] (i = 1, . . . ,m). (28)

Write for brevity Q = Qi and R = Q1 · · · Qi−1 (with R = 1 if i = 1). Then F∗(ξ RQ) lies
in F∗(ξ R) and we claim that equality is impossible. Otherwise ξ R in F∗(ξ RQ) is in F∗(ξQ).
Now there are U , V in O0 with UR + V Q = 1, and then ξ = (ξ R)U + (ξQ)V also lies in
F∗(ξQ) = F∗(ξQi ). But this would contradict (28).

Taking i = m, . . . , 1 we deduce that the fields

F∗(ξQ1···Qm ), F∗(ξQ1···Qm−1), . . . , F∗(ξQ1), F∗(ξ)

form a strictly increasing chain. Thus

2m ≤ [F∗(ξ) : F∗(ξQ1···Qm )] ≤ [F∗(ξ) : F∗] ≤ d

and now (b) is clear. 
�
The next result reflects the need in some of the previous literature to distinguish between

small and large ramification ev as in (12).

Lemma 7 Let F be an extension of F0 of degree D, let Q be monic irreducible in O0, let ξ

be in F, and let E be the set of v on F dividing Q such that ξ is not v-integral. Then

ĥ(ξ) ≥ 1

D

log ‖Q‖
log p

∑
v∈E

Dv

ev

.

Proof If Q has degree n, the value group of the valuation on F0 corresponding to Q is
generated by g = en = ‖Q‖1/ log p . So that of v by g1/ev . Thus for each v in E we have
|ξ |v ≥ g1/ev . It follows easily that |ξ tm |v ≥ gpm/ev for any positive integerm. Thus h(ξ t

m
) ≥

D−1 pm(log g)
∑

v∈E Dv/ev . So

pmĥ(ξ) = ĥ(ξ t
m
) ≥ −3 + 1

D
pm(log g)

∑
v∈E

Dv

ev

by (16). Making m tend to infinity gives the result. 
�
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18 W. D. Brownawell, D. Masser

From now on the intermediate field F∗ will be cyclotomic over F0, so it has the form
Fc = F0(ζ ), where ζ has order N for some monic N inO0. Its degree over F0 is nc = φ(N ).
For any monic Q in O0 prime to N there is a Frobenius automorphism σ = σQ of Fc over
F0 such that σ(ζ ) = ζ Q . Write Oc = O0[ζ ]; this is in fact the ring of integers of Fc, that is,
the integral closure of O0 in Fc (see for example [56] p.82).

Lemma 8 Suppose Q is monic irreducible in O0 prime to N and � is in Oc[X ].
(a) We have �σ (XQ) ≡ �σ (X‖Q‖) mod Q in Oc[X ]
(b) We have �(X)‖Q‖ ≡ �σ (X‖Q‖) mod Q in Oc[X ].

Proof Part (a) for � = 1 is Lemma 3 of [21] (p.219) - and then it holds even in Fp[X ]. It
follows immediately for general �. For part (b) we need to note that every coefficient α of
� has the form �(t, ζ ) for �(X , Y ) in Fp[X , Y ], so ασ = �(t, ζ Q) which is congruent to
�(t, ζ ‖Q‖) mod Q in Oc by part (a) with � = �(t, X) and then by substituting X = ζ .
This in turn is congruent to �(t‖Q‖, ζ ‖Q‖) = α‖Q‖ mod Q in Oc as Q divides t‖Q‖ − t in
O0. 
�

The following is an analogue of an estimate of Amoroso-David [1] (p.157) restricted to a
single variable. Again F is a finite extension of Fc. For a polynomial � in F[X ] or F[X , Y ]
wewrite |�|v for the maximum of | f |v as f runs over the coefficients (at first sight this could
be confused with |Q|v below - but in fact it is the same notation because Q, even though a
polynomial in t , is already in F).

Lemma 9 Suppose � inOc[X ] of degree at most M vanishes at some ξ in F to order at least
S. Then for any monic irreducible Q in O0 prime to N and any valuation v on F dividing Q
we have

|�σ (ξQ)|v ≤ |�σ |v|Q|Sv max{1, |ξ Q |v}M .

Proof Let �(X) = α0Xd + · · · + αd be a minimal polynomial of ξ over Oc. We use Strong
Approximation but not quite as in [1] (whose argument for one variable uses already a
special case for two variables). In fact this allows us to assume that |�|w = 1 for all w on Fc
dividing Q. Namely for each such w there is i = i(w) with 0 < |αi |w = μw = |�|w ≤ 1.
Now by the Theorem of [17] (p.67 - see also first paragraph of proof) there is β in Fc with
|β − α−1

i |w < μ−1
w for each w dividing Q and |β|w′ ≤ 1 for all other w′ on Fc not dividing

∞. The first of these imply |β|w = μ−1
w (in particular β �= 0) and so |β�|w = 1 for each w

dividing Q; and by the second |β�|w′ ≤ 1 for all other w′ not dividing ∞. So βα0, . . . , βαd

are all in Oc. Thus we just have to replace � by β�.
In fact since |xσ |w = |x |w(σ) for any x in Fc and some otherw(σ), we see that |�σ |w = 1

for all w dividing Q. In particular |�σ |v = 1 for our v as well.
Next � = �S�̂ for �̂ in Fc[X ] of degree at most M − dS so by Gauss’s Lemma we have

|�σ |v = |�σ |Sv |�̂σ |v = |�̂σ |v .
Now �σ (ξQ) = �σ (ξQ)S�̂σ (ξQ) and so

|�σ (ξQ)|v ≤ |�σ |v|�σ (ξQ)|Sv max{1, |ξ Q |v}M−dS . (29)

By Lemma 8 we see that �σ (XQ) − �(X)‖Q‖ = Q�(X) for some � in Oc[X ] of degree at
most d‖Q‖. Putting X = ξ we deduce �σ (ξQ) = Q�(ξ) and so

|�σ (ξQ)|v ≤ |Q|v max{1, |ξ |v}d‖Q‖ = |Q|v max{1, |ξ Q |v}d .
The result now follows from this and (29). 
�
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Unlikely intersections for curves in products of Carlitz modules 19

For the application of Lemma 4 we need information about g(Fc) and m(Fc, F0).

Lemma 10 (a) We have m(Fc, F0) = nc.
(b) We have g(Fc) ≤ 8000nc log(nc + 1).

Proof For (a) we have by definition m(Fc, F0) = nc/[F : Fp], where F is the algebraic
closure of Fp in Fc. But according to Gebhardt [24] (p.91) F = Fp , and the result follows.

For (b) we need a formula given by Keller [34] (see also [24] p.92). Namely

g(Fc) = 1 + 1

2
nc

(
−2 + p − 2

p − 1
+

r∑
i=1

δi

(
eiqi − ei − 1

qi − 1

))

where N = ∏r
i=1 N

ei
i for distinct monic irreducible N1, . . . , Nr of degrees δ1, . . . , δr with

q1 = pδ1 , . . . , qr = pδr . Clearly this is at most nc
∑r

i=1 δi ei = φ(N )n for the degree n
of N . Now the result follows without difficulty from (11) above, using n ≤ 8000 log(1 +
2n/(55n4)). 
�

7 Proof of Proposition 2

Wemay assume that Fc(ξ) = F becausemaking F smaller decreases d . Wemay also assume
D = [F : F0] ≥ 16 from the remarks in [21] (p.218). We continue the notation Fc = F0(ζ )

for ζ of order N . Thus D = dφ(N ).
We will suppose that

ĥ(ξ) ≤ C−11d−1 (log D)−3

(log log D)−2 . (30)

It then suffices to deduce a contradiction if the constantC (which cannot possibly bemistaken
for our curveC) is sufficiently large as a function of p. Generally below cwill denote various
positive quantities depending only on p.

We use the Carlitz exponential function

e(z) =
∞∑
i=0

z p
i

A(i)
(31)

where A(0) = 1 and

A(i) =
i∏

j=1

(t p
i − t p

i− j
) =

i∏
j=1

(t p
j − t)p

i− j
(i = 1, 2, . . .) (32)

can be taken as the ai of Lemma 2(ii) of [21] (p.218). We pick any u with e(u) = ξ .
It is well-known that Fc is separable over F0. Actually it follows at once from the identity

∂

∂X
XN = N (33)

which we shall use later.
Let q be the inseparable degree of F over Fc. We fix any monic irreducible Q0 in O0 =

Fp[t] satisfying

‖Q0‖ ≤ C4 d log D

q log log D
< p‖Q0‖ (34)
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20 W. D. Brownawell, D. Masser

and we define

L =
[
C3 d log D

q log log D

]
, T =

[
C4 d log D

q log log D

]
. (35)

Now for a non-zero polynomial � in F[X , Y ] we define the height

hP(�) = 1

D

∑
v

Dv log |�|v

as in (27). Later we will have to be slightly careful about the projectivity. We also use the
term hyperzero to remind the reader that we are considering Taylor series expansions rather
than actually differentiating.

Lemma 11 There is a non-zero polynomial �̃(X , Y ) of degree at most L in each of X and
Y , such that � = �̃q is in Oc[X , Y ] with hP(�) ≤ cC3d log D, and such that the function

ϕ(z) = �(e(z), e(Q0z))

has a hyperzero of order at least qT at z = u.

