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Abstract
We give a new proof of a theorem by Pareschi, Popa and Schnell that the direct image of
the canonical bundle of a smooth projective variety along a morphism to an abelian variety
admits a Chen-Jiang decomposition, without using the theory of Hodge modules.

Mathematics Subject Classification 14F17 · 14F05

1 Introduction

Given a morphism f : X → A from a smooth projective variety overC to an abelian variety,
the direct image f∗ωX is known by work of Green and Lazarsfeld [4] to be a GV-sheaf, that
is, the cohomology support locus

V k(A, f∗ωX ) = {α ∈ Â | Hk(A, f∗ωX ⊗ α) �= 0}
has codimension at least k in the dual abelian variety Â for each k ≥ 0. Moreover, the precise
structure of these loci is well understood: The components of V k(A, f∗ωX ) are translates of
abelian subvarieties by Ref. [5], and are in fact translates by points of finite order by work
of Simpson [18]. We recall these results more precisely in Sect. 2.1.

In the case where f is generically finite, Chen and Jiang [2] prove a semi-positivity result
for f∗ωX corresponding to the structure of the cohomology support loci. Namely, they prove
that there exists a decomposition

f∗ωX ∼=
⊕

i

αi ⊗ p∗
i Fi ,

since called a Chen-Jiang decomposition in [15], where each αi ∈ Â is a point of finite
order, pi : A → Ai is a surjective homomorphism of abelian varieties with connected
fibres, and each Fi is an M-regular coherent sheaf on Ai , i.e. for each k > 0 we have
codim Âi

V k(Ai ,Fi ) > k. The dual of each pi is an inclusion p̂i : Âi → Â, and the codi-

mension k components of V k(A, f∗ωX ) for each k are exactly the translates by αi of Âi , so
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the failure of f∗ωX itself to be M-regular is explained by this decomposition. The proof by
Chen and Jiang relies on the structural results on V k(A, f∗ωX ), but is otherwise algebraic in
nature.

Using Hodge modules, this theorem was widely generalized by Pareschi et al. [15]. They
prove a Chen-Jiang decomposition result for the associated graded pieces of the Hodge
filtration on any polarizable real Hodge module on a compact complex torus. Since direct
images of canonical bundles arise in this way, the result of Chen-Jiang is thus extended to
arbitrary morphisms (and even to the Kähler setting).

Building on this result, Lombardi et al. [12] prove that direct images of pluricanonical
bundles of smooth projective varieties likewise admit Chen-Jiang decompositions, by show-
ing that for f : X → A and any m ≥ 2, there exists a smooth projective variety Xm and a
morphism fm : Xm → A such that f∗ω⊗m

X is a direct summand in fm∗ωXm . In the case where
(X ,Δ) is a klt pair, Jiang andMeng [8,13] independently give results for direct images of line
bundles with divisor rationally equivalent to m(KX + Δ), Jiang for integral m ≥ 1 with the
condition that f be primitive for m ≥ 2, and Meng unconditionally for any rational m ≥ 1.
All of these results in turn have applications to the birational theory of irregular varieties.

The proof in [15] relies heavily on Hodge modules and the decomposition theorem, but in
the geometric case where f : X → A is a morphism from a smooth projective variety to an
abelian variety, it is reasonable to expect a more direct proof along the lines of the original
work by Chen-Jiang. We give such a proof (Sect. 3), relying only on the theory of variations
of Hodge structure, removing the dependence of the previously mentioned results on Hodge
modules.

Theorem A For any morphism f : X → A from a smooth projective variety to an abelian
variety, the sheaf f∗ωX admits a Chen-Jiang decomposition.

Following the method of [2], the key part of the proof is the following. Assume that
the components of the vanishing loci V k(A, f∗ωX ) pass through the origin, and are hence
abelian subvarieties; this can be arranged via an isogeny of A. Suppose then that B̂ ⊂ Â
is a codimension k component of V k(A, f∗ωX ), and let p : A → B be the projection dual
to the inclusion of B̂. We must then produce an appropriate M-regular sheaf F on B such
that p∗F is a direct summand of f∗ωX . Given such M-regular sheaves for each such B, the
theorem follows for formal reasons (see Lemma 3.1).

In the case where f is generically finite, Chen and Jiang show that Rk p∗ f∗ωX is actually
the pushforward to B of the canonical bundle of a lower-dimensional variety, hence admits
a Chen-Jiang decomposition by dimensional induction. The M-regular summand of this
decomposition serves asF . More precisely, they construct the following diagram (note that
the notation here differs slightly from the paper [2]).

X

Y A

Z B

g
f

q

r

f ′

p

h

Here X
q−→ Z

h−→ B is a modified Stein factorization where Z is smooth and h generically
finite, and Y is the pullback of p along h. Then q is a fibration of relative dimension k, so
Rkq∗ωX = ωZ hence Rk p∗ f∗ωX = h∗ωZ . Furthermore r is a pullback of a morphism of
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abelian varieties so r∗ωZ = ωY , and since g is generically finite, ωY is a direct summand of
g∗ωX , hence F is a direct summand of f∗ωX by base change.

In the general case of arbitrary f , we use results of Kollár [10,11] on variations of Hodge
structures and higher direct images of canonical bundles to prove that p∗Rk p∗ f∗ωX is a
direct summand of f∗ωX , otherwise finishing the proof in the same manner as Chen and
Jiang. The more technical proof is deferred to Sect. 4.

Theorem B Suppose X
f−→ Y

g−→ Z are surjective morphisms of smooth projective varieties,
and that g is a smooth fibration of relative dimension k with ωY/Z trivial. Then f∗ωX admits
g∗Rkg∗ f∗ωX as a direct summand.

The idea is to construct, by Grothendieck duality, a morphism

ΨX/Y : f∗ωX/Y → g∗Rkg∗ f∗ωX/Z

which, fibrewise, encodes certain Gysin morphisms. This is most easily described when Z is
a point. Let y ∈ Y be a general point and F = f −1(y) the corresponding fibre of f . Then the
fibre of ΨX/Y at y is a morphism H0(F, ωF ) → Hk(Y , f∗ωX ). When composed with the
edge map Hk(Y , f∗ωX ) → Hk(X , ωX ) of the Leray spectral sequence we get a morphism
Ψ ′
X/Y |y : H0(F, ωF ) → Hk(X , ωX ). On the other hand, the inclusion F → X gives a Gysin

morphism Hd(F,C) → H2k+d(F,C) where d = dim F , and the restriction to H0(F, ωF )

under the Hodge decomposition coincides with Ψ ′
X/Y |y .

