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Abstract

We consider a convolution-type operator on vector bundles over metric-measure spaces.
This operator extends the analogous convolution Laplacian on functions in our earlier work
to vector bundles, and is a natural extension of the graph connection Laplacian. We prove
that for Euclidean or Hermitian connections on closed Riemannian manifolds, the spectrum
of this operator and that of the graph connection Laplacian both approximate the spectrum
of the connection Laplacian.
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1 Introduction

This paper is a continuation of our previous works where we approximated, in the spectral
sense, the Riemannian Laplace-Beltrami operator with the discrete graph Laplacian [2, 11]
and a convolution-type operator [3]. This convolution-type operator, called the p-Laplacian
(with a small parameter p > 0), is defined by averaging over metric balls of small radius, and it
is a natural extension of the discrete graph Laplacian in a continuous setting. A notable feature
of the p-Laplacian is that it is not based on differentiation and is readily available on general
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metric-measure spaces. Furthermore, we proved in [3] that the spectrum of the p-Laplacian
enjoys stability under metric-measure approximations in a large class of metric-measure
spaces. Ideally, we define the p-Laplacian as a notion of Laplacian on metric-measure spaces
(in the spectral sense). Our earlier results in [2, 3, 11] show that the definition makes sense
for Riemannian manifolds. We hope that the spectra of the p-Laplacians could converge as
p — 0, in a large class of metric-measure spaces, with the limit related to known concepts
of Laplacian in [5, 6].

The present paper is concerned with the connection Laplacian on vector bundles. In this
paper, we introduce an analogous convolution Laplacian acting on vector bundles over metric-
measure spaces. This operator can be regarded as a generalization of the p-Laplacian (on
functions), and its discretization, also known as the graph connection Laplacian, is a gener-
alization of the graph Laplacian. We prove that for Euclidean or Hermitian connections on
closed Riemannian manifolds, our convolution Laplacian and its discretization both approxi-
mate the standard connection Laplacian in the spectral sense. The spectral convergence of the
graph connection Laplacians may have applications in numerical computations and manifold
learning, in particular analyzing high-dimensional data sets, see e.g. [1, 4, 7, 8, 14—-16] and
the references therein.

In this introduction, we define our operator for vector bundles over Riemannian manifolds.
The general definition for metric-measure spaces can be found in Sect. 2. Let M" be a
compact, connected Riemannian manifold of dimension n without boundary, and let E be a
smooth Euclidean (or Hermitian) vector bundle over M equipped with a smooth Euclidean
(or Hermitian) connection V. Recall that an Euclidean (resp. Hermitian) connection is a
connection that is compatible with the Euclidean (resp. Hermitian) metric on the vector
bundle. We denote by L*>(M, E) the space of L?-sections of the vector bundle E, and by E,
the fiber over a point x € M. Fix p > 0 smaller than the injectivity radius r;,; (M). Given
any pair of points x, y € M with d(x, y) < p, let Py, : Ey — E, be the parallel transport
canonically associated with V from y to x along the unique minimizing geodesic [yx].

For an L2-section u € L2(M, E), we define the p-connection Laplacian operator AP by

2(n+2)

APu(x) =
V"2 B,

(u(x) = Pey(u(y))) dy, (1.1)
where v, is the volume of the unit ball in R", and B, (x) is the geodesic ball in M of radius
p centered at x € M.

The operator A” is nonnegative and self-adjoint with respect to the standard inner product
on L>(M, E). Furthermore, the lower part of the spectrum of A” is discrete. We denote by
i the k-th eigenvalue of A? from the discrete part of the spectrum. Denote by A the standard
connection Laplacian of the connection V, and by A the k-th eigenvalue of A. Our first result
states that the spectrum of the p-connection Laplacian A” approximates the spectrum of the
connection Laplacian A.

Theorem 1 There exist constants C,, > 1 and ¢, 0,, € (0, 1], depending only on n, such that
the following holds. Suppose that the absolute value of the sectional curvatures of M and
the norm of the curvature tensor of V are bounded by constants K, and K, respectively.
Assume that p > 0 satisfies

. —-1/2
p < min {ri,; (M), c, K, ). (1.2)
Then for every k € N satisfying w < o p 2, we have

|3:11/2 - )‘11/2’ = (CHKM + )\k))hi/sz +CrKgp .
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Remark 1.1 One can track the dependence of ¢, on n and find that it suffices to assume

sinh” !¢,
— <2
sin” "' ¢,

Remark 1.2 In the case of E being the trivial bundle, the connection Laplacian is simply the
Laplace-Beltrami operator on functions, and the p-connection Laplacian A” reduces to an
operator on functions

2(n+2)
vnpn+2

AP f(x) = (f() = f()dy.

By (x)

This operator is the p-Laplacian we introduced in [3] up to a normalization adjustment, and
its discretization is the graph Laplacian studied in [2]. In this case, Theorem 1 reduces to the
convergence of the spectra of p-Laplacians (on functions) to the spectrum of the Laplace-
Beltrami operator, which is known from Theorem 1 in [2] and Theorem 1.2 in [3].

Now let us turn to the discrete side. We define a discretization of a compact Riemannian
manifold M as follows (see [2]).

Definition 1.3 Lets « p and X, = {x; }lN=1 be a finite e-net in M. The distance function on
X is the Riemannian distance d of M restricted onto X x X, denoted by d|x, . Suppose that
X, is equipped with a discrete measure p = ZlN: | i dy; which approximates the volume on
M in the following sense: there exists a partition of M into measurable subsets {V; }lN: | such
that V; C B.(x;) and vol(V;) = p; for every i. Denote this discrete metric-measure space
by I'c = (X, d|x,, n), and we write I" for short.

