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Abstract

The purpose of this paper is to study complete self-shrinkers of mean curvature flow in
Euclidean spaces. In the paper, we give a complete classification for 2-dimensional complete
Lagrangian self-shrinkers in Euclidean space R* with constant squared norm of the second
fundamental form.

Keywords Mean curvature flow - Self-shrinker - Lagrangian submanifold - The generalized
maximum principle
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1 Introduction

Let X : M — R™*P be an n-dimensional submanifold in the (1 + p)-dimensional Euclidean
space R"T7_ A family of n-dimensional submanifolds X (-, ) : M — R"*? is called a mean
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curvature flow if they satisfy X (-, 0) = X(-) and

0X(p,t)

= H(p,t), (p.t)eMx][0,T), (1.1)

where H (p, t) denotes the mean curvature vector of submanifold M, = X (M, t) at point
X (p, t). The mean curvature flow has been used to model various things in material sciences
and physics such as cell, bubble growth and so on. The study of the mean curvature flow from
the perspective of partial differential equations commenced with Huisken’s paper [16] on the
flow of convex hypersurfaces. One of the most important problems in the mean curvature
flow is to understand the possible singularities that the flow goes through. A key starting
point for singularity analysis is Huisken’s monotonicity formula, the monotonicity implies
that the flow is asymptotically self-similar near a given type I singularity. Thus, it is modeled
by self-shrinking solutions of the flow.

An n-dimensional submanifold X : M — R"*” in the (n 4+ p)-dimensional Euclidean
space R"*7 is called a self-shrinker if it satisfies

H+Xxt=o0,

where X1 denotes the normal part of the position vector X. It is known that self-shrinkers
play an important role in the study of the mean curvature flow because they describe all
possible blow-ups at a given singularity of the mean curvature flow.

For complete self-shrinkers with co-dimension 1, Abresch and Langer [1] classified closed
self-shrinker curves in R? and showed that the round circle is the only embedded self-shrinker.
Huisken [15, 17], Colding and Minicozzi [11] have proved that if X : M — R+ is an n-
dimensional complete embedded self-shrinker in R+ with mean curvature H > 0 and with
polynomial volume growth, then X : M — R"*! is isometric to R”, or the round sphere
S™(y/n), or a cylinder S™(y/m) x R"™™ 1 < m < n — 1. Halldorsson in [14] proved that
there exist complete self-shrinking curves I' in R?, which is contained in an annulus around
the origin and whose image is dense in the annulus. Furthermore, Ding and Xin [12], Cheng
and Zhou [10] proved that a complete self-shrinker has polynomial volume growth if and
only if it is proper. Thus, the condition on polynomial volume growth in [15] and [11] is
essential since these complete self-shrinking curves I' of Halldorsson [14] are not proper
and for any integer n > 0, ' x R"~! is a complete self-shrinker without polynomial volume
growth in R"*+1.

As for the study on the rigidity of complete self-shrinkers, many important works have
been done (cf. [4, 7-9, 12, 13, 22] and so on). In particular, Cheng and Peng in [8] proved
that for an n-dimensional complete self-shrinker X : M" — R"*! with inf H? > 0, if the
squared norm S of the second fundamental form is constant, then M" is isometric to one of
the following:

(1) $"(V/n),
(2) Sm(ﬂ) x R—™ — Rn-ﬁ-l.

Furthermore, Ding and Xin [13] studied 2-dimensional complete self-shrinkers with poly-
nomial volume growth and with constant squared norm S of the second fundamental form.
They have proved that a 2-dimensional complete self-shrinker X : M — R3 with polynomial
volume growth is isometric to one of the following:

(1) R?,
2 St xR
3) $2(V2),
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if S is constant. Recently, Cheng and Ogata [7] have removed both the assumption on poly-
nomial volume growth in the above theorem of Ding and Xin [13] and the assumption
inf H2 > 0 in the theorem of Cheng and Peng [8] for n = 2.

It is natural to ask the following problems:

Problem 1. To classify 2-dimensional complete self-shrinkers in R* if the squared norm S
of the second fundamental form is constant.

It is well-known that the unit sphere S 2(1), the Clifford torus S! (1) x $1(1) , the Euclidean
plane R? and the cylinder S'(1) x R! are the canonical self-shrinkers in R*. Besides the
standard examples, there are many examples of complete self-shrinkers in R*. For examples,
compact minimal surfaces in the sphere S3(2) are compact self-shrinkers in R*. Further,
Anciaux [2], Lee and Wang [21], Castro and Lerma [5] constructed many compact self-
shrinkers in R* (cf. Sect. 3). Except the canonical self-shrinkers in R*, the known examples
of complete self-shrinkers in R* do not have the constant squared norm S of the second
fundamental form.

Since the above problem is very difficult, one may consider the special case of complete
Lagrangian self-shrinkers in R* first. Here we have identified R>” with C" and let us recall the
definition of Lagrangian submanifolds. A submanifold X : M — R?" is called a Lagrangian
submanifold if J(T,M) = T;- M, for any p € M, where J is the complex structure of R,

T,M and T;-M denote the tangent space and the normal space at p.

It is known that the mean curvature flow preserves the Lagrangian property, which means
that, if the initial submanifold X : M — R?" is Lagrangian, then the mean curvature flow
X(-, 1) : M — R?" is also Lagrangian. Lagrangian submanifolds are a class of important
submanifolds in geometry of submanifolds and they also have many applications in many
other fields of differential geometry. For instance, the existence of special Lagrangian sub-
manifolds in Calabi-Yau manifolds attracts a lot of attention since it plays a critical role in
the T-duality formulation of Mirror symmetry of Strominger-Yau-Zaslow [28]. In particu-
lar, recently, the study on complete Lagrangian self-shrinkers of mean curvature flow has
attracted much attention. Many important examples of compact Lagrangian self-shrinkers
are constructed (see Sect. 3 and cf. [2, 5, 21]). It was proved by Smoczyk [26] that there are
no Lagrangian self-shrinkers, which are topological spheres, in R>". In [6], Castro and Lerma
gave a classification of Hamiltonian stationary Lagrangian self-shrinkers in R* and in [5],
they proved that Clifford torus S'(1) x S$'(1) is the only compact Lagrangian self-shrinker
with § < 2 in R? if the Gaussian curvature does not change sign. Here, it is noticeable that
compactness is important since the Gauss—Bonnet theorem is the key in their proof. In fact,
Since X : M? — R%is compact, according to the Gauss—Bonnet theorem, we have

871(1—g):2/ KdA:/ (HZ—S)dA:/ (2 — S)dA.
M M M

Hence, X : M2 - R*isatorusand K = 0, S = 2. Recently, Li and Wang [22] have
removed the condition on Gaussian curvature. They proved that Clifford torus S' (1) x S'(1)
is the only compact Lagrangian self-shrinker with § < 2 in R*. Furthermore, they proved
that Clifford torus S' (1) x S'(1) is the only compact Lagrangian self-shrinker with constant
squared norm S of the second fundamental form in R*. The Gauss—Bonnet theorem is still the
key in their proof. Since the Euclidean plane R? and the cylinder S (1) x R! are complete and
non-compact Lagrangian self-shrinkers with § = constant in R*, we may ask the following
problem:
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Problem 2. Let X : M> — R* be a 2-dimensional complete Lagrangian self-shrinker in
R*. If the squared norm S of the second fundamental form is constant, is X : M 2 L R4
isometric to one of the following

(1) R?,
@) S'() x R,
3) ST x St(1)?

It is our motivation to solve the above problem. In fact, we prove the following:

Theorem 1.1 Ler X : M?> — R* be a 2-dimensional complete Lagrangian self-shrinker in
R*. If the squared norm S of the second fundamental form is constant, then X : M*> — R*
is isometric to one of

(1) R?,

) S'(1) x RL,
3) St x St).

Remark 1.1 We should remark the condition that S is constant is essential. In fact, from
examples of Lee-Wang in Sect. 3, we know

3m? 4+ n? m? + 3n?
—_ << —
nim+n) — — mn+m)

for m < n. By taking n = m + 1 and letting m — oo, we have

3m? + n? m? + 3n?
—_— <2, —>2
n(m +n) m(n 4+ m)
and
3m? + n? . m? + 3n?

1m = Im ——— =
m—oo n(m + n) m—o0o m(n + m)

Since we do not assume that Lagrangian self-shrinkers are compact, we can not use Gauss—
Bonnet theorem. Hence, in this paper, in place of the powerful Gauss—Bonnet theorem, we
use the generalized maximum principle and moving frame methods.

In order to prove our theorem, we need to compute the supremum and infimum of mean
curvature about 2-dimensional complete Lagrangian self-shrinker in R*. Thus, a very precise
computation is needed. Therefore, we must give a precise estimate of the squared norm of
the second covariant derivative of the second fundamental form.

This paper is organized as follows.

In Sect. 2, in order to get a precise estimate of the squared norm of the second covari-
ant derivative of the second fundamental form of 2-dimensional complete Lagrangian
self-shrinker in R*, we need to compute £ Zi, ik, p(hfj1)2 in two ways, which is a long
computation.

In Sect. 3, we give several examples of 2-dimensional complete Lagrangian self-shrinker
in R*, which show that the condition of S = constant is indispensable.

In Sect. 4, we prove our theorem. In order to do it, we make use of the generalized
maximum principle. We choose a special frame fields at points, which we consider. We need
to prove h}, = A = 0. This assertion is the key in our proof. Thus, a precise and detailed
computation is needed.
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2 Preliminaries

Let X : M — R be an n-dimensional connected submanifold of the 2n-dimensional
Euclidean space R2", We choose a local orthonormal frame field {e A}a”:] in R%" with dual
coframe field {wA}%"zl, such that, restricted to M, ey, ..., e, are tangent to M". Here we
have identified R*" with C". For a Lagrangian submanifold X : M — R?", we choose an
adapted Lagrangian frame field

e1,ey,...,e, and e+ = Jey, e = Jey, ..., epx = Jey,.
From now on, we use the following conventions on the ranges of indices:
l=i,jkl=n l=ap,y=n

and ), means taking summation from 1 to n for i. Then we have
dX = Z wié€j,
i
de; = Za)ijej + Zwia*ea*»
j a
dea* = Z Wy *i€j ~|— Z wa*ﬁ*eﬁ*,
i B
where w;; is the Levi-Civita connection of M, wy+g+ is the normal connection of TiM.
By restricting these forms to M, we have

wer =0 for 1 <a<n 2.1)

and the induced Riemannian metric of M is written as ds%w =3, a)iz. Taking exterior
derivatives of (2.1), we have

0=dwyx = Za)a*i N .