To prove the theorem, we construct a morphism of variations of Hodge structure over an
open locus which encodes the topological Gysin morphisms on fibres (although for technical
reasons, we actually split the direct image g∗ΨX/Y on Z instead and then use the push-pull
adjunction). The splitting then comes from the semisimplicity of the category of polarizable
VHS, and we use Kollár’s results on higher direct images of canonical bundles [11, Theorem
2.6] to extend from the open locus. The resulting more precise statement, describing the
morphism f∗ωX → g∗Rkg∗ f∗ωX , is given as Theorem 4.4.

2 Preliminaries

We work throughout with smooth varieties over C.

2.1 Generic vanishing

Fix an abelian variety A throughout this section, and let Â be the dual abelian variety. Let us
recall some basic notions related to GV-sheaves.

For a coherent sheaf F on A, let V k(A,F ) = {α ∈ Â | Hk(A,F ⊗ α) �= 0} denote its
kth cohomology support locus. This is a closed subvariety of Â.

Definition 2.1 Acoherent sheafF onan abelianvariety A is aGV-sheaf if codim Â V k(A,F ) ≥
k for every k ≥ 0, andM-regular if codim Â V k(A,F ) > k for every k > 0.

Following [17], define the symmetric Fourier-Mukai transform to be the contravariant
functor

FMA : Db
coh(A) → Db

coh( Â)
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2102 M. B. Villadsen et al.

given by the formula

FMA(K ) = R(pr2)∗(P ⊗ pr∗1DA(K ))

where pr1 : A × Â → A and pr2 : A × Â → Â are the two projections, P is the Poincaré
line bundle on A × Â normalized by requiring that its fibres over 0 ∈ A respectively 0 ∈ Â
are trivial, and

DA(K ) = RHom(K , ωA[dim A])
is the Grothendieck duality functor on A. Then FMA is an equivalence of categories with
inverse FM Â, and is a version of the Fourier-Mukai transform particularly well-adapted to
talking about generic vanishing.

GV-sheaves andM-regular sheaves canbedefined in termsof theFourier-Mukai transform.
This goes back to Hacon for GV-sheaves, and Pareschi and Popa [14] for M-regular sheaves.

Proposition 2.2 ([7, Theorem 1.2], [14, Proposition 2.8]) A coherent sheafF on an abelian
variety A is a GV-sheaf if and only if FMA(F ) is a sheaf (i.e. a complex with cohomology
only in degree 0), and F is M-regular if and only if FMA(F ) is furthermore a torsion-free
sheaf.

Proposition 2.3 ([17, Proposition 4.1]) Let f : A → B be a morphism of abelian varieties.
Denoting by f̂ : B̂ → Â the dual morphism, there are natural isomorphisms

FMB ◦ R f∗ = L f̂ ∗ ◦ FMA

FMA ◦ L f ∗ = R f̂∗ ◦ FMB

Proposition 2.4 ([17, Proposition 5.1])For a ∈ A let ta : A → A be the translationmorphism
and Pa the corresponding line bundle on Â. For a ∈ A and α ∈ Â, there are natural
isomorphisms

FMA ◦ (ta)∗ = (Pa ⊗ −) ◦ FMA

FMA ◦ (Pα ⊗ −) = (tα)∗ ◦ FMA

The following characterization of the vanishing loci arising from canonical bundles is due
to Green-Lazarsfeld and Simpson for ordinary direct images.

Theorem 2.5 ([4,5,18]) Suppose f : X → A is any morphism from a smooth projective
variety X to an abelian variety A. For every i , the sheaf Ri f∗ωX is a GV-sheaf. Furthermore,
for every k, every component of V k(A, Ri f∗ωX ) is a translate of an abelian subvariety of Â
by a point of finite order.

By work of Kollár, for each i the higher direct image Ri f∗ωX is a direct summand in g∗ωY

for some g : Y → A, where Y is smooth projective [11, Corollary 2.24], and the properties
stated in the theorem are inherited by direct summands, so we get the theorem for higher
direct images as well.
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2.2 Variations of Hodge structure and higher direct images of canonical bundles

We will fix notation for, and recall some facts about, variations of Hodge structure. For the
full definition see e.g. [16]. We will follow the notation of [11]; see also that paper for an
introduction to canonical extensions.

The data of a VHS of weight k on a smooth variety U consists of a local system H ,
which for us will always have coefficient groupQ, together with a filtration by holomorphic
subbundles of the vector bundle H = H ⊗Q OU , denoted

H = F 0(H) ⊃ · · · ⊃ F n(H) ⊃ 0

by abuse of notation, such that the fibre of the filtration at a given point x defines a rational
Hodge structure of weight k on the rational vector space Hx . We likewise let Gri (H) =
F i/F i+1, which are again vector bundles. We let ∇ : H → H ⊗ Ω1

U denote the induced
Gauss-Manin connection, with respect to which the Hodge filtration is required to satisfy the
Griffiths transversality condition

∇(F p) ⊂ F p−1 ⊗ Ω1
U

Finally, a polarization on H is a map of local systems H ⊗ H → QU which induces
polarizations on the rational Hodge structures Hx for all x ∈ U .

Suppose f : X → Y is a smooth projective morphism with fibres of dimension d . For any
k, the sheaf Rk f∗QX is then a local system underlying a VHS of weight k. We note that this
VHS is polarizable. To see this, choose a class η ∈ H2(X ,Q) whose restriction to fibres of
f is Kähler, as granted by the assumption that f is projective. For j ≤ d , η induces a bilinear

form on R j f∗QX defined fibrewise at y ∈ Y by (α, β) �→ (−1)
1
2 j( j−1) ∫

F α ∧ β ∧ η|d− j
F ,

where F = f −1(y). This defines a polarization on the primitive part (R j f∗QX )prim by the
Hodge-Riemann bilinear relations. By the relative Hard Lefschetz theorem and consequent
relative Lefschetz decomposition, Rk f∗QX decomposes as a direct sum of (Tate twists of)
such primitive pieces, hence admits a polarization.

Note in particular that in middle degree d and up, the bottom piece of the Hodge filtration
is

F k+d(Rk+d f∗QX ) = Rk f∗ωX/Y .

