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Abstract
In this paper, we treat the estimate on exponential sums over cubes of primes in short intervals,
and improve a previous bound of Kumchev (in: Number Theory: Arithmetic in Shangri-La
(Proc. China-Japan Seminar Number Theory), pp. 116–131, World Scientific, Singapore,
2013). Moreover, we present some applications to the cubic Waring–Goldbach problem.
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1 Introduction

Let �(n) be the von Mangoldt function, 2 ≤ y ≤ x , and e(z) = exp(2π iz). In this note, we
pursue bounds for exponential sums over cubes of primes of the form

f (α; x, y) =
∑

x<n≤x+y

�(n)e(n3α).

When y = xθ with θ < 1, such exponential sums play a key role in the study of additive
problems with almost equal cubes of primes (see [7,8,11,13]).

By Dirichlet’s lemma on Diophantine approximations, every real number α ∈ [1/Q, 1+
1/Q] has a rational approximation a/q , where a and q are integers subject to

1 ≤ q ≤ Q, (a, q) = 1, |α − a/q| ≤ (qQ)−1. (1.1)
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For a given positive parameter P with 1 < P < Q/2, define

M(P) =
⋃

1≤q≤P

⋃

1≤a≤q
(a,q)=1

{
α : α = a/q + λ, |λ| ≤ (qQ)−1

}
,

and denote by m(P) = [1/Q, 1 + 1/Q]\M(P). In the terminology of the circle method,
M(P) is a set of major arcs and m(P) is the respective set of minor arcs. The first goal of
this paper is to establish the following bound of f (α; x, y) on sets of minor arcs.

Theorem 1 Let 8
9 < θ ≤ 1 and 0 < ρ ≤ min

( 3θ−2
12 , 9θ−8

6

)
. Then for any fixed ε > 0, one

has

sup
α∈m(P)

∣∣ f
(
α; x, xθ

)∣∣ � xθ−ρ+ε + xθ+εP−1/2.

To prove Theorem 1, we shall use Heath–Brown’s identity for �(n) to divide f (α; x, xθ )

to type I and type II sums. The refinement of our theorem comes mainly from the estimate
for type I sums. Note that in [5, Lemma 3.2], Kumchev established the same conclusion as
shown in Proposition 3.2 under the condition M5

1 � δx3−7ρ (with δ = xθ−1). In Proposition
3.2, we are able to enlarge the exponent of x to 3 − 6ρ. In other words, our result is new in
the case δx3−7ρ < M5

1 � δx3−6ρ . With this refinement we achieve the bound 3θ−2
12 for ρ in

the theorem, which improves Kumchev’s result 2θ−1
14 in [5, Theorem 2]. See the argument in

Sects. 3–4 for details of the proof.
In the special case θ = 1, the theorem reduces to the following new bound of exponential

sums over cubes of primes on sets of minor arcs, which improves Theorem 3 in [4].

Corollary 2 For any fixed ε > 0, one has

sup
α∈m(P)

∣∣∣
∑

x<n≤2x

�(n)e(n3α)

∣∣∣ � x1−1/12+ε + x1+εP−1/2.

We add that, one can also combine [4, Theorem 2] or [10, Theorem 1.1] with [14, Lemma
8.5] to yield the bound in Corollary 2.

As an application of Theorem 1, we consider the representations of a large integer n as
the sum of almost equal cubes of primes. Define the sets

H5 = {n ∈ N : n ≡ 1 (mod 2), n �≡ 0,±2 (mod 9), n �≡ 0 (mod 7)},
H6 = {n ∈ N : n ≡ 0 (mod 2), n �≡ ±1 (mod 9)},
H7 = {n ∈ N : n ≡ 1 (mod 2), n �≡ 0 (mod 9)},
Hs = {n ∈ N : n ≡ s (mod 2)} (s ≥ 8).

For s ≥ 5, we are interested in the representations of n ∈ Hs in the form
{
n = p31 + · · · + p3s ,∣∣p j − (n/s)1/3

∣∣ ≤ H ( j = 1, . . . , s),
(1.2)

where H = o(n1/3), and p1, . . . , ps are prime numbers. In this paper we focus on exploring
bounds for the number of integers n ∈ Hs , without representations as sums of s almost equal
cubes of primes. For 5 ≤ s ≤ 8 and H = o(N 1/3), we define

Es(N , H) = #
{
n ∈ Hs : |n − N | ≤ HN 2/3 and (1.2) has no solution

}
.

Particularly, we are mainly dedicated to the case s = 7 and 8.
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Exponential sums over cubes of primes… 85

In [7], Liu and Sun established

E7(N , H) � N
1
3 H1−ε for H = N

1
3− 1

150+ε,

E8(N , H) � H1−ε for H = N
1
3− 1

198+ε. (1.3)

By applying the estimate of exponential sums in Theorem 1, we refine the above bounds
of exceptional sets for sums of seven and eight cubes of primes. Precisely, we obtain the
following results.