Proof With

�̃(X , Y ) =
L∑

i=0

L∑
j=0

ai j X
iY j , ϕ̃(z) = �̃(e(z), e(Q0z))

and z = w + u we have

ϕ̃(w + u) =
L∑

i=0

L∑
j=0

ai j (e(w) + ξ)i (e(Q0w) + ξQ0) j =
∞∑
k=0

bkw
k

and we start by solving b0 = b1 = · · · = bT−1 = 0. These are m = T linear equations in
the n = (L + 1)2 unknowns ai j over F , to be solved first in F1/q

c as in Lemma 4. We note
from (35) that

dm

qn
≤ cC−2 log log D

log D
(36)

in readiness for an application of this lemma.
Here (31) gives

(e(w) + ξ)i =
i∑

r=0

(
i

r

)
ξ i−r

∞∑
i1=0

· · ·
∞∑

ir=0

w pi1+···+pir

A(i1) · · · A(ir )
. (37)

Similarly

(e(Q0w) + ξQ0) j =
j∑

s=0

(
j

s

)
(ξQ0) j−s

∞∑
j1=0

· · ·
∞∑
js=0

(Q0w)p
j1+···+p js

A( j1) · · · A( js)
, (38)

so bl involves an apparent denominator (forgetting ξ, ξ Q0 ) the lowest common multiple of
all

A(i1) · · · A(ir )A( j1) · · · A( js) (39)
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subject to

pi1 + · · · + pir + p j1 + · · · + p js = l. (40)

It is clear from (32) that A(i1) · · · A(ir ) for pi1 + · · · + pir ≤ pI contains the factor t p
j − t

at most pi1− j + · · · + pir− j ≤ pI− j times ( j = 1, . . . , I ), so their lowest common multiple
has degree at most

∑I
j=1 p

I− j p j = I pI . Thus we get a contribution cT log T to the height
of the rows of the matrix of linear equations in the ai j ; here

T log T ≤ cC5 d(log D)2

q log log D
. (41)

Similarly for the A( j1) · · · A( js).
Another contribution comes from the ξ in (37). However h(ξ) ≤ 3 + ĥ(ξ) ≤ 4 by (16),

so we get only cL from this; here

L ≤ C3 d log D

q log log D
. (42)

Similarly in (38) we have

h(ξQ0) ≤ 3 + ĥ(ξQ0) = 3 + ||Q0||ĥ(ξ) ≤ 4 (43)

as well.
Finally the Q0

p j1+···+p js
in (38) contributes cT log ‖Q0‖; here

T log ‖Q0‖ ≤ cC5 d(log D)2

q log log D
. (44)

Taking into account (41), (42), (44) and not forgetting (36), we get using Lemma 4 (the
extra g/m there is at most c log D by Lemma 10) �̃ of degree at most L with coefficients in
F1/q
c of projective height at most cC3(d/q) log D, such that ϕ̃ has a zero of order at least T .

The present lemma follows by raising to the power q , a dirty cheap trick which one might
well think very wasteful. At first the aqi j are in Fc = F0(ζ ) but we can clear denominators to
get them into Oc = O0[ζ ]. 
�

We next define

T1 = [
C2d

] ;
this is quite a bit smaller than qT because later estimates as in the proof of Lemma 11 will
not be helped by a small Siegel exponent as in (36). We also fix n satisfying

pn ≤ C7 (log D)2

log log D
< pn+1. (45)

Lemma 12 For every monic irreducible Q in O0 prime to N of degree n and σ = σQ the
function ϕσ (z) = �σ (e(z), e(Q0z)) has a hyperzero of order at least T1 at z = Qu.

Proof We show by induction on k that there is a hyperzero of order at least k (k =
0, 1, . . . , T1).

The case k = 0 is empty, so we assume it holds up to k − 1 for some k with 1 ≤ k ≤ T1.
We can write ϕ(z) = �(e(z)) for �(X) in Oc[X ] of degree at most M = qL + qL‖Q0‖
(incidentally it is the second term here that forces our non-integrality considerations). It
follows from Lemma 11 that � vanishes at ξ to order at least qT . So the kth hyperderivative
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22 W. D. Brownawell, D. Masser

� = �[k] vanishes at ξ to order at least T ′ = qT − k ≥ qT /2. Let V be the set of valuations
v on F dividing Q such that ξ and so ξ Q is v-integral. For these we have |�σ |v ≤ |�σ |v and
clearly also |�σ |v ≤ |�σ |v . Thus from Lemma 9 we deduce for η = �σ (ξQ) the estimate

|η|v ≤ |�σ |v|Q|T ′
v ≤ |�σ |v|Q|qT /2

v (46)

still for v in V .
For v on F not in V we argue analytically, using our induction on k. From ϕ(z) = �(e(z))

and the fact that the z-derivative of e(z) is 1, we deduce ϕ[k](z) = �[k](e(z)) + · · · , where
the missing terms involve lower hyperderivatives of �. Applying σ , putting z = Qu and
using our induction we see that η is the k-th Taylor coefficient of ϕσ (z) = �σ (e(z), e(Q0z))
at Qu. Estimating as we did in the proof of Lemma 11 with the analogues of (37) and (38)
for � (instead of �̃) we get

|η|v ≤ |�σ |vMvNvQvAv (47)

with

Mv = max{1, |ξ Q |v}qL , Nv = max{1, |ξ Q0Q |v}qL , Qv = max{1, |Q0|v}k

and

Av = max

{
1,max

{∣∣∣∣ 1A
∣∣∣∣
v

}}
(48)

the inner maximum running over all A in (39) subject to (40).
We are trying to prove η = 0. If η �= 0 then the sum S of D−1Dv log |η|v over all v on F

should be zero by the Product Formula. We will deduce a contradiction. By (46) and (47)

S ≤ hP(�σ ) + S0 + SM + SN + SQ + SA

where

S0 = 1

D

qT

2

∑
v∈V

Dv log |Q|v

and the last four terms correspond to sums with Mv,Nv,Qv,Av over all v on F not in V .
The first three of the latter are easily estimated. We find

SM ≤ qLh(ξQ) ≤ 4qL ≤ 4C3d log D

as in (42) and (43); and even the same for SN, as ‖Q0‖‖Q‖ĥ(ξ) ≤ 1/q ≤ 1. Also

SQ ≤ kh(Q0) = k
log ‖Q0‖
log p

≤ cC3d log D

instead of (44).
It would be tedious to estimate each Av explicitly. But SA is at most the height of the

corresponding vector of 1 with 1/A in (48), so the calculation can be done in F0, which we
already did in (41), now getting T1 log T1 ≤ cC3d log D instead.

Thus using Lemma 11 to estimate hP(�σ ) = hP(�) we get

0 = S ≤ cC3d log D + S0. (49)

Finally in S0 we have |Q|v = |Q|Q = ‖Q‖−1/ log p and V is the complement (among v

dividing Q) of the set E in Lemma 7. Now ev ≤ d there because each Q prime to N does not
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Unlikely intersections for curves in products of Carlitz modules 23

ramify in the cyclotomic Fc (this step would fail for an arbitrary abelian extension). Thus

∑
v∈V

Dv = D −
∑
v∈E

ev

Dv

ev

≥ D − dDĥ(ξ)
log p

log ‖Q‖ ≥ D − D
log p

log ‖Q‖ ≥ D

2

using just ĥ(ξ) ≤ 1/d from (30). Therefore

S0 ≤ −qT

4

log ‖Q‖
log p

≤ −c−1C4d log D

and (49) yields our desired contradiction. Thus indeed η = 0 and this completes the proof of
Lemma 12. 
�

We can now finish the proof of Proposition 2 by showing that the polynomial � defined
above by �(e(z)) = �(e(z), e(Q0z)) has too many hyperzeroes for its degree.

First note that � �= 0 because � = �̃q and e(Q0z) is a polynomial of degree ‖Q0‖ > L
in e(z) by (34) and (35). By Lemma 12 its conjugate �σ for σ = σQ has a hyperzero of
order at least T1 at each ξQ . Let τ be any automorphism of F over F0 extending σ−1. Then

0 = (�σ (ξQ))τ = �((ξQ)τ ).

By Lemma 6(b) these (ξQ)τ = (ξ τ )Q are all of degree d over Fc if we exclude at most
2log d ≤ 2log D exceptional Q. This is harmless because by Lemma 5 and (45) the total
number of Q at our disposal is at least M ≥ c−1C6(log D)2/(log log D)2. We should also
note that the number of monic irreducible polynomials in O0 not prime to N = Ne1

1 · · · Ner
r

is g, certainly at most the degree of N which by (11) is at most c logφ(N ) ≤ c log ||N || ≤
cC log log D .

Now as Q ranges over all those remaining, and τ ranges over all extensions of σ−1 = σ−1
Q

from Fc to F we claim that the (ξ Q)τ are all different. In fact an equation (ξ Q)τ = (ξQ′
)τ

′

would imply that ξ Q, ξQ′
are conjugate over F0. Thus by Lemma 6(a) (with F∗ = F0) we

have Q = Q′ and so σ = σ ′ for σ ′ = σQ′ . So (ξ τ )Q = (ξ τ ′
)Q . To cancel the Q here we

note that Fc(ξ) = Fc(ξQ) by Lemma 6(b), so that ξ = R(ξ Q) for R in Fc(X). Now

ξτ = Rσ−1
((ξQ)τ ) = Rσ−1

((ξQ)τ
′
) = Rσ ′−1

((ξQ)τ
′
) = ξτ ′

.

As we assumed that ξ generates F over Fc and σ = σ ′ we conclude τ = τ ′. This settles the
above claim.

