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Abstract

For self-similar sets with overlaps, we introduce a notion named the finite type in mea-
sure sense and reveal its intrinsic relationships with the weak separation condition and the
generalized finite type.
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1 Introduction

The separation condition for the iterated function system (IFS) plays an important role in the
study of self-similar fractals with overlaps. We have separation conditions or structures such
as the open set condition (OSC) by Hutchinson [8], the weak separation condition (WSC)
by Lau and Ngai [12], the finite type (FT) by Ngai and Wang [21], and the generalized finite
type (GFT) by Jin and Yau [10] and Lau and Ngai [13] independently. As shown in the
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survey paper [4], it is known that
OSC = GFT and FT = GFT = WSC.

We refer the reader to [3,5,6,14,15,18-20,22,24] for the study on separation conditions and
[9,11,23] for self-similar sets with overlaps respectively.

To characterize self-similar sets with overlaps, in this paper we introduce the separation
condition named finite type in measure sense (Definition 1) in terms of Hausdorff measure
rather than in topological and algebraic ways. We will study properties of this separation
condition, and reveal its intrinsic relationships with WSC and GFT.

1.1 Main result

Let m be a positive integer and ® = {¢; (x)}""_, a family of contractive maps on R”" of the
form

¢i(x) = piRix + b; fori =0,1,...,m, (1.1)

where p; € (0, 1), R; is orthogonal and b; € R” for each i. Then ® is an iterated function
system (IFS) on R" and the attractor of @ is the unique compact set K¢ € R satisfying

K =Ko=J_ &Ko) (1.2)

Without loss of generality, we always assume that K does not lie in any hyperplane. Denote
p =min{p; :i =0, 1,...,m}. For any finite word I = ijiy---i; € {0, 1, ..., m}!, denote
|1] the length of the word, and write ¢; = ¢;, 0---0¢;,, K = ¢;(K)and p;x = pyRyx+bj.
The weak separation condition was first defined by Lau and Ngai in [12], see also [2,24]
and [15]. Here we use an equivalent definition of the WSC from (3b) of Theorem 1 in [24].
An IFS @ is said to satisfy the WSC if there exists a number € > 0 such that for all ({, J),

either ¢; = ¢y or d(¢; "¢y, id) > €, (1.3)

where d(a) Rx + d1, a2 0x + da) = |a; — az| + ||[RQ™" —id| + |di — d>| for orthogonal
matrices R and Q, aj,a; > 0 and di,d> € R". Suppose ® satisfies the WSC and s =
dimgy K, it is shown in [7] that H®|x is Ahlfors—David regular [17], i.e., there exists a
constant & > 0 such that

£ < W'l (B.r) <ér° (1.4)

for all closed ball B(x, r) centered at x € K with radius r < diam(K).

The generalized finite type was introduced by Lau and Ngai in [13]. A non-empty open
set U is called an invariant open set, if U;n:() ¢i(U) C U. Then @ is of GFT if there exists
an invariant open set U such that

{(f)l_ld)j co1(U)N ¢y (U) # @ with ,o[_lpj € (,0,,0_1)] is a finite set.

The finite type (FT) was introduced by Ngai and Wang [21]. When the contraction ratios
of @ are exponentially commensurable, then @ is of FT ( [21]) if and only if ® is of GFT
(Theorem 4.2 of [4]).

In this paper, we introduce the following definitions on separation conditions.
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Definition 1 An IFS & is said to be of weak finite type in measure sense (WFTM), if for
any ¢ > 0, there is a finite set Il. such that for any (/, J) with pflpj e (p,p~") and
H*(K; N Kj) > cH*(Ky) with s = dimgy K, we have

o7 '¢s € M.

An IFS @ is said to be of finite type in measure sense (FTM), if there exists a finite set A
such that

¢;'¢s € Aforany (1,J) € 2,
where A = {(I, J): 1 # J, ,ofl,oj e (p,p Hand H(K; N Ky) > 0} with s = dimy K.
Theorem 1 Suppose the IFS ® and the self-similar set Ko are defined in (1.1) and (1.2).
Then

(1) WSC=WFTM;
(2) WSC=FTM if

i H(K;NKy)
I, e H(Kp)
(3) WSCHFTM<&GFT and WSC+(1.5 )< GFT.

> 0. (1.5)

Remark 1 The result (3) of Theorem 1 shows that under the WSC, the finite type in measure
sense (FTM) is exactly the generalized finite type with respect to some invariant open set
(GFT).

