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Abstract
We establish a quantum cluster algebra structure on the quantum Grothendieck ring of
a certain monoidal subcategory of the category of finite-dimensional representations of a
simply-laced quantum affine algebra. Moreover, the (q, t)-characters of certain irreducible
representations, among which fundamental representations, are obtained as quantum cluster
variables. This approach gives a new algorithm to compute these (q, t)-characters. As an
application, we prove that the quantum Grothendieck ring of a larger category of represen-
tations of the Borel subalgebra of the quantum affine algebra, defined in a previous work
as a quantum cluster algebra, contains indeed the well-known quantum Grothendieck ring
of the category of finite-dimensional representations. Finally, we display our algorithm on a
concrete example.
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1 Introduction

Finite-dimensional representations of quantum affine algebras have been classified by Chari
and Pressley [7] with a quantum affine analog of Cartan’s highest weight classification of
finite-dimensional representations of simple Lie algebras. Combining this classification with
the notations from Frenkel–Reshetikhin q-character [10] theory, one gets the following.
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1450 L. Bittmann

Let g be a finite-dimensional simple Lie algebra, and Uq(ĝ) be the quantum affine algebra.
Irreducible finite-dimensional representations of Uq(ĝ) are indexed by monomials in the
infinite set of variables {Yi,a}i∈I ,a∈C× , where I = {1, . . . , n} are the vertices of the Dynkin
diagram of g. For such a monomial m, the corresponding simple Uq(ĝ)-module is denoted by
L(m). If the monomial is just one term m = Yi,a , the corresponding simple module L(Yi,a)

is called a fundamental module. Chari–Pressley classification result also implies that every
simple module can be obtained as a subquotient of a tensor product of such fundamental
modules.

This classification is a major result. However, it gives limited information on the module
structure. For that purpose, Frenkel and Reshetikhin have developed a theory of q-characters,
giving the decomposition of themodules into generalized eigenspaces for the action of a large
commutative subalgebra of Uq(ĝ). Frenkel–Mukhin established an algorithm to compute
those q-characters [9]. This algorithm is guaranteed to work on fundamental modules, but
not on all irreducible Uq(ĝ)-modules [36].

Wheng is of simply-laced type,Nakajima [30] used the input fromgeometry, andmorepre-
cisely perverse sheaves on quiver varieties, to construct t-deformations of these q-characters,
called (q, t)-characters, as elements of a quantum Grothendieck ring. He introduced a sec-
ond base for the Grothendieck ring of the category of finite-dimensional representations of
Uq(ĝ), also indexed by the monomials in the variables {Yi,a}i∈I ,a∈C× , formed by the stan-
dard modules. Geometrically, these standard modules correspond to constant sheaves, but
algebraically, for each monomial m, the standard module M(m) can be seen as the tensor
product of the fundamental modules corresponding to each of the factors in m, in a particular
order (see also [39]).

He first used a t-deformed version of Frenkel–Mukhin’s algorithm to compute (q, t)-
characters for the fundamental modules, then extended the (q, t)-characters to the standard
modules, denoted [M(m)]t . Next, he defined (q, t)-characters for the simple modules as
some unique family of elements [L(m)]t of the quantum Grothendieck ring satisfying some
invariance property, as well as having a decomposition of the form

[L(m)]t = [M(m)]t +
∑

m′<m

Qm′,m(t)[M(m′)]t , (1.1)

where < is a partial order on the set of Laurent monomials in the variables {Yi,a}i∈I ,a∈C× ,
defined by Nakajima, and Qm′,m(t) ∈ Z[t±1] is a Laurent polynomial.

Nakajima then showed that these (q, t)-characters were indeed t-deformations of the q-
characters of the simplemodules L(m), in the sense that the evaluation of the (q, t)-characters
at t = 1 recovers the q-characters. Finally, inverting the unitriangular decomposition (1.1),
one gets an algorithm, of the Kazhdan–Lusztig type, to compute the (q, t)-characters, and
so the q-characters of all simple finite-dimensional Uq(ĝ)-modules.

This algorithm is theoretically computable, but as noted in [34], trying to compute it in
reality can easily exceed the size of computermemory available. The first step of the algorithm
is to compute the (q, t)-characters of the fundamental representations, and for example, for
g of type E8, the 5th fundamental representation requires 120Go of memory to compute.

In [22] Hernandez and Leclerc introduced a new point of view on representations of quan-
tum affine algebras, using the theory of cluster algebras that was developed by Fomin and
Zelevinsky in the early 2000’s [1,11–13]. In [24] they established a new algorithm to com-
pute q-characters of a particular class of irreducible modules, called Kirillov–Reshetikhin
modules, which include the fundamental modules, using the cluster algebra structure of the
Grothendieck ring of a subcategory of the category of finite-dimensional Uq(ĝ)-modules.
The picture is completed when put into the broader context of the categoryO+ of representa-
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A quantum cluster algebra approach to representations… 1451

tions of Uq(ĝ), introduced by Hernandez and Jimbo in [21]. In [25], Hernandez and Leclerc
showed that the Grothendieck ring of this category, which contains the finite-dimensional
representations, is isomorphic to a cluster algebra built on an infinite quiver, while explicitly
giving the identification.

In a previous work [3], the author defined the quantumGrothendieck ring for this category
O+ of representations as a quantum cluster algebra, as defined by Berenstein and Zelevinsky
[4]. However, the question of whether this quantumGrothendieck ring contained the quantum
Grothendieck ring of the category of finite-dimensional representations, as used byNakajima,
was only proven in type A, and remained conjectural for other types.

In this article we propose to show that, when g is of simply-laced type, the quantum
Grothendieck ring of a certain monoidal subcategory of the category of finite-dimensional
Uq(ĝ)-modules has a quantum cluster algebra structure (Proposition 7.3.3). The proof relies
heavily on a family of relations satisfied by the (q, t)-characters of the Kirillov–Reshetikhin
modules called quantum T -systems proved in [31]. These relations are t-deformations of the
T -systems relations, first stated in [29]. These relations have not been generalized to non-
simply-laced types, except for type Bn in [26]. This is the main reason why the results of this
paper are limited to ADE types. This quantumcluster algebra approach gives a new algorithm
to compute the (q, t)-characters of the Kirillov–Reshetikhin modules, and in particular of the
fundamental modules (see Proposition 6.3.1). This algorithm seems more efficient, at least
in terms of number of steps, than the Frenkel–Mukhin algorithm (see Remark 7.3.6).

For certain subcategories of the category of finite-dimensional Uq(ĝ)-modules generated
by a finite number of fundamental modules, Qin obtained in [37] in a different context results
similar to some results whose direct proofs are given here (see Remark 5.2.5). In this present
work, we give explicit sequences of mutations to obtain (q, t)-characters of fundamental
modules.

Next, we use this new result to prove a conjecture that was stated by the author in the
aforementionned work [3]. This previous work dealt with a category O+ of representations
of the Borel subalgebra of the quantum affine algebra, which contains the finite-dimensional
Uq(ĝ)-modules. The quantum Grothendieck ring of this category was defined as a quantum
cluster algebra, and it was conjectured that this ring contained the quantum Grothendieck
ring of the category of finite-dimensional representations. Here, we show that the quantum
cluster algebra considered in [3] can be seen as a twisted version (in the sense of [15]) of the
quantumcluster algebra occurring in thefinite-dimensional case (seeProposition 7.2.3).As an
application, the (q, t)-characters of the fundamental modules are obtained as quantum cluster
variables in the quantum Grothendieck ring of the category O+ (Proposition 7.3.3), and the
inclusion of quantumGrothendieck rings conjectured in [3] follows naturally (Theorem 7.3.1
and Corollary 7.3.5).

Note that these results extend the algorithm to compute (q, t)-characters of some simple
modules in the category O+. However, for this category of representations, the question of
defining analogs of standard modules remains open. The author tackled this question in a
previous work [2], and gave a complete answer when the underlying simple Lie algebra is
g = sl2. This work is also a partial answer to the first point of Nakajima’s “to do” list from
[35].

The author would also like to note that in type A, parallel results to the ones presented
here were proven in [38], via a different approach. In this work, (q, t)-characters of Kirillov–
Reshetikhin modules are also obtained as quantum cluster variables in some quantum cluster
algebra, the method uses a generalization of the tableaux-sum notations introduced by Naka-
jima in [32].
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1452 L. Bittmann

Finally, we use this algorithm to explicitly compute, when g is of type D4, the (q, t)-
character of the fundamental representation at the trivalent node.

This paper is organized as follows. In Sects. 2 and 3 we recall notations and results
regarding finite-dimensional representations of quantum affine algebras. In Sect. 4, we recall
results regarding the t-deformation of Grothendieck rings, such as (q, t)-characters and
quantum T -systems. In Sect. 5 we prove the existence of a quantum cluster algebra At with
t-commutations relations coherent with the framework of (q, t)-characters. Then, in Sect. 6
we prove that this quantum cluster algebra is isomorphic to the quantumGrothendieck ring of
a certain monoidal subcategory of the category of finite-dimensional Uq(ĝ)-modules; in this
process, we established an algorithm to compute (q, t)-characters of Kirillov–Reshetikhin
modules. Section 7 is devoted to the categoryO+, and to the proof of the inclusion Conjecture
of [3]. Finally, the explicit computation mentioned just above is done in Sect. 8.

2 Cartan data and quantum Cartan data

2.1 Root data

Let us fix some notations for the rest of the paper. Let g be a simple Lie algebra of rank n and
of type A, D or E . This restriction is necessary as one of the main arguments of the proof
is the quantum T -systems, which have only been proven for these types as yet. Let γ be the
Dynkin diagram of g and let I := {1, . . . , n} be the set of vertices of γ .

The Cartan matrix of g is the n × n matrix C such that

Ci, j =
⎧
⎨

⎩

2 if i = j,
−1 if i ∼ j ( i and j are adjacent vertices of γ ) ,

0 otherwise.

Let us denote by (αi )i∈I the simple roots of g, (α∨
i )i∈I the simple coroots and (ωi )i∈I the

fundamental weights. We will use the usual lattices Q = ⊕
i∈I Zαi , Q+ = ⊕

i∈I Nαi and
P = ⊕

i∈I Zωi . Let PQ = P ⊗ Q, endowed with the partial ordering : ω ≤ ω′ if and only
if ω′ − ω ∈ Q+.

The Dynkin diagram of g is numbered as in [28], and let a1, a2, . . . , an be the Kac labels
(a0 = 1).

Let h be the (dual) Coxeter number of g:

g An Dn E6 E7 E8

h n + 1 2n − 2 12 18 30
(2.1)

2.2 Quantum Cartanmatrix

Let z be an indeterminate.

Definition 2.2.1 The quantum Cartan matrix of g is the matrix C(z) with entries,

Ci j (z) =
⎧
⎨

⎩

z + z−1 if i = j,
−1 if i ∼ j,
0 otherwise.
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Remark 2.2.2 The evaluationC(1) is theCartanmatrix ofg. As det(C) �= 0, then det(C(z)) �=
0 andwe can define C̃(z), the inverse of thematrixC(z). The entries of thematrix C̃(z) belong
to Q(z).

One can write
C(z) = (z + z−1) Id−A,

where A is the adjacency matrix of γ . Hence,

C̃(z) =
+∞∑

m=0

(z + z−1)−m−1Am .

