
Mathematische Zeitschrift (2021) 298:1033–1047
https://doi.org/10.1007/s00209-020-02645-y Mathematische Zeitschrift

First Robin eigenvalue of the p-Laplacian on Riemannian
manifolds

Xiaolong Li1 · Kui Wang2

Received: 24 June 2020 / Accepted: 25 September 2020 / Published online: 30 October 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
We consider the first Robin eigenvalue λp(M, α) for the p-Laplacian on a compact Rieman-
nian manifold M with nonempty smooth boundary, with α ∈ R being the Robin parameter.
Firstly, we prove eigenvalue comparison theorems of Cheng type for λp(M, α). Secondly,
when α > 0 we establish sharp lower bound of λp(M, α) in terms of dimension, inradius,
Ricci curvature lower bound and boundary mean curvature lower bound, via comparison
with an associated one-dimensional eigenvalue problem. The lower bound becomes an upper
bound when α < 0. Our results cover corresponding comparison theorems for the first
Dirichlet eigenvalue of the p-Laplacian when letting α → +∞.

Keywords Robin eigenvalue · p-Laplacian · Eigenvalue comparison · Barta’s inequality

Mathematics Subject Classification 35P15 · 35P30 · 58C40 · 58J50

1 Introduction andmain results

The study of first nonzero eigenvalue for elliptic operators plays an important rule in both
mathematics and physics, since this constant determines the convergence rate of numerical
schemes in numerical analysis, describes the energy of a particle in the ground state in
quantum mechanics, and determines the decay rate of heat flows in thermodynamics. Given
its physical and mathematical significance, numerous bounds have been established for the
first Dirichlet eigenvalue and the first nonzero Neumann eigenvalue of the Laplace operator
(see for example [7,12,28,35]), and many results have been extended to the nonlinear p-
Laplacian during the last two decades.
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The classical eigenvalue comparison theorem of Cheng [10] states that the first Dirichlet
eigenvalue of a geodesic ball in an n-dimensional complete Riemannian manifold Mn whose
Ricci curvature is bounded from below by (n − 1)κ , κ ∈ R, is less than or equal to the first
Dirichlet eigenvalue of a geodesic ball of the same radius in a space of constant sectional
curvature κ , and the reversed inequality holds ifwe assume instead that the sectional curvature
of M is bounded from above by κ and the radius of the geodesic ball is no greater than the
injectivity radius at the center. For domains that are not geodesic balls or for general compact
Riemannian manifolds with boundary, sharp lower bound estimates of the first Dirichlet
eigenvalue of the Laplacian in terms of dimension n, inradius R, Ricci curvature lower
bound κ , and boundary mean curvature lower bound � were obtained by Li and Yau [20]
for κ = � = 0 and by Kasue [14] for general κ,� ∈ R. The above-mentioned results have
been generalized to the p-Laplacian for 1 < p < ∞. Matei [29] and Takeuchi [36] proved
Cheng’s eigenvalue comparison theorems for the p-Laplacian, and Sakurai [33] obtained
Li-Yau and Kause’s theorem for the p-Laplacian on smooth metric measure spaces with
boundary (including compact Riemannian manifolds with boundary).

For either closedmanifolds or compactmanifoldswith convex boundary and theNeumann
boundary condition, sharp lower bound estimates of the first nonzero (closed or Neumann)
eigenvalue in terms of dimension n, diameter D and Ricci curvature lower bound κ were
established via the efforts of many mathematicians including Li [19], Li and Yau [20], Zhong
and Yang [40], Kröger [16], and Bakry and Qian [6]. Their proofs use the gradient estimates
method, together with comparisons with suitable one-dimensional models. Chen and Wang
independently proved it using stochastic method [8,9]. In 2013, a simple alternative proof
was given by Andrews and Clutterbuck [3] (see also [39] for an alternative elliptic proof
inspired by [2,3] and [31]). They introduced the new method of estimating the modulus of
continuity and the trick of reading the size of the first nonzero eigenvalue from the large
time behavior of the diffusion. For the p-Laplacian, sharp lower bounds of the first nonzero
eigenvalue, in terms of dimension, diameter andRicci lower bound κ , were proved byValtorta
[38] for κ = 0 and by Naber and Valtorta [30] for general κ ∈ R. Finally, extensions to the
weighted Laplacian on Bakry-Émery manifolds were obtained by Bakry and Qian [6] via the
gradient estimate method and by Andrews and Ni [5] via the modulus of continuity approach,
and further generalizations to the weighted p-Laplacian on smooth metric measure spaces
were proved in [15,23,25,26,37]. It is also worth mentioning that the modulus of continuity
estimates have been extended to viscosity solutions in [21,24] and recently to fully nonlinear
parabolic equations in [22].