Theorem 3 One has

E7(N , H) � N
1
3 H1−ε for H = N

1
3− 1

51+ε, (1.4)

E8(N , H) � H1−ε for H = N
1
3− 1

51+ε. (1.5)

Moreover, we establish a new bound of exceptional sets for s = 7.

Theorem 4 One has

E7(N , H) � H2−ε for H = N
1
3− 1

51+ε. (1.6)

Here we note that, with the same magnitude of H , the upper bound for E7(N , H) in (1.6)
is smaller than its counterpart in (1.4), which appears to be first of its kind to the best of our
knowledge. On the other hand, based on the relation of exceptional sets between seven and
eight cubes, the informed reader may expect that, similar to the results of Liu and Sun, we

should also be able to establish the bound E7(N , H) � N
1
3 H1−ε but with lower magnitude

of H than N
1
3− 1

51+ε . That, however, is not the case. Roughly speaking, the cause of such
difference is closely connected with the treatment of the integrals over minor arcs, which is
somewhat different from the situation when Liu and Sunmet. Thesematters will be discussed
in Sect. 5.

We also remark that the estimate for eight cubes (1.5) or seven cubes (1.6) implies the result
of the second author [13], which states that all sufficiently large n ∈ H9 can be represented

in the form (1.2) with s = 9 and H = n
1
3− 1

51+ε . One can combine (1.5) or (1.6) with known
results on the distribution of primes in short intervals to deduce the desired conclusion.

Actually, the interest in Es(N , H) is twofold. As an analogy, one shall also pursue a
non-trivial bound of the form

Es(N , H) � N
2
3 H1−ε, (1.7)

which implies that almost all integers n ∈ Hs are representable in the form (1.2) with
H = o(n1/3). Thus, we are interested in bounds of the form (1.7) with H as small as possible.
For example, Ren and the second author [11] showed that (1.7) holds for H = N 1/3−θs+ε

with

θ5 = 7

261
, θ6 = 5

159
, θ7 = 11

333
, θ8 = 19

561
.

As a comparison, in Theorems 3 and 4 we are not only interested in the size of H , but also
concerned with the cardinality of Es(N , H). In other words, given a value of H = o(N 1/3),
we want to minimize the upper bound of exceptional sets. As can be seen, the upper bounds
of exceptional sets in Theorems 3 and 4 are much smaller than their counterparts in (1.7).

Throughout the paper, we write (a, b) = gcd(a, b). As usual, the letter p, with or without
subscripts, is reserved for prime numbers. The letters ε and A denote positive constants which
are arbitrarily small and sufficiently large, respectively.
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2 Auxiliary lemmas

In this section, we present some estimates that will be involved in the proof of our theorems.
First we define the multiplicative function w(q) by

w(p3u+v) =
{
3p−u−1/2 if u ≥ 0, v = 1,
p−u−1 if u ≥ 0, v = 2, 3.

Then one has

q−1/2 ≤ w(q) � q−1/3. (2.1)

Moreover we need an auxiliary estimate for sums involving w(q).

Lemma 2.1 For any fixed ε > 0 and 1 ≤ j ≤ 3, one has

∑

n∼N

w

(
q

(q, n j )

)
� qεw(q)N . (2.2)

Proof See Lemmas 2.3 in Kawada and Wooley [3]. 	

The following result is due to Lemma 2.2 in [5] with k = 3.

Lemma 2.2 Let 0 < ρ ≤ 1/4. Suppose that y ≤ x, x3 ≤ y4−2ρ , and I is a subinterval of
(x, x + y]. If α is a real number satisfying that there exist integers a and q with

(a, q) = 1, 1 ≤ q ≤ y3ρ and |qα − a| ≤ y3ρ−1x−2, (2.3)

then one has
∑

n∈I
e(n3α) � w(q)y

1 + yx2|α − a/q| + x3/2+ε y−1.

Otherwise, one has
∑

n∈I
e(n3α) � y1−ρ+ε.

The following lemma is a slight variation of [1, Lemma 6]. The proof is the same.

Lemma 2.3 Let q and X be positive integers exceeding 1 and let 0 < 
 < 1
2 . Suppose that

q � a and denote by S the number of integers x such that

X ≤ x < 2X , (x, q) = 1, ‖ax3/q‖ < 
,

where ‖α‖ = minn∈Z |α − n|. Then
S � 
qε(q + X).

We also quote the following estimate which is a variant of the main result in Liu, Lü and
Zhan [6] with k = 3.

Lemma 2.4 Let 7/10 < θ ≤ 1 and 0 < ρ ≤ min{(8θ −5)/24, (10θ −7)/15}. Suppose that
α is real and that there exists integers a and q satisfying

1 ≤ q ≤ x6ρ, (a, q) = 1 and |qα − a| < x6ρ−2θ−1.

Then, for any fixed ε > 0,

f (α; x, y) � xθ−ρ+ε + xθ+ε

√
q + x2θ+1|qα + a| .
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Exponential sums over cubes of primes… 87

For A ⊆ (x, x + y] ∩ N, we define

g(α) = gA(α) =
∑

n∈A
(log n)e(n3α).

