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Abstract
We consider a convolution-type operator on vector bundles over metric-measure spaces.
This operator extends the analogous convolution Laplacian on functions in our earlier work
to vector bundles, and is a natural extension of the graph connection Laplacian. We prove
that for Euclidean or Hermitian connections on closed Riemannian manifolds, the spectrum
of this operator and that of the graph connection Laplacian both approximate the spectrum
of the connection Laplacian.
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1 Introduction

This paper is a continuation of our previous works where we approximated, in the spectral
sense, the Riemannian Laplace-Beltrami operator with the discrete graph Laplacian [2, 11]
and a convolution-type operator [3]. This convolution-type operator, called the ρ-Laplacian
(with a small parameterρ > 0), is defined by averaging overmetric balls of small radius, and it
is a natural extension of the discrete graph Laplacian in a continuous setting. A notable feature
of the ρ-Laplacian is that it is not based on differentiation and is readily available on general
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metric-measure spaces. Furthermore, we proved in [3] that the spectrum of the ρ-Laplacian
enjoys stability under metric-measure approximations in a large class of metric-measure
spaces. Ideally, we define the ρ-Laplacian as a notion of Laplacian on metric-measure spaces
(in the spectral sense). Our earlier results in [2, 3, 11] show that the definition makes sense
for Riemannian manifolds. We hope that the spectra of the ρ-Laplacians could converge as
ρ → 0, in a large class of metric-measure spaces, with the limit related to known concepts
of Laplacian in [5, 6].

The present paper is concerned with the connection Laplacian on vector bundles. In this
paper,we introduce an analogous convolutionLaplacian acting on vector bundles overmetric-
measure spaces. This operator can be regarded as a generalization of the ρ-Laplacian (on
functions), and its discretization, also known as the graph connection Laplacian, is a gener-
alization of the graph Laplacian. We prove that for Euclidean or Hermitian connections on
closed Riemannian manifolds, our convolution Laplacian and its discretization both approxi-
mate the standard connection Laplacian in the spectral sense. The spectral convergence of the
graph connection Laplacians may have applications in numerical computations and manifold
learning, in particular analyzing high-dimensional data sets, see e.g. [1, 4, 7, 8, 14–16] and
the references therein.

In this introduction, we define our operator for vector bundles over Riemannianmanifolds.
The general definition for metric-measure spaces can be found in Sect. 2. Let Mn be a
compact, connected Riemannian manifold of dimension n without boundary, and let E be a
smooth Euclidean (or Hermitian) vector bundle over M equipped with a smooth Euclidean
(or Hermitian) connection ∇. Recall that an Euclidean (resp. Hermitian) connection is a
connection that is compatible with the Euclidean (resp. Hermitian) metric on the vector
bundle. We denote by L2(M, E) the space of L2-sections of the vector bundle E , and by Ex

the fiber over a point x ∈ M . Fix ρ > 0 smaller than the injectivity radius rin j (M). Given
any pair of points x, y ∈ M with d(x, y) ≤ ρ, let Pxy : Ey → Ex be the parallel transport
canonically associated with ∇ from y to x along the unique minimizing geodesic [yx].

For an L2-section u ∈ L2(M, E), we define the ρ-connection Laplacian operator �ρ by

�ρu(x) = 2(n + 2)

νnρn+2

∫
Bρ(x)

(
u(x) − Pxy(u(y))

)
dy, (1.1)

where νn is the volume of the unit ball in R
n , and Bρ(x) is the geodesic ball in M of radius

ρ centered at x ∈ M .
The operator�ρ is nonnegative and self-adjoint with respect to the standard inner product

on L2(M, E). Furthermore, the lower part of the spectrum of �ρ is discrete. We denote by
λ̃k the k-th eigenvalue of�ρ from the discrete part of the spectrum. Denote by� the standard
connection Laplacian of the connection∇, and by λk the k-th eigenvalue of�. Our first result
states that the spectrum of the ρ-connection Laplacian �ρ approximates the spectrum of the
connection Laplacian �.

Theorem 1 There exist constants Cn > 1 and cn, σn ∈ (0, 1], depending only on n, such that
the following holds. Suppose that the absolute value of the sectional curvatures of M and
the norm of the curvature tensor of ∇ are bounded by constants KM and KE , respectively.
Assume that ρ > 0 satisfies

ρ < min
{
rin j (M), cnK

−1/2
M

}
. (1.2)

Then for every k ∈ N+ satisfying λ̃k ≤ σnρ
−2, we have

∣∣̃λ1/2k − λ
1/2
k

∣∣ ≤ (
CnKM + λk

)
λ
1/2
k ρ2 + CnKEρ .
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Remark 1.1 One can track the dependence of cn on n and find that it suffices to assume

sinhn−1 cn
sinn−1 cn

< 2.

Remark 1.2 In the case of E being the trivial bundle, the connection Laplacian is simply the
Laplace-Beltrami operator on functions, and the ρ-connection Laplacian �ρ reduces to an
operator on functions

�ρ f (x) = 2(n + 2)

νnρn+2

∫
Bρ(x)

(
f (x) − f (y)

)
dy.

This operator is the ρ-Laplacian we introduced in [3] up to a normalization adjustment, and
its discretization is the graph Laplacian studied in [2]. In this case, Theorem 1 reduces to the
convergence of the spectra of ρ-Laplacians (on functions) to the spectrum of the Laplace-
Beltrami operator, which is known from Theorem 1 in [2] and Theorem 1.2 in [3].

Now let us turn to the discrete side. We define a discretization of a compact Riemannian
manifold M as follows (see [2]).

Definition 1.3 Let ε � ρ and Xε = {xi }Ni=1 be a finite ε-net in M . The distance function on
Xε is the Riemannian distance d of M restricted onto Xε ×Xε , denoted by d|Xε . Suppose that
Xε is equipped with a discrete measure μ = ∑N

i=1 μiδxi which approximates the volume on
M in the following sense: there exists a partition of M into measurable subsets {Vi }Ni=1 such
that Vi ⊂ Bε(xi ) and vol(Vi ) = μi for every i . Denote this discrete metric-measure space
by 	ε = (Xε, d|Xε , μ), and we write 	 for short.

LetM, E,∇ be defined as before, andwe consider theρ-connectionLaplacian on this discrete
metric-measure space 	, acting on the restriction of the vector bundle E onto Xε . Namely,
let P = {Pxi x j : d(xi , x j ) < ρ} be the parallel transport between points in Xε. We call P a
ρ-connection on the restriction E |Xε . For ū ∈ L2(Xε, E |Xε ), we define

�
ρ
	 ū(xi ) := 2(n + 2)

νnρn+2

∑
d(xi ,x j )<ρ

μ j
(
ū(xi ) − Pxi x j ū(x j )

)
. (1.3)

This operator is known as the graph connection Laplacian. The graph connection Laplacian
is a nonnegative self-adjoint operator of dimension r(E)N with respect to the weighted
discrete L2-inner product, where r(E) is the rank of the vector bundle E . We denote the k-th
eigenvalue of �

ρ
	 by λ̃k(	).

Our second result can be viewed as a discretized version of Theorem 1.

Theorem 2 Suppose that the absolute value of the sectional curvatures of M and the norm
of the curvature tensor of ∇ are bounded by constants KM and KE . Then there exists ρ0 =
ρ0(n, KM , KE ) < rin j (M)/2, such that for any ρ < ρ0, ε < ρ/4, k ≤ r(E)N satisfying
λk < ρ−2/16, we have

∣∣̃λk(	) − λk
∣∣ ≤ Cn,KM

(
ρ + ε

ρ
+ λ

1/2
k ρ

)
λk + Cn,KE

(
ρ + ε

ρ

)
.