Therefore, we can write the entries of C̃(z) as power series in z. For all i, j ∈ I ,

C̃i j (z) =
+∞∑

m=1

C̃i, j (m)zm ∈ Z[[z]]. (2.2)

Example 2.2.3 (i) For g = sl2, one has

C̃11 =
+∞∑

n=0

(−1)nz2n+1 = z − z3 + z5 − z7 + z9 − z11 + · · · (2.3)

(ii) For g = sl3, one has

C̃ii = z − z5 + z7 − z11 + z13 + · · · , 1 ≤ i ≤ 2

C̃i j = z2 − z4 + z8 − z10 + z14 + · · · , 1 ≤ i �= j ≤ 2.

We will need the following lemma:

Lemma 2.2.4 [3, Lemma 3.2.4] For all (i, j) ∈ I 2,

C̃i j (m − 1) + C̃i j (m + 1) −
∑

k∼ j

C̃ik(m) = 0, ∀m ≥ 1,

C̃i j (1) = δi, j .

Let us extend the functions C̃i j to even functions on Z

Ci, j (m) := C̃i j (m) + C̃i j (−m) (m ∈ Z), (2.4)

with the usual convention C̃i j (m) = 0 if m ≤ 0. Then Lemma 2.2.4 translates as:

Ci j (m − 1) + Ci j (m + 1) −
∑

k∼ j

Cik(m) =
{
2δi, j if m = 0,
0 otherwise.

(2.5)

2.3 Height function

As g is simply-laced, its Dynkin diagram γ is a bipartite graph. There is partition I = I0 � I1
such that every edge in γ connects a vertex of I0 to a vertex of I1.
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1454 L. Bittmann

Definition 2.3.1 Define, for all i ∈ I ,

ξi =
{
0 if i ∈ I0
1 if i ∈ I1

(2.6)

The map ξ : I → {0, 1} is called a height function on γ .

Remark 2.3.2 In more generality, every function ξ : I → Z satisfying

ξ j = ξi ± 1, when j ∼ i

is a height function on γ . It defines an orientation of the Dynkin diagram γ :

i → j if ξ j = i + 1.

Our particular choice of height function defines a sink-source orientation.

Example 2.3.3 If g if of type D5, then γ is

1 2 3 4

5

and if we fix ξ1 = 0, then

ξ2 = 1, ξ4 = 1,

ξ3 = 0, ξ5 = 1.

From now on, we fix such a height function ξ . We will also use the notation:

εi := (−1)ξi ∈ {±1} (i ∈ I ). (2.7)

2.4 Semi-infinite quiver

Let us define an infinite quiver � as in [24]. First, let

Î :=
⋃

i∈I

(i, 2Z + ξi ) . (2.8)

Let � be the quiver with vertex set Î and arrows

((i, r) → ( j, s)) ⇐⇒ (
Ci, j �= 0 and s = r + Ci, j

)
. (2.9)

Example 2.4.1 For g = sl4, one choice of Î is

Î = (1, 2Z) ∪ (2, 2Z + 1) ∪ (3, 2Z),
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and � is the following:

...

... (2, 1)
...

(1, 0) (3, 0)

(2,−1)

(1,−2) (3,−2)

(2,−3)

(1,−4)
... (3,−4)

...
...

Definition 2.4.2 Let
Î − := Î ∩ (I × Z≤0

)
.

And define G− to be the semi-infinite subquiver of � of vertex set Î −.
Let

Ĵ := (I × Z) \ Î . (2.10)

Example 2.4.3 FollowingExample 2.4.1, for g = sl4, with the same choice of height function,
one has

Î − = (1, 2Z≤0) ∪ (2, 2Z≤0 − 1) ∪ (3, 2Z≤0),

and G− is the following:

(1, 0) (3, 0)

(2,−1)

(1,−2) (3,−2)

(2,−3)

(1,−4)
... (3,−4)

...
...

Finally, we recall a useful notation from [24]. For (i, r) ∈ Î −, define

ki,r := −r + ξi

2
. (2.11)

The vertex (i, r) is the ki,r th vertex in its column in G−, starting at the top.

3 Finite-dimensional representations of quantum affine algebras

In this section, we recall the notations and different results regarding quantum affine algebras
and finite-dimensional representations of quantum affine algebras.
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1456 L. Bittmann

3.1 Quantum affine algebra

Let ĝ be the untwisted affine Lie algebra corresponding to g.
Fix an nonzero complex number q , which is not a root of unity, and h ∈ C such that

q = eh . Then for all r ∈ Q, qr := erh . Since q is not a root of unity, for r , s ∈ Q, we have
qr = qs if and only if r = s.

Let Uq(ĝ) be the quantum enveloping algebra of the Lie algebra ĝ (see [6]), it is aC-Hopf
algebra.

3.2 Finite-dimensional representations

Let C be the category of all (type 1) finite-dimensional Uq(ĝ)-modules. As Uq(ĝ) is a Hopf
algebra, C is a tensor category. The simple modules in C have been classified by Chari and
Pressley ([6]), in terms of Drinfeld polynomials.

The simple finite-dimensionalUq(ĝ)-modules are indexed by themonomials in the infinite
set of variables (Yi,a)i∈I ,a∈C× , called dominant monomials ([10]). For such a monomial m,
let L(m) denote the corresponding simple Uq(ĝ)-module.

We define the following sets of dominant monomials:

M =
{
∏

finite

Y
ni,r
i,qr | (i, r) ∈ Î , ni,r ∈ Z≥0, ni,r = 0 except for a finite number of (i, r)

}
,

M− =
{
∏

finite

Y
ni,r
i,qr | (i, r) ∈ Î −, ni,r ∈ Z≥0, ni,r = 0 except for a finite number of (i, r)

}
.

Definition 3.2.1 Let CZ be the full subcategory of C of objects whose composition factors
are of the form L(m), with m ∈ M.

Let C−
Z

be the full subcategory of C of objects whose composition factors are of the form
L(m), with m ∈ M−.

Both categories CZ and C−
Z

are abelian monoidal categories ([22, 5.2.4] and [24, Propo-
sition 3.10]).

Remark 3.2.2 Every simple object in C can be written as a tensor product of simple objects
which are essentially in CZ (see [22, Section 3.7]). Thus, the description of the simple objects
of C reduces to the description of the simple objects of CZ.

Let us introduce some particular irreducible finite-dimensional representations.

Definition 3.2.3 For all (i, r) ∈ Î , Vi,r := L(Yi,qr ) is called a fundamental module.
For all (i, r) ∈ Î , k ∈ Z>0, let

m(i)
k,r := Yi,r Yi,qr+2 . . . Yi,qr+2k−2 . (3.1)

The corresponding irreducible module L(m(i)
k,r ) is called a Kirillov–Reshetikhin module, or

KR-module, and denote by
W (i)

k,r := L(m(i)
k,r ). (3.2)

Note that fundamental modules are particular KR-modules, for k = 1, m(i)
1,r = Yi,qr .
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3.3 q-characters and truncated q-characters

Frenkel andReshetikhin introduced in [10] an injective ringmorphism, called the q-character
morphism, on the Grothendieck ring K0(C ) of the category C :

χq : K0(C ) → Z

[
Y ±1

i,a | i ∈ I , a ∈ C
×] . (3.3)

Moreover, the q-character χq(V ) of a Uq(ĝ)-module V gives information about the decom-
position into Jordan subspaces for the action of a large commutative subalgebra of Uq(ĝ).

Here, as we restrict ourselves to the study of the category CZ, the q-character will only
involve variables Y ±1

i,qr , for (i, r) ∈ Î . Hence, for simplicity of notation we denote them by:
Yi,r := Yi,qr . The q-character we are interested in is the injective ring morphism:

χq : K0(CZ) → Y := Z

[
Y ±1

i,r | (i, r) ∈ Î
]
. (3.4)

We use the usual notation [10],

Ai,r := Yi,r−1Yi,r+1

⎛

⎝
∏

j∼i

Y j,r ,

⎞

⎠
−1

. (3.5)

for all (i, r) ∈ Ĵ (see (2.10)). Note that Ai,r is a Laurent monomial in the variables Y j,s ,
with ( j, s) ∈ Î . The monomials Ai,r are analogs of the simple roots.

Proposition 3.3.1 [9, Theorem 4.1] For m a dominant monomial in M, the q-character of
the finite-dimensional irreducible representation L(m) is of the form

χq(L(m)) = m

(
1 +

∑

p

Mp

)
, (3.6)

where Mp is a monomial in the variables A−1
i,r , with (i, r) ∈ Ĵ .

Let us recall Nakajima’s partial order on monomials. For m and m′ Laurent monomials
in Y ,

m ≤ m′ ⇐⇒ m′m−1 is a product of Ai,r , with (i, r) ∈ Î . (3.7)

Remark 3.3.2 Note that Proposition 3.3.1 can be translated as follows: for all dominantmono-
mials m, the monomials occurring in the q-character of the finite-dimensional irreducible
representation L(m) are lower than m, for Nakajima’s partial order.

We also recall the truncated q-characters from [22]. For m a monomial in M−, the q-
character χq(L(m)) may contain Laurent monomials in which variables Yi,r , with (i, r) ∈
Î\ Î − occur. Let χ−

q (L(m)) be the Laurent polynomial obtained from χq(L(m)) by removing
any such Laurent monomial. By definition

χ−
q (L(m)) ∈ Z

[
Y ±1

i,r | (i, r) ∈ Î −] . (3.8)

Example 3.3.3 For g of type A2, one has

χ−
q (L(Y1,0)) = Y1,0,

χ−
q (L(Y1,−2)) = Y1,−2 + Y −1

1,0Y2,−1,

χ−
q (L(Y1,−4)) = Y1,−4 + Y −1

1,−2Y2,−3 + Y −1
2,−1 = χq(L(Y1,−4)).
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1458 L. Bittmann

Proposition 3.3.4 [24, Proposition 3.10] The assignment [L(m)] �→ χ−
q (L(m)) extends to

an injective ring homomorphism

K0(C
−
Z

) → Z

[
Y ±1

i,r | (i, r) ∈ Î −] . (3.9)

As such, all simplemodules inC−
Z
are identifiedwith their isoclasses through the truncated

q-character morphism.

3.4 Cluster algebra structure

One of the main ingredient we want to use in this work is the cluster algebra structure of the
Grothendieck ring of the category C−

Z
.

Consider the cluster algebra A := A(uuu, G−), with initial seed (uuu, G−), where

• uuu are initial cluster variables indexed by Î −, uuu =
{

ui,r | (i, r) ∈ Î −
}
,

• G− is the semi-infinite quiver with vertex set Î − defined in the previous section.

Consider the identification, for all (i, r) ∈ Î −,

ui,r �→
∏

k≥0
r+2k≤0

Yi,r+2k . (3.10)

As thesemonomials are algebraically independent, this identification defines an injectivemap
on the ring Z[u±1

i,r | (i, r) ∈ Î −]. From the Laurent phenomenon, we know that all cluster
variables of A are Laurent polynomials in the variables ui,r . Thus, via the identification

(3.10), A is seen as a subring of Z
[
Y ±1

i,r | (i, r) ∈ Î −
]
.

Theorem 3.4.1 [24, Theorem 5.1] The injective ring homomorphism χ−
q is an isomorphism

between the Grothendieck ring of the category C−
Z

and the cluster algebra A, after identifi-
cation (3.10):

χ−
q : K0(C

−
Z

)
∼−→ A. (3.11)

Moreover, truncated q-characters of Kirillov–Reshetikhin modules can be obtained as
cluster variables, via the identification of initial seed (3.10), it is the main result of [24].

4 QuantumGrothendieck rings

We will recall in this section the definition of the quantum Grothendieck ring of the category
CZ, introduce that of the category C−

Z
, and study those rings.

Let t be an indeterminate. The quantum Grothendieck rings of the categories CZ and C−
Z

are non-commutative t-deformations of the Grothendieck rings.