To deal with the mean values of the integral over minor arcs, we shall need the following two
results which are Lemmas 2.1 and 2.3 in [13], respectively.

Lemma 2.5 Let γ ∈ R, c, D > 0, and 1 < M ≤ y ≤ x. Then there exists a constant c0 > 0
such that

∑

q≤M

∑

1≤a≤q
(a,q)=1

∫

|α−a/q|≤1

w2(q)dc(q)
∣∣ ∑

x<p≤x+y(log p)e(p3(α + γ ))
∣∣2

1 + D|α − a/q| dα � y2D−1(log x)c0 .

Lemma 2.6 Let ρ and y be defined as in Lemma 2.2. Let M be the set of α ∈ R satisfying
(2.3). Suppose that G(α) and h(α) are integrable functions of period one. Then for any
measurable set w ⊆ [0, 1], one has

∫

w
g(α)G(α)h(α)dα � y(log x)2J

1
4
0

( ∫

w
|G(α)|2dα

) 1
4

J (w)
1
2 + y1−

ρ
2 +ε J (w),

where

J (w) =
∫

w
|G(α)h(α)|dα, J0 = sup

β∈[0,1]

∫

M

w2(q)|h2(α + β)|
(
1 + x2y|α − a/q|)2

dα.

3 Multilinear exponential sums

In this section, we obtain upper bounds for the exponential sums appearing in the proof of
Theorem 1.

Let us write

δ = xθ−1, L = log x, I = (x, x + y],
and

Q̂ = (δx3−2ρ)3/5. (3.1)

The following Type II sum estimate is Lemma 3.1 in [5] with k = 3.

Lemma 3.1 Let k ≥ 3 and 0 < ρ < 1/10. Suppose that α is real and that there exist integers
a and q such that (1.1) holds with Q = Q̂ given by (3.1). Let |ξm | ≤ 1, |ηn | ≤ 1, and define

S(α) =
∑

m∼M

∑

mn∈I
ξmηne((mn)3α).

Then one has

S(α) � xθ−ρ+ε + w(q)1/2xθ+ε

(1 + δ2x3|α − a/q|)1/2 ,

provided that

δ−1 max
(
x8ρ, δ−3x4ρ, (δ4x2+12ρ)1/5

) � M � δxθ−2ρ. (3.2)
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The main task of this section is to prove the following estimate for trilinear sums usually
referred to as Type I sums.

Proposition 3.2 Let 0 < ρ < 1/4. Suppose that α is real and that there exist integers a and
q such that (1.1) holds for certain positive Q. Let |ξm1,m2 | ≤ 1, and define

S(α) =
∑

m1∼M1

∑

m2∼M2

∑

m1m2n∈I
ξm1,m2e((m1m2n)3α).

Then one has

S(α) � xθ−ρ+ε + w(q)xθ+ε

1 + δx3|α − a/q| ,

provided that

M5
1 � δx3−6ρ, M1M2 � min(δx1−4ρ, δ4x1−2ρ), M1M

2
2 � δ1/3x1−2ρ. (3.3)

Proof Set N = x(M1M2)
−1 and H = δN , and define ν by H ν = xρL−1. Note that, for

m1 ∼ M1, m2 ∼ M2, and m1m2n ∈ I, we have

n ∈
(

x

M1M2
,
x + y

M1M2

]

with the length of

y

M1M2
= xθ−1x(M1M2)

−1 = δN = H .

Denote by M the set of pairs (m1,m2), with m1 ∼ M1 and m2 ∼ M2, for which there exist
integers b1 and r1 with

1 ≤ r1 ≤ H3ν, (b1, r1) = 1, |r1(m1m2)
3α − b1| ≤ H3ν(δN 3)−1. (3.4)

Applying Lemma 2.2 to the summation over n, one has

∑

m1m2n∈I
e((m1m2n)3α) � H1−ν+ε or

w(r1)H

1 + δN 3|(m1m2)3α − b1/r1| .

Therefore,

S(α) �
∑

m1∼M1

∑

m2∼M2

H1−ν+ε +
∑

(m1,m2)∈M

w(r1)H

1 + δN 3|(m1m2)3α − b1/r1| .

One has

S(α) � xθ−ρ+ε + T1(α),

where

T1(α) =
∑

(m1,m2)∈M

w(r1)H

1 + δN 3|(m1m2)3α − b1/r1| .

For each m1 ∼ M1, we apply Dirichlet’s theorem on Diophantine approximation to find
integers b and r with

1 ≤ r ≤ x−3ρ(δN 3), (b, r) = 1, |rm3
1α − b| ≤ x3ρ(δN 3)−1. (3.5)
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Exponential sums over cubes of primes… 89

By (3.3), (3.4) and (3.5),

|b1r − bm3
2r1| ≤ 23δ−1x−3+6ρL−3(M1M

2
2 )3 + L−3 < 1.

In the last step, we have used the third condition in (3.3). This gives that,

b1
r1

= m3
2b

r
, r1 = r

(r ,m3
2)

.