TheRobin boundary condition ∂u
∂ν

+αu = 0 (α ∈ R), interpolating theNeumann condition
(with α = 0) and the Dirichlet condition (with α = +∞), however, did not receive as
much attention as either of them. In thermodynamics, Robin boundary condition models
heat diffusion with absorbing (α > 0) or radiating (α < 0) boundary. In recent years,
many authors investigated eigenvalue problems with the Robin boundary condition (see
for example [4,17,27,34] and the references therein). In particular, Savo [34] established
lower bound estimates of the first Robin eigenvalue of the Laplacian in terms of dimension,
inradius, Ricci curvature lower bound and boundary mean curvature lower bound. When
letting α → ∞, it reduces to the classical results of Li and Yau [20] and Kasue [14].

The purpose of the present paper is to study the first Robin eigenvalue of the p-Laplacian
on compact Riemannian manifolds with boundary. In particular, we will establish Cheng’s
eigenvalue comparison theorem (see Theorem 1.1 below) and sharp bounds for the first Robin
eigenvalue of the p-Laplacian (see Theorem 1.4 below).
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First Robin eigenvalue of the p-Laplacian on Riemannian manifolds 1035

Let (Mn, g) be an n-dimensional smooth compact Riemannian manifold with smooth
boundary ∂M �= ∅. Let �p denote the p-Laplacian defined for 1 < p < ∞ by

�pu := div(|∇u|p−2∇u),

for u ∈ W 1,p(M). When p = 2, the p-Laplacian becomes the Laplacian. We consider the
following eigenvalue problem with Robin boundary condition{

−�pv = λ|v|p−2v, in M,
∂v
∂ν

|∇v|p−2 + α|v|p−2v = 0, on ∂M,
(1.1)

where ν denotes the outward unit normal vector field along ∂M and α ∈ R is called the
Robin parameter. The first Robin eigenvalue for �p , denoted by λp(M, α), is the smallest
number such that (1.1) admits a weak solution in the distributional sense. Moreover, it can
be characterized as

λp(M, α) = inf

{∫
M

|∇u|pdμg + α

∫
∂M

|u|pd A : u ∈ W 1,p(M),

∫
M

|u|pdμg = 1

}
,

(1.2)
where dμg is the Riemnnian measure induced by the metric g and d A is the induced mea-
sure on ∂M . When α = 0, this reduces to the Neumann eigenvalue problem and we have
λp(M, 0) = 0 with constants being the corresponding eigenfunctions. Hence we assume
α �= 0 throughout the paper. It’s easy to see from (1.2) that λp(M, α) > 0 if α > 0 and
λp(M, α) < 0 if α < 0. Indeed, λp(M, α) is an increasing function of α and it converges
to the first Dirichlet eigenvalue of �p as α → +∞. Moreover, the first Robin eigenvalue
λp(M, α) is simple and the first eigenfunction has a constant sign, thus can always be chosen
to be positive. Note that the first eigenfunction is in general not smooth if p �= 2, but belongs
to C1,γ (M) for some 0 < γ < 1, as proved by Lê [18].

We now state Cheng’s eigenvalue comparison theorem for λp(M, α), which seems to be
new even for the Laplacian.

Theorem 1.1 Let Mn(κ) denote the simply-connected n-dimensional space form with con-
stant sectional curvature κ and let V (κ, R) be a geodesic ball of radius R in Mn(κ). Let Mn

be an n-dimensional complete Riemannian manifold and BR(x0) ⊂ M be the geodesic ball
of radius R centered at x0. (We always have R < π√

κ
if κ > 0 in view of the Myers theorem).

(1) Suppose Ric ≥ (n − 1)κ on BR(x0). Then

λp(BR(x0), α) ≤ λp(V (κ, R), α), if α > 0,

λp(BR(x0), α) ≥ λp(V (κ, R), α), if α < 0.

(2) Let � ⊂ BR(x0) be a domain with smooth boundary. Suppose Sect ≤ κ on � and R is
less than the injectivity radius at x0. Then

λp(�, α) ≥ λp(V (κ, R), α), if α > 0,

λp(�, α) ≤ λp(V (κ, R), α), if α < 0.

Moreover, the equality holds if and only if BR(x0) (or �) is isometric to V (κ, R).

Remark 1.2 Letting α → +∞ in Theorem 1.1 yields Cheng’s eigenvalue comparison theo-
rems proved in [10] for the Laplacian and [29,36] for the p-Laplacian.
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Remark 1.3 Domain monotonicity (if �1 ⊂ �2, then the first Dirichlet eigenvalue of �1

is bigger than that of �2) is a fundamental property for first Dirichlet eigenvalue, but it
fails for the first Robin eigenvalue, even for convex Euclidean domains [11]. Part (2) of
Theorem 1.1 can be viewed as a domain monotonicity result for λp(M, α), as it implies
that domain monotonicity holds for α > 0 (reversed domain monotonicty for α < 0) in
space forms when the outer domain is a ball. Indeed, our proof shows that when the outer
domain is a ball, domain monotonicty holds on the warped product manifolds of the form
[0, T ] × Sn−1 with metric g = dr2 + f 2(r)gSn−1 , provided that the warping function f is
strictly log-concave.