4.1 Quantum torus

Let Yt be the Z[t±1]-algebra generated by the variables Y ±1
i,r , for (i, r) ∈ Î , and the t-

commutations relations:
Yi,r ∗ Y j,s = tNi, j (r−s)Y j,s ∗ Yi,r , (4.1)
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where Ni, j : Z → Z is the odd function:

Ni, j (m) = Ci, j (m + 1) − Ci, j (m − 1), ∀m ∈ Z, (4.2)

using the notations from Sect. 2.2. .

Remark 4.1.1 Here we work with the quantum torus of [18] and [23], which is slightly
different from the original quantum torus used to define the quantum Grothendieck ring in
[33] and [40].

Example 4.1.2 If we continue Example 2.2.3, for g = sl2, in this case, Î = (1, 2Z), for
r , s ∈ Z, one has

Y1,2r ∗ Y1,2s = t2(−1)s−r
Y1,2s ∗ Y1,2r , ∀s > r > 0. (4.3)

The Z[t±1]-algebra Yt is viewed as a quantum torus of infinite rank.
We extend this quantum torus by adjoining a fixed square root t1/2 of t :

Yt := Z[t1/2] ⊗Z[t±1] Yt. (4.4)

Let Y−
t be the quantum torus defined exactly the same way, except by only taking as

generators the Y ±1
i,r , for (i, r) ∈ Î −. Let us denote by

π : Yt → Y−
t , (4.5)

the projection of Yt onto Y−
t ,

π(Yi,r ) = 0 if (i, r) ∈ Î\ Î −. (4.6)

Remark 4.1.3 Even if Y−
t is an infinite rank quantum torus, it can be seen as a limit of

finite rank quantum tori. As finite rank quantum tori are of polynomial growth, they are Ore
domains (see [27]). Moreover, the Ore condition being local (any pair of elements of Y−

t
belongs to some sufficiently larger finite rank quantum torus), Y−

t is an Ore domain. Hence
we can consider its skew field of fractions Ft .

4.2 Commutative monomials

For a family of integers with finitely many non-zero components (ni,r )(i,r)∈ Î , define the

commutative monomial
∏

(i,r)∈ Î Y
ni,r
i,r as

∏

(i,r)∈ Î

Y
ni,r
i,r := t

1
2

∑
(i,r)<( j,s) ni,r n j,sNi, j (r ,s)−→∗ (i,r)∈ Î Y

ni,r
i,r , (4.7)

where on the right-hand side an order on Î is chosen so as to give meaning to the sum, and
the product ∗ is ordered by it (notice that the result does not depend on the order chosen).

The commutative monomials form a basis of the Z[t1/2]-vector space Yt . For a monomial
m in Yt , we will denote the commutative monomial by

m =
∏

(i,r)∈ Î

Y
ni,r (m)

i,r .

The non-commutative product of two commutative monomials m1 and m2 in Yt is given
by:

m1 ∗ m2 = t D(m1,m2)m2 ∗ m1 = t
1
2 D(m1,m2)m1m2, (4.8)
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where m1m2 denotes the commutative product of the monomials, and

D(m1, m2) =
∑

(i,r),( j,s)∈ Î

ni,r (m1)n j,s(m2)Ni, j (r , s). (4.9)

4.3 QuantumGrothendieck ring Kt(CZ)

We define the quantum Grothendieck ring Kt (CZ) of the category CZ as in [23, Section 5.4]
(see Remark 4.1.1 for original references).

For all (i, r) ∈ Ĵ , let Ai,r denote the commutative monomial in Yt defined as in (3.5):

Ai,r := Yi,r−1Yi,r+1

⎛

⎝
∏

j∼i

Y j,r

⎞

⎠
−1

.

For all i ∈ I , define Ki,t the subring of Yt generated by the

Yi,r

(
1 + A−1

i,r+1

)
, Y ±1

j,s

(
(i, r), ( j, s) ∈ Î , j �= i

)
. (4.10)

In [17], the Ki,t are defined as kernels of t-deformed screening operators, motivated by
the results in [10]. Let us detail this, as it will be important in the proof of the main result.
For all i ∈ I , define the free Yt -modules

Yl
t,i :=

⊕

r∈Z|(i,r)∈ Î

Yt · Si,r ,

Yl
t,i is a direct sum of Î copies of Yt , whose basis elements are denoted by Si,r . Then let Yt,i

be the quotient of Yl
t,i by the left-Yt -module generated by the elements

Qi,r := A−1
i,r+1Si,r+2 − t2Si,r , ∀(i, r) ∈ Î .

Lemma 4.3.1 For all i ∈ I , the module Yt,i is free.

Proof The elements Qi,r are linearly independent and for all r0 such that (i, r0) ∈ Î fixed,

the set
{

Qi,r , Si,r0 | (i, r) ∈ Î
}
forms a basis of Yl

t,i .

HenceYt,i is a quotient of a free module by a submodule generated by elements of a basis,
thus it is free. ��

From [17], for all i ∈ I , there exists a Z[t±1/2]-linear map

Si,t : Yt → Yi,t , (4.11)

which is a derivation and such that

Ki,t = ker(Si,t ). (4.12)

Finally, let
Kt (CZ) :=

⋂

i∈I

Ki,t . (4.13)

From [30] and [18] we know that for all dominant monomials m ∈ M, there exists a
unique element Ft (m) ∈ Kt (CZ) such that m occurs in Ft (m) with multiplicity 1 and no
other dominant monomial occurs in Ft (m). Thus, all elements of Kt (CZ) are characterized
by the coefficients of their dominant monomials. The Ft (m) linearly generate Kt (CZ).

123



A quantum cluster algebra approach to representations… 1461

Remark 4.3.2 For all (i, r) ∈ Î −,

Ft (Yi,r ) = [L(Yi,r )]t . (4.14)

The [L(Yi,r )]t generate Kt (CZ) algebraically.

4.4 The (q, t)-characters

For a dominant monomial m ∈ M, write it as a commutative monomial in Yt :

m =
∏

(i,r)∈ Î

Y
ni,r (m)

i,r ∈ Yt . (4.15)

Define

[M(m)]t := tα(m)←−∗ r∈ZFt

(
∏

i∈I

Y
ni,r (m)

i,r

)
∈ Kt (CZ), (4.16)

where α(m) ∈ 1
2Z is fixed such that m occurs with multiplicity one in the expansion of

[M(m)]t on the basis of the commutative monomials of Yt , and the product
←−∗ is taken with

decreasing r ∈ Z.
In particular, from (4.14), for all (i, r) ∈ Î ,

[L(Yi,r )]t = [M(Yi,r )]t . (4.17)

One has, for all m ∈ M,

[M(m)]t
t=1−−→ χq(M(m)). (4.18)

This result is a direct consequence of the definition of [M(m)]t , as it is satisfied for the
fundamental modules [L(Yi,r )]t = Ft (Yi,r ). Thus [M(m)]t is called the (q, t)-character of
the standard module M(m).

As in [33], we consider the Z-algebra anti-automorphism of Yt defined by:

t1/2 = t−1/2, Yi,r = Yi,r ,
(
(i, r) ∈ Î

)
. (4.19)

This map is called the bar-involution.

Theorem 4.4.1 [33] There exists a unique family {[L(m)]t }m∈M of elements of Kt (CZ) such
that, for all m ∈ M,

• [L(m)]t = [L(m)]t ,
• [L(m)]t ∈ [M(m)]t +∑m′<m t−1

Z[t−1][M(m′)]t , where m′ < m for Nakajima’s partial
order (3.7).

The followingTheorem extends (4.18), butmore importantly gives an algorithm, similar to
the Kazhdan–Lusztig algorithm, to compute the (q, t)-characters (and thus the q-characters)
of the simple modules.

Theorem 4.4.2 [33, Corollary 3.6] The evaluation at t = 1 of the (q, t)-characters recovers
the q-characters. For all m ∈ M,

[L(m)]t
t=1−−→ χq(L(m)) ∈ Y.

Moreover, the coefficients of the expansion of [L(m)]t as a linear combination of Laurent
monomials in the variables (Yi,r )(i,r)∈ Î belong to N[t±1].

Note that the positivity result of this Theorem has only been proven for ADE types as yet.
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4.5 Truncated (q, t)-characters and quantumGrothendieck ring Kt(C−
Z
)

As in Sect. 3.3, one can define truncated versions of the (q, t)-characters.
For all dominant monomials m in M−, let [L(m)]−t be the Laurent polynomial obtained

from [L(m)]t by removing any term in which a variable Yi,r , with (i, r) ∈ Î\ Î − occurs:

[L(m)]−t = π ([L(m)]t ) ∈ Y−
t , (4.20)

where π is the projection defined in (4.5).
Define Kt (C

−
Z

) as the Z[t±1/2]-submodule of Y−
t generated by the truncated (q, t)-

characters [L(m)]−t of the simple finite-dimensional modules L(m) in the category C−
Z
.

Lemma 4.5.1 The quantum Grothendieck ring Kt (C
−
Z

) is actually a subalgebra ofY−
t . More-

over, it is algebraically generated by the truncated (q, t)-characters of the fundamental
modules:

Kt (C
−
Z

) =
〈
[L(Yi,r )]−t | (i, r) ∈ Î −〉 . (4.21)

Proof For every dominant monomials m1, m2 ∈ M, one can write:

[L(m1)]t ∗ [L(m2)]t =
∑

m∈M
cm

m1,m2(t
1/2)[L(m)]t . (4.22)

Hence the image of (4.22) by the projection π of (4.5) is:

[L(m1)]−t ∗ [L(m2)]−t =
∑

m∈M
cm

m1,m2(t
1/2)[L(m)]−t .

Thus Kt (C
−
Z

) is stable by products.
By definition the truncated (q, t)-characters of the fundamental modules L(Yi,r ), for

(i, r) ∈ Î − belong to Kt (C
−
Z

).

Conversely, the (q, t)-characters of the fundamental modules L(Yi,r ), for all (i, r) ∈ Î ,
algebraically generate the quantum Grothendieck ring Kt (CZ) (see remark 4.3.2). Hence the
truncated (q, t)-characters [L(Yi,r )]−t , for all (i, r) ∈ Î , algebraically generate Kt (C

−
Z

).
From Proposition 3.3.1 and Theorem 4.4.1, for all dominant monomials m ∈ M, the

(q, t)-character of the simple representation L(m) is of the form

[L(m)]t = m

(
1 +

∑

p

Mp

)
,

where Mp is a monomial in the variables (A−1
i,r )

(i,r)∈ Ĵ , with coefficients in Z[t±1]. Thus,
π
([L(Yi,r )]t

) = 0, if (i, r) ∈ Î\ Î −.

Hence, Kt (C
−
Z

) is algebraically generated by the [L(Yi,r )]−t , with (i, r) ∈ Î −. ��
Kt (C

−
Z

) is a t-deformation of the Grothendieck ring of the category C−
Z
, in the sense that

the evaluation [L(m)]−t t=1−−→ χ−
q (L(m)) extends to a ring homomorphism

Kt (C
−
Z

)
t=1−−→ K0(C

−
Z

), (4.23)

where K0(C
−
Z

) is identified with its image under the truncated q-character (3.9), which is an
injective map.
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4.6 Quantum T-systems

For quantum affine algebras of simply laced type, the (q, t)-characters of the Kirillov–
Reshetikhin modules satisfy some algebraic relations called quantum T -systems. Those are
t-deformed versions of the T -system relations, which are satisfied by the q-characters of the
KR-modules [20,29,33].

