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Abstract
A group G is said to have restricted centralizers if for each g in G the centralizer CG(g)
either is finite or has finite index in G. Shalev showed that a profinite group with restricted
centralizers is virtually abelian. Given a set of primes π , we take interest in profinite groups
with restricted centralizers of π -elements. It is shown that such a profinite group has an open
subgroup of the form P × Q, where P is an abelian pro-π subgroup and Q is a pro-π ′
subgroup. This significantly strengthens a result from our earlier paper.
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1 Introduction

A group G is said to have restricted centralizers if for each g in G the centralizer CG(g)
either is finite or has finite index in G. This notion was introduced by Shalev in [13] where
he showed that a profinite group with restricted centralizers is virtually abelian. We say that
a profinite group has a property virtually if it has an open subgroup with that property. The
article [3] handles profinite groups with restricted centralizers of w-values for a multilinear
commutator word w. The theorem proved in [3] says that if w is a multilinear commutator
word and G is a profinite group in which the centralizer of any w-value is either finite or
open, then the verbal subgroup w(G) is virtually abelian. In [1] we study profinite groups in
which p-elements have restricted centralizers, that is, groups in which CG(x) is either finite
or open for any p-element x . The following theorem was proved.
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Theorem 1.1 Let p be a prime and G a profinite group in which the centralizer of each
p-element is either finite or open. Then G has a normal abelian pro-p subgroup N such that
G/N is virtually pro-p′.

The present paper grew out of our desire to determine whether this result can be extended
to profinite groups in which the centralizer of each π-element, where π is a fixed set of
primes, is either finite or open. As usual, we say that an element x of a profinite group G is
a π-element if the order of the image of x in every finite continuous homomorphic image of
G is divisible only by primes in π (see [10, Section 2.3] for a formal definition of the order
of a profinite group).

It turned out that the techniques used in the proof of Theorem 1.1 were not quite adequate
for handling the case of π -elements. The basic difficulty stems from the fact that (pro)finite
groups in general do not possess Hall π -subgroups.

In the present paper we develop some new techniques and establish the following theorem
about finite groups.

If π is a set of primes and G a finite group, write Oπ ′
(G) for the unique smallest normal

subgroup M of G such that G/M is a π ′-group. The conjugacy class containing an element
g ∈ G is denoted by gG .

Theorem 1.2 Let n be a positive integer, π be a set of primes, and G a finite group such that
|gG | ≤ n for each π-element g ∈ G. Let H = Oπ ′

(G). Then G has a normal subgroup N
such that

1. The index [G : N ] is n-bounded;
2. [H , N ] = [H , H ];
3. The order of [H , N ] is n-bounded.
Throughout the article we use the expression “(a, b, . . .)-bounded” tomean that a quantity

is finite and bounded by a certain number depending only on the parameters a, b, . . ..
The proof of Theorem 1.2 uses some new results related to Neumann’s BFC-theorem

[8]. In particular, an important role in the proof is played by a recent probabilistic result
from [2]. Theorem 1.2 provides a highly effective tool for handling profinite groups with
restricted centralizers of π -elements. Surprisingly, the obtained result is much stronger than
Theorem 1.1 even in the case where π consists of a single prime.

Theorem 1.3 Let π be a set of primes and G a profinite group in which the centralizer of
each π-element is either finite or open. Then G has an open subgroup of the form P × Q,
where P is an abelian pro-π subgroup and Q is a pro-π ′ subgroup.

Thus, the improvement over Theorem 1.1 is twofold – the result now covers the case of
π-elements and provides additional details clarifying the structure of groups in question.
Furthermore, it is easy to see that Theorem 1.3 extends Shalev’s result [13] which can be
recovered by considering the case where π = π(G) is the set of all prime divisors of the
order of G.

We now have several results showing that if the elements of a certain subset X of a profinite
group G have restricted centralizers, then the structure of G is very special. This suggests
the general line of research whose aim would be to determine which subsets of G have the
above property. At present we are not able to provide any insight on the problem. Perhaps
one might start with the following question:
Let n be a positive integer. What can be said about a profinite group G such that if x ∈ G
then CG(xn) is either finite or open?