For compact Riemannian manifolds without boundary, Theorems 1 and 2 imply the close-
ness between the ρ-connection Laplacian and the graph connection Laplacian in the spectral
sense. In the case of trivial bundles, this gives another proof for the closeness between the
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ρ-Laplacian (on functions) and the graph Laplacian in the spectral sense (as a special case
of Theorem 1.2 in [3]).

This paper is organized as follows. We introduce the general concept of ρ-connection
Laplacians for metric-measure spaces in Sect. 2. In Sect. 3, we focus on the case of smooth
connections on Riemannianmanifolds and prove Theorem 1.We turn to the graph connection
Laplacian in Sect. 4 and prove Theorem 2.

2 General metric-measure setup

Let (X , d) be a metric space and E be an (continuous) Euclidean or Hermitian vector bundle
over X . That is, we have a fiber bundle π : E → X , and each fiber Ex := π−1(x), x ∈ X ,
is a real or complex vector space equipped with an Euclidean or Hermitian inner product
〈 , 〉Ex . When it is clear at which point the inner product is taken, we omit the subscript Ex .

Let ρ > 0 be a small parameter. We denote by X2(ρ) the set of pairs (x, y) ∈ X × X such
that d(x, y) ≤ ρ.

Definition 2.1 A ρ-connection on E is a (Borel measurable) family of uniformly bounded
linear maps Pxy : Ey → Ex , sup(x,y) ‖Pxy‖ < ∞, where (x, y) ranges over X2(ρ). That
is, Pxy transports vectors from Ey to Ex .

A ρ-connection P = {Pxy} is said to be Euclidean (resp. Hermitian) if all maps Pxy are
Euclidean isometries (resp. unitary operators). A ρ-connection P is said to be symmetric, if
Pxy is invertible and P−1

xy = Pyx for all (x, y) ∈ X2(ρ).

Our primary example of ρ-connection is the one associated with a connection ∇ on an
(smooth) Euclidean or Hermitian vector bundle over a Riemannian manifold M . Namely,
there is a parallel transport canonically associated with the connection ∇. Then given two
points x, y ∈ M with d(x, y) ≤ ρ < rin j (M), one can transport vectors from Ey to Ex

along the unique minimizing geodesic [yx].
Now suppose (X , d) is equipped with a measure μ: we are working in a metric-measure

space (X , d, μ). Assume that X is compact and μ(X) < ∞. We denote by L2(X , E) the
space of L2-sections of the vector bundle E .

The following expression u(x) − Pxy(u(y)), where u ∈ L2(X , E) and x, y ∈ X , shows
up frequently. We introduce a short notation for it:

	xy(u) := u(x) − Pxy(u(y)). (2.1)

Note that 	xy(u) is only defined for (x, y) ∈ X2(ρ) and it belongs to Ex .
Let α : X → R+ and β : X2(ρ) → R+ be positive L∞ functions satisfying that α

is bounded away from 0 and β is symmetric: β(x, y) = β(y, x) for all x, y. We define
the ρ-connection Laplacian �

ρ
α,β associated with the ρ-connection P with weights α, β as

follows. First we define an L2-type inner product 〈〈 , 〉〉α on L2(X , E) by

〈〈u, v〉〉α :=
∫
X

α(x)
〈
u(x), v(x)

〉
Ex

dμ(x),

for u, v ∈ L2(X , E), and the associated norm || · ||α is

||u||2α := 〈〈u, u〉〉α =
∫
X

α(x) |u(x)|2 dμ(x).
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Here |u(x)|2 = 〈u(x), u(x)〉 is takenwith respect to the Euclidean orHermitian inner product
in the fiber Ex . Note that the standard inner product on L2(X , E) corresponds to the case
α ≡ 1, in which case the norm is denoted by the usual ‖u‖L2 .

Next we define a symmetric form Dρ
β on L2(X , E) by

Dρ
β (u, v) = 1

2

∫∫
X2(ρ)

β(x, y)
〈
	xy(u), 	xy(v)

〉
Ex

dμ(x)dμ(y). (2.2)

Finally, our Laplacian �
ρ
α,β is the unique operator from L2(X , E) to itself satisfying

〈〈�ρ
α,βu, v〉〉α = Dρ

β (u, v) (2.3)

for all u, v ∈ L2(X , E). In other words, �ρ
α,β is the self-adjoint operator on L2(X , αμ, E)

associated with the quadratic form Dρ
β . Note that the boundedness of Pxy and μ(X) imply

that both Dρ
β and �

ρ
α,β are bounded.

The following proposition gives an explicit formula for �
ρ
α,β .

Proposition 2.2 Assume that X is compact and μ(X) < ∞. Then �
ρ
α,β can be written as

�
ρ
α,βu(x) = 1

2α(x)

∫
Bρ(x)

β(x, y)
(
	xy(u) − P∗

yx	yx (u)
)
dμ(y) , (2.4)

where P∗
xy : Ex → Ey is the operator adjoint to Pxy with respect to the inner products on

the fibers Ex and Ey.
In particular, if the ρ-connection P is Euclidean or Hermitian and is symmetric, then

�
ρ
α,βu(x) = 1

α(x)

∫
Bρ(x)

β(x, y) 	xy(u) dμ(y) . (2.5)

Proof The proof is a straightforward calculation. For brevity, we write dx and dy instead of
dμ(x) and dμ(y). By definitions of Dρ

β and 	xy(v), we have

Dρ
β (u, v) = 1

2

∫∫
X2(ρ)

β(x, y)
〈
	xy(u), v(x) − Pxy(v(y))

〉
dxdy.

Expand it and rewrite the term 〈	xy(u), Pxy(v(y))〉 as follows:
〈
	xy(u), Pxy(v(y))

〉
Ex

= 〈
P∗
xy	xy(u), v(y)

〉
Ey

.

By swapping x, y and using the symmetry of β, one gets∫∫
X2(ρ)

β(x, y)
〈
P∗
xy	xy(u), v(y)

〉
dxdy =

∫∫
X2(ρ)

β(x, y)
〈
P∗
yx	yx (u), v(x)

〉
dxdy.

Substituting the last two formulae into the first one yields

Dρ
β (u, v) = 1

2

∫∫
X2(ρ)

β(x, y)
〈
	xy(u) − P∗

yx	yx (u), v(x))
〉
dxdy

= 1

2

∫
X

α(x)

〈
1

α(x)

∫
Bρ(x)

β(x, y)
(
	xy(u) − P∗

yx	yx (u)
)
dy, v(x)

〉
dx .

The right-hand side of the last formula is the 〈〈 , 〉〉α-product of the right-hand side of (2.4)
and v. This proves (2.4).
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To deduce (2.5), observe that P∗
yx = P−1

yx = Pxy , since P is Euclidean or Hermitian and
is symmetric. Hence by (2.1),

P∗
yx	yx (u) = P−1

yx

(
u(y) − Pyx (u(x))

) = Pxy(u(y)) − u(x) = −	xy(u).

This and (2.4) prove (2.5). ��
Remark 2.3 We can assume that β(x, y) is defined for all pairs (x, y) ∈ X2(ρ) and is equal
to 0 whenever d(x, y) > ρ. This allows us to assume that Pxy is defined for all pairs
(x, y) ∈ X × X . It does not matter how P is extended to pairs x, y with d(x, y) > ρ, since in
this case it will always be multiplied by 0. This allows us to write integration over X rather
than over ρ-balls whenever convenient.

