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Abstract
Using the theory of totally real number fields we construct a new class of compact com-
plex non-Kähler manifolds in every even complex dimension and study their analytic and
geometric properties.

Mathematics Subject Classification 32J18 · 32M25

1 Introduction

In this paper we construct a new class of compact complex non-Kähler manifolds in every
complex dimension n = 2d, d ≥ 1, and investigate their complex analytic and topological
properties.

Using totally real number fields we construct first 4d-dimensional real solvable Lie groups
G admitting irreducible cocompact discrete subgroups �. This method works in general to
produce real solv-manifolds. Next we show that these Lie groups admit left invariant complex
structures. The left quotient X := �\G is then a compact complex manifold. In the case
d = 1, one recovers the Inoue surfaces noted S(+)

N in the famous paper [4], whose extension
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to higher dimensions had remained open since 1974. In 2005, Inoue surfaces of type SM
were generalized in [6].

In the following sections we prove that the identity component of the holomorphic auto-
morphism group Aut0(X) is isomorphic to (C∗)d and that the whole group Aut(X) has
infinitely many components if d ≥ 2.

The action of (C∗)d is free, induces a holomorphic foliation F which is transversely
hyperbolic, and is preserved by the whole automorphism group. If d = 2, the restriction of
certain automorphisms of X to the tangent bundle TF has an Anosov property in the sense
that this bundle splits transversely into a stable and an unstable subbundle.

Furthermore we determine some topological invariants, prove that X is non-Kähler and
show that the algebraic dimension is zero.

Open questions are whether some of the here constructed manifolds are locally confor-
mally Kähler, whether they admit proper complex subvarieties, as well as whether they admit
Anosov diffeomorphisms relative to F also for d ≥ 3.

2 The construction

In this section we explain in detail the construction of a new class of compact complex
manifolds. In the first two subsections we collect for the reader’s convenience a number of
well-known facts about simply-connected nilpotent Lie groups, their rational structures and
cocompact discrete subgroups, and the free 2-step nilpotent Lie algebra. In Sect. 2.3 we
shall see how particular totally real number fields K allow the construction of irreducible
rational structures on the d-fold product N of the three-dimensional real Heisenberg group.
Then we extend N by an Abelian group in such a way that the corresponding solvable group
possesses a cocompact discrete subgroup associated with the group of algebraic units in K ,
see Sect. 2.4. Finally, we show that the so obtained solv-manifolds carry a complex structure,
which completes our construction.

2.1 Cocompact discrete subgroups of nilpotent Lie groups

In this section we recall some facts related to cocompact discrete subgroups of simply-
connected nilpotent Lie groups. For proofs and more details we refer the reader to [7,
Chapter II].

Let N be a simply-connected nilpotent real Lie group with Lie algebra n. A rational
structure on N consists of a rational subalgebranQ ofn such thatnQ⊗QR ∼= n. Equivalently, a
rational structure on N is given by a basisB = (ξ1, . . . , ξn)ofn such that for all 1 ≤ k < l ≤ n
the coordinates of [ξk, ξl ] with respect to B, i.e., the structure constants of n with respect to
B, are rational.

Two rational structures on N are called isomorphic if the corresponding rational Lie
algebras are isomorphic. A rational structure on N is called irreducible if nQ is not isomorphic
to the direct sum of two non-trivial ideals.

Remark There are simply-connected nilpotent Lie groups N that do not admit any rational
structure. It is also possible that N possesses several non-isomorphic rational structures, see
[7, Remarks 2.14 and 2.15].

In order to explain howa rational structure on N yields cocompact discrete subgroups of N ,
we restate [7,Theorem2.12] for the reader’s convenience.Let� ⊂ nbe any lattice ofmaximal
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rank contained in nQ. Then the group � generated by exp(�) in N is a cocompact discrete
subgroup of N . Any two discrete subgroups associated with the same rational structure are
commensurable. Conversely, if � ⊂ N is a cocompact discrete subgroup, then the Z-span
of exp−1(�) in n is a lattice of maximal rank in n and any basis of n contained in this lattice
defines a rational structure on N . If˜� is commensurable with �, then the associated rational
structures are isomorphic.

Remark It follows from the preceding considerations that the rational structure on N is irre-
ducible, if and only if the associated cocompact discrete subgroup of N is not commensurable
to the direct product of two non-trivial normal subgroups.

2.2 The free 2-step nilpotent Lie algebra

Let V be a 2d-dimensional real vector space and let
∧2 V denote its exterior algebra. On the

vector space V ⊕∧2 V we define a Lie bracket by
[

(v, α), (w, β)
] := (0, v ∧ w).

