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Abstract
By methods of Ghys and Haefliger–Salem it is possible to deform a Riemannian folia-
tion on a simply connected compact manifold, or more generally a Killing foliation, into a
closed foliation, i.e., a foliation whose leaves are all closed. Certain transverse geometric
and topological properties are preserved under these deformations, as previously shown by
the authors. For instance the Euler characteristic of basic cohomology is invariant, whereas
its Betti numbers are not. In this article we show that the equivariant basic cohomology
ring structure is invariant. This leads to a sufficient algebraic condition, namely equivariant
formality, for the Betti numbers to be preserved as well. In particular, this is true for the
deformation of the Reeb orbit foliation of a K -contact manifold. Another consequence is
that there is a universal bound on the sum of basic Betti numbers of any equivariantly formal,
positively curved Killing foliation of a given codimension. We also show that a Killing folia-
tion with negative transverse Ricci curvature is closed. If the transverse sectional curvature is
negative we show, furthermore, that its fundamental group has exponential growth. Finally,
we obtain a transverse generalization of Synge’s theorem to Killing foliations.
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1 Introduction

A Riemannian foliation on a Riemannian manifold is a foliation with locally equidistant
leaves. These objects occur in many contexts, for example as Riemannian submersions or as
foliations given by the orbits of isometric actions, the so-called homogeneous Riemannian
foliations. An important subclass is that of Killing foliations (see Sect. 2.3), which is of
particular interest since it includes relevant cases, such as Riemannian foliations on simply
connected manifolds and also homogeneous Riemannian foliations, while having significant
technical advantages. A pertinent example is the Reeb orbit foliation of a Sasakian manifold
or more generally a K -contact manifold.

In this article we study aspects of the basic geometry and topology of Killing foliations.
The leaf space is in general not suited for such a task: whereas the leaf space of a Riemannian
foliation whose leaves are all closed (a closed foliation, for short) is a Riemannian orbifold, it
is not even Hausdorff if there is a non-closed leaf. In [8] the authors reduced the latter case to
the former via a deformation. In fact a construction by A. Haefliger and E. Salem in [19] (see
also [11, Théorème A] by E. Ghys) allows one to deform a Killing foliation F into a closed
foliation G which can be chosen arbitrarily close to F . We call such a deformation a regular
deformation of F . The sign of transverse sectional curvature, for example, is preserved
throughout those deformations. Results from Riemannian geometry could then be applied
to the orbifold quotient M/G, from which we could then draw back conclusions about the
structure of the original foliation F .

The transverse topology of F can also be studied using this deformation technique. The
complex of basic forms H(F), for example, plays the role of the de Rham cohomology of
the “virtual” quotient M/F (see Sect. 2.1). We have shown in [8, Theorem 7.4] that the
basic Euler characteristic χ(F) remains constant under regular deformations. In spite of this,
the basic Betti numbers are in general not invariant (see Example 5.1). In this paper we
show that the ring structure of the equivariant basic cohomology is in fact preserved under
regular deformations. More specifically, a Killing foliation F admits a natural transverse
infinitesimal action of an Abelian Lie algebra a (its structural algebra, see Sect. 2.3), which
allows one to define the a-equivariant cohomology Ha(F) (see Sect. 3.3). This is a transverse
generalization of the classical equivariant cohomology with respect to a torus action on a
manifold. It was first introduced in [15] and further studied in [14,36]. Here we show the
following.

Theorem A Let F be a Killing foliation of a compact manifold M and let Ft be a regular
deformation of F . Then, for each t,

Ha(F) ∼= Ha(Ft )

as R-algebras.

As a corollary we get that Ha(F) is isomorphic to the Td -equivariant cohomology of the
quotient orbifold M/G of the closed foliation G = F1, by an application of the equivariant
De Rham theorem for orbifolds (which we establish in Theorem 3.1). Another application
of Theorem A yields us that the equivariant formality of the a-action on F is a sufficient
condition for the basic Betti numbers to remain constant throughout regular deformations.
To show this we generalize the techniques for K -contact manifolds in [13] (see also [12] for
the case of f -K -contact manifolds) to Killing foliations.
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Theorem B Let F be a Killing foliation of a compact manifold M and let Ft be a regular
deformation. If the transverse action of the structural algebra a of F is equivariantly formal,
then bi (Ft ) is constant in t , for each i .

There are several interesting situations inwhich equivariant formality of the a-action holds
(see [15, Theorems 5.5 and 6.3]):

Corollary C LetF be a transversely orientable Killing foliation of a compact manifold M and
let Ma be the union of closed leaves. If dim H(Ma/F) = dim H(F), if Hodd(M,F) = 0
or if there is a basic Morse–Bott function whose critical set is equal to Ma, then the basic
Betti numbers are constant under regular deformations.

We also investigate in this article some applications of the deformation technique to the
transverse geometry of F , including some results on how the sign of transverse sectional
and Ricci curvatures (secF and RicF , respectively) influences the transverse topology of F .
For instance, a classical theorem by Gromov establishes that there is a constant C = C(n)

that bounds the sum of all Betti numbers of any non-negatively curved Riemannian manifold
of dimension n (see [16, §0.2A]). There is a generalization of this theorem for Alexandrov
spaces [22, Theorem 1] which can be applied, in particular, to orbifolds. A consequence of
Theorem B is that, in the equivariantly formal case, the basic Betti numbers of F coincide
with the Betti numbers of the orbifold M/G, for a closed approximation G (see Corollary 6.1).
This gives us the following.

Theorem D For each q ≥ 0 there exists a constant C such that every q-codimensional Killing
foliation F , of a compact manifold M, with secF > 0 and whose transverse action of the
structural algebra a is equivariantly formal satisfies

q∑

i=0

bi (F) ≤ C .

This prompts the question of whether the hypothesis that the action is equivariantly formal
can be dropped. We also prove an orbifold version of Bochner’s theorem on Killing vector
fields (Theorem 2.2) and apply it to the leaf space M/G of a closed approximation of F to
obtain the theorem below.

Theorem E Let F be a complete Riemannian foliation, of a connected manifold M, whose
transverse Ricci curvature satisfies RicF ≤ c < 0. If either

(i) F is a Killing foliation and M is compact, or
(ii) F is transversely compact and |π1(M)| < ∞,

then F is closed.

This result should be compared with [20, Theorem 2] by J. Hebda, which establishes that
a complete Riemannian foliation F with transverse sectional curvature satisfying secF ≤ 0
is developable, that is, its lift to the universal covering of M is given by the fibers of a
submersion M̃ → N . Hebda also proves in [20] that a compact manifold whose fundamental
group is nilpotent does not admit a Riemannian foliation with secF < 0. Here we show the
following.

Theorem F Let F be a Killing foliation of a compact manifold M such that secF < 0. Then
F is closed and π1(F) grows exponentially. In particular, π1(M) grows exponentially.
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2464 F.C. Caramello Jr., D. Töben

This is a transverse generalization of Milnor’s theorem on the growth of the fundamental
group [27, Theorem2].Hereπ1(F) is the fundamental group of the holonomypseudogroup of
F , which coincides with π1(M)whenF is the trivial foliation by points (and, more generally,
with the orbifold fundamental group πorb

1 (M/F), when F is closed). Finally, combining the
deformation technique with the orbifold version of Synge’s theorem, proved in [37, Corollary
2.3.6], we obtain the following transverse version of this theorem.

Theorem G Let F be a Killing foliation of a compact manifold M, with secF > 0.

(i) If codim F is even and F is transversely orientable, then M/F is simply connected.
(ii) If codimF is odd and, for each L ∈ F , the germinal holonomy of L preserves transverse

orientation, then F is transversely orientable.

2 Preliminaries

In this section we establish our notation and review some basic notions on Riemannian
foliations. Throughout this article the objects are supposed to be of class C∞ (smooth), for
simplicity.