1

By Cartan’s lemma, we have
. _ a* . a* _ E(*
Wig* = Zhij wj, hij = hji.
i

Since X : M — R?" is a Lagrangian submanifold, we have

pro_ gt i* o
hl.j _hjl. —hpj, forany i, j, p.
h = thp; W QWi ep 2.2)

i.j.p

and
A=Y 0 ey =Y 0
P P

are called the second fundamental form and the mean curvature vector fieldof X : M — R?",

respectively. Let S = Y (hf’j*)2 be the squared norm of the second fundamental form

i.j.p
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and H = |I;I | denote the mean curvature of X : M — R>". The induced structure equations
of M are given by

dw; = E Wjj \Nwj, Ojj=—Wjj,
J

1
dwij =) ok Aoy — 3 > Rijuewx Ao,
k k.l

where R;j; denotes components of the curvature tensor of M. Hence, the Gauss equations
are given by

Rijk1=2(h5(hf[ nfy ) Rzk—Zth Zh” ny. (2.3)
p

Letting R +4+;; denote the curvature tensor of the normal connection w4+ in the normal
bundle of X : M — R?", then Ricci equations are given by

Rpeqir = 30 (W W —hE0E ). (2.4)

i

Defining the covariant derivative of hl{}* by
> hlon :dhf7 +thk o+ Y R on Y R g, (2.5)
k X 7

we obtain the Codazzi equations

—nP = p (2.6)

r*
h ikj = "pjk

ijk —

By taking exterior differentiation of (2.5), and defining
p* p* P p* p* q*
Y hlgor=dnly + > hlon+ Y ke + Y hlon + Y kg, (27)
l I l l q
we have the following Ricci identities:
p* P p* p* q*
ey =Rl =Y b Ruigt + Y D Rujur + Y b Ry (2.8)
m m q

Defining

p* P* p* p* P*
Z hiikam@m = dhyj + thjklwmi + Z i @mj + Zhijmlwmk
m m m m
e - (2.9)
+ Z B om@mi + Z ik @me p*
m m
and taking exterior differentiation of (2.7), we get

p*
hijkln - t]knl th]k miln + thmk mjln + th]mR’”kl"

(2.10)
+ Z h?}'k Ry p*in .-
m
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For the mean curvature vector field H = >, H P e ,x, we define

ZH’!I,)*a)i:de*—i—ZHq*a)q*p*, (211)

N Hw;=dHY +Y H w;i+ Y HY 0, 2.12)

j j g

VR =Y (HY ) AtHP =) HE (2.13)
i,p i

For a smooth function f, the L-operator is defined by
Lf=Af—(X,Vf), (2.14)

where A and V denote the Laplacian and the gradient operator, respectively.

Formulas in the following Lemma 2.1 may be found in several papers, for examples, [4,
8, 22, 23]. Since many calculations in their proof are used in this paper, we also provide the
proofs for reader’s convenience.

If X : M> — R*is a self-shrinker, then we have

*

HP =—(X,ep), p=1,2. (2.15)
From (2.15), we can get
HY =ViH" = -V;(X,ep) Zhu (X, e;). (2.16)
Since
VilX [P =2(X, e;), 2.17)

we have the following equations from (2.15)
VVilXI1* = 2(ei, ej) +2(X, x,,-)

=26 +2(X Zh
=23,-,-—2thj HY,
p
V;V;H" =V,~(Zh{}( (X, ex))
_Zh,k, (X, ex) +hp +Zh Zhjk (X, eq) (2.19)

_Zhlkj (X.ex) +hf; — Zhﬁchijq

(2.18)

By a direct calculation, from (2.15) and (2.19), we have

cHY =3 HY (XY HY ey =HY =Y Wl HY (2.20)
k k i.j.q

From the definition of the self-shrinker, we get

1
SLIXP=2—H? — (X, (X, e)er) =2 H* —IXTP =2 X% (221)

i
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Since X : M? — R*is a 2-dimensional Lagrangian self-shrinker, we know

Rijii = K(8ik8ji1 — 6118 k) = Rix jrpa, (2.22)

1
where K = — (H? — S) is the Gaussian curvature of X : M2 — R*.
According to (2.3), (2.6), (2.8), (2.22), we have

Ehipj* = th[ﬁk — (X, Z th,pj*ek)
k
= Z hzk]k Z hf}*k(X, er)
= thklejk + th,Rmk]k
+ Zhlk Ry p+ji + Zh,kk, Zk:hfﬁ(x, ex)

=K thk(amjaik = bukij) + K Ykl Bmidc —dmikdig) (593,

m,k m,k
+K Z h;]k (84j8pk — 8qk8pj) + H,l;j - Z thjk<X’ ek)
q.k

= K(hl} — H" i) + KQ@hY, —hf) + K0l = > higdpp)
k
+ 3 R X e) + Y — Zhghijq th}k(X,ew
k
= GK + Dhf, — K(H? 8+ H8,;) = Y Wl hl Y.
q.k

Hence, we get

fcs— kavk Z(h”) - = ZVkSek

i.j.p
_ka(z hl”]khl’; Z hgkh,’;
i.j.p i.j.k.p
=" nlcll + Y (>
i.j.,p i.j.k.p
= ij (h,,k (2.24)
i,j.k.p
+ Y hl [(3K+ DALY — K(H? 5+ H8 ) —Zh,”k Wl HY ]
i,j,p
= > W)+ GK+DS—KH +HY) — ) h" nl h HY
i,j.k,p i.j.k.p.g
3 5
= > ) +SA =)+ SHAS—H = )] hle bl W H
i.j.k,p i.j.k.p.q
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From (2.6) and (2.22), we get

S HE R = ST HP R = K (5 — 2651
p.i p

and
S hh b = —Ksj+ > HP R
i p
Since
> (K —ZHP 4 )th HY = KH> =Y N (HP 0, )Z(Hq h)
J.k jk P

we obtain from (2.24)

3.5
fcs— > P+ s - ES)+§HZS—H4

i,j.k,p
+ ) (K8 — Z HY h%) Zh?km
J.k
= > l? +S(l—fS)+2HS — > HP R HT R
i.j.k.p Jk.p.gq

From (2.20), we have

fLHz LZ(H” )2 Z(v HP)? + ZH” LHP
- |V¢H|2 + H? — Z HP h" HY h‘f
i,j.p.q

Thus, we conclude the following lemma

Lemma2.1 Ler X : M? — R* is a 2-dimensional Lagrangian self-shrinker in R*. We have

3 s, e
*ES— D L+ SU =38 +2H>S — SH = S HY R HT K
i,j.k,p Jk.p.q
(2.25)

1 bd * * * *
ELH2 = |V*HP?+H* - ) HF he - HT b, (2.26)
i.j.p.q

Next, we will prove the following lemma, by making use of a long calculation:
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3426 Q.-M.Chengetal.

Lemma2.2 Let X : M*> — R* is a 2-dimensional Lagrangian self-shrinker in R*. Then

,5 Z (h,]k

i,j.k,p
= Y )P+ 0K +2) Y () = SKIVEHP +3(VK, VS)
i,j.kd,p i,j.k,p
3K P* pyp*
- T<VS V|X| y —(VK, VH -3 Z th H’ (2.27)
Jibp
P* 1 q*
-2 Z hzjkht]lhkl H - Z htl hukh lkH
i,j.k,l,p.q i,j.k,0,p.q
P P 14" a”
DL
i,j,kl,p.q

holds.
Proof We have the following equation from the Ricci identities (2.10).

ch?

p* p*
ijk = Zhijkll — (X, Zvlhijkel>
= Zhulk! + Z(hm]Rm,kl + h? Ronjua + R Ry pria).d — (X, Y ik er)
I

= Z hullk + Z hmlemzkl + Z h,ml Rmjri + Z h”m Rtk

l,m l,m

Zhl}l Ry *p*kl + thlemlkl

IL,m

+ Zhlm[Rm]kl + Zh,ﬂRm *prkl + thj lekl l

L,m

+ Zhimijkl,l + Zh?} Ry et — (X, ) Vzh,-jkez)-
]

I,m I,m

(2.28)

From (2.23), we have
> k= [(31{ + DAL — K(H? 8+ HS )
l
th h" HT + ,leh{}len]k

_ r P Pty i*g .
= 3K,kh,.j*+ (3K tl)hijk Kx(H? 8+ H" 8,)) (229,
— K(HY, 8ij + HY 5p))

—th’lkhq HY Zh" hy HT Zh" n HY,

l/k Zh:/lhlk eqr) + (X, Zhijlkel)'
[
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From (2.22), we obtain

. r* P P *
(a),jk D Rk Y hb Rjir + R Rtk + Y B R e
N I,m I,m l,m
P p* *
+ > bt Ruiki + Y hE Rujkt + B R i
lm l,m l,m

=2K ) [hf;j, (Smkit — Smidik) + by (S8 jt — Smid k)
I,m

+ R Bmicd pr — 5n115pk)] + ) KhE Smkdi — Smidin)
l,m

= 2K W, = HY S+ Wy — HY 8y Wl = HY i+ 10, h,’;k]
= 21<[2th Hp»*(sik —HY 8 — H"’.“apk],
(b),jk = th]Rmzkll+Zh,mijkll+Zh,j Ry prid 1

L,m I,m

= Z K z[h,‘;j((smk(?il — SmiBik) + hf’m (Omk8j1 — Smidjk)
Y Gyt — SmiSpi) |

= Kihl = Kbl S+ K jhf = > K hl s+ K bl — Z K 18 pi
I 1

and

OF = D (X enhlye = S (X, enhly,
! I
= Z(X» el)l:hm/ Rtk + thijlk + h Rm p*lk]
lL,m
=K Z(X, ez)[hf;j(fsmz&k — Smkdit) + h? (Smidjk — Smidjr)

+h?;* (8m18pk - Bmkspl):l

= K Y (X en) [l 8= b i+ hl) 856 — b 810+ hL5 8,0 — ;8
1
= K[Dx enhfy Sk — (X, el + Y (X, enhl) 85 — (X, ekl
l

+Z X, e)hp — (X, e,,)h{.‘jf‘].
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3428 Q.-M.Chengetal.

We conclude
D R (@F + B
i,j.k,p

7 % % * * * cxexk
— P N\2 p 14 P P
—ZK[g > (kfi) _ZH,/' H; _ZHJ H; _ZH,IJ‘ Hfj]
J.P Lp Jst

i,j.k.p

p*yp* ¥ pp* p*yp*
+ Y KRRl = ST KR HY + T K R, (2.30)
i,j.k.p Lj.p i,j.k.p

P’ gp* k* . p* I pyi*
- Z K hy H; + Z K phijhij — ZK,lhin,j
Li,p i,j.k.p Li,j

5 . L3 g
B Pt 2 n P P p
_ ZK[E D 0l =3IVEHPI+ 2(VK, V) =3 K i, H,

ij.k,p hip

and

> i

i,j.k.p
= K[ D (Xoeonf] HY + 3 (X ekl HY + Y (X, enhly HE;
L,j,p Li,p Li,j
1 1 1
5 LX) ViS = 5 DX ) ViS — 5 DX, e)ViS] 231
1 1 1

* * 3
- K(3 > (X.ephl, HY — (VS V(X X)))
Lj.p
- 1
=3K(V*H|* - 2098, VIX*).
From (2.29), we have

Z h{)jk(hipjzz,k — (X, hipjlkel>)

i,j.kd,p
_ p*yr” P*\2 p* pgp* p* g p*
=3 ) Kihl hl+GK+1) Y (h)* =Y Ki(HP HY +HP HY)
i,j.k,p i,j.k.p k.p
p* pp* P* pyp* (AR RN AT
~) KHPHY +HUHL) — Y hfhf b H
k,p i,j.kl,p.q
p* p* q* q* p* p* q* q*
- Z hi hijkhjlkH - Z hi; hijkhjl H
i,j.kl,p.q i,j.k..p.q
P*\2 PP 14" 1yq*
+ Z (hij)™ — Z hijihijhy H
i,j.k.p i,j.k.l.p.gq

3 . -
= J(VK.VS) + (K +2) 3 ) — (VK. VH?) —2K|VVH?
i,j.k,p
—2 Z hiiihiiihg HY — Z hy hijkhjlqu - Z hiy b H
i,j,k,l,p.q i,j,k,0,p.q i,j,k,l,p.q
(2.32)
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From the above equations, we get

7[' Z (hl/k Z hl/k[’hl/k+ Z (hukl

i,j.k,p i,j.k,p i,j.klp
7 L= 3
= > (h”,d) +2K1[5 > (h”k) —3IVEHP T+ 2{VK, VS)
i,j.k.lp i,j.k,p
-3 Z K,h” Hf’ +3K[|VLH| 4(vs V|X| )]
Lj.p
3 -
+ (VK. V) + (3K +2) > ! k) — (VK,VH?) —2K|V*H
i,j.k,p
-2 Z hl/khljthl - Z hll hlp/khjlqu
i,j.kl.p.q i,j.kl.p.q (2.33)
— 3wl Rl HY
i,j,k,0,p.q
= Y )+ 0K +2) Y () —5K|VEA?
i,j.k,,p i.j.k.p
3K

+3(VK, VS) = Z=(VS, V|X[*) — (VK,VH?)