Write�Q for the monic minimal polynomial over Fc of ξQ . Then�σ in Fc[X ] is divisible
by �

T1
Q , and so � in Fc[X ] is divisible by (�σ−1

Q )T1 . Now the hyperzeroes of �σ−1

Q are the

(ξQ)τ (each repeated q times) and so an equation �σ−1

Q = �σ ′−1

Q′ leads to some (ξQ)τ =
(ξQ′

)τ
′
as above. Thus Q = Q′ and so σ = σ ′ and these�σ−1

Q in Fc[X ] are all different (and
irreducible over Fc). Once again by Lemma 6(b) they all have degree d and so we get in all

MdT1 ≥ c−1C8 d2(log D)2

(log log D)2

hyperzeroes for �. However � has degree at most

qL + qL‖Q0‖ ≤ cC7 d2(log D)2

q(log log D)2

(here we can ignore the q - taking it into account would lead to the tiny improvement
mentioned in section 1) and the proof of Proposition 2 is complete.
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8 Preliminaries for general K – geometry

To start with we need some purely geometric results; maybe the first three lemmas below are
well-known, but as we are not over zero characteristic (where they also hold) we spell out
some proof details.

Lemma 13 Suppose affine B is irreducible of dimension at least 2. Then there are at most
finitely many b in B such that the intersection of B with the generic hyperplane through b is
reducible.

Proof If we are inAm then Bertini Irreducibility (see for example [35] p.212) gives non-zero
(homogeneous)�(X0, X1, . . . , Xm) such that the intersection of B withλ1x1+· · ·+λmxm =
λ0 is irreducible provided �(λ0, λ1, . . . , λm) �= 0.

Now the generic hyperplane through b = (b1, . . . , bm) is

μ1(x1 − b1) + · · · + μm(xm − bm) = 0, (50)

i.e.

μ1x1 + · · · + μmxm = μ1b1 + · · · + μmbm .

If the intersection is reducible we must have

�(μ1b1 + · · · + μmbm, μ1, . . . , μm) = 0

identically in μ1, . . . , μm . This means that b1X1 + · · · + bm Xm − X0 divides �. But that
can happen for at most finitely many (b1, . . . , bm) = b. 
�

The example of a quadric cone B in A3 defined by uv + vw + wu = 0 through (0, 0, 0)
shows that exceptional b may exist: here the intersection with any hyperplane is a union of
two lines.

Lemma 14 Suppose affine B is irreducible of dimension at least 2. Then for any b in B the
intersection of B with the generic hyperplane through b has codimension 1 in B.

Proof If l ≥ 2 is the dimension of B, then certainly dim(B∩�b) < l for�b generic through
b. Because if not, then B would be contained in �b. But we can find a bunch of such �b

whose intersection is just b, and it would follow that B = {b}.
Let Lb be a linear polynomial defining �b. It induces a map Lb from B to A. This is

dominant. For otherwise Lb would be a constant c on B. As Lb(b) = 0 we see that c = 0.
But then B would be contained in �b, which is excluded above.

We now use the Fibre Dimension Theorem in the version quoted in [11] (p.8); there we
were over zero characteristic but it holds too over positive characteristic, as the reference to
[18] shows. Part (a) on this Lb from B to A shows that L−1

b (0) = B ∩ �b has dimension at
least l − 1, provided it is non-empty; which it is, because it contains b. 
�
Lemma 15 Suppose affine B is irreducible of dimension at least 2. Then for any non-singular
b in B not in the finite set of Lemma 13 the point b remains non-singular on the intersection
of B with the generic hyperplane through b.

Proof Let �1, . . . , �N be generators of the ideal of B in Am , so that the jacobian matrix
with rows (

∂�i

∂x1
(b), . . . ,

∂�i

∂xm
(b)

)
(i = 1, . . . , N )
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has rank m − l, again for l the dimension of B. With Lb as in (50) defining the generic
hyperplane, we adjoin the extra row(

∂Lb

∂x1
(b), . . . ,

∂Lb

∂xm
(b)

)
= (μ1, . . . , μm)

and then the rank increases to m − l + 1 = m − (l − 1), because μ1, . . . , μm are generic.
Now �1, . . . , �N , Lb may not be generators of the ideal of B ∩�b, but if we extend them to
include such generators then the rank will still be at leastm − (l − 1). By Lemmas 13 and 14
this irreducible B ∩ �b has dimension l − 1 and so indeed b is non-singular there (see for
example [35] p.198). 
�

Next we record a result of well-known type, although we could not find it precisely in the
literature. It is a version of Mumford’s (3.25) and (3.26) in [50] (p. 53), which was applied
in [9]. As we are over positive characteristic we cannot use his notion of “topologically
unibranch”. We write π for the projection from affine An × Am to Am , and for the moment
we work over an arbitrary algebraically closed field.

Lemma 16 Let W be an algebraic set all of whose components have dimension l ≥ 1 in
An × Am and let B be an irreducible variety of dimension l in Am, with π(W ) in B. Let
T (when l ≥ 2) be the finite set of Lemma 13 above for B. If b is non-singular on B and
not in T (when l ≥ 2) such that W ∩ π−1(b) is finite, then its cardinality is at most that of
W ∩ π−1(η) for any η generic on B.

Proof Here it is crucial, as in [9], that the excluded b hardly depend on W .
We will prove the result first under the assumption that the projections from each compo-

nent of W to B are dominant.
We start with the case of curves l = 1 (for which we do not need T or the hypothesis that

W ∩ π−1(b) is finite). We proceed in three stages.
Suppose first that W is irreducible.
ThenW ∩π−1(η) has exactly d elements, where d is the separable degree of π restricted

to W . Suppose W ∩ π−1(b) contains at least e > d points. We can find a linear form λ in
the coordinates of An taking e different values at these points. If q is the inseparable degree,
then μ = λq satisfies an equation

φ0μ
d + · · · + φd = 0 (51)

with φ0, . . . , φd not all zero in the coordinate ring of B.
If we are lucky and φ0, . . . , φd do not all vanish at b, the result is clear: (51) shows that

there can be at most d values of μ, so at most d values of λ = μ1/q , a contradiction. Here
we did not use non-singularity.

If φ0, . . . , φd all vanish at b, we pick φ = φi �= 0 with ordbφi minimal. Here non-
singularity is implicit. Now the φ j/φ are regular at b and so can be written as ψ j/ψ for
ψ j , ψ in the coordinate ring of B with ψ(b) �= 0. Multiplying (51) by ψ gives

(
ψ0μ

d + · · · + ψd

)
φ = 0

on W . But φ = 0 on W would contradict dominance. As W is irreducible, it follows that

ψ0μ
d + · · · + ψd = 0

on W . And this takes us back to the first case, because ψi = ψ does not vanish at b.
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Next suppose, still for l = 1 under the dominance hypothesis, that W = W1 ∪ · · · ∪ Wr

for irreducible W1, . . . ,Wr . Then

#
(
Wi ∩ π−1(b)

) ≤ #
(
Wi ∩ π−1(η)

)
(i = 1, . . . , r) (52)

for generic η. Thus

#
(
W ∩ π−1(b)

) ≤
r∑

i=1

#
(
Wi ∩ π−1(b)

) ≤
r∑

i=1

#
(
Wi ∩ π−1(η)

)
.

Now any two Wi ∩ π−1(η) are disjoint because any two Wi intersect in a finite set which
cannot project to η. Thus the last sum above is indeed #

(
W ∩ π−1(η)

)
.

This settles the case l = 1.
We now use induction on l (still assuming dominance). Assuming the result for some

dimension l − 1 ≥ 1, we will deduce it for dimension l.
As above, we do it in stages. We may assume W ∩ π−1(b) is non-empty and b �= η.
First irreducible W .
It is easy to see that a generic hyperplane constricted to pass through b and η is a generic

hyperplane constricted only to pass through b. We call it �b. Since b is not in T , the inter-
section B ∩ �b is irreducible. We may denote also by �b the product An × �b in An ×Am

(it is defined by the same equation). Then π induces a map πb from W ∩ �b to B ∩ �b.
Now dim(W ∩�b) ≤ l −1 elseW would be contained in �b. By varying this hyperplane

(still through b and η) wewould deduce thatW is contained in their intersection, which is (An

times) the line through b and η. But then π(W )would be contained in this line, contradicting
dominance.

Let Lb be a linear polynomial defining �b. It induces a map Lb from W to A. This is
dominant. For otherwise Lb would be a constant c on W . As Lb(b) = 0 and W ∩ π−1(b)
is non-empty we see that c = 0. But then W would be contained in �b, which is excluded
above.

Now the Fibre Dimension Theorem on this Lb fromW toA shows that every (non-empty)
component of L−1

b (0) = W ∩�b has dimension at least l−1. Note thatW ∩�b is non-empty
because W ∩ π−1(b) is.

