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Abstract
When the rank of the bundle is≥ 2, in a certain sense,we found an essential obstruction for the
gluing construction of G2-instantons with 1-dimensional singularities. It involves the Atiyah
classes generated by contracting a vector in C

3 with the curvature. Intuitively speaking,
the gluing does not work if the tangent connection at a component of the 1-dimensional
singular locus is not the twisted Fubini-Study connection on a twisted tangent bundle of P2.
Particularly, it fails if the rank of the bundle is ≥ 3.

1 Introduction

Gauge theory plays an important role in the differential topology of 4-manifolds. Corre-
sponding to the groups SU (3), G2, and Spin(7) in the holonomy list of Berger-Simons
[2,20], Donaldson-Thomas [8] and Donaldson-Segal [7] intend to generalize the gauge the-
ory in dimensions 2, 3, 4 to 6, 7, 8. In dimension 7, the objects of interest are projective
G2-monopoles and instantons. Let ψ be the co-associative 4-form on a 7-manifold with a
G2-structure and a complex Hermitian vector bundle. A G2-monopole is a Hermitian con-
nection A and a trace-less skew-Hermitian bundle endomorphism σ i.e. section of adE , such
that the curvature F0

A of the induced PU (n)-connection satisfies the following equation

�(F0
A ∧ ψ) + dAσ = 0. (1)

When the monopole term σ = 0, we call the connection a projective G2-instanton.
To understand the boundary of the moduli and to construct examples of singular instan-

tons via gluing, a Fredholm theory is important. For instantons with isolated singularities,
the indicial roots are discrete. However, those of 1-dimensional singularities are not.
Finite dimensional obstructions can prevent a gluing construction: see the work of Bren-
dle Kapouleas [4] on Einstein metrics. Infinite dimensional obstructions make it even harder:
see the work of Chen [5] on twisted connected sum of G2-structures with conical singu-
larities along circles. An option is to add parameters into the domain Banach space. For
∞-dimensional co-kernel, we need an ∞-dimensional parameter space. On singular G2-
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instantons and Hermitian Yang-Mills connections, in addition to deforming the connection,
we can pull back the G2-structures by certain diffeomorphisms in which the Frechet partial
derivative yields the Auxiliary operator. This yields the extended linearized operator. Our
main result shows a necessary condition for such a scheme towork for singularG2-instantons.

Theorem A In an ideal configuration of G2-instanton with 1-dimensional singularities (Def-
inition 2.1), the usual linearized operator (3) does not have closed range. The extended
linearized operator (7) has closed range only if at each circle γi (as in Definition 2.1), the
model connection is the twisted Fubini-Study connection on a twisted tangent bundle of P2.
Particularly, the rank of the bundle must be 2.

The twisted Fubini-Study connection is defined up to a smooth bundle isomorphism on
P
2. For bounded linear operators between Banach spaces, the range is not closed implies ∞-

dimensional co-kernel. Theorem A implies the non-vanishing of the co-kernel on compact
7-folds, including the twisted connected sums [19]. The co-kernel is called the obstruction
but is different from the essential obstruction below.

Corollary B Over a compact 7-manifold M, under the standard weighted Schauder formula-
tion for G2-instanton with 1-dimensional singularities in Definition 2.1 (1–3), (40), and (41)
below, for any δ ≥ 0, the usual linearized operator (40) is not surjective. Suppose

• the rank of the bundle is 2 but the model connection at some circle is not the twisted
Fubini-Study connection on a twisted tangent bundle of P2, or

• the rank of the bundle is ≥ 3.

Then the extended linearized operator (41) is not surjective.

Gluing construction of G2-instantons with 1-dimensional singularities on twisted con-
nected sums is mentioned by Jacob-Walpuski in [13]. Corollary B says that the gluing is
obstructed if one of the tangent connections is not twisted Fubini-Study. This is different
from smooth G2-instantons on twisted connected sums considered by Sá Earp-Walpuski
[19], in which assuming the two Lagrangian subspaces in a sheaf cohomology intersect
transversally [19, Theorem 1.2], the co-kernel is trivial [19, Theorem 3.24 Step 2]. This is
indeed the case for the concrete examples [16,23].

We do not need the G2-structure to be globally co-closed though it might well be in the
cases of interest. We only need the flexible functorial conditions I–V which can be easily
verified for the example inCorollaryB. The condition III� holds under surjectivity hypothesis.
This is one of the roots of the contradictory argument for Corollary B.

On other geometric objects, there are perturbation theories deforming the singular locus.
For example, see Takahashi’s deformation [21] of Z2-harmonic spinors in dimension 3. Very
recently, Donaldson [6] developed the deformation for multi-valued harmonic functions.
Similarly to [6], here any Green’s function must possess a leading term disabling the defor-
mation. In a certain sense it can not be “overcome” by adding the vector fields if the essential
obstruction does not vanish (Lemma 6.1 below). For minimal surfaces with non-isolated sin-
gularity, please see the work of Mazzeo-Smale [15] that perturbs the singularities away. This
generalizes Hardt-Simon perturbation [11] for isolated singularities. Beyond G2-instantons,
for the aforementioned and other geometric objects, we wonder whether there is similar
phenomenon of essential obstruction and “rigidity” of tangent cone. This should be related
to a certain eigen-space of the link operator of the linearization which we call the indicial
eigen-space. In our G2-instanton setting of Corollary B, the indicial eigen-space is the sheaf
cohomology H1[P2, (EndE)(−1)]. Its complex dimension is always no less than 3, and
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it contains a distinguished 3-dimensional subspace consisted of Atiyah classes. An Atiyah
class in the cohomology is the image under a natural linear injection of the contraction of
a (constant) vector in C

3 with the curvature F0
A. We define the essential obstruction as the

finite dimensional quotient

H1[P2, (EndE)(−1)]
{Atiyah classes} . (2)

Please see Proposition 4.1 below. On gluing construction of Einstein metrics, Biquard [3]
also found an obstruction involving curvature.

Theorem A and Corollary B can be understood as “good news” for the compactification
of moduli of smooth instantons, in conjunction with the work of Tian [22] and the co-
dimensional 6 conjecture therein. On a compact G2-manifold with a unitary vector bundle,
the ∞-dimensional co-kernel result makes it reasonable to ask “how often” (in a sense that
needs to be specified) we can see other model connections than the twisted Fubini-Study as
the singularity model of the “limit” of a sequence of smooth ones. We do not know whether
the 1-dimensional singularities can “break into” isolated singularities by any sort of gluing
construction, as mentioned in [5].

Closer to the language in [6] and [5] and schematically speaking, the reason why the
(non-trivial) essential obstruction prevents the deformation is that it “spans” the leading
terms of norm O( 1

r2
) in solutions to the extended linearized equation. On the model space

(C3\O) × S
1, r means the distance to the origin in the C3\O-component, and s means the

parameter of the S1-factor. Please see (32) and (38) below. Pay attention to that the leading
term of the modified Bessel function I0 in (32) is 1 which results in xk = O( 1r ) therein.
The norm of an eigen-section of the link operator on S5 is O( 1r ). These two factors multiply
to O( 1

r2
). However, we need O( 1r ) deformations due to quadratic non-linearity of instanton

equation. These “bad” leading terms are “inevitable” unless the essential obstruction vanishes.
When the tangent connection is indeed twisted Fubini-Study, we do expect a non-standard

Fredholm theory incorporating the deformations of singular locus. We plan to address it in
the future. Nevertheless, to achieve the goal proposed in [13] i.e. constructing singular G2-
instantons with 1-dimensional singularities, we still need to address the Banach spaces to
work with, how to integrate it to a nonlinear theory, the corresponding index theory, and
transversality. Except transversality, the other 3 ingredients are no problem for instantons
with isolated singularities or smooth instantons.

The vector fields we allow are spanned by all the 7 directions (coordinate vectors) near a
component of a circle while the coefficients only depend on r and s. Please see Section 2.2
below. This is the advantage of the Euclidean space C3\O as the simplest Calabi-Yau cone:
there are constant vector fields on the 7-dimensional product (C3\O) × S

1 deforming the
circle O×S

1 and also generating eigen-sections of the link operatorwith respect to eigenvalue
−1. The case of more general vector fields remains mysterious. We do not know whether
there is any analogous structure for general Calabi-Yau cone over a regular Sasakian Einstein
5-manifold.