2.1 Foliations

Let F denote a p-dimensional foliation of a (p + q)-dimensional manifold M without
boundary. The number q is the codimension of F . The subbundle of T M consisting of the
subspaces tangent to the leaves will be denoted by TF and the Lie algebra of the vector
fields with values in TF by X(F). We say that F is transversely orientable when its normal
bundle νF := T M/TF is orientable. The set of the closures of the leaves of F is denoted
by F := {L | L ∈ F}. In the simple case where all leaves are closed, i.e. F = F , we say that
F is a closed foliation. Furthermore, we say that F is transversely compact when M/F is
compact.

Recall that F can be defined by an open cover {Ui }i∈I of M , submersions πi : Ui →
Ti , with Ti ⊂ R

q , and diffeomorphisms γi j : π j (Ui ∩ U j ) → πi (Ui ∩ U j ) satisfying
γi j ◦ π j |Ui ∩U j = πi |Ui ∩U j for all i, j ∈ I . The collection {γi j } is a Haefliger cocycle
representingF . We assumewithout loss of generality that the fibers of each πi are connected.
The pseudogroup of local diffeomorphisms generated by γ = {γi j } acting on Tγ := ⊔

i Ti

is the holonomy pseudogroup of F associated to γ , that we denote by Hγ . If δ is another
cocycle defining F thenHδ is equivalent toHγ , meaning that there is a maximal collection
� of diffeomorphisms ϕ from open sets of Tδ to open sets of Tγ such that {Dom(ϕ) | ϕ ∈ �}
covers Tδ , {Im(ϕ) | ϕ ∈ �} covers Tγ and, for all ϕ,ψ ∈ �, h ∈ Hδ and h′ ∈ Hγ , one
has ψ−1 ◦ h′ ◦ ϕ ∈ Hδ , ψ ◦ h ◦ ϕ−1 ∈ Hγ and h′ ◦ ϕ ◦ h ∈ �. We write (TF ,HF ) to
denote a representative of the equivalence class of these pseudogroups. Note that the orbit
space TF/HF coincides with the leaf space M/F . For a leaf L ∈ F , we denote the germinal
holonomy group of L at x ∈ L ∩ TF by Holx (L), which is the group of germs of elements
in the stabilizer (HF )x (for details, see [7, §2.3] or [28, Section 2.1]).

There is a generalization of the notion of fundamental group to pseudogroups, which is
defined in terms of homotopy classes ofH -loops. We refer to [30, Appendix D] for details.
If we have a foliation (M,F) and fix x ∈ M and x = πi (x) ∈ TF , this construction applied
to HF furnishes an invariant π1(F, x) of F , whose isomorphism class does not depend
on the Haefliger cocycle representing F . Moreover, when M is connected this invariant is
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independent of the base point, up to conjugacy, so we will often denote it simply by π1(F).
There is a natural surjection

π1(M, x) −→ π1(F, x) (1)

defined by locally projecting a loop on M by a collection of submersions πi , whose domains
cover the image of the loop, and gluing those projections by the appropriate holonomy maps
γi j (see [30, Appendix D, Section 1.11]).

A foliate field on M is a vector field in the Lie subalgebra

L(F) = {X ∈ X(M) | [X ,X(F)] ⊂ X(F)}.
If X ∈ L(F) and π : U → T is a submersion locally defining F , then X |U is π-related
to some vector field XT ∈ X(T ). In fact, this characterizes L(F) [30, Section 2.2]. The Lie
algebra L(F) also has the structure of a module over the ringΩ0(F) of basic functions ofF ,
that is, functions f ∈ C∞(M) such that X f = 0 for every X ∈ X(F). The quotient of L(F)

by the ideal X(F) yields the Lie algebra l(F) of transverse vector fields. For X ∈ L(F), we
denote its induced transverse field by X ∈ l(F). Note that each X defines a unique section
of νF and corresponds to a unique HF -invariant vector field on a chosen transversal TF .

A (covariant) tensor field ξ on M isF-basic if its invariant, i.e.LX ξ = 0 for all X ∈ X(F),
and horizontal, i.e. ξ(X1, . . . , Xk) = 0 whenever some Xi ∈ X(F). These are the tensor
fields that project through the local defining submersions to HF -invariant tensor fields on
TF . We denote the algebra of F-basic tensor fields by T (F). In particular, we can consider
the algebra Ω(F) < Ω(M) of F-basic differential forms. By Cartan’s formula, α is basic
if, and only if, iXα = 0 and iX (dα) = 0 for all X ∈ X(F). Hence Ω(F) is closed under the
exterior derivative. The cohomology groups of the subcomplex

· · · d−→ Ω i−1(F)
d−→ Ω i (F)

d−→ Ω i+1(F)
d−→ · · · ,

are the basic cohomology groups of F , denoted by Hi (F). If dim Hi (F) is finite for all i ,
we define the basic Euler characteristic of F as the alternating sum

χ(F) =
∑

i

(−1)i dim Hi (F).

In analogy with the classical case, we call bi (F) := dim Hi (F) the basic Betti numbers of
F . Notice that when F is the trivial foliation of M by points this recovers the usual Euler
characteristic and the Betti numbers of M .

2.2 Orbifolds

In this section we will briefly recall some facts about orbifolds and adapt some classical
theorems from Riemannian geometry to this setting. We refer to [1, Chapter 1], [28, Section
2.4] and [21, Section 2] for more detailed introductions to orbifolds.

Let O be a smooth orbifold and A = {(Ũi , Hi , φi )}i∈I an atlas for O. The underlying
topological space of O will be denoted by |O|. Recall that each chart of A consists of a
connected open subset Ũ of Rn , a finite subgroup H of Diff(Ũ ) and an H -invariant map
φ : Ũ → |O| that descends to a homeomorphism Ũ/H ∼= U , for an open subset U ⊂ |O|.
Given (Ũ , H , φ) and x = φ(x̃) ∈ U , the local group Γx of O at x is the stabilizer Hx̃ < H .
Its isomorphism class is independent of both the chart and the point x̃ over x . Note that for
every x ∈ |O| it is always possible to choose a chart (Ũx , Γx , φx ) over x . We say that O is
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locally orientable when each Γx acts by orientation-preserving diffeomorphisms of Ũx . The
canonical stratification of O is the decomposition

|O| =
⊔

Σα,

where each Σα is a connected component of some ΣΓ = {x ∈ |O| | Γx ∼= Γ }. Each
Σα is a manifold. Consider, for each i , the union Σ i of all Σα of dimension i , and let
r1 < · · · < rk = n be the indices for which Σ i �= ∅. The regular stratum Oreg := Σn is
open and dense in |O|. The singular locus of O is the set |O|\Oreg. It will also be useful to
consider Omin := Σr1 .

Example 2.1 IfF is a smooth foliation of codimension q of a manifold M and all leaves ofF
are compact and with finite holonomy, then the leaf space M/F has a natural q-dimensional
orbifold structure relative to which the local group of a leaf in M/F is its holonomy group
[28, Theorem 2.15]. We will denote the orbifold obtained this way by M//F in order to
distinguish it from the topological space M/F . Of course, |M//F | = M/F . Analogously,
if a compact Lie group G acts on M and dim Gx is a constant function, then the quotient
orbifold will be denoted by M//G (see also Example 2.3). A foliation given by a Lie group
action is said to be homogeneous. Conversely, any orbifold arises as the quotient space of a
homogeneous foliation given by the orbits of a compact connected Lie group on a manifold.
More precisely, O is diffeomorphic to ÔC//U(n), where ÔC is the unitary frame bundle of
O with respect to some chosen complex Riemannian structure [28, Proposition 2.23].