Let M, E, V be defined as before, and we consider the p-connection Laplacian on this discrete
metric-measure space I, acting on the restriction of the vector bundle E onto X,.. Namely,
let P = {Py Xt d(x;,xj) < p} be the parallel transport between points in X.. We call P a

p-connection on the restriction E|x,. Foru € L2(X ¢ Elx,), we define

2(n+2)

PN e
Apac) = 1

D (i) = Pyjii(x))). (1.3)

d(x,-,)cj)<,o

This operator is known as the graph connection Laplacian. The graph connection Laplacian
is a nonnegative self-adjoint operator of dimension r(E)N with respect to the weighted
discrete L2-inner product, where r(E) is the rank of the vector bundle E. We denote the k-th
eigenvalue of Al’i by Xk(F).

Our second result can be viewed as a discretized version of Theorem 1.

Theorem 2 Suppose that the absolute value of the sectional curvatures of M and the norm
of the curvature tensor of V are bounded by constants K, and K. Then there exists py =
po(n, Ky, Kg) < rinj(M)/2, such that for any p < po, € < p/4, k < r(E)N satisfying
M < ,0_2/16, we have

~ & &
A (D) = M| < Cuky (p o+ A,i“p)xk +Cuky (,0 + 5) .

For compact Riemannian manifolds without boundary, Theorems 1 and 2 imply the close-
ness between the p-connection Laplacian and the graph connection Laplacian in the spectral
sense. In the case of trivial bundles, this gives another proof for the closeness between the
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p-Laplacian (on functions) and the graph Laplacian in the spectral sense (as a special case
of Theorem 1.2 in [3]).

This paper is organized as follows. We introduce the general concept of p-connection
Laplacians for metric-measure spaces in Sect. 2. In Sect. 3, we focus on the case of smooth
connections on Riemannian manifolds and prove Theorem 1. We turn to the graph connection
Laplacian in Sect. 4 and prove Theorem 2.

2 General metric-measure setup

Let (X, d) be a metric space and E be an (continuous) Euclidean or Hermitian vector bundle
over X. That is, we have a fiber bundle 7 : E — X, and each fiber E, := n_l(x), x € X,
is a real or complex vector space equipped with an Euclidean or Hermitian inner product
(,)E,. When it is clear at which point the inner product is taken, we omit the subscript E,.

Let p > 0 be a small parameter. We denote by X 2(p) the set of pairs (x, y) € X x X such
thatd(x, y) < p.

Definition 2.1 A p-connection on E is a (Borel measurable) family of uniformly bounded
linear maps Py, : E, — E,, SUP(x ) | Pyyll < oo, where (x, y) ranges over Xz(,o). That
is, Pyy transports vectors from Ey to Ey.

A p-connection P = {Pyy} is said to be Euclidean (resp. Hermitian) if all maps Py, are
Euclidean isometries (resp. unitary operators). A p-connection P is said to be symmetric, if
P,y is invertible and P;V1 = Py, forall (x,y) € Xz(p).

Our primary example of p-connection is the one associated with a connection V on an
(smooth) Euclidean or Hermitian vector bundle over a Riemannian manifold M. Namely,
there is a parallel transport canonically associated with the connection V. Then given two
points x,y € M with d(x,y) < p < riyj(M), one can transport vectors from E, to Ey
along the unique minimizing geodesic [yx].

Now suppose (X, d) is equipped with a measure : we are working in a metric-measure
space (X, d, ). Assume that X is compact and u(X) < oco. We denote by L*(X, E) the
space of L2-sections of the vector bundle E.

The following expression u(x) — Py, (u(y)), where u € L*(X,E) and x, y € X, shows
up frequently. We introduce a short notation for it:

Ty (1) = 1(x) — Pry(u(y)). @.1)
Note that I'y, () is only defined for (x, y) € X?(p) and it belongs to Ej.
Leta : X — Ry and B : X2(p) — R4 be positive L functions satisfying that o

is bounded away from 0 and § is symmetric: S(x, y) = B(y, x) for all x, y. We define
the p-connection Laplacian Ag’ 8 associated with the p-connection P with weights «, 8 as

follows. First we define an L2-type inner product ((, ))o on L*(X,E) by
(u, Vo == / a(x) {u(x), v(x)), dux),
X
for u, v € L%(X, E), and the associated norm | - | is

lul? = (u, u)q =/Xa<x)|u(x)|2du<x).
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Here |u(x)|? = (u(x), u(x)) is taken with respect to the Euclidean or Hermitian inner product
in the fiber E,. Note that the standard inner product on L*(X, E) corresponds to the case
o = 1, in which case the norm is denoted by the usual ||u]| ;2.

Next we define a symmetric form DE on L*(X, E) by

1
DE(M, v) = 3 // B(x, ¥) Ty (), ny(v)>E du(x)du(y). (2.2)
X2(p) :

Finally, our Laplacian AZ’ P is the unique operator from L?(X, E) to itself satisfying
(AL pu, v)o = Dj(u, v) 2.3)

forall u, v € L2(X, E). In other words, A'O B is the self-adjoint operator on L3(X, oau, E)
associated with the quadratic form D% 'z Note that the boundedness of Py and u(X) imply
that both D and A}, 4 are bounded.

The followmg proposition gives an explicit formula for Agﬁ 'z

Proposition 2.2 Assume that X is compact and u(X) < o0o. Then Ag’ﬁ can be written as

AL gu(x) = Bx, ) (Cay ) = Ty () dia(y) 2.4

2a(x) JB,(x)

where P}, : E, — E, is the operator adjoint to Py, with respect to the inner products on
the fibers E, and Ey.
In particular, if the p-connection P is Euclidean or Hermitian and is symmetric, then

1
AZ,ﬁu(X) = —— Blx, y) Tay(u) du(y) . (2.5)
a(x) Jp,x)

Proof The proof is a straightforward calculation. For brevity, we write dx and dy instead of
dp(x) and duu(y). By definitions of Dg and 'y, (v), we have

Dfj(u,v) = % f fx s PE DM 0, 0 = Py 0()) dxdy.
Expand it and rewrite the term (I'y, (1), Pyy(v(y))) as follows:
oy @), Py @) g, = (P Ty (), v(0) -
By swapping x, y and using the symmetry of §, one gets