Suppose now that H underlies a VHS on an open subset X0 ⊂ X such that X \ X0 is a
normal crossings divisor. Suppose themonodromyofH around this divisor is quasi-unipotent.
A choice of set-theoretic logarithm log : C∗ → C yields a corresponding canonical extension
of H and the filtration F •(H) to vector bundles on X . One way to fix such a logarithm is
by choosing a fixed length 2π interval for the imaginary values of the logarithm. The choice
[0, 2π) is called the upper canonical extension in [11], and will be denoted by uH , uF •(H).
The choice (−2π, 0]gives the lower canonical extension, denoted by lH , lF •(H). Similarly,
u Gri (H) and l Gri (H) denote the associated graded pieces of the extended filtrations.

We briefly recall the local construction. In an analytic neighbourhood of a point in X \ X0,
X0 looks like (D∗)s × Dr for some s and r , where D is the unit disk and D∗ the punctured
unit disk. The local monodromy on a fixed fibre of H in this neighbourhood is generated
by the monodromy operators T1, . . . , Ts corresponding to the generators of the fundamental
groups of each D∗. We will describe how to extend over each D∗ separately, so it suffices for
us to assume that s = 1 and r = 0, so we simply have a VHS on D∗ with quasi-unipotent
monodromy generated by an operator T .
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2104 M. B. Villadsen et al.

Let exp : H → D∗ be the universal cover of the unit disk by the left half plane in C. Then
T acts on global sections of exp∗ H by the action of pullback along the translation by i of
H. In particular, T acts on the space V of global flat sections.

Now choose coordinates on V such that T decomposes as a product T = UD of a
unipotent matrix U and a diagonal matrix D. The unipotent matrix has a logarithm given by
the usual power series expansion

logU =
∞∑

k=1

(−1)k+1 (B − I )k

k
,

while our choice of logarithm gives a logarithm log D; thus we get N = log T = logU +
log D. If v ∈ V , then the section

s(z) = exp

(
− 1

2π i
N · log z

)
v(z)

is T -invariant, hence descends to a global section of H . This defines a trivialization of H ,
hence an extension of H to a free sheaf on D. This also gives an extension of the Gauss-
Manin connection onH to a connection on the extension with logarithmic singularities at 0,
though we will not need a detailed description of this. The nilpotent orbit theorem says that
the filtrationF •(H) likewise extends, and these local extensions glue to an extension ofH
to X .

One technical obstacle with this theory is that if Hi , i = 1, 2 are two VHS on D∗ with
monodromy operators Ti , the monodromy operator of H1 ⊗ H2 is T = T1 ⊗ T2, but the
chosen logarithms of T and the Ti may not be directly related. Decomposing Ti = Ui Di and
T = UD in a unipotent and diagonal part, the eigenvalues of D are products d1d2 where di
is an eigenvalue of Di . But it is not necessarily the case that log(d1d2) = log d1 + log d2,
and as a consequence it is not necessarily the case that the canonical extension of H , with
this fixed choice of logarithm, is the tensor product of the canonical extensions of the Hi .
However, if, say, H1 has trivial monodromy, then canonical extensions and tensor products
will in fact commute in this special case since d1d2 = d2 for every pair of eigenvalues as
above. This will be important in the proof of Theorem B.

Using this machinery of canonical extensions, Kollár proves the following results.

Theorem 2.6 ([11, Theorem 2.6]) Let f : X → Y be a surjective map of relative dimension
d between smooth projective varieties. Suppose Y 0 ⊂ Y is an open subset such that Y \ Y 0

is a normal crossings divisor and f is smooth over Y 0. Let X0 = f −1(Y 0) and f 0 = f |X0 .
Then

Rk f∗ωX/Y ∼= uF k+d(Rk+d f 0∗ QX0)

Rk f∗OX ∼= l Gr0(Rk f 0∗ QX0)

In particular, Rk f∗OX and Rk f∗ωX/Y are locally free.

Theorem 2.7 ([11, Theorem 3.4]) Let X , Y , Z be projective varieties, X smooth, and
f : X → Y , g : Y → Z surjective maps. Then

1. R p(g ◦ f )∗ωX ∼= ⊕
i R

i g∗Rp−i f∗ωX ;
2. Ri g∗R j f∗ωX is torsion-free;
3. Ri g∗R j f∗ωX = 0 if i > dim Y − dim Z;
4. In the derived category of coherent sheaves on Z,
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Rg∗R j f∗ωX =
⊕

i

Ri g∗R j f∗ωX [−i].

Theorem 2.6 shows that Rk f∗ωX/Y , hence also Rk f∗ωX , is globally controlled by a
polarizable VHS on an open subset. Observe the following.

1. The formation of canonical extensions is compatible with taking direct sums of VHS.
2. The open subset Y 0 ⊂ Y in the theorem does not have to be the entire smooth locus of f ;

any non-empty Zariski-open subset thereof suffices as long as the complement is normal
crossings.

3. The category of polarizable VHS is semisimple [16, Theorem 10.13].

It follows that one way to get a direct sum decomposition of Rk f∗ωX is to construct an
appropriate morphism involving the VHS Rk+d f 0∗ QX0 , for some appropriate Y 0 as in the
theorem. This will be the mechanism for getting the splitting in Theorem B.

2.3 Chen-Jiang decompositions

Let’s recall the following definition and proposition from [12].

Definition 2.8 ([12, Definition 4.1]) SupposeF is a coherent sheaf on an abelian variety A.
A Chen-Jiang decomposition of F is a direct sum decomposition

F ∼=
⊕

i

αi ⊗ p∗
i Fi

where each pi : A → Ai is a surjective homomorphism of abelian varieties with connected
fibres, each Fi is an M-regular coherent sheaf on Ai and each αi ∈ Â is a line bundle of
finite order.

Proposition 2.9 ([12, Proposition 4.6]) Suppose F ′ and F ′′ are coherent sheaves on an
abelian variety A. If F ′ ⊕ F ′′ admits a Chen-Jiang decomposition, so do F ′ and F ′′.

The following proposition is essentially proven as part of the proof of [2, Theorem 3.5].

Proposition 2.10 Suppose F is a coherent sheaf on an abelian variety A, and φ : A′ → A
is an isogeny. Then F admits a Chen-Jiang decomposition if and only if φ∗F does.

Proof If F admits a Chen-Jiang decomposition then clearly so does φ∗F .
In the other direction note that by Propositions 2.2, 2.3, and 2.4, a Chen-Jiang decompo-

sition of φ∗F is equivalent to a decomposition

FMA′(φ∗F ) ∼=
⊕

i

ταi∗ιi∗Gi

where for each i , ταi is a translation of A′ by a point αi of finite order, ιi : Âi → Â′ the
inclusion of an abelian subvariety, and Gi is a torsion free sheaf on Âi .