Denote by σ(�
ρ
α,β) the spectrum of �

ρ
α,β and by σess(�

ρ
α,β) the essential spectrum.

Corollary 2.4

σess(�
ρ
α,β) ⊂ [

a(ρ, α, β), ∞)
,

where a(ρ, α, β) = minx∈X 1
2α(x)

∫
X β(x, y)dy.

In particular, if the ρ-connection P is Euclidean or Hermitian and is symmetric, then

σess(�
ρ
α,β) ⊂ [

2a(ρ, α, β), ∞)
.

Proof Due to (2.1) and (2.4), �ρ
α,β is the sum of three operators: the multiplication operator

�1u(x) = 1

2α(x)
u(x)

∫
X

β(x, y) dy,

the operator

�2u(x) = 1

2α(x)

∫
X

β(x, y)P∗
yx Pyxu(x) dy,

and

�3u(x) = 1

2α(x)

∫
X

β(x, y)
(
−Pxy − P∗

yx

)
u(y) dy.

Observe that σ(�1) ⊂ [a(ρ, α, β),∞); while �2, as seen from its quadratic form

〈〈�2u, u〉〉α = 1

2

∫∫
X2(ρ)

β(x, y)〈Pxyu, Pxyu〉dxdy,

is non-negative, and �3 is compact as an operator with bounded kernel, which proves the
first claim. The second claim follows from the same considerations by using the simpler form
(2.5). ��

Examples

In this paper, we only need a few choices for α and β. First observe that the Riemannian ρ-
connection Laplacian (1.1) is obtained by using α(x) = 1 and β(x, y) = 2(n+2)

νnρn+2 if d(x, y) ≤
ρ. Equivalently, one can use α(x) = νnρ

n+2

2(n+2) and β(x, y) = 1 if d(x, y) ≤ ρ. Another
convenient normalization, as seen in [3], is by volumes of ρ-balls: β(x, y) = 1 if d(x, y) ≤ ρ
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Approximations of the connection Laplacian spectra 3191

and α(x) = ρ2μ(Bρ(x)) for all x ∈ X . We call the operator�ρ
α,β with these α, β the volume-

normalized ρ-connection Laplacian.
Note that Laplacians on real-or complex-valued functions are a special case of connection

Laplacians. Namely, for a Riemannian manifold M , one simply considers the trivial bundle
E = M × R or E = M × C equipped with the trivial connection ∇. The sections of the
trivial bundle are functions onM and the connectionLaplacian is simply theLaplace-Beltrami
operator (on functions). Similarly, for a metric-measure space X , one can consider the same
trivial bundle with the trivial ρ-connection defined by Pxy(y, t) = (x, t) for x, y ∈ X and
t ∈ R (or t ∈ C). Then (2.5) boils down to

�
ρ
α,βu(x) = 1

α(x)

∫
Bρ(x)

β(x, y)
(
u(x) − u(y)

)
dμ(y),

where u ∈ L2(X). Such operators are called ρ-Laplacians in [3]. Some analogues of the
results of this paper in the case of Laplacians on functions can be found in [2, 3, 10, 11].

Spectra of�-connection Laplacians

Since �
ρ
α,β is self-adjoint with respect to the L2-compatible inner product 〈〈 , 〉〉α and the

corresponding quadratic form Dρ
β is positive semi-definite, the spectrum of�ρ

α,β is contained
in R≥0.

This spectrum consists of the discrete and essential spectra. It follows from Corollary 2.4
that the essential spectrum has a lower bound in all cases in question. We are only interested
in the part of the spectrum below this bound. We enumerate this part of the spectrum as
follows (cf. Notation 2.1 in [3]).

Notation 2.5 Denote by λ̃∞ = λ̃∞(E, P, ρ, α, β) the infimum of the essential spectrum of
�

ρ
α,β . If the essential spectrum is empty (e.g. if X is a discrete space), we set λ̃∞ = ∞. For

every k ∈ N+, we define λ̃k = λ̃k(E, P, ρ, α, β) ∈ [0,+∞] as follows. Let 0 ≤ λ̃1 ≤ λ̃2 ≤
· · · be the eigenvalues of �

ρ
α,β (counting multiplicities) that are smaller than λ̃∞. If there are

only finitely many of such eigenvalues, we set λ̃k = λ̃∞ for all larger values of k.
We abuse the language and refer to λ̃k(E, P, ρ, α, β) as the k-th eigenvalue of �

ρ
α,β even

though it may be equal to λ̃∞.

By the standard min-max formula, for every k ∈ N+, we have

λ̃k(E, P, ρ, α, β) = inf
dim L=k

sup
u∈L\{0}

(
Dρ

β (u, u)

||u||2α

)
, (2.6)

where the infimum is taken over all k-dimensional linear subspaces L of L2(X , E). We
emphasize that (2.6) holds in both cases of λ̃k < λ̃∞ and λ̃k = λ̃∞.

3 Smooth connections on Riemannianmanifolds

In this section, suppose X = Mn is a compact Riemannian manifold of dimension n without
boundary, and E is a smooth Euclidean (or Hermitian) vector bundle over M equipped with
a smooth Euclidean (or Hermitian) connection ∇. Recall that an Euclidean (resp. Hermitian)
connection is a connection that is compatible with the Euclidean (resp. Hermitian) metric
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on the vector bundle. For a (sufficiently smooth) section u of E , ∇u is a section of the fiber
bundle Hom(T M, E) over M . Here Hom(T M, E) is the fiber bundle over M whose fiber
over x ∈ M is the space Hom(TxM, Ex ) of R-linear maps from TxM to Ex . Note that in
the case when E is a complex fiber bundle, Hom(TxM, Ex ) has a natural complex structure.
The standard (Euclidean or Hermitian) inner product on Hom(TxM, Ex ) is defined by

〈ξ, η〉 =
n∑

i=1

〈ξ(ei ), η(ei )〉Ex

for ξ, η ∈ Hom(TxM, Ex ), where {ei } is an orthonormal basis of TxM . This defines the
standard norm

‖ξ‖2 =
n∑

i=1

|ξ(ei )|2 (3.1)

on fibers and the standard L2-norm on sections of Hom(T M, E).
Let � = ∇∗∇ be the connection Laplacian of ∇ (e.g. [12, Chapter 7.3.2] or [9]). It is

a nonnegative self-adjoint operator acting on H2-sections of E . The corresponding energy
functional is given by

〈�u, u〉L2 = ‖∇u‖2L2

for u ∈ H2(M, E).
Since� is a nonnegative self-adjoint elliptic operator, it has a discrete spectrum 0 ≤ λ1 ≤

λ2 ≤ . . . , and λk → ∞ as k → ∞. The min-max formula for λk takes the form

λk = inf
dim L=k

sup
u∈L\{0}

(‖∇u‖2
L2

‖u‖2
L2

)
(3.2)

where the infimum is taken over all k-dimensional linear subspaces L of H1(M, E). The
goal of this section is to prove that λk are approximated by eigenvalues of a ρ-connection
Laplacian defined below.