// B(x, y)(P;nyy(u)a v(y))a’xdy = // B(x, y)(P;‘XFyx(u), v(x))dxdy.
X2(p) X2(p)

Substituting the last two formulae into the first one yields

D, v) = /f B, [Ty W) — Py Ty (), v(x) dxdy

2 / alx )<oc(x) 500 B(x, y)(rxy(”) - Pyxryx(”)) dy, U(x)>dx-

The right-hand side of the last formula is the ((, ))o-product of the right-hand side of (2.4)
and v. This proves (2.4).
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To deduce (2.5), observe that P, Pyx = Pyy, since P is Euclidean or Hermitian and
is symmetric. Hence by (2.1),

P* yx(u) yx (M(y) Pyx(u(x))) = ny(u(y)) —u(x) = _ny(u)-
This and (2.4) prove (2.5). ]

Remark 2.3 We can assume that 8(x, y) is defined for all pairs (x,y) € X 2(p) and is equal
to 0 whenever d(x,y) > p. This allows us to assume that Py, is defined for all pairs
(x,y) € X x X.Itdoes not matter how P is extended to pairs x, y withd(x, y) > p, since in
this case it will always be multiplied by 0. This allows us to write integration over X rather
than over p-balls whenever convenient.

Denote by o (A}, p) the spectrum of Al 5 and by Oess (A}, p) the essential spectrum.
Corollary 2.4
Uess(As,ﬁ) - [d(p, o, B), Oo)a

where a(p, &, f) = minyex 5507 [y B, V)dy.
In particular, if the p-connection P is Euclidean or Hermitian and is symmetric, then

O‘ess(AZ,ﬂ) - [251(,0» o, B), OO)

Proof Dueto (2.1) and (2.4), AZ’ P is the sum of three operators: the multiplication operator

Au(x) =

1
za(x)“(")/xﬁ("’ V) dy,

the operator
Aou(x) = a0 ( ) / B(x, y) Py, Pycu(x)dy,
and
1

Asu(x) = T(x)/xﬂ(x’y) (=Po = P ) ue) dy.
Observe that o (A1) C [a(p, «, B), 00); while Ay, as seen from its quadratic form

(ada =5 [ paypou. Powdsay.

X2(p)

is non-negative, and A3 is compact as an operator with bounded kernel, which proves the

first claim. The second claim follows from the same considerations by using the simpler form
(2.5). O

Examples

In this paper, we only need a few choices for & and B. First observe that the Riemannian p-
connection Laplacian (1.1) is obtained by using «(x) = 1 and B(x, y) = 2("“:32) ifd(x,y) <

p. Equivalently, one can use a(x) = ;’257:; and B(x,y) = 1 if d(x,y) < p. Another

convenient normalization, as seen in [3], is by volumes of p-balls: B(x, y) = lifd(x,y) <p
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anda(x) = pz,u(Bp (x)) forall x € X. We call the operator Ag’ﬁ with these «, B the volume-
normalized p-connection Laplacian.

Note that Laplacians on real-or complex-valued functions are a special case of connection
Laplacians. Namely, for a Riemannian manifold M, one simply considers the trivial bundle
E =M xRor E =M x C equipped with the trivial connection V. The sections of the
trivial bundle are functions on M and the connection Laplacian is simply the Laplace-Beltrami
operator (on functions). Similarly, for a metric-measure space X, one can consider the same
trivial bundle with the trivial p-connection defined by Pyy(y,t) = (x,¢) for x,y € X and
t € R (ort € C). Then (2.5) boils down to

1
a0 = o [ ) — ) dn),

where u € L*(X). Such operators are called p-Laplacians in [3]. Some analogues of the
results of this paper in the case of Laplacians on functions can be found in [2, 3, 10, 11].

Spectra of p-connection Laplacians

Since Ap B is self-adjoint with respect to the L2-compatible inner product ((, ), and the
corresponding quadratic form D/ f is positive semi-definite, the spectrum of A B is contained
in R>.

This spectrum consists of the discrete and essential spectra. It follows from Corollary 2.4
that the essential spectrum has a lower bound in all cases in question. We are only interested
in the part of the spectrum below this bound. We enumerate this part of the spectrum as
follows (cf. Notation 2.1 in [3]).

Notation 2.5 Denote by Xoo = Xw(E, P, p, a, B) the infimum of the essentiaﬂ spectrum of
AZ’ I’z If the essential spectrum is empty (e.g. if X is a discrete space), we set Ao, = 0o. For

every k € N, we define Ay = A4 (E, P, p, a, B) € [0, +00] as follows. Let 0 < %y <%, <
- be the eigenvalues of Ap (counting multiplicities) that are smaller than A.. If there are

only finitely many of such eigenvalues we set )tk = )too for all larger values of k.
We abuse the language and refer to Ak (E, P, p,a, B) as the k-th eigenvalue of A’ o, p EVEN

though it may be equal to oo

By the standard min-max formula, for every k € N, we have

~ ) Dy (u, u)
M(E,P,p,a,pB) = mfdim L=k Sul)ueL\{O} W s (2.6)

where the infimum is taken over all k- dimens10nal hnear subspaces L of L%(X, E). We
emphasize that (2.6) holds in both cases of Ak < koo and )tk = )too

3 Smooth connections on Riemannian manifolds

In this section, suppose X = M" is a compact Riemannian manifold of dimension n without
boundary, and E is a smooth Euclidean (or Hermitian) vector bundle over M equipped with
a smooth Euclidean (or Hermitian) connection V. Recall that an Euclidean (resp. Hermitian)
connection is a connection that is compatible with the Euclidean (resp. Hermitian) metric
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3192 D.Burago et al.

on the vector bundle. For a (sufficiently smooth) section « of E, Vu is a section of the fiber
bundle Hom(7T M, E) over M. Here Hom(T M, E) is the fiber bundle over M whose fiber
over x € M is the space Hom(7y M, E,) of R-linear maps from 7y M to E,. Note that in
the case when E is a complex fiber bundle, Hom(7, M, E,) has a natural complex structure.
The standard (Euclidean or Hermitian) inner product on Hom(7x M, E,) is defined by

n

(& m) =) (&), n(e)E,

i=1
for £, 7 € Hom(7TyM, E,), where {e;} is an orthonormal basis of 7y M. This defines the
standard norm

HEENHEGE 3.1)
i=1

on fibers and the standard L2-norm on sections of Hom(7' M, E).