Consider UA := ⊔
i∈I Ũi and φ := {φi }i∈I : UA → |O|, that is, x ∈ Ũi ⊂ UA

implies φ(x) = φi (x). A change of charts of A is a diffeomorphism h : V → W , with
V , W ⊂ UA open sets, such that φ ◦ h = φ|V . The collection of all changes of charts of A
form a pseudogroupHA of local diffeomorphisms of UA, and φ induces a homeomorphism
UA/HA → |O|. As in the case of the holonomy pseudogroup of a foliation, if B is another
atlas that is compatible with A, the corresponding pseudogroups are equivalent. We will
denote by (UO,HO) a representative of the equivalence class of these pseudogroups.

A smooth map f : O → P consists of a continuous map | f | : |O| → |P| such that, for
every x ∈ |O|, there are charts (Ũ , H , φ) and (Ṽ , K , ψ) around x and f (x), respectively, a
homomorphism f x : H → K and an f x -equivariant smooth map f̃x : Ũ → Ṽ satisfying
f (U ) ⊂ V and ψ ◦ f̃x = f ◦ φ. There are relevant refinements of this notion, such as the
good maps defined in [9], that are needed in some elementary constructions. These goodmaps
correspond to morphisms when the orbifolds are viewed as Lie groupoids [25, Proposition
5.1.7]. In particular, a smooth map M → O “in the orbifold sense”, as defined in [19, p.
715], is a good map. Diffeomorphisms of orbifolds are smooth maps with smooth inverses.
In particular, diffeomorphisms preserve the canonical stratification by local groups.

For x ∈ |O| fixed, we define the fundamental group of O at x as πorb
1 (O, x) :=

π1(HO, x̃), for some lift x̃ of x . This definition of πorb
1 is equivalent to Thurston’s def-

inition via the automorphism group of the orbifold universal covering Õ → O (see, for
instance, [6, Corollary 3.19]). When O is connected, the isomorphism class of πorb

1 (O, x)

does not depend on x , so we often omit it in the notation. The group πorb
1 (O) differs from

π1(|O|) in general, for it also captures information on the singularities.
Analogously to manifolds, one can define orbibundles over orbifolds (see, for instance

[21, p. 7]). The tangent bundle TO, for example, is locally diffeomorphic to T Ũx//Hx , for a
chart (Ũx , Hx , φx ). We follow [21] and consider the tangent space TxO to be the orbivector
space isomorphic to TxŨx together with the linearized Hx -action, while Cx |O| := TxŨx/Hx

is the tangent cone at x . One can then carry over the definition of the usual objects from
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the differential topology/geometry of manifolds, such as differential forms and Riemannian
metrics, to the orbifold setting as sections of appropriate orbibundles. These objects will then
correspond to HO-invariant objects on UO . A smooth differential form on O, for example,
is anHO-invariant differential form on UO . The complex of smooth differential forms onO
will be denoted by Ω(O), and its cohomology by H(O). The following result can be seen
as an orbifold version of De Rham’s Theorem (see [34, Theorem 1] or [1, Theorem 2.13]).

Theorem 2.1 [34, Theorem 1] Let O be an orbifold. Then Hi (O) ∼= Hi (|O|,R).

Since, for a foliation (M,F), there is an identification between F-basic forms and HF -
invariant forms on TF , the following result is clear.

Proposition 2.1 Let (M,F) be a smooth foliation whose leaves are all compact and have
finite holonomy. Then the projection π : M → M//F induces an isomorphism of differential
complexes π∗ : Ω(M//F) → Ω(F). In particular, H(F) ∼= H(M//F).

A smooth foliation of an orbifold O is a smooth foliationF ofUO which isHO-invariant.
The atlas can be chosen so that on each Ũi the foliation is defined by the connected fibers
of a submersion πi onto a manifold Ti . In this case the holonomy pseudogroup HF of F
is generated by the local diffeomorphisms of TF := ⊔

i∈I Ti that are the projections of
elements inHO (see [19, §3.2]). All notions defined in Sect. 2.1 for foliations on manifolds
therefore extend to foliations on orbifolds.

Example 2.2 Suppose that a Lie group G acts smoothly on an orbifold O, that is, there is a
smooth map μ : G × O → O whose underlying continuous map |μ| is an action. As in the
case of actions on manifolds (see Example 2.1), if dim Gx is constant then the action defines
a foliation of O. Notice that an action respects the canonical stratification of O.

A Riemannian metric on an orbifold O is a symmetric positive tensor field g ∈ ⊗2
0(O),

which corresponds to anHO -invariant Riemannian metric on UO. The Levi-Civita connec-
tion ∇ on UO is invariant under the changes of charts and thus can be seen as a covariant
derivative on TO. The curvature tensor of O is the curvature tensor of ∇ on UO. Derived
curvature notions, such as sectional and Ricci curvatures (which we denote secO and RicO ,
respectively), are defined accordingly. On a Riemannian orbifold one can define the length
of a piecewise smooth curve in the usual fashion and induce a length structure d on |O|, in
complete analogy to the manifold case.

We end this section establishing orbifold generalizations of two classical theorems which
will be useful later, the first one being an orbifold version of Bochner’s theorem on Killing
vector fields. Let (O, g) be a Riemannian orbifold and consider a Killing vector field X ∈
iso(O) = {X ∈ X | LXg = 0}. Define f := g(X , X)/2 = ‖X‖2/2. Then it follows exactly
as in the manifold case (see, for instance, [32, Proposition 29, page 191]), that

� f = ‖∇ X‖2 − RicO(X),

where ‖ · ‖ denotes the Frobenius norm. We say thatO has quasi-negative Ricci curvature if
RicO ≤ 0 and, for some point x ∈ |O|, one has RicO(v) < 0 for all v ∈ TxO\{0}.
Theorem 2.2 (Bochner’s theorem for orbifolds) Let (O, g) be a connected, compact, oriented
Riemannian orbifold with RicO ≤ 0. Then every Killing vector field on O is parallel, and
dim Iso(O) ≤ dimOmin. Moreover, if O has quasi-negative Ricci curvature, then Iso(O) is
finite.
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Proof The proof is analogous to that of the classical Bochner theorem for manifolds (see,
e.g., [32, Theorem 36]). Let X be a Killing vector field on O. For f := 1

2‖X‖2 we have, by
Stokes’ theorem and the hypothesis on the curvature, that

0 =
∫

O
� f dV =

∫

O

(‖∇ X‖2 − RicO(X)
)

dV ≥
∫

O
‖∇ X‖2dV ≥ 0. (2)

Therefore ‖∇ X‖ ≡ 0, hence X is parallel. Now, since each Killing vector field is parallel,

ex : iso(O) � X �−→ Xx ∈ TxO

is injective, for any x ∈ O. Choose x ∈ Omin. Then TxO = TxOmin ⊕ νxOmin, and
TxOmin = (TxO)Γx . Since the Γx -action fixes no vectors in νxOmin, these vectors do not
admit extensions to vector fields. Hence we must have ex (iso(O)) ⊂ TxOmin, and thus
dim Iso(O) ≤ dimOmin.

Now assume O has quasi-negative Ricci curvature and X is not trivial. Then, since X is
parallel, it vanishes nowhere. In particular, if x ∈ |O| is the point where RicO is negative,
then RicO(Xx ) < 0. But equation (2) now reads

∫

O
−RicO(X)dV = 0,

therefore RicO(X) ≡ 0, a contradiction, thus X ≡ 0. Hence iso(O) = 0. Thus, the isometry
group Iso(O) is a Lie group [4, Theorem 1] which is compact (by Arzelá–Ascoli’s theorem,
since O is compact) and has trivial Lie algebra. Therefore Iso(O) is finite. ��

We are now interested in an orbifold version of Milnor’s theorem on the growth of the
fundamental group of negatively curved manifolds [27, Theorem 2]. Recall for this that, for
a finitely generated group Γ = 〈S〉, with S = {g1, . . . , gk}, the S-growth function of Γ

associates to j ∈ N the number #S( j) of distinct elements of Γ which can be written as
words of length at most j in the alphabet {g1, . . . , gk, g−1

1 , . . . , g−1
k }. We say that Γ has

exponential growth when #S( j) ≥ α j for some α > 1. This property is independent of the
set S of generators [27, Lemma 1].