Now for each i , φ̂∗ταi∗ιi∗Gi is the direct image of a torsion free sheaf on φ̂−1( Âi ),
which is again a torsion translate of an abelian subvariety of Â; namely the direct image

of
(
φ̂|

φ̂−1( Âi )

)∗
Gi translated by a preimage of αi .
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By Proposition 2.3 and since φ is an isogeny we have

φ̂∗FMA′(φ∗F ) = FMA(φ∗φ∗F ),

so φ∗φ∗F admits a Chen-Jiang decomposition. But F is a direct summand thereof, hence
admits a Chen-Jiang decomposition by Proposition 2.9. ��

Given a morphism f : X → A to an abelian variety, we will need to understand how the
image f (X) relates to the various components of the cohomology support loci of f∗ωX .

Lemma 2.11 Suppose given f : X → A where X is a smooth projective variety, A an abelian
variety, and suppose B̂ ⊂ Â is a codimension k component of V k(A, f∗ωX ) which passes
through 0 ∈ Â (and is hence an abelian subvariety by Theorem 2.5). Let p : A → B be
dual to the inclusion. Then all fibres of f (X) over B are of dimension k, hence f (X) is the
preimage of p( f (X)). In particular p| f (X) : f (X) → p( f (X)) is a smooth fibration with
trivial relative canonical bundle.

Proof Observe that p is smooth of relative dimension k, so it suffices to show that a general
fibre of p| f (X) has dimension k. Suppose β ∈ B̂. By Kollár’s result (Theorem 2.7), we have

hk(A, f∗ωX ⊗ p∗β) =
k∑

i=0

hi (B, Rk−i p∗ f∗ωX ⊗ β)

The left hand side is non-zero by the assumptions on B, while for general β ∈ B̂, the
terms with i > 0 on the right hand side vanish since Rk−i p∗ f∗ωX is a direct summand of
Rk−i (p ◦ f )∗ωX (by Theorem 2.7 again), which is a GV-sheaf by Theorem 2.5. It follows
that h0(B, Rk p∗ f∗ωX ⊗ β) is non-zero, hence that Rk p∗ f∗ωX is non-zero.

To conclude, recall that Rk(p ◦ f )∗ωX , hence the summand Rk p∗ f∗ωX , is torsion-free
over the image of f in B (Theorem 2.7). By base change over the smooth locus of f , this kth

higher direct image would vanish if the general fibre had dimension smaller than k, hence
the general fibre actually has dimension k. ��

2.4 Generic base change

Finally we will need the following generic base change theorem. Suppose X
f−→ Y

g−→ Z are
proper morphisms of schemes of finite type over a field, that Z is generically reduced, and
that h = g ◦ f is surjective. LetF be a coherent sheaf on X . For z ∈ Z , let G = h−1(z) and
H = g−1(z) be the fibres over z, and consider f |G : G → H .

Proposition 2.12 ([12, Proposition 5.1]) In the setting above, there is a non-empty Zariski-
open subset U ⊂ Z such that the base change morphism

(
Ri f∗F

)
|H → Ri ( f |G)∗(F |G)

is an isomorphism of sheaves on H for every z ∈ U and every i .

In particular, if X , Y and Z are smooth projective and F is the relative canonical bundle
ωX/Y = ωX ⊗ f ∗ω−1

Y , this says that the restriction ( f∗F )|H is, for general z ∈ Z , isomorphic
to the relative canonical bundleωG/H of themorphism f |G , and similarly for the higher direct
images.

123



Chen-Jiang decompositions... 2107

3 Chen-Jiang decompositions for direct images of canonical bundles

The goal of this section is to prove that Chen-Jiang decompositions always exist for direct
images of canonical bundles, following the approach originally used in [2] to give the decom-
positions for generically finite morphisms.

Let us first recall the original proof of [2, Theorem 3.5], namely that if f : X → A is a
generically finite morphism to an abelian varietythen f∗ωX admits a Chen-Jiang decomposi-
tion. First, by Theorem 2.5 and Proposition 2.10 it suffices to assume that all components of
the cohomology support loci V k(A, f∗ωX ) for every k passes through the origin of A. Indeed
choose a finite order point in each such component, then choose an isogeny φ : A′ → A such
that each of those finite points get mapped to the origin of Â′ under φ∗. If X ′ = X ×A A′
and f ′ : X ′ → A′ is the second projection, then φ∗ f∗ωX = f ′∗ωX ′ , and the components of
V k(A′, f ′∗ωX ′) all pass through the origin of A′.

Chen and Jiang’s proof of [2, Theorem 3.4] is then essentially to show the following result,
and prove that the conditions are satisfied when f is generically finite.

Lemma 3.1 Assume all components of each V k(A, f∗ωX ) pass through 0 ∈ A. Suppose that
for each k > 0, and for each component B̂ of V k(A, f∗ωX ) of codimension k, there exists
an M-regular sheaf FB on B with the following properties.

1. If pB : A → B is dual to the inclusion B̂ → Â, then f∗ωX admits p∗
BFB as a direct

summand.
2. For general β ∈ B̂, hk(A, f∗ωX ⊗ p∗

Bβ) = h0(B,FB ⊗ β)

Then f∗ωX admits a Chen-Jiang decomposition.

Proof Following the notation of [2], let SkX denote the set of codimension k components of
V k(A, f∗ωX ). Then Step 2 of the proof of [2, Theorem 3.4] applies verbatim to show that
there exists a decomposition

f∗ωX ∼= W ⊕
⊕

k>0,B̂∈SkX
p∗
BFB

It remains to show that W is M-regular. This follows from the arguments of Step 3 of the
proof of [2, Theorem 3.4] and the second point in the statement of this lemma. ��

As outlined in the introduction, Chen and Jiang critically use the fact that if f : X → Y is
generically finite and surjective, then f∗ωX is a direct summand of ωY . The main new result
is Theorem B, which serves as a generalization of this statement to arbitrary morphisms. We
defer the proof to Sect. 4.

Theorem A has the following corollary.

Corollary 3.2 Suppose f : X → A is a morphism from a smooth projective variety X to an
abelian variety A. Then Ri f∗ωX admits a Chen-Jiang decomposition on A for all i .