Let A = V*V be the connection Laplacian of V (e.g. [12, Chapter 7.3.2] or [9]). It is
a nonnegative self-adjoint operator acting on H>-sections of E. The corresponding energy
functional is given by

(Au,u)p2 = ||Vul3,

foru € H*(M, E).
Since A is a nonnegative self-adjoint elliptic operator, it has a discrete spectrum 0 < A <

M <...,and Ay — o0 as k — 00. The min-max formula for A takes the form
, Va2,
A = 1nfdimL:k supueL\{O} < ”u”iz (3.2)

where the infimum is taken over all k-dimensional linear subspaces L of H LM, E). The
goal of this section is to prove that Ax are approximated by eigenvalues of a p-connection
Laplacian defined below.

Let p > 0 be smaller than the injectivity radius of M. Let P = { P} be the p-connection
associated with the connection V, which is given by the parallel transport from y to x along the
unique minimizing geodesic [yx]. This particular p-connection P is unitary and symmetric
since the connection V is Euclidean (or Hermitian). We consider the p-connection Laplacian
AP = A] g given by (2.5) with a(x) = L and B(x, y) = 252 if d(x, y) < p. That s,

Vn pn+2

2(n+2)
APu(x) = — Lyy(u)dy. (3.3)
Vnp By (x)

Recall that I'y, () is defined in (2.1). Here and later on in this paper, we denote by dx, dy the
integration with respect to the Riemannian volume on M. Denote by 'Xk the k-th eigenvalue
of A’ (see Notation 2.5).

We introduce a quadratic form D” on L?>(M, E) by

Dp(u):// Ty (u)|* dxdy. (3.4)
M JB,(x)

Note that for the constant weight 8(x, y) = % chosen for A?, we have

n+2
Dg(u,u) = WDp(u).
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Hence (2.6) takes the form

~ n+2 . D (u)
M= onp 2 N (”Lt”iz : (3.5)

The rest of this section is a proof of Theorem 1.
3.1 Preparations and notations
For x € M, denote by exp, : TyM — M the Riemannian exponential map. We only need
its restriction onto the p-ball B,(0) C Ty M. For v € T, M, denote by J, (v) the Jacobian of

exp, atv. Let Jmin () and Jyax () denote the minimum and maximum of Jy (v) over all x, v
with |v| < r. The Rauch Comparison Theorem implies that

sinr\""! sinh 7\~
< Inin() <1 < Inax () < ,
r r
1/

forr < Ksz < ¢y, see (1.2). In particular,

(14 CuKy0H) ™' < Jnin(r) < 1< Jnax(r) < 14+ Co Ky 02 (3.6)

Moreover, we choose ¢, to be sufficiently small such that Jiyax (#)/Jmin (r) < 2. Later we
will mostly take r = p and we denote Juin := Jmin(0), Jmax := Jmax(p) for short.
As a consequence of (3.6), Corollary 2.4 implies that

~ 2(n+2) . 2(n +2) 1
Aoo = ——— B > >
0 = min (B, (x)) = 2 11 K =

for some constant o, depending only on 7 due to our choice of p in (1.2). This shows that
Xoo is of order p~2 in the present case.

Later we use the following well-known inequality. We did not find a precise reference for
it, so we give a short proof here.

onp 2, (3.7

Vn pn+2

Lemma3.1 Let y;: [0, 1] — M be a smooth family of paths from a fixed point y € M to
x(s), s € [—¢, €]. Let Py, (v) be the V-parallel transport along ys of v € Ey to Ey(y). Then

dys(t)

[VePy )] < o]+ K - lengih(ys) - sup | =2

te[0,1]

(3.8)

Proof Let v(t,s) = Py o, (v), where Py, ,] is the V-parallel transport along y; from
s (t1) to y5(22). Note that Py |4, ,,] is a unitary operator.

Observe that V; v(¢, s) = 0 and thus VV; v(z, s) = 0. Hence, using the definition of the
curvature operator Rg, we see that

dys(t) dys(1)
V,Vsu(t,s) = Rg ( a;t , dvs v(t,s) € Ey ). (3.9)
Estimating the right-hand side yields
dyy(t) dys (1)
V,Vu(t, < - Ky - . s 3.10
[ViVsu(t, s)| < v - Kgg ‘ 7 Sub | ds (3.10)
where we have used the fact that |v(z, 5)| = |v| since the parallel transport P is unitary. The

plan is to integrate (3.9) with respect to . However, the fibers E, (;) vary with ¢. Thus, we
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3194 D.Burago et al.

use Py, ;.17 to identify them with E, ). Recall that by the definition of parallel translations,
for any vector field X along y;, one has

d
E(Pm:,ux(f)) = Py (Vi X (@)).

Note that the vectors under % in this formula lie in the same vector space E ) for all 1. We
apply this to X (#) = V,v(¢, s) and obtain
d
di
Integrating with respect to ¢ and taking into account that V,v(0, s) = 0 yield

(Pyi.11Vsv(t, 8)) = Py (Vi Vsv(2, ).

1
V_YPyx(v):st(l,s):/ Py (Vi Vsv(t, 8)) dt.
0

Therefore, using the fact that Py, [, 1] is unitary, we have

! dys(t Udys(t
1V, P,y )] 5/ IV, Voo, )| de < ol - Kp - sup |22 / nO| 4,
0 refo,11] ds o | dt
where the second inequality follows from (3.10). This formula is exactly (3.8). ]

We need the following elementary fact from the linear algebra (e.g. [2, §2.3]): If Sis a
quadratic form on R”, then

vnpn+2
/ S(x)dx = trace(S). (3.11)
B, (0) n+2

In the following two subsections, we control the upper and lower bounds for o by fol-
lowing the method we established in [2].