Thus every component of W ∩ �b is irreducible of dimension l − 1.
Assume for the moment that there is only one component. We try to apply the induction

hypothesis to the map πb fromW ∩�b to B ∩�b also irreducible of dimension l −1. In fact
πb is dominant, otherwise πb(W ∩�b)would be of dimension at most l−2 containing b and
then the Fibre Dimension Theorem would imply that W ∩ π−1(b) would be of dimension at
least 1, contradicting its assumed finiteness.We see by Lemma 15 that b remains non-singular
on B ∩ �b. Thus by induction we have

#π−1
b (b) ≤ #π−1

b (η). (53)

But since �b goes through both b and η, it is easy to see that π−1
b (b) = W ∩ π−1(b) and

π−1
b (η) = W ∩ π−1(η).
A similar argument works if there are several different components Z (1), . . . , Z (s) (all

necessarily of dimension l −1) ofW ∩�b. Then πb induces projections π(1), . . . , π(s) from
Z (1), . . . , Z (s) to B ∩ �b. If one of these is not dominant, then again W ∩ π−1(b) would be
infinite. Thus by induction again, #(π( j))−1(b) ≤ #(π( j))−1(η) for j = 1, . . . , s. Therefore

#π−1
b (b) =

s∑
j=1

#(π( j))−1(b) ≤
s∑

j=1

#(π( j))−1(η).

123



Unlikely intersections for curves in products of Carlitz modules 27

Now any two (π( j))−1(η) are disjoint because any two Z ( j) intersect in something of dimen-
sion at most l − 2 which cannot project to η. Thus the last sum above is just #(W ∩π−1

b (η));
and we have recovered (53).

Next the reducible case W = W1 ∪ · · · ∪ Wr (still under dominance) follows in a similar
way. Namely

#
(
Wi ∩ π−1(b)

) ≤ #
(
Wi ∩ π−1(η)

)
(i = 1, . . . , r). (54)

Thus

#
(
W ∩ π−1(b)

) ≤
r∑

i=1

#
(
Wi ∩ π−1(b)

) ≤
r∑

i=1

#
(
Wi ∩ π−1(η)

)

and as above any two Wi ∩ π−1(η) are disjoint because any two Wi intersect in something
of dimension at most l − 1 which cannot project to η. Thus the last sum above is indeed
#

(
W ∩ π−1(η)

)
.

This settles the lemma under our assumption that the projections from each component
of W to B are dominant.

Finally suppose the latter fails for some componentW0 ofW . Then b cannot be in π(W0),
otherwise the Fibre Dimension Theorem would imply that W0 ∩ π−1(b) would have dimen-
sion at least dimW0−dim π(W0) ≥ 1, contradicting finiteness. ThusW0∩π−1(b) is empty;
and of course so is W0 ∩ π−1(η). So these are not seen in the intersections with W . 
�

Regarding the excluded b, the example of B defined by v2 = u2(u + 1) in A2 and W
defined by

v2 = u2(u + 1), w2 = u + 1, wu = v

in A3, where b = (0, 0) has two inverse images (0, 0,±1), shows also that Lemma 16 can
be false if b is singular.

The result can become false also if components of dimension less than l are allowed. For
example if l = 1 and W is the single point (a, b) in An × Am with b non-singular on the
curve B, then

#(W ∩ π−1(b)) = 1 > 0 = #(W ∩ π−1(η)).

9 Preliminaries for general K - Carlitz

Nowwe return to theCarlitzworld. The next result concerns the action of aCarlitz polynomial
A(C) on a special sort of Laurent polynomial in a variable u. Write

A(T ) = a0 + a1T + · · · + adT
d

with coefficients in Fp . For a positive integer n denote by S(n)
m themth elementary symmetric

polynomial in −t p,−t p
2
, . . . ,−t p

n
.

For A as above and an integer n ≤ d , now including n = 0, and variables λ0, . . . , λn , we
define X (n)

n , . . . , X (n)
d+n recursively as follows. At level 0 we have

X (0)
k = akλ0 (k = 0, . . . , d). (55)

Then at level n from level n − 1 ≥ 0 we have first

X (n)
d+n = adλn, (56)
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then

X (n)
d+n−1 =

(
X (n−1)
d+n−1

)p +
(
S(n)
0 ad−1 + S(n)

1 ad
)

λn,

X (n)
d+n−2 =

(
X (n−1)
d+n−2

)p +
(
S(n)
0 ad−2 + S(n)

1 ad−1 + S(n)
2 ad

)
λn,

and so on, down to

X (n)
d+1 = (X (n−1)

d+1 )p + (S(n)
0 ad−n+1 + S(n)

1 ad−n+2 + · · · + S(n)
n−1ad)λn,

which define the X (n)
k for k > d . And finally for k = d, d − 1, . . . , n we define

X (n)
k =

(
X (n−1)
k

)p +
(
S(n)
0 ak−n + S(n)

1 ak−n+1 + · · · + S(n)
n ak

)
λn . (57)

By induction on n we verify the following

Remark 1 For k = n, . . . , d +n and l = min{k, d} ≥ n we can write X (n)
k as a linear form in

al , . . . , al−n whose coefficients are polynomials over Fp in t, λ0, . . . , λn of degree at most
pn+1 in each variable.

It will be crucial that for each n, k the number of ai appearing as well as the polynomial
degree are bounded only in terms of n. For example

X (1)
k = (akλ0)

p + (
ak−1 − t pak

)
λ1 = (

λ
p
0 − t pλ1

)
ak + λ1ak−1 (k = 1, . . . , d),

X (2)
k =

(
λ
p2

0 − t p
2
λ
p
1 + t p+p2λ2

)
ak + (

λ
p
1 − (t + t p)λ2

)
ak−1 + λ2ak−2 (k = 2, . . . , d).

We need the “Carnomial coefficients" Ti j in O0 = Fp[t] defined by

Ci Z =
i∑

j=0

Ti j Z
p j

.

Lemma 17 We have

A(C)

(
λ0

u
+ λ1

u p
+ · · · + λn

u pn

)
=

d+n∑
j=0

P(n)
j

u p j (58)

for

P(n)
j =

d+n∑
k= j

Tk j (X
(n)
k )p

j−n
( j = n, . . . , d + n). (59)

Proof Note that we do not specify P(n)
j for j = 0, . . . , n − 1. It is not difficult to do so but

we found it is not useful for applications.
From Ci+1Z = Ci (CZ) we derive a simple recurrence

Ti j−1 = Ti+1 j − t p
j
Ti j ,

where the Ti j are considered zero if 0 ≤ j ≤ i does not hold.
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Then iterating n times gives

Ti j−1 =
(
S(n)
0

)p j−1

Ti+n j+n−1 +
(
S(n)
1

)p j−1

Ti+n−1 j+n−1 + · · · +
(
S(n)
n

)p j−1

Ti j+n−1.

(60)

We use of course induction on n to prove (58).
For n = 0 the left-hand side is

d∑
k=0

ak

k∑
j=0

Tkj
λ
p j

0

u p j =
d∑
j=0

1

u p j

d∑
k= j

akTk jλ
p j

0 =
d∑
j=0

1

u p j

d∑
k= j

Tk j (akλ0)
p j

which is the right-hand side thanks to (55).
Now we assume the thing done for n − 1 ≥ 0 and we deduce it for n ≥ 1.
Splitting λn/u pn off the left-hand side of (58), and using the case n = 0 with u pn in place

of u we find

d+n−1∑
j=0

Pj

u p j +
d∑
j=0

Q j

u p j+n

where

Pj = P(n−1)
j =

d+n−1∑
k= j

Tk j
(
X (n−1)
k

)p j−n+1

, ( j = n − 1, . . . , d + n − 1)

and

Q j =
d∑

k= j

Tk j (akλn)
p j

( j = 0, . . . , d)

(with λn in place of λ0). For j = d + n in (58) we get at once

P(n)
d+n = Qd = (adλn)

pd

as required in (59), thanks to (56).
Also

P(n)
j = Pj + Q j−n ( j = n, . . . , d + n − 1)

which is

d+n−1∑
k= j

Tk j
(
X (n−1)
k

)p j−n+1

+
d∑

k= j−n

Tk j−n (akλn)
p j−n

.

We use (60) to see that the second sum is

d∑
k= j−n

((S(n)
0 )p

j−n
Tk+n j + (S(n)

1 )p
j−n

Tk+n−1 j + · · · + (S(n)
n )p

j−n
Tk j )(akλn)

p j−n
.

Thus

P(n)
j = U +U0 +U1 + · · · +Un (61)
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with (now adjusting k)

U =
d+n−1∑
k= j

Tk j (X
(n−1)
k )p

j−n+1

and

Um = (S(n)
m )p

j−n
d+n−m∑
k= j−m

Tkj (ak−n+mλn)
p j−n

.

Here in Um we can restrict the sum from k = j .
We already checked P(n)

d+n in (59) using (56). Now for each j = n, . . . , d + n− 1 we pick
out the coefficient of the various Tkj in (61).

The biggest k isd+n andnowwe see Tkj only inU0,with coefficient (S
(n)
0 )p

j−n
(adλn)p

j−n
,

which fits with (59) again thanks to (56).
Next for k = d + n − 1 we see Tkj in U as well as in U0,U1. This also fits with (59)

thanks to the displayed formula just after (56).
We carry on with k = d + n − 2 down to k = d + 1 and these also fit, thanks to the later

formulae preceding (57).
Then we go further with k = d, d − 1, . . . , n which appear in all of U ,U0,U1, . . . ,Un

and these fit with (59) because of (57). This completes the proof. 
�
As mentioned, the P(n)

j for j = 0, . . . , n − 1 are not useful for applications. For example
one finds

P(n)
0 = A(t)λ0 = (a0 + a1t + · · · + ad t

d)λ0

where the number of ai appearing is not bounded in terms of n as in Remark 1.