We introduce some notations before stating the next theorem. Let R denote the inradius
of M defined by

R = sup{d(x, ∂M) : x ∈ M}.
Let Cκ,�(t) be the unique solution of⎧⎪⎨

⎪⎩
C ′′

κ,� + κ Cκ,�(t) = 0,

Cκ,�(0) = 1,

C ′
κ,�(0) = −�,

and define

Tκ,�(t) := C ′
κ,�(t)

Cκ,�(t)
.

Our second main theorem states

Theorem 1.4 Let (Mn, g) be a compact Riemannian manifold with boundary ∂M �= ∅.
Suppose that the Ricci curvature of M is bounded from below by (n − 1)κ and the mean
curvature of ∂M is bounded from below by (n − 1)� for some κ,� ∈ R. Let λp(M, α) be
the first Robin eigenvalue of the p-Laplacian on M. Then

λp(M, α) ≥ λ̄p ([0, R], α) , if α > 0,

λp(M, α) ≤ λ̄p ([0, R], α) , if α < 0,

where λ̄p ([0, R], α) is the first eigenvalue of the one-dimensional eigenvalue problem⎧⎪⎨
⎪⎩

(p − 1)|ϕ′|p−2ϕ′′ + (n − 1)Tκ,�|ϕ′|p−2ϕ′ = −λ|ϕ|p−2ϕ,

|ϕ′(0)|p−2ϕ′(0) = α|ϕ(0)|p−2ϕ(0),

ϕ′(R) = 0.

(1.3)

Moreover, the equality occurs if and only if (M, g) is a (κ,�)-model space defined in
Definition 6.1.

Remark 1.5 When p = 2, the above theorem is due to Savo [34]. His proof made use of the
Green’s formula and does not seem to work for the p-Laplacian. Our proof uses instead a
Picone’s identity for �p proved in [1].

Remark 1.6 Letting α → +∞ in Theorem 1.4 yields the optimal lower bound for the first
Dirichlet eigenvalue of �p , which was obtained by Kasue [14] for p = 2, and by Sakurai
[33] for general 1 < p < ∞.
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First Robin eigenvalue of the p-Laplacian on Riemannian manifolds 1037

Remark 1.7 As in [34, pages 26-28], given any κ,� ∈ R and R > 0, one can construct an
n-dimensional manifold �̄ := �̄(κ,�, R) with two boundary component 
1 and 
2, such
that the first eigenvalue of �p on �̄ with Robin boundary condition on 
1 and Neuman
boundary condition on 
2 coincides with λ̄p([0, R], α).

The boundary conditions of the one-dimensional eigenvalue problem (1.3) are Robin at
t = 0 and Neumann at t = R. When κ = � = 0, the first eigenvalue of problem (1.3) (with
Tκ,� ≡ 0) is indeed equal to the first Robin eigenvalue of problem (1.4) (see Proposition 2.2
below). Thus, we get an eigenvalue comparison theorembetween the first Robin eigenvalue of
the n-dimensionalmanifoldM and the firstRobin eigenvalue of a one-dimensional eigenvalue
problem.

Theorem 1.8 Let (Mn, g) be the same as in Theorem 1.4. Suppose κ = � = 0. Then

λp(M, α) ≥ μp ([0, 2R], α) if α > 0,

λp(M, α) ≤ μp ([0, 2R], α) if α < 0,

where μp ([0, 2R], α) is the first Robin eigenvalue of the one-dimensional problem⎧⎪⎨
⎪⎩

(p − 1)|ϕ′|p−2ϕ′′ = −λ|ϕ|p−2ϕ,

|ϕ′(0)|p−2ϕ′(0) = α|ϕ(0)|p−2ϕ(0),

|ϕ′(2R)|p−2ϕ′(2R) = −α|ϕ(2R)|p−2ϕ(2R).

(1.4)

The paper is organized as follows. In Sect. 2, we collect some basic properties of the one-
dimensional eigenvalue problems. An extension of Barta’s inequality for the p-Laplacian
is given in Sect. 3. The proofs of Theorems 1.1 and 1.4 are presented in Sects. 4 and 5,
respectively. The model spaces on which the inequalities in Theorem 1.4 are achieved are
provided in Sect. 6.

2 Properties of one-dimensional models

In this section, we gather several basic properties of the one-dimensional eigenvalue problems
used as comparison models in this paper.

We will consider slightly more general models. Let w be a positive smooth function on
[0, R] satisfyingw(0) = 1. We consider the following one-dimensional eigenvalue problem:⎧⎪⎨

⎪⎩
(p − 1)|ϕ′|p−2ϕ′′ + w′

w
|ϕ′|p−2ϕ′ = −λ|ϕ|p−2ϕ,

|ϕ′(0)|p−2ϕ′(0) = α|ϕ(0)|p−2ϕ(0),

ϕ′(R) = 0.

