

Profinite groups with restricted centralizers of π -elements

Cristina Acciarri¹ · Pavel Shumyatsky²

Received: 14 June 2021 / Accepted: 21 December 2021 / Published online: 7 January 2022 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract

A group *G* is said to have restricted centralizers if for each *g* in *G* the centralizer $C_G(g)$ either is finite or has finite index in *G*. Shalev showed that a profinite group with restricted centralizers is virtually abelian. Given a set of primes π , we take interest in profinite groups with restricted centralizers of π -elements. It is shown that such a profinite group has an open subgroup of the form $P \times Q$, where *P* is an abelian pro- π subgroup and *Q* is a pro- π' subgroup. This significantly strengthens a result from our earlier paper.

Keywords Profinite groups \cdot Centralizers $\cdot \pi$ -elements \cdot FC-groups

Mathematics Subject Classification 20E18 · 20F24

1 Introduction

A group *G* is said to have restricted centralizers if for each *g* in *G* the centralizer $C_G(g)$ either is finite or has finite index in *G*. This notion was introduced by Shalev in [13] where he showed that a profinite group with restricted centralizers is virtually abelian. We say that a profinite group has a property virtually if it has an open subgroup with that property. The article [3] handles profinite groups with restricted centralizers of *w*-values for a multilinear commutator word *w*. The theorem proved in [3] says that if *w* is a multilinear commutator word and *G* is a profinite group in which the centralizer of any *w*-value is either finite or open, then the verbal subgroup w(G) is virtually abelian. In [1] we study profinite groups in which *p*-elements have restricted centralizers, that is, groups in which $C_G(x)$ is either finite or open for any *p*-element *x*. The following theorem was proved.

Pavel Shumyatsky pavel@unb.br

This research was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação de Apoio à Pesquisa do Distrito Federal (FAPDF), Brazil.

Cristina Acciarri cristina.acciarri@unimore.it

¹ Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università degli Studi di Modena e Reggio Emilia, Via Campi 213/b, I-41125 Modena, Italy

² Department of Mathematics, University of Brasilia, Brasilia-DF 70910-900, Brazil

Theorem 1.1 Let p be a prime and G a profinite group in which the centralizer of each p-element is either finite or open. Then G has a normal abelian pro-p subgroup N such that G/N is virtually pro-p'.

The present paper grew out of our desire to determine whether this result can be extended to profinite groups in which the centralizer of each π -element, where π is a fixed set of primes, is either finite or open. As usual, we say that an element *x* of a profinite group *G* is a π -element if the order of the image of *x* in every finite continuous homomorphic image of *G* is divisible only by primes in π (see [10, Section 2.3] for a formal definition of the order of a profinite group).

It turned out that the techniques used in the proof of Theorem 1.1 were not quite adequate for handling the case of π -elements. The basic difficulty stems from the fact that (pro)finite groups in general do not possess Hall π -subgroups.

In the present paper we develop some new techniques and establish the following theorem about finite groups.

If π is a set of primes and G a finite group, write $O^{\pi'}(G)$ for the unique smallest normal subgroup M of G such that G/M is a π' -group. The conjugacy class containing an element $g \in G$ is denoted by g^G .

Theorem 1.2 Let *n* be a positive integer, π be a set of primes, and *G* a finite group such that $|g^G| \leq n$ for each π -element $g \in G$. Let $H = O^{\pi'}(G)$. Then *G* has a normal subgroup *N* such that

- 1. The index [G:N] is n-bounded;
- 2. [H, N] = [H, H];
- 3. The order of [H, N] is n-bounded.

Throughout the article we use the expression "(a, b, ...)-bounded" to mean that a quantity is finite and bounded by a certain number depending only on the parameters a, b, ...

The proof of Theorem 1.2 uses some new results related to Neumann's BFC-theorem [8]. In particular, an important role in the proof is played by a recent probabilistic result from [2]. Theorem 1.2 provides a highly effective tool for handling profinite groups with restricted centralizers of π -elements. Surprisingly, the obtained result is much stronger than Theorem 1.1 even in the case where π consists of a single prime.

