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Abstract
We show that the shortest closed geodesic on a 2-sphere with non-negative curvature has
length bounded above by three times the diameter. We prove a new isoperimetric inequality
for 2-spheres with pinched curvature; this allows us to improve our bound on the length of
the shortest closed geodesic in the pinched curvature setting.
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Mathematics Subject Classification 53C22 · 53C23

1 Introduction

Gromov [8] has asked if there exist constants c(n) such that the length of the shortest closed
geodesic L(Mn) on a closed Riemannian manifold Mn is bounded above by c(n)D(Mn),
where D(Mn) is the diameter of the manifold. On non-simply connected manifolds the
shortest non-contractible closed curve is a geodesic with length bounded above by 2D(Mn).
Onmanifolds homeomorphic to the 2-sphereCroke [5] provided the first bound of L(S2, g) ≤
9D(S2, g), which was improved byMaeda [15], and finally by Nabutovsky and Rotman [17]
and independently Sabourau [23] to L(S2, g) ≤ 4D(S2, g). Rotman [21] has further proved
that L(S2, g) ≤ 4R(S2, g) where

R(S2, g) = min
x∈S2

max
y∈S2

d(x, y) ≤ D(S2, g) = max
x∈S2

max
y∈S2

d(x, y)

is the radius of the Riemannian sphere. Gromov’s question is open for simply connected
manifolds in dimensions n ≥ 3.

An attractive conjecture is that L(Mn) ≤ 2D(Mn) for all closed Riemannian manifolds
Mn . To explore this bound one might consider Zoll spheres: metrics on the 2-sphere all of
whose geodesics are closed and of the same length. The conjecture turns out to be overly
optimistic, as Balacheff, Croke, and Katz [3] have produced Zoll spheres with L(S2, Zoll) >
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2D(S2, Zoll). These examples are not constructive, and it is unknown howmuch longer than
2D(S2, g) the shortest closed geodesic could be. In this paper we prove the following:

Theorem 1.1 Non-negatively curved 2-spheres have L(S2, g) ≤ 3R(S2, g) ≤ 3D(S2, g).

While one does not expect the inequality L(S2, g) ≤ 3D(S2, g) to be sharp, we note that
the inequality L(S2, g) ≤ 3R(S2, g) is realized by the metric space formed when gluing
two equilateral triangles along their common boundaries, the so called Calabi–Croke sphere.
The centers of the triangles realize the radius whereas the vertices realize the diameter. The
shortest closed geodesic is a doubled altitude which has length exactly 3 times the radius and√
3 times the diameter.
We should note that the results cited above are curvature free bounds, whereas our bounds

require non-negative curvature. Calabi and Cao [4] studied simple closed geodesic on non-
negatively curved 2-spheres, and showed that any closed geodesic of shortest length must
be simple. We can therefore improve our Theorem 1.1 to the following: on non-negatively
curved (S2, g) the shortest closed geodesic is simple and has length bounded above by three
times the radius.

Additional work in the positive curvature setting includes [1] where pinched metrics on
the 2-sphere are studied and an upper bound for the length of the shortest closed geodesic is
provided in terms of the area. We combine this result with a new isoperimetric inequality for
pinched metrics on the 2-sphere (Theorem 4.1) to yield the following:

Theorem 1.2 Let (S2, g) be a δ-pinched metric with δ > 4+√
7

8 ≈ 0.83. Then

L(S2, g) ≤ 2√
δ
D(S2, g)

with equality if and only if the sphere is round.

For δ = 0.83 our theorem yields the bound L(S2, g) ≤ 2.19D(S2, g). The theorem is
optimal in the sense that the constant 2√

δ
converges to 2 as δ approaches 1. Finally, we note

that this theorem can be used to further comment on the Zoll spheres due to Balacheff, Croke,
and Katz [3] where we can now say that

2D(S2, Zoll) < L(S2, Zoll) <
2√
δ
D(S2, Zoll).