(2.1)

Let λ̄p([0, R], w, α) be the first eigenvalue of (2.1). It’s easily seen that λ̄p([0, R], w, α)

is characterized by

λ̄p([0, R], w, α) = inf

{∫ R

0
|u′|pwdt + α|u(0)|p : u ∈ W 1,p ([0, R], wdt) ,

∫ R

0
|u|pwdt = 1

}
.

(2.2)

It follows from (2.2) that λ̄p([0, R], w, α) = 0 if α = 0, λ̄p([0, R], w, α) > 0 if α > 0, and
λ̄p([0, R], w, α) < 0 if α < 0. Moreover, the first eigenfunction does not change sign and
can always be chosen to be positive.

We prove the following properties of the first eigenfunction:
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Proposition 2.1 Let u > 0 be the positive first eigenfunction associated to λ̄p([0, R], w, α).

(1) If α > 0, then u′ > 0 on [0, R).
(2) If α < 0, then u′ < 0 on [0, R).
(3) If α > 0 and R̄ < R, then λ̄p([0, R], w, α) < λ̄p([0, R̄], w, α). In (4) and (5), assume

further that w is strictly log-concave, i.e., (logw)′′ < 0 on [0, R).
(4) If α > 0, then u′

u is monotone decreasing on [0, R]. Particularly, | u′
u |p−1 ≤ α on [0, R].

(5) If α < 0, then u′
u is monotone increasing on [0, R]. Particularly, | u′

u |p−1 ≤ −α on [0, R].
Proof (1) If α > 0, then u′(0) > 0 because |u′(0)|p−2u′(0) = α|u(0)|p−2u(0) > 0.

We argue by contradiction and let r ∈ (0, R) be the first zero of u′. Define v ∈
W 1,p([0, R], wdt) by

v(t) =
{
u(t), for 0 ≤ t ≤ r ,

u(r), for r ≤ t ≤ R.

Then using v as a test function in (2.2) gives∫ R

0
|v′|pw dt + α|v(0)|p =

∫ r

0
|u′|pw dt + α|u(0)|p

= u|u′|p−2u′w|r0 −
∫ r

0
(|u′|p−2u′w)′u dt + αw(0)|u(0)|p

= λ̄p([0, R], w, α)

∫ r

0
|u|pw dt

< λ̄p([0, R], w, α)

∫ R

0
|v|pw dt,

contradicting (2.2). Thus we have u′ > 0 on [0, R).
(2) Argue by contradiction again. Let r ∈ (0, R) be the first zero of u′. Then u restricted to

[r , R] is anNeumanneigenfunctionwithNeumanneigenvalue λ̄p([0, R], w, α)on [r , R].
This is impossible since Neumann eigenvalue are nonnegative while λ̄p([0, R], w, α) <

0 if α < 0.
(3) Similar to (1), one prolongs an eigenfunction of [0, R̄] on [0, R] by a constant and use it

as a test function in (2.2) to derive a contradiction.

(4) Let v(t) = u′(t)
u(t) , then v(0) = α

1
p−1 , v(r) > 0 for r ∈ [0, R) and v(R) = 0. Direct

calculation using

(p − 1)|u′|p−2u′′ + w′

w
|u′|p−2u′ = −λ̄p([0, R], w, α)|u|p−2u

yields

(v|v|p−2)′ + w′

w
|v|p−2v + (p − 1)|v|p = −λ̄p([0, R], w, α). (2.3)

Now we claim that v(r) is monotone decreasing on [0, R]. If not, there exists some
r ∈ (0, R) such that

v′(r) = 0, v′′(r) ≤ 0.

Then taking derivative of (2.3), we have at t = r that

0 = (p − 1)v′′|v|p−2 +
(

w′

w

)′
|v|p−2v < 0

by the strict log-concavity of w, which is clearly a contradiction.
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(5) Similar to the proof of (4).
��

Proposition 2.2 Let μp([0, 2R], α) be the first eigenvalue of the following eigenvalue prob-
lem: ⎧⎪⎨

⎪⎩
(p − 1)|ϕ′|p−2ϕ′′ = −λ|ϕ|p−2ϕ,

|ϕ′(0)|p−2ϕ′(0) = α|ϕ(0)|p−2ϕ(0),

|ϕ′(2R)|p−2ϕ′(2R) = −α|ϕ(2R)|p−2ϕ(2R).

(2.4)

Then
μp([0, 2R], α) = λ̄p([0, R], 1, α).

Proof Observe that (2.4) is invariant under the symmetry t → 2R − t . It then follows that,
if we fix a positive first eigenfunction v of (2.4), then v must be even at t = R (v cannot be
odd at t = R since v is positive). Hence v′(R) = 0 and v is also eigenfunction of (2.1) (with
w ≡ 1). It has to be the first eigenfunction since v is positive.