Theorem 1.3 Let π be a set of primes and G a profinite group in which the centralizer of each π -element is either finite or open. Then G has an open subgroup of the form $P \times Q$, where P is an abelian pro- π subgroup and Q is a pro- π' subgroup.

Thus, the improvement over Theorem 1.1 is twofold – the result now covers the case of π -elements and provides additional details clarifying the structure of groups in question. Furthermore, it is easy to see that Theorem 1.3 extends Shalev's result [13] which can be recovered by considering the case where $\pi = \pi(G)$ is the set of all prime divisors of the order of *G*.

We now have several results showing that if the elements of a certain subset X of a profinite group G have restricted centralizers, then the structure of G is very special. This suggests the general line of research whose aim would be to determine which subsets of G have the above property. At present we are not able to provide any insight on the problem. Perhaps one might start with the following question:

Let n be a positive integer. What can be said about a profinite group G such that if $x \in G$ then $C_G(x^n)$ is either finite or open?

Proofs of Theorems 1.2 and 1.3 will be given in Sects. 2 and 3, respectively.

2 Proof of Theorem 1.2

The following lemma is taken from [1]. If $X \subseteq G$ is a subset of a group G, we write $\langle X \rangle$ for the subgroup generated by X and $\langle X^G \rangle$ for the minimal normal subgroup of G containing X.

Lemma 2.1 Let *i*, *j* be positive integers and G a group having a subgroup K such that $|x^{G}| \leq i$ for each $x \in K$. Suppose that $|K| \leq j$. Then $\langle K^{G} \rangle$ has finite (i, j)-bounded order.

If K is a subgroup of a finite group G, we denote by

$$Pr(K, G) = \frac{|\{(x, y) \in K \times G : [x, y] = 1\}|}{|K||G|}$$

the relative commutativity degree of K in G, that is, the probability that a random element of G commutes with a random element of K. Note that

$$Pr(K,G) = \frac{\sum_{x \in K} |C_G(x)|}{|K||G|}$$

It follows that if $|x^G| \le n$ for each $x \in K$, then $Pr(K, G) \ge \frac{1}{n}$.

The next result was obtained in [2, Proposition 1.2]. In the case where K = G this is a well known theorem, due to P. M. Neumann [9].

Proposition 2.2 Let $\epsilon > 0$, and let G be a finite group having a subgroup K such that $Pr(K, G) \ge \epsilon$. Then there is a normal subgroup $T \le G$ and a subgroup $B \le K$ such that the indexes [G : T] and [K : B], and the order of the commutator subgroup [T, B] are ϵ -bounded.

We will now embark on the proof of Theorem 1.2.

Assume the hypothesis of Theorem 1.2. Let *X* be the set of all π -elements of *G*. Clearly, $H = \langle X \rangle$. Given an element $g \in H$, we write l(g) for the minimal number *l* with the property that *g* can be written as a product of *l* elements of *X*. The following result is straightforward from [4, Lemma 2.1].

Lemma 2.3 Let $K \le H$ be a subgroup of index m in H, and let $b \in H$. Then the coset Kb contains an element g such that $l(g) \le m - 1$.

Let *m* be the maximum of indices of $C_H(x)$ in *H* where $x \in X$. Obviously, we have $m \leq n$.

Lemma 2.4 For any $x \in X$ the subgroup [H, x] has m-bounded order.

Proof Take $x \in X$. Since the index of $C_H(x)$ in H is at most m, by Lemma 2.3, we can choose elements y_1, \ldots, y_m in H such that $l(y_i) \leq m - 1$ and the subgroup [H, x] is generated by the commutators $[y_i, x]$, for $i = 1, \ldots, m$. For any such i write $y_i = y_{i1} \ldots y_{i(m-1)}$, with $y_{ij} \in X$. Using standard commutator identities we can rewrite $[y_i, x]$ as a product of conjugates in H of the commutators $[y_{ij}, x]$. Let $\{h_1, \ldots, h_s\}$ be the conjugates in H of all elements from the set $\{x, y_{ij} \mid 1 \leq i, j \leq m\}$. Note that the number s here is m-bounded. This follows form the fact that $C_H(x)$ has index at most m in H for each $x \in X$. Put $T = \langle h_1, \ldots, h_s \rangle$. Since [H, x] is contained in the commutator subgroup T', it is sufficient to show that T' has m-bounded order. Observe that the centre Z(T) has index at most m^s in T, since the index of $C_H(h_i)$ is at most m in H for any $i = 1, \ldots, s$. Thus, by Schur's theorem [11, 10.1.4], we conclude that the order of T' is m-bounded, as desired.