Let ρ > 0 be smaller than the injectivity radius of M . Let P = {Pxy} be the ρ-connection
associatedwith the connection∇, which is given by the parallel transport from y to x along the
unique minimizing geodesic [yx]. This particular ρ-connection P is unitary and symmetric
since the connection∇ is Euclidean (or Hermitian). We consider the ρ-connection Laplacian
�ρ = �

ρ
α,β given by (2.5) with α(x) = 1 and β(x, y) = 2(n+2)

νnρn+2 if d(x, y) ≤ ρ. That is,

�ρu(x) = 2(n + 2)

νnρn+2

∫
Bρ(x)

	xy(u) dy. (3.3)

Recall that 	xy(u) is defined in (2.1). Here and later on in this paper, we denote by dx, dy the
integration with respect to the Riemannian volume on M . Denote by λ̃k the k-th eigenvalue
of �ρ (see Notation 2.5).

We introduce a quadratic form Dρ on L2(M, E) by

Dρ(u) =
∫
M

∫
Bρ(x)

|	xy(u)|2 dxdy. (3.4)

Note that for the constant weight β(x, y) = 2(n+2)
νnρn+2 chosen for �ρ , we have

Dρ
β (u, u) = n + 2

νnρn+2 D
ρ(u).
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Hence (2.6) takes the form

λ̃k = n + 2

νnρn+2 inf
dim L=k

sup
u∈L\{0}

(
Dρ(u)

‖u‖2
L2

)
. (3.5)

The rest of this section is a proof of Theorem 1.

3.1 Preparations and notations

For x ∈ M , denote by expx : TxM → M the Riemannian exponential map. We only need
its restriction onto the ρ-ball Bρ(0) ⊂ TxM . For v ∈ TxM , denote by Jx (v) the Jacobian of
expx at v. Let Jmin(r) and Jmax(r) denote the minimum and maximum of Jx (v) over all x, v
with |v| ≤ r . The Rauch Comparison Theorem implies that

(
sin r

r

)n−1

≤ Jmin(r) ≤ 1 ≤ Jmax(r) ≤
(
sinh r

r

)n−1

,

for r < K 1/2
M ρ < cn , see (1.2). In particular,

(1 + CnKMρ2)−1 ≤ Jmin(r) ≤ 1 ≤ Jmax(r) ≤ 1 + CnKMρ2. (3.6)

Moreover, we choose cn to be sufficiently small such that Jmax(r)/Jmin(r) < 2. Later we
will mostly take r = ρ and we denote Jmin := Jmin(ρ), Jmax := Jmax(ρ) for short.

As a consequence of (3.6), Corollary 2.4 implies that

λ̃∞ ≥ 2(n + 2)

νnρn+2 min
x∈M μ(Bρ(x)) ≥ 2(n + 2)

ρ2

1

1 + CnKMρ2 ≥ σnρ
−2, (3.7)

for some constant σn depending only on n due to our choice of ρ in (1.2). This shows that
λ̃∞ is of order ρ−2 in the present case.

Later we use the following well-known inequality. We did not find a precise reference for
it, so we give a short proof here.

Lemma 3.1 Let γs : [0, 1] → M be a smooth family of paths from a fixed point y ∈ M to
x(s), s ∈ [−ε, ε]. Let Pγs (v) be the ∇-parallel transport along γs of v ∈ Ey to Ex(s). Then

∣∣∇s Pγs (v)
∣∣ ≤ |v| · KE · length(γs) · sup

t∈[0,1]

∣∣∣∣dγs(t)

ds

∣∣∣∣ . (3.8)

Proof Let v(t, s) = Pγs [0,t](v), where Pγs [t1,t2] is the ∇-parallel transport along γs from
γs(t1) to γs(t2). Note that Pγs [t1,t2] is a unitary operator.

Observe that ∇t v(t, s) = 0 and thus ∇s∇t v(t, s) = 0. Hence, using the definition of the
curvature operator RE , we see that

∇t∇sv(t, s) = RE

(
dγs(t)

dt
,
dγs(t)

ds

)
v(t, s) ∈ Eγs (t). (3.9)

Estimating the right-hand side yields

|∇t∇sv(t, s)| ≤ |v| · KE ·
∣∣∣∣dγs(t)

dt

∣∣∣∣ · sup
t∈[0,1]

∣∣∣∣dγs(t)

ds

∣∣∣∣ , (3.10)

where we have used the fact that |v(t, s)| = |v| since the parallel transport P is unitary. The
plan is to integrate (3.9) with respect to t . However, the fibers Eγs (t) vary with t . Thus, we
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use Pγs [t,1] to identify them with Ex(s). Recall that by the definition of parallel translations,
for any vector field X along γs , one has

d

dt

(
Pγs [t,1]X(t)

) = Pγs [t,1]
(∇t X(t)

)
.

Note that the vectors under d
dt in this formula lie in the same vector space Ex(s) for all t . We

apply this to X(t) = ∇sv(t, s) and obtain

d

dt

(
Pγs [t,1]∇sv(t, s)

) = Pγs [t,1]
(∇t∇sv(t, s)

)
.

Integrating with respect to t and taking into account that ∇sv(0, s) = 0 yield

∇s Pγs (v) = ∇sv(1, s) =
∫ 1

0
Pγs [t,1]

(∇t∇sv(t, s)
)
dt .

Therefore, using the fact that Pγs [t,1] is unitary, we have

|∇s Pγs (v)| ≤
∫ 1

0

∣∣∇t∇sv(t, s)
∣∣ dt ≤ |v| · KE · sup

t∈[0,1]

∣∣∣∣dγs(t)

ds

∣∣∣∣ ·
∫ 1

0

∣∣∣∣dγs(t)

dt

∣∣∣∣ dt,
where the second inequality follows from (3.10). This formula is exactly (3.8). ��

We need the following elementary fact from the linear algebra (e.g. [2, §2.3]): If S is a
quadratic form on Rn , then

∫
Bρ(0)

S(x) dx = νnρ
n+2

n + 2
trace(S). (3.11)

In the following two subsections, we control the upper and lower bounds for λ̃k by fol-
lowing the method we established in [2].

3.2 Upper bound for ˜�k

Lemma 3.2 For any u ∈ H1(M, E), we have

Dρ(u) ≤ Jmax
νn

n + 2
ρn+2 ‖∇u‖2L2 .

Proof This lemma is similar to Lemma 3.3 in [2] and the proof is essentially the same. We
may assume that u is smooth. By substituting y = expx (v), we have∫

Bρ(x)
|	xy(u)|2 dy =

∫
Bρ(0)⊂Tx M

|	x,expx (v)(u)|2 Jx (v) dv

≤ Jmax

∫
Bρ(0)

|	x,expx (v)(u)|2 dv.

Hence

Dρ(u) ≤ JmaxA, (3.12)

where

A =
∫
M

∫
Bρ(0)⊂Tx M

|	x,expx (v)(u)|2 dvdx .
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Note that the right-hand side is an integral with respect to the Liouville measure on T M . Let
us estimate A.

For every constant-speed minimizing geodesic γ : [0, 1] → M , we have

	γ (0)γ (1) = u(γ (0)) − Pγ (0)γ (1)
(
u(γ (1))

) = −
∫ 1

0

d

dt
Pγ (0)γ (t)

(
u(γ (t))

)
dt,

and

d

dt
Pγ (0)γ (t)

(
u(γ (t))

) = Pγ (0)γ (t)
(∇γ̇ (t)u

)

by the definition of the parallel transport P . Therefore,

|	γ (0)γ (1)| ≤
∫ 1

0

∣∣Pγ (0)γ (t)
(∇γ̇ (t)u

)∣∣ =
∫ 1

0
|∇γ̇ (t)u| dt,

where the last equality is due to P being unitary. Then,

|	γ (0)γ (1)|2 ≤
∫ 1

0
|∇γ̇ (t)u|2 dt . (3.13)

For x ∈ M and v ∈ Bρ(0) ⊂ TxM , denote by γx,v the constant-speed geodesic with the
initial data γx,v(0) = x and γ̇x,v(0) = v. Equivalently, γx,v(t) = expx (tv). Applying (3.13)
to γx,v yields

|	x,expx (v)(u)|2 ≤
∫ 1

0
|∇γ̇x,v(t)u|2 dt .