1.2 Invariant set [0, 1]
We will focus on the case that K = K¢ = [0, 1], where the IFS ® = {¢;(x) = pix + b; :
[0, 11 — [0, 11}, satisfying

pi € (0,1)and by =0, b, =1 — pp,. (1.6)

In this case A = {(/, J): pl_lpj € (p, p~ ") and ¢;((0, 1)) N ¢ ((0, 1)) # @}. For two
similitudes ¢ (x) = prx + ¢7(0) and ¢;(x) = pyx + ¢7(0), we have

o7 0 (x) = p; ps(x) + oy (s (0) — $1(0)), (1.7)

then d);ld) J includes the information of relative position ,o;l (¢7(0) — ¢;(0)) and relative

size ,o[_l PJ.
In this paper, we will introduce the following Definition 2 according to (1.7).

Definition 2 Suppose @ is an IFS satisfying K = K¢ = [0, 1] and (1.6). We say that ®
satisfies the finiteness of relative positions (FP), if there exists a finite set I' C [0, 1) such
that

p; ' (¢5(0) — ¢1(0)) € T forall (1, J) € A with ¢ (0) > ¢ (0). (1.8)

An IFS & is said to satisfy the finiteness of relative sizes (FS), if there is a finite set A such
that

,O;I,OJ € Aforall (I,J) e

Notice that FTM << FP+FS in this case. In fact, we have
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Theorem 2 Let ® = {¢; (x) = p;x + b; : [0, 1] — [0, 11}/, be an IFS satisfying (1.6) and
Ko =10, 1]. Then

WSC & FTM & GFT < FP.
Remark 2 In Theorem 2 when pg = - - - = p,,, Feng [5] have obtained WSC<FT.

Remark 3 We note that FS < WSC. For example, letm = 1 and pp = p1 = p > 1/2, by
using a result of Akiyama and Komornik [1], Feng [5] proved that ® is of FT (and the WSC
holds) if and only if p~! is a Pisot number.

Using the FS, we can discuss the rational dependence for ratio’s logarithm. Firstly, we see
the following two examples.

Example 1 As in the left part of Fig. 1, take A € (0, 1) such that logA/log(1 — 1) ¢ Q, let
¢o(x) = Ax and ¢1(x) = (1 — X)x + A. Then K¢ = [0, 1] and {(ﬁ,-}il:0 is of GFT.
Example 2 As in the right part of Fig. 1, take p < 1/2 such that log %/ logp ¢ Q. Let
$o(x) = pox. 1(x) = px + po(1 = p). $2(x) = px + (1 = p). where py = =7 Then
{¢i}7_ is of GFT but log po/log p ¢ Q.

Note that A ¢ ¢o((0, 1)) U¢1((0, 1)) in Example 1 and (1 — p) ¢ ¢1((0, 1)) U $2((0, 1))
in Example 2. Now we add a natural assumption as in Fig. 2:

For any x € (0, 1) there is a letter i such that x € ¢; ((0, 1)). (1.9)

Under assumption (1.9), we have the rational dependence of ratio’s logarithm.

Theorem 3 Let ® = {¢;(x) = p;x + b;}[", be an IFS satisfying Ko = [0, 1], (1.6) and
(1.9). If the WSC holds, then there exists a non-zero vector (ng, ni, ..., ny) € 7"+ such
that

m
> “njlogp; = 0. (1.10)
i =0

In particular, if m = 1, then %gg ’Z? € Q. Moreover, when m = 2, if the WSC holds and ® is

non-degenerate to a sub-IFS with invariant set [0, 1] satisfying (1.9), then }gﬁ Zg e Q.

Remark 4 Example 2 shows that we need the assumption (1.9) in Theorem 3 for m = 2.

Po
—
i \ | 1 M |
0 A 10 PPl
Fig.1 Examples 1 and 2
p(] pO
> I — P,
[ w ! [
0 | P | 0 | P ‘ 1

Fig.2 Assumption (1.9) withm =1 or2
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As shown by Zerner in Proposition 1 of [24], if ® satisfies the WSC but the OSC fails,
then @ satisfies the complete overlap condition (COC). The following example shows

COC = WSC.

Example3 Let ® = {¢o(x) = %x, d1(x) = %x + é} be an I/ FS in R. Then the attractor
Ko = [0, 1]. Furthermore, we can check that

8 91

d011100 = $101001 = 7% + 70"

i.e.,  satisfies the complete overlap condition. But by Theorem 3, we note that & is not of

GFT and the WSC fails since 125273} ¢ Q.

The paper is organized as follows. In Sect. 2, combining the key approach in [5] and the
Ahlfors-David regularity of Hausdorff measure on the self-similar set, we obtain a result on
the separation condition in measure sense (Theorem 1). In fact, our proof of Theorem 1 (on
Hausdorff measure) is also inspired by the dichotomy on self-similar measure in [16] and
the construction of “minimal” invariant open set in [4]. In Sect. 3, we will prove Theorem 2.
Since the invariant set is a closed interval and GFT<FTM in this case, we need to verify
inf(; jyen % > (under the WSC. In the last section, we give the rational dependence
of ratio’s logarithm (Theorem 3).