3.2 Upper bound for :ik

Lemma3.2 Foranyu € HY(M, E), we have
Vn

+2

DP(u) < Jmax P T Va7,
n

Proof This lemma is similar to Lemma 3.3 in [2] and the proof is essentially the same. We
may assume that u is smooth. By substituting y = exp, (v), we have

[ rswpa= | I exp, 0 @0 P (0) v
By (x) Bp(0)CTe M
= Jmax/ |Fx,expx(v)(u)|2dv~
B,
Hence
D?(u) < JmaxA, (3.12)
where

A= / / |FX,epr(v)(M)|2 dvdx.
M JB,(0)CTM
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Note that the right-hand side is an integral with respect to the Liouville measure on 7M. Let
us estimate A.
For every constant-speed minimizing geodesic y : [0, 1] — M, we have

La
Ty = uy () = Py (u(y (1)) = —/0 EPym)y(r)(”(V(f))) dr,

and

d
= Prowvw (u(y 1)) = Py (Vywu)

by the definition of the parallel transport P. Therefore,

1 1
ITyoyml = /0 [Py (Viou)| = /0 IVyayuldt,
where the last equality is due to P being unitary. Then,
1
IT, 0y myl* < / IVy@yul*dt. (3.13)
0
For x € M and v € B,(0) C T, M, denote by y, , the constant-speed geodesic with the

initial data yy ,,(0) = x and yy ,(0) = v. Equivalently, y, , () = exp, (tv). Applying (3.13)
to ¥y, yields

1
T exp, () (W)|* < / Ve ooyul* dt.
0

This and the definition of A imply that

1
A< / Fadr,
0

where

F@® =/ / IV;;x_v(t)ulzdvdx.
m JB,0crm

Note that y , (¢) is the image of v under the time # map of the geodesic flow. Since the geodesic
flow preserves the Liouville measure and the subset {(x,v) € TM : v € B,(0) C T, M},
f(t) does not depend on 7. Hence,

5 vnpn+2 5 vnpn+2 )
A=< fO)= [Vyu|” dvdx = Vu@)ll”dx = Vuell72,
M JB,0)CT,M M n+2 n+2
where the second equality follows from (3.11). This and (3.12) yield the lemma. O

The lemma above gives an upper bound for .

Proposition 3.3 For every k € N4, we have
M < maxki < (1+ CuKy 0Pk

Proof The second inequality follows from (3.6). The first one follows immediately from
combining the min-max formulae (3.2) and (3.5) and Lemma 3.2. ]
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3.3 Lower bound for Ik

Asin [2, Section 5], define ¢ : R>o — Rx>¢ by

), 0<r<I,

1) = 2y
ve 0, t>1.
The normalization constant 2 is chosen so that fR" Y(x)dx = 1.
We define k, : M x M —> RZO by
o, dx,y)
kp(x,y) = p " (———= ) ) (3.14)
and 0 : M — R>¢ by
00 = [ kpteyrdy = [ kywndy. (3.15)
M B, (x)
(The second identity follows from the fact that k, (x, y) = 0if d(x, y) > p.)
We need the following estimates on 6:
Jmin < 0(x) < Jmax (3.16)
and
[dx0] < Ch Ky p (3.17)

forall x € M. See [2, Lemma 5.1] for a proof.
Define a convolution operator / : L*(M,E) — C%\(M, E) by

1 1
1u(x>=@/Mkp(x,y)loxyw(y))dy—m B P .

for x € M (compare with [2, Definition 5.2]). We estimate the energy and the L2-norm of
Tu in the following two lemmas.

Lemma3.4 Foranyu € L*(M, E), we have

J, n+2
Tul?, = =m0 -

D”(u).
= [lue ||L2 2unp" ()

Proof Consider the weighted p-connection Laplacian Ag’ k) defined in Section 2. By (2.5),
Ay kpu( x) = 900 / kp(x, ) (u(x) = Pry(u(y))) dy = u(x) = Lu(x).

where the second equality follows from the definition (3.15). Equivalently, Ju = u — Ag U
Therefore by (2.3),
Vullg = lulg — 2448w, uho + 185, ulf = lully —2(A5, u,uho = lulj —2Dg (u, w).

Observe that

1 n+2
P _ . DP P
Dy, (u,u) = zrgflyxkp(x,y) D" (u) < 4v"an ().
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Thus
n+2

2 2
Tully > |ully —
Il = Yl = 5,

D" (u).

Then the lemma follows from the inequality above, Jnax > 1, and the following trivial
estimates:

2 2 2
Hully = max0(x) - [lully> < Jmax I 1ully2,

and
ol = min6Cx) - luel7> = Jowin el
due to (3.16). ]

Lemma3.5 Foranyu € L*(M, E), we have

IVIul2 < (14 CaKyp?) WDP(M) + oK pllull 2.
n

Proof We rewrite the definition of I as
1w = [ Enpsaonay, (3.18)
M

where
kp(x, y) = 0(x) Ty (x, y).