Proposition 4.6.1 [31], [23, Proposition 5.6] For all (i, r) ∈ Î and k ∈ Z>0, the following
relation holds in Kt (CZ):

[W (i)
k,r ]t ∗ [W (i)

k,r+2]t = tα(i,k)[W (i)
k−1,r+2]t ∗ [W (i)

k+1,r ]t + tγ (i,k) ∗
j∼i

[W ( j)
k,r+1]t , (4.24)

where

α(i, k) = −1 + 1

2

(
C̃ii (2k − 1) + C̃ii (2k + 1)

)
, γ (i, k) = α(i, k) + 1. (4.25)

Remark 4.6.2 First of all, one notices that the dominant monomials of W (i)
k−1,r+2 and W (i)

k+1,r
commute:

m(i)
k−1,r+2 ∗ m(i)

k+1,r = m(i)
k+1,r ∗ m(i)

k−1,r+2. (4.26)

Moreover, the tensor product of the KR-modules W (i)
k−1,r+2 ⊗ W (i)

k+1,r is irreducible (this
result is proved in [5] and also by explicit computation of its (q, t)-character in [31]). Thus
their respective (q, t)-characters t-commute (see [23, Corollary 5.5]). As their dominant
monomials commute, these (q, t)-characters in fact commute and their product can bewritten
as a commutative product, as in Sect. 4.2.

By the same arguments, for j ∼ i , the (q, t)-characters [W ( j)
k,r+1]t commute so the order

of the factors in ∗ j∼i in (4.24) does not matter.

By taking the image of (4.24) through the projection π of (4.5), one obtains the following
relation in Kt (C

−
Z

). For all (i, r) ∈ Î and k ∈ Z>0,

[W (i)
k,r ]−t ∗ [W (i)

k,r+2]−t = tα(i,k)[W (i)
k−1,r+2]−t · [W (i)

k+1,r ]−t + tγ (i,k)
∏

j∼i

[W ( j)
k,r+1]−t , (4.27)

where α(i, k) and γ (i, k) are defined in (4.25).
Note that in (4.27), the products appearing on the left-hand side are commutative products,

which are well-defined from Remark 4.6.2. Hence the change of notations since (4.24).

5 Quantum cluster algebra structure

We define in this section the quantum cluster algebra structure built within the quantum torus
Y−

t .

5.1 A compatible pair

For all (i, r) ∈ Î −, the variable ui,r , written as in (3.10), can be seen as commutative
monomial in Y−

t . Define

Ui,r :=
∏

k≥0
r+2k≤0

Yi,r+2k ∈ Y−
t .
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They satisfy the following t-commutation relations. For all ((i, r), ( j, s)) ∈ ( Î −)2,

Ui,r ∗ U j,s = t L((i,r),( j,s))U j,s ∗ Ui,r , (5.1)

where
L ((i, r), ( j, s)) =

∑

k≥0
r+2k≤0

∑

l≥0
s+2l≤0

Ni j (s + 2l − r − 2k). (5.2)

Let B− be the Î − × Î −-matrix encoding the quiver G−, for all ((i, r), ( j, s)) ∈ ( Î −)2:

B− ((i, r), ( j, s)) = |{ arrows (i, r) → ( j, s) in G−}| − |{ arrows ( j, s) → (i, r) in G−}|.
(5.3)

Let L be the Î − × Î − skew-symmetric matrix

L := (L ((i, r), ( j, s)))
((i,r),( j,s))∈( Î −)2

. (5.4)

The pair of Î − × Î −-matrices (L, B−) forms a compatible pair, in the sense of quantum
cluster algebras. More precisely, we prove the following.

Proposition 5.1.1 For all ((i, r), ( j, s)) ∈ ( Î −)2,

(
BT− L

)
((i, r), ( j, s)) =

{−2 if (i, r) = ( j, s)
0 otherwise.

(5.5)

Remark 5.1.2 In [4], by definition a pair of J × J -matrices (�, B) forms a compatible pair if
T BL is a diagonal matrix with positive integer coefficients. But as explained in [3], quantum
cluster algebras can be built exactly the same way given as data a pair (�, B) such that T BL
is a diagonal matrix with integer coefficients with constant signs.

Proof Fix ((i, r), ( j, s)) ∈ ( Î −)2, there are different cases to consider.

• If r ≤ −2, one has:
(

BT− L
)

((i, r), ( j, s)) = L ((i, r − 2), ( j, s)) − L ((i, r + 2), ( j, s))

+
∑

k∼i

(L ((k, r + 1), ( j, s)) − L ((k, r − 1), ( j, s))) .

One has

L ((i, r − 2), ( j, s)) − L ((i, r + 2), ( j, s)) = −Ci j (s − r − 1) − Ci j (s − r + 1)

+ Ci j (−r + 3 − ξ j ) + Ci j (−r + 1 − ξ j ),

where ξ : I → {0, 1} is the height function on the Dynkin diagram of g fixed in Sect. 2.3.
On the other hand, for all k ∼ i , one has

L ((k, r + 1), ( j, s)) − L ((k, r − 1), ( j, s)) = Ck j (s − r) − Ck j (−r + 2 − ξ j ).

Thus, with the reformulation (2.5) of Lemma 2.2.4,

(
BT− L

)
((i, r), ( j, s)) =

{−2δi, j if s = r ,

0 otherwise.
(5.6)
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• If r = −1, one has:
(

BT− L
)

((i,−1), ( j, s)) = L ((i,−3), ( j, s))

+
∑

k∼i

(L ((k, 0), ( j, s)) − L ((k,−2), ( j, s))) .

However,

L ((i,−3), ( j, s)) =
∑

l≥0
s+2l≤0

(
Ni j (s + 2l + 3) + Ni j (s + 2l + 1)

)
,

= Ci j (4 − ξ j ) + Ci j (2 − ξ j ) − Ci j (s) − Ci j (s + 2).

And, for all k ∼ i ,

L ((k, 0), ( j, s)) − L ((k,−2), ( j, s)) = Ci j (s + 1) − Ci j (3 − ξ j ).

Thus, with relation (2.5),
(

BT− L
)

((i,−1), ( j, s)) =
{−2δi, j if s = −1,
0 otherwise.

(5.7)

• If r = 0, one has
(

BT− L
)

((i, 0), ( j, s)) = L ((i,−2), ( j, s)) −
∑

k∼i

L ((k,−1), ( j, s)) .

However,

L ((i,−2), ( j, s)) = Ci j (3 − ξ j ) + Ci j (1 − ξ j ) − Ci j (s + 1) − Ci j (s − 1).

And, for all k ∼ i ,

L ((k,−4), ( j, s)) = −Ci j (s) + Ci j (2 − ξ j ).

Thus, with relation (2.5),
(

BT− L
)

((i, 0), ( j, s)) =
{−2δi, j if s = 0,
0 otherwise.

(5.8)

The combination of the results (5.6),(5.7) and (5.8) gives the general expression (5.5). ��

5.2 The quantum cluster algebraAt

Definition 5.2.1 Let T be the based quantum torus with generators { ui,r | (i, r) ∈ Î −}
satisfying the quasi-commutation relations (5.1):

ui,r ∗ u j,s = t L((i,r),( j,s))u j,s ∗ ui,r .

Let F be the skew-field of fractions of T .

As (L, B−) forms a compatible pair, it defines a quantum seed inF . Let S be the mutation
equivalence class of the quantum seed (L, B−).

Definition 5.2.2 LetAt be the quantum cluster algebra defined by the quantum seed S, as in
[4].
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By definition, At is a Z[t±1/2]-subalgebra of F . However, by the quantum Laurent phe-
nomenon, At is actually a Z[t±1/2]-subalgebra of the quantum torus T .

Lemma 5.2.3 The map

η : T −→ Y−
t

ui,r �−→ Ui,r ,
(5.9)

where the variables Ui,r are defined in (3.10), is an isomorphism of quantum tori.

Proof First of all, this map is well-defined because the variables ui,r t-commute exactly as
the variables Ui,r , by definition of the matrix L (5.1).

Secondly, this map is invertible, with inverse:

η−1 :
Y−

t −→ T

Yi,r �−→
{

ui,r u−1
i,r+2 if r + 2 ≤ 0,

ui,r otherwise,
.

��
With this lemma, we know that the quantum cluster algebra At belongs to the quantum

torus Y−
t . The following result is the main result of this paper, it extends Theorem 3.4.1 to

the quantum setting.

Theorem 5.2.4 The image of the quantum cluster algebra At by the injective ring morphism
η is the quantum Grothendieck ring of the category C−

Z
,

η �At : At
∼−→ Kt (C

−
Z

). (5.10)

Moreover, the truncated (q, t)-characters of the Kirillov–Reshetikhin modules which are in
C−
Z

are obtained as quantum cluster variables.

The proof of this Theorem will be developed in the following section. It is mainly based
on Proposition 6.3.1.

Remark 5.2.5 In [37, Theorem 8.4.3], for certain subcategories of C generated by a finite
number of fundamental modules, Qin proved that there existed an isomorphism between
the quantum Grothendieck ring of the category and a quantum cluster algebra, which iden-
tifies classes of Kirillov–Reshetikhin modules to cluster variables. It is our understanding
that this identification coincides with the truncated (q, t)-characters in our work. Here, the
isomorphism is given explicitly, and we obtain directly the truncated (q, t)-characters.

6 Quantum cluster algebras and quantumGrothendieck ring

Weprove in this section that the quantumGrothendieck ring of the categoryC−
Z
is isomorphic

to the quantum cluster algebra we have just defined.

6.1 A note on the bar-involution

The bar-involution , as defined in (4.19), is a Z-algebra anti-automorphism of the quantum
torus Yt . The commutative monomials are invariant under this involution.
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On the other hand, the quantum cluster algebra At is also equipped with a Z-linear bar-
involution morphism on its quantum torus T (see [4, Section 6]), which satisfies

t1/2 = t−1/2,

ui,r = ui,r .

As noted in [3, Section 7.1], these definitions are compatible. In our case, they define
exactly the same involution on Y−

t ; the following diagram is commutative:

Y−
t

η−1

Y−
t

T T

η

. (6.1)

From [4, Remark 6.4], all cluster variables are invariant under the bar-involution. Thus,
the images of the quantum cluster variables in At are bar-invariant elements of Y−

t .
We will use the terminology “commutative products”, as in Sect. 4.2 for bar-invariant

elements of the quantum torus T .

6.2 A sequence of vertices

In [24] Hernandez and Leclerc exhibited a particular sequence of mutations in the cluster
algebra A(uuu, G−) (see Sect. 3.4) in order to obtain the truncated q-characters of all the
KR-modules, up to a shift of spectral parameter.

The key idea they used was that at each step of this sequence, the exchange relation was
a T -system equation.

We will recall this sequence of mutations and show that, if applied to the quantum cluster
algebra At , the quantum exchange relations at each step are in fact quantum T -systems
relations, as in (4.6). Recall the height function ξ : I → {0, 1} fixed on the Dynkin diagram
of g in Sect. 2.3. First, fix an order on the columns of G−:

i1, i2, . . . , in, (6.2)

such that if k ≤ l then ξik ≤ ξil (select first the vertices i such that ξi = 0 then the others).
Then, the sequence S is defined by reading each column, from top to bottom, in this order.

Example 6.2.1 We follow Examples 2.4.1 and 2.4.3, g = sl4 and

Î − = (1, 2Z≤0) ∪ (2, 2Z≤0 − 1) ∪ (3, 2Z≤0).