Select $a \in X$ such that $|a^H| = m$. Choose b_1, \ldots, b_m in H such that $l(b_i) \le m - 1$ and $a^H = \{a^{b_i}; i = 1, \ldots, m\}$. The existence of the elements b_i is guaranteed by Lemma 2.3. Set $U = C_G(\langle b_1, \ldots, b_m \rangle)$. Note that the index of U in G is n-bounded. Indeed, since $l(b_i) \le m - 1$ we can write $b_i = b_{i1} \ldots b_{i(m-1)}$, where $b_{ij} \in X$ and $i = 1, \ldots, m$. By the hypothesis the index of $C_G(b_{ij})$ in G is at most n for any such element b_{ij} . Thus, $[G:U] \le n^{(m-1)m}$.

The next result is somewhat analogous to [14, Lemma 4.5].

Lemma 2.5 If $u \in U$ and $ua \in X$, then $[H, u] \leq [H, a]$.

Proof Assume that $u \in U$ and $ua \in X$. For each i = 1, ..., m we have $(ua)^{b_i} = ua^{b_i}$, since u belongs to U. We know that $ua \in X$ so taking into account the hypothesis on the cardinality of the conjugacy class of ua in H, we deduce that $(ua)^H$ consists exactly of the elements ua^{b_i} , for i = 1, ..., m. Thus, given an arbitrary element $h \in H$, there exists $b \in \{b_1, ..., b_m\}$ such that $(ua)^h = ua^b$ and so $u^h a^h = ua^b$. It follows that $[u, h] = a^b a^{-h} \in [H, a]$, and the result holds.

Lemma 2.6 The order of the commutator subgroup of H is n-bounded.

Proof Let U_0 be the maximal normal subgroup of G contained in U. Recall that, by the remark made before Lemma 2.5, U has n-bounded index in G. It follows that the index $[G: U_0]$ is n-bounded as well.

By the hypothesis *a* has at most *n* conjugates in *G*, say $\{a^{g_1}, \ldots, a^{g_n}\}$. Let *T* be the normal closure in *G* of the subgroup [H, a]. Note that the subgroups $[H, a^{g_i}]$ are normal in *H*, therefore $T = [H, a^{g_1}] \ldots [H, a^{g_n}]$. By Lemma 2.4 each of the subgroups $[H, a^{g_i}]$ has *n*-bounded order. We conclude that the order of *T* is *n*-bounded.

Let $Y = Xa^{-1} \cap U$. Note that for any $y \in Y$ the product ya belongs to X. Therefore, by Lemma 2.5, for any $y \in Y$, the subgroup [H, y] is contained in [H, a]. Thus,

$$[H,Y] \le T. \tag{1}$$

Observe that for any $u \in U_0$ the commutator $[u, a^{-1}] = a^u a^{-1}$ lies in Y and so

$$[H, [U_0, a^{-1}]] \le [H, Y].$$
 (2)

Since $[U_0, a^{-1}] = [U_0, a]$, we deduce from (1) and (2) that

$$[H, [U_0, a]] \le T.$$
(3)

Since *T* has *n*-bounded order, it is sufficient to show that the derived group of the quotient H/T has finite *n*-bounded order. We pass now to the quotient G/T and for the sake of simplicity the images of G, H, U, U_0, X and Y will be denoted by the same symbols. Note that by (1) the set *Y* becomes central in *H* modulo *T*. Containment (3) shows that $[U_0, a] \leq Z(H)$. This implies that if $b \in U_0$ is a π -element, then $[b, a] \in Z(H)$ and the subgroup $\langle a, b \rangle$ is nilpotent. Thus the product *ba* is a π -element too and so $b \in Y$. Hence, all π -elements of U_0 are contained in *Y* and, in view of (1), we deduce that they are contained in Z(H).