Theorem 2.3 (Milnor’s theorem for negatively curved orbifolds) Let O be a connected, com-
pact Riemannian orbifold with secO < 0. Then πorb

1 (O) has exponential growth.

Proof The proof is essentially the same as Milnor’s proof for the manifold case (see [27],
cf. also [5, Proposition 10] where it is proven that πorb

1 has polynomial growth when Ricci
curvature is nonnegative). In fact, the universal covering of O is a Hadamard manifold M
on which πorb

1 (O) acts isometrically and properly discontinuously (see [6, Corollary 2.16]).
By the Švarc–Milnor lemma (see, e.g., [24, Corollary 5.4.2]), M is quasi-isometric to the
Cayley graph of πorb

1 (O) (with respect to any set of generators S) endowed with the word
metric. Now one uses Günther’s inequality to compare #S to the volume growth on M (see
[27, pp. 3–4]), obtaining the result. ��

2.3 Riemannian and killing foliations

A transverse metric for a smooth foliation (M,F) is a symmetric, positive, basic (2, 0)-tensor
field gT on M . In this case (M,F, gT ) is called a Riemannian foliation. A Riemannian
metric g on M is bundle-like for F if for any open set U and any vector fields Y , Z ∈
L(F |U ) that are perpendicular to the leaves, g(Y , Z) ∈ Ω0(F |U ). Any bundle-like metric G
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determines a transversemetric by gT (X , Y ) := g(X⊥, Y ⊥)with respect to the decomposition
T M = TF ⊕ TF⊥. Conversely, given gT one can always choose a bundle-like metric on
M that induces it [30, Proposition 3.3]. With a chosen bundle-like metric, we make the
identification νF ≡ TF⊥. A (local) transverse vector field X is a transverse Killing vector
field if LXgT = 0. The space of global F-transverse Killing vector fields will be denoted by
iso(F).

Example 2.3 If a foliationF on M is homogeneous, given by an action of a Lie group G, and
g is a Riemannian metric on M such that G acts by isometries, then g is bundle-like forF [28,
Remark 2.7(8)]. In other words, a foliation induced by an isometric action is Riemannian.

It follows from the definition that gT projects to Riemannian metrics on the local quotients
Ti of a Haefliger cocycle {(Ui , πi , γi j )} defining F . The holonomy pseudogroup HF then
becomes a pseudogroup of local isometries of TF and,with respect to a bundle-likemetric, the
submersions defining F become Riemannian submersions. The transverse curvature tensor
of F is that of (TF , gT ), with respect to its Levi-Civita connection. The transverse sectional
and Ricci curvatures of F are defined accordingly, which we denote by secF and RicF ,
respectively.

A Riemannian foliation (M,F) is complete when there exists some bundle-like metric g
for F such that (M, g) is a complete Riemannian manifold. This property ensures that the
holonomy pseudogroup HF is a complete pseudogroup of local isometries, so that a rich
structure theory, called Molino theory, applies to F through its transverse formulation by
Haefliger and Salem (see [30, Section 3 of Appendix D] and [19, §2.5]). More precisely,
it follows from this structure theory (see also [30, Theorems 5.1 and 5.2]) that if F is a
complete Riemannian foliation on a connected manifold M , then the partitionF is a singular
Riemannian foliation of M and there is a locally constant sheaf of Lie algebras of transverse
Killing vector fields CF whose orbits are the closures of the leaves of F , in the sense that

{Xx | X ∈ (CF )x } ⊕ Tx Lx = Tx Lx .

The typical stalk gF of CF is an important algebraic invariant called the structural Lie
algebra of F . We stress that whenever we assume some transverse geometric hypothesis
(e.g. secF > 0) for a complete Riemannian manifold F , the transverse metric gT satisfying
the hypothesis need not to be induced by the complete bundle-like metric, i.e., all that is
necessary for (F, gT ) to be complete is that it admits some complete bundle-like metric.
The fact that the basic cohomology of a complete and transversely compact Riemannian
foliation is finite dimensional will be useful to us (see, for instance, [15, Proposition 3.11]).
In particular χ(F) is always defined in this case.

In this paper we will be mostly interested in the following class of Riemannian foliations.

Definition 2.1 A complete Riemannian foliation F of a connected manifold M is called a
Killing foliation when its Molino sheaf CF is globally constant.

In other words, F is a Killing foliation when there exists X1, . . . , Xd ∈ iso(F) such that
TF = TF ⊕ 〈X1, . . . , Xd〉. It follows from Molino’s theory that in this case CF (M) is
central in l(F), hence the structural algebra of a Killing foliation is Abelian. For this reason
we will also denote a = gF when F is Killing (and it is understood from the context that we
are referring to the structural algebra of F).

A complete Riemannian foliation F of a 1-connected manifold is a Killing foliation [30,
Proposition 5.5], since in this case CF cannot have holonomy. Homogeneous Riemannian
foliations provide another relevant class of Killing foliations.
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Example 2.4 If F is a Riemannian foliation of a complete, connected manifold M given by
the connected components of the orbits of a locally free action of H < Iso(M), then F is a
Killing foliation and CF (M) consists of the transverse Killing vector fields induced by the
action of H ⊂ Iso(M) (see [29, Lemme III]).

3 Equivariant basic cohomology

In this section we recall the equivariant basic cohomology of a Killing foliation introduced
in [15] and prove some facts that will be needed later. Let us begin by recalling the language
of g�-algebras, which provides a purely algebraic setting for equivariant cohomology. We
refer to [18] for a thorough introduction of this topic.

3.1 g�-algebras

Let (A, d) be a differential Z-graded commutative algebra and g a finite-dimensional Lie
algebra. We say that A is a g�-algebra if, for each X ∈ g, there are derivations LX : A → A
and ιX : A → A, of degree 0 and −1 respectively, such that

ι2X = 0, [LX ,LY ] = L[X ,Y ], [LX , ιY ] = ι[X ,Y ], and LX = dιX + ιX d.

If A and B are g�-algebras, an algebra morphism f : A → B is a morphism of g�-algebras
if it (super-)commutes with d , LX and ιX .

An infinitesimal action of g on a pseudogroup of local diffeomorphisms (T ,H ) is a Lie
algebra homomorphism μ : g → X(H ) := X(T )H .

Proposition 3.1 An infinitesimal action μ : g → X(H ) induces a g�-algebra structure on
Ω(H ) := Ω(T )H with the usual operators d, LX and ιX .

Proof Let γ ∈ H , X ∈ X(H ) and ω ∈ Ω(H ). From the naturality of d we have γ ∗(dω) =
d(γ ∗ω) = dω and, denoting γ ∗(X) = dγ −1 ◦ X ◦γ , we have γ ∗(ιX ω) = ιγ ∗ X (γ ∗ω) = ιXω

and γ ∗(LX ω) = Lγ ∗ X (γ ∗ω) = LXω. ��
We will say that an equivalence � between (T ,H ) and another pseudogroup (S,K )

with an infinitesimal g-action ν is g-equivariant if ϕ∗(ν(X)) = μ(X) for all X ∈ g and
ϕ ∈ �. In this case �∗ : Ω(K ) → Ω(H ) is an isomorphism of g�-algebras.

Example 3.1 An infinitesimal action μ : g → X(O) of g on an orbifold O induces a g�-
algebra structure on Ω(O).