2 Weak finite type in measure sense

This section is devoted to the proof of Theorem 1. Keep notations in Sect. 1.
Suppose the IFS & satisfies the WSC. For a word 7, let

M, ={¢ : ¢ = ¢; for some word I s.t. K; N K; # &, p; € [ppr, pr)}-

Here K; = ¢;(K). Note that if ¢; = ¢ = ¢ with ¢(x) = pRx + b, then p; = py = p,
R; = Ry = Rand by = by = b. We have the following lemma enlightened by the ideas in
[5.6].

Lemma1 sup, §M; < oo.
Proof Given a word 7, let f; : M; — R x O(n) x R" be defined by

fe(@1) = (p1/pe. RIR; ", p7 ' (b1 — by)) for ¢y (x) = pyx + by.
We note that the metric on R x O(n) x R" is d((a;, R, d}), (a2, O, d>r)) = |la1 — az| +
|RQ™" —id| + |d\ — da| for any (ay, R, d)), (a2, Q. d2) € R x O(n) x R". Take a € K
and b € K; N K (# ), we have ¢;(a) € Kj and ¢, (a) € K, by p; < p; we have
los 'Ry (b1 — bo)l = p; 1 (0) — ¢ (0)]
¢1(a) — bl + b — ¢ (@)| + |p1(a) — 1 (0)] + [P (a) — ¢ (0)]

Pr
_ diam(K) + diam(K;) + p;la| + pc|al

P

- |

< 2(diam(K) + |a]).

For any distinct elements ¢ (= ¢1), ¢'(= ¢;) € M, we have pl_l,oj € (p, p’l) since
p1, pJ € [ppr, pr). Notice that

o' () = b, ps(x) = p; 'Ry (psRyx + by —by)
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826 J.Deng et al.

= (o7 PR 'R)x + p; 'Ry by — by,
which implies
d(¢~"'¢' id) = d(¢] ' ¢, id)
= lo; oy — 11+ | R7 'Ry —id| + 1oy 'R by = b))
= 07" lor = o1+ | RT' Ry = id| + o7 lbs — by
By (1.3), we have

o 101 = sl + | R Ry = id| + o7 by = byl > €. 2.1

Since p; > p.p,ie., p;l > pp,‘l, by (2.1) we have

d(fz (@), f:(¢) = d(fx(@1), fr(#1))
= oot = psl+ o7 by = byl + | R Ry —id]

> p(oy o = psl + o7 b1 — by + | RT' Ry —id]) > pe.

Notice that f7 (M) C [p, 1] x O(n) x B(0, 2(diam(K)+|a|)) which is a compact subspace,

then for this compact set we can take a finite covering of open balls Uy, ..., U, with radius

p€/2, now each open ball contains at most one element of f; (M) due to d(f; (¢), f+(¢")) >

pe, Hence M, < ¢ forall 7, i.e., supM, < g. O
T

Take 7¢ such that
gMy, =sup M, = L. 2.2)
T
Let My, = {¢v,, ..., pv, }, where Vi, ..., V| are some words. Suppose ® satisfies the WSC,

itis shown in [7] that H*| g, is Ahlfors-David regular with s = dimy Ko, i.e., the inequality
(1.4) holds.

Lemma 2 Given any ¢ € (0, 1), there is an integer N depending only on c¢ such that for
any Borel set K' C K with H*(K') > ¢H*(K), we have a word B of length less than N

satisfying
K'n Kgyy # 2,

where 1 is given in (2.2).

Proof Let E, = K\ U K,g,()) and E = (2, Ex.
We only need to show that
H(E) = lim H*(E,) =0. (2.3)
n—o0o

In fact, take N such that H* (Ex) < ¢H*(K),by H*(K') > ¢H*(K) wehave K'NKgy, # &
for some word S of length less than N.
To verify (2.3), we suppose on the contrary that

H(E) > 0.
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Since H*|g is a Borel regular and locally finite, H*|x is a Radon measure. Using density
theorem of Radon measure (e.g. see Corollary 2.14(1) of [17]), we have

HY |k (ENB(x,r))

=1 f |k -ae. E. 2.4
el By e .