Conversely, the first eigenfunction u of (2.1) can be extended to a function ū on [0, 2R]
by

ū(t) =
{
u(t), for 1 ≤ t ≤ R,

u(2R − t), for R ≤ t ≤ 2R.

It’s easy to see that ū is the first eigenfunction of (2.4). ��

3 An extension of Barta’s inequality

Barta’s inequality (see for example [7, Lemma1on page 70])was frequently used in obtaining
lower and upper for the first Dirichlet eigenvalue of the Laplacian. It asserts that for any
function v ∈ C2(M) ∩ C(M) satisfying v > 0 in M and v = 0 on ∂M ,

inf
M

−�v

v
≤ λD

1 (M) ≤ sup
M

−�v

v
,

where λD
1 (M) is the first Dirichlet eigenvalue of the Laplacian on M .

Kasue [14, Lemma 1.1] extended Barta’s result and proved that if there is a positive
continuous function v on M satisfying −�v ≥ λv in the distributional sense for some
constant λ, then λD

1 (M) ≥ λ. Moreover, if v is smooth on an open dense subset of M and
the equality is achieved, then v is the first eigenfunction satisfying the Dirichlet boundary
condition. We extend these results to the p-Laplacian with Robin boundary condition.

Theorem 3.1 Let v ∈ C1(M) (it suffices to assume v is Lipschitz onM) be a positive function.

(1) Suppose that v satisfies{
−�pv ≥ λ|v|p−2v, in M,
∂v
∂ν

|∇v|p−2 + α|v|p−2v ≥ 0, on ∂M,

in the distributional sense, then we have

λp(M, α) ≥ λ.

Moreover, the equality holds if and only if v is a constant multiple of the first eigenfunction
of λp(M, α).
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(2) Suppose that v satisfies{
−�pv ≤ λ|v|p−2v, in M,
∂v
∂ν

|∇v|p−2 + α|v|p−2v ≤ 0, on ∂M,

in the distributional sense, then we have

λp(M, α) ≤ λ.

An immediate consequence of the rigidity in part (1) of Theorem 3.1 is the simpleness of
λp(M, α).

Corollary 3.2 λp(M, α) is simple.

To prove Theorem 3.1, we make use of the Picone’s identity for �p proved in [1]. For
reader’s convenience, we include its short proof here as well.

Proposition 3.1 (Picone’s identity) Let u ≥ 0 and v > 0 be differentiable functions on M.
Let

L(u, v) = |∇u|p + (p − 1)
u p

v p
|∇v|p − p

u p−1

v p−1 |∇v|p−2〈∇u,∇v〉,

R(u, v) = |∇u|p − |∇v|p−2
〈
∇

(
u p

v p−1

)
,∇v

〉
.

Then

L(u, v) = R(u, v) ≥ 0.

Moreover, L(u, v) = 0 a.e. in M if and only if u = cv for some constant c.

Proof Direct calculation gives

R(u, v) = |∇u|p − |∇v|p−2
〈
∇

(
u p

v p−1

)
,∇v

〉

= |∇u|p + (p − 1)
u p

v p
|∇v|p − p

u p−1

v p−1 |∇v|p−2〈∇u,∇v〉
= L(u, v).

Applying Hölder’s inequality ab ≤ a p

p + p−1
p b

p
p−1 with a = |∇u| and b = u p−1

v p−1 |∇v|p−1,
we have

u p−1

v p−1 |∇v|p−2|〈∇u,∇v〉| ≤ u p−1

v p−1 |∇v|p−1|∇u|

≤ |∇u|p
p

+ p − 1

p

u p

v p
|∇v|p,

proving that L(u, v) ≥ 0. If the equality occurs, then we easily conclude that ∇ ( u
v

) = 0 a.e.
on M and consequently u = c v for some constant c. ��
Proof of Theorem 3.1 (1) By assumption, we have∫

M
|∇v|p−2〈∇v,∇η〉 dμg ≥ λ

∫
M

v p−1η dμg − α

∫
∂M

v p−1η d A,
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First Robin eigenvalue of the p-Laplacian on Riemannian manifolds 1041

for any nonnegative function η ∈ C1(M). Choosing η = ϕ p

v p−1 for any smooth function
ϕ gives ∫

M
|∇v|p−2

〈
∇v,∇

(
ϕ p

v p−1

)〉
dμg ≥ λ

∫
M

ϕ p dμg − α

∫
∂M

ϕ p d A,

On the other hand, Picone’s identity in Proposition 3.1 implies∫
M

|∇v|p−2
〈
∇v,∇

(
ϕ p

v p−1

)〉
dμg ≤

∫
M

|∇ϕ|p dμg.

Combing the above two inequalities together yields∫
M

|∇ϕ|p dμg + α

∫
∂M

ϕ p d A ≥ λ

∫
M

ϕ p dμg.