Sketch of the proof

Briefly speaking, the proof ofTheoremAfor the extended linearized operator is an assembling
of the following 3 facts.

1. The essential obstruction vanishes if and only if the tangent connection is a twisted Fubini-
Study connection on T 1,0

P
2(k) (Lemma 4.5).
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2. The range of the model auxiliary operator is in the “span” of Atiyah classes (Proposi-
tion 5.1).

3. Under the surjectivity condition III�, if the essential obstruction is non-trivial, we can
construct a singular sequence violating closed range (Lemma 6.1).

On the other hand, heavy but interesting tensor calculations are carried out for the defining
Proposition 4.1 of Atiyah classes (self contained in our setting for readers’ convenience), and
also in a more sophisticated manner for the auxiliary operator formula in Proposition 5.1.
Part of the setting was defined in [25], but the actual computations here are different.

• For Proposition 4.1, we need some identities related to the Euler sequence onP2, contrac-
tions between vector fields and transverse quaternion structure (the 3-forms dη

2 , G, H ),
and the transverse exterior differential d0 on the standard Sasakian manifold S

5. For
example, see the ∂ and ∂-closedness in Lemma 4.3 and the “partial d0-closedness” in
Lemma 4.4.

• The computation for Proposition 5.1 are routine but with many terms, based on the
geometry of P2, S5, and the G2-forms on R

7. It suffices to apply the fine formula (50)
for the standard co-associativeG2-form, then exterior differentiate the contraction with a
vector field. This yields the 3 Lie derivative terms and 7-terms that has vanishing wedge
with the (traceless) curvature (see (55)). Therefore, wedging it with the curvature and
taking Hodge dual, only these 3 Lie derivative terms remain. They are handled further in
Proposition 5.1. The cancellation of the two “ Xi

r · (ei�H)” deserves reader’s attention.

Organization of the paper: Almost all definitions related to Theorem A and Corollary B
are in Sections 2 and 3 . In Section 4 we define the Atiyah classes in Eigen−1P and use
Riemann–Roch to show that the cohomology H1[P2, (EndE)(−1)] consists only of Atiyah
classes is equivalent to that E is a twisted tangent bundle. In Section 5 we state and prove
the formula for the auxiliary operator, leaving routine tensor calculations to the Appendix.
In Section 6 we prove the main results using separation of variables, Sasakian geometry of
the linearized operator, modified Bessel functions, and functional analysis.

2 Preliminary

In this section we define the configuration required in Theorem A.

Definition 2.1 Throughout, a ball B(R) is always in C
3 and centred at the origin. A tame

configuration of G2-instanton with 1-dimensional singularities consists of:

1. finitely-many disjoint embedded circles (embedded S
1’s) γi , i = 1, ..., l with trivial

normal bundle in a 7-manifold M , and mutually disjoint tubular neighborhood of γi
diffeomorphic to [B(100R0)\O] × S

1 for some R0 > 0;
2. a smooth unitary connection A on a bundle E → M\γ with rank n ≥ 2 such that in each

tubular ball as above, (A, E) is equal to the pullback of a non-projectively flat Hermitian
Yang-Mills connection (Ai , Ei ) → P

2 via the standard fibrationmap (C3\O)×S
1 → P

2;
3. a G2-structure on M equal to the standard one near each γi under the same coordinate;
4. Banach spaces Y , B, and χ(M, T M) that satisfy condition I, IV, and V below.

A tame configuration is ideal if condition II, III, and III� hold.

The reason we can assume R0 is independent of i is that there are only finitely-many
circles. The results in the introduction are independent of R0 as long as it is > 0. Many
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discussions below are under the coordinate chart in the first bullet point above. This should
be clear from context. For example, see condition II below.

The following terms make it convenient.

Terminology 2.2 Themanifold (C3\O)×S
1 is called themodel space. The open set B(R)×

S
1 and the punched set [B(R)\O] × S

1 are called the tubular ball and punched tubular ball,
respectively. The punched tubular ball with radius R = ∞ is the model space.

Let r denote the distance to the origin in C
3. This is also the Euclidean distance to the

circle O × S
1 in C

3 × S
1. Sometimes it is denoted by rx as a function (see (10) below).

2.1 The usual linearization

Let
k
adE denote the bundle ofadE-valued k-forms.With gaugefixing, the usual linearization

of the monopole equation (1) is a first order elliptic operator L that mapsC∞[M7\γ,
0
adE ⊕


1
adE ] to itself:

L

[
σ

a

]
=

[
d�
Aa

dAσ + �(dAa ∧ ψ)

]
, (3)

where σ is a section and a is a 1-form, both adE-valued. To avoid heavy notation we
henceforth suppress the bundles and even the domain manifold in the notation for the Banach
spaces, including the weighted Schauder spaces etc.

Let the domain of the usual linearized operator be a Banach space Y that is a subspace
of C1(M\γ ). Likewise, let the target B be a Banach space that is a subspace of C0(M\γ ),
such that the following holds.

Condition I : L : Y → B is bounded.

To construct singular sequence, we need two more conditions. The first is the lower bound
comparing the norm of Y to the standard weighted C0-norm whose sections are O( 1r ) near
the circles.

Condition II : ‖ξ‖Y ≥ N‖Res|R0
ξ‖C0

1 [B(R0)×S1] for some 0 < R0 < R0.

where Res|R0
is the restriction of ξ onto the punched ball of radius R0.

The other condition is an upper bound on the B-norms of a particular sequence of com-
pactly supported sections. Namely, let χ be a cutoff function as below (31). We assume there
is a unit vector ζ ∈ Eigen−1P (which is required to be perpendicular to the Atiyah classes
if the essential obstruction is non-trivial) such that

Condition III : || y
δχ(ky)K0(ky) sin ks

k
· I ζ ||B ≤ CB,k0 for some δ ≥ 0

where CB,k0 is a constant independent of integer k ≥ k0 for some k0 ≥ 1. Moreover, we
define

Condition III� : yδχ(ky)K0(ky) sin ks · I ζ ∈ RangeL for any k as above.

The range of the extended linearized operator L contains the range of the usual L . Because
of the the exponential decay of the modified Bessel function of second kind K0(x) for large
x ≥ 1 (see [24] for a comprehensive theory), we expect no difficulty in checking condition
III for a specific Banach space B. Please see the proof of Corollary B below.
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2.2 The vector fields

Let (ei , 1 ≤ i ≤ 6) be the standard basis of R6 and ei be the dual basis. Near the circle
O × S

1 ⊂ C
3 × S

1, we consider vector fields of the following form.

X = Xs
∂

∂s
+ 6

i=1Xiei where the coefficients Xs, Xi only depend on r and s. (4)

The global vector fields are as follows.

Definition 2.3 Let X(M, T M) be a Banach space of vector fields on M which is a subspace
in C1(M\γ ). We say it satisfies Condition IV if the restriction of an arbitrary vector field in
X(M, T M) onto the tubular ball B(R0) × S

1 of each circle defines a bounded linear map
from X(M, T M) to the space XR0 of vector fields of the form (4) (across the circle) with
norm

||X ||XR0
= l

j=1
7
i=1

{
|Xi |C0,1[B(R0)×S1] +

∣∣∣∣∂Xi

∂r

∣∣∣∣
C0[(B(R0)\O)×S1]

+
∣∣∣∣∂Xi

∂s

∣∣∣∣
C0[(B(R0)\O)×S1]

where X7 � Xs . We want our vector fields to be Lipschitz even across the circles in line with
the existence and uniqueness of flows.

3 The extended linearized operator

3.1 The auxiliary operator

We pullback the G2-structure via a diffeomorphism χ integrated from a vector field X ∈
X(M7, T M7) (at t = 1). The monopole equation becomes

�χ�φ[F0
A ∧ (χ�ψ)] + dAσ = 0. (5)

By Cartan formula, assuming A is a projective instanton, the linearization in the diffeomor-
phism at I dM yields the Auxiliary operator :

�φ(F0
A ∧ d[X�ψ]) + �φ[F0

A ∧ (X�dψ)]. (6)

If A is projectively flat, it vanishes. The second term vanishes in the punched tubular balls
near each circle as the G2-structure therein is standard.