Given such a point x satisfying (2.4), for every B(x, r), we can take
(x €)Kg C B(x,r) with pr < diam(Kg) = pgdiam(K) < r.
Now, Kggy C B(x,r)\E. Hence

oIk (0BG, ) < Wk (B, 1) — H (Kpey)
=Mk (B(x, 1)) — pgpy H' (K)

where

,Ofg,oiOHS (K) - (HS (K) ﬁ) ré _ HS(K) p*
HS |k (B(x,r)) — £rs " ediam(K)S

Therefore we obtain that
H|g (EN B(x,r)) 1 HY(K) p*
He|k (B(x,r)) — §diam(K)*

This is a contradiction. Then H* (E) = 0. O

(< D).

Proof of Theorem 1 (1) Now, consider (I, J) with p,‘lpj e(p,p Hand HS(K; NKy) >
cH'(K7). Since H“(¢]_1 (K1 NKy)) > cH*(K), by Lemma 2, we obtain a word S of
length less than N satisfying

o7 (KN Ky N Kpg # 9.

Then take y € Kjg;, N Ky andlety € K, with py ;0 € [pp1gzy, P187,). Note that

P PPIPBL
py=FL > PEEPEO 5 206150 > pN 42,
poJ PJ

Now we have K ;p N K;gq, #= @ and pjy € [pp1p7» PI187,)> Which implies
Gy € Mipyy = b1p{dv,, ... v, }
due to the choice of My,. For some 1 <i < L, we have
Q11 = d1pv;

ie., ¢ o ¢y = ¢y o pgy;, which implies

¢ o ds = dpy; 09}
Therefore we obtain that

¢7 b5 € {ppdvidy 1Bl < N, 1 <i<Landpy = pN*?pg )10

(2) This result follows from (1.5) and result (1) of Theorem 1 directly.
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HY(KNK)) _ HE(KN@; ' ¢s(K))
HY(Kp) T HS(K)

WSC + FTM < GFT.

(3) Note that , it suffices to show that

It is known that GFT=WSC. Under the WSC, we need following two lemmas to show
FTM=GFT and GFT=FTM.

m}

Lemma 3 Suppose K is the self-similar set of an IFS ® satisfying the WSC. Then there is an
invariant open set U with U N K # @ and

H |k (U) = H(K) withs = dimg K, (2.5)
such that for any (I, J) with pl_lpj € (p, p_l) and any invariant open set V,

¢1(U)NgyU) #G = ¢1(V) N (V) # 2. (2.6)

Proof The existence of invariant open set U satisfying (2.6) and U N K # & has been proved
in Proposition 6.5 of [4], we only need to show (2.5).
Suppose on the contrary that H*(K\U) > 0. Using density theorem of Radon measure
again, for F = K\U we have
im H |k (FNB(x,r))
r—0  H¥|g(B(x,r))

Given such a point x satisfying (2.7), for every B(x, r), we can take a word B8* such that

= 1for H'|g-ae. x € F. 2.7

(x €)Kpgx C B(x,r) with pr < diam(Kg+) = pg«diam(K) < r.

Since U N K # @, we can find a finite word o such that K, C U. Notice that U is
invariant, then for the above word 8%, we have ¢g+(U) C U and thus Kg+, C U. Hence

Mk (FNB(x.r) < H'k (Bx.r) —H' (Kgeo)
= H'|k (B(x, 1)) — ppepg " (K)
where
phoste &) (7 K ) g k)
Rl (B(x,r)) — &rs ~ &diam(K)’

Therefore we obtain
H¥ |k (F N B(x,r)) -1 P50 H® (K)

= ; (< 1.
HE |k (B(x, 1)) £diam(K)’
This is a contradiction. Hence H* (F) = 0 and (2.5) follows. ]
Motivated by [4], we let U, = {x : d(x, K) < ¢} for some fixed ¢ > 0 and denote
U= U,g{0 ,,,, w120 91 @ Ue), (2.8)

where nj = A with A7 = {¢y 2 py ' ps € (p.p™) $1(Us) Ny (Us) # @) and o is a
word such that

ng = max ny < oo. 2.9)
1€{0,....m}, t>0

We also refer the reader to the proof of Lemma 1 for max ny < oo.
1€{0,....m)!, >0
By Lemma 3 we focus on the Hausdorff measure and obtain
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Lemma 4 Suppose the WSC holds and U is the invariant open set in Lemma 3. If ,01_1 pJ €
(p.p~1), then H*(K; N Ky) > 0 & ¢1(U) Ny (U) # @

Proof “=—" Since ¢p; (K NU)N¢;(KNU) C KN (¢p;(U)N¢;(U)), we obtain that

H k(1 (U) Ny (U)) =H (K N (g1 (U) Ny (U)))

; (2.10)
>H (pr(KNU)Ng (K NU)).