The resulting Lie algebra is the free 2-step nilpotent Lie algebra f2d of dimension 2d + ( 2d2
)

= 2d2 + d . We have

W :=
2
∧

V = f′2d = Z(f2d),

where Z(f2d) denotes the center of f2d .
Let F2d be the simply-connected nilpotent Lie group with Lie algebra f2d .

Example The Lie algebra f2 is isomorphic to the 3-dimensional Heisenberg algebra h3. An
explicit isomorphism is given by

h3 → f2,

⎛

⎝

0 x z
0 0 y
0 0 0

⎞

⎠ �→ (xe1 + ye2, ze1 ∧ e2) ∈ R
2 ⊕

2
∧

R
2.

On the group level, one can realize the 3-dimensional Heisenberg group as

H3 :=
⎧

⎨

⎩

⎛

⎝

1 x z
0 1 y
0 0 1

⎞

⎠ ; x, y, z ∈ R

⎫

⎬

⎭

.

The map
⎛

⎝

1 x z
0 1 y
0 0 1

⎞

⎠ �→
(

x, y, z − xy

2

)

yields an explicit isomorphism with the realization of the Heisenberg group as the free
nilpotent group F2, with group structure given by

(x, y, z)(x̃, ỹ, z̃) =
(

x + x̃, y + ỹ, z + z̃ + 1

2
(x ỹ − x̃ y)

)

.

We shall therefore use in the sequel H3 as a model for F2.
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The choice of any basis of V leads to a rational structure on F2d as follows. Let
(e1, . . . , e2d) be a basis of V and put fk,l := [ek, el ]. Then

(e1, . . . , e2d , f1,2, f1,3, . . . , f2d−1,2d)

is a basis of f2d with respect to which the structure constants of f2d are rational. As explained
above, this procedure yields cocompact discrete subgroups of F2d .

2.3 Rational structures associated with totally real number fields

Let Q ⊂ K be a field extension of degree 2d , d ≥ 1, and letOK ⊂ K be its ring of algebraic
integers. Choose elements ω1, . . . , ω2d ∈ OK such that

OK ∼= Zω1 ⊕ · · · ⊕ Zω2d

as Z-modules.
We suppose that K is totally real, i.e., that all 2d embeddings σ1, . . . , σ2d : K → R ⊂ C

are real and consider the map σ : K → V := R
2d given by σ(x) = (σ1(x), . . . , σ2d(x)

)

. It
follows that �K := σ(OK ) ⊂ V is a lattice of maximal rank generated by ek := σ(ωk) for
1 ≤ k ≤ 2d .

Now, as mentioned above, the basis B = (e1, . . . , e2d
)

of V yields the basis

˜B = (e1, . . . , e2d , f1,2, f1,3, . . . , f2d−1,2d)

of f2d and induces therefore a rational structure on F2d . In the following, (f2d)Q always
denotes the corresponding rational Lie algebra.

Let O∗
K be the (multiplicative) group of units inOK . We say that a unit u ∈ O∗

K is totally
positive if σ j (u) > 0 for all 1 ≤ j ≤ 2d , and we write O∗,+

K for the group of totally positive
units. Due to Dirichlet’s theorem, the group O∗,+

K is isomorphic to Z
2d−1.

The group O∗,+
K acts on �K as a group of Z-module automorphisms via

u · σ(x) := σ(ux).

Extending σ(x) �→ σ(ux) to an R-linear map ρ(u) : V → V we obtain a representation

ρ : O∗,+
K → SL(V ).

Note that we have det ρ(u) = 1 for all u ∈ O∗,+
K since the eigenvalues of ρ(u) are the

conjugates λk = σk(u), k = 1, . . . , 2d , of u and thus all positive.

Remark Every element of GL(V ) extends uniquely to an automorphism of the Lie algebra
f2d . If the matrix of an element in GL(V ) with respect to B has rational coefficients, we
obtain an automorphism of (f2d)Q.

Note that by construction the matrix of ρ(u) with respect to B lies in SL(2d, Z) for every
u ∈ O∗,+

K . Hence, ρ(O∗,+
K ) is a discrete subgroup of SL(V ). Furthermore, ρ(u) induces an

automorphism of f2d that leaves (f2d)Q invariant. We will denote this automorphism of f2d
as well as its restriction to (f2d)Q by ρ̂(u), where ρ̂ : O∗,+

K → Aut
(

(f2d)Q)
)

. Clearly, ρ̂(u)

respects the decomposition

(f2d)Q = VQ ⊕ WQ

and the eigenvalues of the restriction of ρ̂(u) to WQ are the products σk(u)σl(u) = λkλl ,
1 ≤ k < l ≤ 2d .
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We formulate the following lemma in our setting, but it remains also valid in a more
general form. Its proof is a slight adaptation of the proof of [1, Proposition 2.1.4].