Proof For i > 0, there exists by work of Kollár [11, Corollary 2.24] a smooth variety Z with
dim Z = dim X − i and a morphism φ : Z → A such that Ri f∗ωX is a direct summand of
φ∗ωZ (the claim about the dimension of Z follows from the proof of Kollár’s corollary; in
fact Z is a generic intersection of i hyperplane sections of some birational model of X ). The
result follows by Proposition 2.9. ��
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2108 M. B. Villadsen et al.

Remark 3.3 The proof of Corollary 3.2 for a fixed X and i > 0 only relies on Theorem A in
the case of varieties with strictly smaller dimension than X . In the proof of Theorem A, we
can thus assume that Ri f∗ωX admits a Chen-Jiang decomposition for all i > 0 by induction
on dim X .

Proof (Proof of Theorem A) By Theorem 2.5 and Proposition 2.10, we can assume that all
components of the cohomology support loci V k(A, f∗ωX ) are in fact abelian subvarieties.
It suffices to verify the conditions of Lemma 3.1. Namely, suppose B̂ is a codimension k
component of V k(A, f∗ωX )with k > 0, and p : A → B is dual to the inclusion B̂ ⊂ Â. Then
we must show that there exists an M-regular sheafF on B such that hk(A, f∗ωX ⊗ p∗β) =
h0(B,F ⊗ β) for general β ∈ B̂, and that f∗ωX admits p∗F as a direct summand.

Let Y ⊂ A be the image of f , and p(Y ) = Z ⊂ B. Let g : Y → Z denote the restriction
of p and q = g ◦ f . By Lemma 2.11, g is a smooth fibration of relative dimension k, and
ωY/Z is trivial. Now let πZ : Z ′ → Z be a resolution of singularities of Z , and construct the
following diagram by pullback.

X ′ Y ′ Z ′

X Y Z

f ′

πX

g′

πY πZ

f g

Then g′ is again a smooth fibration of relative dimension k, and ωY ′/Z ′ is trivial. By

Theorem B applied to the sequence X ′ f ′
−→ Y ′ g′

−→ Z ′, we can now conclude that f ′∗ωX ′
admits g′∗Rkg′∗ f ′∗ωX ′ as a direct summand. Pushing forward to Y it follows that f∗ωX

admits g∗Rkg∗ f∗ωX as a direct summand, by flat base change along g and the fact that
πX∗ωX ′ = ωX since πX is birational.

To apply Lemma 3.1, it then suffices to show that Rkg∗ f∗ωX admits as direct summand
an M-regular sheafF such that h0(B, Rk p∗ f∗ωX ⊗β) = h0(B,F ⊗β) for general β ∈ B̂.
It suffices to show that Rkg∗ f∗ωX admits a Chen-Jiang decomposition as a sheaf on B, as
we can then take F to be the M-regular summand of the decomposition.

But Rkg∗ f∗ωX is a direct summand of Rkq∗ωX by Kollár’s result (Theorem 2.7). By
dimensional induction and Corollary 3.2 (see Remark 3.3), Rkq∗ωX admits a Chen-Jiang
decomposition on B, hence so does Rkg∗ f∗ωX by Proposition 2.9. ��

4 Splitting of direct images of canonical bundles

The goal of this section is to prove Theorem B. More precisely, suppose given surjective

morphisms of smooth varieties X
f−→ Y

g−→ Z where g is flat. Let q = g ◦ f . We will
construct a morphism ΨX : f∗ωX → g!Rkg∗ f∗ωX [−k] where k = dim Y − dim Z ; as g is
flat, this is actually a map of sheaves. We will then show that this morphism is split surjective
in the setting of Theorem B, using the results by Kollár outlined in Sect. 2.2.

4.1 Relative Gysinmorphism for canonical bundles

To construct the desired morphism, note first that Ri g∗ f∗ωX vanishes for i > k by Kol-
lár’s result (Theorem 2.7), hence Rg∗ f∗ωX , as an object of the derived category of coherent
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sheaves on Z , is concentrated in degrees 0 to k. Thus the projection to the kth cohomol-
ogy sheaf gives a map Rg∗ f∗ωX → Rkg∗ f∗ωX [−k]. By adjunction this corresponds to a
morphism

ΨX : f∗ωX → g!Rkg∗ f∗ωX [−k].
Since Y and Z are smooth and g is flat of relative dimension k, we have

g!Rkg∗ f∗ωX [−k] ∼= ωY/Z ⊗ g∗Rkg∗ f∗ωX .

Note that there’s a canonical morphism Rkg∗ f∗ωX → Rkq∗ωX , namely the edge map
from the composed functor spectral sequence Ri g∗R j f∗ωX �⇒ Ri+ j q∗ωX . By Kollár’s
result (Theorem 2.7), this map is an inclusion of a direct summand. Pulling this back to Y , and
applying twists by canonical bundles and composing with twists of ΨX , yields the following
morphisms.

f∗ωX ωY/Z ⊗ g∗Rkg∗ f∗ωX

f∗ωX/Z ωY/Z ⊗ g∗Rkg∗ f∗ωX/Z ωY/Z ⊗ g∗Rkq∗ωX/Z

f∗ωX/Y g∗Rkg∗ f∗ωX/Z g∗Rkq∗ωX/Z

ΨX

ΨX/Z

Ψ ′
X/Z

ΨX/Y

Ψ ′
X/Y

Lemma 4.1 For a general point y ∈ Y , let F = f −1(y),G = q−1(g(y)) and H =
g−1(g(y)).

1. The fibre Ψ ′
X/Y |y : H0(F, ωF ) → Hk(G, ωG) of Ψ ′

X/Y is the Gysin morphism of the
inclusion F ⊂ G.

2. The fibre of ΨX/Y at y is a surjective morphism

ΨX/Y |y : H0(F, ωF ) → Hk(H , ( f |G)∗ωG).

3. Furthermore, let z = g(y) and assume g is a fibration. Then the fibre (g∗ΨX/Z )|z of
g∗ΨX/Y : q∗ωX/Y → Rkg∗ f∗ωX/Z at z is an isomorphism for general y.

The notation can be summarized in the following commuting diagram, where all squares are
cartesian.

F G X

{y} H Y

{z} Z
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Proof Step 1: Identifying fibres of Ψ ′
X/Y with Gysin morphisms.

By generic base change (Proposition 2.12), we can assume Z is a point, soG = X , H = Y
and F is a general fibre of f . Then dim Y = k, dim X = d + k, and dim F = d .