By Lemma 3 we have H*(K\U) = 0, then H*(¢;(K\U)) = H*(¢p;(K\U)) = O since
@1, ¢y are Lipschitz maps. Hence

H(pr(KNU)NPy(KNU)) =H (K NKy). (2.11)
Combining (2.10) and (2.11), we have
H gk (pr(U)Ngy(U)) = H (pr(KNU)Np;(KNU)) =H (K;NKy) >0,

which implies ¢; (U) N ¢ (U) # 9.

“«<=" Let U be the open set defined in (2.8) and o the word satisfying (2.9). Since
ne = nje for any I, we may assume that the length |o| is so large that p, < pz.

Now we assume that ¢;(U) N ¢;(U) # @ with pfl,oj e (p,ph, by the structure
of U, we can find two words 8 and t such that ¢;,(Us) N @6 (Us) # <. Without loss
of generality, we obtain that p;g, < pj:o, then we can find a prefix « of /B0 such that

P,;l,OJm € (p,p~ " and
¢K(U8) N ¢Jr(r(Us) 75 .

Notice that p, < p~ L pjee < p Y psps < pps < pi, which implies that 7 is a prefix of «,
says k = [« for some word ’. On the other hand, let Ay = {@a,, . .., @a,, }. Then by the
choice of o, we have

b =Pr0¢ € Pyodro{bay,.... Pay, }s
i.e., there exists an index 1 < i < n, such that ¢; o ¢» = ¢ o ¢ o ¢, that means
Ko = Kjre, with H*(K; N Ky) = H (Kper) > 0
under the WSC. O

By Lemma 4 we obtain FTM=>GFT (with the above U in Lemma 3) under the WSC
directly.

For GFT=FTM, we notice that if ® is of GFT for some invariant open set V, by H*(K; N
Kj) > 0= ¢;(U)N¢;(U) # @ and (2.6) we obtain that ¢;(V) N ¢;(V) # &, which
implies ¢>1_] ¢ belongs to a fixed finite set.

Then part (3) of Theorem 1 is proved.

3 Invariant set [0, 1]

This section is devoted to the proof of Theorem 2. It is known that GFT = WSC and
FTM<FS+FP. By part (3) of Theorem 1, we only need to show WSC=-GFT and FP=FS.
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830 J.Deng et al.

3.1 WSC=GFT

Suppose the WSC holds. By Theorem 1, to obtain the GFT we only need to verify
LK NKy)

in > 0,
(a.Hed  L(Kj)
where s = land H® = L. Let T = Irbgrlt;%-‘ where [x] =min{n € Z : n > x}.

Before the proof, we need

Claim 1 Suppose ,01,01_1 € (p,p Y with|I| > 1and |J| > 1. Then we can find words
and t, with 1 < |o|, |t| < 3T suchthatl = ["0, J = J 1 and ,01—,01_,1 e, p M.

Remark5 [~ and J~ are prefixes of I and J respectively, which are not traditional notations
standing for the father words of 7 and J.

Let ¢ = pc; with ¢; = min(p37+!

corresponding finite set I1.. Let

,min{b, > 0 : |o| < 3T}). By Theorem 1, there is a

LK Ny (K
M= [J ¢, 'Meprandd=_min LEOYE) 0, (3.1
yellnPM L(K)
1<|o|,|t|<3T
where PM = {yy = ¢; '¢; : LK NY(K)) > O}
For WSC=GFT, we only need to show

Lemma5 Suppose ® = {¢;(x) = pix + b;}i", such that K = K¢ = [0, 1]. If ® satisfies
the weak separation condition, then
HY(KiNKy) . LKINK))

in = in >d.
(a,Hed  H(Kjp) e L(Ky)

Proof Suppose on the contrary there exist ¢ € (0, d] and (I, J) € 2 such that

LIKiNK
0< EEINKD g (3.2)
LK)
Assume that the above (1, J) is the pair of shortest words satisfying (3.2).
We divide the proof into two steps.

Step 1. We will prove that
LK;-NKj-)
— >
L(K;-)
Let K; = [A], Br]l, K;j = [Ay, By]. Without of generality, we assume K intersects Kj

only around A; as in Fig. 3. We use Cases (1)-(3) to prove inequality (3.3).
Case (1). If Ay is an inner point of K-, i.e., K;- = [«, B] with

(3.3)

a< A <pB.

Fig.3 K intersects K;
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Finite type in measure sense for self-similar sets with overlaps 831

Therefore, we have

L(K;- N Kj-) = L(e, BIN[A}, B)])
> L([max(a, Ay), B
> min(L([a, Af], L([Ay, Bs]).
Let I = I~o* We have L([o, A7]) = |A; — a| = bgsp;- > c1p;- = c1L(K;-) and

LAA;. BsD) = LK) = T 20,5 LK1=) = p*THL(K =) = e1£L(K-). Hence

LK;-NKj-)
L(K-)
Case (2). If By is an inner point of the convex hull of K ;-, in the same way as above we
also have

> c1(> o).