The paper proceeds as follows. In Sect. 2, we present a proof due to Rotman [20] of
the fact that L(S2, g) ≤ 4D(S2, g). A crucial step in the proof uses a weighted length
shortening to avoid stationary theta-graphs (critical points of the length functional on nets).
This weighted flow increases the bound on the shortest closed geodesic from 3D(S2, g) to
4D(S2, g). In Sect. 3, we show for positive curvature metrics on the 2-sphere that non-trivial
stationary theta-graphs are never local minima. The weighted flow in Rotman’s proof can
therefore be avoided, and Theorem 1.1 follows. In Sect. 4, we prove a new isoperimetric
inequality for pinched metrics on the 2-sphere and combine this with the main result of [1] to
prove Theorem 1.2. The new isoperimetric inequality is further refined in the Appendix by
studying a Sturm–Liouville problem (SLP) related to lower bounds on the first eigenvalue of
the Laplace–Beltrami operator.
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2 Proof that L(S2,g) ≤ 4D(S2,g)

We start with some preliminaries that will be used both in the proof of the bound L(S2, g) ≤
4D(S2, g) and throughout the remainder of the paper.

Definition 2.1 A geodesic net is a finite graph immersed in a Riemannian manifold such that
each edge is a geodesic segment. A geodesic net is said to be stationary if at each vertex the
sum of the unit vectors tangent to the incident edges equals zero.

As such, stationary geodesic nets are critical points of the length functional on the space
of nets. Closed geodesics are the first examples of stationary geodesic nets. A figure eight
curve is a stationary geodesic net if each loop is geodesic and if the stationarity condition is
satisfied at the vertex. In dimension two the stationarity condition implies that a geodesic net
based on the figure eight curve will be a self-intersecting closed geodesic.

An example of a stationary geodesic net that is not a closed geodesic is the stationary
theta-graph. A theta-graph is a net consisting of exactly two vertices joined by exactly three
edges. The stationarity condition ensures that these edges pairwise meet at angle 2π

3 at each
vertex. Hass and Morgan [9] gave one of the only known existence results for geodesic nets,
demonstrating that convex metrics on the 2-sphere nearby the round metric admit stationary
theta-graphs.

Nabutovsky and Rotman [17] and independently Sabourau [23] gave the original proofs
that L(S2, g) ≤ 4D(S2, g). In working to improve this bound Rotman obtained alternate
unpublished proofs, one of which we present here [18–20,22]. This proof uses a pseudo-
filling technique, analogous to the technique introduced by Gromov [8] in proving bounds
for essential manifolds on the length of the shortest closed geodesic in terms of volume.

Theorem 2.2 [17,23] Riemannian 2-spheres have L(S2, g) ≤ 4D(S2, g).

Proof (Proof [20]) Let M = (S2, g) be a Riemannian 2-sphere and f : (S2, std) → M a
diffeomorphism. We attempt to extend f to a map f̃ : (D3, std) → M . As M is a 2-sphere
such a map should not exist, and as an obstruction to this extension we obtain a periodic
geodesic on M with length ≤ 4D(M).

First triangulate (S2, std) such that the diameter of the triangulation on M induced by f
is less than δ. Next triangulate (D3, std) as a cone over the triangulated (S2, std), i.e. add a
single vertex p ∈ D3 at the center of the ball and the corresponding 1, 2, and 3-simplexes.
We attempt to extend the map f inductive to this skeleton.

0-skeleton: We need only choose a point p̃ ∈ M with f̃ (p) = p̃.
1-skeleton: Let vi be the vertices of the triangulation of S2 and f (vi ) = ṽi the corre-

sponding vertices of the induced triangulation of M . We send the 1-simplex between p and
vi on D3 to a minimizing geodesic between p̃ and ṽi on M with length less than the diameter
of M .

2-skeleton: We attempt to send the 2-simplex on D3 associated to the triple (p, vi , v j ) to
a 2-simplex on M associated to the triple ( p̃, ṽi , ṽ j ). The triple on M is already connected
by 1-simplexes that form a piecewise smooth closed curve with length less than 2D(M)+ δ.
We use Birkhoff curve shortening process to deform this closed curve without increasing its
length, either to a closed geodesic with length less than 2D(M) + δ, or to a point in which
case we have swept out the desired 2-simplex.