Lemma 2.1 The set of all endomorphisms ρ(u) of VQ, u ∈ O∗
K is simultaneously diagonal-

izable over the Galois closure L of K .

Proof Since the number field K is totally real, there is a primitive unit u0 ∈ O∗,+, see e.g. [9,
Theorem 1.4]. Note that VQ and K are isomorphic as rational vector spaces and that ρ(u0)
corresponds to multiplication by u0. It follows that the characteristic polynomial of ρ(u0)
coincides with the minimal polynomial of u0. Hence, ρ(u0) is diagonalizable over L and
each of its eigenvalues has multiplicity 1. Since the groupO∗,+ is Abelian, it stabilizes every
eigenspace, which proves the claim. ��

In order to proceed with the construction, we need the following lemma which was com-
municated to us with proof by Professor A. Dubickas. Recall that a unit u ∈ O∗,+

K is called
reciprocal if u and u−1 are conjugate, i.e., have the same minimal polynomial, which then
is palindromic. Moreover, u is primitive if K = Q(u).

Lemma 2.2 For every d ≥ 1 there exist totally real number fields of degree 2d which admit
primitive reciprocal units.

Proof Let α be a totally real algebraic integer of degree d and denote its minimal polynomial
by P(X). Let L be an integer so large that for each of the d roots α j , j = 1, . . . , d , of P(X)

we have L+α j > 2. Consider then the polynomial Q(X) = P(X+ 1
X −L)Xd . It is clear that

Q is a monic palindromic polynomial of degree 2d with 2d real roots, since (L + α j )
2 > 4,

j = 1, . . . , d . Furthermore, for a generic choice of L , the polynomial Q is irreducible and
its roots are totally real reciprocal units of degree 2d . ��

From now on we suppose that there exists a primitive reciprocal unit u0 ∈ O∗,+
K . In other

words, we suppose that u0 and u−1
0 are conjugate, as well as K = Q(u0).

Proposition 2.3 Let u0 ∈ O∗,+
K be a primitive reciprocal unit. Then there exists a ρ̂(u0)-

invariant rational decomposition

WQ = (W1)Q ⊕ (W2)Q

where W1 is the d-dimensional subspace of ρ̂(u0)-fixed points in W.

Proof Since the characteristic polynomial of ρ(u0) is palindromic, we can arrange the eigen-
values λ1, . . . , λ2d of ρ(u0) such that λ2k = λ−1

2k−1 for all 1 ≤ k ≤ d . Since the restriction of
ρ̂(u0) toW is diagonalizable with eigenvalues λkλl for 1 ≤ k < l ≤ 2d , we see that the sub-
spaceW1 of ρ̂(u0)-fixed points is of dimension d . Moreover, it follows that the characteristic
polynomial of ρ̂(u0)|W is divisible by (x−1)d inZ[x]. This gives the desired decomposition
of WQ into two ρ̂(u0)-stable rational subspaces, see [5, Theorem XI.4.1]. ��

Let us consider the rational Lie algebra

nQ := (f2d)Q/(W2)Q.

In the following we will view nQ as VQ ⊕ (WQ/(W2)Q
)

. Note that WQ/(W2)Q coincides
with the center of nQ.

Proposition 2.4 We have n := nQ⊗R ∼= hd3 , i.e., the construction yields a rational structure
on N := Hd

3 . Moreover, this rational structure on N is irreducible.
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Proof Let (v1, . . . , v2d) be a basis of V such that ρ(u0)v2 j−1 = λ jv2 j−1 and ρ(u0)v2 j
= λ−1

j v2 j for all 1 ≤ j ≤ d . Set w j := [v2 j−1, v2 j ], j = 1, . . . , d . Then

Rv2 j−1 ⊕ Rv2 j ⊕ Rw j , j = 1, . . . , d,

is a subalgebra of f2d isomorphic to h3 which intersectsW2 trivially. Using the decomposition
established in Proposition 2.3, one sees that these subalgebras commute pairwisemoduloW2,
which proves the first claim.

In order to show that the rational structure on N is irreducible, suppose that we have a
decomposition nQ = aQ ⊕ bQ where aQ and bQ are non-trivial ideals of nQ. Then we have
n = hd3 = a ⊕ b for a = aQ ⊗Q R and b = bQ ⊗Q R.