Proofs of Theorems 1.2 and 1.3 will be given in Sects. 2 and 3 , respectively.
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2 Proof of Theorem 1.2

The following lemma is taken from [1]. If X ⊆ G is a subset of a group G, we write 〈X〉 for
the subgroup generated by X and 〈XG〉 for the minimal normal subgroup of G containing
X .

Lemma 2.1 Let i, j be positive integers and G a group having a subgroup K such that
|xG | ≤ i for each x ∈ K. Suppose that |K | ≤ j . Then 〈KG〉 has finite (i, j)-bounded order.

If K is a subgroup of a finite group G, we denote by

Pr(K ,G) = |{(x, y) ∈ K × G : [x, y] = 1}|
|K ||G|

the relative commutativity degree of K in G, that is, the probability that a random element
of G commutes with a random element of K . Note that

Pr(K ,G) =
∑

x∈K |CG(x)|
|K ||G| .

It follows that if |xG | ≤ n for each x ∈ K , then Pr(K ,G) ≥ 1
n .

The next result was obtained in [2, Proposition 1.2]. In the case where K = G this is a
well known theorem, due to P. M. Neumann [9].

Proposition 2.2 Let ε > 0, and let G be a finite group having a subgroup K such that
Pr(K ,G) ≥ ε. Then there is a normal subgroup T ≤ G and a subgroup B ≤ K such that
the indexes [G : T ] and [K : B], and the order of the commutator subgroup [T , B] are
ε-bounded.

We will now embark on the proof of Theorem 1.2.
Assume the hypothesis of Theorem 1.2. Let X be the set of all π-elements of G. Clearly,

H = 〈X〉. Given an element g ∈ H , we write l(g) for the minimal number l with the property
that g can be written as a product of l elements of X . The following result is straightforward
from [4, Lemma 2.1].

Lemma 2.3 Let K ≤ H be a subgroup of index m in H, and let b ∈ H. Then the coset Kb
contains an element g such that l(g) ≤ m − 1.

Let m be the maximum of indices of CH (x) in H where x ∈ X . Obviously, we have
m ≤ n.

Lemma 2.4 For any x ∈ X the subgroup [H , x] has m-bounded order.

Proof Take x ∈ X . Since the index ofCH (x) in H is at mostm, by Lemma 2.3, we can choose
elements y1, . . . , ym in H such that l(yi ) ≤ m − 1 and the subgroup [H , x] is generated
by the commutators [yi , x], for i = 1, . . . ,m. For any such i write yi = yi1 . . . yi(m−1),
with yi j ∈ X . Using standard commutator identities we can rewrite [yi , x] as a product of
conjugates in H of the commutators [yi j , x]. Let {h1, . . . , hs} be the conjugates in H of all
elements from the set {x, yi j | 1 ≤ i, j ≤ m}. Note that the number s here is m-bounded.
This follows form the fact that CH (x) has index at most m in H for each x ∈ X . Put
T = 〈h1, . . . , hs〉. Since [H , x] is contained in the commutator subgroup T ′, it is sufficient
to show that T ′ has m-bounded order. Observe that the centre Z(T ) has index at most ms

in T , since the index of CH (hi ) is at most m in H for any i = 1, . . . , s. Thus, by Schur’s
theorem [11, 10.1.4], we conclude that the order of T ′ is m-bounded, as desired. 	


123



1042 C. Acciarri, P. Shumyatsky

Select a ∈ X such that |aH | = m. Choose b1, . . . , bm in H such that l(bi ) ≤ m − 1 and
aH = {abi ; i = 1, . . . ,m}. The existence of the elements bi is guaranteed by Lemma 2.3.
Set U = CG(〈b1, . . . , bm〉). Note that the index of U in G is n-bounded. Indeed, since
l(bi ) ≤ m − 1 we can write bi = bi1 . . . bi(m−1), where bi j ∈ X and i = 1, . . . ,m. By
the hypothesis the index of CG(bi j ) in G is at most n for any such element bi j . Thus,
[G : U ] ≤ n(m−1)m .