Thus, by (2.2),

T1(α) �
∑

m1∼M1

H

1 + δ(NM2)3|m3
1α − b/r |

∑

m2∼M2

w

(
r

(r ,m3
2)

)

�
∑

m1∼M1

rεw(r)HM2

1 + δ(NM2)3|m3
1α − b/r | .

For each r ∈ N, one has the unique decomposition r = r1r2, where r1 is cube-free, and
r2 = r33 is a cube. Throughout this section, the letter r2 denotes a cube, r1 is cube-free, and
r = r1r2. Note that

w(r) ≤ r−1/2
1 r−1/3

2 rε.

Denote by S the set of m1 ∼ M1 for which there exist integers b and r with

(b, r) = 1, 1 ≤ r1/21 r1/32 ≤ H ν and |rm3
1α − b| ≤ r1/21 r2/32 H νδ−1(M2N )−3. (3.6)

Then one has

T1(α) � T2(α) + xθ−ρ+ε,

where

T2(α) =
∑

m1∈S

rεw(r)HM2

1 + δ(NM2)3|m3
1α − b/r | .

By the dyadic argument, we have

T2(α) � (log H)2 sup
R1,R2

R1/2
1 R1/3

2 ≤Hν

H(α)

where

H(α) = HR1,R2(α) =
∑

m1∈S(R1,R2)

rεw(r)HM2

1 + δ(NM2)3|m3
1α − b/r | .

Here S(R1, R2) denotes the set of m1 ∼ M1 for which there exist integers b and r satisfying
(3.6), R1 ≤ r1 < 2R1 and R2 ≤ r2 < 2R2. We need to prove

H(α) � w(q)xθ+ε

1 + δx3|α − a/q| + xθ−ρ+ε (3.7)

for all pairs (R1, R2) with

R1/2
1 R1/3

2 ≤ H ν . (3.8)
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By Dirichlet’s approximation theorem, there exist integers c and s satisfying

(c, s) = 1, 1 ≤ s ≤ Q̃ and |sα − c| ≤ Q̃−1

with

Q̃ = 64M3
1 R1R2. (3.9)

We will first consider the case that s ≤ 5−1H−νδ(M2N )3R−1/2
1 R−2/3

2 . Then one has

|crm3
1 − bs| ≤ 1

2
+ 27/6

5
< 1.

It gives crm3
1 − bs = 0. Thus we can obtain

b

r
= cm3

1

s
, r = s

(s,m3
1)

. (3.10)

So by (2.2), we arrive at

H(α) �
∑

m1∼M1

rεw(r)HM2

1 + δ(NM2)3m3
1|α − c/s|

� HM2

1 + δ(NM2)3M3
1 |α − c/s|

∑

m1∼M1

w

(
s

(s,m3
1)

)(
s

(s,m3
1)

)ε

� xθ+ε

1 + δx3|α − c/s|w(s).

If s ≤ x3ρ and |α − c/s| ≤ x3ρ/(sδx3), then we can get c = a and s = q by recalling (1.1)
and (3.1), and thereby

H(α) � xθ+ε

1 + δx3|α − c/s|w(s).

Otherwise we have

H(α) � xθ−ρ+ε.

Thus, the estimate (3.7) holds provided that s ≤ 5−1H−νδ(M2N )3R−1/2
1 R−2/3

2 . Therefore,
we now assume that

s > 5−1H−νδ(M2N )3R−1/2
1 R−2/3

2 . (3.11)

If |rm3
1α − b| < (4Q̃)−1, then

|crm3
1 − bs| ≤ rm3

1|sα − c| + s|rm3
1α − b| ≤ rm3

1 Q̃
−1 + s(4Q̃)−1 ≤ 1

2
+ 1

4
< 1.

This implies (3.10). By repeating the argument after (3.10), we can again obtain the desired
estimate (3.7).

It remains to treat the cases

(4Q̃)−1 ≤ |rm3
1α − b| ≤

(
5−1H−νδ(M2N )3R−1/2

1 R−2/3
2

)−1
.
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Let Z be some parameter satisfying 5−1H−νδ(M2N )3R−1/2
1 R−2/3

2 ≤ Z ≤ 4Q̃ and
S(R1, R2, Z) the subset of S(R1, R2) containing integers m1 subject to |rm3

1α − b| < Z−1.
Define

H0(α) = HR1,R2,Z (α) = R−1/2
1 R−1/3

2 HM2xε

1 + δ(NM2)3R
−1
1 R−1

2 Z−1

∑

m1∈S(R1,R2,Z)

1. (3.12)

By the previous argument we have

H(α) � sup
2−2δ(NM2)3Hν R−1/2

1 R−2/3
2 ≤Z≤4Q̃

H0(α) + w(q)xθ+ε

1 + δx3|α − a/q| + xθ−ρ+ε. (3.13)

Note that
∑

m1∈S(R1,R2,Z)

1 =
∑

d|s

∑

m1∈Sd (R1,R2,Z)