Taking a log resolution of Y , we can furthermore assume that the the discriminant locus of
f is normal crossings. By Kollár’s result (Theorem 2.6) all the higher direct images Ri f∗ωX

are then locally free. At a general y ∈ Y , we get a sequence

H0(F, ωF ) → Hk(Y , f∗ωX ) → Hk(X , ωX ),

and the linear dual is a sequence

Hd(X ,OX ) → H0(Y , Rd f∗OX ) → Hd(F,OF )

by Serre duality on the spaces involved. We claim that the first morphism is the edge map
from the second page of the Leray spectral sequence for OX , the second the base change
morphism to the fibre, and the composition as a result the restriction to a fibre.

Let

DY (−) = RHom(−, ωY [dim Y ])
be the Serre duality functor for Y and similarly DX for X . Then

DY (R f∗ωX ) = R f∗OX [dim X ],
and since the discriminant locus of f is a normal crossings divisor, the Ri f∗ωX are locally
free and

DY (Ri f∗ωX [−i]) = Rd−i f∗OX [i + dim Y ],
recalling that d = dim X − dim Y .

To compute the dual of the fibre

ΨX/Y |y : H0(F, ωF ) → Hk(Y , f∗ωX ),

we can apply Hom(−,OY ) and compute fibres of the resulting morphism, since the sheaves
involved are locally free. But since ΨX/Y = ΨX ⊗ ω−1

Y we have

Hom(ΨX/Y ,OY ) = DY (ΨX )[− dim Y ].
Now the morphism ΨX is constructed as the composition

f∗ωX → g!Rg∗ f∗ωX → g!Rkg∗ f∗ωX [−k]
where the first morphism is the unit of adjunction, and the second is the projection to the
highest cohomology sheaf. The (Serre) dual of the former is the counit of adjunction

g∗Rg∗Rd f∗OX → Rd f∗OX ,

while the dual of the latter is the inclusion

g∗Rd f∗OX → Rg∗Rd f∗OX

of the lowest direct image along g. The composition is thus just the counit of the non-
derived adjunction, namely g∗g∗Rd f∗OX → Rd f∗OX . Since Z is a point, g∗g∗Rd f∗OX =
H0(Y , Rd f∗OX ) ⊗ OY , and the fibre at a general y ∈ Y is just given by restricting a global
section to the fibre over y, so H0(Y , Rd f∗OX ) → Hd(F,OF ) in the sequence above is
given as claimed.
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The morphism

Hk(Y , f∗ωX ) → Hk(X , ωX )

is an edge map in the Leray spectral sequence for ωX with respect to f , induced by the
canonical map f∗ωX → R f∗ωX . The edge map

Hd(X ,OX ) → H0(Y , Rd f∗OX )

in the Leray spectral sequence for OX is similarly induced by the projection R f∗OX →
Rd f∗OX [−d] to the highest direct image (the ones in degree > d vanishing by duality). We
claim that these maps get identified under DY .

Let K 0 d−→ K 1 → · · · be any locally free resolution of R f∗ωX . Then the inclusion
f∗ωX → R f∗ωX is canonically identified with the inclusion ker d → K 0. Applying DZ

(and dropping the index shifts from the notation) gives a resolution
(· · · → K 1∨ → K 0∨)⊗

ωY of R f∗OX . The inclusion ker d → K 0 gets mapped under DY to the surjection(
K 0∨ → coker d∨) ⊗ ωY . But this is just the canonical map R f∗OX → Rd f∗OX [−d]
as desired. This proves the claim that Ψ ′

X/Y is the Gysin morphism on general fibres.
Step 2 Surjectivity of general fibres of ΨX/Y .
Let us now show that the restriction

H0(Y , Rd f∗OX ) → Hd(F,OF )

is injective. Suppose that α ∈ H0(Y , Rd f∗OX ) vanishes when restricted to some point y0 in
the smooth locus Y 0 ⊂ Y of f . Lift α to an element α̃ of Hd(X ,OX ), and let X0 = f −1(Y 0)

and f 0 : X0 → Y 0 be the restriction of f . Since f 0 is smooth, Rd f 0∗ CX0 is a local system,
and the Leray spectral sequence for CX0 with respect to f 0 degenerates, we get a map

π : Hd(X ,CX ) → H0(Y 0, Rd f 0∗ CX0).

Furthermore, the fibre of Rd f 0∗ CX0 at y ∈ Y 0 is exactly Hd(F,C). Applying the Hodge
decomposition for X and F , the restriction of π(α̃) to y equals the restriction of α to y, which
vanishes for y = y0. But π(α̃) is then a section of a local system which vanishes at a point,
and since Y 0 is connected, π(α̂)must thus be identically 0. It follows that α vanishes at every
y ∈ Y 0. As Rd y∗OX is locally free, and since α vanishes on a dense open set, we get α = 0.
This dually gives the desired surjectivity.

Step 3: Surjectivity of general fibres of g∗ΨX/Y .
For the final statement of the lemma, consider the monodromy action of π1(Y 0) on

Hd(F,C), and the subspace Hd(F,C)π1(Y 0) of invariants under this action.
Define H0(F, ωF )π1(Y 0) as the preimage of Hd(F,C)π1(Y 0) under the inclusion

H0(F, ωF ) ↪→ Hd(F,C). Note that π1(Y 0) does not act on H0(F, ωF ); we are considering
invariants under the action on the larger space Hd(F,C).

Consider the following commuting diagram.

H0(Y , f∗ωX/Y ) Hk(Y , f∗ωX )

H0(F, ωF ) H0(F, ωF )π1(Y 0)

H0(ΨX/Y )

ΨX/Y |y
⊇
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We claim that the right side vertical map is an isomorphism, while the image of the
restriction morphism H0(Y , f∗ωX/Y ) → H0(F, ωF ) contains H0(F, ωF )π1(Y 0); this would
yield the desired surjectivity.

Define dually Hd(F,OF )π1(Y 0) ⊂ Hd(F,OF ) as the image of Hd(F,C)π1(Y 0) under
the canonical projection Hd(F,C) → Hd(F,OF ). Note again that π1(Y 0) does not act on
Hd(F,OF ) by itself, only on the larger Hd(F,C).

Then Hd(F,OF )π1(Y 0) is exactly the image of the restriction morphism

H0(Y , Rd f∗OX ) → Hd(F,OF ).

Indeed the imageof the restrictionmapHd(X ,OX ) → Hd(F,OF ) is exactlyHd(F,OF )π1(Y 0)

by the global invariant cycles theorem and the fact that the restriction map in singular coho-
mology is a morphism of Hodge structures, and the coherent restriction map factors through
H0(Y , Rd f∗OX ).