A g�-algebra A is acyclic if H(E, d) = R. Also, A is said to be locally free, or to be
of type (C), if it admits a connection, that is, an invariant element θ ∈ A1 ⊗ g satisfying
ιXθ = X for all X ∈ g. Equivalently, A is locally free when there are θ i ∈ A1 such that
ιX j θ

i = δi
j , for some basis {Xi } of g, and

C = span{θ1, . . . , θdim g}
is g-invariant.

Proposition 3.2 If a connected, compact Lie group G acts on an orbifold O and H < G is
a Lie subgroup whose action is locally free, then Ω(O) is locally free as an h�-algebra.
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Proof Since G is compact we can choose a G-invariant Riemannian metric on O, and since
the H -action is locally free the fundamental vector fields of the induced infinitesimal h-action
μ are nowhere vanishing. This gives us an H -invariant splitting TO = TFH ⊕ (TFH )⊥,
where TFH = span(μ(h)) is the subbundle given by the tangent spaces of the H -orbits (see
also [10, Lemma 2.11]). Picking a basis {Xi } of h and defining θ i ∈ Ω1(O) by ιX j θ

i = δi
j

and θ i |νFH = 0 we obtain the desired connection. ��
The basic complex of a g�-algebra A is

Abas g := {ω ∈ A | ιXω = 0 and LXω = 0 for all X ∈ g}.
It is easy to check that Abas g is d-invariant. If A is locally free then

Hg(A) = H(Abas g), (3)

which is a generalization of the fact that, for a free Lie group action, the equivariant coho-
mology is the cohomology of the quotient (see, for instance, [18, Section 5.1]). This leads
one to define the Weil model for the equivariant cohomology of A as

Hg(A) := H((E ⊗ A)bas g, d),

where E is any locally free acyclic g�-algebra (see [18, Section 2.4] for details). The analogy
with classical equivariant cohomology is that E replaces the classifying G-space and basic
cohomology replaces the cohomology of the quotient.

There is an alternative model for the equivariant cohomology of a g�-algebra A due to
H. Cartan which will be useful. Consider the Cartan complex

Cg(A) := (S(g∗) ⊗ A)g,

where S(g∗) is the symmetric algebra over g∗ and the superscript indicates the subspace of
g-invariant elements, that is, those ω ∈ S(g∗) ⊗ A such that LXω = 0 for all X ∈ g. Notice
that we can identify an element ω ∈ Cg(A) with a g-equivariant polynomial map ω : g → A
(see [18, p. 53]). The equivariant differential dg of the Cartan complex is then defined as

(dgω)(X) = d(ω(X)) − ιX (ω(X)).

The usual grading Cn
g(A) = ⊕

2k+l=n(Sk(g
∗) ⊗ Al)

g makes it a derivation of degree 1.
The Cartan model for the equivariant cohomology of A is

Hg(A) := H(Cg(A), dg).

There is a natural structure of S(g∗)g-algebra on Hg(A) induced by S(g∗)g � f �→ f ⊗ 1 ∈
Cg(A). When A = Ω(O), for an orbifold O, this structure coincides with the one induced
by the map O → {point} by pullback. By abuse of notation we denote both the Weil and
the Cartan model by Hg(A), because they are isomorphic via the Mathai–Quillen–Kalkman
isomorphism (see [18, Theorem 4.2.1]).

We end this section with an equivariant version of (3) known as the “commuting actions
principle”, which will be a useful tool.

Proposition 3.3 ( [15, Proposition 3.9], [23, PropositionA.6.3]) Let g = h×k be a product of
Lie algebras and let A be an (h×k)�-algebra which is locally free as an h�-algebra, admitting
a k-invariant connection. Then the inclusion j : (S(k∗) ⊗ Abas h)k → (S(g∗) ⊗ A)g induces
an S(k∗)k-algebra isomorphism

Hk(Abas h) ∼= Hg(A).
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Remark 3.1 Proposition 3.3 is a generalization for Lie algebra actions of a classical theorem
by H. Cartan regarding equivariant cohomology of principal bundles with a commuting Lie
group action (see, e.g., [31]). It appears in [15, Proposition 3.9] with the additional hypothesis
that Ak = 0 for k < 0, and was recently generalized in [23, Proposition A.6.3] where the
authors also prove that the inverse isomorphism is given by the so-called Cartan map Cθ . In
the Cartan model Cθ is the map induced in cohomology by Cg(A) � ω �→ Horθ (ω(μk)) ∈
Ck(Abas h), where ω(μk) denotes the polynomial k → A obtained from ω by substituting
the k-equivariant curvature

μk := dkθ + 1

2
[θ, θ ] ∈ C2

k (A) ⊗ h

for the h-variable, and Horθ denotes the θ -horizontal projection. The restriction of Cθ to
S(h∗)h is the equivariant Chern–Weil homomorphism.

3.2 Equivariant cohomology of orbifolds

Suppose a Lie group G acts onO. One can then form the Borel constructionOG := EG ×G

|O| and define the G-equivariant cohomology of O as HG(O) := H(OG ,R), where the
latter is the singular cohomology of OG with coefficients in R.

On the other hand, there is an induced infinitesimal action of the Lie algebra g of G on
O, and we can consider the g-equivariant cohomology

Hg(O) := Hg(Ω(O)).

We have the following orbifold version of the equivariant De Rham theorem.

Theorem 3.1 (Equivariant De Rham theorem for orbifolds) Let O be an orbifold with an
action of a connected, compact Lie group G with Lie algebra g. Then

HG(O) ∼= Hg(O)

as S(g∗)g-algebras.

Proof Wecan reduce the proof to an application of the classical equivariantDeRham theorem
(see, for instance, [18, Theorem 2.5.1]) by recalling that O is diffeomorphic to ÔC//U(n)

(see Example 2.1). The G-action on O lifts to an action on ÔC commuting with the natural
U(n)-action. We then have

HG(O) ∼= HG(ÔC/U(n)) ∼= HG×U(n)(ÔC)

∼= Hg×u(n)(ÔC) ∼= Hg(Ωbas u(n)(ÔC)) ∼= Hg(Ω(O))

= Hg(O)

where the third isomorphism follows from the classical equivariant De Rham theorem, since
ÔC is a manifold, and the fourth one from Proposition 3.3. ��

3.3 Equivariant basic cohomology

A transverse infinitesimal action of g on a foliated orbifold (O,F) is a Lie algebra homo-
morphism

μ : g −→ l(F)
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A transverse infinitesimal action induces a g�-algebra structure on Ω(F), with d being
the usual exterior derivative and the derivations LX and ιX defined as LXω := LX̃ω and
ιXω := ιX̃ω (the proof in [15, Proposition 3.12] for foliations on manifolds adapts directly).

Each X ∈ l(F) corresponds to a unique XT ∈ X(HF ) that restricted to Ti is πi -related
to the restriction X |Ũi

of a foliate representative of X . This correspondence induces an
infinitesimal g-action on (TF ,HF ). Let i : TF → UO be the inclusion of TF as a total
transversal. We claim that i∗ : Ω(H ) → Ω(F) is an isomorphism of g�-algebras. In
fact, it is clear that it is an isomorphism of algebras and that di∗ = i∗d . Moreover, for
μ(X)T ∈ X(HF ) one can always choose a representative X̃ ∈ L(F) of μ(X) that is i-
related to μ(X)T . Then

i∗(LXω) = i∗(LX̃ω) = Lμ(X)T i∗ω = LX i∗ω

and similarly i∗ιX = ιX i∗, for each X ∈ g. This establishes the following.

Proposition 3.4 A transverse action g → l(F) projects to an infinitesimal action of g on
(TF ,HF ) and

Ω(F) ∼= Ω(HF )

as g�-algebras.

The g-equivariant basic cohomology of (O,F) is the g-equivariant cohomology of the
basic subcomplex Ω(F), which we will denote by

Hg(F) := Hg(Ω(F)) = H(Cg(Ω(F), dg)).

By Proposition 3.4 we therefore have Hg(F) ∼= Hg(Ω(HF )), as S(g∗)g-algebras.