~3Y Kl HY —2 > Rl HT

Lj.p i,j.klp.q
17* P* q* L]* p* P* (1* 11*
- Z hil hijkhjlkH - Z hil hijkhjl H,k :
i,j.kl.p.q i,j.klp.q
It completes the proof of the lemma. O

Lemma2.3 Ler X : M? — R* be a 2-dimensional Lagrangian self-shrinker in R*. If S is
constant, we have

fﬁ Z (huk

i,j.k,p
= 3 )P+ 0K +2) Yl — 5KIVEAP
B hkr (2.34)
—(VK,VH?*) =3 )" th” H" -2 ) hukhszhkz gt
Lij.p i,j.kl,p.q

p* P P 1 q" 119"
D D LA LA L S T T
i,j.k0,p.q i,j.kl,p.q
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and

,5 Z (h”k

i,j.k,p
- 1
= (H?>=28)(\V*H* + H>) + 5|VHz|2

+GK+2—H>+28) Y H/hl H b,

i.j.p.q
KW+ Y BT H ) — S =T HC W h
Jk.p i,j.kl.p.q.,r
+2 3 HUHCRGRL, — Y HPHCHT R R 0
i,j.k.p.q i,j.k.p.q.r
+3 (Z(Hfg h + HY h?jk)) : (Z(Hfj nh -+ HP hf;k)).
ijk 4q p
(2.35)
Proof Since S is constant, we have the following equation from (2.33)
,5 > (huk
i,j.k,p
=y (h,]k,)2 + (10K +2) ) (huk)2 —5K|VYH]> — (VK,VH?)
i,j.k,l,p i,j.k.p
-3y thp Hf’ -2 > hfjkhglhq
Jl.p i.j.kl.p.q
P q* PPt a” a*
D DY L S T T A
i,j.k.l.p.q i,j.k.l.p.gq
Now, we prove the formula (2.35). From (2.25) in Lemma 2.1, we obtain
f.cs_ Z(h D+ 81— S)+2H2 SHY = Y HPh” HY hq
i,j.k.p Jjk.p.q
(2.36)
Hence, we have
1
fc 3wl = —scH? + £H4+ c S HP R HT R
i.j.k.p Jk.p.gq

- * * * * 1
_ 1502 2 P* 1P a1 4 10,2
= 2s<|v H?+H § HP'h!; H hij)—i—zH LH
1,],P:q

+%|VH2|2 + Z(Z H"*h_‘;,t)ﬁ(z HP 1l
+ 3 Vi O HT ) -V (Z HY 1Y)

i,j.k q
= (17(2—25)(|Vl1?1|2+hr2 > H" hP HY h‘f )

i,j.p.q
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|VH2| +Z(Z H? h k)c(z H" h

EDIRCH h?k + HO ) - (Hf Wi+ HP G, @37
i,j.k.p.q

Since
c Z(Hp*hfk)
P

= D ViVi(HP D) = (X, Y Vi(HP hler)

i,p i,p

L L (2.38)
= Zv (HY WP+ HP B — (XY (Vi HP bl + HP'Vihb e;)
iLp
_Zh LHY +ZHP chb+2 3" HY hl,
i,p
and from (2.20) and (2.23),
SohhcH? =" 0hHY — S hEkl e HY (2.39)
p P i.lp.q
ZHP LhY,
= (3K + I)ZH” nh, — KZ((H” )28k + HP HX 8 ,)
= > nl PR T
i,p.q
= GK+ 1)) HY 1Yy — K(H?S + B HI) = S nlf BP0 HT L (2.40)
P i.p.q
we get
LY (H” )
p
=Y hb HP = Y hbonl hl HY +ZZHP hfjk (2.41)
p i.L.p.q i
+GK+ 1Y HP WY — K(H?S; + Hk*Hf*) — > b HP R HT
p i,p.q
and

2 HTHOL H )
.k oq r

=— Y HTW LR R HT 2 > HY Rl H R

i,j.kl,p.q.r i,j.k.,p.q

1K +2) Z (Z Hq*hﬁ)(Z HP*hfl:)
kg P
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—KH+ Y HHTH R — N HP T HT R R

J.k,p i,j.k,p.q.r
(2.42)

From the above equations, we conclude
7/" Z (huk
i.j.k.p
- 1
= (H>-29)(V*H>+ H») + 7|VH2|2
+BK+2—H*+28) Y HF h” HY hq
i,j.p.q
— KW+ Y BT ) — N =T HT W h
Jk.p i.j.kl.p.g.r
r* q*, p* gt gr* Pt a*
+2 > HUHTRORL, — > HPHTHT R R
i,j.k,p.q i,j.k,p.q.r

+ 3 (o H w+ =BG ) (S W+ HY ),
p

i,j.k q

Lemma2.4 Let X : M?> — R* be a 2-dimensional Lagrangian self-shrinker in R*. Then we

have
> (hfy)?
i,j,k,0,p
2 12 2 2 2 2
= 4(h}150)% + 6(h3y1))* + 6(hT10)? + 4(h3y 1) + Ahdyy)* + 47, )
+ (M )? + (Fyp0)* + (h1112)* + (3yy))*

(2.43)

* * * * 1 * *
1 2 2 2 1 2* 2
= 2(hy1p0 — hop1)” + 2(h11p — By )" + 5(’72222 — happ)”
Proof Since

Z (hl]kl Z (hljkl)2 + Z (hljkl (244)

i,j,k,d,p i,j,k,l i,j,k,l

Z (hzjkl) = (M) + (h1112)* + (10 + ()’
ikl

311207 4 3(h]120)? + 3(h3y1)? + 3(hhy)?
= (hi) ) + 3[(}1522)2 + (hgn)z] +3(h 1)

+(hi1p)* + (hz;u2 + 3T + (M), (2.45)
Z (hl/kl = (W11 + (h111)* + (3y00)* + (h3y))?
i,j.k,l

+3(hT10)° +3(h120)> +3(h351)7 + 3(h3y)°
= (11117 + (h30)* + (h33))* + (] 10)?
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+3(hdy1)? 4 3(hF120)? + 3(h3y1)? + 3(hhn). (2.46)
we get

Z (hl]kl)

ijkLp
= 4(hi150)” + 6(hdy1)* + 6(hT100)? + (h]1,)? + (A1) 1p)* +3(hT) )2
+ (hlppp)? + (31 )% + (h00)* + (335))* + 3(hdypp)* + 4(hdy))?
= 4(h150)% + 6(h3y1)? + 6(hT 1) + 4135 1)? + 4(hbyyy)* + 4(hTy )?

+ (hllll) + (h2222) + (h}uz) + (h3 221) (2:47)
1*
> 2(h 1y — hipy)? + 2(hF 10 — By )* + < (hzzzz — h3p)?
+ 2(h1122 + hyp)? + 2(h iy, + h2211) +5 (h2222 + h2221)
1* 2 2
> 2(h 1y — hipy)* + 2(hF 10 — B3y )* + = (h2222 h3201)".
]
If H # 0 at p, we can choose a local orthogonal frame {e, e»} such that
Defining A = h%;, A = hﬁ and A = hg, we have h%; = —A.

Lemma2.5 Let X : M? — R* be a 2-dimensional Lagrangian self-shrinker in R*. If S is
constant, FI(p) #0and ), J, k.p(hfjk)z(p) = 0, then we have, at p,

*ﬂ > (h,,k =y (hz]kl (2.49)

i,j.k,p i,j,k,d,p
and
75 > (huk
i,j,k,p
- HZ[HZ Cost it mm2 k- Kz] (2.50)
2

3
+H*(S+2-— EH2 A=A —2H3 A3+ 200,
Proof Since H # 0 at p, we can choose a local orthogonal frame {e;, e>} such that

err=-—=, H ' =H=|H|, H* =h}, +h}, =0. 2.51)

El‘ T

By the deﬁnition of A = h};, A = h]’; and Ay, = hg, we have h%; = —A. Since S is constant
and h k= = 0 at p, we obtain from (2.34) of Lemma 2.3,

7[’ Z (hl/k Z (hl/kl (2.52)

i,j.k,p i,j.kl.p
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Furthermore, by making use of
S=234+303+42%, Hi =K+ 213 +23+22%, (2.53)
from (2.35) in Lemma 2.3, we have the following equations, at p,

1 *
P N2
LY

i,j.k.p
= (H?-28)H* + (%H2 + %S +2)H? (03 + 13 4+ 222)
— K(H*+ H%\p) — HZ{(A% +a2 2202+ AZHZ]
— H3(03 + 213 +3HMY)
= H2|:H2 25+ (%H2 + %5—1—2—)»% =33 =2H0+ 23+ 2202

(2.54)
—KH> + K +2+25+20%) — H> A+ 43 — Airo + 412)]

= H2|:H2 —2SH(S+2—-2 =3 -2 + 23+ 20D - K(H> + K)
1 1
—H?03 4+ +22%) + EH4 —H»? - EHz(xf + A3+ 212)]
1
- HZ[H2 ~28+ JHY — B - KH - Kz]
3
+ H*(S+2— 5H2 — A2 =23 = 2H (AT A3+ 220,
This finishes the proof. O

In order to prove our results, we need the following important generalized maximum principle
for L-operator on self-shrinkers which was proved by Cheng and Peng in [8]:

Lemma 2.6 (Generalized maximum principle for £-operator ) Let X : M" — R"*P (p > 1)
be a complete self-shrinker with Ricci curvature bounded from below. Let f be any C?-
Sunction bounded from above on this self-shrinker. Then, there exists a sequence of points
{pm} C M", such that

Jim fX(pu)) =sup £, lim_ |V FI(X(pn)) =0, limsup £f(X(pn) < 0.

m— 00

3 Examples of Lagrangian self-shrinkers in R*
It is known that the Euclidean plane R?, the cylinder S'(1) x R! and the Clifford torus
SL(1) x S1(1) are the canonical Lagrangian self-shrinkers in R4, Apart from the standard

examples, there are many other examples of complete Lagrangian self-shrinkers in R*.

Example 3.1 Let I'y(s) = (x1(s), y1(s))", 0 <'s < Ly and T'2(1) = (x2(1), y2(1))", 0 <
t < Lo be two self-shrinker curves in R? with arc length as parameters, respectively. We
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consider Riemannian product I'; (s) x T'2(¢) of "1 (s) and I'2(¢) defined by

x1(s)
x2(1)
yi(s)
2(1)

X(s, 1) =

We can prove I'; (s) x T'2(¢) is a Lagrangian self-shrinker in R* and the Gaussian curvature
K of T (s) x I'p(¢) satisfies K = 0.