If an ideal of n contains an element of the form

ξ =
d
∑

j=1

(

κ jv2 j−1 + μ jv2 j + ν jw j
)

with (κ j0 , μ j0) �= (0, 0), then this ideal contains also w j0 . Define

Ja :=
⎧

⎨

⎩

1 ≤ j0 ≤ d; ∃ ξ =
d
∑

j=1

(

κ jv2 j−1 + μ jv2 j + ν jw j
) ∈ a with (κ j0 , μ j0) �= (0, 0)

⎫

⎬

⎭

and similarly Jb. Sincen = a⊕b, the preceding observation implies that Ja∪Jb = {1, . . . , d}
and that this union is disjoint. Therefore, we can suppose that Ja = {1, . . . , k} and hence get

π(a) =
k
⊕

j=1

(Rv2 j−1 ⊕ Rv2 j ) and π(b) =
d
⊕

j=k+1

(Rv2 j−1 ⊕ Rv2 j ),

where π : hd3 → V is the projection along the center of hd3 .
Since π(a) and π(b) are invariant under ρ(u0) and since π is defined over Q, we obtain

the corresponding rational decomposition VQ = π(aQ) ⊕ π(bQ) into two rational ρ(u0)-
invariant subspaces. Now the claim follows from the fact that the characteristic polynomial
of ρ(u0) is irreducible over Q. ��

As explained in Sect. 2.1 we can now define a cocompact discrete subgroup of N as
follows.

Definition 2.5 Let ̂�K ⊂ V ⊕ W/W2 be the full lattice generated by σ(ωk) ∈ V for 1 ≤
k ≤ 2d and the images of fkl = [σ(ωk), σ (ωl)

]

, k < l in WQ/(W2)Q for 1 ≤ k < l ≤ 2d .
We define �N to be the discrete cocompact subgroup generated by exp(̂�K ) ⊂ N .

Remark Due to Proposition 2.4, the group �N is not commensurable to the product of two
proper normal subgroups.

2.4 Solv-manifolds associated with totally real number fields

In this subsection, we construct an extension of N by an Abelian group which admits a
cocompact discrete subgroup containing �N .

Recall that O∗,+
K can be considered as a discrete Abelian subgroup of SL(2d, R) which

leaves the lattice �K ⊂ VQ invariant. Moreover, its action extends to V ⊕ W leaving WQ

invariant.
Now we have
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Proposition 2.6 The group O∗,+
K respects the decomposition WQ = (W1)Q ⊕ (W2)Q.

Consequently, every u ∈ O∗,+
K acts on nQ by an automorphism ρn(u).

Proof Due to Lemma 2.1, the transformations ρ(u) ∈ End(V ) with u ∈ O∗,+
K are simulta-

neously diagonalizable. Thus the same holds for the transformations ρ̂(u) ∈ GL(V ⊕ W ).
The claim follows from the fact that W1 and W2 are direct sums of eigenspaces for ρ̂(u0).
In fact, W1 is the eigenspace corresponding to the eigenvalue 1 and W2 is a direct sum of
eigenspaces with eigenvalues not equal to 1. ��

SinceO∗,+
K acts onnQ by automorphisms, it respects the decompositionnQ = VQ⊕Z(nQ)

where Z(nQ) ∼= (W1)Q as rational vector spaces. Consider the homomorphism

ψ : O∗,+
K → SL

(Z(nQ)
)

, ψ(u) := ρn(u)|Z(nQ).

Note that by construction we have u0 ∈ ker(ψ).

Proposition 2.7 The subgroup ker(ψ) ⊂ O∗,+
K has rank d, hence is isomorphic to Z

d , and
consists of reciprocal units in O∗,+

K .

Proof Let Tn denote the group of diagonal matrices in SL(n, R) having strictly positive
entries.

Due to Lemma 2.1, there exists an element g0 ∈ SL(2d, R) such that g0O∗,+
K g−1

0 is
a discrete subgroup of T2d . Every element g−1

0 diag(t1, . . . , t2d)g0 of ˜A := g−1
0 T2dg0

induces a linear transformation on W1 that is again diagonalizable with eigenvalues
(t1t2, t3t4, . . . , t2d−1t2d). This yields a homomorphism ̂ψ : ˜A → SL(d, R) which extends ψ

and whose image is conjugate to a subgroup of Td .
According to Dirichlet’s theorem, we can view ψ as a homomorphism from Z

2d−1 to
SL(d, Z). In particular, the image ofψ is conjugate to a discrete subgroup of Td and therefore
has rank at most d − 1. This implies that the rank of ker(ψ) is at least d .