3-skeleton: We attempt to send the 3-simplex on D3 associated to the tuple (p, vi , v j , vk)

to a 3-simplex on M associated to the tuple ( p̃, ṽi , ṽ j , ṽk). By the previous steps we know
where the boundary of this 3-simplex is sent; call this boundary 2-sphere S20 ⊂ M . If we are
able to contract S20 to a point, i.e. construct a homotopy S2t with S21 = {x}, then we will have
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succeeded in sending 3-complexes to 3-complexes, thus extending the map f to f̃ . Such an
extension is not possible, and as an obstruction we obtain a short periodic geodesic on M .

We first contract the small 2-simplex associated to the triple (ṽi , ṽ j , ṽk) to a point which
we call ṽ ∈ M (c.f. [22], Remark ending Section 1). We then have a theta-graph between the
pair of points ( p̃, ṽ) consisting of three 1-simplexes, which we call e1, e2, e3. As before, the
Birkhoff curve shortening process on each pair of 1-simplexes {ei , e j } yields the boundary
2-sphere S20 .

In order to construct the homotopy S2t wefirst use length shortening flow for nets to deform
the theta-graph to a point, c.f. [18, Section 3]. At each time in this deformation we apply the
Birkhoff curve shortening process to each pair of edges, sweeping out the desired S2. The
continuity of the Birkhoff curve shortening process (with respect to the initial pair {ei , e j }
of edges) in the absence of short closed geodesics is what allows us to extend the homotopy
which contracts the theta-graph to the desired homotopy S2t .

We therefore need only study the situation in which the theta-graph gets stuck on a sta-
tionary geodesic net before contracting to a point during the length shortening process. There
are three cases to consider:

Case 1: The theta-graph degenerates to a periodic geodesic; this geodesic will have length
less than 3D(M).

Case 2: One of the edges disappears during the length shortening yielding a stationary
figure eight with length less than 3D(M). The stationarity condition in dimension two implies
that this is a (self-intersecting) periodic geodesic.

Case 3: The theta-graph gets stuck on a stationary theta-graph. In this situation we apply
a weighted length shortening process. Let (w1, w2, w3) be the triple of unit direction vectors
at a vertex of a theta-graph. We consider a weighted length shortening flow where we double
the weight of the third vector. The stationarity condition is then |w1 +w2 + 2w3| = 0 which
implies that stationary theta-graphs are not critical points of the the weighted flow. Critical
points occur when w1 and w2 collapse to a single edge or one of these edges disappears,
which means we are in one of the two previous cases. Because we doubled the weight of one
of the edges we now produce a (potentially self-intersecting) periodic geodesic with length
bounded above by 4D(M). 	


3 Positive metrics on the 2-sphere

In this section, we indicate how the proof of Theorem 2.2 adapts in the positive curvature
setting to yield our Theorem 1.1. Under the positive curvature assumption we show that
stationary theta-graphs are never local minima of the length functional on nets, allowing us
to avoid weighted length shortening. Once we prove the theorem in the positive setting, we
show how it extends to the non-negative setting by considering conformally close positive
metrics. We begin by recalling the first and second variations of length, which can be found
for instance in [14, Section 5.1], see also [13,16] for formula that apply more directly in the
setting of stationary nets.

Proposition 3.1 (First variation of length, Lemma 5.1.1 [14]) Given a smooth curve γ :
[a, b] → M parametrized by arc-length and a vector field V on γ , let H be a variation
of γ in the direction of V so that H : [a, b]t × [−ε, ε]s → M is smooth, H(·, 0) =
γ, dH

ds |s=0(·, 0) = V . If we denote by L(s) := �(H(·, s)) then

L ′(0) = 〈V , γ ′〉|ba −
∫ b

a
〈V (t),∇γ ′γ ′(t)〉dt
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Proposition 3.2 (Second variation of length, Theorem 5.1.1 [14]) Given a smooth geodesic
γ : [a, b] → M parametrized by arc-length and a vector field V on γ , let H be a variation
of γ in the direction of V so that H : [a, b]t × [−ε, ε]s → M is smooth, H(·, 0) =
γ, d

ds |s=0H(·, 0) = V . If we denote by V⊥ the perpendicular projection of V with respect
to γ ′ and by L(s) := �(H(·, s)) then

L ′′(0) =
〈
D

ds

dH

ds
, γ ′

〉∣∣∣∣
(b,0)

(a,0)
+

∫ b

a
‖∇γ ′V⊥(t)‖2 − 〈R(V⊥(t), γ ′(t))γ ′(t), V⊥(t)〉dt

Lemma 3.3 Any stationary theta-graph on a positively curved 2-sphere admits directions of
decrease (within the space of nets) for the length shortening flow.