This and the definition of A imply that

A ≤
∫ 1

0
f (t) dt,

where

f (t) =
∫
M

∫
Bρ(0)⊂Tx M

|∇γ̇x,v(t)u|2 dvdx .

Note that γ̇x,v(t) is the image of v under the time t mapof the geodesic flow. Since the geodesic
flow preserves the Liouville measure and the subset {(x, v) ∈ T M : v ∈ Bρ(0) ⊂ TxM},
f (t) does not depend on t . Hence,

A ≤ f (0) =
∫
M

∫
Bρ(0)⊂Tx M

|∇vu|2 dvdx =
∫
M

νnρ
n+2

n + 2
‖∇u(x)‖2 dx = νnρ

n+2

n + 2
‖∇u‖2L2 ,

where the second equality follows from (3.11). This and (3.12) yield the lemma. ��
The lemma above gives an upper bound for λ̃k .

Proposition 3.3 For every k ∈ N+, we have

λ̃k ≤ Jmaxλk ≤ (1 + CnKMρ2)λk .

Proof The second inequality follows from (3.6). The first one follows immediately from
combining the min-max formulae (3.2) and (3.5) and Lemma 3.2. ��
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3.3 Lower bound for ˜�k

As in [2, Section 5], define ψ : R≥0 → R≥0 by

ψ(t) =
{

n+2
2νn

(1 − t2), 0 ≤ t ≤ 1,

0, t ≥ 1.

The normalization constant n+2
2νn

is chosen so that
∫
Rn ψ(|x |) dx = 1.

We define kρ : M × M → R≥0 by

kρ(x, y) = ρ−nψ
(d(x, y)

ρ

)
, (3.14)

and θ : M → R≥0 by

θ(x) =
∫
M
kρ(x, y) dy =

∫
Bρ(x)

kρ(x, y) dy. (3.15)

(The second identity follows from the fact that kρ(x, y) = 0 if d(x, y) ≥ ρ.)
We need the following estimates on θ :

Jmin ≤ θ(x) ≤ Jmax (3.16)

and

|dxθ | ≤ CnKMρ (3.17)

for all x ∈ M . See [2, Lemma 5.1] for a proof.
Define a convolution operator I : L2(M, E) → C0,1(M, E) by

I u(x) = 1

θ(x)

∫
M
kρ(x, y)Pxy(u(y)) dy = 1

θ(x)

∫
Bρ(x)

kρ(x, y)Pxy(u(y)) dy,

for x ∈ M (compare with [2, Definition 5.2]). We estimate the energy and the L2-norm of
I u in the following two lemmas.

Lemma 3.4 For any u ∈ L2(M, E), we have

‖I u‖2L2 ≥ Jmin

Jmax
‖u‖2L2 − n + 2

2νnρn
Dρ(u).

Proof Consider the weighted ρ-connection Laplacian �
ρ
θ,kρ

defined in Section 2. By (2.5),

�
ρ
θ,kρ

u(x) = 1

θ(x)

∫
Bρ(x)

kρ(x, y)
(
u(x) − Pxy(u(y))

)
dy = u(x) − I u(x).

where the second equality follows from the definition (3.15). Equivalently, I u = u−�
ρ
θ,kρ

u.
Therefore by (2.3),

||I u||2θ = ||u||2θ − 2〈〈�ρ
θ,kρ

u, u〉〉θ + ||�ρ
θ,kρ

u||2θ ≥ ||u||2θ − 2〈〈�ρ
θ,kρ

u, u〉〉θ = ||u||2θ − 2Dρ
kρ

(u, u).

Observe that

Dρ
kρ

(u, u) ≤ 1

2
max
x,y

kρ(x, y) · Dρ(u) ≤ n + 2

4νnρn
Dρ(u).
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Thus

||I u||2θ ≥ ||u||2θ − n + 2

2νnρn
Dρ(u).

Then the lemma follows from the inequality above, Jmax ≥ 1, and the following trivial
estimates:

||I u||2θ ≤ max
x

θ(x) · ‖I u‖2L2 ≤ Jmax‖I u‖2L2 ,

and

||u||2θ ≥ min
x

θ(x) · ‖u‖2L2 ≥ Jmin‖u‖2L2 ,

due to (3.16). ��
Lemma 3.5 For any u ∈ L2(M, E), we have

‖∇ I u‖L2 ≤ (
1 + CnKMρ2)

√
n + 2

νnρn+2 D
ρ(u) + CnKE ρ ‖u‖L2 .

Proof We rewrite the definition of I as

I u(x) =
∫
M
k̃ρ(x, y)Pxy(u(y)) dy, (3.18)

where

k̃ρ(x, y) = θ(x)−1kρ(x, y).

Note that for any x ∈ M , ∫
M
k̃ρ(x, y) dy = 1.

Differentiating this identity, we get∫
M
dx k̃ρ(x, y) dy = 0, (3.19)

where dx denotes the differential with respect to x . Differentiating (3.18) yields

∇ I u(x) = A0(x) + A3(x),

where

A0(x) =
∫
M
dx k̃ρ(x, y) ⊗ Pxy(u(y)) dy =

∫
Bρ(x)

dx k̃ρ(x, y) ⊗ Pxy(u(y)) dy,

and

A3(x) =
∫
M
k̃ρ(x, y)∇Vy,u(x) dy =

∫
Bρ(x)

k̃ρ(x, y)∇Vy,u(x) dy.

In the above, Vy,u(·) is the section of E |Bρ(y) defined by

Vy,u(z) = Pzy(u(y)). (3.20)

For better understanding, observe that ∇Vy,u = 0 if ∇ is a flat connection. In general, we
have an estimate

‖∇Vy,u(x)‖ ≤ CnKE d(x, y) |u(y)| ≤ CnKE ρ |u(y)|,
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where the norm at the left-hand side is defined by (3.1). Indeed, for any unit vectorw ∈ TxM ,
we have

|∇wVy,u(x)| ≤ KE d(x, y) |u(y)| |w| = KE d(x, y) |u(y)|. (3.21)

This follows from Lemma 3.1 applied to u(y) in place of v, and applied to a family of
minimizing geodesics from y to points x(s) where x(0) = x and ẋ(0) = w. Note that due to
the curvature bound SecM ≤ KM , the Rauch comparison theorem implies that supt

∣∣ dγs (t)
ds

∣∣
in (3.8) is attained at t = 1 when ρ satisfies (1.2), see e.g. [13, Chapter 4, Corollary 2.8(1)].

Hence by the Cauchy–Schwarz inequality,

‖A3(x)‖ ≤ CnKEρ

∫
Bρ(x)

k̃ρ(x, y)|u(y)| dy ≤ CnKE ρ1− n
2

(∫
Bρ(x)

|u(y)|2 dy
) 1

2

,

where we used the estimates k̃ρ(x, y) ≤ Cnρ
−n and vol(Bρ(x)) ≤ Cnρ

n due to (3.6). Thus

‖A3‖L2 =
(∫

M
‖A3(x)‖2 dx

) 1
2 ≤ CnKE ρ ‖u‖L2 . (3.22)

Next we turn to A0. Using (3.19),

A0(x) =
∫
Bρ(x)

dx k̃ρ(x, y) ⊗ (
Pxy(u(y)) − u(x)

)
dy = −

∫
Bρ(x)

dx k̃ρ(x, y) ⊗ 	xy(u) dy.