Example 3.2 AKilling foliation (M,F)has a natural transverse action of its structural algebra
a, since a ∼= CF (M). Notice that the fixed point set Ma = {x ∈ M | ax = a} is precisely
the union of the closed leaves of F , since aF = F by Molino’s structural theory. We will be
mainly interested in the study of Ha(F).

4 Deformations of killing foliations

Two p-dimensional smooth foliations F0 and F1 of M are C∞-homotopic if there is a p-
dimensional smooth foliation F of M × [0, 1] such that M × {t} is saturated by leaves of F ,
for each t ∈ [0, 1], and

Fi = F |M×{i},

for i = 0, 1. Here we will simply say that Ft is a deformation of F0 into F1.
It was shown by Haefliger and Salem [19], as a corollary of their study on the classifying

space of holonomy pseudogroups of Killing foliations, that it is possible to deform such a
foliation F into a closed foliation G, that can be chosen arbitrarily close to F , in a way that
the deformation occurs within the closures of the leaves of F . In [8] we showed that some of
the transverse geometry and topology of F is preserved throughout this deformation, so that
one can use orbifold theory on M//G to studyF . For the reader’s convenience we summarize
some properties of this deformation in the following.

Theorem 4.1 [8, Theorem B] Let (F, gT ) be a Killing foliation of a compact manifold M.
Then there is a deformation Ft of F , called a regular deformation, into a closed foliation G,
which can be chosen arbitrarily close to F , such that
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(i) for each t there is an injection ι : T (F) → T (Ft ) that smoothly deforms transverse
geometric structures given by F-basic tensors, such as the metric gT , into respective
transverse geometric structures for Ft ,

(ii) the quotient orbifold M//G admits an effective isometric action of a torusTd , with respect
to the metric induced from ιgT , such that M/F ∼= (M/G)/Td , where d = dim a.

(iii) T (F) is isomorphic to the algebra T (M//G)T
d

of Td -invariant tensor fields on M//G,
the isomorphism being given by π∗ ◦ ι, where π∗ : T (G) → T (M//G) is the pushforward
by the canonical projection.

In particular, if G is chosen sufficiently close to F , upper and lower bounds on transverse
sectional and Ricci curvature of F are maintained.

Remark 4.1 In [8] wemention, without using it, that anF-basic symplectic formω is mapped
by ι into a G-basic symplectic form, but this is not true in general because ιmay not commute
with the exterior derivative, so ιω may not be closed after the deformation.

It will be useful to briefly recall how the regular deformation is constructed. By [19,
Theorem 3.4], there exists an orbifold O associated to F admitting a TN -action μ such that
there is a dense contractible subgroup H < T

N that acts locally freely onO and the holonomy
pseudogroupHFH of the foliation FH of O defined by the orbits of H is equivalent toHF .
Moreover, there is a smooth (good) map ϒ : M → O transverse to FH with ϒ∗(FH ) = F .
As the authors comment in [19], this construction can be used to deformF as follows. Let h be
the Lie algebra of H and consider a Lie subalgebra k < Lie(TN ) ∼= R

N , with dim k = dim h,
such that its corresponding Lie subgroup K < T

N is closed. Suppose k is close enough to h,
as points in the Grassmannian Grdim h(Lie(TN )), so that one can choose a smooth path h(t)
connecting h to k such that for each t the action μ|H(t) of the corresponding Lie subgroup
H(t) is locally free and the induced foliation remains transverse toϒ . ThenFt := ϒ∗(FH(t))

defines a C∞-homotopic deformation ofF = F0 into G = F1. In this caseHFt is equivalent
to HFH(t) for each t . Moreover, since K is closed, G is a closed foliation.

The map ι : T (F) → T (Ft ) is defined by working onO and conjugating with ϒ∗, which
is an isomorphism T (FH(t)) → T (Ft ). On O the map simply “deforms the kernel” of a
tensor ξ ∈ T (FH ), yielding a tensor ξt ∈ T (FH(t)). More precisely, by taking k closer to
h if necessary, we can fix a subalgebra a < t which is complementary to each h(t). By
density we can furthermore assume that the corresponding 1-parameter subgroup A < T

N

is closed. Here we are purposefully abusing the notation by denoting this subalgebra by
a since its induced FH -transverse action will coincide, via the correspondence F ↔ FH ,
with the natural F-transverse action of the structural algebra of F (see also Sect. 5). Now
choose a TN -invariant Riemannian metric onO and consider the distribution of varying rank
D⊥ given by D⊥

x = Tx (T
N x)⊥. The distribution Da spanned by the induced infinitesimal

a-action on O then complements D⊥ to a TN -invariant subbundle D = Da ⊕ D⊥ ⊂ TO
which is complementary to TFH(t), for each t . We declare that ξt coincides with ξ on D
and vanishes when contracted with vectors in TFH(t). In particular, one sees that ιgT is
a transverse metric for Ft . The T

N -action on O projects to an action of TN /K ∼= T
d on

O//K , which is diffeomorphic to M//G, thus yielding us the π∗ ◦ ι(gT )-isometric Td -action
on M//G.

4.1 Applications of the deformation technique

We now illustrate the application of this deformation method by establishing Theorems E, F
and G from the introduction. Theorem E consists of the following theorem and its corollary.
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Theorem 4.2 Let F be a Killing foliation of a compact manifold M. If RicF ≤ c < 0, then
F is closed.

Proof SupposeF is not closed, so dim a > 0. Passing to a double cover of M if necessary, we
can suppose F is transversely orientable [7, Proposition 3.5.1]. In fact, the pullback of any
non-closed Riemannian foliation by a finitely-sheeted covering map is also non-closed (see
[8, Proposition 3.6]). Then we can apply Theorem 4.1 to obtain, via a regular deformation, a
closedRiemannian foliationG also satisfyingRicG < 0, hence M//G is a connected, compact,
oriented Riemannian orbifold with RicM//G < 0. Moreover, item (ii) of Theorem 4.1 asserts
that M//G admits an isometric action of a torus Td , with d = dim a > 0. This contradicts
Theorem 2.2. ��
Corollary 4.2 LetF be a complete, transversely compact Riemannian foliation of a connected
manifold M with |π1(M)| < ∞. If RicF ≤ c < 0, then F is closed.

Proof Let π : M̃ → M be the universal cover of M . SupposeF is not closed and consider its
lift F̃ to M̃ . Since M̃ is simply connected and |π1(M)| < ∞, we have that F̃ is a non-closed
Killing foliation and π maps leaf closures to leaf closures (see [8, Lemma 3.5]). We claim

that F̃ is also transversely compact, that is, M̃/F̃ , endowed with the length structure induced

by the transverse metric, is compact. In fact, if ( J̃i ) is a sequence in F̃ , we have that (π( J̃i ))

is a sequence in F , which, passing to a subsequence if necessary, we can assume converges

to some L ∈ F . The preimage π−1(L) consists of at most |π1(M)| leaf closures in F̃ , hence
some subsequence ( J̃ik ) must converge to one of them.

From the surjection (1) we obtain thatHF̃ is a simply connected, complete pseudogroup

of isometries whose orbit space T̃ /HF̃ ∼= M̃/F̃ is compact. By [19, Theorem 3.7], there
exists a Killing foliation F ′ of a simply connected, compact manifold M ′, such that HF̃ ∼=
HF ′ . Since the pseudougroups are equivalent, F ′ is also not closed and admits a transverse
Riemannian metric satisfying RicF ′ ≤ c < 0. This contradicts Theorem 4.2. ��

The next result is a transverse generalization of Synge’s theorem. It restricts to Synge’s
theorem for manifolds when F is the trivial foliation by points.