In [1], Abresch and Langer classfied closed self-shrinking curves. For two closed self-
shrinking curves I'; (s) and I'; () of Abresch and Langer in RZ, Ti(s) x Ta(t) isa compact
Lagrangian self-shrinker in R*, which is called Abresch-Langer torus. It is known that com-
plete and non-compact self-shrinking curves exist in R? (see [14]). Consequently, there are

many complete and non-compact Lagrangian self-shrinkers with zero Gaussian curvature in
R4,

Example 3.2 For a closed curve y(t) = (x1(t), x2())T, ¢ € I, such that its curvature Ky
satisfy

v

e 2 |)’| 2
Ky = EW(IVIZ =D, B2 =yt = (e
where E is a positive constant. In [2], Anciaux proved that
x1(t)coss
| x1(®)sins
X(s, 1) = x2(t) cos s
x2(t) sins

defines a compact Lagrangian self-shrinker in R*, which is called Anciaux torus, and the
squared norm S of the second fundamental form satisfies

Iyl 6

S = E2W(IV| —2[y > +4).

Example 3.3 For positive integers m, n with (m, n) = 1, define X"™" : R? > R4 by
cos s cos \/Zt
Vn "

X" (s, 1) =/m+n | e

sin t
\/ﬁ m
sins .
—— sin %
/M

Lee and Wang [21] proved X" : R? — R* is a Lagrangian self-shrinker in R*. It is not
difficult to prove that the squared norm § and the Gauss curvature K of X" : R? — R*,
for m < n, satisfy
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4 Proofs of the main results

First of all, we prove the following:

Theorem 4.1 Let X : M?> — R* be a 2-dimensional complete Lagrangian self-shrinker in
R*. If the squared norm S of the second fundamental form is constant, then S < 2.

Proof Since S is constant, from the Gauss equations, we know that the Ricci curvature of

X : M? — R*is bounded from below. We can apply the generalized maximum principle
for L-operator to the function —|X |2. Thus, there exists a sequence {p,,} in M 2 such that

lim [X[*(py) =inf |X[%,  lim |VIX[*(py)| =0, liminf £|X|*(py) > 0.
m-—00 m-—0o0 m—0o0
Since |VIX 2> =437 (X, ¢;)? and
1
SLIXPP=2— X,
2
we have

lim > (X.e;)*(pm) =0 and 2 —inf |X|* > 0. “.1)
m—0Q0 -
J

Since X : M2 — R?* is a self-shrinker, we know

Zh (X,ex), i,p=1,2. (4.2)

From the definition of the self-shrinker, (4.1) and (4.2), we get
inf X2 = lim H*(pw) <2, lim |[VYH?(pm) =0. 4.3)
m—00 m— 00

Since S =3, ; ,

{hf; (pm)} are bounded sequences for any i, j, [, p. Thus, we can assume

*(h )2 is constant, from (2.25) in Lemma 2.1, we know {hp (pm)} and

. p* _ _p* . p* _ _p*
mlgnwhijl(pm) = hijl’ mh—I>noohij (pm) = h,‘j ,

fori, j,l,p=1,2.
Therefore, we have

hiy;+h5,; =0, forj,p=1,2 4.4)
and

S hlhl =0, for k=12,
ij.p

because of S constant. Since X : M2 — R* is a Lagrangian self-shrinker,
1% 1* 1 1* 2% 2% 2% 2%
hllhllk + 3h12h12k + 3h12h12k + h22h22k = 0, for k = 1, 2
holds. Thus, we conclude

R b 4 35kl 4+ 3hh%, + hihss, =0, for k=1,2. (4.5)
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If limy,— 00 H2(pm) = 0, we get
Ry 4+ kY =0, b3 +hd =0.

Consequently, from (4.4) and (4.5), we have the following equations for k = 1, 2,

k 1*

by 4 Nyp =0,

_2* _2*

My +hay =0,

FIFTI 7% 0%

4hyyhyy 4 4h by = 0.

Hence, we obtain S = 0 or }_151 = 0 for any i, j, k and p. According to (2.25) in Lemma

2
2.1,wehave S =0o0r S = -

3
If limy, 00 H 2(pm) = H? # 0, without loss of the generality, at each point p,,, we
choose e, e such that

H=H"
= el*.

Then we have

and
Tor | o
R+ =0 (4.6)
(h1) = 3hy)hiy, +4hi ATy = 0.
Ifﬁ}? = 3@; and ﬁﬁ = 0, we know
- - - - 3
lim H(pn) = (i +42)> = 1622 <2 and § = 1223 < =.
m—0o0 2

Ifi_zﬂ # 3?15 or ﬁ%; # 0, we have fzf}z = 0 for any i, j, k, p from (4.6). Thus, from (2.25)
in Lemma 2.1, we get

3 - 1 - I i}
0=5(1-29+ 2H%S — 5H4 - H* A3+ 23 +23%
1 - 10 o
=51 — ES) —(S—H»? - EHZ(A] — )2 —2H%22.
Then we conclude

S <2

This completes the proof of Theorem 4.1. m}

Since S is constant, from the result of Cheng and Peng in [8], we know that S =0 or § = 1
if § < 1. Thus, we only need to prove the following

Theorem 4.2 There are no 2-dimensional complete Lagrangian self-shrinkers X : M? — R*
with constant squared norm S of the second fundamental form and 1 < S < 2.

The following lemma is key in this paper.
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Lemma4.l If X : M> — R* is a 2-dimensional complete Lagrangian self-shrinker in R*
with S =constant and 1 < § < 2, there exists a sequence {p,,} in M such that

lim H2(pn) = sup H2,  lim h!(pw) = kY. lim hY (p) = h?)
m— 00 m—oo Ll ijl m—oo U ij

= 1,2, and one can choose an orthonormal frame ey, ey at p, such that

Proof From (2.25) and (2.26) in Lemma 2.1, we have
3 1
2 1 2 2 4
EEH IVEHP + HE = ) (huk) — S0 = 28 —2H*S + JH
i,j.k,p

- 1
=|VtH? - )" (h”k) +§(H2—S)(H2—3S+2).
i,j.k,p

If,at p € M, H = 0, we have H?> <S.IfH # 0 at p € M, we choose eq, e such that

_ e
H=H" e.

1
From 2ab < ea® + —b?, we obtain
€

4
S=M 4303 +402, H = +0)° < 7()»%4—3)»%)555,

where we denote A} = hr;, A = hg and A = h%; Hence, we have on M

24y
-3

and the equality holds if and only if A = 31, and A = 0. Thus, by applying the generalized
maximum principle of Cheng and Peng [8] to H 2 there exists a sequence {p,,} in M 2 such
that

lim H?*(py) =supH?, lim |[VH?*(p,)| =0, limsupLH?*(py) <O.
m—0oQ m—0Q

m— 00

Since X : M? — R* s a self-shrinker, we have
Zh (X,ex), i,p=1,2. 4.7

According to 1 < S < 2, we know sup H 2 > (. Hence, without loss of the generality, at
each point p,,, we can assume H (p,,) # 0 and choose e1, €3 such that

FI = Hl*el*.
From (2.25) in Lemma 2.1, Lemma 2.3 and the definition of S, we know that {hfj* (pm)}s
{hf; (pm)} and {hf’;l (pm)}, forany i, j, k, I, p, are bounded sequences. We can assume
mlgnw hfjl(pm) = hfjla mILmOO hZ (pm) = h,p/ s m]iinoohipjkl(pm) = hfjkl’

fori, j,k,l,p=1,2
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and get
lim H*(py) =supH> = H>, lim |[VH?(pn)| =0,
m—00 m— 00

_ > _ 1 - - (4.8)
1 2 P N2 2 2
0= lim [VZHI"(pm) — Z (hij)™ + 5 (H” = $)(H = 35 +2).
i,j.k.p
From limy, .0 [VH?(pm)| = 0 and [VH?> =43, (3 - H!’*HJF*)Q, we have
A} =o. (4.9)
From (4.7), we obtain
J lim (X, e1)(pm) + 2 lim (X, e2)(pm) =0,
mee mee (4.10)

A lim (X, e1)(pm) + 22 lim (X, e2)(pm) = 0.
m—0oQ m—00
We will then prove A = 0.

Let us assume A # 0, we will get a contradiction. The proof is divided into three cases.

Case 1: 1y = 0. .
Since H? # 0, we have A; # 0. From (4.10), we get

lim (X, e1)(pn) = lim (X, e2)(pm) =0.
m—0oQ m—0oQ
Thus, for k = 1, 2, from (4.5) and (4.7),
=1 Sl
hiyg +hye =0,
0% e
hllk+h22k :0, (411)
We can draw a conclusion, for any i, j, k, p,
_p*
hijk =0.
From (4.8), we know S < H?, which is in contradiction to § = H? + 422 > H? .

Case2: 1; = 0.
In this case, we have

M #0, H> =23, S=313+42% =3H>+ 422
From (4.10), we obtain
lim (X, e1)(pn) = lim (X, e2)(py) = 0.
m— o0 m—o0

Therefore, we infer

=1 Sl

Rtk +hyy =0,

h2,, + h3y =0, (4.12)

3hohby + 4rh3), = 0.

By solving the above system of equations, we have for any i, j, k, p,

ip
hl.jk =0.
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From (4.8), we know
(H> = S)(H*> —35+2) = QH> +4)%)(2S =2+ 2H> + 4)%) < 0,
it is impossible since S > 1.

Case 3: A Ao #0.
From (4.10), we have

(k132 —2%) lim (X, e2)(pm) = 0. 4.13)
m—00

If A Ay = A2, we get, for k = 1, 2, in view of (4.5) and (4.9),

=1 Sl

hiig +ho = 0,

()_\1 — 3)_‘2)1/_Iﬁk + 3}_J_lﬁk — Xf_l%;k =0.
By solving the above system of equations, we have

(1 +332)°hi 1y = —43%h3n,.

Hence, we obtain

T
(M1 + 342)2
— 1% =%
hyy = —hyy,
gy = iy = — oL =
(A1 + 31p)?2
Since
. - e o (102 + A1 +923)* e
lim VL2 S TATTOA 2
Jim | I“(pm) = (h115 + h3p) G 1300 222)
and

7 72 72
(10A2_+ A7 + 913)?
(A + 3124

> P =700 + 80 + (135, = (R350)°.
i.j.k.p

we get the following inequality from (4.8)

(H*> — S)(H> - 35 +2) <0,
that is,

S<H?<3§-2.
It is impossible because of § = )_L% + 3X% + 422 > )_L% + X% + 212 = H?. Hence, we obtain
Mo £ A2,
From (4.10) and (4.13), we have

lim (X, e2)(pn) = lim (X, e1)(pm) = 0.
m—0o0 m— 00
Thus, we know from (4.7)
H} =0,
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for any k, p = 1, 2. Hence we infer
_p* _p*
M +hy kZO’ .
(1 = 3%)hly, +4rh3, = 0.