Proof We simply demonstrate a variation with negative second variation of length. Give each
edge a unit speed parametrization γi : [ai , bi ] → (S2, g) and define vector fields Vi so that
V⊥
1 and V⊥

2 are of constant size 1 (hence parallel), V⊥
3 ≡ 0, and the Vi all agree at the

vertices of the theta-graph. For example:
V1(t) = 1√

3
cos ( t−a1

b1−a1
π)γ̇1 + 1γ̇ ⊥

1

V2(t) = 1√
3
cos ( t−a2

b2−a2
π)γ̇2 − 1γ̇ ⊥

2

V3(t) = −2√
3
cos ( t−a3

b3−a3
π)γ̇3 + 0γ̇ ⊥

3

For the given variational fields Vi , we choose variations Hi (·, s) which agree at the vertices;
for example, one could set Hi (t, s) = expγi (t) sVi (t). The fact that the Hi (·, s) agree at the
vertices ensures that we are deforming through theta-graphs.Moreover, as the variations keep
each edge embedded, and maintain angles close to the initial 2π

3 angles, we are guaranteed
the theta-graphs remain embedded during the deformation.

If we denote by L(s) the sum of lengths of H1(·, s), H2(·, s), H3(·, s), then by the first
variation formula (Proposition 3.1) we have that

L ′(0) =
3∑

i=1

〈Vi , γ ′
i 〉|biai , (1)

since {γi }3i=1 are geodesics. And because the vector fields {Vi }3i=1 agree at the endpoints and
the geodesics meet at angles 2π

3 , the summands in Eq. (1) cancel out for each vertex. Hence
L ′(0) = 0.

For the second variation, note that because {V⊥
i }3i=1 are parallel and M has positive

curvature we have that for 1 ≤ i ≤ 3
∫ bi

ai
‖∇γ ′

i
V⊥
i (t)‖2 − 〈R(V⊥

i (t), γ ′
i (t))γ

′
i (t), V

⊥
i (t)〉dt < 0

Applying the second variation formula (Proposition 3.2) we have then

L ′′(0) <

3∑
i=1

〈
D

ds

dHi

ds
, γ ′

i

〉∣∣∣∣
(bi ,0)

(ai ,0)
(2)

Given our choice of Hi (t, s) = expγi (t) sVi (t)we see that
D
ds

dHi
ds = 0 for each i ∈ {1, 2, 3}

and therefore that the right hand side of Eq. (2) vanishes. Thus under the described variation
we have L ′′(0) < 0, which together with L ′(0) = 0, implies that length decreases for small
values of s in {Hi (·, s)}3i=1. 	
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Fig. 1 A degenerate theta-graph
on the doubled triangle, where
edges on the top face are solid
and edges on the bottom face are
dashed

We show by example that Lemma 3.3 is sharp in the sense that there exist stationary
theta-graphs on non-negatively curved 2-spheres which do not admit directions of decrease.
Consider the metric space formed by gluing two equilateral triangles along their common
boundaries, so that a geodesic on the top face billiards around an edge to the bottom face. This
doubled triangle is a 2-sphere with flat metric and three conical singularities; it is sometimes
called the Calabi–Croke sphere [24].

The doubled triangle admits a degenerate stationary theta-graph. Connect the center of
the top face with the center of the bottom face via three geodesic segments which pass per-
pendicularly through each edge of the triangular boundary (see Fig. 1). Such an arrangement
ensures that the edges of the graph meet at the vertices at angle 2π/3. By moving the vertices
of the graph towards one of the vertices of the triangle, and keeping the edges of the graph
perpendicular to the edges of the triangle, one produces a degenerate family of stationary
theta-graphs, all having the same total length, and failing to admit directions of decrease.

Because these theta-graphs on the doubled triangle avoid the vertices of the triangle, this
degenerate family also exists on smooth non-negative 2-sphere metrics close to the doubled
triangle metric. This example illustrates that the proof of Theorem 1.1 in the non-negative
setting can not rely directly on Lemma 3.3, and instead will follow by first proving the
theorem in the positive setting, and then extending by considering conformally close positive
metrics.