Remark 2 Because Tkk = 1 the system (59) has a triangular nature; for example the equations

P(n)
d+n = · · · = P(n)

e = 0

for some e ≥ n are equivalent to the equations

X (n)
d+n = · · · = X (n)

e = 0.

It is not difficult to see from Remark 1 that (we will be more precise later) these are
equations for λ0, . . . , λn again essentially independent of A (as in the examples given just
after that Remark).

10 More on curves

From now on K = Fp(t, s1, . . . , sl) for some l ≥ 1 variables s1, . . . , sl algebraically inde-
pendent over F0 = Fp(t). We define a height hs on K by regarding it as the closure of
F0(s1, . . . , sl). See for example [22] (p.1053) - thus hs(s1) = · · · = hs(sl) = 1 but hs(t) = 0.

The next result is in the style of Proposition 1.

Lemma 18 Let C be an irreducible curve in Gn
a defined over K . Assume for any non-zero

(ρ1, . . . , ρn) in Rn that the form ρ1x1 + · · · + ρnxn is not identically constant on C. Then
there isB such that

hs(ξ1) + · · · + hs(ξn) ≤ B
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for all (ξ1, . . . , ξn) on C(K ) for which there exists non-zero (α1, . . . , αn) in Rn and λ in F0
with

α1ξ1 + · · · + αnξn = λ. (62)

Proof Our hs is not a canonical height in the sense of Denis but it does have the same property
that hs(ξ P ) = ‖P‖hs(ξ) as in (14) above. For example hs(ξ p + tξ) = phs(ξ) because now
t appears as a constant. To see that we can go through the Nullstellensatz argument observing
that |t | = 1. Or just directly using max{1, |ξ p + tξ |} = max{1, |ξ |}p (that would work better
for general P). And of course hs(ξ + η) ≤ hs(ξ) + hs(η) as in (15) above.

Now we can follow the proof of Proposition 1 above. Lemma 1 above goes through with
hs instead of ĥ because of the remarks above; the extra λ in (62) makes no trouble because
it leads to an extra term Q(C)λ on the left-hand side of (21), and this has zero height. The
subsequent proof also goes through with hs also instead of h (actually with c′=c′′=nc). 
�
And now an analogue of Proposition 2 of [9] (p. 452).

Lemma 19 Let C be an irreducible curve in G3
a defined over K but not over F0. Assume for

any non-zero (ρ1, ρ2, ρ3) in R3 that the form ρ1x1 + ρ2x2 + ρ3x3 is not identically constant
on C. Then given any D there are at most finitely many (ξ1, ξ2, ξ3) on C(K ) for which there
exists non-zero (α1, α2, α3) in R3 and λ in F0 with

α1ξ1 + α2ξ2 + α3ξ3 = λ (63)

and

[F0(ξ1, ξ2, ξ3, s1, . . . , sl) : F0(s1, . . . , sl)] ≤ D.

Proof Assume first that the group of the (α1, α2, α3) for which λ exists in (63) has rank 1.
Then much as in (23) and (24) above we can find ξ, ξ ′ in K with

F0(ξ1, ξ2, ξ3) = F0(ξ, ξ ′) (64)

and

ξ1 = σ1ξ + σ ′
1ξ

′ + λ1, ξ2 = σ2ξ + σ ′
2ξ

′ + λ2, ξ3 = σ3ξ + σ ′
3ξ

′ + λ3 (65)

for σ1, σ ′
1, σ2, σ

′
2, σ3, σ

′
3 inR and λ1, λ2, λ3 in F0. Now ξ, ξ ′ are linearly independent, as are

the rows (σ1, σ2, σ3), (σ
′
1, σ

′
2, σ

′
3). With σi = Si (C), σ ′

i = S′
i (C) the rows

s = (S1, S2, S3), s′ = (S′
1, S

′
2, S

′
3)

in O3
0 (recall O0 = Fp[t] here) satisfy Mst = Ms′t = 0 for some 1× 3 matrix whose entries

are the minors

T1 = S2S
′
3 − S3S

′
2, T2 = S3S

′
1 − S1S

′
3, T3 = S1S

′
2 − S2S

′
1.

We shall show (in a fairly familar way) that we may assume that

d = max{deg S1, deg S2, deg S3}, d ′ = max{deg S′
1, deg S

′
2, deg S

′
3}

and

e = max{deg T1, deg T2, deg T3}
satisfy

d + d ′ ≤ e. (66)
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Namely, by [57] Corollary 2 (p.148) over F0 there are independent s̃, s̃′ in F3
0 with M s̃t =

M s̃′t = 0 and

hP(s̃) + hP(s̃′) ≤ hP(M). (67)

We can normalize s̃, s̃′ to lie in O3
0 and be primitive. Then

hP(s̃) = max{deg S̃1, deg S̃2, deg S̃3}, hP(s̃′) = max{deg S̃′
1, deg S̃

′
2, deg S̃

′
3}

for the corresponding polynomials in O0. Also

hP(M) ≤ max{deg T̃1, deg T̃2, deg T̃3}

for the corresponding minors. Thus (66) indeed holds for the new polynomials. And the old
(σ1, σ2, σ3), (σ

′
1, σ

′
2, σ

′
3) are linear combinations of the new rows (σ̃1, σ̃2, σ̃3), (σ̃

′
1, σ̃

′
2, σ̃

′
3)

with coefficients in F0. This leads to (65) for new ξ̃ , ξ̃ ′ with these new rows.
So it suffices to rename new as old, thus achieving (65).
We may suppose e = deg T3 above. Eliminating ξ ′ between the first two equations of (65)

gives

σ ′
2ξ1 − σ ′

1ξ2 = (σ ′
2σ1 − σ ′

1σ2)ξ + μ = T3(C)ξ + μ

for μ in F0. Taking heights hs and estimating the left-hand side by Lemma 18, we get the
inequality pd

′
B ≥ pehs(ξ).

Now ξ is not in F0 by (65) and our rank 1 assumption. Thus Lemma 2.1 (p.1053) of [22]
shows that

hs(ξ) ≥ [
F0(s1, . . . , sl)(ξ) : F0(s1, . . . , sl)

]−1
. (68)

By (64) the degree here is at most D. It follows that pd
′
BD ≥ pe.

A similar argument eliminating ξ in (65) leads to pdBD ≥ pe. Multiplying the two
inequalities and using (66) we find pe ≤ (BD)2.

By grassmannian theory this means that there are at most finitely many possibilities for
the O0-module generated by s, s′ in O3

0. Thus we can regard s, s
′ as fixed.

Now the original relation (63) implies

α1σ1 + α2σ2 + α3σ3 = α1σ
′
1 + α2σ

′
2 + α3σ

′
3 = 0

of which we need only one. We can apply GL3(R) to assume it is α3 = 0. This reduces the
problem to G2

a .
Then a similar argument brings us down toGa. But the lemma is then empty, because now

C = Ga is defined over F0.
Right at the start of the proof we made an assumption about rank 1. But if the rank is

bigger then things only get easier.
For example if the rank of the (α1, α2, α3) in (63) is 2, then we can argue as in (65) without

ξ ′ and there is no longer any need for minors.
And if the rank is 3, then ξ1, ξ2, ξ3 lie in F0. But because C is not defined over F0, this

implies that C(F0) is at most finite anyway. This completes the proof (and on the way we
proved the analogue in G2

a ). 
�
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11 Completions and specializations

During this section we assume that C satisfies the conditions of Lemma 19. Of course these
are more restrictive than the conditions of the Conjecture for n = 3, but we will see that
this will be no problem. As in [9] we regard the field of definition of C as the function field
F0(s1, . . . , sm) of an irreducible variety B, say of dimension l ≥ 1, in affineAm defined over
F0. We assume as in the previous section that s1, . . . , sl are algebraically independent over
F0. As in [9] we complete C to Ĉ in projective P3 and then take a non-singular model C̃ .

In [9] (p.463) we informally defined a varietyCB inA3×Am ; here this amounts to writing
the equations of C in A3 with coefficients in F0[s1, . . . , sm] and adjoining the equations of
B. Of course one should more formally define it as the F0-Zariski closure of a point (P, η),
where η is generic on B and P is generic on C over F0(η). This makes it clear that CB is
irreducible of dimension l + 1. The natural projection π from A3 ×Am to Am then takes CB

to B. There is also a natural projection γ from A3 × Am to A3.
Then for a point b of B we define the specialization Cb by

Cb = γ (CB ∩ π−1(b))

and similarly Ĉb, C̃b. As in [9] we can assume that these specializations retain enough
properties of C, Ĉ, C̃ that we shall need, at least when b is restricted to a non-empty open
subset B0 of B. And also for b = η a generic point; here we shall identify ηwith (s1, . . . , sm).

For b in B0 we can regard x1, x2, x3 as functions on Cb but for simplicity we omit any
subscript b that may possibly be more precise. Equally we omit the subscript for

f = α1x1 + α2x2 + α3x3

or also f − λ with a constant function λ. But we put it back in the notation degb( f − λ) for
the degree of f − λ on Cb (unless f − λ is identically zero on Cb, a possibility that we shall
soon essentially discount). Note that by our condition on C , this f − λ is certainly non-zero
on Cη as long as α1, α2, α3 are not all zero.

The next result replaces the simple argument in the last paragraph of [9] (p.463); here we
lack any multiplicative structure.

Lemma 20 There is a non-empty open subset B00 of B0 with the following property. For any
λ in F0, any b in B00 and any α1, α2, α3 not all zero the function f −λ is not identically zero
on Cb and

degb( f − λ) ≥ degη( f − λ) − degC . (69)

Proof We shall first prove the lemma under the assumption that f − λ �= 0 on Cb. Then at
the end of the proof we shall show that in fact this follows almost automatically.