Theorem 4.3 Let F be a Killing foliation of a compact manifold M, with secF > 0. Then

(i) if codimF is even and F is transversely orientable, then M/F is simply connected, and
(ii) if codim F is odd and Hol(L) preserves transverse orientation for each L ∈ F , then F

is transversely orientable.

Proof By deforming F via Theorem 4.1 we obtain a closed Riemannian foliation G of M
with secG > 0 and codim G = codim F . Recall that F = ϒ−1(FH ) and G = ϒ−1(FK ), for
subgroups H , K < T

N acting on the Haefliger–Salem orbifold O.
Suppose codimF is even and F is transversely orientable. Then map ι sends a transverse

volume form for F into a transverse volume form for G, so G is transversely orientable
and M//G is an orientable, compact, positively curved Riemannian orbifold. It follows that
|M//G| is simply connected, by the orbifold version of Synge’s theorem that appears in [37,
Corollary 2.3.6]. By Theorem item (ii) of 4.1 we have

|M//G|
Td

∼= M

F
,

therefore M/F simply connected, since it is the quotient of a simply connected space by the
action of a connected, compact Lie group (see [3, Example 4]).
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Nowsuppose codimF is odd andHol(L) consists of germsofmaps that preserve transverse
orientation, for each L ∈ F . Let H x be the orbit on O corresponding to L . For an Hx -
invariant chart (Ũ , Γx , φ) around x there is an extension H̃x of Hx by Γx that acts on
Ũ with Ũ/H̃x ∼= U/Hx [10, Proposition 2.12]. The group H̃x is the holonomy group of
the leaf H x ∈ FH , hence, through the equivalence H (F) = H (FH ), the hypothesis on
Hol(L) implies that H̃x (and in particular Γx ) preserves transverse orientation. Passing to
the subgroup K < T

N that defines G, we thus obtain that K̃x , an extension of Kx < T
N

by Γx , also preserves transverse orientation. Hence O//FK ∼= M//G is an odd-dimensional,
compact, locally orientable, positively curved orbifold, so again it follows from [37, Corollary
2.3.6] that M//G is orientable (thus G is transversely orientable). The Riemannian volume
form of M//G is Td -invariant, hence induces a transverse volume form for F , by item (iii)
of Theorem 4.1. ��

Finally, let us prove the transverse version of Milnor’s theorem on the growth of the
fundamental group.

Theorem 4.4 Let F be a Killing foliation of a compact manifold M such that secF < 0.
Then F is closed and π1(F) grows exponentially. In particular, π1(M) grows exponentially.

Proof If F were not closed then, by Theorem 4.1, we would be able to deform F into a
closed foliation G with secG < 0, and M//G would be a negatively curved orbifold admitting
an isometric action of Td , d > 0, contradicting Theorem 2.2. So F is closed and hence

π1(F) = πorb
1 (M//F)

has exponential growth, by Theorem 2.3. In particular, from the surjection (1) it follows that
π1(M) also grows exponentially. ��

Gromov establishes in [17, p. 12] an upper bound for the total sum of Betti numbers
for negatively curved manifolds in terms of their dimension and volume. This result was
generalized for orbifolds by I. Samet in [33, Theorem 1.1] (recall that every orbifold with
negative sectional curvature is a quotient of a Hadamard manifold by a discrete group of
isometries, see [6, Corollary 2.16]). Combining it with Theorem 4.4 we get:

Corollary 4.3 For each q ≥ 0 there exists a constant C with the property that, if F is
any q-codimensional Killing foliation of a compact manifold M satisfying secF < 0, say
−k2 ≤ secF < 0, one has

q∑

i=1

bi (F) ≤ Ckqvol(M//F).

5 Equivariant basic cohomology under deformations

We have proved in [8, Theorem 7.4] that the basic Euler characteristic χ(Ft ) is constant in
t for a regular deformation Ft . Despite this fact, the basic Betti numbers are not preserved,
as the following example shows.

Example 5.1 We are grateful to H. Nozawa for communicating this example to us. Consider
M = S

3 × S
1 with the free isometric action of T2 = S

1 × S
1 given by

((s1, s2), ((z1, z2), z)) �−→ ((s1z1, s1z2), s2z).
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Let F be the homogeneous foliation of M induced by a dense 1-parameter subgroup of T2.
In this case the construction of the orbifold (OF ,TN ) is trivial, that is, OF = M and H is
the 1-parameter subgroup defining F . It is clear that F can be regularly deformed to both
the foliations G1 and G2, induced by the actions of S1 × {1} and {1} × S

1, respectively.
But H(G1) = H(M//G1) = H(S2 × S

1), while H(G2) = H(M//G2) = H(S3). Hence
bi (G1) �= bi (G2) for i = 1, 2.

Our next goal in this section is to show that, in spite of this, the equivariant basic cohomol-
ogy is preserved throughout a regular deformation Ft . To make this more precise we need to
clarify how a acts transversely on G. We retain the notation of Sect. 4. For a Killing foliation
F on a compact manifold M , consider the Haefliger–Salem construction (O, H < T

N ) and
define Ft := ϒ∗(FH(t)). Since the holonomy pseudogroups of Ft and FH(t) are equiva-
lent, there is an identification betweenFt -transverse vector fields on M andFH(t)-transverse
vector fields on O. So we only have to show that a acts transversely on FH(t).

The a-action on H (F) is precisely the action of the structural algebra of H (F) as a
complete pseudogroup of local isometries, which is characterized by the vector fields on TF
whose local flows belong to the C1-closure H (F) (see [19, §2.5] for more details). Via
the equivalence H (F) ∼= H (FH ) it coincides with the action of the structural algebra of
H (FH ), which in turn is the algebra of vector fields on TF induced by the fundamental vector
fields of the action of TN on O. In other words, the transverse a-action on F corresponds to
the natural transverse t/h-action on FH , where t is the Lie algebra of TN , similarly to the
case of a homogeneous foliation on a manifold (see Example 2.4).

We indeed have a natural transverse action of t/h(t) onFH(t) for each t . Since all those Lie
algebras are (non-canonically) isomorphic to a, we define an a-action on FH(t), and hence
on Ft , by passing through an isomorphism νt : t/h(t) → a. This amounts to identifying a

with the subalgebra of t complementary to each h(t) that we used when constructing regular
deformations (see Sect. 4), which by abuse of notation we also denoted by a < t. That is, νt

is the map that sends [X ] ∈ t/h(t) to its unique representative in a < t.
In particular, the T

d -action on M//G appearing in item (ii) of Theorem 4.1 is given by
the natural action of TN /K on O//K ∼= M//G, so the transverse a-action on G is the lift
of the induced infinitesimal action of Lie(Td) = t/k ∼= a on M//G. We sum this up in the
following.

Proposition 5.1 The structural algebra a of F acts transversely on Ft , for each t, and its
induced action on the quotient orbifold M//G, for the closed foliation G = F1, integrates to
the T

d -action given by item (ii) of Theorem 4.1.

Now that Proposition 5.1 allows us to consider Ha(Ft ) we can state the following.

Theorem 5.1 Let F be a Killing foliation of a compact manifold M and let Ft be a regular
deformation of F . Then for each t there is an R-algebra isomorphism

Ha(F) ∼= Ha(Ft ).

Proof Using Proposition 3.4 and the equivalence HFt
∼= HFH(t) we have

Ha(Ft ) ∼= Ha(HFt )
∼= Ha(HFH(t) )

∼= Ha(FH(t))

as S(a∗)-algebras. Notice moreover that Ha(FH(t)) = Ha(Ωbas h(t)(O)), since clearly
Ωbas h(t)(O) = Ω(FH(t)). We only need, thus, to exhibit an R-algebra isomorphism
Ha(Ωbas h(0)(O)) ∼= Ha(Ωbas h(t)(O)) for each t .
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ByProposition 3.2, let θt ∈ Ω1(O)⊗h be a connection for the H(t)-action onO. Since the
infinitesimal action of a on each Ft is induced by the action of a compact subgroup A < T

N

we can suppose θ is a-invariant, by averaging it if necessary. From Proposition 3.3 it then
follows that the inclusion (S(a∗)⊗Ωbas h(t))

a → (S(t∗)⊗Ω(O))t induces an S(a∗)-algebra
isomorphism

Ha(Ωbas h(t)(O))
jt−→ Hh(t)×a(O) = Ht(O).