Thedesired inequalityλp(M, α) ≥ λ follows by lettingϕ approach thefirst eigenfunction
u ∈ W 1,p(M). The equality occurs only if

∫
M L(ϕ, v)dμg = 0, which implies L(u, v) =

0 a.e. on M , and then the equality case in Proposition 3.1 implies u = c v for some
constant c.

(2) By assumption, we have that for any nonnegative function η ∈ C1(M),∫
M

|∇v|p−2〈∇v,∇η〉 dμg ≤ λ

∫
M

v p−1η dμg − α

∫
∂M

v p−1η d A.

Letting η approach v yields∫
M

|∇v|p dμg ≤ λ

∫
M

v p dμg − α

∫
∂M

v p d A,

which implies λp(M, α) ≤ λ.
��

4 Proof of Theorem 1.1

In this section, we prove Cheng’s eigenvalue comparison theorems for λp(M, α). By Barta’s
inequality, we need to construct sub and supersolution for the eigenvalue equation. A natural
function on M is the distance function from a given point. Let p ∈ M and r(x) = d(x, p) be
the geodesic distance from p to x . Then r(x) is a Lipschitz continuous function on M and it
is smooth on M\{p,Cut(p)}, where Cut(p) denotes the cut locus of p.

Let snκ be the unique solution of sn′′
κ + κsnκ = 0 with snκ (0) = 0 and sn′

κ (0) = 1, i.e.,
snκ are the coefficients of the Jacobi fields of the model spaces Mn(κ) given by

snκ (t) =

⎧⎪⎪⎨
⎪⎪⎩

1√
κ
sin(

√
κt) if κ > 0,

t if κ = 0,
1√−κ

sinh (
√−κt) if κ < 0.

We need the Laplace comparison theorem for the distance function, see for example [35]
and [32].

Theorem 4.1 Let (Mn, g) be a complete Riemannian manifold of dimension n and p ∈ M.
Let r(x) = d(x, p).
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(1) Suppose that Ric ≥ (n − 1)κ on M. Then

�r(x) ≤ (n − 1)
sn′

κ (r)

snκ (r)

holds for all x ∈ M\{p,Cut(p)}, and also holds globally on M in the sense of distribu-
tion.

(2) Suppose that Sect ≤ κ on M. Then

�r(x) ≥ (n − 1)
sn′

κ (r)

snκ (r)

holds on the set {x ∈ M : r(x) ≤ min{inj(p), π
2
√

κ
}}, where inj(p) denotes the injectivity

radius at p, and we understand π
2
√

κ
= ∞ if κ ≤ 0.

Proof of Theorem 1.1 (1) . We first deal with the α > 0 case. Let u be the first positive
eigenfunction associatedwithλp(V (κ, R), α),which is a radial function, givenbyu(x) =
ϕ(r(x)), where r(x) = d(x, x0) and ϕ satisfies⎧⎪⎨

⎪⎩
(p − 1)|ϕ′|p−2ϕ′′ + (n − 1) sn

′
κ

snκ
|ϕ′|p−2ϕ′ = −λp(V (κ, R), α)|ϕ|p−2ϕ,

|ϕ′(R)|p−2ϕ′(R) = −α|ϕ(R)|p−2ϕ(R),

ϕ′(0) = 0.

Applying Proposition 2.1 with w = snn−1
κ and u(t) = ϕ(R− t), we have that ϕ′(t) < 0.

Consider the function v(x) defined on BR(x0) by

v(x) = ϕ(r(x)).

Since Ric ≥ (n − 1)κ , we have �r(x) ≤ (n − 1) sn
′
κ (r)

snκ (r) for all x ∈ M\{x0,C(x0)} by
part (1) of Theorem 4.1. Direct calculation gives

−�pv(x) = −(p − 1)|ϕ′|p−2ϕ′′ − |ϕ′|p−2ϕ′�r(x)

≤ −(p − 1)|ϕ′|p−2ϕ′′ − |ϕ′|p−2ϕ′ (n − 1)sn′
κ

snκ

= λp(V (κ, R), α)|ϕ|p−2ϕ

= λp(V (κ, R), α)|v|p−2v

for all x ∈ M\{x0,C(x0)}. On the other hand, direct calculation shows that v(x) satisfies

|∇v|p−2 ∂v

∂ν
+ α|v|p−2v = 0

on ∂BR(x0). Since the cut locus is a null set, standard argument via approximation shows
that v(x) satisfies{

−�pv ≤ λp(V (κ, R), α)|v|p−2v, in BR(x0),
∂v
∂ν

|∇v|p−2 + α|v|p−2v = 0, on ∂BR(x0),

in the distributional sense. It then follows from part (2) of Theorem 3.1 that

λp(BR(x0), α) ≤ λp(V (κ, R), α).
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If α < 0, we have that ϕ′(t) > 0. Same argument as in the α > 0 case shows that v(x)
satisfies {

−�pv ≥ λp(V (κ, R), α)|v|p−2v, in BR(x0),
∂v
∂ν

|∇v|p−2 + α|v|p−2v = 0, on ∂BR(x0),

in the distributional sense. The desires estimate λp(BR(x0), α) ≥ λp(V (κ, R), α) fol-
lows from part (1) of Theorem 3.1.