LK -NK;-)
——— >y,
L(Kj-)
and thus
L(K-NKj-) _ L(Ky-) LK;-NKy-) -
L(K;-) L(K[-) L(K;-) —

p-cl=c.
Case (3). Now, we may assume that A; is the left end-point of the convex hull of K ;-
and By is the right end-point of the convex hull of K ;-, then

LK-NKy-) LK NKy) LK NKY)
L(K-) L(K;-) L(K7)

which is a contradiction to the shortest choice of (7, J).
Then inequality (3.3) follows.
Step 2. We will show that
LKiNKy) -
L(K1)
which is contradictory to (3.2). Now, by (3.3) and Theorem 1, there is a finite set I1. such
that

)

¢, ¢y €T,

which implies

or'ore | ¢ Mo

1<|o|,|t|<3T
Let IT and d be defined in (3.1). Suppose qb;lq&] = y* € I1, we have

LKINKy) _ Lpr(K)Ny(K)) _ prL(K N, '¢s(K)) _ LK NYH(K)

L(Kp) L(¢1(K)) prL(K) L(K)
That means ¢¥* € PM and
LK Ky) - H(KNyY(K)
—————~=> min ———>==d>0.
L(K]) yellNPM L(K)

[}
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32FP=FS

Suppose & satisfies the FP. we will show that ® satisfies the FS, and thus & is of GFT.
At first, we will deal with the case ¢;(0) = ¢;(0). Denote [i]¥ =i ---i.

k

Lemma 6 There exists a finite set A1 such that if ¢;(0) = ¢;(0) (i.e.,, by = by), with
pip;" € (p, p~Y), then

,01;0,_1 € Ay

Proof Suppose that p; < p;. We have ¢J_1¢1(x) = (p;x +by —by)/p; = (,oj_lpl)x due
to by = by, and thus

o, o) =p;"pr €10,11.

Since K¢ = [0, 1], there is an infinite sequence iy ---ix--- in {0,...,m}* such that
{¢;1¢,(1)} = ﬂ,fil ®iy..iy-- ([0, 11), which implies that we can find an integer k such that

2T

Picic e [p - p2T, p2T) where ;' 2l < 2T < p and 7’);)111":‘ > p for all ¢. Let

o5 o1
o =1ij---i, we obtain

o)
ppp < —— <pal, (3.4)

and thus

pe = (07 p1)(p - pal) = p* - oy
Therefore we have

3160 (10, 11) N g, pr (10, 1]) # 2.

We will distinguish the following two cases.
Case 1. If ¢, ' ¢ (1) = ¢ (0) or ¢ (1), then

Py pr €1 (0):0 =0o0rland p, > p*- oy},

which is a finite set.
Case 2. If ¢J“¢1(1) € (¢ (0), ¢ (1)), then we have

Grmper ((0, 1)) N ¢y ((0, 1)) # @
and DrimpT (0) < ¢75(0) by (3.4) which implies

¢ D 1mpr (0) < 5 (0). (3.5)
Suppose I is the finite set with respect to the FP as in (1.8), we have
Pyt @5 (0) = $yppr (0)) € T (3.6)

where ¢ ;5 (0) = ¢, (0) + ps ¢ (0) and ¢, 27 (0) = ¢1(0) + p1 @127 (0) = ¢1(0) + s (1 —
021y with ¢ (0) = ¢;(0). Notice that

p,‘[,l,l]n ($75(0) = rpmpr (00) = 0,2 (07 ' 10 (0) — (1 — p21)). (3.7)
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By (3.6) and (3.7), we obtain that

P2IT + (1 — p21)
¢ (0)
where ¢, (0) > ¢;1¢1[m]2r 0 = ,oj_l,oI(l - p,%,T) > 0 due to (3.5). Therefore,

o' ps €

)

U ol T+ (1= p3")
¢5(0)

Py ps €
Pozp?pl
which is a finite set. O
We will show that there is a finite set A such that
p; oy e Aforall (1,J) e 2.
Since ¢;(0) > ¢7(0), by Lemma 6, we may assume that
$7(0) > ¢7(0). (3.8)

Lemma 7 There exists a finite set 2 such that if (IO, 7Oy e A with @70 (0) > ¢;0(0),
we can find (I, J) satisfying 0 < pl_](d)J(O) —¢71(0)) <land ,01/0]_1 € (p, p~ 1) such that
pr Py

, € Q
PO PO

and the last letter of J is m.

Proof Since (19, J©) ¢ A, we have pl_(é) (¢;0(0) — ¢;0(0)) < maxyer\(1yy < 1 due
to the discreteness of I". Then

1 @10 (D) = 600D = 03 (010 = (§0/(0) = $y0 O) 2 1 = max y.