Through the above system, we have

> @lp?=o.

i,j.k,p
From (4.8) and (2.25) in Lemma 2.1, we get
S<H?<3§-2,
1 _ 1 - o _ _ (4.14)
S = 58) = (5 - H>)? + 5H4 —H*R2+33+20%) =0.
From Lemma 2.5 and taking limit,

1
0= Y Gy)* =7 lim £ 3 () (pu)

i,j,kd,p i,j.k,p
_ _ 1 - _ _ ” =
= HZ[H2—25+7H4—KH2—K2] _igt
3 _ _ _ _ _
+ H*(S+2 - SH — A =23 =22 (AT A3+ 22
<H2[H2—zs+5f14—1€1512—1€2]
_ 3 _ _ _ _ _ _ _
+ HX (S +2— 5H2 — A =2 =203 +23 4+ 222,
According to (4.14), we have
_ _ 1 - _ _
0< HZ[HZ —28+ EH4 _RH*— KZ]

342 ! 1 722, 174
S+2—-H — —(S(1—-=8—-(S—-H -H
+(+ 3 HZ(( 2) ( )+2 )

1 . 1 -
«(sa- 59— s - A4 5
2 2
1 7 7 Yy —

This is a contradiction. In fact, we consider a function f () defined by
F@) =1* =283 —685(S — D12 +282 —38)% — (2 — 35)%5?, (4.15)
for S <t <38 — 2. Thus, we have
F(6) =43 =682 —125(5 — Dt +25Q2 —35)%, £ (1) = 12(* = St — S(S — 1)),
(4.16)
£1(0) < Ofort e (8, SEVSHISE=D) ) S O forr e (SEVSHIEZD 39 9) Hence,
s+«/s2+45(s 1)

f /(t) is adecreasing function for ¢ € (S, ) and f (#) is an increasing function
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fort € (SEVSHSE-D 36 9y According to

F()=2(8—1(S—2)8? <0, f(3S—2)=23S—2)*S—1)(S—2)<0,(4.17)

we conclude f () < Ofort € (S, 35 —2) because of f/(S) =45(S—1)(S§—2) < 0. Hence,
we obtain A = 0 and

b X,‘(Sij, H:)_\l-l-)_q, S=)_»%+3)_\%.

ij =

Since the proof of Theorem 4.2 is very long, we will divide the proof into three steps.
In the first step, we prove the following:

Proposition 4.1 If X : M?> — R* is a 2-dimensional complete Lagrangian self-shrinker in
R* with S =constant and 1 < S < 2, there exists a sequence {p,} in M and at p,,, we can
choose an orthonormal e, ey such that
. p* _ _p* . p* _ _p*
mh—I>noohijl(pm) = hijla mh—r>noohij (pm) = hij ,
fori,j,l,p=1,2, x=0and the following holds, either
> (f)* =0, kiia #0,
ij.k.p (4.18)

- 4
S<supH?>=H?><3§—2 and S <supH?* < §S’

or
=3k, Miy #0, AP +hE, =0
it o 4.19)
su =9, 9=,
P 3 5
fork, p = 1,2, where we denote o= /’_IH, Ao = }_15 and h = fzg
Proof By making use of the same assertion as in the proof of Lemma 4.1, there exists a
sequence {p,} in M 2 such that
: p* _ P : P _pr : p* _pr
m]gnoo h,’jl(pm) = hl'j]s mlgnoo h,’j (pm) = h,‘j , nzlgnoohi-ikl(pm) = hijkl’
fori, j,k,I,p=1,2and
lim H*(py) =sup H> = H?, lim |VH?(pn)| =0,
m—00 m—0oQ
- _ 1 - - 4.20
0= lim [VYHP(pn) — Y (Al + S (H* = $)(H? =35 +2), (4.20)
m— 00 J 2
i,j.k,p
with & = 0. From limy .o |[VH?(py)| = O and [VH? > = 43,3 - HP*Hf )2, we have
Aj =o0. 4.21)
From (4.7) and A = 0, we have

A lim (X, e1)(pm) =0, A2 lim (X, e2)(pm) =0,
m—00 m— 00
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it means that,
A lim (X, e)(pm) = 0.
m—00
According to S = Xz + 3A2 > 1 and sup H? = (A1 + %)%, if X2 = 0, we have
A #0, §S= susz, I-_I’zk* =0

because of Hf; Zk X er). Hence, by using the same calculations as in (4.6), we
have

Tl =1

Ry + oy =0,

0¥ 7o*

}_lllk h5y =0, 4.22)

)‘lhllk =0.

Then we obtain

3 @l =

i,j.k.p
From § = sup H? and (2.25), we get S = 1 or S = 0. It is impossible. If A; = 0, we have
A #£0, S=3supH?, Hﬁ* =0.
In this way, by using the same calculations as in (4.6), we get

1*
h111< + h22k 0,
hl“_—t h3y =0,
3hahly, = 0.
So, we know
ljk_O except i =j=k=p*=2
and

- 1
VEAP = ) (hl]k) and E(1L12—5*)(1L1r2—3s+2)50.
i,j.k.p

3
Hence § < T This is also impossible.

We get Aiha #£0.
Because of

=Y hi(X.e). HY =Y h%(X. e,
k k

fori = 1,2, we obtain lim,,_, 5 (X, €;)(pm) = 0 from I:Ill.* =0and X A2 # 0. Thus, we
have I:I,%* = 0, then we get from (4.5), fori =1, 2,

]* _1*
hnz hyy; =0,
22
hiy 4l =0, (4.23)

(1 = 322)hi}, = 0.
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If A1 # 3%, we have

Z (hljk) =0.

ij.k.p
Therefore, from (4.8) and (2.25), we get
S < susz <35 -—2.

_ _ 4 R
If A1 = 3X,, we have sup H> = 5S and limy,— o0 [V H|?*(pim) = 0. From (2.25), we know

1 1 o
3 hf? = —Sa1 - 58) + (S —sup H?)? 5 (sup HH? + A2G2 + 23
ijkp (4.24)
5
— (25— 1)S.
(6 )

6 6 P
Hence, we get S > —. When S = 3 from (4.24), we have Zi,j,k,p(hf}k)z = 0. It finishes
the proof of Proposition 4.1. O

In the step 2, we prove the following:

Proposition 4.2 Under the assumptions of Proposition 4.1, the formula (4.19) in Proposition
4.1 does not occur.

Proof 1If the formula (4.19) holds, we have

- 6 4
A=0, A =32, =5, sup H?> = H* = 39S
and
HY =hY) +hb,, =0, fork,p=1,2. (4.25)
From (2.6) and (4.25), we have

Z(hl/l) = (h11)? + (A3 +2(h1y))* = 2(111)* +2(h11p)*

Z(h,,l = (W11 + (130)” + 215" = 2011 ) +2(h1 1)’

Z(hzjl) = Z [(hm) + (h221) +2(h121) ] = Z [Z(hm) + Z(ﬁlpl*z)z]
ij.p P )

Z (hzjz = Z [(h 12)2 + (h222)2 + 2(;’{7;2)2] = Z [2(51p1*1)2 + 2(}-’{)1*2)2]
ij.p ) )

Z(h’f") = Z 111) + Z(huz) = 8(hi})” +8(hiTy)’.

i.j.p i.j.p ij.p

- 4
From (2.25) in Lemma 2.1 and H? = gS, we get

> (Bl —( S —DS.

i,j,p*
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Thus, we obtain

ZUW —ZUW —7( S—1s

and
15
Y@l = Y Gl = ES=DS.
i, j.p* i,j.p*
Since
-~ H>-S ., ., H* §
1 ) + 1+ 2 ) +3
752

HGG +33) = H O] = dda +4) = -,

according to (2.35) in Lemma 2.3, we get

1
5 m 23 (Bl (o)
i,j,k,p*
S
2S>H2+( H>+ = > +2)H?(G3 +23)

= (H>—
72
- S+ i3 - H>(OF +23) — H O3+ 1) + B> Y (h})?
i,j.k
_ ; 1-, S -,58
= (H>-28H>+ (=H*>+ = +2)H*==
2 2 6
H>—S /- - -5 58, 752
— <H4 + H2S> — B0 - H2 + Y ()
i,j.k
2 17
=5 -—=8 <o. 4.26
( 77 ) < (4.26)
On the other hand, from (2.34) in Lemma 2.3, we have
Emh_l)n £y (B o)
i,j.k,p*
= > (hl]k,) +(SH> —55+2) Y (hljk
i,j.k,l, p* i,j.k,p* (427)
~2H Z (hljk)zljlkk H Z(ht]k)z}_l}(z
i,j.k,p* i,j.k
= > G +2 Y (=0
ijk.p*

i,j.k,l,p*
Hence, we conclude that (4.26) is in contradiction to (4.27). It completes the proof of Propo-
]

sition 4.2.

In the step 3, we prove the following:
Proposition 4.3 Under the assumptions of Proposition 4.1, the formula (4.18) in Proposition

4.1 does not occur either.
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In this case, we have Zi,j,k,p(ﬁfjl)z =0,A=0and A1y #0.

Since H = A; + A, and S=)_»% +3X2, we get

- 3H + /48 — 3H? ; Hx+/4S —3H?

A= s =
! 4 2 4

Lemma 4.2 Under the assumptions of Proposition 4.1, if

Z(h P =0, =0, Aihy #£0,
i,j.k,p 4 (4.28)
S<supH?>=H?><3S—-2 and S<supH2<3S

is satisfied, then

_3H+VAS-3H? o H — V45— 3H?
= : , A

4

>
[y}
|

do not occur.

Proof If

>

_3H+VAS—3H . H-—V4S-3H’
= 4 : -

2= 1

hold, we have

H? +25+/(4S —3H?)H?

M= 1 : (4.29)

_ _ _ 4 48 6
Due to A1 # 343, we know H? < gS and 3 <3S —2ifand only if § > 3 According to

(2.25)and Y, ) =0, we have

ijdep( Uk
S(1 - %S) —(S—HY + %(Fﬂ)z ~ H*Gi+33) =0. (4.30)
We get from (4.29)
S(1— §5)+§SF12— 34— H2J@4S — 3HYH? =0. (4.31)
2772 4 4

‘We consider function

§x2 Y 4S8 —3x)x

3 3

4
forS <x < §S. ‘We know that
fSH=50-95) <0
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sincel < S <2,

f/(x)—df(x) —és_éx_\/M_ x(28 — 3x)
S22 4 1J@5 3%
3 3x(S — x)
T2 T T S G =30 432
2 YT Jas —aox (4.32)
:§(S—x)<1_#) -
2 J@S = 30x

since S < x and x > /(45 — 3x)x. Thus, f(x) is an increasing function of x.
6 4 _
If S > g,then gS < 35 — 2. Hence, we have § < H? < gS.

Since

4 3 3 4 3 4 5
f(3S) S( 2S)+ S=§ 4(?’S) S( 6S)_0,

23
4 S ..
we conclude f(x) < O for any x € (S, gS), which is in contradiction to (4.31). Thus, we

6 . 48
must have § < 5 In this case, 3 > 35 —2and

_ 394 3s35-2— 235 —22
FBS=2)=8(1- 28+ 7535 =2 - (35 -2)

(35 -2)J/ES=33S—2)(35—2)
4
3 5. J6-5535-2) 2))

=(3S—2)<5—15— ;

V6—55
R

=(35—2) «/6—5S—«/SS—2)<0.

Therefore, it is also impossible. It finishes the proof of Lemma 4.2.

Lemma 4.3 Under the assumptions of Proposition 4.1, if
DT =0, k=0, Ak #0,
i.jik.p A (4.33)
S<supH>=H?><35-2 and S <supH® < ES,

is satisfied, then we have

- 3H—45—3H? Z H++/4S —3H?
4 ’ '

A. — —
1 2 4

S e

and S >
Proof According to Lemma 4.2, we must have

_3H-VAS-3H? . H+ VA4S 3H?
4 ’ - .