The next result is somewhat analogous to [14, Lemma 4.5].

Lemma 2.5 If u ∈ U and ua ∈ X, then [H , u] ≤ [H , a].
Proof Assume that u ∈ U and ua ∈ X . For each i = 1, . . . ,m we have (ua)bi = uabi , since
u belongs toU . We know that ua ∈ X so taking into account the hypothesis on the cardinality
of the conjugacy class of ua in H , we deduce that (ua)H consists exactly of the elements uabi ,
for i = 1, . . . ,m. Thus, given an arbitrary element h ∈ H , there exists b ∈ {b1, . . . , bm}
such that (ua)h = uab and so uhah = uab. It follows that [u, h] = aba−h ∈ [H , a], and the
result holds. 	

Lemma 2.6 The order of the commutator subgroup of H is n-bounded.

Proof Let U0 be the maximal normal subgroup of G contained in U . Recall that, by the
remark made before Lemma 2.5, U has n-bounded index in G. It follows that the index
[G : U0] is n-bounded as well.

By the hypothesis a has at most n conjugates in G, say {ag1 , . . . , agn }. Let T be the
normal closure in G of the subgroup [H , a]. Note that the subgroups [H , agi ] are normal in
H , therefore T = [H , ag1 ] . . . [H , agn ]. By Lemma 2.4 each of the subgroups [H , agi ] has
n-bounded order. We conclude that the order of T is n-bounded.

Let Y = Xa−1 ∩U . Note that for any y ∈ Y the product ya belongs to X . Therefore, by
Lemma 2.5, for any y ∈ Y , the subgroup [H , y] is contained in [H , a]. Thus,

[H , Y ] ≤ T . (1)

Observe that for any u ∈ U0 the commutator [u, a−1] = aua−1 lies in Y and so
[
H ,

[
U0, a

−1]] ≤ [H , Y ]. (2)

Since [U0, a−1] = [U0, a], we deduce from (1) and (2) that

[H , [U0, a]] ≤ T . (3)

Since T has n-bounded order, it is sufficient to show that the derived group of the quotient
H/T has finite n-bounded order. We pass now to the quotient G/T and for the sake of
simplicity the images ofG, H ,U ,U0, X andY will be denoted by the same symbols.Note that
by (1) the setY becomes central in H modulo T . Containment (3) shows that [U0, a] ≤ Z(H).
This implies that if b ∈ U0 is a π -element, then [b, a] ∈ Z(H) and the subgroup 〈a, b〉 is
nilpotent. Thus the product ba is a π -element too and so b ∈ Y . Hence, all π-elements of
U0 are contained in Y and, in view of (1), we deduce that they are contained in Z(H).

Next we consider the quotient G/Z(H). Since the image ofU0 in G/Z(H) is a π ′-group
and has n-bounded index in G, we deduce that the order of any π-subgroup in G/Z(H) is
n-bounded. In particular, there is an n-bounded constant C such that for every p ∈ π the
order of the Sylow p-subgroup of G/Z(H) is at most C . Because of Lemma 2.1 for any
p ∈ π each Sylow p-subgroup of G/Z(H) is contained in a normal subgroup of n-bounded
order. We deduce that all such Sylow subgroups of G/Z(H) are contained in a normal
subgroup of n-bounded order. Since H is generated by π-elements, it follows that the order
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of H/Z(H) is n-bounded. Thus, in view of Schur’s theorem [11, 10.1.4], we conclude that
|H ′| is n-bounded, as desired. 	


We will now complete the proof of Theorem 1.2.