Proof (Proof of Theorem 1.1)
Let us assume first M = (S2, g) to be a metric of positive curvature. We follow the proof

of Theorem 2.2, trying to extend the map f : (S2, std) → M to a map f̃ : (D3, std) → M .
When extending the 0-skeleton we now choose a point p̃ ∈ M that realizes the radius,
i.e. such that B( p̃, R) covers M . This choice ensure that p̃ is at distance at most R(M) from
the points in the triangulation; it is the same choice that Rotman [21] makes when improving
her bound from 4D(S2, g) to 4R(S2, g).

Next we follow the proof of Theorem 2.2 until Case 3 where the theta-graph gets stuck on
a stationary theta-graph, a critical point of the length shortening flow for nets. By Lemma 3.3
this critical point admits a direction of decrease, allowing us to continue the contraction past
the stationary theta-graph, and eliminating the necessity of the weighted length shortening.

While we are required to make a choice about the direction we deform from a stationary
theta-graph, this choice can be made independently in each 3-cell; we do not expect this
extended (restarted) flow to depend continuously on the initial theta-graph. Indeed, we only
need the fact [18, Lemma 4] that the space of theta-graphs with length less than 3R(M)+δ is
connected in order to contract the initial theta-graph to a point. The continuity of the Birkoff
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curve shortening process (with respect to an initial pair of edges) in the absence of short
closed geodesics allows us to extend this contraction to the entire 3-cell.

Upon resuming the flow, it is possible that we encounter another stationary theta-graph.
Note that this stationary theta-graphwill be distinct from thefirst, as the length shorteningflow
is strictly decreasing (preventing us from visiting the same sequence of theta-graphs repeat-
edly). It is possible running the flow in this extended (restarted) manner that we encounter a
sequence of stationary theta-graphs accumulating to some limit object. In this case an appli-
cation of transfinite induction ensures that this limit object is again a stationary theta-graph
from which we can continue the flow.

As it is impossible to contract all theta-graphs to a point (this would extend the map
f : (S2, std) → M to a map f̃ : (D3, std) → M) we must end in Case 1 or 2. By avoiding
the weighted length shortening we produce a (potentially self-intersecting) closed geodesic
with length bounded above by 3R(M) ≤ 3D(M).

The theorem is thus proved in the positive case. In the case where the sphere is non-
negatively curved, we proceed as follows. Choose a smooth function ϕ : S2 → R such that
�ϕ < 0 on the set K0 = {x ∈ S2 | Kx = 0}. The existence of such a ϕ is possible because
K0 is a proper subset of the sphere (via Gauss–Bonnet). We consider the metrics gt = e2tϕg
which have strictly positive curvature Kt = e−2tϕ(K − t�ϕ) for t > 0 small. Applying
the result for positively curved metrics to (S2, gt ), and letting t → 0+, we use that the
convergence (S2, gt ) → (S2, g) is smooth and that L(S2, .) is lower-semicontinuous (this
last property follows from the fact that in smooth convergence closed geodesics converge
to closed geodesics) to conclude that the inequality L(S2, g) ≤ 3R(S2, g) holds in the
non-negative setting. 	


Finally, note that in [4] it is proved that the shortest closed geodesic on a non-negatively
curved (S2, g) is simple. Therefore, if the obstruction in the above proof yields a self-
intersecting periodic geodesic (Case 2), then there also exists a simple closed geodesic with
length bounded above by three times the radius. In short, we can use the main result of [4]
to improve our Theorem 1.1 to the following: on non-negatively curved (S2, g) the shortest
closed geodesic is simple and has length bounded above by three times the radius.

4 Pinchedmetrics on the 2-sphere

Themaingoal of this section is to prove the followingnew isoperimetric inequality for pinched
metrics on the 2-sphere. A positive metric (S2, g) is said to be δ-pinched if Kmin/Kmax ≥ δ.

Theorem 4.1 Let (S2, g) be a δ-pinched metric. Then

π A ≤ 4D2

δ

with equality if and only if the sphere is round.

We combine this inequality with the main result from [1] in order to prove Theorem 1.2.
The main result of [1] is achieved via a combination of techniques from Riemannian and
symplectic geometry.