For each t , the map j−1
t ◦ j0 : Ha(Ωbas h(0)(O)) → Ha(Ωbas h(t)(O)) is clearly both an

R-linear and a ring isomorphism, hence it is the desired R-algebra isomorphism. ��
Remark 5.1 One does not have Ha(F) ∼= Ha(Ft ) as S(a∗)-algebras, in general. In fact, each
jt is an S(a∗)-algebra isomorphism, but with respect to the decomposition t = h(t) × a. For
each t this decomposition induces a different S(a∗)-module structure on Ht(O), since the
extension of a polynomial on a to a polynomial on t vanishes on h(t). Hence j−1

t ◦ j0 fails
to preserve the module structure.

In particular, for t = 1 it follows from Theorem 5.1 that Ha(F) ∼= Ha(G), for a closed
foliation G arbitrarily close to F .

Corollary 5.2 Let F be a Killing foliation of a compact manifold M. Then there is a closed
approximation G of F such that M//G admits a T

d -action, d = dim a, and

Ha(F) ∼= HTd (M//G),

as R-algebras.

Proof We have Ha(F) ∼= Ha(G) from Theorem 5.1, Ha(G) ∼= Ha(M//G) from Proposi-
tion 3.4 and Ha(M//G) ∼= HTd (M//G) from Proposition 5.1 and Theorem 3.1. ��

By deforming F we obtain, therefore, a “topological model” for Ha(F), as a ring, given
by the cohomology HTd (M//G) of the orbifold M//G. The orbifold (O,TN ), on the other
hand, acts as a topological model for the full S(a∗)-algebra structure of Ha(F). In fact, by
Proposition 3.3 and Theorem 3.1 it follows that

Ha(F) ∼= Ha(FH ) ∼= Ha(Ωbas h(O)) ∼= HTN (O).

as S(a∗)-algebras. We state this below.

Corollary 5.3 Let F be a Killing foliation of a compact manifold M and let (O, H < T
N )

be its Haefliger–Salem construction. Then

Ha(F) ∼= HTN (O)

as S(a∗)-algebras.

6 Formal actions and basic Betti numbers

In this final section we study the case when the transverse action of the structural algebra of
a Killing foliation is equivariantly formal, establishing Theorem B—the invariance of basic
Betti numbers under deformations—in this case.

Recall that a g�-algebra A is equivariantly formal when S(g∗)g ⊗ H(A) as S(g∗)g-
modules. Equivalently, A is equivariantly formal when Ha(A) is a free S(a∗)-module. In
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the case of a Killing foliation F , if Ω(F) is equivariantly formal as an a�-algebra with
respect to the natural transverse action of the structural algebra a, we say for short that F
is equivariantly formal. In the following example we summarize some characterizations and
sufficient conditions for equivariant formality of a Killing foliation F that appear in [15,
Sections 3, 5 and 8].

Example 6.1 Let F be a Killing foliation with structural algebra a. The following properties
are equivalent:

(i) F is equivariantly formal.
(ii) Ha(F) is a free S(a∗)-module.
(iii) The natural map Ha(F) → H(F) is surjective.

Moreover, any of the conditions below is sufficient for them to hold, providedF is transversely
orientable:

(i) Hodd(F) = 0.
(ii) dim H(Ma//F) = dim H(F).
(iii) F admits a basic Morse-Bott function whose critical set is equal to Ma,

Although the definition of equivariant formality ofF is given in terms of the S(a∗)-module
structure of Ha(F), there is yet another way to study this property which only takes into
account the ring structure of Ha(F). This will be of interest to us, since the module structure
of Ha(F) is not preserved through regular deformations. Let M be a finitely generated R-
module, where R is a non-trivial Noetherian commutative local ring with identity. Then one
can define its Krull dimension, dimR M , and depth (see, for instance, [2, AppendixA]), which
always satisfy depth M ≤ dimR M . When equality holds M is said to be a Cohen–Macaulay
module. Analogously, the ring R is a Cohen–Macaulay ring when it is a Cohen–Macaulay
module over itself. We refer to [2, Section A.6] and [35, Section IV.B] for more details on
this topic. For us it will be sufficient to know that if the transverse a-action on a Killing
foliation F of a compact manifold is equivariantly formal then Ha(F) is a Cohen–Macaulay
S(a∗)-module, which in turn happens if, and only if, Ha(F) is a Cohen–Macaulay ring [15,
Proposition B.3].

Proposition 6.1 Let F be a Killing foliation of a compact manifold M and let Ft be a regular
deformation. If the transverse a-action on F is equivariantly formal, then so is its induced
action on each Ft .

Proof IfF is equivariantly formal then Ha(F) is a Cohen–Macaulay ring. Theorem 5.1 gives
us a ring isomorphism Ha(F) ∼= Ha(Ft ), so Ha(Ft ) is also a Cohen–Macaulay ring, for
each t . We now use [2, Theorem A.6.18] to conclude that Ha(Ft ) is a free S(a∗)-module,
hence the transverse a-action on Ft is equivariantly formal, for each t . ��

To show the invariance of the basic Betti numbers under regular deformations we gener-
alize the argument in Proposition 9 of [13]. Recall that if V is anN-graded vector space such
that dim V k is finite for each k, its Poincaré series is the formal power series

PV (s) :=
∞∑

k=0

(dim V k)sk .

We will use the fact that PV ⊗W (s) = PV (s)PW (s), where juxtaposition denotes the Cauchy
product (see, for instance, [26, p. 14]).
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Theorem 6.1 Let F be a Killing foliation of a compact manifold M and let Ft be a regular
deformation. If F is equivariantly formal, then bi (Ft ) is constant on t, for each i .

Proof We know from Proposition 6.1 that the a-action on each Ft is equivariantly formal,
that is,

S(a∗) ⊗ H(F) ∼= Ha(F) ∼= Ha(Ft ) ∼= S(a∗) ⊗ H(Ft ).

Taking the corresponding Poincaré series we obtain

PS(a∗)(s)PH(F)(s) = PS(a∗)(s)PH(Ft )(s).

The factor PS(a∗)(s) can be canceled out on both sides since Z[[s]] is an integral domain,
hence PH(F)(s) = PH(Ft )(s) and the result follows. ��
Corollary 6.1 Let F be an equivariantly formal Killing foliation of a compact manifold M.
Then F can be approximated by a closed foliation G such that

bi (F) = bi (M//G) = bi (|M//G|)
for each i .

Proof Theorem 6.1 implies bi (F) = bi (G) for all i , and we have bi (G) = bi (M//G) =
bi (|M//G|) from Proposition 2.1 and Theorem 2.1, respectively. ��

We can now establish Theorem D of the introduction.

Theorem 6.2 For each q ≥ 0 there exists a constant C such that

q∑

i=0

bi (F) ≤ C,

for every q-codimensional, equivariantly formal Killing foliation F with secF > 0 of a
compact manifold M.

Proof By Theorem 4.1 we can deform F into a closed foliation G also satisfying secG > 0.
Hence M//G is a compact, positively curved q-dimensional orbifold, so M/G = |M//G|
endowed with the induced Riemannian length structure is a compact positively curved q-
dimensional Alexandrov space. By [22, Main Theorem] (with k = 0 and F = R) it follows
that there is a constant C = C(q) such that

q∑

i=0

bi (F) =
q∑

i=0

bi (|M//G|) ≤ C,

where in the first equality we use Corollary 6.1. ��
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