A= =
1 2 )
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Thus,

(4.34)

H?+25—\/(4S —3H?)H?
1 )

M=
6 - - 45 .
If § < 3 holds, then we get A1 # 31, and 3 > 38 — 2. According to (2.25), we have

I - 1 hy -
SU = 28) = (S = H)? + S(H)? = H* (] +33) = 0.

we obtain from (4.34)

3 - H2\/(4S —3H?)H? o 4.35)

3 3 -
S1—=8+-SH* - - H*
( 2)+2 1 + 2

Now we consider function

a5 —
fl(x)zS(l_;S)-i-%Sx—ZXZ_}_w

for S < x <38 — 2. Since

dfitx) 3 3 V(@4S —3x)x x(28 —3x)

heo==p—=35—3*+ 4 T AJ@s —30x
:é(S—x)—i— 3x(S —x)
2 2J/(45 = 3x)x
- §(S—x)(1 +#) <0
2 V(@S =3x)x

for § < x, fi(x) is a decreasing function of x on (S, 35 — 2).

_ 39435352~ 235 -2
fiBS =2 =S =289 + 7535 ~2) = 735 ~2)

(35 —2)/@S =335 —2)(35 - 2)
+ 4

305
=(BS—2)(5—7S+

V(6 —=55)3S — 2))

1 1
- (35—2)7W(J6—53+J3S—2) =0

6
since S < 3 Thus fi(x) > O for any x € (S, 35 — 2], which is in contradiction to (4.35). O

Lemma 4.4 Under the assumptions of Proposition 4.1, if

Y =0, A=0, Ly #0,
hikp A (4.36)
S<supH>=H?><3§—2 and S <supH?* < 35

are satisfied, then we have 1.89 < § < 2.
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. 6
Proof According to Lemmas 4.2 and 4.3, we know 2 > § > 3 and
L _3H-VAS-3H2 o H+4S-3H?
1= 1 ; 2= 1 .
. 48
In this case, 3 < 3§ — 2. Hence, we have
0 <2 s<im<is hY ) =0
gS <2, <H<§’Z(ljk)_
i,j.k.p*
and
Lo 3H — /4§ —3H? o H + /48 —3H?
1= 1 ) 2= 1 .
From (2.35) of Lemma 2.3 in Sect. 2, we get
1
5 im LY ()% (p)
i,j.k,p
_ S
= (H?>-28)H? + G L +5 +2)H*A3 + 1))
-— (H“ + H3) — B3+ — B2O03 + 13).
Since
Hir = H? —§ A2 402, B3 = HOZ = A + 22
1= ) 1 25 1 = 1 1A2 + z)s
we have
1
S Dim £ (0 (pm)
i.j.k.p
T - H? -5 H*H?*-S) H*
=H2[H2—2S—( ). HY( )+7]
4 2 2
72 3H? 72 72\ (72 4 32
+ 1 (s - 24 ~73)@3 + 3.
By making use of
H? 428 — /(45 —3H?)H?
32473 = ( M
4
we obtain
1
3 Jim £ Zk (h)* (Pw)
bk (4.37)

B HZ[ H* 3H? (H?> — 1) (48 — 3}'12)[12]
= — 5 .

@ Springer



3450 Q.-M.Chengetal.

On the other hand, from (2.34) and (2.35)

S m LY B () = lim S (Bl (o)

2 m—o00
i,j.k,p i,j.kl,p

— 1% —1% —% —% 1 —1% -k
1 1 2 2 2 2 1 2 2
> 2(hy190 — o)™ + 2(hi 10 — hy)” + E(hzzzz —hayp)”.
From Gauss equation and Ricci identities, we have

1+ 2 2 2
222 = hapay = M1y = oo
2 2r m*
=Y hppRu2iz+ > W5, Ruaia + Y W3y Ruon
m m m

= (h%; + hg{ + h%;)Rmz
= 3A2K (811622 — 812621)
= 30K,

Iiz = oy = hian = hin
=Y hpoRuiz + Y bl Ru2iz + Y By Ruii
m m m

= LR+ AR +2Ro012
= (A1 —2M)K.

From the above equations, we obtain

2(hi1p — hip ) +2(h3 10 — W3y + %(hgzz — h3p))?
=200 —20)°K% + l(3@1{)2
= K2[203 — 8aho + —A 3
= K’[2§ —4(H? — 23) + fx 21
= K%(6S —4H? — ng).
Thus, we have
Shm e S G2 m = Jim S R ow)
i,j.k,p* * JJskLp*
> 2113 — 1 1)? + 2007150 — B3y, ))* + %(5222 — h3y))?
Lz; 9 (6S —4H% - ?)

72 2 B 222
(H - ) [(6_2)5,_(4_3”2_3\/(45 3HH ]

16 16
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Hence, we obtain, in view of (4.37) and (4.38)
- H* 3H? H? - 1)/ (4S8 —3H2)H?
Hz[ 3 ( W (4S ) ]
2
H? - 5)? 3 3 -, 3J@4S—-3H2)H?
> 26 s Sy - ¥ Ll
4 8 16 16

(hl)? = 0. we know

H%/(4S —3H?)H?

4

From (2.25)and }_; ; ; ,

3.3, 3.,
= —S(1—28)— 2SH*+ > H*.
(=38 =381+

Therefore, we conclude

HS —3H%S +3H%S? — 352 +258

(FIZ—S)z[ 3 3., 3535-2) (4.38)
>——1(6+-)S— @4+ -)H" — 7_]
2 6+ DS - D) —
3 38338 -2 48
Since —Zx — % is a decreasing function of x, for § < x < 3 we have
X
3 - -2 -2
352 38G68S-2 96S-2)
4 8H? 32

Hence, we get

H® —3H*S +3H2S* — 352+ 28

> T s Yy 4— )| —].
=g (Ot Um P g
We consider a function g = g(x) of x defined by
33,2 2 _3q2 =P 3o 39
g(x) = x° — 3228 + 3252 — 352 + 28 . [(5 S)S—( 8)x+16].
—9)? 3
g'(x) =3x* —6xS+387 + %(4 -3
(x—S5) 3 3 9
_ 2y @42 Z
2 [(5 3275 7 ¢ 8)x+16]
9 23 9
— =6 )x—6+)s— =]
(x )[( Ot 32]
H (x) attains its mini (6= —)x— (64 2)5— = =0
ence, X ) attains 1ts minimum a — — )X — —_— _ — =
§ 32 64" " 32
) =SE-1ES-2 <0, ey a2 e Do 50
= — — < , —_—) = _— _—— <
§ 83 36 - 96 64

6 48
if — <8 < 1.89. We have g(x) < Ofor S < x < 3 which is in contradiction to (4.39).
Hence, S satisfies

1.89 < S < 2.
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Lemma 4.5 Under the assumptions of Proposition 4.1, if

Z(h )P =0, =0, Aiiy #£0,
i.j.k.p

4
S<supH>=H?><35—2 and S <supH” < 35
is satisfied, then we have

_ 1
S<H2§S+§S.

S - S
Proof Since H? = sup H?,if S + = 5 <H>< S+ 3 we consider a function f =

x defined by
3 3 3 J(@4S =3
Fr) = S — 28) 4 25x — 2y2 4 WY ET ZI0x
2 2 4 4
6 4
for §S <x < §S' ‘We know that
6S 39— 643
—) =51 - —— 0
(=) =5( 0 D)<

since 1.89 < § < 2,
df(x) 3 3 J(@4S —3x)x x(25 — 3x)

fx) = =357 4 t @S —30x
:é(S—x)—f— 3x(S —x)
2 2/ (48 — 3x)x
= §(S—x)(l +L> <0
2 J(@4S —3x)x

f2(x) is a decreasing function of x and we can not have

s 35) N 32 34 N H?\/(4S —3H?)H? 0
2 2 4 4 -
Hence, we must have
- 6
S < H? < gS.

Proof of Proposition 4.3 According to Lemma 4.4 and Lemma 4.5, we have
> (@ k)2_0 A=0, Ahrr #£0,
i,j.k.p

6
S <supH? < 35 189 <S5 <2

We obtain from (4.38)
H® —3H*S +3H?S> — 35> 4+ 2§

. (FIZ—S)z[

L (- 3S(3S—2)]'

6+ 3)5 4+ 3)1512
4 8 8H?
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3 - 38538 —2 _ - 6S
Since — = H? — ¥ is a decreasing function of H?, for S < H> < —, we have
4 8H? 5
3 - 35(3S -2 9 538 -2
3 3865=2) 9 56522
4 8H? 10 16

H® —3H*S +3H%S? — 352+ 28

(H? — 5)? 7 3., 5 (4.40)
>0 T2 5 ys—@— A+ 2.
= 4 [( 500 "4y +8]
We consider function
_ 3 a2 2 a2 =8 T, 35
f3(x) = 13 — 3228 + 3x8% — 352 4 28 - [(5 oS- (4 8)x+8].
— 5?2 3
Fi) = 3x% — 6x8 + 382 + %(4 -
(x —8) 7 3 5
— — ) -—@4-=: -
2 [(5 80’5 ~ ¢ 8)x+8]
9 29 5
— =6 — =) —6+—2)5 -]
(x )[( 327 O+ g 16]
Hence, f3(x) attains its minimum at (6—2) —(6+§)S—i—0
» 3 2" 80°° " 16
FS) =SS —1(S—2) <0 f(6—S)—(1+i—i)s3—(3+i)sz+2S<o
W= R 125 1600 160

6
if — < § < 2. This is in contradiction to (4.40). Therefore, we conclude that the formula

(4.18) in Proposition 4.1 does not occur either. ]

Proof of Theorem 4.2 According to Propositions 4.1, 4.2 and 4.3, we know that there are no
2-dimensional complete Lagrangian self-shrinkers X : M?> — R* with constant squared
norm S of the second fundamental formand 1 < § < 2. O

Theorem 4.3 Let X : M? — R* be a 2-dimensional Lagrangian self-shrinker in R*. If S = 2
or S = 1, then the mean curvature H satisfies H # 0 on M?.

Proof If there exists a point p € M? such that H = 0 at p, then we know H" = H¥ =0.
Thus, at p, we have

H=0, H =3 4+1 =0, A =hl,=—h3,.
From

HY =3 "nf (X.en). for i, p=1.2,
k

we have
hijy +hiyy = HY = 2(X, e1) + M(X, e2),
]*

I H,lz* =MX,e1) — A(X, e2),
Wiy +hdy = HY = —i1(X.e1) — MX, e2)
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and
0= %VS_M(hHl 3hby) + A(Bh3); — h3y;), for i =1,2,
it means that,
A (Rl = 3hY5) + A@BR3,; — h3y) =0, for i =1,2

since S is constant. Thus, we get a system of linear equations

—A=3x 3% A O\ [F3 0

0 —x =3k 3an | [hdy 0

0 0 1 0 1|]|nb, =] mX.e)+rX.e) |. (4.41)
0 1 0 10 i, MX, e1) — A (X, e)

10 1 00/ \al} —A (X, e1) — A(X, e2)

1
From S = 422 + 422, we know A1 = —X2 and 2)\% 4222 = ES # 0. Hence, by solving the
above system, we get

=51 3A

h222—74 (X,el)—Z(X,ez),
* 3)\, )\]

hoym = (X e1) = (X, e2),
B =X ey - 2% )
0”1 = 4 , €1 4 , €2/,

A 3A1
h211 = Z<X,€1> - T(X e2),
hin :T<X,€1)+Z(X,€2>~

With a direct calculation, we obtain

IVEA? = Z(H‘-”‘)2

= Z(hm +hy)? + Z(hm +h3y)?