Under Definition 2.3 on the vector fields, we assume the following on the extended lin-
earized operator.

Condition V : L : X(M7, T M7) ⊕ Y → B is bounded,

where L is the linearization of (5) with respect to the connection A and the diffeomorphism
χ (still with gauge fixing):

L

∣∣∣∣∣∣
X
σ

a

∣∣∣∣∣∣ =
∣∣∣∣ d�

Aa
dAσ + �(dAa ∧ ψ) + �[F0

A ∧ d(X�ψ)] + �[F0
A ∧ (X�dψ)]

∣∣∣∣ . (7)

This means L is actually the linearization of{
�χ�φ[F0

A+a ∧ (χ�ψ)] + dA+aσ = 0,
d

�φ

A a = 0.
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in χ, σ, a at χ = I d , σ = 0, and a = 0. We assumed F0
A ∧ ψ = 0 such that the

linearization of �χ�φ in χ does not contribute. Please compare (7) with formula (3) of the
usual linearization. The definitions involved in Theorem A are all established.

Remark 3.1 Weonly consider the linear operators (7), (9), (3), (8), not the non-linear instanton
or monopole equation. Every single result/calculation is about the linearized equations, not
the non-linear equations.

3.2 Themodel problem

We review some standard material in [25]. The model data on (C3\O)×S
1 is the pullback of

a non-projectively flat Hermitian Yang-Mills connection A on a bundle E → P
2 with rank

≥ 2 and the standard G2-structure (φeuc, ψeuc). Here we abused notation with the bundle
“E” on the manifold in Definition 2.1.2. The model usual linearized operator is

L0 = I ·
[

∂

∂s
− T

(
∂

∂r
− P

r

)]
(8)

on the pullback of the bundle

Dom = adE⊕(4) ⊕ 
1
sba(adE) → S

5

whose rank is 8 × rank(adE). Moreover,

• 
1
sba(adE) is the bundle of semi-basic adE-valued 1-forms i.e. the pullback of


1(adE) → P
2,

• and I , T are isometries of Dom. They anti-commute and generate a quaternion structure
by I T = −K .

Please see [25, Lemma 5.3]) for more.
Let ∼= / ∼=C mean real/complex isomorphisms between two finite dimensional vector

spaces. Part of the spectral theory for the link operator P in [25, Theorem A and D] is the
following diagram of isomorphisms:

Eigen−2P

H1[P2, EndE(−2)]

Eigen−1P

H1[P2, EndE(−1)]

“Serre duality”

Serre duality

∼=C
∼=C

The symbol “EigenμP” means the eigen-space of P of the eigen-value μ.
The extended linearized operator (7) becomes

L0(ξ, X) = I ·
[

∂

∂s
− T

(
∂

∂r
− P

r

)]
+ �[F0

A ∧ d(X�ψeuc)]. (9)

3.3 A brief remark about usual weighted Schauder spaces

Following [14] and for Corollary B, we discuss the standard weighted Schauder spaces of
bundle sections.
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On a punched tubular ball with radius R for the bundle Dom

Let the Hölder semi-norm be

[u]C0,α
0

� sup
x,y∈[(B(R)\O)×S1], O×S1∩xy=∅

[min(rx , ry)]α
|P−→xy[u(x)] − u(y)|

dα(x, y)
(10)

where

• rx is the distance from theC3-component of x to the origin (see below Terminology 2.2),
• xy is the shortest line segment (geodesic) joining x, y and realizing the distance d(x, y),

and
• P−→xy is the parallel transport from x to y via the segment and the connection in the tame

configuration.

Let the norm |u|C0
0
(and |u|C0 whichmeans the same) be simply supx∈[(B(R)\O)×S1] |u|(x).

It only depends on the bundle metric thus also applies to a vector field.

The C
1, 12
0 -norm is defined by

|u|
C
1, 12
0

= |u|
C
0, 12
0

+ 
D= ∂

∂r , ∂
∂s ,

∇
S5,A
r

|Du|
C
0, 12
1

. (11)

When R is finite, according to the principle [10, (6.10)], the above norm treats O × S
1 as

boundary but not the other piece ∂[B(R)] × S
1.

The weighted Schauder space C
k, 12
p is simply defined by the multiplication with the factor

r p:

|ξ |
C
k, 12
p

� |r pξ |
C
k, 12
0

, k = 0, 1.

For example, a section is inC
k, 12
1 if and only if the multiplication by r is inC

k, 12
0 . This implies

the norm is O( 1r ) near the circle O × S
1.

Over a compact manifold

Under a tame configuration over a compact manifold M , we can finitely cover the whole
manifold by

• tubular balls with radius 10R0 and
• geodesic convex balls away from the tubular balls of radius 7R0 centered at components

of γ , such that balls of double radius are still geodesic convex and avoid the same tubular
balls.

This can be achieved by taking a small enough ball (regarding R0 and the Riemannian metric
induced by the G2-structure) at any point not in the tubular balls of radius 10R0 (which some
of the geodesic convex balls still intersect). Therefore with the tubular balls of radius 10R0,
an (open) cover is obtained. Then take a finite sub-cover.

The next step is to simply use partition of unity to patch the local norms to get the global.
On the geodesics balls, the usual Schauder norm is defined as a special case in [14, Definition
4.3]. According to our choice, the cutoff functions ψi corresponding to each tubular ball (in
the partition of unity) is ≡ 1 in the even smaller tubular balls of radius 5R0.
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4 Atiyah classes

In this section we show that the essential obstruction vanishes if and only if the bundle on P2

is the twisted tangent bundle T 1,0
P
2(k). This is completely different from Theorem A: the

“if and only if” here is about vanishing of essential obstruction and the underlying bundle
on P

2, but Theorem A is about closed range and vanishing of essential obstruction.
We recall from [25] some Sasakian geometry on the standard round S5 (of radius 1 inR6).

Let υ and η be the standard Reeb vector field and contact form on S5. There are three forms
dη
2 , H , G on ∧2D�, where D� � η⊥ is the contact co-distribution of rank 4. The metric
contraction between a semi-basic (D�-valued) 1-form with each of the forms is a complex
structure on D� denoted by J0, JH , JG respectively. By metric pulling down, these complex
structures also act on the contact distribution D � υ⊥. They form a quaternion structure on
both D and D�. This structure can also be generalized to the bundle Dom for the linearized
operator. The action of I on semi-basic 1-forms (including Eigen−1P and Eigen−2), is J0,
and the action of T on these forms is −JG . The quaternion structure is determined by

JH J0 = JG .

Let � denote the Hodge star of the Euclidean metric on the model space (C3\O) × S
1, and

�D� the one on the contact co-distribution with respect to the standard metric on S5.
The pullback of the projective curvature F0

A of the Hermitian Yang-Mills connection on
P
2 is �D� -anti self-dual i.e. invariant under the quaternion structure J0, JH , JG . Let d0

denote the transverse exterior differential operator d−η∧ Lυ . The square d20 does not vanish
in general. We call a D-valued vector semi-basic and let �D� denote the metric pulling up
of a semi-basic vector (field), which is a semi-basic form. Please see [25, Section 3] for a
comprehensive discussion.

4.1 Themap

Now we define the injection.

Proposition 4.1 Let (E, A) → P
2 be a non-projectively flat Hermitian Yang-Mills bundle

with rank n ≥ 2. For any (constant) vector Y ∈ R
6, the bundle valued 1-form r(Y�F0

A) lies
in Eigen−1P. The resultant linear map

� : R6 → Eigen−1P (∼=C H1[P2, (EndE)(−1)])
is a complex injection. It is an isomorphism if and only if E = (T 1,0

P
2)(k).

A cohomology class in Range� ⊂ H1[P2, (EndE)(−1)], in view of [1], is called an
Atiyah class. The same term applies to an element in Range� ⊂ Eigen−1P via the complex
isomorphism in [25, Theorem A and Proposition 8.2].

Notation 4.2 Denote Range� by

{Atiyah Classes}|Eigen−1P .