We fix the following order on the columns: 1, 3, 3. Then the sequence S is

S = (1, 0), (1,−2), (1, −4), . . . , (3, 0), (3, −2), (3, −4), . . . , (2, −1), (2, −3), (2,−5), . . . .
(6.3)

6.3 Truncated (q, t)-characters as quantum cluster variables

As in [24], let μS be the sequence of quantum cluster mutations in At indexed by the
sequence of vertices S .
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For all m ≥ 1, let u(m)
i,r be the quantum cluster variable obtained at vertex (i, r) after

applying m times the sequence of mutations μS to the quantum cluster algebra At with
initial seed { ui,r | (i, r) ∈ Î −}. By the quantum Laurent phenomenon, the u(m)

i,r belong to
the quantum torus T . Let

w
(m)
i,r := η(u(m)

i,r ) ∈ Y−
t , (6.4)

where η : T → Y−
t is the isomorphism defined in Lemma 5.2.3.

The following result is an extension of Theorem 3.1 from [24] to the quantum setting.

Proposition 6.3.1 For all (i, r) ∈ Î − and m ≥ 0,

w
(m)
i,r = [W (i)

ki,r ,r−2m]−t , (6.5)

where ki,r is defined in (2.11).
In particular, if 2m ≥ h, this truncated (q, t)-character is equal to its (q, t)-character

and
w

(m)
i,r = [W (i)

ki,r ,r−2m]t . (6.6)

Remark 6.3.2 The sequence of verticesS is infinite. However, in order to compute one fixed
truncated (q, t)-character, one only has to compute a finite number of mutations in the infinite
sequence μS . In [3, Section 7.2], the exact finite sequence needed to compute the (q, t)-
characters of the fundamental representations Vi,r is given explicitly, we will also recall it in
Sect. 7.

Proof We prove this Proposition by induction on m, the number of times the mutation
sequence μS is applied on the initial quantum cluster variables { ui,r | (i, r) ∈ Î −}.

The base step is given noting, as in [24], that the images by the isomorphism η of the
initial quantum cluster variables are indeed truncated (q, t)-characters. For all (i, r) ∈ Î −,

w
(0)
i,r = η(ui,r ) = Ui,r =

∏

k≥0
r+2k≤0

Yi,r+2k ∈ Y−
t .

Thus
w

(0)
i,r = [W (i)

ki,r ,r
]−t . (6.7)

Let m ≥ 0 and (i, r) ∈ Î −. Supposed we have applied m times the mutation sequence
μS , and a (m + 1)th time on all vertices preceding (i, r) in the sequence S , and that all
those previous vertices satisfy (6.5).

We want to write the quantum exchange relation corresponding to the mutation at vertex
(i, r). From the proof of Theorem 3.1 in [24], we know the shape of the quiver just before this
mutation (At and A(uuu, G−) are defined on the same initial quiver and the mutation process
on the quiver is the same for classical and quantum cluster algebras).

As explained in [24, Section 3.2.3], for a general simply laced Lie algebra g, the mutation
process takes place at vertices (i, r) having two (or one if r = −ξi ) in-going arrows from
(i, r ± 2) and outgoing arrows to vertices ( j, s), with j ∼ i . Thus the effect of the mutation
sequence μS on two fixed columns of the quiver is the same as the effect of an iteration of
the mutation sequence on the corresponding quiver of rank 2.

Let us recall the mutation process on the quiver when g is of type A2.
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(1,0)

(1,−2)

(1,−4)

...

(2,−1)

(2,−3)

(2,−5)

...

(1, 0)

(1,-2)

(1,−4)

...

(2,−1)

(2,−3)

(2,−5)

...

(1, 0)

(1,−2)

(1,-4)

...

(2,−1)

(2,−3)

(2,−5)

...

(1, 0)

(1,−2)

(1,−4)

...

(2,−1)

(2,−3)

(2,−5)

...

After an infinite number of mutations (or a sufficiently large one), we start mutating on
the second column.

(1, 0)

(1,−2)

(1,−4)

...

(2,-1)

(2,−3)

(2,−5)

...

(1, 0)

(1,−2)

(1,−4)

...

(2,−1)

(2,-3)

(2,−5)

...

(1, 0)

(1,−2)

(1,−4)

...

(2,−1)

(2,−3)

(2,-5)

...

(1, 0)

(1,−2)

(1,−4)

...

(2,−1)

(2,−3)

(2,−5)

...

Thus, in general, the quantum exchange relation has the form:

u(m+1)
i,r = u(m+1)

i,r+2 u(m)
i,r−2

(
u(m)

i,r

)−1 +
∏

j∼i

u(m+ξi )
j,r−εi

(
u(m)

i,r

)−1
, (6.8)

where u(m)
i,r+2 = 1 if r + 2 ≥ 0 and εi is defined in (2.7), and both terms are commutative

products. This relation can also be written:

u(m+1)
i,r ∗ u(m)

i,r = tαu(m+1)
i,r+2 u(m)

i,r−2 + tβ
∏

j∼i

u(m+ξi )
j,r−εi

, (6.9)

where α, β ∈ 1
2Z.

If we apply η to (6.9), clearly all the u(m)
j,s satisfy the induction hypothesis, but u(m+1)

i,r+2 and

all potential u(m+1)
j,r+1 , if ξi = 1 and j ∼ i , also. Indeed, the vertices (i, r + 2) and ( j, r + 1),

for j ∼ i and ξi = 1, precedes the vertex (i, r) in the mutation sequence S . Thus, we get
the following relation in Y−

t :

η(u(m+1)
i,r ) ∗ [W (i)

ki,r ,r−2m]−t = tα[W (i)
ki,r+2,r−2m]−t [W (i)

ki,r−2,r−2−2m]−t
+tβ

∏

j∼i

[W ( j)
k j,r−εi ,r−1−2m]−t . (6.10)
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Whereas, the corresponding (truncated) quantum T -system relation (4.27) is

[W (i)
ki,r ,r−2m−2]−t ∗ [W (i)

ki,r ,r−2m]−t = tα
′ [W (i)

ki,r −1,r−2m]−t [W (i)
ki,r +1,r−2−2m]−t

+tβ
′ ∏

j∼i

[W ( j)
ki,r ,r−1−2m]−t , (6.11)

where α′, β ′ ∈ 1
2Z are given in (4.25). Note that one has indeed

ki,r+2 = ki,r − 1, ki,r−2 = ki,r + 1, and k j,r−εi = ki,r , for j ∼ i . (6.12)

Let k = ki,r and r ′ = r − 2m. Let us precise how to obtain the coefficients α and β. From
(6.8) and (6.9), α and β are such that the terms

tα[W (i)
k−1,r ′ ]−t [W (i)

k+1,r ′−2]−t ∗
(
[W (i)

k,r ′ ]−t
)−1

, (6.13)

and

tβ
∏

j∼i

[W ( j)
k,r ′−1]−t ∗

(
[W (i)

k,r ′ ]−t
)−1

, (6.14)

are bar-invariant. Thus, if one takes only the dominant monomials of (6.13) and (6.14), they
are bar-invariant:

tαm(i)
k−1,r ′m

(i)
k+1,r ′−2 ∗

(
m(i)

k,r ′
)−1 = t−α

(
m(i)

k,r ′
)−1 ∗ m(i)

k−1,r ′m
(i)
k+1,r ′−2,

tβ
∏

j∼i

m( j)
k,r ′−1 ∗

(
m(i)

k,r ′
)−1 = t−β

(
m(i)

k,r ′
)−1 ∗

∏

j∼i

m( j)
k,r ′−1.

This enables us to compute α and β.

α = 1

2

k−1∑

l=0

⎛

⎝
k−2∑

p=0

Ni,i (2l − 2p) +
k∑

p=0

Ni,i (2l − 2p + 2)

⎞

⎠

= 1

2

k−1∑

l=0

(Ci i (2l + 1) − Ci i (2l − 2k + 3) + Ci i (2l + 3) − Ci i (2l − 2k + 1))

= 1

2
(Ci i (2k + 1) + Ci i (2k − 1)) − Ci i (1).

Thus α = α(i, k) = −1 + 1
2

(
C̃ii (2k − 1) + C̃ii (2k + 1)

)
. And

β = 1

2

∑

j∼i

k−1∑

l=0

k−1∑

p=0

Ni, j (2l − 2p + 1) = 1

2

∑

j∼i

k−1∑

l=0

(
Ci j (2l + 2) − Ci j (2l − 2k + 2)

)

= 1

2

∑

j∼i

⎛

⎜⎝Ci j (2k) − Ci j (0)︸ ︷︷ ︸
=0

⎞

⎟⎠ = 1

2
(Ci i (2k + 1) + Ci i (2k − 1)) , using (2.5).

Hence β = γ (i, k) = 1
2

(
C̃ii (2k − 1) + C̃ii (2k + 1)

)
.

Thus α = α′ and β = β ′, and

η(u(m+1)
i,r ) ∗ [W (i)

k,r ′ ]−t = [W (i)
k,r ′−2]−t ∗ [W (i)

k,r ′ ]−t . (6.15)
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However, [W (i)
k,r ′ ]−t is invertible in the skew-field of fractions Ft of the quantum torus Y−

t
(see Remark 4.1.3). Thus

η(u(m+1)
i,r ) = [W (i)

ki,r ,r−2−2m]−t . (6.16)

This concludes the induction.
Finally, from [9, Corollary 6.14], we know that for all (i, r) ∈ Î −, the monomials m

occurring in the q-character χq(W (i)
k,r ) of the KR-module W (i)

k,r are products of Y ±1
j,r+s , with

0 ≤ s ≤ 2k + h. Moreover, from Theorem 4.4.1, if one writes the (q, t)-character [W (i)
k,r ]t

of this KR-module as a linear combination of Laurent monomials in the variables Yi,s , with
coefficients in Z[t±1], all monomials which occur in this expansion also occur in its q-
character. Thus, if r + 2k + h ≤ 0, the truncated (q, t)-character [W (i)

k,r ]−t is equal to the

(q, t)-character [W (i)
k,r ]t . In particular, for m ≥ h,

w
(m)
i,r = [W (i)

ki,r ,r−2m]t .

��

6.4 Proof of Theorem 5.2.4

Wecan nowproveTheorem5.2.4. This proof is a quantumanalog of the proof of [24, Theorem
5.1]. Naturally, there are technical difficulties brought forth by the non-commutative quantum
tori structure. For example, in our situation, the quantum cluster algebraAt is isomorphic to
the truncated quantum Grothendieck ring Kt (C

−
Z

) only via the isomorphism of quantum tori
η (5.9). In particular, we need the following result.

Lemma 6.4.1 The identification

η′ : ui,r �−→ [W (i)
ki,r ,r

]t . (6.17)

extends to a well-defined injective Z[t±1/2]-algebras morphism

η′ : T → Ft ,

where Ft is the skew-field of fractions of Yt (see Remark 4.1.3).
Moreover, the restriction of η′ to the quantum cluster algebra At has its image in the

quantum torus Yt and the Z[t±1/2]-algebra morphisms η, η′ and π satisfy the following
commutative diagram:

At
η

η′

Y−
t

Yt
π

.

(6.18)

Proof From Proposition 6.3.1, for all (i, r) ∈ Î −, the full (q, t)-character [W (i)
ki,r ,r−2h]t is

obtained as the image of the cluster variable sitting at vertex (i, r) after applying h times the
mutation sequence S (which is locally a finite sequence of mutations):

η(u(h)
i,r ) = [W (i)

ki,r ,r−2h]t . (6.19)

In particular, for any two vertices (i, r), ( j, s), the variables u(h)
i,r and u(h)

j,s belong to a common

cluster and t-commute. Thus the (q, t)-characters [W (i)
ki,r ,r−2h]t t-commute. As the quantum

torus Yt is invariant by shift of quantum parameters (Y j,s �→ Y j,s+2), the (q, t)-characters
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[W (i)
ki,r ,r

]t also t-commute for the product ∗. Their t-commutation relations are determined

by their dominant monomials, which are η(ui,r ). Thus the [W (i)
ki,r ,r

]t satisfy exactly the same
t-commutations relations are the ui,r . This proves the first part of the lemma.