We conclude that the restriction morphism gives an isomorphism

H0(Y , Rd f∗OX )
∼−→ Hd(F,OF )π1(Y 0)

by the injectivity from the previous step of this proof. Since Hd(F,OF )π1(Y 0) and
H0(F, ωF )π1(Y 0) are dual, we conclude that the restriction of ΨX/Y |y to H0(F, ωF )π1(Y 0)

is an isomorphism.
Finally, observe that by the global invariant cycles theorem, the image of the restriction

H0(X ,Ωd
X ) → H0(F, ωF ) is exactly H0(F, ωF )π1(Y 0), and that this restriction factors

through H0(Y , f∗ωX/Y ); in fact

H0(Y , f∗ωX/Y ) → H0(F, ωF )π1(Y 0)

is an isomorphism by the same type of argument as in step 2. It follows that
H0(ΨX/Y ) : H0(Y , f∗ωX/Y ) → Hk(Y , f∗ωX ) is an isomorphism as desired. ��

The case where Z is a point immediately gives the following.

Corollary 4.2 Suppose f : X → Y is a surjective morphism of relative dimension k between
smooth projective varieties. If Hk(Y , f∗ωX ) �= 0 then ωX/Y is effective.

4.2 Morphism of VHS

Taking the direct image of Ψ ′
X/Z along g yields

g∗ΨX/Z : q∗ωX/Z → g∗ωY/Z ⊗ Rkq∗ωX/Z .

The goal is to recover this morphism from a map of VHS, at least over the locus where g and
q are smooth.

Let Z0 ⊂ Z be aZariski-open subset overwhich q and g are smooth, and let q0 : X0 → Z0

and g0 : Y 0 → Z0 be the corresponding restrictions. Let d = dim X −dim Y . We construct a
morphism of VHS Rkg0∗QY 0 ⊗Rdq0∗QX0 → Rd+kq0∗QX0 as follows. A section of Rkg0∗QZ0

is locally a cohomology class α ∈ Hk(g−1(U ),Q) and a section of Rdq0∗QX is locally a
class β ∈ Hd(q−1(U ),Q) for small open U ⊂ Z . Thus we get an element f ∗α ∧ β ∈
Hd+k(q−1(U ),Q), which defines a local section of Rd+kq0∗QX0 . As this is compatible with
the Hodge filtrations, we get a morphism of VHS.

As q0 and g0 are smooth, dualizing gives the desiredmapΦ : Rd+kq0∗QX0 → Rkg0∗QY 0⊗
Rd+2kq0∗QX0 .
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Lemma 4.3 Suppose g is smooth andωY/Z is trivial. On the lowest graded piece of theHodge
filtration, the morphism

Rd+kq0∗QX0 ⊗ OZ0 → Rkg0∗QY 0 ⊗ Rd+2kq0∗QX0 ⊗ OZ0

induced by Φ agrees with the restriction to Z0 of

g∗Ψ ′
X/Z : q∗ωX/Z → g∗ωY/Z ⊗ Rkq∗ωX/Z .

Proof As q0 and g0 are smooth, base change applies to the direct images of the line bundles.
By proper base change for the direct images of constant sheaves, it thus suffices to assume
that Z is a point. Then g∗Ψ ′

X/Z is just a map

H0(X , ωX ) → H0(Y , ωY ) ⊗ Hk(X , ωX ),

and we must identify the dual

Hk(Y ,OY ) ⊗ Hd(X ,OX ) → Hd+k(X ,OX )

with the cup product map, by definition of Φ.
By assumption, ωY/Z = ωY is trivial, so fix an isomorphism by choosing a non-zero

τ ∈ H0(Y , ωY ). Suppose given

α ∈ Hk(Y ,OY ), β ∈ Hd(X ,OY ), γ ∈ H0(X , ωX ).

Since Hk(Y ,OY ) is dual to H0(Y , ωY ), we can assume that α is dual to τ under Serre duality.
The claim is that

f ∗α ∧ β ∧ γ = (α ⊗ β,Ψ ′
X/Z (γ ))

in Hk+d(X , ωX ), where the right hand side is the Serre duality pairing of Hk(Y ,OY ) ⊗
Hd(X ,OX ) with H0(Y , ωY ) ⊗ Hk(X , ωX ). To see this, note that triviality of ωY implies
that the natural map

H0(Y , f∗ωX/Y ) ⊗ H0(Y , ωY ) → H0(Y , f∗ωX ) = H0(X , ωX )

is an isomorphism. Thus there’s a global section ψ ∈ H0(Y , f∗ωX/Y ) such that γ = τ ⊗ ψ .
At least over the smooth locus of Y , ψ is nothing but a holomorphic d-form on X such that
γ = f ∗τ ∧ ψ .

For general y ∈ Y , let F = f −1(y). Then Ψ ′
X/Z (γ ) is exactly the Gysin morphism of the

inclusion F ⊂ X applied to the restriction ψ |F , tensor τ , by Lemma 4.1. To compute, we
note now that

(α ⊗ β,G(γ )) = (α, τ ) · (β|F , ψ |F )

= (β|F , ψ |F )

since α and τ are dual. In particular, (β|F , ψ |F ) is independent of y (this is related to
monodromy invariance of ψ |F ). On the other hand,

f ∗α ∧ β ∧ γ = f ∗(α ∧ τ) ∧ β ∧ ψ

To integrate the right hand side, we integrate β ∧ ψ over fibres F , then integrate α ∧ τ over
Y ; but that gives exactly the desired result. ��

Finally, we can state and prove the following more precise version of Theorem B.
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Theorem 4.4 Suppose X
f−→ Y

g−→ Z are surjectivemorphisms of smooth projective varieties,
and let q = g ◦ f . Suppose further that g is a smooth fibration and ωY/Z is trivial. Then the
morphism ΨX : f∗ωX → g∗Rkg∗ f∗ωX is split surjective.

Proof By generic base change (Proposition 2.12), we can fix an open Z0 ⊂ Z over which q
is smooth and base change to fibres over Z applies to the sheaves f∗ωX and g∗Rkg∗ f∗ωX .

We can in fact assume that Z \ Z0 is a normal crossings divisor. If not, consider a log
resolution πZ : Z ′ → Z of Z \ Z0; by pullback we get the following diagram, where the
vertical maps are birational.