Note that for any x € M,

/@ww@=L

M
Differentiating this identity, we get
/ diky (x, y) dy =0, (3.19)
M

where d, denotes the differential with respect to x. Differentiating (3.18) yields
Viu(x) = Ap(x) + Az(x),

where
Ap(x) = / dkap(x, Y) ® Pry(u(y))dy = / dxlé;(x, ¥) ® Pry(u(y))dy,
M B, (x)
and
00 = [ B Vumdy= [ @ vVwa.
M B, (x)
In the above, Vy ,(-) is the section of E|p,(y) defined by

Vyu(2) = Pry(u(y)). (3.20)

For better understanding, observe that VVy , = 0 if V is a flat connection. In general, we
have an estimate

IVVyuIl = CuKp d(x, y) u(y)| < CoKg p lu(y)l,
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where the norm at the left-hand side is defined by (3.1). Indeed, for any unit vector w € T, M,
we have

IV Vyu ()l < Kp d(x, y) lu(y)| lw| = Kgd(x, y) [u(y)l. (3.21)

This follows from Lemma 3.1 applied to u(y) in place of v, and applied to a family of

minimizing geodesics from y to points x(s) where x(0) = x and x(0) = w. Note that due to

the curvature bound Secy; < Ky, the Rauch comparison theorem implies that sup, |%|

in (3.8) is attained at t = 1 when p satisfies (1.2), see e.g. [13, Chapter 4, Corollary 2.8(1)].
Hence by the Cauchy—Schwarz inequality,

1
2
A3 < CuKgp / |u(y>|2dy) ,

By (x)

kp (x, M) dy < CoKp p'~2 /
B, (x)

where we used the estimates kNp(x, y) < Cpp~" and vol(B,(x)) < Cypp" due to (3.6). Thus

1

2
A3z = (f ||A3(X)II2dX> < CoKg plullg2. (3.22)
M

Next we turn to Ag. Using (3.19),

Ao(x) = /B e, © (o) — () dy =~ fB Aok (. ) ® Ty (1) .

p(x)
Since dyk, (x, y) = 0(x) " dyk,(x, y)—0(x)2d,0(x) -k, (x, y), we split Ag into two terms:
Ap(x) = A1 (x) + Az (x),

where

Al(x) = —0(x) " / dyky(x,y) ® Iyy(u) dy,
Bp(x)

and

Ar(0) = 00) 2d,0(x) ® fB ke Ty @y

In view of (3.6), (3.16) and (3.17),

1

2
[A2(0)| < CuKyyp' ™2 (/ |rxy(u)|2dy> .
Bp(x)

This inequality and the definition (3.4) of D?(u) yield that

_n 1
142012 = CoKy p!~8/DP W) = Cuiy 7|5 Do) (3.23)
Now we estimate A;. From the definition of k,, for w € T, M, we have
n+2 ]
dxkp(x’ y)w= W {expy (), w)
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where (, ) is the Riemannian inner product in 7, M. Substituting this into the formula for A
yields

g n+2

A w =600

f (exp ! (1), w) Ty (1) dy.
Bp(X)

Using the substitution y = exp, (v), we get

_yn+2

A w =00

/ (v, w) p()Jy(v)dv, (3.24)
B,(0)CT,
where
@) = Ty exp, v) (1) € Ex.
To proceed we need the following sublemma.
Sublemma For any L? function f : R" — R, one has

2
‘ / fvdv
B, (0)CR"

Vn pn+2

f(v)zdv.
n+2 /Bp(())

Proof Denote

F:/ f)vdv e R".
B,(0)CR"

Let vg € R" be the unit vector in the direction of F. Then

\F| = (F. vo) = / F0)(v, vo) dv
B, (0)

|F|? < ([ f(v)zdv><f (u,v0>2dv>.
B,(0) B,0)

vnpn+2
n+2

Therefore

. The sublemma follows. ]

Using (3.11), the second integral equals to

We use the sublemma and (3.24) to estimate A;. Fix x € M and an orthonormal basis
lly.-yCm € Ey, where m = dim E,. Then ¢(v) = Z/ (fj(v) + igj(v));“j for some
functions f;, g;: B,(0) = R, j =1, ..., m. Then the formula (3.24) takes the form

nt2 ¢ ,
A w = =007 T 3 (fags w) (b wl)e,
n ]=1

forany w € TxM, where aj, b; € T, M are given by

aj :/ fivJ;(v)dv, bj :/ gi(vJyx(v)dv.
B, (0) B, (0)

» 2

Hence by using (3.1),

||A1<x)||2=<9< )™ m) Z<a +b3).
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Applying the Sublemma to f;J, and g;Jy in place of f, we obtain

Vn pn+2

2 2
as bs <
ithi= n+2

/ (fi()* + g ()?) J: (v)* dv.
B, (0)
Thus,

MNMVSMM4£i£L

lp()1*Jx (v)? dv
vn,O"+2 ©) X

1

,on+2
<0Kx) 2m-]max/ |ny(”)|2dy7
Bp(x)

n

where we used again the substitution y = exp, (v) and the definition of ¢ in the last inequality.
By (3.16) and (3.6), we have 6/(x) 2 Jax < | + C, K, p*. Hence,

n—+2
|W@Wsa+amﬁ5——/
B

Ty () |* dy.
npn+2 ® xy

1

Integrating over M yields that

n—+2
IA1ll2 < (14 CKyp?) /vnpn+2 DP(u). (3.25)

From VIiu = Ay + A + A3z, the lemma follows from (3.25), (3.23), and (3.22). O
The lower bound for Ay is a consequence of Lemma 3.4 and Lemma 3.5.

Proposition 3.6 For every k € N satisfying ’)tk < 0,02, we have

1/2 ~ ~1/2
M < (14 CoKyp® + 5ap?) 2y + CuKipp .

Broof Lit Uiy ... g € L*(M, E) be the first k eigen—secﬁons of A” corresponding to
Aly..., k. Let L be the linear span of up, ..., ug. Then L realizes the infimum in the
min-max formula (3.5). Hence forallu € L,
v n+2~ 5
D (u) < ) Allully s (3.26)
This and Lemma 3.4 imply that
Jmi n+2 Jmi 1 o~
Hul?, = == Jul?, - nD%@z<£ﬂ——ﬁm)wﬁp (3.27)
Jmax 2\)",0 Jmax 2

For pX; < 1 and % > %, the left-hand side of the inequality above is positive for all

uel \ {0}. In particular, / is injective on L. _
Define L = I(L) ¢ C%Y(M, E). Since I|7 is injective, we have dim L = dim L = k.