—2(A2+x X, er)? +2<x2+x )X, e2)? =207 + 2D X |?

and

Z (hl/k

i,j.k,p

—Z(hfn) +Z(h222) +3Z(h221) +3Z(h112)

=Z(hn,,) + (hh20)? + (h3y)? +3Z(hzzp) +3(h11)? +3(h3,)?
P 14

= ;{u% + 22X, e1)? 4+ (A3 + A2 (X, 62)2}

5 5 =
= E(A% +A)|X)? = Z|viH|2. (4.42)
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From the Ricci identity (2.8), we have
M2 — 31y = 30K,
s = hiag = =33K,
Wiia = Mo = 3MK,
312 = M3y = =30 K.
Thus, we obtain

Z (hz/kl

i,j.kd,p
= 4(h1150)7 + 6(h3y1))* + 6(hT1p)* + 4”‘%211)2 + () +4(hT) 1))
+ (A )* 4 (3y00)* + (h1112)* + (hy))*
12
= 2115y — My )* +2(h1 150 + iy )
2* 2* 2 2* 2* 12
+2(hT120 — h3p11)” + 2(hi12 + h3ay)
[ VI 2 \2
+ E(hzzzz —hyp)” + E(hzzzz + h3n)
PR o2, Lo 1 \2
+ *(h1121 +hi)"+ *(hllzl —hiin)

. 4.43
+3 (h1111+h2211) +5 (hml—h%zn)2 (4.43)

+ *(h2222 — hiip)* + *(hzzzz + Y1)

+3 (hzzu hym)? + 5 (}'22114‘}12222)2
+ (ht1p0)? 433 )? +2(}12222)2

9 9
18)3K2 + EA%Kz + 182K + EAZKZ

%

45
—(A% +2H)K?

45 B
e

1
because of § = 4(A% +2%)and K = —=S.

On the other hand, since S is constant and H = 0 at p, from (2.35) in Lemma 2.3 and
(4.42), we obtain, at p,

35 | = 3
7£ St = 7|VLH|2=_§S2(3S—2). (4.44)
i.j.k.p

According to h] w T h22k = Hf and H”" = 0 for p.k = 1,2, by a direct calculation, we
have

> h" hf’/khq HY = |vif1|2.

i,j.kl,p.q
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From (2.34) in Lemma 2.3, we get

f.c Z (hl]k

i,j.k.p
= Y - 6S-2) > (hly)? + 5 IVEH]
i,j.kd,p i,j.k,p
— > nl Rl HY
i,j,k0.p.q
95 -
= Y )P -GS Y )P+ |le|2
i,j.kd,p i,j.k.p
535 -2)
= Y )P - (5S - =+ 52(35 2).
i,j.k0,p
Thus, we have from (4.44)
S35 -2 3
S )t -6 - 2)¥ —S2(3S 2) = g52(35—2),
i,j.kl,p
namely,

3 ) =S -GBS - 2),
i,j,kd.p
which is in contradiction to (4.43) for S = 2 or S = 1. Hence, we conclude that H # 0 on
M?2. O

Proposition 4.4 Let X : M? — R* be a 2-dimensional complete Lagrangian self-shrinker
in R*. If the squared norm S of the second fundamental form satisfies S = 1 or S = 2, then
sup H> = S.

Proof In terms of Lemma 4.1, there exists a sequence {p,,} in M? such that

lim H%(p,) =sup H2, lim |VH?*(p,)| =0, limsup LH*(p,) <0
m—00 m— 0o

m—0o0

and
h=0, hj =28

(1) Case for S = 2. By making use of the same assertion as in the proof of Proposition 4.1,
we have fork =1, 2,

hiy +hy =0,
h¥, +hdy =0, (4.45)
g — 3}‘2)h11k =0

with 142 # 0.
If A1 = 3X,, we get
. 2 72 T T \2 =y 4§
lim H%(py) = H> = O + 22)> = 1613 = —.
m— 00 3
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By making use of the same assertion as in the proof of Proposition 4.2, we can know that
this is impossible.

Thus, we get A1 # 31,. In this case, we obtain l_zf’jz = Oforany i, j, k, p from (4.45). Hence,
we have from (2.25) in Lemma 2.1,

3 - 1 - R
0=58(1-379+ 2H?S — EH4 — H?O03+23)
| (4.46)
=—(S—H»? - Eﬁz(il —22)2.
We conclude
supH2 =H>=5=2.
(2) Case for § = 1. Since § = 1, we have sup H? > 0. From lim,,—, o0 |[VH?(p,n)| = 0 and
IVH?> = 4350 HP*HJF )2, we get
A =o.
From (4.7) and (4.10), we have
)_\i lim (X, ¢;)(pm) = 0.
m-—0Q0

Next, we take the following three cases into consideration.
(a) If A,y = 0, in this case, Ay # 0, 3H%? = § = 1. Since Hli* =0and S =1, we get

R+ by =0, iy =0, k=1,2.
Therefore,
Nk 1% 1% Sl
hiyg =hip =hip=hy, =0
and
—> *
17502 p* N2
IVEHP = Y ()%
i,j.k,p

From lim sup,,_, £|H|2(pm) < 0 and (4.8), we obtain

1 -
—(H?*-1? <0,
2( ) <

it means Ehat, H?=1.ltisa c_ontradiction. B
(b) If &5 = 0, in this case, 1| # 0, sup H? = H> = § = 1.
(c) If AA2 # 0, in this case, fork =1, 2,

- -
hiyg +hy =0,
. 2
Mg+ oy =0,
(1 = 3h)h}y, = 0.
If 11 # 3%y, from the above equations, we know
SR =0, i jkp=1.2.
ijkp
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From (4.8), we get
1 -
0> —(H*>—-1)%
> 2( )
Hence, we have
supH?=1=S§.

If Ay = 3%, wehave H> = $5 = % and 1 = S = 22 + 322 = 1213. From (2.25), we get
- 1
> )= - <0
i,j.k.p

It is impossible. From the above arguments, we conclude that, for S =2 or S = 1,
sup H Z=5.
O

Theorem 4.4 Let X : M?> — R* be a 2-dimensional complete Lagrangian self-shrinker in
R*. If the squared norm S of the second fundamental form satisfies S = 1 or S = 2, then
H? = § is constant.

Proof We can apply the generalized maximum principle for £-operator to the function — H>.
Thus, there exists a sequence {p,,} in M 2 such that

lim H?(py) =inf H?, lim |[VH?*(p,)| =0, liminf LH>(p,) > 0.
m— 00 m—00

m— 00
By making use of the similar assertion as in the proof of Lemma 4.1, we have
lim H?*(py) =inf H> = H>, lim |VH?*(pw)| =0,
m— 00 m—00
. - I - - 4.47
lim [VEH*(pn) — Y ()% + - (H? = S)(H* =38 +2) > 0. 447
m—00 VT J 2
s J oKy

By taking the limit and making use of the same assertion as in Theorem 4.3, we can prove
inf H? = 0. Hence, without loss of the generality, at each point p,,, we choose e1, e> such
that

=
H=H enx*
and we can assume
: p* _ P : p* _ i : p* _ipr"
mll_l)%oh,-jl(l’m) = hijl! mh—l;noohij (pm) = hij , mll_%ohijkl(pm) = hijkl’

fori, j, k.1, p=1,2. From lim oo [VH?(py)|=0and [VH? 2 =4",(3 . HP*H',.’*)Z,
we have

Aj =0. (4.48)
From (4.7) and (4.48), we obtain
A lim (X, e1)(pm) + A lim (X, e2)(p) =0,
m—0oQ m— 00

_ _" (4.49)
A lim (X, er)(pm) + 22 lim (X, e2)(pm) = 0.
m—00 m—o0
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If A2y # A% and & # 0, we get

(X, e1)(pm) = (X, e2)(pm) = 0.

lim lim
m—00 m—0o00
Thus, we know, fork =1, 2,

—1* —1*
hiye +hy =0,
iy + oy =0, (4.50)
Mhly + 3hhly 4 3%k, — A3y = 0.
We conclude, for any i, j, k, p,
_p*
hijk =0.
From (4.47) and (2.25) in Lemma 2.1, we have
S >inf H*> = H?,
1 _ 1 - - _ _ 4.51)
S =28 — (5 - H>)? + EH4 —H*R2+33+20%) =0.
From Lemma 2.5 and taking limit,
— % 1 *
P* N2 _ . p*\2
0< Y ()= 5 dim £ > w0 pw)
i,j. k0, p i,j.k,p
T 1 - _ - _ -
- Hz[Hz — 25+ SH - KA - K2] _R2H4
_ 3 - - _ _
+ H*(S+2— 5H2 2= -2HR3 A3 +20% (4.52)
AT - 1 - _ - _
< HQ[HZ —25+ A - KA - KZ]
_ 3 _ o - _ _
+H*(S+2— EH2 — A =23 =203 + 23 +22%).
According to (4.51), we have
T - 1 - _ - _
HZ[H2 —25+ A - KA - K"‘]

3., 1 1 0y 1o,
+(S+2—E —E<S(I—ES)—(S—H) +§H)>
l _ _g2\2 l_4
><<S(1—25) (S — H?) +2H)

1 _ _ _ _
=5 <H8 —2SH® —6S(S— )H* +2S2 —385)*H* - 2 — 35)252>.
We consider a function f(¢) defined by
f@) =1* =253 —65(S — D12 +282 —38)%t — (2 — 35)%52, (4.53)
for 0 <t < S. Thus, we get

F(6) =4 =652 —125(5S — Dt +25Q2 —35)%, £ (1) = 12(* = St — S(S — 1)),
(4.54)
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f”(t) < 0 fort € (0,S). Hence, f,(t) is a decreasing function for ¢+ € (0, S). Since
f,(S) =4S(S — 1)(S —2) =0, f(¢) is a increasing function for ¢ € (0, S). According to

f($) =2(5—1)(S—2)$? =0, (4.55)

we conclude f (t) < 0Oforr e (_(), S). This is a contradiction.
Hence, we have A1 Ay # 0 and A = 0. In this case, we get for k = 1, 2,

¥ 1
Ry +hypy =0

o E —2*

h_%l Pt ffm_:* 0 (4.56)
(M —3X)h}}, = 0.

If A; = 32, we obtain

o 48
inf H> = lim H?(pp) = (A1 + 2)? = 1633 = —,
m—00 3

which is impossible from Proposition 4.4. Thus, we get A; # 3. In this case, we have

_p*
hijk =0

forany i, j, k, p from (4.56).
From (2.19), we know

because of H!" = H and H?" = 0. Thus, we get
v +hyy =2 —A7H,
iy +hypy =20 — A3H,
2+ s = hipoy + by =0, (4.57)
122 + oy =0,
o1+ B3y = Ao — Ao H.
From Ricci identities (2.8), we obtain
ﬁﬁzz = }_‘%211’ ﬁ}jlz = EHZI!
h311s — 3y = (g — 200K, (4.58)
1y = W31 = 302K,
On the other hand, since S is constant, we know, for k,l =1, 2,

PP ip* P p* 1Tl 7o* ok T oTIE T oTIE
0=->" hijihie = > hij hijig = Rithig + 3Rk = Mbyg +3%hyy.

i.j.p i.j.p
(4.59)
From (4.57) and (4.59), we have
(i —3h)hds, =22 —A3H,
(i = 3%2)itbsry, = Aihs — MAZH,
1 2)112222 142 142 (4.60)

()_»1 - 3)_»2)}_1522 = _3)_“% + 35‘31:1
(k1 — 3h2)hyy, = 0.
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Hence, we conclude from (4.57) and (4.60)
;_l2212 = }_’{112 =0
because of A; #* 3. According to (4.60), we obtain
(1 —3A) (11, — 1) = =S + (323 + ADH 4.61)

because of § = A2 + 313.
For the case S = 1, from (4.58), we know

(1 = 332) (A1), — A1)

= (M —3%2) (M — 24)K
= (14323 — 5h122)(AA2 — A3) (4.62)
— Rk — R34 8A,33 — 334 — 53232
= )_»15\2 — 25\% + 8)_\15»% — 4):%)_\%

By a direct calculation and by using § = 5\% + 3)_\% =1, we get

1+ GR3+ADH - {mz 28l -3 - smg} = 83,73 £0.
From (4.61) and (4.62), it is impossible.