Counting by poles we have now

degb( f − λ) =
∑
P̃∈C̃b

max{0,−ord P̃ ( f − λ)}.

This holds also for b = η, but in fact we shall identify Cη with C over F0[s1, . . . , sm]. In this
generic case we can restrict to P̃ in C̃ with

R = RP̃ = max{−ord P̃ x1,−ord P̃ x2,−ord P̃ x3} > 0

because f is a polynomial in x1, x2, x3.
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With a uniformizer u = u P̃ we have a local expansion

xi = xi + xi

where xi involves only non-negative exponents and xi only (finitely many) negative expo-
nents.

We are going to split the negative exponents into subsets of various sets {r , rp, rp2, . . .}
with r prime to p. These sets are disjoint. Of course we will see rpm only with

1 ≤ r ≤ R, 0 ≤ m ≤ nr =
[
log R/r

log p

]
≤ log R

log p
.

Thus we can write

xi =
∑
r

nr∑
m=0

λirm

urpm
.

At first the λirm are in the algebraic closure of F0(s1, . . . , sm) but by taking a finite cover of
B and introducing more variables we can suppose that they lie in F0[s1, . . . , sm] itself (this
is just for painless specialization).

We have corresponding f = f + f with

f = α1x1 + α2x2 + α3x3

which is

∑
r

(
α1

(
nr∑

m=0

λ1rm

urpm

)
+ α2

(
nr∑

m=0

λ2rm

urpm

)
+ α3

(
nr∑

m=0

λ3rm

urpm

))
.

We calculate these using Lemma 17 with u there replaced by the various ur and a suitably
large d . We find

f =
∑
r

d+nr∑
j=0

1

urp j (P1r j + P2r j + P3r j ) (70)

with

P1r j =
d+nr∑
k= j

Tk j X
p j−nr

1rk , P2r j =
d+nr∑
k= j

Tk j X
p j−nr

2rk ,

P3r j =
d+nr∑
k= j

Tk j X
p j−nr

3rk ( j = nr , . . . , d + nr )

and the X1rk, X2rk, X3rk are defined as in (56)-(57) with n = nr on taking the
A1, A2, A3 in F0 with α1 = A1(C), α2 = A2(C), α3 = A3(C). Thus we need d at least
deg A1, deg A2, deg A3 and pd ≥ R. We get

f =
S∑

s=0

Ps
us

for say S = pd R2.
Up to now we are in the generic situation but soon we shall specialize.
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Suppose first the ωP̃ = −ord P̃ ( f − λ) > 0. Then it is −ord P̃ f and so has the form
s̃ = r̃ pe−1 for some unique r̃ and e ≥ 1. This means of course

Ps = 0 (s > s̃) (71)

so in particular

Ps = 0 (s = r̃ pe, . . . , r̃ pd+ñ) (72)

for ñ = nr̃ , but

Ps̃ �= 0. (73)

We aim to specialize these to b in B0 with corresponding Ps(b). Of course (71) and (72) are
trivially done, and we must pay attention only to Ps̃(b).

By (70) we have for s = r̃ p j

Ps(b) = P1r̃ j (b) + P2r̃ j (b) + P3r̃ j (b) =
d+ñ∑
k= j

Tk j X
p j−ñ

k (b) ( j = ñ, . . . , d + ñ)

for

Xk(b) = X1r̃ k + X2r̃ k + X3r̃ k . (74)

Thus at η, the equations (72),(73) together with triangularity as in Remark 2 imply

Xk(η) = 0 (k = e, . . . , d + ñ) (75)

provided e − 1 ≥ ñ, but

Xe−1(η) �= 0. (76)

Thus for any b in B0 not a zero of Xe−1 we can specialize (75),(76); and doing the thing
backwards leads to the required specializations of (72),(73). It follows that the specialized
ωP̃ (b) of f − λ on Cb is the same as the generic ωP̃ .

By Remark 1 and (74), this Xe−1(η) is a linear form in at most 3(ñ+1) of the coefficients
of A1, A2, A3, whose coefficients are themselves of total degree at most pñ+1 in the

λ1r̃0, . . . , λ1r̃ ñ, λ2r̃0, . . . , λ2r̃ ñ, λ3r̃0, . . . , λ3r̃ ñ .

Thus indeed we can take any b in a set B00 independent of α1, α2, α3. For example, if we
want X = a1�1 + a2�2 �= 0 at b for all non-zero (a1, a2) in F2

p then it suffices that

Y = �1�2(�
p−1
1 − �

p−1
2 ) �= 0 (related to the Moore determinant in [30] p.8) at b, easy if

Y �= 0 already at η.
Above we assumed that e−1 ≥ ñ. If this is not the case, then our counting by poles gives

ωP̃ (b) ≥ 0 ≥ r̃ pe−1 − r̃ pñ−1 = ωP̃ − r̃ pñ−1 ≥ ωP̃ − R.

Thus in both cases for e we get

ωP̃ (b) ≥ ωP̃ − RP̃ .

So at each P̃ on C̃ where at least one of x1, x2, x3 has a pole, if ωP̃ > 0 we have

max{0, ωP̃ (b)} ≥ max{0, ωP̃ } − max{0,−ord P̃ x1,−ord P̃ x2,−ord P̃ x3};
and this holds trivially if ωP̃ ≤ 0.
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Thus summing over all such P̃ we get

degb( f − λ) ≥ degη( f − λ) −
∑
P̃

max{0,−ord P̃ x1,−ord P̃ x2,−ord P̃ x3}.

The sum on the right is the total number of poles (with multiplicity) of a generic linear
combination of x1, x2, x3. So the sum is degC , the total number of zeroes.

As promised we now show that for any b in our present B00, indeed f −λ is not identically
zero on Cb. The corresponding assertion in the multiplicative situation is proved in [9] at the
bottom of page 463.

Suppose on the contrary f = λ on Cb. Choose any non-torsion τ in F0; then f �= λ + τ

on Cb. Thus Ck f �= λk = Ck(λ + τ) on Cb for any k ≥ 0. We apply (69) to Ck f − λk =
Ckλ − λk = −Ckτ �= 0, getting

0 ≥ degη(C
k f − λk) − degC . (77)

But f − λ − τ is not constant on Cη by our basic hypothesis, so f − λ − τ has at least one
pole there. Thus Ck( f − λ − τ) = Ck f − λk has a pole of order at least pk on Cη. Therefore
the first degree on the right-hand side of (77) is at least pk . Now we obtain a contradiction
by making k tend to infinity. 
�

The next result essentially replaces an argument in the proof of Lemma 6.1 of [9] (p.464);
here we lack Mason’s abc Theorem.

Lemma 21 For b in B00(F0) or b = η there is a finite union Eb (possibly empty) of rank 2
submodules ofR3 with the following property. Suppose the non-zero (α1, α2, α3) inR3 is not
in Eb (if non-empty). Then if ord P̃ f > 0 for some P̃ in C̃b, we have

(a) ord P̃ f = 1 for any P̃ over a non-singular point P of Cb,

(b) ord P̃ f ≤ degC for any P̃ over a singular point of Cb,

(c) ord P̃ f ≤ (degC)(1 + deg u) for any P̃ over an infinite point of Cb, where u is a
corresponding uniformizer.

Proof We assume first that b is in B00(F0).
With as usual αi = Ai (C) we have by (33)

d f = A1(t)dx1 + A2(t)dx2 + A3(t)dx3

on C or Cb. This is the analogue of the multiplicative

d(xa11 xa22 xa33 )

xa11 xa22 xa33
= a1

dx1
x1

+ a2
dx2
x2

+ a3
dx3
x3

.

In case (a) at least one of dx1, dx2, dx3 must be non-zero at P̃ on Cb. Say it is dx �= 0.
Then

d f

dx
= A1(t)g1 + A2(t)g2 + A3(t)g3 = φ

say, with fixed functions gi = dxi/dx .
If (a) is false we have φ(P̃) = 0 on Cb. But this implies

[F0(P) : F0] ≤ Db (78)

for some Db possibly depending on b; unless, that is, φ is identically zero on Cb. We deal
with this last possibility first.
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If φ is identically zero on Cb then (A1(t), A2(t), A3(t)) in O3
0 is in the additive relation

group (with an obvious extension of the notion in [41] especially section 3) of g1, g2, g3 in
F0(b)(Cb). This group is of course a O0-module. If it were the full O3

0 then g1, g2, g3 would
all be identically zero on Cb which is absurd, because actually one of them is 1. So there is
non-zero (ε1, ε2, ε3) in R3, possibly depending on b, such that ε1α1 + ε2α2 + ε3α3 = 0. We
put the corresponding rank 2 submodule into Eb.

Thus indeed we may assume that (78) holds.
Now f (P̃) = 0, and so by Proposition 1 above together with the Northcott property we

deduce that there are at most finitely many possibilities for P̃ . For each of those P̃ which
are over a non-singular point we still have φ(P̃) = 0, and again this leads to (ε1, ε2, ε3) as
above. This completes case (a).

In case (b) for P̃ over a singular point (ξ1, ξ2, ξ3) of Cb we have

xi = ξi + λi u
r + · · · (79)

for a suitably chosen uniformizer u and with λ1, λ2, λ3 values, not all zero, of fixed functions
on C evaluated at P̃ and specialized at b. Here r ≤ degC because

ord P̃ (xi − ξi ) ≤ deg(xi − ξi ) = deg xi ≤ degC .