Proof Assume first that H is abelian. In this case the set X of π-elements is a subgroup, that
is, X = H . By the hypothesis we have |xG | ≤ n for any element x ∈ H and so the relative
commutativity degree Pr(H ,G) of H in G is at least 1

n . Thus, by virtue of Proposition 2.2,
there is a normal subgroup T ≤ G and a subgroup B ≤ H such that the indexes [G : T ] and
[H : B], and the order of the commutator subgroup [T , B] are n-bounded.

Since H is a normal π -subgroup and [G : H ] is a π ′-number, by the Schur–Zassenhaus
Theorem [5, Theorem 6.2.1] the subgroup H admits a complement L inG such thatG = HL
and L is a π ′-subgroup. Set T0 = T ∩ L . Observe that the index [L : T0] is n-bounded since
it is at most the index of T in G. Thus we deduce that the index of HT0 is n-bounded in G,
as well.

We claim that the order of [H , T0] isn-bounded. Indeed, theπ ′-subgroup T0 acts coprimely
on the the abelian π-subgroup B1 = B[B, T0], and so we have B1 = CB1(T0) × [B1, T0] (
[7, Corollary 1.6.5]). Note that [B1, T0] = [B, T0]. Since the oder of [B, T0] is n-bounded
(being at most the order of [T , B]), we deduce that the index [B1 : CB1(T0)] is n-bounded. In
combination with the fact that [H : B] is n-bounded, we obtain that the index [H : CB1(T0)]
is n-bounded and so in particular [H : CH (T0)] is n-bounded. Since T0 acts coprimely on
the abelian normal π-subgroup H , we have H = CH (T0)×[H , T0]. Thus we obtain that the
order of the commutator subgroup [H , T0] is n-bounded, as claimed. Let T1 = CT0([H , T0])
and remark that the index [T0 : T1] of T1 in T0 is n-bounded too. Set N = HT1. From the
fact that the indexes [T0 : T1] and [G : HT0] are both n-bounded, we deduce that the index
of N in G is n-bounded, as well.

Note that N is normal in G since the image of N in G/H ∼= L is isomorphic to T1 which
is normal in L . Furthermore, we have [H , T1, T1] = 1, since T1 = CT0([H , T0]). Hence
by the standard properties of coprime actions we have [H , T1] = 1 ( [7, Corollary 1.6.4]).
Therefore [H , N ] = 1. This proves the theorem in the particular case where H is abelian.

In the general case, in view of Lemma 2.6, the commutator subgroup [H , H ] is of n-
bounded order. We pass to the quotient G = G/[H , H ]. The above argument shows that G
has a normal subgroup N of n-bounded index such that H ≤ Z(N ). Here Z(N ) stands for
the centre of N . Let N be the inverse image of N . We have [H , N ] = [H , H ] and so N has
the required properties. The proof is now complete. 	


3 Proof of Theorem 1.3

We will require the following result taken from [1, Lemma 4.1].

Lemma 3.1 Let G be a locally nilpotent group containing an element with finite centralizer.
Suppose that G is residually finite. Then G is finite.

Profinite groups have Sylow p-subgroups and satisfy analogues of the Sylow theorems.
Prosoluble groups satisfy analogues of the theorems onHallπ-subgroups.We refer the reader
to the corresponding chapters in [10, Ch. 2] and [15, Ch. 2].

Recall that an automorphism φ of a group G is called fixed-point-free if CG(φ) = 1,
that is, the fixed-point subgroup is trivial. It is a well-known corollary of the classification
of finite simple groups that if G is a finite group admitting a fixed-point-free automorphism,
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then G is soluble (see for example [12] for a short proof). A continuous automorphism φ of
a profinite group G is coprime if for any open φ-invariant normal subgroup N of G the order
of the automorphism of G/N induced by φ is coprime to the order of G/N . It follows that if
a profinite group G admits a coprime fixed-point-free automorphism, then G is prosoluble.
This will be used in the proof of Theorem 1.3.

Proof of Theorem 1.3 Recall that π is a set of primes and G is a profinite group in which
the centralizer of every π -element is either finite or open. We wish to show that G has an
open subgroup of the form P × Q, where P is an abelian pro-π subgroup and Q is a pro-π ′
subgroup.