Next we consider the quotient G/Z(H). Since the image of U_0 in G/Z(H) is a π' -group and has *n*-bounded index in G, we deduce that the order of any π -subgroup in G/Z(H) is *n*-bounded. In particular, there is an *n*-bounded constant C such that for every $p \in \pi$ the order of the Sylow *p*-subgroup of G/Z(H) is at most C. Because of Lemma 2.1 for any $p \in \pi$ each Sylow *p*-subgroup of G/Z(H) is contained in a normal subgroup of *n*-bounded order. We deduce that all such Sylow subgroups of G/Z(H) are contained in a normal subgroup of *n*-bounded order. Since *H* is generated by π -elements, it follows that the order of H/Z(H) is *n*-bounded. Thus, in view of Schur's theorem [11, 10.1.4], we conclude that |H'| is *n*-bounded, as desired.

We will now complete the proof of Theorem 1.2.

Proof Assume first that *H* is abelian. In this case the set *X* of π -elements is a subgroup, that is, X = H. By the hypothesis we have $|x^G| \le n$ for any element $x \in H$ and so the relative commutativity degree Pr(H, G) of *H* in *G* is at least $\frac{1}{n}$. Thus, by virtue of Proposition 2.2, there is a normal subgroup $T \le G$ and a subgroup $B \le H$ such that the indexes [G : T] and [H : B], and the order of the commutator subgroup [T, B] are *n*-bounded.

Since *H* is a normal π -subgroup and [G : H] is a π' -number, by the Schur–Zassenhaus Theorem [5, Theorem 6.2.1] the subgroup *H* admits a complement *L* in *G* such that G = HLand *L* is a π' -subgroup. Set $T_0 = T \cap L$. Observe that the index $[L : T_0]$ is *n*-bounded since it is at most the index of *T* in *G*. Thus we deduce that the index of HT_0 is *n*-bounded in *G*, as well.

We claim that the order of $[H, T_0]$ is *n*-bounded. Indeed, the π' -subgroup T_0 acts coprimely on the the abelian π -subgroup $B_1 = B[B, T_0]$, and so we have $B_1 = C_{B_1}(T_0) \times [B_1, T_0]$ ([7, Corollary 1.6.5]). Note that $[B_1, T_0] = [B, T_0]$. Since the oder of $[B, T_0]$ is *n*-bounded (being at most the order of [T, B]), we deduce that the index $[B_1 : C_{B_1}(T_0)]$ is *n*-bounded. In combination with the fact that [H : B] is *n*-bounded, we obtain that the index $[H : C_{B_1}(T_0)]$ is *n*-bounded and so in particular $[H : C_H(T_0)]$ is *n*-bounded. Since T_0 acts coprimely on the abelian normal π -subgroup H, we have $H = C_H(T_0) \times [H, T_0]$. Thus we obtain that the order of the commutator subgroup $[H, T_0]$ is *n*-bounded, as claimed. Let $T_1 = C_{T_0}([H, T_0])$ and remark that the index $[T_0 : T_1]$ of T_1 in T_0 is *n*-bounded too. Set $N = HT_1$. From the fact that the indexs $[T_0 : T_1]$ and $[G : HT_0]$ are both *n*-bounded, we deduce that the index of N in G is *n*-bounded, as well.

Note that *N* is normal in *G* since the image of *N* in $G/H \cong L$ is isomorphic to T_1 which is normal in *L*. Furthermore, we have $[H, T_1, T_1] = 1$, since $T_1 = C_{T_0}([H, T_0])$. Hence by the standard properties of coprime actions we have $[H, T_1] = 1$ ([7, Corollary 1.6.4]). Therefore [H, N] = 1. This proves the theorem in the particular case where *H* is abelian.