Theorem 4.2 [1]Let (S2, g) be a δ-pinchedmetric with δ > 4+√
7

8 ≈ 0.83. Then L2(S2, g) ≤
π A(S2, g) where A(S2, g) is the area.
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By combining Theorem 4.1 with Theorem 4.2, we have for (S2, g) a δ-pinched metric

with δ > 4+√
7

8 ≈ 0.83, that

L2(S2, g) ≤ π A(S2, g) ≤ 4D2(S2, g)

δ

and therefore that

L(S2, g) ≤ 2√
δ
D(S2, g).

Equality here implies equality in the isoperimetric inequality, and therefore that the sphere
is round by Theorem 4.1.We have thus proved Theorem 1.2 and all that remains in this section
is the proof of Theorem 4.1.

We first note that Theorem 4.1 is a curvature pinched version of the following result due
to Calabi and Cao. Moreover, the proof techniques we use are adaptations of theirs to the
pinched curvature setting.

Theorem 4.3 [4, Theorem C] Let (S2, g) have non-negative curvature. Then A ≤ 8
π
D2.

Calabi and Cao proved the above inequality by combining an upper bound on the first

eigenvalue λ1(S2, g) ≤ 8π
A(S2,g)

due to Hirsch [11,25] with a lower bound π2

D2(Mn ,g)
≤

λ1(Mn, g) due to Zhong and Yang [26] which holds in the non-negative Ricci setting. This
lower bound on λ1(Mn, g) has been improved many times in the setting of positive lower
bound on Ricci (see [10] for a survey or [2] for the optimal bound). We use the version from
[2], which we state for λ1(S2, g).

Theorem 4.4 [2] The quantity

λ1(d, k) = inf{λ1(S2, g) | Diam(S2, g) ≤ d, K (S2, g) ≥ k}
is equal to the first eigenvalue μ of the following Sturm–Liouville problem (SLP) with Neu-
mann initial conditions

(y′ cos(
√
kx))′ + μ cos(

√
kx)y = 0, y′(±d/2) = 0

We can apply this directly to the case d = π, k = 1 to obtain the case dim = 2 of the
classical result of Lichnerowicz [12].

Lemma 4.5 For (S2, g) with Diam(S2, g) ≤ π and K (S2, g) ≥ 1 we have λ1 ≥ 2.

Proof The first eigenfunction of (y′ cos(x))′ + μ cos(x)y = 0, y′(±π/2) = 0 is y(x) =
sin(x) which has eigenvalue 2. 	


We can now provide a proof of Theorem 4.1. The main insight is that when considering
diameter bounds, we can use Klingenberg’s injectivity radius estimate to translate between
the positive and the pinched curvature settings.

Proof (Proof of Theorem 4.1)
For simplicity we will drop (S2, g) from our notation. Since the inequality is scale invari-

ant, let us rescale the metric so Kmin = 1 and by Myers theorem D ≤ π . Lemma 4.5 then
gives the bound λ1 ≥ 2. Following the ideas of [4] we combine this lower bound on λ1
with the upper bound due to Hirsch λ1 ≤ 8π

A (see [11,25]) to yield A ≤ 4π . Klingenberg’s
injectivity radius estimate for positive metrics on 2-spheres says that

D ≥ π√
Kmax

= π
√

δ.
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We have therefore related both area and diameter to π , and conclude that

π A ≤ 4π2 ≤ 4D2

δ
.

In the case of equality we have 4π2 = 4D2

δ
and therefore D = π√

Kmax
. This is the limiting

case of Klingenberg’s injectivity radius estimate, and therefore diameter equals injectivity
radius. This is the so called Blaschke condition, and for Blaschke metrics on the 2-sphere
Green [7] gives an elementary proof using classical surface geometry that the sphere must
be round. 	