Let X be a cluster variable of At obtained from the initial seed uuu = {ui,r } via a finite
sequence of mutations σ . We want to show that η′(X) ∈ Yt . As the sequence of mutations
σ is finite, it will only involve a finite number of cluster variables. Now apply h times the
mutation sequence μS to the initial seed so as to replace each cluster variable considered
by u(h)

i,r (again, we only need a finite number of mutations). Let us summarize:

η′(ui,r ) = [W (i)
ki,r ,r

]t , η(u(h)
i,r ) = [W (i)

ki,r ,r−2h]t .

Let X ′ be the cluster variable obtained by applying to this new seed the sequence of mutations
σ . By construction, η(X ′) is equal to η′(X), up to the downward shift of spectral parameters
by 2h: every variable Y ±1

j,s is replaced by Y ±1
j,s−2h . In particular, η′(X) ∈ Yt .

Next, the commutation of diagram (6.18) is verified as it is satisfied on the initial seed
uuu = {ui,r }. ��

Let Rt be the image of the quantum cluster algebra At

Rt := η(At ) ∈ Y−
t . (6.20)

Thus the proof of Theorem 5.2.4 amounts to the following.

Proposition 6.4.2
Rt = Kt (C

−
Z

).

Proof The inclusion Kt (C
−
Z

) ⊂ Rt is essentially contained in Proposition 6.3.1. For the
reverse inclusion, the main idea is to use the characterization of the quantum Grothendieck
ring as the intersection of kernel of operators, called deformed screening operators. We show
by induction on the length of a sequence of mutations that the images of all cluster variables
belong to those kernels. The images of the initial cluster variables ui,r clearly belong to
the quantum Grothendieck ring, and the screening operators being derivations, the exchange
relations force the newly created cluster variables to be in the intersection of the kernels too.
Let us detail this.

Recall from Lemma 4.5.1 that the quantum Grothendieck ring Kt (C
−
Z

) is algebraically
generated by the truncated (q, t)-characters of the fundamental modules:

Kt (C
−
Z

) =
〈
[L(Yi,r )]−t | (i, r) ∈ Î −〉 .

By Proposition 6.3.1, for all (i, r) ∈ Î −,

[L(Yi,r )]−t = w
(

r−ξi
2 )

i,ξi
= η

(
u

(
r−ξi
2 )

i,ξi

)
∈ η(At ). (6.21)

Which proves the first inclusion:
Kt (C

−
Z

) ⊂ Rt . (6.22)

We prove the reverse inclusion as explained just above. As explained in Sect. 4.3, Her-
nandez proved in [17] that for all i ∈ I there exists operators Si,t : Yt → Yi,t , where Yi,t is
a Yt -module, which are Z[t±1]-linear and derivations, such that

⋂

i∈I

ker(Si,t ) = Kt (CZ). (6.23)
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Notice that these operators characterize the quantum Grothendieck ring Kt (CZ) and not
Kt (C

−
Z

). Hence the need for Lemma 6.4.1.
Let us prove by induction that all cluster variables Z in At satisfy η′(Z) ∈ Kt (CZ).
Let Z be a quantum cluster variable in At . If Z belongs to the initial cluster variables,

Z = ui,r and
η′(Z) = η′(ui,r ) = [Wki,r ,r ]t ∈ Kt (CZ). (6.24)

If not, then by induction on the length of the sequence μ, one can assume that Z is obtained
via a quantum exchange relation

Z ∗ Z1 = tα M1 + tβ M2, (6.25)

where Z1 is a quantum cluster variable ofAt , M1 and M2 are quantum cluster monomials of
At and

η′(Z1), η
′(M1), η

′(M2) ∈ Kt (C ).

Apply η′ to (6.25):
η′(Z) ∗ η′(Z1) = tαη′(M1) + tβη′(M2). (6.26)

For all i ∈ I , apply the derivation Si,t :

Si,t
(
η′(Z) ∗ η′(Z1)

) = Si,t
(
η′(Z)

) ∗ η′(Z1) + η′(Z) ∗ Si,t
(
η′(Z1)

)

= tα Si,t
(
η′(M1)

)+ tβ Si,t
(
η′(M2)

)
.

However, by hypothesis,

Si,t
(
η′(Z1)

) = 0,

Si,t
(
η′(M1)

) = 0,

Si,t
(
η′(M1)

) = 0.

Moreover, η′(Z1) �= 0 and the images of the screening operator is in a free module over Yt

by Lemma 4.3.1. Thus Si,t
(
η′(Z)

) = 0, for all i ∈ I . Hence

η′(Z) ∈ Kt (C
−
Z

),

which concludes the induction. We have proven

η′(At ) ⊂ Kt (CZ).

Then, by the commutation of the diagram (6.18) in Lemma 6.4.1,

Rt = η(At ) ⊂ Kt (C
−
Z

).

Which concludes the proof of Proposition 6.4.2, and thus of Theorem 5.2.4. ��

7 Application to the proof of an inclusion conjecture

In this section, we use the quantum cluster algebra structure of the Grothendieck ring C−
Z

to
prove that the quantum Grothendieck ring Kt (O+

Z
) defined in [3] contains Kt (C

−
Z

). In other
words, we prove Conjecture 1 in [3]. The result was already proven in that paper in type A,
but the core argument used was different.
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7.1 The quantumGrothendieck ring Kt(O+
Z
)

The quantum Grothendieck ring Kt (O+
Z

) is defined as a quantum cluster algebra on the full
infinite quiver �, of which the semi-infinite quiver G− is a subquiver.

Let us recall some notations. For all i, j ∈ I , Fi j : Z → Z is the odd function such that,
for all m ≥ 0,

Fi j (m) = −
∑

k≥1
m≥2k−1

C̃i j (m − 2k + 1). (7.1)

Let Tt be the quantum torus defined as the Z[t±1/2]-algebra generated by the variables z±
i,r ,

for (i, r) ∈ Î , with a non-commutative product ∗, and the t-commutation relations

zi,r ∗ z j,s = tFi j (s−r)z j,s ∗ zi,r ,
(
(i, r), ( j, s) ∈ Î

)
. (7.2)

Recall also from [3, Proposition 5.2.2] the inclusion of quantum tori J (with a slight shift of
parameters on the zi,r ):

J :
{ Yt −→ Tt ,

Yi,r �−→ zi,r
(
zi,r+2

)−1
.

. (7.3)

Let � be the infinite skew-symmetric Î × Î -matrix:

�(i,r),( j,s) = Fi j (s − r),
(
(i, r), ( j, s) ∈ Î

)
. (7.4)

From [3], the quiver� and the skew-symmetricmatrix� forma compatible pair. LetAt (�,�)

be the associated quantum cluster algebra. Then, as in [3, Definition 6.3.5],

Kt (O+
Z

) := At (�,�)⊗̂E, (7.5)

where E is a commutative ring and the completion allows for certain countable sums.

7.2 Intermediate quantum cluster algebras

The general idea is to see the quantum cluster algebraAt as a “sub-quantum cluster algebra”
of At (�,�) (this term is not well-defined). However, as in Sect. 6.4 and contrary to the
aforementioned proof, as we are dealing with quantum cluster algebras in our setting, this is
not done trivially. Mainly, one notices that the map

T −→ Tt

ui,r �−→ zi,r ,

is not a well-defined inclusion of quantum tori, as the generators ui,r and zi,r do not satisfy
the same t-commutation relations.

First, consider the subquiver �− of � of index set

Î −
≤2 := Î ∩ {(i, r) | i ∈ I , r ≤ 2}, (7.6)

such that the vertices (i, r), with r > 0 are frozen. To summarize, for ξi = 0 and j ∼ i :
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� =

...

(i, 2)

(i, 0)

(i,−2)

...

...

( j, 1)

( j,−1)

...

, �− =

(i, 2)

(i, 0)

(i,−2)

...

(j, 1)

( j,−1)

...

, G− =

(i, 0)

(i,−2)

...

( j,−1)

...

.

The quivers � and �− are only connected by coefficients (as in [14, Definition 4.1]), thus
by [14, Theorem 4.5] the inclusion of seeds (�−,�) ⊂ (�,�) induces an inclusion of the
quantum cluster algebra At (�

−,�) into the quantum cluster algebra of At (�,�).
Now we need to link the quantum cluster algebrasAt andAt (�

−,�). In order to do that,
we use a result from [15], which deals with graded cluster algebras.

Definition 7.2.1 [15] A quantum cluster seed (B,�) is graded if there exists an integer
column vector G such that, for all mutable indices k, the kth row of B, B j satisfies B j G = 0.

Then, the G-degree of the initial variables are set by the vector G: for all cluster variables
Xk in the initial cluster X̄ , degG(Xk) = Gk .

The grading condition is equivalent to the following. For all mutable variables Xk , the
sum of the degrees of all variables with arrows to Xk is equal to the sum of the degrees of
all variables with arrows coming from Xk , i.e. exchange relations are homogeneous. Hence,
each cluster variable has a well-defined degree.

Let us start by considering the quantum cluster algebraAt (�
−, L), built on the quiver�−,

and specializing the frozen variables to 1. This quantum cluster algebra is clearly isomorphic
to At , and is a graded quantum cluster algebra of grading G = 0.

Next, for all i ∈ I , we apply the process of [15, Theorem 4.6] to add frozen variables fi ,
while twisting the t-commutation relations. Let

ui ( j, s) = δi, j ,
(
( j, s) ∈ Î −

≤2

)
(7.7)

and
t i ( j, s) = −Fi j (2 − s − ξi ),

(
( j, s) ∈ Î −

≤2

)
, (7.8)

with ξ : I → {0, 1} the height function, fixed in Sect. 2.3.

Lemma 7.2.2 For all i ∈ I , ui and ti are gradings for the ice quiver �−.

Proof For all ( j, s) ∈ Î −, let B( j,s) be the ( j, s)th “row” of the Î −
≤2 × Î −

≤2-skew-symmetric
matrix encoding the adjacency of the ice quiver �−.
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For all i ∈ I ,

B( j,s)ui =
∑

(k,r)∈ Î −
≤2

B( j,s)(k, r)ui (k, r)

= ui ( j, s + 2) − ui ( j, s − 2) +
∑

k∼ j

(
ui (k, s − 1) − ui (k, s + 1)

)

= δi, j − δi, j +
∑

k∼ j

(
δi,k − δi,k

) = 0.

And

B( j,s)t i =
∑

(k,r)∈ Î −
≤2

B( j,s)(k, r)t i (k, r)

= t i ( j, s + 2) − t i ( j, s − 2) +
∑

k∼ j

(
t i (k, s − 1) − t i (k, s + 1)

)

= −Fi j (−s − ξi ) + Fi j (4 − s − ξi ) +
∑

k∼ j

(−Fik(3 − s − ξi ) + Fik(1 − s − ξi ))

= −C̃i j (3 − s − ξi ) − C̃i j (1 − s − ξi ) +
∑

k∼ j

C̃ik(2 − s − ξi ) = 0,

from Lemma 2.2.4. ��

Then, by [15, Theorem 4.6] (applied n times), the following is a valid set of initial data
for a (multi-)graded quantum cluster algebra At (ũuu, B̃, L̃, G̃), where

• or all (i, r) ∈ Î −
≤2,

ũi,r =
{

ui,r fi if r ≤ 0,
fi otherwise

. (7.9)

and ũuu = {ũi,r }(i,r)∈ Î −
≤2
.