1, (3.14)

where Sd(R1, R2, Z) is the subset of S(R1, R2, Z) containing integers m1 subject to
(m1, s) = d . Let S(1)

d (R1, R2, Z) and S(2)
d (R1, R2, Z) denote the subsets of Sd(R1, R2, Z)

subject to one more condition (s, rd3) < s, and (s, rd3) = s, respectively. If (s, rd3) = s,
then there exists an integer t , such that

d = (str−1)1/3 = (str−1
1 r−1

2 )1/3,

which implies d � (sR−1
1 R−1

2 )1/3. Then one has

∑

m1∈S(2)
d (R1,R2,Z)

1 � M1

d
+ 1 � M1R

1/3
1 R1/3

2

s1/3
+ 1. (3.15)

Concerning the contribution from S(1)
d (R1, R2, Z), we have

∑

m1∈S(1)
d (R1,R2,Z)

1 ≤
∑

R1≤r1<2R1

∑

R2≤r2<2R2
(s,r1r2d3)<s

N (r1, r2),

whereN (r1, r2) is the number of integers m1 ∼ M1 with (m1, s) = d for which there exists
b ∈ Z such that

(b, r1r2) = 1 and |r1r2m3
1α − b| < Z−1.

Note that

N (r1, r2) ≤ N0(r1, r2),

where N0(r1, r2) is the number of integers m ∼ M/d subject to

(m, s′) = 1 and
∥∥∥
cr1r2d2m3

s′
∥∥∥ < 


with s′ = s/d and


 = Z−1 + 32R1R2M
3
1 (s Q̃)−1. (3.16)
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92 T. Li , Y. Yao

Since r2 is a cube, we have
∑

R1≤r1<2R1

∑

R2≤r2<2R2
(s,r1r2d3)<s

N (r1, r2) ≤
∑

R1≤r1<2R1

∑

R2≤r2<2R2
(s,r1r2d3)<s

N0(r1, r2)

≤
∑

R1≤r1<2R1

∑

r3<(2R2)
1/3

r3|s′∞, (s′,r1r33d2)<s′

×
∑

R1/3
2 r−1

3 ≤r4<(2R2)
1/3r−1

3
(s′,r4)=1

N0(r1, r
3
3r

3
4 ).

Recalling the definition of N0(r1, r3r4), we get
∑

m1∈S(1)
d (R1,R2,Z)

1 ≤
∑

R1≤r1<2R1

∑

r3<(2R2)
1/3

r3|s′∞, s′�cr1r33d2

N+(r1, r
3
3 )xε, (3.17)

where N+(r1, r33 ) is the number of integers m satisfying

M1d
−1R1/3

2 r−1
3 ≤ m < 4M1d

−1R1/3
2 r−1

3

and

(m, s′) = 1,
∥∥∥
cr1r33d

2m3

s′
∥∥∥ < 
.

Applying Lemma 2.3, and recalling (3.8) and (3.11), we have

N+(r1, r
3
3 ) � 
s′ε (

s′ + M1d
−1R1/3

2 r−1
3

)

� 
sεd−1
(
s + M1R

1/3
2 r−1

3

)
� 
sεd−1s � 
d−1sxε.

Combining this with (3.17), we get
∑

m1∈S(1)
d (R1,R2,Z)

1 � R1
sxεd−1. (3.18)

Now we conclude from (3.12)–(3.15) and (3.18) that

H0(α) � R−1/2
1 R−1/3

2 HM2xε

1 + δ(NM2)3R
−1
1 R−1

2 Z−1

(
R1
s + M1R

1/3
1 R1/3

2

s1/3
+ 1

)
.

By recalling (3.9), (3.11) and (3.16), we have

H0(α) � R−1/2
1 R−1/3

2 HM2xε

δ(NM2)3R
−1
1 R−1

2 Z−1
R1

(
Z−1 + 32R1R2M

3
1 (s Q̃)−1)s

+ R−1/2
1 R−1/3

2 HM2xε

1 + δ(NM2)3R
−1
1 R−1

2 Z−1
+ R−1/2

1 R−1/3
2 HM2xε

1 + δ(NM2)3R
−1
1 R−1

2 Z−1

M1R
1/3
1 R1/3

2

s1/3
.

We point out that the first term on the right side of the above estimate is xθ−ρ+ε due to (3.8),
(3.9), (3.11), (3.13) and M5 � δx3−6ρ . After a brief argument, we can see that the second
term is actually smaller than the first one, since the factor “R1

(
Z−1 +32R1R2M3

1 (s Q̃)−1
)
s”
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is � 1. For the last term, we can obtain the desired bound in view of the condition ρ < 1/4,
(3.8), (3.11) and (3.13). The proof is completed. 	