Suppressing the subscript, this is the space on the “denominator” in (2).

We need two facts for Proposition 4.1.

Lemma 4.3 Let F0
A be the curvature of the projective connection induced by a Hermitian

connection over a Kähler surface. Suppose F0
A is (1, 1).

123



3006 Y. Wang

• If X is a holomorphic (1, 0)-vector field, then X�F0
A is ∂ A-closed.

• If X is an antiholomorphic (0, 1)-vector field, then X�F0
A is ∂A-closed.

Consequently, in either case, dA(X�F0
A) is (1, 1).

Proof It suffices to prove it for holomorphic (1, 0) vector fields, it is similar for anti-
holomorphic (0, 1) vector fields. Under a Kähler geodesic coordinate, we calculate

(Xi F0
i1

)2̄ − (Xi F0
i2

)1̄ = Xi F0
i1,2̄

− Xi F0
i2,1̄

= 0, (12)

where the first equal sign holds because X is holomorphic (1, 0), the second is by Bianchi
identity for F0

A and that the curvature is (1, 1). ��
We henceforth suppress the connection in the derivatives. The other fact is the following.

Lemma 4.4 For any constant vector Y ∈ R
6, d0(rY�F0

A) is (1, 1). Consequently,

[d0(rY�F0
A)]�G = [d0(rY�F0

A)]�H = 0.

Proof Let Z0, Z1, Z2 be the complex coordinates of C3. It suffices to prove it for the
complexified version for the constant holomorphic vectors

∂

∂Z0
,

∂

∂Z1
,

∂

∂Z2
(13)

and anti-holomorphic vectors

∂

∂Z0
,

∂

∂Z1
,

∂

∂Z2
. (14)

We only do it for ∂
∂Z0

on the dense open set

VC3\O = {Z0 �= 0, Z1 �= 0, Z2 �= 0} ⊂ C
3\O. (15)

Then it follows by continuity. The proof for the other five vectors are similar.
We calculate

d0

(
r

∂

∂Z0
�F0

A

)
= d0

(
r

Z0
Z0

∂

∂Z0
�F0

A

)
{
d0

(
r

Z0

)
∧

[
π�

(
Z0

∂

∂Z0

)]
�F0

A

}
+ r

Z0
· dP2

([
π�

(
Z0

∂

∂Z0

)]
�F0

A

)
(16)

The radius r equals 1 on S
5. According to an identity in [25, Proof of Lemma 8.7],

d0(
r
Z0

) = d0(
1
Z0

) is (1, 0). Since [π�(Z0
∂

∂Z0
)]�F0

A is (0, 1), the first term in (16) is (1, 1).
So is the second term by Lemma 4.3. ��

4.2 Riemann–Roch formula

The map � being surjective implies rigidity of the connection.

Lemma 4.5 Let (E, A) → P
2 be a non-projectively flat Hermitian Yang-Mills bundle with

rank n ≥ 2. Suppose c2(EndE) ≤ 3. Then n = 2. Moreover, as a holomorphic bundle,
(E, ∂ A) is isomorphic to the twisted Fubini-Study connection on (T 1,0

P
2)(k) for some integer

k. In particular, the equality c2(EndE) = 3 holds.
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Atiyah classes and the essential obstructions... 3007

Consequently, the essential obstruction

H1[P2, (EndE)(−1)]
{Atiyah classes}

of a non-projectively flat Hermitian Yang-Mills bundle with rank ≥ 2 on P
2 vanishes if and

only if it is isomorphic to the twisted Fubini-Study connection on a twisted tangent bundle of
P
2.

In the above case, we recall that c2(EndE) = 2nc2(E) − (n − 1)c21(E).
Because the subspace {Atiyah classes} has (complex) dimension 3, the vanishing of

the essential obstruction and Riemann–Roch formula (see [25, Lemma 17.10]) implies the
dimension condition h1[P2, (EndE)(−1)] = c2(EndE) ≤ 3. We note that the injection
in Proposition 4.1 already says h1[P2, (EndE)(−1)] ≥ 3. It is consistent with the upshot
c2(EndE) = 3.

Proof of Lemma 4.5 The Hermitian Yang-Mills condition implies poly-stability i.e.

E = E1 ⊕ ... ⊕ Em

where them components are stable bundles of the same slope. Any (holomorphic) endomor-
phism of E is determined by the induced homomorphism

Ei → E j for any i, j = 1, ...,m.

Then Lemma 7.5 below yields a natural complex injection

H0[P2, EndE] → gl(m,C).

This implies h0(P2, EndE) ≤ m2.
Step 1: We show that E must be stable and rankE = 2 i.e. m = 1. Because

h0[P2, (EndE)(−3)] = 0,

the cohomology formula (for example, see [25, Lemma 18.10]) implies

0 ≤ h1[P2, EndE] = 2nc2(E) − (n − 1)c21(E) + (m2 − n2) ≤ m2 + 3 − n2.

Hence

n2 ≤ 3 + m2. (17)

But

n = n1 + ... + nm

is the sum of the ranks of the sub-bundles. Then either

• n1 = ... = nm = 1,
• or m = 1.

This is because if m ≥ 2 and there is at least one summand with rank ≥ 2, the inequality

n2 ≥ (m + 1)2 = m2 + 2m + 1 > 3 + m2

contradicts (17). The first bullet point condition implies E is projectively flat, which contra-
dicts our assumption. The second says E is stable therefore rankE = 2 by (17).
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Step 2: It suffices to show E must be a twisted tangent bundle using (the other conditions
and)

0 ≤ 4c2(E) − c21(E) ≤ 3.

Because the Chern numbers c1(E) and c2(E) are both integers, 4c2(E) − c21(E) can not be
1 or 2 mod 4. This is because in mod 4 congruence classes, 4c2(E) = 0 and the square of an
integer (including c21(E)) does not equal 2 or 3. Hence

4c2(E) − c21(E) = 3 or 0.

Case 1. Suppose 4c2(E) − c21(E) = 3. Then c1(E) must be odd. Let E(kE ) be the
normalization of E such that c1[E(kE )] = −1, we have c2[E(kE )] = 1. Then E(kE ) must
be topologically isomorphic to (T 1,0

P
2)(−2). Mukai [17] shows that they must also be

isomorphic as holomorphic bundles.
Case 2. Suppose 4c2(E) − c21(E) = 0. The equality in Bogomolov inequality is attained.

It must be projectively flat, but E is stable with rank ≥ 2. This is a contradiction.
The above says E must be isomorphic to (T 1,0

P
2)(k) as holomorphic vector bundles. ��

Postscript: The reason c21(E) is a squared integer is that the Picard group ofP2 is generated
by O(1) and the Chern number c21[O(1)] is equal to 1 i.e.∫

P2
c1[O(1)] ∧ c1[O(1)] = 1 as Chern number.

This implies c21(E) = (degE)2 where det E = O(degE).

4.3 Proof of Proposition 4.1

In conjunction with the review of the standard material in [25] that we need here (see the
beginning of Section 4 and 3.2 ), let �C3 denote the hodge star onC3 (under standardEuclidean
metric). Let L denote the Lie derivative with respect a vector field.

Step 1: r(Y�F0
A) is d0-co-closed.

We first show it is dC3 co-closed. Similarly to Lemma 4.4, we show the complexified
version for the holomorphic and anti-holomorphic vector fields (13), (14). This is straight-
forward because the pullback F0

A is (1, 1) onC3\O , and the projective Hermitian Yang-Mills

condition F0
A� dη

2 = 0 on P
2 implies F0

A�ωC3 = 0 as pullback. By Bianchi identity, for any
i = 0, 1, 2, F0

A,i j̄, j
= 0 on C

3. Hence there is a constant c0 such that

d
�
C3

C3

(
r

∂

∂Zi
�F0

A

)
= c0

(
r F0

A,i j̄

)
j
= c0r j F

0
A,i j̄

+ c0
(
r F0

A,i j̄, j

)
= c0F

0
A

(
∂

∂Z0
,

∂

∂r

)

= 0. (18)

Because d
�
C3

C3 = d
�D�

0
r2

on semi-basic 1-forms pullback from S
5, we find

d�D�

0

(
r

∂

∂Zi
�F0

A

)
= 0.