We finish by observing that the isoperimetric inequality in Theorem 4.1 is sharp in the
sense that the estimate A/D2 approaches 4/π as we move towards the round metric, i.e. as δ

approaches 1. We do not recover the Calabi–Cao inequality as δ approaches 0, i.e. for (S2, g)
with non-negative curvature. Note that the Calabi–Cao inequality is not sharp for convex
metrics on (S2, g); Alexandrov has conjectured that the sharp inequality is realized by the
doubled disk metric where A/D2 = π/2.
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Appendix

Using more advanced techniques from Sturm–Liouville theory we can improve the isoperi-
metric inequality in Theorem 4.1 when the sphere is not round. This improved version of the
inequality is not needed for the proof of Theorem 1.2 that was presented in Sect. 4.

Theorem 5.1 Let (S2, g) be a δ-pinched metric and denote by η = D
√
Kmin. Then

π A ≤ 4D2

δ(2 − sin(η/2))
.

First note that 2− sin(η/2) ≥ 1 so that this isoperimetric inequality is indeed an improve-
ment on that of Theorem 4.1. Moreover, because 2 − sin(η/2) > 1 when η �= π we note
that Theorem 5.1 together with Cheng’s [6] rigidity result when D = π/

√
Kmin provide an

alternate proof of the equality case of Theorem 1.2 that does not depend on the Blaschke
ideas from Sect. 4.

This new inequality follows as before by combining the inequality due to Hirsch with an
improved lower bound on the first eigenvalue. We therefore set out to calculate the linear
approximation of λ1(d, 1) at d = π . The main idea is that because the coefficients of the SLP
are constant while the domain varies, we can restrict and extend eigenfunctions to compare
the values λ1(d, 1) as d → π . Let us then define by μ(d) the SLP eigenvalue λ1(d, 1). We
then have

Lemma 5.2 For π ≥ d > 0

2 + 2(1 − sin(d/2)) ≤ μ(d).
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Proof Define the change of variable tanh(u) = sin(x) on the SLP, helpfully suggested to us
by Ben Andrews. This becomes

y′′ + μ. sech2(u)y = 0, y′(±T ) = 0, tanh(T ) = sin(d/2) (3)

In particular, for d = 1, T = +∞, the eigenvalue μ = 2 is realized by y+∞ = tanh(u).
Recall that the first eigenvalue for a SLP can be written as a Rayleigh quotient

μ(d) = inf
y �=0,y′(±T )=0

R[y, T ]

where

R[y, t] =
∫ T
−T −y.y′′du∫ T

−T y2 sech2(u)du

Denote by ŷT the eigenfunction of the SLP (3) normalized so
∫ T
−T ŷ2T sech2(u)du = 1.

Extended ŷT as a constant to the entire real line so (while keeping the same notation):

ŷT (u) =

⎧⎪⎨
⎪⎩
ŷT (u) if |u| ≤ T

ŷT (T ) if u > T

ŷT (−T ) if u < −T

In order to use μ(1) ≤ R[ŷT ,+∞] we will need to bound ŷT (±T ). Observe first that
given the symmetries of the SLP (3) the function ŷT is an odd function. Since μ(d) is
the first eigenvalue, we know that ŷ′

T does not vanish in the open interval (−T , T ). Hence
|ŷT (±T )| = max−T≤u≤T |ŷT (u)|, so then

1 =
∫ T

−T
ŷ2T sech2(u)du ≤ |ŷT (±T )|2

∫ T

−T
sech2(u)du ≤ 2|ŷT (±T )|2

Replacing now R[ŷT ,+∞]

2 = μ(π) ≤ R[ŷT ,+∞] = μ(d)

1 + 2|ŷT (T )|2 ∫ ∞
T sech2(u)du

Hence we obtain

2 + 2(1 − tanh(T )) ≤ μ(d)

Replacing now tanh(T ) = sin(d/2) and using the Taylor series of sine at π/2 we finally get

2 + 2(1 − sin(d/2)) ≤ μ(d).

	

We are now ready to prove Theorem 5.1.

Proof The proof proceeds exactly as the proof for Theorem 4.1 and we begin by rescaling
the metric so that Kmin = 1 and by Myers theorem η = D ≤ π . Lemma 5.2 then gives the
bound 2 + 2(1 − sin(d/2)) ≤ μ(d) = λ1(d, 1). Following the ideas of [4] we combine this
lower bound on λ1 with the upper bound due to Hirsch λ1 ≤ 8π

A (see [11,25]) to yield

2 + 2(1 − sin(η/2)) ≤ 8π

A
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which we can manipulate to

π A ≤ 8π2

2 + 2(1 − sin(η/2))
.