The Lie algebra ã of ˜A is conjugate to the set of trace zero diagonal matrices, hence ã ∼=
R
2d−1. The derivative of ̂ψ : ˜A → SL(d, R) can be identified with the map R

2d−1 → R
d−1

given by

(x1, . . . , x2d) �→ (x1 + x2, x3 + x4, . . . , x2d−1 + x2d),

wherewe suppose that x1+· · ·+x2d = 0. Since thismap is surjective, its kernel is isomorphic
toR

d , which implies that the discrete subgroup ker(ψ) ⊂ A := ker(̂ψ) is of rank at most d .��
Let us summarize our construction.We have seen that we can viewO∗,+

K
∼= Z

2d−1 as a dis-
crete subgroup of SL(2d, R) that normalizes �N . The identity component of its real Zariski
closure is ˜A ∼= (R>0)2d−1 in SL(2, R), the elements of which are simultaneously diagonaliz-
able. Moreover, the identity component of the real Zariski closure of �A := ker(ψ) ∼= Z

d is

A ∼= {(a1, b1, . . . , ad , bd) ∈ (R>0)2d ; a1b1 = · · · = adbd = 1
} ∼= (R>0)d .

Consequently, �A acts on �N and we obtain the solvable discrete subgroup � := �A � �N

which is cocompact in A � N ∼= (R>0)d � N and Zariski dense in (R∗)d � N .
Since for a, b ∈ R

>0 and x, y, z ∈ R we have
⎛

⎝

ab 0 0
0 b 0
0 0 1

⎞

⎠

⎛

⎝

1 x z
0 1 y
0 0 1

⎞

⎠

⎛

⎝

a−1b−1 0 0
0 b−1 0
0 0 1

⎞

⎠ =
⎛

⎝

1 ax abz
0 1 by
0 0 1

⎞

⎠ ,
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one can realise the Lie group ˜G := ˜A � N ∼= (R>0)2d−1
� N as a matrix group

isomorphic to
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

⎛

⎜

⎜

⎜

⎝

M1 0 · · · 0
0 M2 · · · 0
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · Md

⎞

⎟

⎟

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

∣

∣

Mi =
⎛

⎝

ai bi xi zi
0 bi yi
0 0 1

⎞

⎠ , ai , bi ∈ R
>0, xi , yi , zi ∈ R, i = 1, . . . , d

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

.

Under this isomorphism the group O∗,+
K corresponds to

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

⎛

⎜

⎜

⎜

⎝

D1 0 · · · 0
0 D2 · · · 0
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · Dd

⎞

⎟

⎟

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

∣

∣

Di =
⎛

⎝

σ2i−1(u)σ2i (u) 0 0
0 σ2i (u) 0
0 0 1

⎞

⎠ , i = 1, . . . , d, u ∈ O∗,+
K

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

.

Furthermore G := A � N ∼= (R>0)d � N is the subgroup of ˜G := ˜A � N given by the
equations aibi = 1, i = 1, . . . , d and the subgroup �A ⊂ O∗,+

K corresponds to

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

⎛

⎜

⎜

⎜

⎝

D1 0 · · · 0
0 D2 · · · 0
...

...
. . .

...

0 0 · · · Dd

⎞

⎟

⎟

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

∣

∣

Di =
⎛

⎝

1 0 0
0 σ2i (u) 0
0 0 1

⎞

⎠ , i = 1, . . . , d, u ∈ A

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

. (2.1)

2.5 Left-invariant complex structure on G

The matrix group

S := R
>0

� H3 =
⎧

⎨

⎩

⎛

⎝

1 x v

0 b y
0 0 1

⎞

⎠

∣

∣

∣

∣

∣

∣

b ∈ R
>0, x, y, v ∈ R

⎫

⎬

⎭

acts linearly on C
3. The affine hyperplane C

2 × {1} of C
3 is invariant under S. A direct

calculation shows that the orbit through the point z = (0, i, 1) is open, has trivial isotropy
and coincides with C × H

+ × {1} where H
+ ⊂ C is the upper half plane.

This proves the following result.

Proposition 2.8 The solvable real Lie group S admits a left-invariant complex structure with
respect to which it is biholomorphic to C × H

+.

Consider now the natural action of ˜G onC
3d . The orbit of the subgroupG through the point

(0, i, 1, 0, i, 1, . . . , 0, i, 1) ∈ C
3d has trivial isotropy group, is biholomorphic to (C×H

+)d

and hence gives a left-invariant complex structure on the real Lie group G.
Therefore, the left quotient X := �\G is a compact complex manifold.

2.6 A density property of 0N

We continue to consider N ∼= Hd
3 and G ∼= Sd as matrix groups consisting of block diagonal

matrices as written down in the closing of Sect. 2.4.
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Let

H :=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

⎛

⎜

⎜

⎜

⎝

M1 0 · · · 0
0 M2 · · · 0
...

...
. . .

...

0 0 · · · Md

⎞

⎟

⎟

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

∣

∣

Mi =
⎛

⎝

1 xi zi
0 1 0
0 0 1

⎞

⎠ , xi , vi ∈ R, i = 1, . . . , d

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

.