Since dx k̃ρ(x, y) = θ(x)−1dxkρ(x, y)−θ(x)−2dxθ(x)·kρ(x, y), we split A0 into two terms:

A0(x) = A1(x) + A2(x),

where

A1(x) = −θ(x)−1
∫
Bρ(x)

dxkρ(x, y) ⊗ 	xy(u) dy,

and

A2(x) = θ(x)−2dxθ(x) ⊗
∫
Bρ(x)

kρ(x, y)	xy(u) dy.

In view of (3.6), (3.16) and (3.17),

‖A2(x)‖ ≤ CnKMρ1− n
2

(∫
Bρ(x)

|	xy(u)|2 dy
) 1

2

.

This inequality and the definition (3.4) of Dρ(u) yield that

‖A2‖L2 ≤ CnKM ρ1− n
2
√
Dρ(u) = CnKM ρ2

√
1

ρn+2 D
ρ(u) . (3.23)

Now we estimate A1. From the definition of kρ , for w ∈ TxM , we have

dxkρ(x, y) · w = n + 2

νnρn+2 〈exp−1
x (y), w〉
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where 〈 , 〉 is the Riemannian inner product in TxM . Substituting this into the formula for A1

yields

A1(x) · w = −θ(x)−1 n + 2

νnρn+2

∫
Bρ(x)

〈exp−1
x (y), w〉	xy(u) dy.

Using the substitution y = expx (v), we get

A1(x) · w = −θ(x)−1 n + 2

νnρn+2

∫
Bρ(0)⊂Tx M

〈v,w〉ϕ(v)Jx (v) dv, (3.24)

where

ϕ(v) = 	x,expx (v)(u) ∈ Ex .

To proceed we need the following sublemma.

Sublemma For any L2 function f : Rn → R, one has
∣∣∣∣
∫
Bρ(0)⊂Rn

f (v) v dv

∣∣∣∣
2

≤ νnρ
n+2

n + 2

∫
Bρ(0)

f (v)2 dv.

Proof Denote

F =
∫
Bρ(0)⊂Rn

f (v) v dv ∈ R
n .

Let v0 ∈ R
n be the unit vector in the direction of F . Then

|F | = 〈F, v0〉 =
∫
Bρ(0)

f (v)〈v, v0〉 dv.

Therefore

|F |2 ≤
( ∫

Bρ(0)
f (v)2 dv

)( ∫
Bρ(0)

〈v, v0〉2 dv

)
.

Using (3.11), the second integral equals to νnρ
n+2

n+2 . The sublemma follows. ��
We use the sublemma and (3.24) to estimate A1. Fix x ∈ M and an orthonormal basis

ζ1, . . . , ζm ∈ Ex , where m = dim Ex . Then ϕ(v) = ∑
j

(
f j (v) + i g j (v)

)
ζ j for some

functions f j , g j : Bρ(0) → R, j = 1, . . . ,m. Then the formula (3.24) takes the form

A1(x) · w = −θ(x)−1 n + 2

νnρn+2

m∑
j=1

(〈
a j , w

〉 + i
〈
b j , w

〉)
ζ j ,

for any w ∈ TxM , where a j , b j ∈ TxM are given by

a j =
∫
Bρ(0)

f j (v)v Jx (v) dv, b j =
∫
Bρ(0)

g j (v)v Jx (v) dv.

Hence by using (3.1),

‖A1(x)‖2 =
(

θ(x)−1 n + 2

νnρn+2

)2 m∑
j=1

(a2j + b2j ).
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Applying the Sublemma to f j Jx and g j Jx in place of f , we obtain

a2j + b2j ≤ νnρ
n+2

n + 2

∫
Bρ(0)

(
f j (v)2 + g j (v)2

)
Jx (v)2 dv.

Thus,

‖A1(x)‖2 ≤ θ(x)−2 n + 2

νnρn+2

∫
Bρ(0)

|ϕ(v)|2 Jx (v)2 dv

≤ θ(x)−2 n + 2

νnρn+2 Jmax

∫
Bρ(x)

|	xy(u)|2 dy,

wherewe used again the substitution y = expx (v) and the definition ofϕ in the last inequality.
By (3.16) and (3.6), we have θ(x)−2 Jmax ≤ 1 + CnKMρ2. Hence,

‖A1(x)‖2 ≤ (1 + CnKMρ2)
n + 2

νnρn+2

∫
Bρ(x)

|	xy(u)|2 dy.

Integrating over M yields that

‖A1‖L2 ≤ (1 + CnKMρ2)

√
n + 2

νnρn+2 D
ρ(u) . (3.25)

From ∇ I u = A1 + A2 + A3, the lemma follows from (3.25), (3.23), and (3.22). ��
The lower bound for λ̃k is a consequence of Lemma 3.4 and Lemma 3.5.

Proposition 3.6 For every k ∈ N+ satisfying λ̃k ≤ σnρ
−2, we have

λ
1/2
k ≤ (

1 + CnKMρ2 + λ̃kρ
2) λ̃

1/2
k + CnKEρ .

Proof Let u1, . . . , uk ∈ L2(M, E) be the first k eigen-sections of �ρ corresponding to
λ̃1, . . . , λ̃k . Let L̃ be the linear span of u1, . . . , uk . Then L̃ realizes the infimum in the
min-max formula (3.5). Hence for all u ∈ L̃ ,

Dρ(u) ≤ νnρ
n+2

n + 2
λ̃k‖u‖2L2 . (3.26)

This and Lemma 3.4 imply that

‖I u‖2L2 ≥ Jmin

Jmax
‖u‖2L2 − n + 2

2νnρn
Dρ(u) ≥

(
Jmin

Jmax
− 1

2
ρ 2̃λk

)
‖u‖2L2 . (3.27)

For ρ 2̃λk ≤ 1 and Jmin
Jmax

> 1
2 , the left-hand side of the inequality above is positive for all

u ∈ L̃ \ {0}. In particular, I is injective on L̃ .
Define L = I (L̃) ⊂ C0,1(M, E). Since I |L̃ is injective, we have dim L = dim L̃ = k.

Now the min-max formula (3.2), Lemma 3.5 and (3.27) imply that

λ
1/2
k ≤ sup

u∈L\{0}
‖∇u‖L2

‖u‖L2
= sup

u∈L̃\{0}
‖∇ I u‖L2

‖I u‖L2

≤
(1 + CnKMρ2)

√
n+2

νnρn+2 Dρ(u) + CnKE ρ ‖u‖L2

(
Jmin
Jmax

− 1
2ρ

2̃λk

) 1
2 ‖u‖L2

.
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This and (3.26) imply that

λ
1/2
k ≤ (1 + CnKMρ2 )̃λ

1/2
k + CnKE ρ

(
Jmin
Jmax

− 1
2ρ

2̃λk

) 1
2

. (3.28)

Using the Jacobian estimate (3.6), one sees that Jmin
Jmax

≥ 1 − CnKMρ2, which implies that

(
Jmin

Jmax
− 1

2
ρ 2̃λk

)− 1
2 ≤ 1 + CnKMρ2 + λ̃kρ

2.