Let X be the set of π -elements in G. Consider first the case where the conjugacy class xG

is finite for any x ∈ X . For each integer i ≥ 1 set

Si = {x ∈ X; |xG | ≤ i}.
The sets Si are closed. Thus, we have countably many sets which cover the closed set X .
By the Baire Category Theorem [6, Theorem 34] at least one of these sets has non-empty
interior. It follows that there is a positive integer k, an open normal subgroup M , and an
element a ∈ X such that all elements in X ∩ aM are contained in Sk .

Note that 〈aG〉 has finite commutator subgroup, which we will denote by T . Indeed,
the subgroup 〈aG〉 is generated by finitely many elements whose centralizer is open. This
implies that the centre of 〈aG〉 has finite index in 〈aG〉, and by Schur’s theorem [11, 10.1.4],
we conclude that T is finite, as claimed.

Let x ∈ X ∩ M . Note that the product ax is not necessarily in X . On the other hand,
ax is a π-element modulo T . This is because 〈aG〉 becomes an abelian normal π-subgroup
modulo T and the image of ax in the quotient G/〈aG〉 is a π-element. In other words, there
are y ∈ X ∩ aM and t ∈ T such that ax = t y. Observe that t has an open centralizer in G
since t ∈ T . In fact [G : CG(t)] ≤ |T |. From the equality ax = t y deduce that |xG | ≤ k2|T |.
This happens for any x ∈ X ∩ M . Using a routine inverse limit argument in combination
with Theorem 1.2 we obtain that M has an open normal subgroup N such that the index
[M : N ] and the order of [H , N ] are finite. Here H stands for the subgroup generated by all
π-elements of M . Choose an open normal subgroupU in G such thatU ∩[H , N ] = 1. Then
U ∩M is an open normal subgroup of the form P×Q, where P is an abelian pro-π subgroup
and Q is a pro-π ′ subgroup. This proves the theorem in the case where all π-elements of G
have open centralizers.

Assume now thatG has a π -element, say b, of infinite order. Since the procyclic subgroup
〈b〉 is contained in the centralizer CG(b), it follows that CG(b) is open in G. This implies
that all elements of X ∩CG(b) have open centralizers (because they centralize the procyclic
subgroup 〈b〉). In view of the above CG(b) has an open subgroup of the form P × Q, where
P is an abelian pro-π subgroup and Q is a pro-π ′ subgroup and we are done.

We will therefore assume that G is infinite while all π-elements of G have finite orders
and there is at least oneπ -element, say d , such thatCG(d) is finite. The element d is a product
of finitely many π-elements of prime power order. At least one of these elements must have
finite centralizer. So without loss of generality we can assume that d is a p-element for a
prime p ∈ π .

Let P0 be a Sylow p-subgroup of G containing d . Since P0 is torsion, we deduce from
Zelmanov’s theorem [16] that P0 is locally nilpotent. The centralizer CG(d) is finite and
so in view of Lemma 3.1 the subgroup P0 is finite. Choose an open normal pro-p′ sub-
group L such that L ∩ CG(d) = 1. Note that any finite homomorphic image of L admits a
coprime fixed-point-free automorphism (induced by the coprime action of d on L). Hence
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L is prosoluble. Let K be a Hall π -subgroup of L . Since any element in K has restricted
centralizer, Shalev’s result [13] shows that K is virtually abelian. We therefore can choose
an open normal subgroup J in L such that J ∩ K is abelian. If J ∩ K is finite then G is
virtually pro-π ′ and we are done. If J ∩ K is infinite, then all π-elements of J have infinite
centralizers. This yields that all π -elements of J have open centralizers in J and in view of
the first part of the proof, J has an open normal subgroup of the form P × Q, where P is an
abelian pro-π subgroup and Q is a pro-π ′ subgroup. This establishes the theorem. 	
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