Klingenberg’s injectivity radius estimate for positive metrics on 2-spheres says that

D ≥ π√
Kmax

= π
√

δ.

We have therefore related both area and diameter to π , and conclude that

π A ≤ 8π2

2 + 2(1 − sin(η/2))
= 4π2

Kmin(2 − sin(η/2))
≤ 4D2

δ(2 − sin(η/2))
.

	

Finally, while not necessary for the proof of Theorem 5.1, the following Lemma of inde-

pendent interest expands the approach of Lemma 5.2 and gives an idea of the sharpness of
its inequality, both in general and at the limiting case of d = π .

Lemma 5.3 For π ≥ d ≥ 2 arcsin(tanh(3/2)) ≈ 2.263

μ(d) ≤ 2 + cos2(d/2)A(d),

where

A(d) = 6[sin(d/2) − arctanh(sin(d/2)) cos2(d/2)]
sin3(d/2) − 3 cos2(d/2)[sin(d/2) − arctanh(sin(d/2)) cos2(d/2)] .

Moreover, at the limiting case d = π we have μ′(π) = 0 and 1
4 ≤ μ′′(π) ≤ 3

2 .

Proof Define the test function yT = tanh(u) − u sech2(T ), which by design satisfies the
Neumann initial conditions of (3). By direct calculation

∫ T

−T
−yT .y′′

T du =
∫ T

−T
2 tanh2(u) sech2(u)du − sech2(T )

∫ T

−T
2u tanh(u) sech2(u)du

= 2

3
[2 tanh3(T )] − sech2(T )[2 tanh(T ) − 2T sech2(T )]

∫ T

−T
y2T sech(u)du =

∫ T

−T

(
tanh2(u) − 2u tanh(u)) sech2(T ) + u2 sech4(T )

)
sech2(u)du

=
∫ T

−T
tanh2(u) sech2(u)du − sech2(T )

∫ T

−T
2u tanh(u) sech2(u)du

+ sech4(T )

∫ T

−T
u2 sech2(u)du

= 1

3
[2 tanh3(T )] − sech2(T )[2 tanh(T ) − 2T sech2(T )]

+ sech4(T )

∫ T

−T
u2 sech2(u)du.
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Hence our test function yT gives us the inequality

μ(d) ≤
∫ T
−T 2 tanh2(u) sech2(u)du − sech2(T )

∫ T
−T 2u tanh(u) sech2(u)du∫ T

−T tanh2(u) sech2(u)du − sech2(T )
∫ T
−T 2u tanh(u)

cosh2(u)
du + sech4(T )

∫ T
−T u2 sech2(u)du

≤
2
3 [2 tanh3(T )] − sech2(T )[2 tanh(T ) − 2T sech2(T )]
1
3 [2 tanh3(T )] − sech2(T )[2 tanh(T ) − 2T sech2(T )]

where the last inequality is valid if T ≥ 3
2 , so for d ≥ 2 arcsin(tanh(3/2)) ≈ 2.263.

Using that sech2(T ) = 1 − tanh2(T ) = 1 − sin2(d/2) = cos2(d/2) we have the desired
inequality:

μ(d) ≤ 2 sin3(d/2) − 3 cos2(d/2)[sin(d/2) − arctanh(sin(d/2)) cos2(d/2)]
sin3(d/2) − 3 cos2(d/2)[sin(d/2) − arctanh(sin(d/2)) cos2(d/2)]

= 2 + cos2(d/2)
6[sin(d/2) − arctanh(sin(d/2)) cos2(d/2)]

sin3(d/2) − 3 cos2(d/2)[sin(d/2) − arctanh(sin(d/2)) cos2(d/2)]
Turning our attention to the limiting case of d = π , we Taylor expand cosine at π/2 to

yield

μ(d) ≤ 2 + 3

2
(π − d)2 + O((π − d)3).

Similarly, we combine Lemma 5.2 and the Taylor expansion of sine at π/2 to yield

2 + 1

4
(π − d)2 + O((π − d)3) ≤ μ(d).

From this pair of Taylor expansions we calculate that

μ′(π) = 0,
1

4
≤ μ′′(π) ≤ 3

2
.
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