Then the proposition follows. ��
Proof of Theorem 1 The estimate directly follows from Proposition 3.3 and Proposition 3.6,
after converting all error terms involving λ̃k to λk by using Proposition 3.3. ��

4 Discretization of the connection Laplacian

In this section we prove Theorem 2. Let Mn be a compact, connected Riemannian manifold
of dimension n without boundary, and let E be a smooth Euclidean (or Hermitian) vector
bundle over M equipped with a smooth Euclidean (or Hermitian) connection ∇. Suppose
P = {Pxy} is the ρ-connection given by the parallel transport canonically associated with
the connection ∇. Recall that P is unitary and symmetric. Let 	 = (Xε, d|Xε , μ) (short for
	ε) be the discrete metric-measure space defined in Definition 1.3, where Xε = {xi }Ni=1 is a
finite ε-net in M for ε � ρ. We consider the ρ-connection Laplacian (2.5) on this discrete
metric-measure space 	, acting on the restriction of the vector bundle E onto Xε .

The vector bundle E restricted onto Xε is equipped with the norm

‖ū‖2	 =
N∑
i=1

μi |ū(xi )|2, (4.1)

for ū ∈ L2(Xε, E |Xε ). Choosing the weights α(x) = 1 and β(x, y) = 2(n+2)
νnρn+2 in (2.5) the

same as in the case of smooth connections, the graph connection Laplacian �
ρ
	 is given by

�
ρ
	 ū(xi ) = 2(n + 2)

νnρn+2

∑
d(xi ,x j )<ρ

μ j
(
ū(xi ) − Pxi x j ū(x j )

)
, (4.2)

and its energy (2.2) is given by

‖δū‖2 := n + 2

νnρn+2

∑
i

∑
j :d(xi ,x j )<ρ

μiμ j
∣∣ū(xi ) − Pxi x j ū(x j )

∣∣2. (4.3)

Denote by λ̃k(	) the k-th eigenvalue of �
ρ
	 . Our goal is to prove that λ̃k(	) approximates

the eigenvalue λk of the connection Laplacian � for every k, as ρ + ε
ρ

→ 0. In the light of
what we have already done in Sect. 3, we only need to obtain a few more estimates.

For the upper bound for λ̃k(	), we follow Section 4 in [2] and define the following
discretization operator Q : L2(M, E) → L2(Xε, E |Xε ) by

Qu(xi ) = 1

μi

∫
Vi

Pxi yu(y) dy. (4.4)
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Define an extension operator Q∗ : L2(Xε, E |Xε ) → L2(M, E) by

Q∗ū(y) =
N∑
i=1

Pyxi ū(xi )1Vi (y), (4.5)

where 1Vi denotes the characteristic function of the set Vi . Note that Q ◦Q∗ = I dL2(Xε,E |Xε ).

The energy of Qu for u ∈ L2(M, E) is given by

‖δ(Qu)‖2 = n + 2

νnρn+2

∑
i

∑
j :d(xi ,x j )<ρ

μiμ j
∣∣Qu(xi ) − Pxi x j Qu(x j )

∣∣2. (4.6)

To control the upper bound for λ̃k(	), we need to estimate ‖Qu‖	 and ‖δ(Qu)‖. We start
with the following lemma as an application of Lemma 3.1.

Lemma 4.1 Let ρ < rin j (M)/2, ε < ρ/4, and xi , x j , y, z ∈ M be given satisfying
d(xi , x j ) < ρ, d(y, xi ) < ε, d(z, x j ) < ε. Then for any v ∈ Ez, we have∣∣Pyxi Pxi zv − Pyzv

∣∣ ≤ KE (ρ + 2ε)ε|v|,
and ∣∣Pyxi Pxi x j Px j zv − Pyzv

∣∣ ≤ 2KE (ρ + 2ε)ε|v|.
Proof Let Vz,v(x) = Pxz(v), and let γy,xi : [0, d(y, xi )] → M be the unique minimizing
geodesic from y to xi with arclength parametrization. By definition,

∇sVz,v
(
γy,xi (s)

) = lim
s′→0

Ps,s+s′Vz,v
(
γy,xi (s + s′)

) − Vz,v
(
γy,xi (s)

)
s′ ,

where Ps,s+s′ denotes the parallel transport from γy,xi (s + s′) to γy,xi (s) along the geodesic
γy,xi . Apply P0,s to both sides:

P0,s
(
∇sVz,v

(
γy,xi (s)

)) = lim
s′→0

P0,s+s′Vz,v
(
γy,xi (s + s′)

) − P0,sVz,v
(
γy,xi (s)

)
s′ .

Observe that P0,·Vz,v
(
γy,xi (·)

)
is a curve in Ey . Since P is unitary, the formula above shows

that the tangent vectors of this Ey-curve have lengths bounded by KE (ρ + 2ε)|v| due to
(3.21). Thus,

∣∣Pyxi Vz,v(xi ) − Vz,v(y)
∣∣ =

∣∣∣
∫ d(xi ,y)

0
P0,s

(
∇sVz,v

(
γy,xi (s)

))
ds

∣∣∣ ≤ KE (ρ + 2ε)ε|v|.

Then the first conclusion directly follows from the definition Vz,v(x) = Pxz(v).
The second conclusion can be derived using the first conclusion. Namely, we apply the

first conclusion with x j , z, y in place of y, xi , z, and Pyzv in place of v:∣∣Px j z Pzy(Pyzv) − Px j y(Pyzv)
∣∣ ≤ KE (ρ + 2ε)ε|Pyzv| = KE (ρ + 2ε)ε|v|.

Since P is symmetric and unitary, the inequality above is equivalent to∣∣Pyx j Px j zv − Pyzv
∣∣ ≤ KE (ρ + 2ε)ε|v|. (4.7)

Applying the first conclusion with y, xi , x j in place of y, xi , z, and Px j zv in place of v gives
∣∣Pyxi Pxi x j (Px j zv) − Pyx j (Px j zv)

∣∣ ≤ KE (ρ + 2ε)ε|Px j zv| = KE (ρ + 2ε)ε|v|. (4.8)

Thus the second conclusion follows from (4.7), (4.8) and the triangle inequality. ��
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The following two lemmas enable us to obtain an upper bound for λ̃k(	).

Lemma 4.2 For any u ∈ L2(M, E), we have

∣∣‖u‖L2 − ‖Qu‖	

∣∣2 ≤ C

νn(ρ − ε)n
Dρ(u) + CK 2

Eρ4‖u‖2L2 .

Proof Observe that Q∗ preserves the norms. Hence,∣∣‖u‖L2 − ‖Qu‖	

∣∣ = ∣∣‖u‖L2 − ‖Q∗Qu‖L2

∣∣ ≤ ‖u − Q∗Qu‖L2 .

By the definitions of Q and Q∗,

‖u − Q∗Qu‖2L2 =
N∑
i=1

∫
Vi

∣∣u(x) − Pxxi Qu(xi )
∣∣2dx

=
N∑
i=1

∫
Vi

∣∣∣u(x) − 1

μi

∫
Vi

Pxxi Pxi yu(y) dy
∣∣∣2dx .

By the Cauchy-Schwarz inequality, we have

‖u − Q∗Qu‖2L2 ≤
N∑
i=1

1

μi

∫
Vi

∫
Vi

∣∣u(x) − Pxxi Pxi yu(y)
∣∣2dxdy.

Since Vi ⊂ Bε(xi ), then Lemma 4.1 yields that

‖u − Q∗Qu‖2L2 ≤
N∑
i=1

1

μi

∫
Vi

∫
Vi

(|u(x) − Pxyu(y)| + 2KEε2|u(y)|)2dxdy.