Proposition 2.9 The subgroup �N H is topologically dense in the Lie group N.

Proof Let K := (�N H
top

)0 be the identity component of the topological closure of �N H
in N . Since �N H is invariant under conjugation by elements of �A, we see that the same is
true for the subgroup K which has also the property that (K ∩�N )\K is compact. Therefore
the Lie algebra k of K is compatible with the rational structure of n and the projection V ′ of
k along the center z(n) onto the vector space V has the same property. Furthermore, V ′ ⊂ V
is a u0-invariant non-trivial subspace compatible with the rational structure and this implies
that V ′ = V , see also the proof of Proposition 2.4. The proposition is proven. ��

3 Properties of the quotient manifolds

Let G = A � N = (R>0
� H3)

d = Sd be the solvable Lie group equipped with the left-
invariant complex structure such that G ∼= (C×H)d and let � = �A ��N be the cocompact
discrete subgroup constructed above. In this section we establish a number of topological
and complex geometric properties of the compact complex manifold X = �\G.

3.1 The CR-fibration with Levi-flat fibers, the transversally hyperbolic foliationF
and the Kodaira dimension

Let Z denote the center ofG, which is also the center of N . We first remark that X considered
as a real solv-manifold admits the following commutative diagram of equivariant fibrations,
see [7, Proposition 2.17, Theorem 3.3, and Corollary 3.5]:

Z · �\G

p : X = �\G N · �\G ∼= (S1)d

(S1)2d(S1)d

�N \N

The group C
d acts on G ∼= (C × H)d by translation in the C-factors. One shows directly

that this action commutes with the left multiplication by G and hence induces a holomorphic
action of C

d on X . The kernel of this action is � ∩ Z and therefore we obtain an inclusion
(C∗)d ↪→ Aut(X). The orbits of this (C∗)d are exactly the images of the C

d -factors in the
universal covering of X . As a consequence, we see that the action of (C∗)d on X induces a
transversally hyperbolic holomorphic foliation F of X .

Since the lift of p to the universal covering G of X coincides with the quotient map
G → G/N ∼= R

d , we see that p is (C∗)d -invariant. Moreover, the construction of the left-
invariant complex structure on G shows that the N -orbits are generic CR-submanifolds of
real dimension 3d and CR-dimension d inG. Since the complex tangent space to the N -orbits
contains the N ′-orbit, they are Levi-flat. It follows that p is a CR-map having Levi-flat fibers.

We determine the topological closure of the orbits of this (C∗)d -action in the following
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Proposition 3.1 Let x = �g ∈ �\G = X. The topological closure of (C∗)d ·x in X coincides
with the fiber of the projection p passing through the point x and is therefore isomorphic
to the CR-nilmanifold �N\N. In particular, X does not contain any proper (C∗)d -invariant
analytic subset.

Proof For the proof, it suffices to remark that the (C∗)d -orbits are exactly the right orbits in
�\G = X of the normal subgroup H and to apply Proposition 2.9. ��
Corollary 3.2 Every holomorphic function on �N\G is constant.

Proof This follows fromProposition 3.1, since�N\N is a generic CR-submanifold of�N\G.
��

This corollary implies the following

Corollary 3.3 The Kodaira dimension of X is −∞.

Proof Since � acts by affine-linear transformations on (C × H)d , the tangent bundle of X
and all its induced vector bundles are flat. In particular, the canonical bundle of X and all
its powers are flat, i.e., given by representations of � in C

∗. This implies that the canonical
bundle of a finite covering of �N\G is holomorphically trivial, since for the commutator
group one has �′ ⊂ �N . Since every holomorphic function on �N\G is constant, we see that
H0(X , Kn

X ) = 0 for all n ≥ 0. Hence, kod X = −∞. ��

3.2 The identity component of Aut(X) and the non-Kähler property

In order to determine explicitly the holomorphic vector fields on X , let us give the action

G = A � N on each factor of (C × H
+)d explicitly. For g =

(

1 a c
0 t b
0 0 1

)

∈ R
>0

� H3

and (z, w) ∈ C × H
+ we have
⎛

⎝

1 a c
0 t b
0 0 1

⎞

⎠ · (z, w) = (z + aw + c, tw + b).

Let π : G → Aut
(

(H+)d
)

be the natural projection. It follows from Proposition 2.9 that
π(�N ) is a countable, topologically dense subgroup of the unipotent radical of the Borel
subgroup of affine transformations in Aut

(

(H+)d
)

. This observation allows us to carry over
the proof of [4, Proposition 3(ii)] in order to obtain the following.

Proposition 3.4 We have H0(X ,�) = C
d ∼= 〈 ∂

∂z1
, . . . , ∂

∂zd
〉C and therefore Aut0(X) ∼=

(C∗)d .