X ′ Y ′ Z ′

X Y Z

f ′

πX

g′

πY πZ

f g

Assuming f ′∗ωX ′ ∼= g′∗Rkg′∗ f ′∗ωX ′ ⊕Q, we get f∗ωX ∼= g∗Rkg∗ f∗ωX ⊕ πY∗Q. Indeed

πY∗ f ′∗ωX ′ = f∗πX∗ωX ′

= f∗ωX

since πX is birational, and on the other hand

πY∗g′∗Rkg′∗ f ′∗ωX ′ = g∗πZ∗Rkg′∗ f ′∗ωX ′

= g∗Rkg∗ f∗ωX

where the first line is by flat base change along g, and the second by Kollár’s result (Theorem
2.7).

Assume thus that Z \Z0 is a normal crossings divisor. In particular, q is smooth away from
a normal crossings divisor, which implies that Rkq∗ωX and its direct summand Rkg∗ f∗ωX

are locally free by Kollár’s result (Theorem 2.6). Consider then

g∗ΨX/Z : q∗ωX/Z → g∗ωY/Z ⊗ Rkq∗ωX/Z

which, by Lemma 4.3, is induced over Z0 by a morphism of VHS

Φ : Rd+kq0∗QX0 → Rkg0∗QY 0 ⊗ Rd+2kq0∗QX0 .

Since the category of polarizable VHS is semisimple [16, Theorem 10.13], there is a direct
sum decomposition of VHS Rd+kq0∗QX0 ∼= I ⊕ K where K is the kernel of Φ, and I maps
isomorphically to the image ofΦ.We also have a decomposition Rkg0∗QZ0 ⊗Rd+2kq0∗QX0 ∼=
I ⊕C , and the resulting I ⊕ K → I ⊕C is just the identity map on I while vanishing on K .

Again by Theorem 2.6, the lowest piece of the Hodge filtration of the upper canoni-
cal extension of Rd+kq0∗QX0 is exactly q∗ωX/Z , while the same construction applied to
Rkg0∗QY 0 ⊗ Rd+2kq0∗QX0 yields g∗ωY/Z ⊗ Rkq∗ωX/Z . Note in the latter case that Rkg0∗QY 0

has trivial monodromy around the complement of Z0, since g is smooth, so taking canonical
extensions and tensor products does in fact commute in this case by the discussion in section
2.2.

LetI ,K ,C be the lowest pieces of theHodgefiltration on the upper canonical extensions
of I , K and C respectively. The formation of canonical extensions is compatible with direct
sums, soq∗ωX/Z ∼= I⊕K . ByLemma4.3, the imageof g∗Ψ ′

X/Z inside g∗ωY/Z⊗Rkq∗ωX/Z

agrees with I over Z0. Since all sheaves involved are locally free, it follows that I is in
fact the image of g∗Ψ ′

X/Z .
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Back on Y , the push-pull adjunction for g applied to Ψ ′
X/Z , together with the projection

formula, gives the following commuting diagram.

g∗q∗ωX/Z g∗g∗ωY/Z ⊗ g∗Rkq∗ωX/Z

f∗ωX/Z ωY/Z ⊗ g∗Rkq∗ωX/Z

g∗g∗Ψ ′
X/Z

Ψ ′
X/Z

As ωY/Z is trivial and g is a fibration, the right side vertical map is an isomorphism.
Moreover, g∗I is a direct summand of both the top left and bottom right corners, and the
composition through f∗ωX/Z , when restricted to g∗I , is the identity. It thus remain only to
show that I = Rkg∗ f∗ωX/Z , as it would then follow that g∗I = g∗Rkg∗ f∗ωX/Z is the
image of Ψ ′

X/Z , hence also of ΨX/Z , and the previous diagram yields a splitting of ΨX/Z as
desired.

Thus we must show that ΨX/Z remains surjective after pushing forward to Z . On Z , I
and Rkg∗ f∗ωX/Z are both locally free subsheaves of Rkq∗ωX/Z (in fact direct summands).
Thus it suffices to show that for general z ∈ Z , the fibre of g∗ΨX/Z at z is surjective. By
generic base change (Proposition 2.12) we can assume that Z is just a point, in which case
we are to show that the map induced by ΨX/Z on global sections is surjective.

Since ΨX/Z and ΨX/Y are related by twisting by ωY/Z , fixing a trivialization of ωY/Z

identifies the two maps, so we are done by Lemma 4.1. ��

It seems more natural to consider VHS on Y rather than Z to get the splitting, but there’s a
technical issue with that approach. Namely, one ends up having to take a resolution π : Y ′ →
Y of Y that doesn’t come from a resolution of Z by pullback. One then wants to express
π∗g∗Rkg∗ f∗ωX/Z as a direct summand of the canonical extension of a VHS pulled back
from an open subset of Z , with the hope of splittingΨX/Y . While g is smooth, so functoriality
of canonical extensions is not an issue there, the composition π ◦ g is not smooth, so it’s
not clear what the canonical extension on Y ′ gives. This functoriality issue can be fixed by
appealing to Hodge modules, which would give a proof along these lines even without the
assumptions on g and ωY/Z .

4.3 Effectiveness of relative canonical bundles and fibres of the Albanesemorphism

Corollary 4.2 can be used to give a variation of a proof of a theorem by Jiang. For a smooth
projective variety X , let Pn = h0(X , ωn

X ) denote the plurigenera of X .

Theorem 4.5 ([9, Theorem 3.1]) Suppose X be a smooth projective variety with P1(X) =
P2(X) = 1. Then the fibres of the Albanese mapping are connected.

Proof By [6], it is known that the Albanese mapping aX : X → Alb(X) is surjective in this
case. Taking the Stein factorization and resolving singularities of the middle term (replacing

X with a birational modification) yields a factorization X
g−→ V

b−→ Alb(X) of aX where
b is generically finite. It is a theorem of Chen and Hacon [1] that if, in this case, P1(V ) =
P2(V ) = 1, then the Albanese mapping of V is birational, and as a consequence also b is
birational so aX has connected fibres. To prove the theorem it thus suffices to show that ωX/V

is effective.
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However, it follows from the theory of GV-sheaves, by an observation of Ein and
Lazarsfeld [3], that Hg(Alb(X), aX∗ωX ) �= 0 since P1(X) = P2(X) = 1, where
g = dimAlb(X) = dim V . Since b is generically finite, and by Kollár’s result (Theo-
rem 2.7), Hg(Alb(X), aX∗ωX ) = Hg(V , g∗ωX ). Then Corollary 4.2 gives the conclusion.
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