So f = μur +· · · forμ = A1(t)λ1+ A2(t)λ2+ A3(t)λ3. This gives the result unlessμ = 0;
in which case as above this leads again to (ε1, ε2, ε3).

Finally in case (c) we go back to the decomposition xi = xi +xi in the proof of Lemma 20,
where xi involves only non-negative exponents and xi only (finitely many) negative expo-

nents. As f (P̃) = 0 we must have α1x1 + α2x2 + α3x3 = 0 identically on Cb. This implies
that x1, x2, x3 cannot all be zero on Cb, otherwise so would f = α1x1 + α2x2 + α3x3 be,
already impossible for b in B00 thanks to Lemma 20.

So some xi �= 0. If also xi �= 0 then

ord P̃ xi = ord P̃ (xi − xi ) ≤ deg(xi − xi ) ≤ deg xi + deg xi .

Here

deg xi ≤ |ord P̃ xi | deg u ≤ (deg xi )(deg u)

and so

ord P̃ xi ≤ (degC)(1 + deg u) = s

say. And this clearly holds even if xi = 0.
So for each i we can write xi = λi us + · · · as in (79), and as

ord P̃ f = ord P̃ (α1x1 + α2x2 + α3x3)

we can follow the arguments in case (b).
If b = η then in (a) the only change is as follows. Now (78) becomes [F0(s1, . . . , sl , P) :

F0(s1, . . . , sl)] ≤ Dη, so the index in Lemma 19 is no bigger; this lemma shows that there
are at most finitely many P̃ . The argument for (b) is essentially unchanged. Similarly for (c);
here we already know that f is not identically zero on Cη. 
�

The result would become false without the condition involving Eb. For example with C
as the line parametrized by (x, t x, sx) and α1 = C, α2 = −1, α3 = 0 we have f = x p

contradicting (a) at P = (0, 0, 0).
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In fact we are not so very far from the classical abc Mason result. For example over
C consider xa1(x − 1)a2(x − 2)a3 − 1 for positive integer exponents. This is a non-zero
polynomial of degree D = a1 + a2 + a3; and abc implies at once that it has at least D − 2
zeroes without multiplicity. A Carlitz analogue might be

A1(C)(x) + A2(C)(t x) + A3(C)(t2x) − 1

for monic A1, A2, A3. If p �= 2, 3 it is easy to see that this has degree D =
max{||A1||, ||A2||, ||A3||} in x . Using (33) as above we see that its derivative is simply
A1 + t A2 + t2A3. If p �= 2, 3 that is non-zero; thus we see that the polynomial now has
exactly D zeroes (without multiplicity).

Now we can give an analogue of Lemma 6.1 of [9] (p.464). We write Nsing for the number
of points of C̃ above singular points of C and Sinf for the sum of 1 + deg u taken over all
points above infinite points of C with u a corresponding uniformizer. Both quantities remain
unchanged when we replace C by Cb. For α1, α2, α3 as above we define f as usual and then
H in A3 × Am by the equation f = 0. It is convenient during this section to assume that
CB ∩ H is non-empty.

Lemma 22 For b in B00(F0) or b = η suppose the nonzero (α1, α2, α3) in R3 is not in Eb (if
non-empty). Then CB ∩ H ∩ π−1(b) is a finite set whose cardinality satisfies

degb f − (degC)(Nsing + Sinf ) ≤ #(CB ∩ H ∩ π−1(b)) ≤ degb f . (80)

Proof We estimate

degb f =
∑
P̃∈C̃b

max{0, ord P̃ f } (81)

from above and below. We need to take into account only zeroes P̃ of f .
By Lemma 21, each P̃ in (81) above a non-singular point ofCb contributes 1. The number

of such P̃ is at most the cardinality of Cb ∩γ (H) (finite by Lemma 20), which is the same as
that of CB ∩ H ∩ π−1(b) because γ is an injection even on CB ∩ π−1(b). Similarly each P̃
above a singular point contributes at most degC , and each P̃ above an infinite point at most
(degC)(1 + deg u). The left-hand inequality of (80) follows.

On the other hand (81) is at least the number of zeroes (without multiplicity) of f over
finite points of Cb, and this proves the right-hand inequality. 
�

Next we give an analogue of Lemma 6.2 of [9] (p.464). The Dimension Theorem (see for
example [35] p.36) shows that CB ∩ H (here assumed non-empty) has all its components of
dimension l unless CB is in H ; but this last possibility is excluded by our original hypothesis
on C .

Lemma 23 For b in B00(F0) or b = η suppose the nonzero (α1, α2, α3) in R3 is not in Eb (if
non-empty). Then for any finite union W of components of CB ∩ H we have

#
(
W ∩ π−1(b)

) ≥ #
(
W ∩ π−1(η)

) − (degC)
(
1 + Nsing + Sinf

)
.

Proof Write s(b), s(η) for the two cardinalities to be compared. Let W ′ be the union of the
components ofCB ∩H not in the unionW , and write s′(b), s′(η) analogously. By Lemma 22
we have

s(b) + s′(b) ≥ #
(
CB ∩ H ∩ π−1(b)

) ≥ degb f − (degC)
(
Nsing + Sinf

)
.
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Also

s(η) + s′(η) = #
(
CB ∩ H ∩ π−1(η)

)
since the setsW ∩π−1(η),W ′ ∩π−1(η) are disjoint. This is becauseW ∩W ′ has dimension
at most l − 1, so cannot project to η. Also by Lemma 22 we have

#
(
CB ∩ H ∩ π−1(η)

) ≤ degη f

which by Lemma 20 is at most degb f + degC .
Comparing these inequalities we see that it suffices now only to verify s′(b) ≤ s′(η). But

this follows from Lemma 16 (withW ′ notW ). We just have to note thatW ′ ∩π−1(b) is finite
by Lemma 22. 
�

However the next result has no analogue in [9] which is solidly over zero characteristic
and so all inseparable degrees degins are 1.

Lemma 24 Suppose the nonzero (α1, α2, α3) in R3 is not in Eη (if non-empty). Then if

degη f > 2(degC)(Nsing + Sinf )

we have

deginsη f = 1.

Proof By Lemma 22 we have

#(CB ∩ H ∩ π−1(η)) ≥ d − (degC)(Nsing + Sinf )

for d = degη f . Now dsep = degsepη f is the number of solutions of f = λ (without
multiplicity) for generic λ. But these solutions are simply translates of the solutions of f = 0
by a single point. Thus

#(CB ∩ H ∩ π−1(η)) = dsep = d

deginsη f

and the lemma follows at once. 
�

12 Almost finishing

Herewe prove our Theorem for general K , which as abovewe can take as K = F0(s1, . . . , sl)
with l ≥ 1, andC defined over F0(s1, . . . , sm) = F0(η).Wemay assume thatC is not defined
over F0, else every point with just one non-trivial relation would already be over F0 and so
our Theorem for that field suffices.

Throughout this section (as in the previous section) we shall assume that no non-zero
ρ1x1 + ρ2x2 + ρ3x3 is identically constant on C . In the next section we shall relax this as
required.

Now C is defined over some field K∗, finitely generated over Fp , which lies in F0(η). So
we can find a finite extension F of F0 with K∗ inside F(η). Both of these latter fields are
finitely generated over F0 with transcendence degree l and so the index [F(η) : K∗] = e is
finite.

Fix once and for all some b in B00(F0). By Lemma 20 the hypothesis of our Theorem for
Cb over F0 is satisfied. Thus there are at most finitely many points on Cb(F0) satisfying two
independent relations. Let r ≥ 0 be their cardinality.
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Let P be any point on C with two independent relations (if it exists at all), and let W be
the F-Zariski closure of (P, η) on CB in A3 × Am .

Now there is a submodule M of R3 of rank at least 2 that kills P . It may be that M lies
in the unions Eb,Eη (if non-empty) appearing in Lemma 21. But thenM would be in one of
the members making up Eb ∪Eη. Using GL3(R) as at the end of the proof of Lemma 19, we
can assume that M actually lies in R2. But now the problem in G3

a is reduced to one in G2
a ,

an easy torsion problem.
Thus we can assume that M does not lie in Eb ∪ Eη. Pick any (α1, α2, α3) in M not in

Eb ∪ Eη. This gives an H as above; but of course there is an element of M independent of
(α1, α2, α3), and this gives analogously some H ′.

Thus (P, η) lies inCB ∩H ∩H ′ (and in particularCB ∩H is non-empty as we assumed in
the preceding section). The dimension ofW is at least l. It follows thatW (which is irreducible
over F) is a finite union of F0-irreducible components of CB ∩ H (all of dimension l as we
saw above). Therefore by Lemma 23 we have

#(W ∩ π−1(b)) ≥ #(W ∩ π−1(η)) − c1

for some c1 depending only on C .
But #(W ∩ π−1(η)) is just the degree

[F(P, η) : F(η)]sep = [F(P, η) : F(η)]
[F(P, η) : F(η)]ins .

Now F(P, η) lies in the field K f obtained by adjoining to F(η) all solutions of f = 0 on
Cη. So

[F(P, η) : F(η)]ins ≤ [K f : F(η)]ins = deginsη f .