Similarly proof yields the following for any i = 0, 1, 2.

d�D�

0

(
r

∂

∂Zi
�F0

A

)
= 0.
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Hence for any constant vector Y ∈ R
6, we have

d�D�

0 (rY�F0
A) = 0.

Step 2: r(Y�F0
A) is an eigen-section of P of eigenvalue −1.

It is semi-basic. Because F0
A0

is (1, 1) on C3\O and R6, the JC3 and J0 invariance of F0
A0

tells us that

[JC3(Y )]�F0
A0

= JC3(Y�F0
A0

) = J0(Y�F0
A0

) for any Y ∈ C
3. (19)

We used that on semi-basic vectors and forms, JC3 coincides with J0 (see [25, Appendix]).
Consequently,

d�D�

0 J0(rY�F0
A) = d�D�

0 [r JC3(Y )�F0
A] = 0

for any Y ∈ R
6 as well. The Lie derivative in the Reeb vector field is

Lυ(rY�F0
A) = r Lυ(Y�F0

A) = r(JC3Y )�F0
A = r JC3(Y�F0

A) = J0(rY�F0
A). (20)

Apply J0 to both hand sides and using that Lυ J0 = J0Lυ , we find

Lυ [J0(rY�F0
A)] = −rY�F0

A. (21)

Via the formula for P in [25, Lemma 5.3], the above means rY�F0
A is an eigen-section of P

of eigenvalue −1. It defines the map

� : R6 → Eigen−1P via � (Y ) � rY�F0
A.

Step 3. � is injective.
Let p be a point on S

5 at which v = (rY )‖D is nonzero (see Fact 7.1 below). Then we
normalize it via e1 = v

|v| , and complete it into an orthonormal frame (e1, e2, e3, e4) for the

contact distribution D at p. That F0
A is anti self-dual means

F0
A = F0

A,I (e
12 − e34) + F0

A,I I (e
13 − e42) + F0

A,I I I (e
14 − e23). (22)

The condition e1�F0
A = 0 at p implies that 0 = F0

A,I e
2 + F0

A,I I e
3 + F0

A,I I I e
4. This in turn

implies F0
A,I = F0

A,I I = F0
A,I I I = 0 i.e. F0

A = 0 at p. Because v is non-zero on a dense

open set on S5, F0
A = 0 on the same set. By continuity of F0

A, it vanishes everywhere on S
5.

When E is a twisted tangent bundle ofP2, byLemma4.5, the injection� is an isomorphism
since the dimension of the domain equals the dimension of the range. The proof is complete.

5 Formula of the auxiliary operator

The Atiyah classes originally defined in Eigen−1P can also be defined in Eigen−2P via
the isometry T i.e.

{Atiyah classes}|Eigen−2P � T [{Atiyah classes}|Eigen−1P ].
The desired formula involves both.

Proposition 5.1 Let X ∈ C1[(B(R)\O) × S
1] be a vector field of the form (4), 0 < R ≤ ∞.

The following holds therein.

Aux(X) = −6
i=1

{
∂Xi

∂s
· [(JC3ei )�F0

A] + ∂Xi

∂r
· JH (ei�F0

A)

}
. (23)
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Consequently, RangeAux lies in the span (by continuous functions only of r , s on the same
tubular ball) of Atiyah classes in Eigen−1P and Eigen−2P.

Proof of Lemma 5.1: It suffices to apply Lemma 7.3 and calculate the Lie derivatives therein.
The condition that the co-efficients of X only depend on r , s is also used in Step 3 of the
proof of the preliminary formula (49) below.

Because the ∂
∂s -component does not contribute to the operator at all (see Fact 7.4 below),

we can assume X is perpendicular to ∂
∂s . The Lie derivatives in the Reeb-vector field υ, radial

vector field ∂
∂r , and

∂
∂s of the symmetric bi-linear forms ds2, dr2, and gS5 all vanish. We note

that ∂
∂r is not Killing for the Euclidean metric ds2 + dr2 + r2gS5 . We compute via the Lie

derivative formulas in Lemma 7.2 and elementary Riemannian geometry that

L ∂
∂r
X = 6

i=1

⎡
⎢⎣∂Xi

∂r
ei − Xi

e
⊥ ∂

∂r
i

r

⎤
⎥⎦ , LυX = −6

i=1Xi JC3(ei ), L ∂
∂s
X = 6

i=1
∂Xi

∂s
ei .

(24)

Then the 3 Lie-derivative contractions in (49) can be calculated as follows.

(L ∂
∂s
X)�dη

2
= 6

i=1
∂Xi

∂s

(
ei�

dη

2

)
,

(L ∂
∂r
X)�H = 6

i=1

(
∂Xi

∂r
− Xi

r

)
(ei�H),

1

r
(LυX)�G = −6

i=1
Xi

r

[
JC3(ei )�G

] = 6
i=1

Xi

r
(ei�H).

Summing the above 3 equalities and combining coefficients of similar terms, the two terms
containing ei�H cancel out and we find
(

∂X

∂s

)
�dη

2
+ (L ∂

∂r
X)�H + (LυX)�G

r
= 6

i=1

{
∂Xi

∂s
·
(
ei�

dη

2

)
+ ∂Xi

∂r
· (ei�H)

}
.

Here we applied again the remark below (19) about the relation between JC3 and J0. Using
(49) and contracting the above with −F0

A, the proof of the desired formula (23) is complete.
��

6 The Dirac system and proof of TheoremA and Corollary B

In this section we assemble the established tools to prove the main results. Via separation of
variables, the singular sequence is constructed via a linear system of two partial differential
equations in r and s.

6.1 The Dirac system

Let (ξ, X) be the independent variable of themodel extended linearized operator L0, where X
is the vector field and ξ is the section of the domain bundle adE⊕
1

adE . Because RangeAux
is spanned by functions in r and s of Atiyah classes in both Eigen−1P and Eigen−2P , in the
perpendicular direction, the extended linearized operator coincides with the usual linearized
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operator in the following sense. In the Hilbert space L2[S5, Dom], let ‖Atiyah denote the
projection to the 12 dimensional subspace

{Atiyah classes}|Eigen−1P ⊕ {Atiyah classes}|Eigen−2P ,

and ⊥Atiyah the projection to the orthogonal complement. We have

[Aux(X)]‖Atiyah = Aux(X)

for any differentiable vector field X in the punched tubular ball.
For any ξ ∈ C1[(B(R0)\O) × S

1],
[L0(ξ, X)]⊥Atiyah = (L0ξ)⊥Atiyah = L0(ξ

⊥Atiyah ). (25)

But Aux does appear in the Atiyah class component:

[L0(ξ, X)]‖Atiyah = (L0ξ)‖Atiyah + Aux(X) = L0(ξ)‖Atiyah + Aux(X). (26)

Gram-Schmit process for each eigen-space of P yields a complete orthonormal P-eigen-
basis (φβ, β ∈ Specmul P) for L2[S5, Dom] such that
• the eigen-section ζ perpendicular to the Atiyah classes in condition III appears as an

element in the basis if essential obstruction is non-trivial,
• 6 elements of the eigen-basis form an I -invariant orthonormal basis for

{Atiyah classes}|Eigen−1P , and applying T yields that of {Atiyah classes}|Eigen−2P .

Via separation of variables, we need to solve equations for the Fourier-coefficient of an
arbitrary section φβ in the eigen-basis. However, because of the endomorphism T in the
Dirac operator (8) (see [25, Lemma 5.3]), we need to consider φβ and Tφβ simultaneously.
Particularly, in line with (25) and that ζ is perpendicular to the Atiyah classes, the operator
−I · L0 also preserves the span by functions in r , s of ζ and T ζ :

(−I · L0ξ)‖span{ζ, T ζ } = (−I · L0)(ξ)‖span{ζ, T ζ } for any ξ ∈ C1[(B(R0)\O) × S
1]. (27)

The equation in span{ζ, T ζ } of two unknowns x and y reads

−I · L(xζ + yT ζ ) = f ζ + gT ζ.