For the case S = 2, we have from (2.25) in Lemma 2.1,

3 - 1 - _, - -
0="S01-38)+ 2H?S — 5H4 —H*A3+13)
1 (4.63)
=—(5— H2)2 — 5[‘_12()_\1 — }_\2)2.
We conclude from Proposition 4.4
inf H> =H>=S§= susz.

Thus, we know that H? = S is constant.
From now on, we consider the case A;A>» = A2. In this case, we have

S =22 +303 +42% = (1 + A2) (A1 + 322) = H(A1 + 3%2).
If § =1, from (2.25), we get
— ¥ 1 — —
> (hf)* = 5(H2 —1DBH*-1)>0.
ijkp
_ _ 1 _
Hence, either H2 > 1, or H? < 3 If H? > 1, then we have H? = 1 = S since inf H2 =

H? < sup H* = 1 in view of Proposition 4.4. According to § = A{ + 343 + 4A? and
H? = )2+ 3 + 2%, we know A = 0 and 1, = 0.

_ 1 - _ _ _
If H? < 3 from S = H(x + 3%) = 1, we obtain (A; + 32)2 > 3, which implies
A = A = 0 because of (A + 32)% = A7 + 943 + 622 < 3x7 + 923 + 1242 = 35 = 3.
S
Hence, we have inf H? = 13 = 3 £0,
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because of Hfi’ - Dok hﬁ: (X, er). Hence, we have, by using the same calculations as in
4.6),

~1* Nk
Ry +hop =0
ok 7*
hl“_—t h3 =0 (4.64)
3kahls, = 0.

Hence, we get

fzf}k:O, except i = j =k =p*=2.

If l_zgz # 0, since ) #0, 3H? = 3)1% = S =1, we have

— ¥ 3 - 1 - - I
0= Y (hl)*+S0 - 29+ 2H?S — 5H4 —H3= ) (Wl >0
i.j.k.p i,j.k.p

It is impossible. Hence, we know

‘We obtain

o . _

hiia + happy =22 #0.
From (2.34) of Lemma 2.3, we have

1 — % = p*
EE Z (/’l:-njk)z = Z (hlpjkl)z > 0. (4.65)

i.j.k.p ij.k.l.p

From (2.35) of Lemma 2.3, we get

1 TP \2
5L D0 Gy

i,j.k,p
=(H> —28)H*+ 3K +2 - H*+25) Y H?h}/h};
i.j
> 74 F371* 271 TP pt 1t T3
—KH +Bhy)— Y H Ry ) iy — > HRlhjhY,
i,j,k,,p i,j,k

= (H>=28)H* + 3K +2— H>+28) Y H*A5 — KH* — H*A3 — H’}3
ij

which is in contradiction to (4.65). Hence, we get inf H 2 = S, that is, H® = S is constant
from Proposition 4.4.

For the case S = 2, first of all, we will prove A = 0. If not, we have S = 2 and
Xir2 = 22 # 0. By making use of the same assertion as in the proof of Theorem 4.3, we
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have
—13%y 3% Xy 0 (M5 0
0 X334 || hyy 0
00 1 01]|an|=]0]. (4.66)
0 1 0 1 0[/|hl, 0
1o 100/ \al A
where
A=l lim (X, e1)(pm) — 4 lim (X, e2)(pm)
m— 00 m— 00
=H lim (X, e1)(pm) 4.67)
H
= ——— lim (X, e2)(pm).
)hl m—00
Solving this system of linear equations, we have
iy = {1232 + G = 32?4
5222 = _ﬁzna
f_l2;1 = h111a (4.68)
phiy =i —3%2)A,
phiy, = —432A
with o0 = 1622 + (&1 — 312)2.
: 1 [7 2 A2
lim |V H|? Z(H R+ 130) = A (4.69)
Z (ifj)” = (1) + Z(hzzz)z +3 Z(ﬁé’;ﬂ +3 Z(fzi’;)z
i,j.k.p P
=D (1) + (hy)* + (3’ +32(h22p) +3(h11p)” +3(hT1)
= lim |[V'H (4.70)
m— 00

Since S =2 and A; Ay = A2 # 0, we obtain
S=2+333+4:2=H0O +30) =2,

From (2.25), we have

- 3 - 1 -
> Bl =4—4H2+5H4=(2—H2)2+5H4 > 0. 4.71)
i,j.k.p
Since S = 2 is constant, we get, fork,/ =1, 2,

*— * =1 T N N
- Z hl/l l/k = Z hf; hfw = My + 3y 4 3hahyyy — My,
i,j.p i,j.p
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namely,
ToE oo oo NV
Al 4 3Ah10) 4 3h2h59 — Ahipo)
= —(hj1)* = 3(h} )" = 3(h3),)° — (h3)°
1222 4+ (A — 3%2)2 22

Ak --1*M T rpE T 7o (4.72)
Ahiyn 4 3Ahio10 4 3h2hy1, — Ahay
LNk Sox =0k 0%z So% zox
= —hiithiia = 3hihTp — 3hiphin — haphay
Ay — 3X
_ ( 1 2) A2.
m
From (2.19) and taking limit, we know, for i, j, p = 1,2

Wy + 0y = Y by Tim (X e (pu) + Rl = YRl R,
k k
it means that,
1o + Moy = Z@Zz Jim (X, ex) (pm) + A — (3 +ADH,
k
i +hp =Y hig Jim (X, ex) (pm) + A —AH?,
k
oy +ho0y = ) I3 Jim (X, e (pm) — A,
k
Since, from (4.49) and (4.67) and S = H (k| + 342) = 2,
X1 A?

D s im (X, e (pm) = =,
X w

2 3%, 43R
2, i 20 a2 2T 42
;hmn}ggo<x,ek>(pm>— e

—1* . 3;. 2
Y ki lim (X, e)(pm) = —— A%,
% m— 00 M

we obtain
1202 + (11 — 342)? A2
"
)_‘()_\l - 35\2) Az.
"

)

- o ToE oo v
Athigy + 30y, + 3h2hyy — Ahipy = —
AL - - S - ok
Mhiy1p + 301 + 3201y — Mg, =

o - MAZ e -
il + hyyy = IM +0— (3 +2HH, 4.73)

S oy 3 -
h}112+h§212:—;A2+A—AH2,

o 3% AT +302 .
PR3 gy 4 h3pyy = =A% — 2L A%
1122 2222 w %
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Taking covariant differentiation of (2.25) and using (4.47) and (4.48), we obtain
S1E Sk sk ok LN Sk Zok =k
0=nhyyhiyn +4hT R0 + 6hiohias + 4hooshonys + hhiys)

= AL + R + Tk, + 23005, + Dol |

Since
=27, 0% =% T 7ok Tk Rk —2)_\,A
H [)"(hIIZ + h222) + )\.1]’1111 + 2)\.]’1122 + )\.2]’1222} =H 7(2 + H«),
hinihing + 405k + 6k 15yl 00 + 4ibphyy + B3y ayn
A T2, 7 7 2]2* 77 YAk
A3 (8422 4422 . - 4NA - -
+ A G i |+ R 7 - 3 4303,
I n
we have
W\
H*— Q2+ p)
”w

A <{ - 4/_\2&2 + 23 N 3+ 3X2)(18I\_2 — 22 -9

m " 21

a2
m

+103% — 6332 + 413192>

AA3 [8412 + 423
_l’_i e
s "
A3 024322 (=102 =22 -9 24 - - -
_ AT+ 3 5 1 2) + 2 (—182% — 1822 + 402 + 30D H?),
% ®

. . drA o -
—14G} +330) | + ST =03+ Y

which is impossible because of 2 + 1 = 25\% + 12)_»% + 1422, Hence, we have A = 0, that is,
Xihs = 0.

If xp = 0, we get inf H> = S = sup H? from Proposition 4.4. Namely, H> = S is
constant.
If Ay = 0, we have

A #£0, S=3infH?, H¥ =0, k=1,2.
Hence, we have, by using the same calculations as in (4.6),
S1* 1
Ry +hyp =0
—2* —2*
hlu_‘t h3,, =0 4.74)
3hahly, =0.
Hence, we have

— %

hipjk=0, except i = j =k =p* =2.
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If }_’%22 =0, we get

forany i, j, k, p. According to Lemma 2.1, we have

0= (> +50 - S)+2H2 ~ > HY R HT R = -2,
i,j.k.p Jkp.g

This is impossible.
If h%;z # 0, from Lemma 2.1, we obtain

L2 2% \2
VEAR = Y hf)? = (h5)? =
i,j.k,p
Since § = Zi,,’,p(hf}*)z is constant, we have
P*yp* _
Y LRl =0, k=12
i,j.p
and

Zhljl l]k+ Zhi hfjkl =0, kI1=1,2

i.j.p i.j.p
Then, for k,l =1, 2, we get
Z }-l }-lz]k = Z h] *}_lz]kl = —fliﬁfléﬁu - 2}_’%2’_’%%1 = _35‘25£k1~
i.j.p i.j.p
If k =1 =1, we have
R =0. (4.75)
From (2.19), we know

_p*__p* _p*_l*
HY =hl = hbhiH
k

Letp=i=2,j=1,weget
7o* 70* T
hiyay + hypy = 22,
From (4.75), we obtain
};%221 =2 #0.
On the other hand, from Lemma 2.1, we have
ipt it TP P et raty
2 2 Wi =0 AT R AT, =0
i,j.k,p J.k.p.q
because H1 =0, hq 1 = 0. Since
= - ZO% ok N
2 Z hf}khf}m = 2h5yh5y = 2h2h35;, # 0,
i,j.k.p

it is a contradiction. Thus, we know that H2 = § is constant. O
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Proof of Theorem 1.1 From Theorem 4.1 and Theorem 4.2, weknow S =0, S =l or § = 2.
According to the result of Cheng and Peng [8], we only consider the case S =2 and S = 1.
Therefore, the mean curvature H2 = S is constant from Theorem 4.4.

If H2 = § = 2, from (2.25) in Lemma 2.1, we have

> (huk) =0, A; = A #0.

i.j.k.p

According to

Zh (X,er), fori,p=1,2,

we know, at any point,
0=hi}; +hyy = H,]i* = Ai{X, ei).

Hence, we get (X, ¢;) = 0 fori = 1, 2 at any point. Thus, |X|2 is constant. According to

1

—L1X)P? =2— X

2
we obtain

1X* =2,

it means that, X : M? — R* becomes a complete surface in the sphere S3(+v/2). Because
S =2, it is easy to prove that X : M? — §3(+/2) is minimal and its Gaussian curvature is
zero. Thus, we conclude that X : M2 — R* is the Clifford torus $'(1) x $'(1).

If H2 = § = 1, from (2.25) in Lemma 2.1, we have

S wlp?=0, 2=0, 1 =0.
i,j.k,p

From the results of Yau in [29], we know that X : M2 — R*is (1) x RL. It completes the
proof of Theorem 1.1. O
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