Now the min-max formula (3.2), Lemma 3.5 and (3.27) imply that

Vullp2 IV Iull2

uern(oy llullp2 _MEZ\{O} ([ Zull 2

(1+ CuKyy ), 52535 DP () + CuK g p lull 2

1

Jmin _ 127 )2
(min — $027) Nl 2

Jmax

172
VPR

=
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This and (3.26) imply that

14+ CoKy o)A £ CoK
]1(/2 ( P) k ln E)O. (3.28)

Jmin _ 1 25 2
(Jmax 2P }‘k)

Using the Jacobian estimate (3.6), one sees that ﬁ%:l >1-Cy, KM,O2, which implies that

1

Jii 1 ~\ 2 ~
< oo fpz)\k> < 1+CnKM,02+)\k,02-

-]max 2

Then the proposition follows. O

Proof of Theorem 1 The estimate directly follows from Proposition 3.3 and Proposition 3.6,
after converting all error terms involving A; to Ax by using Proposition 3.3. O

4 Discretization of the connection Laplacian

In this section we prove Theorem 2. Let M" be a compact, connected Riemannian manifold
of dimension n without boundary, and let £ be a smooth Euclidean (or Hermitian) vector
bundle over M equipped with a smooth Euclidean (or Hermitian) connection V. Suppose
P = {Py,} is the p-connection given by the parallel transport canonically associated with
the connection V. Recall that P is unitary and symmetric. Let I' = (X, d|x,, i) (short for
I'¢) be the discrete metric-measure space defined in Definition 1.3, where X, = {x;} lN: |isa
finite e-net in M for ¢ < p. We consider the p-connection Laplacian (2.5) on this discrete
metric-measure space I', acting on the restriction of the vector bundle £ onto X.
The vector bundle E restricted onto X, is equipped with the norm

N
Nl = piliie)l?, .1

i=1

for i € L2(X,, E|x,). Choosing the weights a(x) = 1 and B(x,y) = 2042) 5 (2.5) the

vy p)H»
same as in the case of smooth connections, the graph connection Laplacian Af. is given by

_ 2(n +2) _ _
ARa() = == Y0 (Al — Poxi(x)), 4.2)
ilp d(X,',Xj)<p

and its energy (2.2) is given by

_ +2
I8ill” = U" Y i) — Pox o) 43)

i jud(ixp<p

Denote by Xk(F) the k-th eigenvalue of Al‘i. Our goal is to prove that Xk (I") approximates
the eigenvalue Ay of the connection Laplacian A for every k, as p + % — 0. In the light of
what we have already done in Sect. 3, we only need to obtain a few more estimates.

For the upper bound for Xk(r), we follow Section 4 in [2] and define the following
discretization operator Q : L*(M,E) —> L*(X,, El|x,) by

1
Qutx) = [ poutay. (4.4)
wi v

L
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Define an extension operator Q* : L>(X,, E|x,) — L*(M, E) by

N
Q%ii(y) = Y Pyyit(xi) 1y, (y), (4.5)
i=1

where 1y, denotes the characteristic function of the set V;. Note that Qo Q* = Id;2(x, p X))
The energy of Qu foru € L>(M, E) is given by

n+2 2
18P =537 Y0 miny|Quxi) = Py Quixpl”. (4.6)
np i jd(xixj)<p

To control the upper bound for Xk(l"), we need to estimate || Qu/||r and ||§(Qu)||. We start
with the following lemma as an application of Lemma 3.1.

Lemmad.l Let p < riyj(M)/2, ¢ < p/4, and x;,xj,y,z € M be given satisfying
d(xi,xj) < p, d(y,x;) <e, d(z,xj) <e. Then for any v € E;, we have

|Pyx,-Px,-zU - Pyzv| < Kg(p +2¢)e|v],
and
’P)'xipx;ijXsz_ Pyzv‘ < 2Kg(p +2¢)¢|v].

Proof Let V, ,(x) = Py (v), and let yy ,, : [0,d(y, x;)] = M be the unique minimizing
geodesic from y to x; with arclength parametrization. By definition,

Ps,s+s’Vz,v(yy.x,' (s + S/)) - Vz,v()’y,xi (S))

/ )

Vs Vz,v(Vy,x,- (S)) = lim

s'—0 s
where P; ;¢ denotes the parallel transport from yy, , (s + ) to yy x; (s) along the geodesic
Yy.xi- Apply Py to both sides:

im Py stsVzw (Vy.,x; (s + S/)) — Pos Vz,v(Vy,Xf (S))

/

Poc(VeVer o ) = |

—0 N

Observe that Py .V, , (yy, X; (~)) is a curve in Ey. Since P is unitary, the formula above shows
that the tangent vectors of this E,-curve have lengths bounded by Kg (o + 2¢)|v| due to
(3.21). Thus,

d(xi,y)
[Py Ve () = Veu 0] = | /0 Pos (ViVero (75,0 9)) ) ds | = Ki(o + 200201,

Then the first conclusion directly follows from the definition V; ,(x) = Py;(v).
The second conclusion can be derived using the first conclusion. Namely, we apply the
first conclusion with x, z, y in place of y, x;, z, and Py, v in place of v:

|ijzPZy(PyzU) - ijy(Pyzv)| < Kg(p +2e)e|Py;vl = Kg(p + 2¢)elv].
Since P is symmetric and unitary, the inequality above is equivalent to
| Pyx; Pyjzv — Pyzv| < Ki(p +26)e|v]. 4.7)
Applying the first conclusion with y, x;, x; in place of y, x;, z, and Py, ;v in place of v gives
|Pyx,- Px,-x_,-(Px]-zv) - Pyx]- (Px,-zU)| <Ke(p+ 28)8|ij-zv| = Kg(p + 2¢)¢lv|. (4.8)

Thus the second conclusion follows from (4.7), (4.8) and the triangle inequality. O
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The following two lemmas enable us to obtain an upper bound for Xk(l“).

Lemma4.2 Foranyu € L*(M, E), we have

2 C
Hull2 = 1 Qullr|” £ ———— D) + CKEp*||ull7..
V(o — &)
Proof Observe that Q* preserves the norms. Hence,
[l 2 = 1Qulir| = |lull 2 — 10" Qull 2| < llu — Q* Qull.