According to formula (8) for the usual linearized operator, this is equivalent to the Dirac
system of two variables: ⎧⎪⎪⎨

⎪⎪⎩

∂x

∂s
+ ∂ y

∂r
+ 2y

r
= f ;

∂ y

∂s
− ∂x

∂r
− x

r
= g.

(28)

Plugging

∂ y

∂s
= ∂x

∂r
+ x

r
+ g. (29)

into ∂
∂s of the first equation, we find a second order equation only in x .

∂2x

∂r2
+ ∂2x

∂s2
+ 3

r

∂x

∂r
+ x

r2
= ∂ f

∂s
− ∂g

∂r
− 2g

r
� h.

The equation of the Fourier co-efficient of cos ks and sin ks reads

x ′′
k + 3x ′

k

r
+ xk

r2
− k2xk = hk . (30)
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This ordinary differential equation can be solved elementarily.

6.2 The singular sequence

Now we construct a sequence that violates the closeness of the range. We only consider
positive independent variable for the special functions. Let k be a positive integer and

hk(y) � yδχ(ky)K0(ky), (31)

where χ(r) is a cut-off function that is ≡ 0 when r ≤ 1 or r ≥ 4, but ≡ 1 when r ∈ [2, 3].
In the following, hk and xk are specific as (31) and (32), but in the previous section they

are general.

Lemma 6.1 For any non-negative number δ there is a positive constant Cδ with the following
property. Let hk be as (31). The only solution to (30) that = O(1) as r → 0 is

xk = −K0(kr)

r

∫ r

0
I0(ky)y

2hk(y)dy + I0(kr)

r

∫ r

0
K0(ky)y

2hk(y)dy. (32)

The following holds for any positive integer k and real number r such that kr ≥ 10.

|xk | ≥ Cδ · ekr
k

7
2+δr

3
2

. (33)

Consequently, limk→∞ |xk | = +∞ uniformly on any compact subset of (0,∞).

Remark 6.2 The solution xk is supported away from 0 since hk is. The constant Cδ is given
by integral and point-wise bounds on the special functions.

Proof The trick is to consider kr instead of r alone. The general solution to the ODE is

− K0(kr)

r

∫ r

0
I0(ky)y

2hk(y)dy + I0(kr)

r

∫ r

0
K0(ky)y

2hk(y)dy + aK0(kr)

r
+ bI0(ky)

r
.

(34)

The main part xk is compactly supported away from 0, but the homogeneous solutions K0(kr)
r

and I0(kr)
r have leading terms C log r

r and C
r for nonzero constant C ′s, respectively. Since we

require x to be O(1), these two homogeneous solutions can not appear i.e. a, b must be 0.
In order to bound the first term in (32), we estimate the integral for any r :

|
∫ r

0
I0(ky)y

2hk(y)dy| ≤ 1

k3+δ

∫ ∞

0
χ(w)I0(w)|K0(w)|w2+δdw ≤ C2,δ

k3+δ
, (35)

where C2,δ is the value of the integral

∫ 4

1
I0(w)|K0(w)|w2+δdw.

Please notice that χ is supported in the interval. Then if kr ≥ 1, using the bound on K0(x)
x

when x ≥ 1, we find

| − K0(kr)

r

∫ r

0
I0(ky)hk(y)y

2dy| ≤ C2,δ

k2+δ
· |K0(kr)|

kr
≤ C3,δ

k2+δ
. (36)
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To bound the second term in (32) from below, we compute

I0(kr)

r

∫ r

0
K0(ky)y

2hk(y)dy = I0(kr)

k3+δr

∫ kr

0
χ(w)K 2

0 (w)w2+δdw ≥ C4,δ · I0(kr)
k3+δr

≥ C4,δ · C5e
kr

k3+δr · √
kr

.

where the constant C4,δ equals
∫ 4
1 K 2

0 (w)w2+δdw, and C5 equals the positive lower bound
on e−w

√
w I0(w) for w ≥ 1. Let Cδ be large enough regarding these two constants and C3,δ ,

the proof of (33) is complete. ��

6.3 Proof of Theorem A and Corollary B

In functional analysis, closed range is equivalent to existence of “a priori estimate” in the
following sense.

Fact 6.3 Suppose L : X → Y is a bounded linear map between Banach spaces. Then
RangeL is closed if and only if there is a non-negative constant N such that for any y ∈
RangeL , there exists a solution x to the equation Lx = y with the bound

||x ||X ≤ N ||y||Y . (37)

Proof of Theorem A: The idea is to construct a singular sequence violating closed range
whenever the essential obstruction does not vanish. By Lemma 4.5, this happens if the
connection is not isomorphic to the twisted Fubini-Study on a twisted tangent bundle of P2.
We only show it for the extended linearized operator using conditions II–V and III�. Similar
argument applies to the usual L under conditions I–III and III�.

Definition 2.1 of the configuration says that we are in the model setting in the tubular ball.
Given a large enough positive integer k, we specify the single variable function hk in y (the
radius) as in (31) and let fk = hk

k . Again, let ζ be the eigen-section in condition III.
Because the auxiliary operator does not cover ζ which is perpendicular to all the Atiyah

classes in Eigen−1P , and that −I · L0 commutes with the projection to span{ζ, T ζ }
(−I · L0 = −I · L0 thereon, see (25) and (27)), the ζ cos ks-component of any solution
ξk = O( 1r ) to

L0ξk = ( fk sin ks)I ζ (38)

must be O(1) thus equals the xk in (32). To see this, in view of the argument from (27) to (30)
on Dirac system, we simply project both sides of (38) onto span{ζ, T ζ } according to (27),
then take the Fourier co-efficient of cos ks and apply Lemma 6.1. Therefore the L2-norm of
ξk on the stripe defined by R0/10 < r < R0/5 tends to ∞ as k → ∞. As the C0

1 -norm on
the punched ball of radius R0 is stronger than this L2-norm, condition II implies

|ξk |Y → ∞ as k → ∞.

Condition III� says that ( fk sin ks)I ζ is in RangeL and III says their B-norm are uniformly
bounded. According to the characterization of closed range in Fact 6.3, RangeL is not closed.

��
Under a tame configuration over a compact 7-fold, let

C2
r ,s[M, T M] ⊂ C2[M, T M] (39)
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be the subspace of C2 vector fields that restrict to the form (4) in the punched tubular ball
i.e. only depending on r and s in B(R0) × S

1 near each circle. Between weighted Schauder
spaces as in Section 3.3, consider the usual linearized operator

L : C
1, 12
1−δ[M7\γ,
0

adE ⊕ 
1
adE ] → C

0, 12
2−δ[M7\γ,
0

adE ⊕ 
1
adE ] (40)

and the extended linearized operator

L : C
1, 12
1 [M\γ,
0

adE ⊕ 
1
adE ] ⊕ C2

r ,s[M, T M] → C
0, 12
2 [M7\γ,
0

adE ⊕ 
1
adE ]. (41)

Both are bounded. The reason we let δ = 0 for the extended linearization is that we do not

know whether Aux has a better bound than C
0, 12
2 , due to the quadratic growth of the norm of

the curvature near the circles.

Proof of Corollary B: It is straight-forward to verify conditions I–V. Was L surjective, condi-
tion III� holds as well i.e. the configuration is ideal. Then Theorem A says RangeL is not
closed, which is a contradiction. Similar argument applies to the usual L .

For the reader’s convenience, we still provide the detail in checking the conditions.

• Condition I (saying L is bounded) holds by formula (3), our choice (41), and definition
of the weighted Schauder spaces. The weight for the first derivatives has 1 more power
than that for the section itself.

• Condition II (coerciveness) holds because restricted to the tubular ball, the norm C0
1 is

weaker than C
1, 12
1 (C

1, 12
1−δ).• Condition III (bound on the particular sequence) follows simply from the decay of the

modified Bessel function K0 and that χ is non-negative, supported in (1, 4), and bounded
by 1. Namely, the following holds for large positive integer k.

sup
r∈(0,∞)

r2−δ

∣∣∣∣r
δχ(kr)K0(kr)I ζ · sin ks

k

∣∣∣∣ = sup
r∈(0,∞)

∣∣∣∣ (kr)χ(kr)K0(kr)

k2

∣∣∣∣ · |r I ζ | ≤ C .