Letc = 1 —maxyer\(1} ¥ > 0. Take an integer

1
L= [ Og(pC)} Y
log po

then (po)k < c¢p and thus
(P0)*p0 < C,O(pj(om;(é)),ol(m <cpjo = |pro D) — ¢ 0 0)].

That means ¢, ([0, 11) C [¢;0(0), ¢p;0 (1)] for J = JO[01*m. Suppose the left endpoint
¢, (0) belongs to ¢;), ([0, 1]) with its length

P ps < 19040, 1D] < py
where
o7 = (00)* 0,0 pm < (CP)(pr)P;(é))P[(O)Pm < P10 Pm < PO -
We also note that
Po = (P70 P70 PmPl = LOm OG-

Take I = 1o, Now, since ¢;(0) € ¢;([0,11) N ¢;([0, 1]) # &, we have 0 <
P;l((ﬁJ(O) — ¢7(0)) < 1 and p“o]l e (p,p~Y). Let

Q= {ps : Po = PPmPG} Y {ompp)
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with k = [ Y29 ] - 1. Then

pr - pJ

s e Q.
PO Py

[m}

By Lemmas 6 and 7, we only need to deal with the finiteness of the values p; ,oj_1 under
the conditions:

(1) 0 < p71(¢1(0) —¢1(0) < 1;

@) pipy' € (p.p™

(3) the last letter of J is m with b,,, > 0.
For notational convenience, we add 1 to I', i.e., 1 € I', then the above condition (1)
implies

o7 (#7(0) — ¢1(0)) €T

Using Claim 1, we can find words o and 7, with 1 < |o|, |t| < 3T suchthat I = I'c, J =
J't and ,oppj_,] € (p, p~ . Now,

$1(0) =¢p0) + prbs, ¢;(0) =¢;(0) + pybs.
Therefore,
¢y (0) —¢p(0) = ¢;(0) — ¢1(0) + prbs — pyrbr. (3.9

Using Lemma 7, we only to need to show p; pj_l belongs to a finite set. Since the last letter
of J is m, we have b; > 0.
Case A. If ¢;/(0) > ¢7(0), then

o1 (@ (0) — ¢ (0)) = (0)(p] ' (B (0) — ¢1(0))) + by — (b} £7)br.
Since b; # 0, then

. (p) Py (@7 (0) — $1(0) + bo — p;, (¢(0) — $1/(0)  poT + by — T
Pp P = b, € b, .

Hence

_ _ po ' + by — T
pr'os € U Py pr (F— )

b
1<|o|,|t|<3T, by>0 T

which is a finite set.
Case B. If ¢;/(0) < ¢,/(0), then

07 (@(0) — ¢ (0) = (o) p1)pe (o) (95 (0) — 91 (0)) + (0 o) o2 Py b — br.
That is

(0} o) (pe (7 (95(0) — $1(0) + p, b)) = ! (sr(0) — ¢y (0) + br €T + by,
and pr (p;! (¢7(0) — ¢1(0)) € T'\{0}. Since

—1 —1 .
0)— 0 ba 0,
p; ($0) —¢1(0) + p5 b = Jmin ¥ >
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we have
U I'+b,
L<io1Te <37 P T\(O} + p5 ' bo)

—1
Py PI €

which is a finite set.

4 Rational dependence of ratio’s logarithm

Let ® = {¢; (x) = pix + b;}I", be an IFS satisfying (1.6) and K = K¢ = [0, 1].

In this section, we always assume that @ satisfies the WSC, i.e., ® is of GFT according
to Theorem 2. In particular, ® satisfies the finiteness of relative sizes (FS). We will discuss
the rational dependence of ratio’s logarithm by using the FS.

For any infinite word o = i; ---i; - -, denote the starting finite word with length j by
U|j :i1-~'ij.

Under the assumption of Theorem 3, we obtain

Lemma8 Forany 0 < x < 1, there exists an infinite word 6 =iy ---i; --- such that

{x} =) bo1,((0, 1)).

j=1

Proof Prove it by induction. Firstly, by the assumption (1.9) of Theorem 3, for any 0 < x¢ <
1, there exists a letter i € {0, 1, ..., m} such that xg € ¢;((0, 1)). Assume there exists a
finite word iy - - - i such thatx € ﬂ/;»zl d)i,...ij((O, 1)). Now ¢i_1~1--ik (x) :==x0 € (0, 1), by the
above discussion, xg € ¢;((0, 1)) for some i € {0, 1, ..., m}. Then take i+ = i, we have

X € iyipiyy (0, 1)). .
Let
Q={(J): 1 #Jst¢1(0,1)Ns(0. 1) # @ and prp;' € (0, p~ ). (@1

Givenaword I =iy ---iy,denote fli; = 4{r <k :i, =i}.