4 Proof of Theorem 1

In this section, we prove Theorem 1 by employing Lemmas 2.4 and 3.1, Proposition 3.2 and
Heath-Brown’s identity for �(n). We apply Heath-Brown’s identity in the following form
[2, Lemma 1]: if n ≤ X and J is a positive integer, then

�(n) =
J∑

j=1

(
J
j

)
(−1)− j

∑

n=n1···n2 j
n1,...,n j≤x1/J

μ(n1) · · · μ(n j ) log(n2 j ). (4.1)

Let α ∈ m(P). Recall that, by Dirichlet’s theorem on Diophantine approximation, there
exist integers a and q such that (1.1) holds with Q = Q̂ given by (3.1). Let β be defined as

xβ = min
(
δ2x1−10ρ, δ5x1−6ρ,

(
δ6x3−22ρ)1/5)

,

and suppose ρ and δ are chosen so that

δ−1xβ+2ρ ≥ 2x1/3, xβ ≥ δ−1x2ρ. (4.2)

We apply (4.1) with X = x + xθ and J ≥ 3 satisfying x1/J ≤ xβ . After a standard
splitting argument, we have

∑

n∈I
�(n)e(αn3) �

∑

N

∣∣∣∣∣
∑

n∈I
c(n;N)e(αn3)

∣∣∣∣∣ , (4.3)

where N runs over O(L2 j−1) vectors N = (N1, . . . , N2 j ), j ≤ J , subject to

N1, . . . , N j � x1/J , x � N1 · · · N2 j � x

and

c(n;N) =
∑

n=n1···n2 j
ni∼Ni

μ(n1) · · · μ(n j ) log(n2 j ).

In fact, we can remove the coefficient log n2 j by partial summation and assume that

c(n;N) = L
∑

n=n1···n2 j
ni∼N ′

i

μ(n1) · · · μ(n j ),

where Ni ≤ N ′
i ≤ 2Ni (in reality, N ′

i = 2Ni except for i = 2 j). We also assume (as we
may) that the summation variables n j+1, . . . , n2 j are labeled so that N j+1 ≤ · · · ≤ N2 j .
Next, we establish that each of the sums occurring on the right side of (4.3) has the upper
bound

∑

n∈I
c(n;N)e(αn3) � xθ−ρ+ε + w(q)1/2xθ+ε

(1 + δ2x3|α − a/q|)1/2 . (4.4)
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In the following argument, we give several cases depending on the sizes of N1, . . . , N2 j .

Case 1: N1 · · · N j ≥ δ−1x2ρ . Since each of Ni (1 ≤ i ≤ j) does not exceed xβ , there
must be a set of indices S ⊂ {1, . . . , j} satisfying

δ−1x2ρ ≤
∏

i∈S
Ni ≤ δ−1xβ+2ρ. (4.5)

Hence, we can rewrite c(n;N) in the form

c(n;N) =
∑

mr=n
m�M

ξmηr , (4.6)

where |ξm | � mε , |ηr | � rε and M = ∏
i /∈S Ni . By the definition of β and (4.5), M satisfies

(3.2), and thus (4.4) follows form Lemma 3.1.

Case 2: N1 · · · N j < δ−1x2ρ , j ≤ 2.
When j = 1, we obtain (4.4) by Proposition 3.2 with M1 = N1, M2 = 1 and N = N2.

When j = 2, we have

N3 ≤ (x/N1N2)
1/2 ≤ x1/2, N1N2N3 ≤ (xN1N2)

1/2 ≤ δ−1/2x1/2+ρ,

(N1N2)
2N3 ≤ x1/2(N1N2)

3/2 ≤ δ−3/2x1/2+3ρ.

Hence, (4.4) follows from Proposition 3.2 with M1 = N3, M2 = N1N2 and N = N4,
provided that

x5/2 ≤ δx3−6ρ, δ−3/2x1/2+3ρ ≤ δ1/3x1−2ρ, δ−1/2x1/2+ρ ≤ min
(
δx1−4ρ, δ4x1−2ρ)

.

(4.7)

Case 3: N1 · · · N2 j−2 < δ−1x2ρ , j ≥ 3. This is a similar situation to Case 2 with j = 2 and
with the product N1 · · · N2 j−2 playing the role of N1N2 in Case 2. Thus, we can again use
Proposition 3.2 to obtain (4.4).

Case 4: N1 · · · N j < δ−1x2ρ ≤ N1 · · · N2 j−2, j ≥ 3. In this case, we have

N j+1, . . . , N2 j−2 ≤ 2x1/3 ≤ δ−1xβ+2ρ.

If N2 j−2 ≥ δ−1x2ρ , we can write c(n;N) in the form (4.6) where M = ∏
i �=2 j−2 Ni . Then

we appeal to Lemma 3.1 to show that (4.4) holds. On the other hand, if N2 j−2 < δ−1x2ρ , then
N j+1, . . . , N2 j−2 ≤ xβ (by (4.2)). Thus, we can use the product N1 · · · N2 j−2 in a similar
fashion to the product N1 · · · N j in Case 1 to obtain a set of indices S ⊂ {1, 2, . . . , 2 j − 2}
such that (4.5) holds. Hence, we can again represent c(n;N) in the form (4.6) and then appeal
to Lemma 3.1 to show that (4.4) holds one last time. By the above analysis,

∑

n∈I
�(n)e(αn3) � xθ−ρ+ε + w(q)1/2xθ+ε

(1 + δ2x3|α − a/q|)1/2 , (4.8)

provided that conditions (4.2) and (4.7) hold. Altogether, those conditions are equivalent to
the following inequality

xρ � min

(
δ1/8x1/12, δx1/6, δ1/12x1/9, δ1/4x1/12, δ3/4x1/8, δ11/32x3/32,

δ1/6x1/12, δ11/30x1/10, δ3/10x1/10, δ3/2x1/6
)

. (4.9)
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Note that δ = xθ−1 ≤ 1, we have

δ11/30x1/10 ≤ δ3/10x1/10, δ3/2x1/6 ≤ δx1/6, δ1/4x1/12 ≤ δ1/6x1/12 ≤ δ1/8x1/12.