The r3−δ-weighted bounds on the ∂
∂r ,

∂
∂s , and

∇
S5

r of rδχ(kr)K0(kr)I ζ ·sin ks
k follow similarly.

Then ∣∣∣∣r
δχ(kr)K0(kr)I ζ · sin ks

k

∣∣∣∣
C1
2−δ

≤ C . (42)

This implies the C
0, 12
2−δ-bound of the same thing by interpolation of weighted Schauder

norms.
• Condition III� is simply the contradiction hypothesis that the linearization is surjective.

Condition IV holds automatically because of our vector fields (39).
• Condition V (saying L is bounded) holds by formula (7), our choice (41), and the simple

weighted Hölder bound on the auxiliary operator:

|�(F0
A ∧ d[X�ψ]) + �(F0

A ∧ [X�dψ])|
C
0, 12
2

≤ |X |C2 .

Because it involves first partial derivatives of X , we need X to be C2.

��
Acknowledgements The author is grateful to Simon Donaldson for encouragements and conversations on
this project.
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7 Appendix

7.1 Non-vanishing of a certain projection of coordinate vector fields onR6

It is routine to check the following “non-vanishing” that applies to the proof of Proposition 4.1.
Let (Z0, Z1, Z2) be the coordinates for C3 and υ be the standard Reeb vector field on S

5.

Fact 7.1 Let Y ∈ R
6\O be a (constant) nonzero vector. There exists a dense open set on S

5

on which (rY )‖D is non-zero everywhere.

Proof of Fact 7.1: We write Y = Y 1,0 + Y 0,1, where

Y 1,0 = aY
∂

∂Z0
+ bY

∂

∂Z1
+ cY

∂

∂Z2
, and Y 0,1 = Y 1,0

for some complex constants aY , bY , cY . Under the Sasakian coordinate in U0,S5 ⊂ S
5

defined by Z0 �= 0 [25, (15)], using formula (46) and

Z0
∂

∂Z1
= Z0 Z̄1

2r

∂

∂r
+ ∂

∂u1
; Z0

∂

∂Z2
= Z0 Z̄2

2r

∂

∂r
+ ∂

∂u2

for (1, 0) coordinate vectors in C
3, we calculate the projection onto the contact distribution

over S5:

(rY 1,0)‖D = r

Z0

[
(bY − aY u1)

∂

∂u1
+ (cY − aY u2)

∂

∂u2

]‖D

= r

Z0

[
(bY − aY u1)

( ∂

∂u1
− η

( ∂

∂u1

)
υ
)

+ (cY − aY u2)

(
∂

∂u2
− η

(
∂

∂u2

)
υ

)]
.

When (bY − aY u1) �= 0 or (cY − aY u2) �= 0, we have (rY 1,0)‖D �= 0. These two non-
vanishing conditions together with Z0 �= 0 define a dense open set on S

5. ��

7.2 The Lie derivatives of the vector fields onC3\O

Proposition 5.1 applies the following formulas of the Lie derivatives.

Lemma 7.2 1. Let υ be the standard Reeb vector field on S5. Then

Lυ

(
Zi

∂

∂Zi

)
= 0, Lυ

(
Z̄i

∂

∂ Z̄i

)
= 0. (43)

Consequently, on R
6 and its complexfication, Lυ = −JC3 is equal to the negative of the

standard complex structure i.e.

Lυ

∂

∂Zi
= −√−1

∂

∂Zi
, Lυ

∂

∂ Z̄i
= √−1

∂

∂ Z̄i
. (44)

Particularly, for any vector Y ∈ R
6, Lυ = −JC3Y .

2. L ∂
∂r

∂
∂Zi

= − ( ∂
∂Zi

)
⊥ ∂

∂r

r . The complex conjugate L ∂
∂r

∂

∂Zi
= − ( ∂

∂Zi
)
⊥ ∂

∂r

r also holds. This

means L ∂
∂r

is − 1
r times the projection to the orthogonal complement of ∂

∂r . Particularly,

for any vector Y ∈ R
6, L ∂

∂r
Y = − 1

r · Y⊥ ∂
∂r .
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Proof We prove them in the Zariski open set VC3\O (15). Then the global equations follow
by continuity.

On item 1, recall again [25, (15)] about the Sasakian coordinate system and the local
Kähler potentials φi of the Fubini-Study metric dη

2 such that

Zi = r√
φi

eiθi . (45)

In the i − th Sasakian coordinate chart, the Reeb vector field υ equals ∂
∂θi

( [25, Fact 3.4]).

On the Euler sequence, Zi
∂

∂Zi
are the scaling invariant holomorphic vector fields on C

3\O
whose projections toP2 span the holomorphic tangent bundle point-wisely.We directly verify
the following identities.

Z0
∂

∂Z0
= r

2φ0

∂

∂r
−

√−1

2

∂

∂θ0
− u1

∂

∂u1
− u2

∂

∂u2
in U0,C3; (46)

Z1
∂

∂Z1
= r

2φ1

∂

∂r
−

√−1

2

∂

∂θ1
− v0

∂

∂v0
− v2

∂

∂v2
in U1,C3; (47)

Z2
∂

∂Z2
= r

2φ2

∂

∂r
−

√−1

2

∂

∂θ2
− w0

∂

∂w0
− w1

∂

∂w1
in U2,C3 . (48)

Using the above identities, the desired (43) follows because each term in (46)–(48) has
vanishing Lie bracket with the Reeb vector field. By (45) and the characterization of υ above,
we simply obtain

Lυ Zi = √−1Zi

from which (44) follows.
We now prove item 2.

L ∂
∂r

∂

∂Zi
=

[
∂

∂r
,
1

Zi

(
Zi

∂

∂Zi

)]
=

[
∂

∂r

(
1

Zi

)]
·
(
Zi

∂

∂Zi

)
+ 1

Zi

[
∂

∂r
, Zi

∂

∂Zi

]

= − 1

r Zi

(
Zi

∂

∂Zi

)
+ 1

2φi Zi

∂

∂r
= −1

r

∂

∂Zi
+ 1

2φi Zi

∂

∂r

= −
(

∂
∂Zi

)⊥ ∂
∂r

r
,

where we used that the orthogonal projection of ∂
∂Zi

to ∂
∂r is r

2φi Zi
∂
∂r . ��

7.3 On the Auxiliary operator

We provide the routine tensor calculation for Proposition 5.1.

Lemma 7.3 Under the conditions in Proposition 5.1 and the splitting of tangent bundle

T [(C3\O) × S
1] = Span

(
∂

∂s
,

∂

∂r
, υ

)
⊕ D

where D is the contact distribution on S5 and υ is the Reeb vector field, we write the vector
field (whose co-efficients under the standard Euclidean basis only depend on r , s, see our
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assumption (4) as

X = Xs
∂

∂s
+ Xr

∂

∂r
+ Xυυ + X0

such that X0 is D-valued. Then the auxiliary operator is

�(F0
A ∧ d[X�ψ]) = �D�

{[
(L ∂

∂s
X0)�

dη

2
+ (L ∂

∂r
X0)�H + (LυX0)�G

r

]
∧ F0

A

}

= �D�

{[
(L ∂

∂s
X)�dη

2
+ (L ∂

∂r
X)�H + (LυX)�G

r

]
∧ F0

A

}

= −
[
(L ∂

∂s
X)�dη

2
+ (L ∂

∂r
X)�H + (LυX)�G

r

]
�F0

A. (49)

Strategy: it is completely routine. We simply calculate

1. the exterior derivative of X�ψeuc, then
2. wedge it with the curvature then apply �.

The idea for the first step is to separate d(X0�ψ) into two parts, such that the first part
contains ds ∧ dr ∧ η as a byte, but the other does not. Then carrying out the second step, the
first part yields the first line on the right side of (49), the other part yields the supplementary
term Q(X0) (see (55) below) which has vanishing wedge with the curvature.