Corollary 3.5 The manifold X is not Kähler.

Proof If X was Kähler, then due to [3] the group Aut0(X) would act meromorphically on X
and consequently its orbits would be locally closed, which is not the case. ��

3.3 Infinitely many connected components for d ≥ 2

In this subsection we show that the whole group Aut(X) has infinitely many components for
d ≥ 2. Note that the automorphism groups of Inoue surfaces S(+)

N , (this is the case d = 1)
have only finitely many components.
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First we note that the group ˜A ∼= (R>0)2d−1 acts as a group of holomorphic transforma-
tions on (C × H

+)d by

(λ1, μ1, . . . , λd , μd) · (z1, w1, . . . , zd , wd) := (λ1μ1z1, μ1w1, . . . , λdμd zd , μdwd),

where we suppose λ1μ1 · · · λdμd = 1.
This action extends the A-action on (C × H

+)d where A is embedded in ˜A by

(μ1, . . . , μd) �→ (μ−1
1 , μ1, . . . , μ

−1
d , μd).

In the next step we show that the ˜A-action normalizes the simply transitive G-action on
(C × H

+)d . Writing G = A � N as the d-fold product of the matrix group

S =
⎧

⎨

⎩

⎛

⎝

1 a c
0 α b
0 0 1

⎞

⎠ ; α ∈ R
>0, a, b, c ∈ R

⎫

⎬

⎭

,

and defining ϕλ,μ(z, w) := (λμz, μw) for λ,μ > 0 and (z, w) ∈ C × H
+, we obtain

ϕλ,μ

(

g · ϕ−1
λ,μ(z, w)

) = (z + λaw + λμc, αw + μb).

Consequently, the induced action of ˜A on G coincides with the conjugation of ˜A on the
normal subgroup A � N in ˜A � N .

It therefore follows that the action of the subgroup O∗,+
K of ˜A on (C × H

+)d normalizes
� = �A��N . This implies that the action ofO∗,+

K descends holomorphically to the compact
quotient X = �\G.

3.4 An Anosov property of the foliationF in the case d = 2

As we have seen in the previous subsection, the group O∗,+
K /�A embeds into Aut(X). It

is clear that this discrete group of automorphisms stabilizes the foliation F of X . In this
subsection we shall see that for d = 2 non-trivial elements ϕ of O∗,+

K /�A have an Anosov
property relative to F , i.e. that the bundle map ϕ∗ is Anosov when restricted to the involutive
subbundle TF ⊂ T X .

Suppose first that d is arbitrary and consider the bundle map ϕ∗ : T X → T X given by the
push-forward of tangent vectors. We shall trivialize first TG via left-invariant vector fields
which trivialize then T X as well. Concretely, let g ∈ G and consider ϕ∗ : TgG → Tϕ(g)G.
Since TgG = (�g)∗g, we are led to consider

(

�−1
ϕ(g) ◦ ϕ ◦ �g

)

∗ : g → g.

The map G → GL(g) given by g �→ (

�−1
ϕ(g) ◦ ϕ ◦ �g

)

∗ encodes the action of ϕ∗ on TG.
Moreover, since ϕ normalizes the action of � by left multiplication on G, it follows that we
obtain a well-defined map

ρϕ : X = �\G → GL(g)

that encodes the action of ϕ∗ on T X . In particular, for ϕ = �γ with γ ∈ � we have
ρϕ(x) = Idg for all x ∈ X .

Since the above defined matrix group S is an open subset of an affine subspace of R
3×3,

we have global coordinates on G = Sd with respect to which we can explicitly calculate the
map Sd → GL(g). For ϕ : Sd → Sd given by
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ϕ

⎛

⎝

1 xi zi
0 ai yi
0 0 1

⎞

⎠ =
⎛

⎝

1 λiμi xi λiμi zi
0 μi ai μyi
0 0 1

⎞

⎠ , i = 1, . . . , d,

and ξi =
(

0 pi ri
0 ti qi
0 0 d0

)

∈ s we obtain

(

�−1
ϕ(g) ◦ ϕ ◦ �g

)

∗ξi =
⎛

⎝

0 λiμi pi λiμi ri
0 ti qi
0 0 0

⎞

⎠ .

This shows that for all ϕ ∈ O∗,+
K /�A the action of ϕ on the bundle TF is given by multipli-

cation with the λiμi in the coordinate ∂
∂zi

for i = 1, . . . , d .

If d = 2, let ϕ ∈ O∗,+
K /�A be a non-trivial element and let λ1, μ1, λ2, μ2 > 0 be the

factors corresponding to ϕ. We have
∏2

i=1 λiμi = 1. If one of the products λiμi was equal to
1, the other one would also be equal to 1. Then ϕ would be an element of �A and, considered
as an element of Aut(X), would be the identity, a contradiction. Therefore the bundle TF
enjoys the mentioned Anosov property with respect to ϕ.