• B̃ = B, the Î −
≤2 × Î −

≤2-skew-symmetric adjacency matrix of the quiver �−.
• L̃ encodes the t-commutations relations, such that, for all (i, r) ∈ Î −, and j ∈ I ,

f j ∗ ui,r = t t j (i,r)ui,r ∗ f j , (7.10)

and the f j pairwise commute.
• G̃ is a multi-grading, i.e. instead of being an integer column vector, each entry in G̃ is in

the lattice ZI . It is defined by, for all (i, r) ∈ Î −
≤2,

G̃(ũi,r ) = ei ∈ Z
I , (7.11)

or degi = ui , for all i ∈ I .
This is indeed the construction of [15], with the initial grading on At (�

−, L) being
G ≡ 0. The new quantum cluster algebra is denoted by Au,t

t (�−, L), to show that it is a
twisted version of At (�

−, L).

Proposition 7.2.3 The quantum cluster algebra At (ũuu, B̃, L̃) is isomorphic to the quantum
cluster algebra At (�

−,�).
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Proof The rest of the data being the same, we only have to check that the Î −
≤2 × Î −

≤2-skew-

symmetric matrices L̃ and �| Î −
≤2

are equal.

From (7.4), for all
(
(i, r), ( j, s) ∈ Î −

≤2

)
,

�((i, r), ( j, s)) = Fi j (s − r).

And L̃ is defined as
ũi,r ∗ ũ j,s = t L̃((i,r),( j,s))ũ j,s ∗ ũi,r . (7.12)

Hence,

L̃ ((i, r), ( j, s)) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

L ((i, r), ( j, s)) + t i ( j, s) − t j (i, r) , if (i, r), ( j, s) ∈ Î −,

t i ( j, s) , if

[
(i, r) = (i,−ξi + 2)
( j, s) ∈ Î − ,

0 , if

[
(i, r) = (i,−ξi + 2)
( j, s) = ( j,−ξ j + 2)

.

First, notice that, for all i, j ∈ I , m ∈ Z,

Ni j (m) = 2Fi j (m) − Fi j (m + 2) − Fi j (m − 2). (7.13)

This result is proven in [3], in the course of the proof of Proposition 5.2.2. Thus, for all
(i, r), ( j, s) ∈ Î −,

L ((i, r), ( j, s)) =
∑

k≥0
r+2k≤0

∑

l≥0
s+2l≤0

Ni j (s + 2l − r − 2k)

=
∑

k≥0
r+2k≤0

(
Fi j (s − r − 2k) − Fi j (s − r − 2k − 2)

+Fi j (−ξi − r − 2k) − Fi j (−ξ j − r − 2k + 2)
)

= Fi j (s − r) − Fi j (s + ξi − 2) + Fi j (−ξ j + ξi )︸ ︷︷ ︸
=0

−Fi j (−ξ j − r + 2)

= Fi j (s − r) − t i ( j, s) + t j (i, r).

And of course, for all i ∈ I , ( j, s) ∈ Î −,

�((i,−ξi + 2), ( j, s)) = Fi j (s + ξi − 2) = t i ( j, s).

Thus, one had indeed,
L̃ = �| Î −

≤2
. (7.14)

��
From now on, we will use the notations zzz = {zi,r , f j }(i,r)∈ Î −, j∈I for the initial clusters

variables of both At (�
−,�) and Au,t

t (�−, L).

Remark 7.2.4 • This result is natural, if we look at what the different initial cluster variables
mean in terms of �-weights. From (3.10), for all (i, r) ∈ Î −, the cluster variable ui,r

can be identified with the (commutative) dominant monomial Ui,r = ∏
k≥0

r+2k≤0
Yi,r+2k .

Whereas, the quantum tori Yt and Tt are compared via the inclusion J of (7.3)

J : Yi,r �−→ zi,r
(
zi,r+2

)−1
, ∀(i, r) ∈ Î .
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1478 L. Bittmann

Thus, the link between the variables ui,r and zi,r is the following:

ui,r ≡ zi,r ( fi )
−1 , (7.15)

with the previous convention fi = zi,−ξi +2. More precisely, there are different maps of
quantum tori:

T

η ∼

Tt

Y−
t Yt

J

, (7.16)

where identification (7.15) is the resulting dotted map, which we will denote by ρ:

ρ : T → Tt . (7.17)

The quantum cluster algebra Au,t
t (�−, L) was built with this identification in mind.

• This process could also be seen as a quantumversion of themulti-grading homogenization
process of the seed (uuu, G−), as in [16, Lemma 7.1], where the multi-grading is defined
by (7.11).

7.3 Inclusion of quantumGrothendieck rings

In the section, we prove that the quantum Grothendieck ring Kt (O+
Z

), or more precisely, the
quantum cluster algebra At (�,�) contains the quantum Grothendieck ring Kt (CZ), which
is the statement of Conjecture 1 in [3]. Recalled that in [3], the ring Kt (O+

Z
) was defined

as a completion of the quantum cluster algebra At (�,�), but the aim was to see it as a
quantum Grothendieck ring for the category of representations O+

Z
from [21] and [25]. As

this category contains the category CZ, it was expected for the quantum Grothendieck ring
Kt (O+

Z
) to contain Kt (CZ).

In order to prove this result we will actually prove Conjecture 2 of the same paper, which
is a stronger result. We state it as follows.

Theorem 7.3.1 The (q, t)-characters of all fundamental representations in CZ are obtained
as quantum cluster variables in the quantum cluster algebra At (�,�).

More precisely, we show that for all i ∈ I , there exists a specific finite sequence of
mutations Si in At (�,�) such that, if applied to the initial seed {z j,s}( j,s)∈ Î , the cluster
variable sitting at vertex (i,−ξi ) is the image by J (of (7.3)) of the (q, t)-character of the
fundamental module [L(Yi,−ξi −2h′)]t , where

h′ = �h

2
�, (7.18)

with h the Coxeter number of the simple Lie algebra g.
Let us define the sequence Si . Let (i1, i2, . . . , jn) be an ordering of the columns of � as

in (6.2), such that i1 = i (take first all columns j such that ξ j = ξi ). The sequence Si is a
sequence of vertices of�, and more precisely of�−, defined as follows. First read all vertices
(i1, r) for −2h′ + 2 ≤ r ≤ 0, from top to bottom, then all (i2, r), with −2h′ + 2 ≤ r ≤ 0,
and so on, then read again all vertices (i1, r) for −2h′ + 4 ≤ r ≤ 0, and continue browsing
the columns successively, until at the last step you only read the vertex (i,−ξi ).

Note that applying this sequence Si of mutations on the quivers �− or G− has exactly
the same effect on the cluster variable sitting at vertex (i,−ξi ) than applying h′ times the
infinite sequence S from Sect. 6.2.
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Example 7.3.2 For g of type D4, h = 6, then h′ = 3. Let us give explicitly the sequence
S2 starting on column 2. For simplicity of notations, we assume that the height function is
chosen such that ξ2 = 0. Then the sequence S2 has 15 steps:

S2 = (2, 0), (2,−2), (2,−4), (1,−1), (1,−3), (3,−1), (3,−3), (4,−1), (4,−3),

(2, 0), (2,−2), (1,−1)(3,−1)(4,−1)(2, 0). (7.19)

Let r0 = −ξi − 2h′. Let χ̃i,r0 ∈ Tt be the quantum cluster variable obtained at ver-
tex (i,−ξi ) after applying the sequence of mutations Si to the quantum cluster variable
At (�

−,�) with initial seed {z j,s, fk}( j,s)∈ Î −,k∈I .

Proposition 7.3.3 As an element of the quantum torus Tt , χ̃i,r0 belongs to the image of the
inclusion morphism J .

Moreover,
χ̃i,r0 = J

([L(Yi,r0)]t
)
. (7.20)

Proof The cluster variable χ̃i,r0 is a variable of the quantum cluster algebra At (�
−,�),

which is isomorphic to Au,t
t (�−, L) from Proposition 7.2.3. By [15, Corollary 4.7], there is

a bijection between the quantum cluster variables of Au,t
t (�−, L) and those of At (�

−, L)

(where the frozen variables are specialized to 1). With notations from Sect. 6.3, u(h′)
i,−ξi

is the
cluster variable of At (�

−, L) obtained at vertex (i,−ξi ) after applying the mutations of the
sequence Si . Also from [15, Corollary 4.7], we know that there exists integers a j ∈ Z such
that

χ̃i,r0 = ρ
(

u(h′)
i,−ξi

)∏

j∈I

f
a j
j , (7.21)

written as a commutative product (both χ̃i,r0 and u(h′)
i,−ξi

are bar-invariant), with ρ defined

in (7.17). The term u(h′)
i,−ξi

is a Laurent polynomial in the variables u j,s , which satisfy

ρ(u j,s) = z j,s( f j )
−1 from (7.15). Thus expression (7.21) is a way of writing χ̃i,r0 as a

Laurent polynomial in the initial variables {z j,s, fk}. However, one can write χ̃i,r0 = N/D,
where N is the Laurent polynomial in the cluster variables {z j,s, fk}, with coefficients in
Z[t±1/2] and not divisible by any of the fk , and D is a monomial in the non-frozen variables
{z j,s}. Thus∏ j∈I f

a j
j is the smallest monomial such that

ρ
(

u(h′)
i,−ξi

)∏

j∈I

f
a j
j

contains only non-negative powers of the frozen variables fk . Moreover, from Proposi-
tion 6.3.1,

η(u(h′)
i,−ξi

) = w
(h′)
i,−ξi

= [L(Yi,r0)]t . (7.22)

However, all Laurent monomials occurring in [L(Yi,r0)]t already occurred in the q-
character χq(L(Yi,r0)), as the (q, t)-character [L(Yi,r0)]t has positive coefficients. Indeed,
the (q, t)-characters of fundamental modules have been explicitly computed and have been
found to have non-negative coefficients (in [32] for types A and D and [34] for type E).

From [9], all monomials in χq(L(Yi,r0)) are products of Y ±1
j,s , with s ≤ r0 + h, but by

definition of r0, r0 + h ≤ 0, and the term with the highest quantum parameter being the anti-
dominant monomial Y −1

i,r0+h
, where : I → I is the involutivemap such thatω0(α j ) = −α j ,

with ω0 the longest element of the Weyl group of g (no relation with the bar-involution of
Sect. 6.1).
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Consider the change of variables, for ( j, s) ∈ Î −,

y j,s = η−1(Y j,s) =
{

u j,s
u j,s+2

, if s + 2 ≤ 0,

u j,s, otherwise
. (7.23)

Thus

ρ(y j,s) =
{ z j,s

z j,s+2
, if s + 2 ≤ 0,

z j,s
f j

, otherwise
. (7.24)

All monomials occurring in [L(Yi,r0)]t are commutative monomials in the variables Y ±1
j,s ,

with s ≤ r0 + h ≤ 0. Moreover, the only monomials in which the variables Y ±1
j,s , with

s + 2 ≥ 0, occur are the anti-dominant monomial Y −1
i,r0+h

, and any possible monomial in

which some variable Y j,r0+h−1 occurs. But for such a monomial m, the variable Y ±1
j,s with

the highest s in m occurs with a negative power in m (the monomial m is “right-negative”,
as from [9, Lemma 6.5]), thus the variable Y j,r0+h−1 also occurs with a negative power. The
image by ρ ◦ η−1 of any monomial in the variables Y ±1

j,s , with s + 2 ≤ 0 is a monomial in

the variables {z±1
j,s} (without frozen variables). Thus, the image

ρ
(

u(h′)
i,−ξi

)
= ρ ◦ η−1 ([L(Yi,r0)]t

)

is a Laurent polynomial with only positive powers of the variables f j . Necessarily,∏
j∈I f

a j
j = 1, and (7.21) becomes

χ̃i,r0 = ρ
(

u(h′)
i,−ξi

)
.