To deal with the first term, we follow the proof of Lemma 3.4 in [2]. We fix x, y ∈ Vi and
consider the setU = Bρ(x)∩Bρ(y). Observe thatU contains the ball of radius ρ−|xy|/2 ≥
ρ − ε centered at the midpoint between x and y. Hence we have vol(U ) ≥ Cνn(ρ − ε)n by
(3.6). Recall that P is unitary and symmetric. Then for every z ∈ U , we have

|u(x) − Pxyu(y)| ≤ |u(x) − Pxzu(z)| + |Pxzu(z) − Pxyu(y)|
= |u(x) − Pxzu(z)| + |u(z) − Pzx Pxyu(y)|
≤ |u(x) − Pxzu(z)| + |u(z) − Pzyu(y)| + KEρ2|u(y)|,

where we applied Lemma 4.1 in the last inequality. Then

|u(x) − Pxyu(y)|2 ≤ C

vol(U )

∫
U

(
|u(x) − Pxzu(z)|2 + |u(y) − Pyzu(z)|2 + K 2

Eρ4|u(y)|2
)
dz

≤ C

vol(U )

(
F(x) + F(y)

) + CK 2
Eρ4|u(y)|2,

where F(x) = ∫
Bρ(x) |u(x) − Pxzu(z)|2dz. Hence by definition (3.4), we obtain

‖u − Q∗Qu‖2L2 ≤
N∑
i=1

C

μi

∫
Vi

∫
Vi

1

vol(U )

(
F(x) + F(y)

)
dxdy + CK 2

Eρ4‖u‖2L2

= C

vol(U )
Dρ(u) + CK 2

Eρ4‖u‖2L2 ≤ C

νn(ρ − ε)n
Dρ(u) + CK 2

Eρ4‖u‖2L2 .

��
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Lemma 4.3 For any u ∈ L2(M, E), we have

‖δ(Qu)‖2 ≤ n + 2

νnρn+2 (1 + 4ρ2)Dρ+2ε(u) + CnK
2
E (

ε

ρ
)2‖u‖2L2 .

Proof The definition of Q yields that

Qu(xi ) − Pxi x j Qu(x j ) = 1

μiμ j

∫
Vi

∫
Vj

(
Pxi yu(y) − Pxi x j Px j zu(z)

)
dydz.

Then by the Cauchy-Schwarz inequality and the fact that P is unitary and symmetric,

∣∣Qu(xi ) − Pxi x j Qu(x j )
∣∣2 ≤ 1

μiμ j

∫
Vi

∫
Vj

∣∣Pxi yu(y) − Pxi x j Px j zu(z)
∣∣2dydz

= 1

μiμ j

∫
Vi

∫
Vj

∣∣u(y) − Pyxi Pxi x j Px j zu(z)
∣∣2dydz.

The parallel transport appeared in the quantity above goes through the path [zx j xi y], while
what we need is to go through the minimizing geodesic [zy]. Thus (4.6) and Lemma 4.1
imply that

‖δ(Qu)‖2 ≤ n + 2

νnρn+2

∑
i

∑
j :d(xi ,x j )<ρ

∫
Vi

∫
Vj

∣∣u(y) − Pyxi Pxi x j Px j zu(z)
∣∣2dydz

≤ n + 2

νnρn+2

∑
i

∑
j :d(xi ,x j )<ρ

∫
Vi

∫
Vj

(|u(y) − Pyzu(z)| + 4KEρε|u(z)|)2dydz

≤ n + 2

νnρn+2

∑
i

∑
j :d(xi ,x j )<ρ

∫
Vi

∫
Vj

(
(1 + 4ρ2)|u(y) − Pyzu(z)|2 + CK 2

Eε2|u(z)|2
)
dydz.

Here the last inequality above used the inequality that

2KEρε|u(z)| · |u(y) − Pyzu(z)| ≤ ρ2|u(y) − Pyzu(z)|2 + K 2
Eε2|u(z)|2.

Since
⋃

j :d(xi ,x j )<ρ Vj ⊂ Bρ+2ε(y) for y ∈ Vi , we have

‖δ(Qu)‖2 ≤ n + 2

νnρn+2 (1 + 4ρ2)

∫
M

∫
Bρ+2ε(y)

|u(y) − Pyzu(z)|2dydz + CnK
2
E

ε2(ρ + 2ε)n

ρn+2 ‖u‖2L2

≤ n + 2

νnρn+2 (1 + 4ρ2)Dρ+2ε(u) + CnK
2
E (

ε

ρ
)2‖u‖2L2 .

��

The lower bound for λ̃k(	) almost immediately follows from Lemmas 3.4 and 3.5, since
these two lemmas hold for any L2 section. For any ū ∈ L2(Xε, E |Xε ), we consider Q

∗ū ∈
L2(M, E) and apply those two lemmas to Q∗ū. Recall that ‖Q∗ū‖2

L2 = ‖ū‖2	 . The only part
left is to estimate Dρ(Q∗ū) in terms of ‖δū‖2.

Lemma 4.4 For any ū ∈ L2(Xε, E |Xε ), we have

Dρ−2ε(Q∗ū) ≤ νnρ
n+2

n + 2
(1 + 4ρ2)‖δū‖2 + CnK

2
Eε2(ρ + ε)n‖ū‖2	.
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Proof Since Bρ−2ε(y) ⊂ ⋃
j :d(xi ,x j )<ρ Vj for y ∈ Vi , we have

Dρ−2ε(Q∗ū) =
∫
M

∫
Bρ−2ε(y)

|Q∗ū(y) − PyzQ
∗ū(z)|2dzdy

≤
∑
i

∑
j :d(xi ,x j )<ρ

∫
Vi

∫
Vj

|Q∗ū(y) − PyzQ
∗ū(z)|2dzdy.

By the definition of Q∗, for any y ∈ Vi , z ∈ Vj ,

Q∗ū(y) − PyzQ
∗ū(z) = Pyxi ū(xi ) − Pyz Pzx j ū(x j ).

Since P is unitary and symmetric, Lemma 4.1 implies that
∣∣Q∗ū(y) − PyzQ

∗ū(z)
∣∣2 = ∣∣ū(xi ) − Pxi y Pyz Pzx j ū(x j )

∣∣2
≤ (|ū(xi ) − Pxi x j ū(x j )| + 4KEρε|ū(x j )|

)2
≤ (1 + 4ρ2)

∣∣ū(xi ) − Pxi x j ū(x j )
∣∣2 + CK 2

Eε2|ū(x j )|2.
Integrating the last inequality over Vi , Vj , by definition (4.3), we obtain

Dρ−2ε(Q∗ū) ≤ (1 + 4ρ2)
∑
i, j

μiμ j
∣∣ū(xi ) − Pxi x j ū(x j )

∣∣2 + CK 2
Eε2

∑
i, j

μiμ j |ū(x j )|2

≤ νnρ
n+2

n + 2
(1 + 4ρ2)‖δū‖2 + CnK

2
Eε2(ρ + ε)n‖ū‖2	,

where the last inequality used the fact that
∑

i :d(xi ,x j )<ρ μi ≤ vol(Bρ+ε(x j )). ��

Proof of Theorem 2 The upper bound for λ̃k(	) follows from Lemmas 4.2, 4.3 and 3.2. The
lower bound follows from Lemmas 4.4, 3.4 and 3.5. The calculations are straightforward,
similar to Proposition 3.6. ��
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