By the definitions of Q and Q*,

N
e — 0 Qull?, = va' () — Py, Qua)dx

N 1 2
= Zf 'u(x) - ;/\/ Pxx,-Px,-yu(y)d)" dx.
i=1"VYi PO

By the Cauchy-Schwarz inequality, we have

N
1 2
||u—Q*Qu||iz§Z;/ [ V) = P Py Pz
i=1 ViV

Since V; C B¢(x;), then Lemma 4.1 yields that

N
1
e — Q" QullZ, <3 j;fV/ (u(x) = Poyu(y)] + 2K 5e2lu(y))) dxdy.
i=1 i i i

To deal with the first term, we follow the proof of Lemma 3.4 in [2]. We fix x, y € V; and
consider the set U = B, (x) N B,(y). Observe that U contains the ball of radius p — [xy]/2 >
p — ¢ centered at the midpoint between x and y. Hence we have vol(U) > Cv,(p — ¢)" by
(3.6). Recall that P is unitary and symmetric. Then for every z € U, we have

lu(x) — ny”()’” < Ju(x) — Pyzu(2)| + | Pyou(z) — nyu()’)|
= |u(x) — Pezu(2)| + |u(2) — Pox Pryu(y)|
< Ju(x) = Peu(@)| + [u(@) — Poyu(y)| + Keplu()l,

where we applied Lemma 4.1 in the last inequality. Then

() = Poyu(y)? < /|u<x) Pect @ + u(y) = Preu@) + K p*lu() ) dz

Vol(U)

¢ 2
< Vol(U)(F(X)+F(y))+CK o (I,

where F(x) = fB ) lu(x) — xzu(z)lzdz Hence by definition (3.4), we obtain

le — 0*Qul?, < Z / f voicy 00+ F)dxdy + CKE ol

c DP () + CR2p*ul2s < —C—— DP(w) + CK2p* ull?
= u u _— u u
vol(U) Pl =5 e Ptz

[m}
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Lemma4.3 Foranyu € L*(M, E), we have

n+2 24 o2 2,82, 2
I18(Qu)|I? . p"+2(1 +4p)D” 6(”)+CV!KE(;) lllly 2

Proof The definition of Q yields that

Qu(x;i) — Pyx; Qu(xj) = /;/ /‘; (Px,-y”(y) — Py, Pij”(Z))dde~

oy,

Then by the Cauchy-Schwarz inequality and the fact that P is unitary and symmetric,

2 2
|Qu(xi) — Py, Quixy)* < [ / | Poytt(y) — oy, Py, (@) dydz
uing Jv Jy,
1
- / / U(¥) = Py Paye, Poy et (@) dyz.
winj Jv, Jv,

The parallel transport appeared in the quantity above goes through the path [zx;x; y], while
what we need is to go through the minimizing geodesic [zy]. Thus (4.6) and Lemma 4.1
imply that

n+2 2
e =PI / /V 1Y) = Pys, P, Prjeu(2)|Pdydz
i Vi

i jud(xixj)<p
n+2
<o oy (1) = Pyzu(2)| +4Kppelu(2)]) dydz
P i jid(xixj)<p
n+2 2 2 2.2 2
S T PIDY ((1 +4p)Iu() = Pyeu@P + CKEe (@) )dydz.
npP i jud(xix)<p® Vi

Here the last inequality above used the inequality that

2Kgpelu(@)] - u(y) — Pyu()| < p*lu(y) — Pyu(2))* + Kie?lu(2)[*.

Since U ;.4(x;.xj)<p Vi C Bp2e(y) for y € Vi, we have

n+2 e2(p +2¢&)"
I3(QuIP = 1 4+4p >[ / U = Preu@Pdydz + G,k L2 2,
Bpt2e(y)
n+2
IS U4 D7 )+ G RE P Il

[m}

The lower bound for Xk(r) almost immediately follows from Lemmas 3.4 and 3.5, since
these two lemmas hold for any L? section. For any u € L*(X., E |x.), we consider Q*ii €
L%(M, E) and apply those two lemmas to Q*ii. Recall that || Q*i ||2L2 = ||zZ||%. The only part
left is to estimate D (Q*i) in terms of ||8ii .

Lemma4.4 Foranyu € L%(X,, Elx,), we have

n+2

_ - Vn o - -
DPTE(Q%i) < — 5 (1 +4pD)8ill* + CoKge*(p + &) |1}
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Proof Since By—2:(y) C U4, V; for y € V;, we have

xXj)<p

o= [ [ 100 - PegtiPdzdy
M JBp_2:(y)
=Y Y [ [ 1eam - peotaepdzay.
i jdiay<p® Vi Vi
By the definition of Q*, forany y € V;, z € Vi,
Qi(y) — Py, QFii(z) = Py ii(x;) — Py, Povif(x)).
Since P is unitary and symmetric, Lemma 4.1 implies that
|0*i(y) — Py: 0*a(@)|* = |d(x1) — Py Pyz Pyt (x))|”
(1(x;) = Poy, i) + 4K g pslia(x 1)
< (1+4p))|i(x;) = Porjit())|* + CK R (x))1

IA

Integrating the last inequality over V;, V;, by definition (4.3), we obtain

()

IA

- - 2 -
(1 +4p7) Y pipjliaCa) = PoitGep)|” + CKEe® Y iyl (x|l
i,j ij
v p" 2 2y1157 112 2.2 ny a2
= m(1+4p M dull + CuKge“(p + &) |lully,

where the last inequality used the fact that Zi:d(x,»,x,) <p Mi = VOI(Bpye(x))). O

Proof of Theorem 2 The upper bound for Xk(l“) follows from Lemmas 4.2, 4.3 and 3.2. The
lower bound follows from Lemmas 4.4, 3.4 and 3.5. The calculations are straightforward,
similar to Proposition 3.6. O
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