(2) . If α > 0, then we have from Proposition 2.1 that

ϕ′(t) < 0 and
ϕ′(t)
ϕ(t)

≥ −α
1

p−1

for t ∈ (0, R]. Since Sect ≤ κ , we have�r(x) ≥ (n−1) sn
′
κ (r)

snκ (r) by part (2) of Theorem4.1.
Firstly, same argument as in the proof of (1) shows that

−�pv ≥ λp(V (κ, R), α)|v|p−2v

on �. Secondly, using ∂v
∂ν�

= ϕ′〈∇r , ν�〉 ≥ ϕ′ on ∂�, we estimate that

|∇v|p−2 ∂v

∂ν�

+ α|v|p−2v ≥ |ϕ′|p−2ϕ′ + α|ϕ|p−2ϕ ≥ 0

on ∂�, where ν� denote the unit outward normal vector field along ∂�. Thuswe conclude{
−�pv ≥ λp(V (κ, R), α)|v|p−2v, in �,
∂v
∂ν

|∇v|p−2 + α|v|p−2v ≥ 0, on ∂�,

holds in the distributional sense. The desires estimate λp(�, α) ≥ λp(V (κ, R), α) fol-
lows from part (1) of Theorem 3.1.

��

5 Proof of Theorem 1.4

ByBarta’s inequality in Theorem 3.1, we need to find sub and supersolution to the eigenvalue
equation for�p with Robin boundary condition, in order to establish lower and upper bounds
for λp(M, α). The natural choice here is the distance function to the boundary d(x, ∂M). It
is well known that the function d(x, ∂M) is Lipschitz on M and smooth on M\Cut(∂M),
where Cut(∂M) denotes the cut locus of ∂M and it is a null set. We recall the following
Laplace comparison theorem for d(x, ∂M) (see for instance [13]).

Theorem 5.1 Let (Mn, g) be a compact Riemannian manifold with boundary ∂M �= ∅.
Suppose that the Ricci curvature of M is bounded from below by (n − 1)κ and the mean
curvature of ∂M is bounded from below by (n − 1)� for some κ,� ∈ R. Then

�d(x, ∂M) ≤ (n − 1)Tκ,� (d(x, ∂M)) ,

on M\Cut(∂M).

We then construct sub and supersolution of the eigenvalue equation by composing
d(x, ∂M) with the eigenfunction of the one-dimensional problem (1.3).

Proposition 5.1 Let λ̄p := λ̄p ([0, R], α) and ϕ be the first eigenvalue and eigenfunction of
the one-dimensional problem (1.3). Let v(x) = ϕ(d(x, ∂M)).
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(1) If α > 0, then v satisfies{
−�pv ≥ λ̄p|v|p−2v, in M,
∂v
∂ν

|∇v|p−2 + α|v|p−2v ≥ 0, on ∂M,

in the distributional sense.
(2) If α < 0, then v satisfies{

−�pv ≤ λ̄p|v|p−2v, in M,
∂v
∂ν

|∇v|p−2 + α|v|p−2v ≤ 0, on ∂M,

in the distributional sense.

It’s easy to see that v(x) satisfies the Robin boundary condition ∂v
∂ν

|∇v|p−2 + α|v|p−2v = 0
on ∂M and the inequality −�pv ≥ λ̄p|v|p−2v holds on M\Cut(M) if α > 0. To show the
partial differential inequality holds in the sense of distribution, we need the following lemma
in [33, Lemma 2.5], which is useful in avoiding the cut locus of ∂M .

Lemma 5.2 Let (M, g) be a smooth Riemannian manifold with smooth boundary ∂M. Then
there exists a sequence {�k}∞k=1 of closed subsets of M satisfying the following properties:

(1) for every k, the set ∂�k is a smooth hypersurface in M and ∂�k ∩ ∂M = ∂M;
(2) k1 < k2 implies �k1 ⊂ �k2 ;
(3) M\Cut(M) = ∪∞

k=1�k;
(4) for every k, on ∂�k\∂M, there exists the unit outward normal vector field νk for �k

satisfying 〈νk,∇d(x, ∂M)〉 ≥ 0.