Proof of Lemma 7.3: The standard co-associative form on C3 × S
1 is

ψeuc = ω2
euc

2
+ Im
euc ∧ ds

= r3dr ∧ η ∧ dη

2
+ r4

2

(
dη

2

)2

− r3ds ∧ η ∧ H + r2ds ∧ dr ∧ G. (50)

��
Step 1: The semi-basic component of the vector field

Let X0 be a semi-basic vector field (contact distribution D-valued) onC3\O , we compute

X0�ψeuc = r3dr ∧ η ∧ (X0�
dη

2
) − r3ds ∧ η ∧ (X0�H)

+r2ds ∧ dr ∧ (X0�G) + r4

2
X0�(

dη

2
)2. (51)

We successively calculate the exterior derivative of each term in (51) using the Reeb Lie
derivatives in [25, Section 3.4]:

d[r3dr ∧ η ∧ (X0�
dη

2
)] = r3ds ∧ dr ∧ η ∧ [∂X0

∂s
�dη

2
] − 2r3dr ∧ dη

2
∧ (X0�

dη

2
)

+r3dr ∧ η ∧ d0(X0�
dη

2
), (52)

d[r3ds ∧ η ∧ (X0�H)] = −3r2ds ∧ dr ∧ η ∧ (X0�H) − r3ds ∧ dr ∧ η ∧ ∂

∂r
(X0�H)

−2r3ds ∧ dη

2
∧ (X0�H) + r3ds ∧ η ∧ d0(X0�H), (53)

d[r2ds ∧ dr ∧ (X0�G)] = r2ds ∧ dr ∧ η ∧ [(LυX0)�G] − 3r2ds ∧ dr ∧ η ∧ (X0�H)

+r2ds ∧ dr ∧ d0(X0�G). (54)
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Using the above 3 identities and (51), we find

d(X0�ψeuc) = r3ds ∧ dr ∧ η ∧ [∂X0

∂s
�dη

2
+ ∂X0

∂r
�H + (LυX0)�G

r
] + Q(X0). (55)

where

Q(X0) = −2r3dr ∧ dη

2
∧ (X0�

dη

2
) + r4

2
d[X0�(

dη

2
)2] + 2r3ds ∧ dη

2
∧ (X0�H)

−r3ds ∧ η ∧ d0(X0�H) + r2ds ∧ dr ∧ d0(X0�G) + r3dr ∧ η ∧ d0(X0�
dη

2
)

+2r3dr ∧ [X0�(
dη

2
)2]. (56)

The term −3r2ds ∧ dr ∧ η ∧ (X0�H) in (53) and (54) cancels out.
Because the Hodge star of ds ∧ dr ∧ η is semi basic, wedging (55) by F0

A, it is to routine
to verify that

Aux(X0) = �{F0
A ∧ (r3ds ∧ dr ∧ η) ∧ [∂X0

∂s
�dη

2
+ ∂X0

∂r
�H + (LυX0)�G

r
]}

+�[F0
A ∧ Q(X0)]

= �D�{[(L ∂
∂s
X0)�

dη

2
+ (L ∂

∂r
X0)�H + (LυX0)�G

r
] ∧ F0

A}
+�[F0

A ∧ Q(X0)]. (57)

Step 2: The component of X perpendicular to the contact distribution has no contribu-
tion to the auxiliary operator.

Fact 7.4 For any C1-functions Xs, Xυ, Xr defined on a punched tubular ball in the model
space,

Aux(Xs
∂

∂s
+ Xυυ + Xr

∂

∂r
) = 0. (58)

The proof is completely routine. The distribution span( ∂
∂s ,

∂
∂r , υ) is integrable (involutive)

of which X − X0 is a section. The observation is that the exterior differential of each term in

(Xs
∂

∂s
+ Xυυ + Xr

∂

∂r
)�ψeuc (59)

contains at least one among the 3-forms dη
2 , G, H as a byte. This is because every term in

ψeuc itself contains one of these as byte, and applies the identities

dH = 3η ∧ G, dG = −3η ∧ H .

Therefore the wedge of (59) and the anti self-dual curvature F0
A (as an EndE-valued section

of ∧2D�) vanishes.
To complete the proof of the Lemma, it suffices to show the following which indeed

requires that the co-efficients of the vector field X only depend on r , s. This condition is not
applied so far.

Step 3: the wedge between each term in Q(X0) and F0
A is 0.

We first show it for the 3 terms in line 2 of (56). The observation is that the multiplication
by a differentiable function of only r , s commutes with the transverse Hodge dual operator
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d�D�

0 . Namely, on the first term among the 3, it suffices to show

d0(X0�H) ∧ F0
A = 0.

Taking �D� , the above is equivalent to

−d�D�

0 [(JH X0)�F0
A] = 0.

Using JH invariance of the curvature, it suffices to observe

d�D�

0 [(JH X0)�F0
A] = 6

i=1
Xi

r
· d�D�

0 [JH (rei�F0
A)] = 0

where we used

d0Xi = 0 for all i = 1, .., 6

because these co-efficients only depend on r and s. The other two terms are similar.
To show the four terms in line 1 and 3 of (56) have vanishing wedge with the curvature,

using the identity X0�[ 12 ( dη
2 )2] = �D� (X �D�

0 ), we calculate the the second term in line 1 of
(56):

d[X0�
(dη)2

4
] = ds ∧ [∂X0

∂s
� (dη)2

4
] + dr ∧ [∂X0

∂r
� (dη)2

4
] + η ∧ [Lυ(X0)�

(dη)2

4
]

+d0[X0�
(dη)2

4
]. (60)

Any formwith a byte in∧5D� must vanish because the (R) rank of the contact distribution D�

is 4. Because the curvature F0
A is an endomorphism-valued semi basic 2-form (pullback from

P
2), any form with a byte in ∧3D� has vanishing wedge with the curvature. This is precisely

the case for every term in (60). The reason why the last term is semi-basic is simply that the
transverse exterior differential d0 of a semi basic form remains semi basic. In summary, we
find

r4

2
d[X0�(

dη

2
)2] ∧ F0

A = 0.

Similarly, the other 3 terms in line 1 and line 3 of (56) also has byte of semi basic 3-form.
Then their wedge with the curvature also vanish

2r3dr ∧ [X0�(
dη

2
)2] ∧ F0

A = −2r3dr ∧ dη

2
∧ (X0�

dη

2
) ∧ F0

A

= 2r3ds ∧ dη

2
∧ (X0�H) ∧ F0

A = 0.

This means Q(X0) has no contribution to the auxiliary operator i.e.

Q(X0) ∧ F0
A = 0.

The first two equal signs in (49) is proved by (57) and (58). The curvature F0
A is �D� anti self

dual. Then

�D� (θ ∧ F0
A) = −θ�F0

A

for any semi basic 1-form θ . The last line in (49) is proved. ��
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7.4 Homomorphism between stable bundles on P2

In proving Lemma 4.5, under the Chern number condition and others therein, the following
is crucial to bound h0[P2, EndE] and to show that the poly-stable bundle E is stable.

Lemma 7.5 On P
n, any nontrivial sheaf homomorphism between two stable locally free

sheaves of the same slope is an isomorphism.
Consequently, the space of such homomorphisms is either (complex) 0 or 1-dimensional.

On projective curves, the similar result is well recorded in literature. But this particular
version we need does not seem very easy to find. Following [18] verbatim, we still give the
detail for the reader’s convenience.

Proof Let φ : E1 → E2 denote the nontrivial homomorphism and stable bundles. [18,
Lemma 1.2.8] says φ must be injective or generically surjective i.e. surjective on stalks at
an arbitrary point away from the singular locus of Cokerφ. By [18, Corollary page 171], it
suffices to show rankE1 = rankE2 by ruling out the following two cases.

Case A: suppose rankE1 < rankE2. Then φ must be injective and Imageφ is a sub-sheaf
of E2 of the same slope but lower rank. This contradicts the stability of E2.

Case B: suppose rankE1 > rankE2, then it must be generically surjective. Using
that Imageφ is a torsion free coherent quotient of E1 [18, Proof in page 170], we find
rank Imageφ = rankE2. Moreover, we have c1(Imageφ) ≤ c1(E2) [18, Proof 1 in page
161]. Thus the torsion free quotient has less or equal slope:

μ(Imageφ) ≤ μ(E2) = μ(E1).

This contradicts the stability of E1.
The consequence holds by simpleness of stable bundles. ��
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