Furthermore,

min
(
δ3/2x1/6, δ1/4x1/12

) ≤ (
δ3/2x1/6

)2/5 (
δ1/4x1/12

)3/5 = δ3/4x7/60 < δ3/4x1/8,

min
(
δ3/2x1/6, δ1/4x1/12

) ≤ (
δ3/2x1/6

)7/75 (
δ1/4x1/12

)68/75 = δ11/30x41/450 < δ11/30x1/10,

min
(
δ3/2x1/6, δ1/4x1/12

) ≤ (
δ3/2x1/6

)1/3 (
δ1/4x1/12

)2/3 = δ2/3x1/9 < δ1/12x1/9.

For δ ≥ x−1/9, it follows that

δ1/4x1/12 ≤ δ11/32x3/32.

Hence, in this case, (4.9) is equivalent to

ρ ≤ min

(
3θ − 2

12
,
9θ − 8

6

)
.

If either q ≥ x6ρ or |qα − a| ≥ δ−2x−3+6ρ , we can use (2.1) to show that the second
term on the right side of (4.8) is smaller than the first. Thus,

sup
α∈m(x6ρ)

| f (α; x, xθ )| � xθ−ρ+ε. (4.10)

This establishes the theorem when q ≥ x6ρ . When q ≤ x6ρ , we combine (4.10) with the
inequality

sup
α∈m(P)∩M(x6ρ)

| f (α; x, xθ )| � xθ−ρ+ε + xθ+εP−1/2,

which follows from Lemma 2.4, provided that ρ ≤ 8θ−5
24 . To complete the proof, we note

that the last condition on ρ is implied by the hypotheses of the theorem.

5 Proof of Theorems 3 and 4

Write

X = 3
√
N/s, I = (X − H , X + H ], L = log N .

Recall the definition of Es(N , H) with H = X16/17+ε . Denote by Zs the set of integers
counted by Es(N , H), and set Is(N , H) = [N − 3s1/3N 2/3H , N + 3s1/3N 2/3H ]. Consider
the sum

Rs(n) =
∑

n=p21+···+p2s
pi∈I

(log p1) · · · (log ps).

We note that Rs(n) = 0 for all n ∈ Zs . Define

T (α) =
∑

p∈I
(log p)e(p3α).
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Recall the definition of the major arcsM and minor arcs m in Sect. 1, with P, Q given by

P = H2X−19/12−ε, Q = X31/12+ε. (5.1)

Then we have

Rs(n) =
∫ 1+1/Q

1/Q
T s(α)e(−nα)dα =

( ∫

M
+

∫

m

)
T s(α)e(−nα)dα.

For the contribution of the integral over major arcs, we quote the following lemma which
is [11, Proposition 1]. Indeed the asymptotic formula (5.2) was established in [11] for s ≤ 8.
However, one can verify that the case s = 9 is also valid with the choice of P and Q as given
in (5.1).

Lemma 5.1 Let the major arcs M be defined as above, with P, Q given by (5.1). Then for
n ∈ Is(N , H) with 5 ≤ s ≤ 9 and any A > 0, one has

∫

M
T s(α)e(−nα)dα = 1

3s
Ss(n)Js(n) + O

(
Hs−1N−2/3L−A

)
, (5.2)

where Ss(n) is the corresponding singular series satisfying Ss(n) � 1, and Js(n) is the
singular integral satisfying Js(n) � Hs−1N−2/3.

Next we shall focus on the estimates over minor arcs. First note that with the parameter
P given in (5.1), we have the upper bound estimate of exponential sums over minor arcs

sup
α∈m

|T (α)| � H3/4+εX1/6 (5.3)

with

H = X θ and θ >
14

15
. (5.4)

For an integer s > 0, define

I (s) =
∫

m
|T (α)|sdα.

In order to evaluate the contribution from minor arcs, we need to deal with I (9) and I (10).
Indeed I (9) has been investigated in the proof of Proposition 2 in [13], which shows that

I (9) � H5+εX−1/2 sup
α∈m

|T (α)|3/2 + H47/8+ε. (5.5)

Then by (5.3), one can get, for H satisfying (5.4),

I (9) � H47/8+ε. (5.6)

Now we can treat I (10). Precisely we establish the following sharp bound.

Lemma 5.2 Let H be defined as (5.4), one has

I (10) � H27/4+ε.