Proof of Proposition 5.1 (1) . Direct calculation using Proposition 5.1 shows

�pv = (p − 1)|ϕ′|p−2ϕ′′ + |ϕ′|p−2ϕ′�d(x, ∂M) ≤ −λ̄p|v|p−2v

on the setM\Cut(M). Since v is smooth in any�k , we have for any nonnegative function
η ∈ C1(M),∫

�k

|∇v|p−2〈∇v,∇η〉 dμg −
∫

�k

�pv η dμg +
∫

∂�k

|∇v|p−2 ∂v

∂νk
η d A

≥ λ̄p

∫
�k

|v|p−2vη dμg +
∫

∂�k∩∂M
|∇v|p−2 ∂v

∂νk
η d A +

∫
∂�k\∂M

|∇v|p−2 ∂v

∂νk
η d A

= λ̄p

∫
�k

|v|p−2vη dμg + α

∫
∂M

|v|p−2v η d A +
∫

∂�k\∂M
|∇v|p−2ϕ′〈∇d(x, ∂M), νk〉 η d A

≥ λ̄p

∫
�k

|v|p−2vη dμg + α

∫
∂M

|v|p−2vη d A,

where we used ϕ′ > 0 and 〈νk,∇d(x, ∂M)〉 ≥ 0. Letting k → ∞ yields that v satisfies∫
M

|∇v|p−2〈∇v,∇η〉 dμg ≥ λ̄p

∫
M

|v|p−1vη dμg + α

∫
∂M

|v|p−2v η d A.

Thus, we conclude that v satisfies{
−�pv ≥ λ̄p|v|p−2v, in M,
∂v
∂ν

|∇v|p−2 + α|v|p−2v ≥ 0, on ∂M,

in the distributional sense.
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(2) . The proof is similar to (1) and we omit the details.
��

Proof of Theorem 1.4 If α > 0, then by Proposition 5.1, the function v(x) = ϕ(d(x, ∂M)

satisfies {
−�pv ≥ λ̄p|v|p−2v, in M,
∂v
∂ν

|∇v|p−2 + α|v|p−2v ≥ 0, on ∂M,

in the distributional sense. Then Barta’s inequality in Theorem 3.1 implies that λp(M, α) ≥
λ̄p = λ̄p ([0, R], α). The α < 0 case is completely similar.

If the equality is in Theorem 1.4 achieved, then by the rigidity in part (1) of Theorem 3.1,
v(x) = ϕ(d(x, ∂M) is indeed a constant mutilple of the first eigenfunction associated to
λp(M, α). Same argument as in [14, page 37] or [34, page 101] shows that (Mn, g) is a
(κ,�)-model space. ��

6 Equality case in Theorem 1.4 andmodel spaces

In order to characterize the equality case in Theorem 1.4, we need the notion of (κ,�)-model
spaces introduced by Kasue [14]. For this purpose, we introduce the following notations

Zκ,� := inf{t > 0 : Cκ,�(t) = 0},
Yκ,� := inf{t ∈ (0,Cκ,�] : C ′

κ,�(t) = 0}.

Here we understand Zκ,� = ∞ if Cκ,� does not vanish on (0,∞) and Yκ,� = ∞ if C ′
κ,�

does not vanish on [0,Cκ,�]. It’s easy to see that 0 < Zκ,� < ∞ if and only if either κ > 0,
or κ = 0 and � > 0, or κ < 0, and that � >

√|κ| and 0 < Yκ,� < ∞ if and only if either
κ > 0 and � < 0, or κ = 0 and � = 0, or κ < 0 and 0 < � <

√|κ|.
Let Mn(κ) denote the simply-connected n-dimensional space with constant sectional

curvature κ .

Definition 6.1 A compact Riemannian manifold (Mn, g) with boundary is called a (κ,�)-
model space if one of the following conditions holds:

(1) Zκ,� < ∞ and M is isometric to the closed geodesic ball of radius Zκ,� in Mn(κ).
(2) κ = � = 0, or 0 < Yκ,� < ∞. Moreover, M is isometric to the warped product

[0, 2a] ×Cκ,� 
, where 
 is connected component of ∂M and a is a positive number if
κ = � = 0, and a = Yκ,� if 0 < Yκ,� < ∞. In this case, ∂M is disconnected.

(3) κ = � = 0, or 0 < Yκ,� < ∞. Moreover, ∂M is connected and there is an involu-
tive isometry σ of ∂M without fixed points, and M is isometric to the quotient space
[0, 2a]×Cκ,� ∂M/Gσ , where a and h are the same as in (2) and Gσ is the isometry group
on [0, 2a] ×Cκ,� ∂M/Gσ whose elements consist of the identity and and the involutive
isometry σ̂ defined by σ̂ (t, x) = (2a − t, σ (x)).

From a standard argument (see for instance [14, Section 1.3] ), one sees that when M is
a (κ,�)-model space, the first Robin eigenfunction of the p-Laplacian can be written in the
form

u = ϕ ◦ d(x, ∂M),
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where ϕ is a smooth function on [0, R] satisfying
⎧⎪⎨
⎪⎩

(p − 1)|ϕ′|p−2ϕ′′ + (n − 1)Tκ,�|ϕ′|p−2ϕ′ = −λp(M, α)|ϕ|p−2ϕ,

|ϕ′(0)|p−2ϕ′(0) = α|ϕ(0)|p−2ϕ(0),

ϕ′(R) = 0,

which gives the equality case in Theorem 1.4.
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