In the general case, in view of Lemma 2.6, the commutator subgroup [H, H] is of *n*-bounded order. We pass to the quotient $\overline{G} = G/[H, H]$. The above argument shows that \overline{G} has a normal subgroup \overline{N} of *n*-bounded index such that $\overline{H} \leq Z(\overline{N})$. Here $Z(\overline{N})$ stands for the centre of \overline{N} . Let *N* be the inverse image of \overline{N} . We have [H, N] = [H, H] and so *N* has the required properties. The proof is now complete.

3 Proof of Theorem 1.3

We will require the following result taken from [1, Lemma 4.1].

Lemma 3.1 Let G be a locally nilpotent group containing an element with finite centralizer. Suppose that G is residually finite. Then G is finite.

Profinite groups have Sylow *p*-subgroups and satisfy analogues of the Sylow theorems. Prosoluble groups satisfy analogues of the theorems on Hall π -subgroups. We refer the reader to the corresponding chapters in [10, Ch. 2] and [15, Ch. 2].

Recall that an automorphism ϕ of a group G is called fixed-point-free if $C_G(\phi) = 1$, that is, the fixed-point subgroup is trivial. It is a well-known corollary of the classification of finite simple groups that if G is a finite group admitting a fixed-point-free automorphism,

then G is soluble (see for example [12] for a short proof). A continuous automorphism ϕ of a profinite group G is coprime if for any open ϕ -invariant normal subgroup N of G the order of the automorphism of G/N induced by ϕ is coprime to the order of G/N. It follows that if a profinite group G admits a coprime fixed-point-free automorphism, then G is prosoluble. This will be used in the proof of Theorem 1.3.

Proof of Theorem 1.3 Recall that π is a set of primes and G is a profinite group in which the centralizer of every π -element is either finite or open. We wish to show that G has an open subgroup of the form $P \times Q$, where P is an abelian pro- π subgroup and Q is a pro- π' subgroup.

Let X be the set of π -elements in G. Consider first the case where the conjugacy class x^G is finite for any $x \in X$. For each integer $i \ge 1$ set

$$S_i = \{x \in X; |x^G| \le i\}.$$

The sets S_i are closed. Thus, we have countably many sets which cover the closed set X. By the Baire Category Theorem [6, Theorem 34] at least one of these sets has non-empty interior. It follows that there is a positive integer k, an open normal subgroup M, and an element $a \in X$ such that all elements in $X \cap aM$ are contained in S_k .

Note that $\langle a^G \rangle$ has finite commutator subgroup, which we will denote by *T*. Indeed, the subgroup $\langle a^G \rangle$ is generated by finitely many elements whose centralizer is open. This implies that the centre of $\langle a^G \rangle$ has finite index in $\langle a^G \rangle$, and by Schur's theorem [11, 10.1.4], we conclude that *T* is finite, as claimed.

Let $x \in X \cap M$. Note that the product ax is not necessarily in X. On the other hand, ax is a π -element modulo T. This is because $\langle a^G \rangle$ becomes an abelian normal π -subgroup modulo T and the image of ax in the quotient $G/\langle a^G \rangle$ is a π -element. In other words, there are $y \in X \cap aM$ and $t \in T$ such that ax = ty. Observe that t has an open centralizer in G since $t \in T$. In fact $[G : C_G(t)] \leq |T|$. From the equality ax = ty deduce that $|x^G| \leq k^2|T|$. This happens for any $x \in X \cap M$. Using a routine inverse limit argument in combination with Theorem 1.2 we obtain that M has an open normal subgroup N such that the index [M : N] and the order of [H, N] are finite. Here H stands for the subgroup generated by all π -elements of M. Choose an open normal subgroup U in G such that $U \cap [H, N] = 1$. Then $U \cap M$ is an open normal subgroup of the form $P \times Q$, where P is an abelian pro- π subgroup and Q is a pro- π' subgroup. This proves the theorem in the case where all π -elements of Ghave open centralizers.

Assume now that *G* has a π -element, say *b*, of infinite order. Since the procyclic subgroup $\langle b \rangle$ is contained in the centralizer $C_G(b)$, it follows that $C_G(b)$ is open in *G*. This implies that all elements of $X \cap C_G(b)$ have open centralizers (because they centralize the procyclic subgroup $\langle b \rangle$). In view of the above $C_G(b)$ has an open subgroup of the form $P \times Q$, where *P* is an abelian pro- π subgroup and *Q* is a pro- π' subgroup and we are done.