If d = degη f > c2 again for c2 ≥ 1 depending only on C , then by Lemma 24 we have
deginsη f = 1. But otherwise

[F(P, η) : F(η)]ins ≤ deginsη f ≤ d ≤ c2.

Thus in both cases

#(W ∩ π−1(η)) = [F(P, η) : F(η)]sep ≥ c−1
2 [F(P, η) : F(η)].

And in turn

[F(P, η) : F(η)] = [F(P, η) : K∗(P)][K∗(P) : K∗]
[F(η) : K∗] ≥ [K∗(P) : K∗]

e
.

Collecting these together, we see that W ∩ π−1(b) contains at least

c−1
2 e−1[K∗(P) : K∗] − c1

different points. These project under γ to different points of Cb ∩ γ (H) ∩ γ (H ′), whose
cardinality is at most r . Therefore

[K∗(P) : K∗] ≤ (c1 + r)c2e

is bounded above independently of P . Now K∗(t, s1, . . . , sl) contains K∗ and F0(s1, . . . , sl);
and all are finitely generated over F0 with transcendence degrees l. So all indices are finite,
and so the index [F0(s1, . . . , sl , P) : F0(s1, . . . , sl)] is also bounded above independently of
P .
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Thus we can use Lemma 19 (in which the index is no bigger) to conclude as desired that
there are at most finitely many P . This completes the proof of the Theoremwhen no non-zero
ρ1x1 + ρ2x2 + ρ3x3 is identically constant on C .

13 Relaxing the condition

Finally if some non-zero ρ1x1 + ρ2x2 + ρ3x3 is identically constant on C , then again via
GL3 we can assume that x3 is a constant ξ3 on C . It is then necessarily non-torsion. Now the
thing reduces to the analogue of Mordell-Lang on the projection to G2

a : both ξ1 and ξ2 are
in the division hull of Rξ3. In Sect. 4 we had reached a similar stage, but that was over F0.
Oddly enough the extension to F0(s1, . . . , sl) is not in the literature, although Ghioca comes
very close in [27]. In the personal communication [28] he does establish what we need here.
But we can also use the ideas of [9] as follows.

Indeed we argue as in Sect. 4.
Namely as in (23) we can find ξ and a torsion ζ such that

F0(s1, . . . , sl)(ξ1, ξ2, ξ3) = F0(s1, . . . , sl)(ξ, ζ )

and (24). Further if ζ has order ν then τ1, τ2, τ3 are polynomials in R of degree less than that
of ν.

Then we can proceed down to (26), now in the form

D = [F0(s1, . . . , sl)(ξ1, ξ2, ξ3) : F0(s1, . . . , sl)]  (‖ν‖M)1/2 (82)

with implied constants depending only on C (and ε soon to appear).
On the other hand (24) gives

hs(ξ1) = ‖σ1‖hs(ξ), hs(ξ2) = ‖σ2‖hs(ξ), hs(ξ3) = ‖σ3‖hs(ξ) (83)

as hs = 0 on all of F0.
Now hs(ξ3)  1 as ξ3 is fixed. But we claim that also

hs(ξ1)  1, hs(ξ2)  1. (84)

To see this, project C down to a curve C ′ in G2
a . There is a non-trivial Carlitz relation

between ξ1, ξ2 and so by Lemma 18 we indeed get (84) unless some non-trivial ρ1x1 + ρ2x2
is constant on C ′. With GL2 we could then assume x2 = ξ2 is constant on C ′. But now
ξ2, ξ3 must be independent and so we could not have had two independent relations among
ξ1, ξ2, ξ3.

Now (83) implies

hs(ξ)  M−1. (85)

We can assume that ξ is not in F0, because otherwise by (24) the point (ξ1, ξ2, ξ3) would
be in C(F0); and because C is not defined over F0 this would give the required finiteness at
once. Now in (68) we have

[
F0(s1, . . . , sl , ξ) : F0(s1, . . . , sl)

] = [
F0(s1, . . . , sl , ξ) : F0(s1, . . . , sl , ζ )

]
because ζ is in F0. This in turn is at most

[F0(s1, . . . , sl , ξ) : F0(s1, . . . , sl , ζ )] ≤ [F0(s1, . . . , sl , ξ1, ξ2, ξ3) : F0(s1, . . . , sl , ζ )]
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which is
D

[F0(s1, . . . , sl , ζ ) : F0(s1, . . . , sl)] .

Here the denominator is [F0(ζ ) : F0] = φ(ν) � ‖ν‖1−ε for any ε > 0.
So we can indeed assume

hs(ξ) � ‖ν‖1−ε

D

a sort of “cyclotomic Lehmer” in the sense of Proposition 2. Comparing with (85) we find
D � M‖ν‖1−ε ≥ (M‖ν‖)1−ε . We choose ε < 1/2 to get by (82) D  1, and now we
conclude with Lemma 19 (which we already noted holds for G2

a ) applied to (ξ1, ξ2) on C ′.
This completes the proof of the Theorem.
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Appendix

Here we show that the inseparable degree q = [F : Fc]ins = [F : F0]ins mentioned just after
Proposition 2 is bounded above independently of d and D, at least in the application to the
Theorem for K = F0. This does not necessarily mean that it can be forgotten about, due to
the unfortunate fact that Frobenius does not commute with Carlitz.

Lemma 25 For K = F0 let C inG3
a be an irreducible curve defined over K . Assume for any

non-zero (ρ1, ρ2, ρ3) in R3 that the form ρ1x1 + ρ2x2 + ρ3x3 is not identically zero on C.
Then there is a constantB such that

[F0(ξ1, ξ2, ξ3) : F0]ins ≤ B

for all (ξ1, ξ2, ξ3) inC(K ) forwhich there exist linearly independent (α1, α2, α3), (β1, β2, β3)

in R3 such that

α1ξ1 + α2ξ2 + α3ξ3 = β1ξ1 + β2ξ2 + β3ξ3 = 0. (86)

Proof Observe that this lemma is formally implied by our Theorem! But the following proof
is self-contained.

There is a non-zero polynomial P in Fp[X1, X2, X3] such that P(x1, x2, x3) = 0 on C
(that is, as in [43] and [15] we regard C as a surface over Fp). We choose one of minimal
degree. From (33) and Proposition 5.3 of [36] (p.371), the equations P(ξ1, ξ2, ξ3) = 0 with
(86) define a separable extension of F0 (that is, [F0(ξ1, ξ2, ξ3) : F0]ins = 1) unless the
Jacobian

Q =
∣∣∣∣∣∣

P1 P2 P3
A1(t) A2(t) A3(t)
B1(t) B2(t) B3(t)

∣∣∣∣∣∣ = 0
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at (ξ1, ξ2, ξ3), where P1, P2, P3 are the partial derivatives and α1 = A1(C) etc.
If Q �= 0 on C then by Bezout we get the required bound for the entire degree

[F0(ξ1, ξ2, ξ3) : F0] and we are done.
Thus we can assume Q = 0 on C . We write Q = U1(t)P1 +U2(t)P2 +U3(t)P3 for the

appropriate minors (not all zero)

U1(t) = (A2B3 − A3B2)(t), U2(t) = (A3B1 − A1B3)(t), U3(t) = (A1B2 − A2B1)(t)

of the Jacobian matrix. Then with as usual O0 = Fp[t] the O0-module ∇ of (Q1, Q2, Q3)

in O3
0 such that Q1P1 + Q2P2 + Q3P3 = 0 on C has rank r with r = 1, 2, 3. We consider

each case in turn.
If r = 3 then P1 = P2 = P3 = 0 on C . As the degree of P is minimal this implies

P1 = P2 = P3 = 0 identically. But then P = P̃ p contradicting this very minimality.
If r = 2 (the crucial case), then this means there are fixed R1, R2, R3 in O0, not all zero,

such that R1Q1 + R2Q2 + R3Q3 = 0 on ∇. In particular

R1(t)U1(t) + R2(t)U2(t) + R3(t)U3(t) = 0 (87)

which also relates the minors of (86).
Now we could operate with GL3(R) in the usual way to produce from (86) a relation

γ3ξ3 = 0 on a different curve. But it is more straightforward to assume U3 �= 0, and
with ρ1 = R1(C), ρ2 = R2(C), ρ3 = R3(C) then multiply the first relation in (86) by
ρ1β2 − ρ2β1 and the second relation by ρ1α2 − ρ2α1 and subtract. What comes out using
(87) isU3(C)ξ = 0 for ξ = ρ1ξ1+ρ2ξ2+ρ3ξ3. Thus ξ is torsion. The corresponding function
x = ρ1x1 + ρ2x2 + ρ3x3 on C is by hypothesis not zero on C . It cannot be constant either,
because then its value would be torsion also contradicting the hypothesis. Thus F0(x1, x2, x3)
is a fixed finite extension of F0(x). Similarly for the specializations F0(ξ1, ξ2, ξ3), F0(ξ).
But we already noted that torsion is separable. It follows that

[F0(ξ1, ξ2, ξ3) : F0]ins ≤ [F0(ξ1, ξ2, ξ3) : F0(ξ)] ≤ B

as desired.
Finally if r = 1 then (U1(t),U2(t),U3(t)) in projective P2(F0) is uniquely determined

by P . But these are the Grassmann coordinates of the space of relations (86). So this space
has generators of bounded degree. In other words we can consider each of (86) as a multiple
of a fixed relation. Now we can repeat the above argument for just one of them.

It seems an interesting problem to extend the lemma toGn
a in the situation of theConjecture

(for K = F0 again). 
�
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