Finally, from the diagram (7.16),

χ̃i,r0 = ρ
(

u(h′)
i,−ξi

)
= J

(
η
(

u(h′)
i,−ξi

))
= J

([L(Yi,r0)]t
)
,

which concludes the proof. ��
Remark 7.3.4 At some point in the proof we used the fact that the (q, t)-characters of the
fundamental modules had non-negative coefficients. Note that this part of the proof could
easily be extended to non-simply laced types, as the (q, t)-characters of their fundamental
representations have also been explicitly computed, and also have non-negative coefficients
(in types B and C , the (q, t)-characters of all fundamental representations are equal to their
respective q-character, and all coefficients are actually equal to 1 [19, Proposition 7.2], and
see [18] for type G2 and [19] for type F4).

Corollary 7.3.5 For all (i, r) ∈ Î there exists a quantum cluster variable χ̃i,r in the quantum
cluster algebra At (�,�) such that

χ̃i,r = J
([L(Yi,r )]t

)
.

Proof For all (i, r) ∈ Î , let χ̃i,r be the cluster variable of the quantumcluster algebraAt (�,�)

obtained at vertex (i, r + 2h′) after applying the sequence of mutations Si , but starting at
vertex (i, r + 2h′) instead of (i,−ξi ). Consider the change of variables in At (�,�):

s : z j,s �−→ z j,s+r0−r , ∀( j, s) ∈ Î . (7.25)
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The quantum cluster algebra At (�,�) is invariant under this shift s, and this change
of variables is clearly invertible (s−1(z j,s) = z j,s+r−r0 ). One has s(zi,r ) = zi,r0 , and
s(zi,r+2h′) = zi,−ξi , thus s

(
χ̃i,r
) = χ̃i,r0 , and from Proposition 7.3.3,

χ̃i,r = s−1 (χ̃i,r0

) = s−1 (J
([L(Yi,r0)]t

))
.

However, from the definition of the map J in (7.3), the shift s also acts as a change of
variables in the quantum torus Yt , s : Y j,u �−→ Y j,u+r0−r . Hence,

χ̃i,r = J
([L(Yi,r )]t

)
.

��
Thus we have proven Theorem 7.3.1.

Remark 7.3.6 • When Conjecture 2 was formulated in [3], a recent positivity result of
Davison [8] was mentioned there. This work proves the so-called “positivity conjecture”
for quantum cluster algebras, which states that the coefficients of the Laurent polynomials
intowhich the cluster variables decompose from the Laurent phenomenon are in fact non-
negative. This is an important result, but also a difficult one, and it is not actually needed
in order to obtain our result.

• One can note from this proof that we know a close bound on the number of mutations
needed in order to compute the (q, t)-character of a fundamental module. For g a simple-
laced simple Lie algebra of rank n and of (dual) Coxeter number h, if h′ = �h/2�, then
the number of steps is lower than

n
h′(h′ + 1)

2
. (7.26)

We have chosen to go into details on the number of steps required for this process because
it makes sense from an algorithmic point of view to know its complexity.
One can compare this algorithm to Frenkel and Mukhin [9] to compute q-characters. As
explained in [34], when trying to compute q-characters of fundamental representations
of large dimension (for example, in type E8, the q-character of the 5th fundamental
representation has approximately 6.4× 230 monomials), one encounters memory issues.
Indeed, this algorithm has to keep track of all the previously computed terms. This
advantage of the cluster algebra approach is that one only had to keep the seed inmemory.

8 Explicit computation in typeD4

For g of type D4, with the height function ξ2 = 0, ξ1 = ξ3 = ξ4 = 1, let us compute the
(q, t)-character of the fundamental representation L(Y2,−6) as a quantum cluster variable
of the quantum cluster algebra At (�

−,�), using the algorithm presented in the previous
Section.

From Example 7.3.2, the sequence of mutation we have to apply to the initial seed is

S2 = (2, 0), (2,−2), (2,−4), (1,−1), (1,−3), (3,−1), (3,−3), (4,−1), (4,−3),

(2, 0), (2,−2), (1,−1)(3,−1)(4,−1)(2, 0).

One can notice that the required number of steps is indeed lower than 24, which was the
bound given in (7.26).

This sequence of mutations is applied to the quiver �−:
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(2,2)

(1,1) (3,1) (4,1)

(2, 0)

(1,−1) (3,−1) (4,−1)

(2,−2)

(1,−3) (3,−3) (4,−3)

(2,−4)

(1,−5) (3,−5) (4,−5)

(2,−6)

Using the latest version (as of January 2019) of Bernhard Keller’s wonderful quiver muta-
tion applet, we were able to compute the mutations and the quantum cluster variables as
Laurent polynomials in the variables {zi,r , f j }(i,r)∈ Î , j∈I . The quiver obtained after the sec-
ond to last mutation is the following:

(2,2)

(1,1) (3,1) (4,1)

(2, 0)

(1,−1) (3,−1) (4,−1)

(2,−2)

(1,−3) (3,−3) (4,−3)

(2,−4)

(1,−5) (3,−5) (4,−5)

(2,−6)
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The quantum cluster variable obtained after the last mutation at (2, 0) is:

z(3)
2,0 = z2,−6

(
z2,−4

)−1 + z1,−5
(
z1,−3

)−1 (
z2,−4

)−1
z2,−2z3,−5

(
z3,−3

)−1
z4,−5

(
z4,−3

)−1

+ (z1,−3
)−1

z1,−1z3,−5
(
z3,−3

)−1
z4,−5

(
z4,−3

)−1

+ z1,−5
(
z1,−3

)−1 (
z3,−3

)−1
z3,−1z4,−5

(
z4,−3

)−1

+ z1,−5
(
z1,−3

)−1
z3,−5

(
z3,−3

)−1 (
z4,−3

)−1
z4,−1

+ (z1,−3
)−1

z1,−1z2,−4
(
z2,−2

)−1 (
z3,−3

)−1
z3,−1z4,−5

(
z4,−3

)−1

+ (z1,−3
)−1

z1,−1z2,−4
(
z2,−2

)−1
z3,−5

(
z3,−3

)−1 (
z4,−3

)−1
z4,−1

+ z1,−5
(
z1,−3

)−1
z2,−4

(
z2,−2

)−1 (
z3,−3

)−1
z3,−1

(
z4,−3

)−1
z4,−1

+ (z1,−3
)−1

z1,−1
(
z2,−4

)2 (
z2,−2

)−2 (
z3,−3

)−1
z3,−1

(
z4,−3

)−1
z4,−1

+ (z2,−2
)−1

z2,0z4,−5
(
z4,−1

)−1 + (z2,−2
)−1

z2,0z3,−5
(
z3,−1

)−1

+ z1,−5
(
z1,−1

)−1 (
z2,−2

)−1
z2,0 +

(
t + t−1

)
z2,−4

(
z2,−2

)−2
z2,0

+ z1,−3
(
z1,−1

)−1 (
z2,−2

)−2 (
z2,0
)2

z3,−3
(
z3,−1

)−1
z4,−3

(
z4,−1

)−1

+ z4,−5
(
z4,−3

)−1 (
z4,−1

)−1
f4 + z3,−5

(
z3,−3

)−1 (
z3,−1

)−1
f3

+ z1,−5
(
z1,−3

)−1 (
z1,−1

)−1
f1 + (z1,−3

)−1
z2,−4

(
z2,−2

)−1
f1

+ z2,−4
(
z2,−2

)−1 (
z3,−3

)−1
f3 + z2,−4

(
z2,−2

)−1 (
z4,−3

)−1
f4

+ (z1,−1
)−1 (

z2,−2
)−1

z2,0z3,−3
(
z3,−1

)−1
z4,−3

(
z4,−1

)−1
f1

+ z1,−3
(
z1,−1

)−1 (
z2,−2

)−1
z2,0

(
z3,−1

)−1
z4,−3

(
z4,−1

)−1
f3

+ z1,−3
(
z1,−1

)−1 (
z2,−2

)−1
z2,0z3,−3

(
z3,−1

)−1 (
z4,−1

)−1
f4

+ (z1,−1
)−1 (

z3,−1
)−1

z4,−3
(
z4,−1

)−1
f1 f3 + z1,−3

(
z1,−1

)−1 (
z3,−1

)−1 (
z4,−1

)−1
f3 f4

+ (z1,−1
)−1

z3,−3
(
z3,−1

)−1 (
z4,−1

)−1
f1 f4

+ (z1,−1
)−1

z2,−2
(
z2,0
)−1 (

z3,−1
)−1 (

z4,−1
)−1

f1 f3 f4 + (z2,0
)−1

f2.

Here no frozen variable appear when z(3)
2,0 is written is the form (7.21), and this quantum

cluster variable can also be written as:

z(3)
2,0 =J

(
Y2,−6 + Y1,−5

(
Y2,−4

)−1
Y3,−5Y4,−5

+ (Y1,−3
)−1

Y3,−5Y4,−5 + Y1,−5
(
Y3,−3

)−1
Y4,−5 + Y1,−5Y3,−5

(
Y4,−3

)−1

+ (Y1,−3
)−1

Y2,−4
(
Y3,−3

)−1
Y4,−5 + (Y1,−3

)−1
Y2,−4Y3,−5

(
Y4,−3

)−1

+ Y1,−5Y2,−4
(
Y3,−3

)−1 (
Y4,−3

)−1 + (Y1,−3
)−1 (

Y2,−4
)2 (

Y3,−3
)−1 (

Y4,−3
)−1

+ (Y2,−2
)−1

Y4,−5Y4,−3 + (Y2,−2
)−1

Y3,−5Y3,−3 + Y1,−5Y1,−3
(
Y2,−2

)−1

+ (t + t−1) Y2,−4
(
Y2,−2

)−1 + Y1,−3
(
Y2,−2

)−2
Y3,−3Y4,−3

+ Y4,−5
(
Y4,−1

)−1 + Y3,−5
(
Y3,−1

)−1 + Y1,−5
(
Y1,−1

)−1

+ (Y1,−3
)−1 (

Y1,−1
)−1

Y2,−4 + Y2,−4
(
Y3,−3

)−1 (
Y3,−1

)−1 + Y2,−4
(
Y4,−3

)−1 (
Y4,−1

)−1

+ (Y1,−1
)−1 (

Y2,−2
)−1

Y3,−3Y4,−3 + Y1,−3
(
Y2,−2

)−1 (
Y3,−1

)−1
Y4,−3

+ Y1,−3
(
Y2,−2

)−1
Y3,−3

(
Y4,−1

)−1 + (Y1,−1
)−1 (

Y3,−1
)−1

Y4,−3

+ Y1,−3
(
Y3,−1

)−1 (
Y4,−1

)−1 + (Y1,−1
)−1

Y3,−3
(
Y4,−1

)−1
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+ (Y1,−1
)−1

Y2,−2
(
Y3,−1

)−1 (
Y4,−1

)−1 + (Y2,0
)−1
)

= J
([L(Y2,−6)]t

)
.

Remark 8.0.7 Note here that the coefficient of Y2,−4
(
Y2,−2

)−1 is t + t−1. This coefficient
is actually the only coefficient of [L(Y2,−6)]t to not be equal to 1. The quantum cluster
variables being bar-invariant, all coefficients in the decomposition of the cluster variables
into sums of commutative polynomials in the variables Y ±1

i,r are symmetric polynomials in

t±1 (P(t−1) = P(t)). Thus this is the only coefficient that could have been different from
the corresponding one in [L(Y2,−6)]t , as it could also have been equal to 2, or any tk + t−k .
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