We will therefore assume that G is infinite while all π -elements of G have finite orders and there is at least one π -element, say d, such that $C_G(d)$ is finite. The element d is a product of finitely many π -elements of prime power order. At least one of these elements must have finite centralizer. So without loss of generality we can assume that d is a p-element for a prime $p \in \pi$.

Let P_0 be a Sylow *p*-subgroup of *G* containing *d*. Since P_0 is torsion, we deduce from Zelmanov's theorem [16] that P_0 is locally nilpotent. The centralizer $C_G(d)$ is finite and so in view of Lemma 3.1 the subgroup P_0 is finite. Choose an open normal pro-*p'* subgroup *L* such that $L \cap C_G(d) = 1$. Note that any finite homomorphic image of *L* admits a coprime fixed-point-free automorphism (induced by the coprime action of *d* on *L*). Hence

L is prosoluble. Let *K* be a Hall π -subgroup of *L*. Since any element in *K* has restricted centralizer, Shalev's result [13] shows that *K* is virtually abelian. We therefore can choose an open normal subgroup *J* in *L* such that $J \cap K$ is abelian. If $J \cap K$ is finite then *G* is virtually pro- π' and we are done. If $J \cap K$ is infinite, then all π -elements of *J* have infinite centralizers. This yields that all π -elements of *J* have open centralizers in *J* and in view of the first part of the proof, *J* has an open normal subgroup of the form $P \times Q$, where *P* is an abelian pro- π subgroup and *Q* is a pro- π' subgroup. This establishes the theorem.

References

- Acciarri, C., Shumyatsky, P.: A stronger form of Neumann's BFC-theorem. Isr. J. Math. 242, 269–278 (2021). https://doi.org/10.1007/s11856-021-2133-1
- Detomi, E., Shumyatsky, P.: On the commuting probability for subgroups of a finite group, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 1–14 (2021). https://doi.org/10.1017/prm. 2021.68
- Detomi, E., Morigi, M., Shumyatsky, P.: Profinite groups with restricted centralizers of commutators. Proceedings of the Royal Society of Edinburgh, Section A: Mathematics 150(5), 2301–2321 (2020). https://doi.org/10.1017/prm.2019.17
- 4. Dierings, G., Shumyatsky, P.: Groups with boundedly finite conjugacy classes of commutators. Quarterly J. Math. **69**(3), 1047–1051 (2018)
- 5. Gorenstein, D.: Finite Groups. Chelsea Publishing Company, New York (1980)
- 6. Kelley, J. L.: General topology, Grad. Texts in Math., vol. 27, Springer, New York (1975)
- 7. Khukhro, E.I.: Nilpotent groups and their automorphisms. de Gruyter, Berlin-New York (1993)
- 8. Neumann, B.H.: Groups covered by permutable subsets. J. London Math. Soc. (3) 29, 236–248 (1954)
- 9. Neumann, P.M.: Two combinatorial problems in group theory. Bull. Lond. Math. Soc. 21, 456–458 (1989)
- 10. Ribes, L., Zalesskii, P.: Profinite Groups, 2nd edn. Springer Verlag, Berlin, New York (2010)
- Robinson, D. J. S.: A course in the theory of groups, Second edition. Graduate Texts in Mathematics, 80. Springer-Verlag, New York (1996)
- 12. Rowley, P.: Finite groups admitting a fixed-point-free automorphism group. J. Algebra 174, 724–727 (1995)
- 13. Shalev, A.: Profinite groups with restricted centralizers. Proc. Amer. Math. Soc. 122, 1279-1284 (1994)
- Wiegold, J.: Groups with boundedly finite classes of conjugate elements. Proc. Roy. Soc. London Ser. A 238, 389–401 (1957)
- 15. Wilson, J.S.: Profinite Groups. Clarendon Press, Oxford (1998)
- 16. Zelmanov, E.I.: On periodic compact groups. Israel J. Math. 77, 83–95 (1992)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.