Lemma9 Assume ® satisfies the FS. If © is rationally independent for ratio’s logarithm,
that is

m
Zni logpi #0, V(no,ni,...,ny,) € Zm+1\{0}. 4.2)
i=0
then there is an integer N € N such that forall (I,J) € Qandalli =0, ..., m,
i — ffig] < N, 4.3)
Proof Since p; pj_l =T1"%, pl.ji’ THI ¢ A, by (4.2) we obtain the existence of N. O

Proof Theorem 3 To show (1.10), we suppose on the contrary that ® is rationally independent
for ratio’s logarithm. We assume that ¢1(0) € ¢o((0, 1)). Otherwise, we can take a sub-
IFS @' = {¢, ¢},...} C @ such that the assumption in Theorem 3 holds for &’ where
$0(0) = 0 < ¢1(0) and ¢} (0) € ¢;((0, 1)).

Let xo = ¢ 1<j>1(0) € (0, 1). By Lemma 8, there exists an infinite word o such that
{xo} = ﬂ?ozl ¢51;((0, 1)). Since xp is not the left endpoint of ¢4, ((0, 1)) for any j, then
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we can find out a letter i* % 0 such that i* appears in o = u; - - - uy - - - for infinitely many
times. Suppose {t + 1 :u; =i*} = {k1 < ko <---}.Let J; = Ouy - - - ug,, and take

I, = 1[0]#" with g(t) € {0} UN

such that :01,:0]_,1 € (p, p‘l). It is clear that ¢y, ((0, 1)) N ¢,,((0, 1)) # @. Now, for any
integer t > 1,

ﬁi;‘t < land jjijt =1,
that means
|gip — i | =1—1, Vi > 1. (4.4)

By Lemma 9, there exists a positive integer N such that |gi }" — i j’ | < N forany ¢ > 0, this
is a contradiction. Then (1.10) is proved.

In particular, if m = 1, then log po/log p1 € Q follows from (1.10) directly.

Suppose m = 2 and the IFS & is non-degenerate to the case m = 1, we can assume that
¢1(0) € ¢o((0, 1)) without loss of generality. Now we will show that log pp/log p2 € Q.
Notice that K¢ = [0, 1]. Denote

x=¢;'$1(0) € (0, 1),

Then ¢1(0) = ¢o(x). By Lemma 8§, there exists an infinite word 0 = uy -« -ug------ such
that {x} = ﬂ,fil @0, ((0, 1)). Since x is not the left endpoint of ¢, ((0, 1)) for any 7, we
can find out i* € {1, 2} such that i* appears in o = uy - - - uy - - - for infinitely many times.
Suppose {t + 1 :u; =i*} ={k; <ky <---}.Let J; = Ouy---ug,, and [; = 1[017® with
T (t) € {0} U N such that pIIpJ_tl € (p, p~1). Since ¢o(x) € ¢og|ki (0, 1)), we have

¢1,((0, D) N ¢y,((0, 1)) # @ forall 7.

Since & is of GFT, the FS holds, i.e., there exists a finite set A such that py, pJ_ll € A for
all #. Using the finiteness of A, we can find k; < k;,

L1117 ki) Py T k)
1[0] _ 1[01° v c A

POo | ki POo | kj

and thus (pg) T *) =T k) — Pug 1 -+ Pug; = pép’l‘pg with/, u, v € {0}UNandu+v > Odue

to the existence of i* e {1, 2}. We notice that/ < T (k;) — T (k;). In fact (po) T k) =T k)=l —
pip; <lduetou+wv >0.Letk =T(k;) — T(k;j) —1 > 0. Now, we have

PPy = pg. (4.5)

In the same way, when considering the point ¢, $1(1) and the ri ght endpoint, we obtain

P Pl =05 (4.6)

with integers k¢’ > 0 and u’, v' > 0 with ' + v’ > 0.

Suppose on the contrary that log po/log po ¢ Q. Without loss of generality, we assume
that u > Oand v' > 0. Otherwise, for example we suppose u = 0, by (4.5), we have p} = p(lj
with £ > 0.

Now u > 0 and v’ > 0. Suppose p; = p(‘)‘pé’ with a, b € Q. Using (4.5), we have

P35V = pf~"* which implies bu + v = k — ua = 0. Hence

b=—v/u<0. A4.7)
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Using (4.6), we have pg/“’” = ,of_b”/, which implies ' + av = k' — bv’ = 0. Hence
b=Fk/>0. (4.8)
Then (4.7) and (4.8) are contradictory. That means log po/log p2 € Q. ]
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