Proof We take ρ = 1
4 in Lemma 2.6, and choose G(α) = |T (α)|8, h(α) = T (−α) and

g(α) = T (α). Then one gets

I (10) � HL2J 1/4
0 I (16)1/4 I (9)

1
2 + H7/8+ε I (9),
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where

J0 = sup
β∈[0,1]

∑

q≤H3/4

∑

1≤a≤q
(a,q)=1

∫

M(q,a)

w2(q)|h2(α + β)|
(
1 + X2H |α − a/q|)2

dα

with M(q, a) = {α : |qα − a| ≤ X−2H−1/4}. Employing Lemma 2.5 with M = H3/4 and
D = X2H , one has J0 � X−2+εH . Together with (5.3) and (5.6), one then obtain

I (10) � H67/16+εX−1/2 sup
α∈m

|T (α)|3/2 I (10)1/4 + H27/4+ε

� H87/16+εX−3/8 I (10)1/4 + H27/4+ε.

Then the conclusion holds after a simple calculation. 	


Remark 1 Onemay note that the first term on the right side of (5.5) seems to vanish. Actually,

it converts exactly into the second term H
47
8 +ε under the present condition. On the other hand,

if we make a comparison with the situation faced in [13], where the previous bound 2θ−1
14

(who is now improved to 3θ−2
12 in Theorem 1) for exponential sums was employed and hence

the exponential sum was bounded by

sup
α∈m

|T (α)| � H6/7+εX1/14, (5.7)

we can find that

I (9) � H44/7+εX−11/28 + H47/8+ε. (5.8)

Under this stage, one needs to judge between the size of the former and latter terms on the
right side, according towhether θ is less than 22

23 or not.With such an estimate of I (9) together
with the bound of exponential sums T (α) in (5.7), one needs to evaluate I (10) whose upper
bound would also include two terms similar to (5.8). Along this way, it will clearly require
extra efforts to control the bound of exceptional sets Es(N , H) and of H .

Write

Ds(α) =
∑

n∈Zs

e(−nα).

We need to quote the following lemma, which is a short interval variation of Wooley’s
argument [12, Lemmas 5.1 & 6.2].

Lemma 5.3 For s1 = 4, 6 and s2 = 7, 8, one has
∫ 1

0

∣∣T s1(α)D2
s2(α)

∣∣dα � H ε
(
Hs1−3E2

s2 + H (s1+2)/2Es2

)
.

We are ready to present the proof of the theorems.

Proof of Theorems 3 and 4 For n ∈ Zs , one has

0 =
∑

n∈Zs

( ∫

M
+

∫

m

)
T s(α)e(−nα)dα.
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Then applying Lemma 5.1,
∣∣∣∣

∑

n∈Zs

∫

m
T s(α)e(−nα)dα

∣∣∣∣ =
∣∣∣∣

∑

n∈Zs

∫

M
T s(α)e(−nα)dα

∣∣∣∣ � EsH
s−1X−2, (5.9)

where Es = Es(N , H). On the other hand, by Cauchy’s inequality and Lemma 5.3, one has
∣∣∣∣

∑

n∈Zs

∫

m
T s(α)e(−nα)dα

∣∣∣∣ =
∣∣∣∣
∫

m
T s(α)Ds(α)dα

∣∣∣∣

� I (10)1/2
( ∫ 1

0
T 2s−10(α)D2

s (α)dα

)1/2

� H (8s−25)/8+εEs + H (4s+11)/8+εE1/2
s .

It therefore follows from the above estimate and (5.9) that

EsH
s−1X−2 � H (4s+11)/8+εE1/2

s + H (8s−25)/8+εEs . (5.10)

To obtain a nontrivial estimate of the exceptional sets, we need to make sure that the last term
on the right side of (5.10) is smaller than the left side, for which the condition

H � X16/17+ε (5.11)

would be required, and therefore we must have EsHs−1X−2 � H (4s+11)/8+εE1/2
s , that is

Es � X4H19/4−s+ε � N 4/3H19/4−s+ε.

Theorems 3 and 4 clearly follow from this as required. 	

Remark 2 In the last step above, it deduces exactly the same restriction for H as (5.11) when
evaluating (1.5) and (1.6).While in the case of (1.4), only aweaker restriction H � X12/13+ε

is required. To sumup, the three cases are restricted by (5.11)without exception. This is indeed
why we gain the same size of H for all three cases in Theorems 3 and 4, regardless of the
upper bound of exceptional sets.

However, when Liu and Sun established (1.3) in [7], they employed a previous estimate
for exponential sums over minor arcs due to Meng [9], and consequently the size of H did
not come from the restriction that the last term on the right side of (5.10) should be smaller
than the left side, but from the restriction related to the first term on the right side of (5.10).
Namely, the restriction from the last term is weaker than from the former one. Hence they
were able to establish the bound E7(N , H) � N 1/3H1−ε with H = N 1/3−1/150+ε , which
is of lower magnitude than the case of eight cubes in (1.3).
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