For d ≥ 3 it seems to be an interesting number theoretic question if there always exists
an automorphism having this Anosov property with respect to the foliation F .

3.5 Topological structure of X

Since G is simply-connected solvable and since the adjoint operators of A are diagonalizable
over R, the real cohomology of X may be computed via the Lie algebra cohomology of g.

Since G = A � N is the identity component of the real-algebraic Lie group (R∗)d � N
and since � is Zariski-dense in (R∗)d � N , we may apply [7, Corollary 7.29] in order to
determine the deRham cohomology of X .

Proposition 3.6 We have Hk(X , R) ∼= Hk(g) for all k ≥ 0. Moreover, we have

Hk(g) =
⊕

k1+···+kd=k

(

Hk1(R ⊕ h3) ⊗ · · · ⊗ Hkd (R ⊗ h3)
)

,

where H0(R⊗h3) ∼= H4(R⊗h3) ∼= R, H1(R⊗h3) ∼= H3(R⊗h3) ∼= R, and H2(R⊗h3) =
{0}.

Remark The above result shows that the topological Euler characteristic of X is zero. This
can also be directly deduced from the fact that X is diffeomorphic to a tower of torus bundles
over (S1)d . More precisely, the projection G = A � N → A induces a real fiber bundle
X → �A\A ∼= (S1)d with typical fiber �N\N which in turn has the structure of a smooth
fiber bundle over (S1)d with fiber (S1)2d , cf. the diagram in Sect. 3.1.

3.6 Closed holomorphic 1-forms on X

In this subsection we give a second proof of the fact that X is not Kähler.

Proposition 3.7 There is no non-zero closed holomorphic 1-form on X. In particular, X is
not Kähler.
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Proof Let ω be a closed holomorphic 1-form on X and let ξ be a holomorphic vector field
on X induced by the (C∗)d -action. Then we have

Lξ (ω) = ιξdω + dιξω = 0.

Hence, every closed holomorphic 1-form on X must be (C∗)d -invariant. Pulling it back we
get a �-invariant closed holomorphic 1-form ω on (C × H)d which must be of the form

ω =
d
∑

j=1

λ j dz j +
d
∑

j=1

f j (w1, . . . , wd)dw j .

Since an element of N acts on dz j by dz j �→ dz j + adw j , we conclude that in fact

ω =
d
∑

j=1

f j (w1, . . . , wd)dw j .

Now the claim follows from the fact that π(�) contains a dense subgroup of the unipotent
radical of the Borel subgroup of affine transformations in Aut

(

(H+)d
)

, see Proposition 2.9.
��

3.7 The algebraic dimension of X

We conclude by determining the algebraic dimension of X .

Theorem 3.8 Every meromorphic function on X is constant, i.e., X has algebraic dimension
zero.

Proof Due to [2, Example 2], there exists a projective complex space Y and a holomor-
phic map π : X → Y such that every holomorphic map from X to any projective complex
space factorizes through π . Consequently, (C∗)d acts holomorphically on Y such that π is
equivariant.

We claim that the induced action of (C∗)d on Alb(Y ) is trivial. If this was not the case,
the composed map X → Y → Alb(Y ) would not be constant and hence we would obtain a
non-zero closed holomorphic 1-form on X , contradicting Proposition 3.7.

Since (C∗)d acts trivially on Alb(Y ), it has a fixed point in Y due to [8]; the π-fiber over
this fixed point is a (C∗)d -invariant analytic subset of X , hence X itself due to Proposition 3.1.
It follows that Y is a point, i.e., every holomorphic map from X to a projective complex space
is constant.

Now let us consider the algebraic reduction a : X ��� Z which is a priori only a mero-
morphic map. Since there are no proper (C∗)d -invariant analytic subsets of X , we obtain
a holomorphic map X → PN by adding sufficiently many meromorphic functions. As we
have seen above, this map must be constant, which proves the claim. ��

3.8 Possible extensions of the construction

In the same spirit as in Inoue’s original paper, we can modify the multiplicative action of �A

as described in equation (2.1) as follows.
Firstly, every generator of �A may be combined with a central element that acts by

translation on C
d , compare the definition of g0 in equation (18) on page 276 in [4].
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Furthermore,we can construct analogs of the surfaces S(−)
N by adding any number ofminus

signs in the coordinates (z1, . . . , zd) ∈ C
d , compare the definition of g0 in equation (21) on

page 279 in [4]. Of course, such a choice will diminish the dimension of the automorphism
group of the resulting quotient manifold.
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