

On a Rankin–Selberg integral of the *L*-function for $\widetilde{SL}_2 \times GL_2$

Qing Zhang¹

Received: 11 November 2019 / Accepted: 30 August 2020 / Published online: 16 September 2020 © Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract

We present a Rankin–Selberg integral on the exceptional group G_2 which represents the *L*-function for generic cuspidal representations of $\widetilde{SL}_2 \times GL_2$. As an application, we show that certain Fourier–Jacobi type periods on G_2 are non-vanishing.

Keywords Rankin–Selberg integral \cdot L-function \cdot Exceptional group $G_2 \cdot$ Periods

Mathematics Subject Classification 2010 · 11F70

1 Introduction

Let *F* be a global field with the ring of adeles \mathbb{A} . We assume that the characteristics of *F* is not 2. We present in this paper a Shimura type integral on the exceptional group G_2 which represents the *L*-function

 $L(s, \widetilde{\pi} \times (\chi \otimes \tau))L(s, \widetilde{\pi} \otimes (\chi \otimes \omega_{\tau})),$

where $\tilde{\pi}$ is an irreducible genuine cuspidal representation of $\widetilde{SL}_2(\mathbb{A})$, τ is an irreducible generic cuspidal representation of $GL_2(\mathbb{A})$ and χ is the quadratic character of $F^{\times} \setminus \mathbb{A}^{\times}$ defined by $\chi(a) = \prod_v (a_v, -1)_{F_v}$, where $a = (a_v)_v \in \mathbb{A}^{\times}$ and (,)_{Fv} is the Hilbert symbol on F_v .

To give more details about the integral, we introduce some notations. The group G_2 has two simple roots and we label the short root by α and the long root by β . Let P = MV (resp. P' = M'V') be the maximal parabolic subgroup of G_2 such that the root space of β is in the Levi M (resp. the root space of α is in the Levi M'). The Levi subgroups M and M' are isomorphic to GL₂. Let J be the subgroup of P which is isomorphic to SL₂ $\ltimes V$. Let $\widetilde{SL}_2(\mathbb{A})$ be the metaplectic double cover of SL₂(\mathbb{A}). There is a Weil representation ω_{ψ} of $\widetilde{SL}_2(\mathbb{A})$ for a nontrivial additive character ψ of $F \setminus \mathbb{A}$. Let $\tilde{\theta}_{\phi}$ be a corresponding theta series associated with a function $\phi \in S(\mathbb{A})$. Let τ be an irreducible cuspidal automorphic representations of GL₂(\mathbb{A}). For $f_s \in \operatorname{Ind}_{P'(\mathbb{A})}^{G_2(\mathbb{A})}(\tau \otimes \delta_{P'}^s)$, we can form an Eisenstein series $E(g, f_s)$ on $G_2(\mathbb{A})$. Let $\tilde{\pi}$ be an irreducible genuine cuspidal automorphic forms of $\widetilde{SL}_2(\mathbb{A})$. For a cusp form

Qing Zhang qingzhang0@gmail.com

¹ Department of Mathematical Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea

 $\widetilde{\varphi} \in \widetilde{\pi}$, we consider the integral

$$I(\widetilde{\varphi},\phi,f_s) = \int_{\mathrm{SL}_2(F)\backslash \mathrm{SL}_2(\mathbb{A})} \int_{V(F)\backslash V(\mathbb{A})} \widetilde{\varphi}(g) \widetilde{\theta}_{\phi}(vg) E(vg,f_s) dv dg.$$

Our main result is the following

Theorem 1.1 The above integral is absolutely convergent for $\operatorname{Re}(s) \gg 0$ and can be meromorphically continued to all $s \in \mathbb{C}$. When $\operatorname{Re}(s) \gg 0$, the integral $I(\tilde{\varphi}, \phi, f_s)$ is Eulerian. Moreover, at an unramified place v, the local integral represents the L-function

$$\frac{L(3s-1, \tilde{\pi}_v \times (\chi_v \otimes \tau_v))L(6s-5/2, \tilde{\pi}_v \otimes (\chi_v \otimes \omega_{\tau_v}))}{L(3s-1/2, \tau_v)L(6s-2, \omega_{\tau_v})L(9s-7/2, \tau_v \otimes \omega_{\tau_v})}$$

This is Theorem 3.1 and Proposition 4.6. We remark that Ginzburg–Rallis–Soudry gave integral representations for *L*-functions of generic cuspidal representations of $\widetilde{Sp}_{2n} \times GL_m$ in [8] using symplectic groups. It is still interesting to have different integral representations. As an application of Theorem 1.1, we show that if $Wd_{\psi}(\tilde{\pi}) = \chi \otimes \tau$, then a Shimura type period with respect to $\tilde{\pi}$ and the residue of Eisenstein series on G_2 is non-vanishing, where Wd_{ψ} is the Shimura–Waldspurger lift. It is an interesting theme in number theory to investigate the relations between poles of *L*-functions and non-vanishing of automorphic periods. There are many examples of this kind relations. See [5,7,9] for some examples. The non-vanishing results of automorphic periods have many interesting applications in automorphic forms. We expect the non-vanishing period in our case would be useful on problems related to the residue spectrum of G_2 .

There are several known Rankin–Selberg integrals on G_2 which represents different *L*-functions and have many applications, see [4–6] for example. The integral $I(\tilde{\varphi}, \phi, f_s)$ can be viewed as a dual integral of the standard G_2 *L*-function integral in [5] in the following sense. The integral $I(\tilde{\varphi}, \phi, f_s)$ is an integral of a triple product of a cusp form on $\widetilde{SL}_2(\mathbb{A})$, a theta series and an Eisenstein series on $G_2(\mathbb{A})$, while the integral in [5] is an integral of a triple product of a cusp form on $\widetilde{SL}_2(\mathbb{A})$. The integral in [6] is also in a similar pattern, which is an integral of a triple product of a cusp form on $SL_2(\mathbb{A})$, a theta series on a cover of $G_2(\mathbb{A})$. The results presented here were known for D. Ginzburg. But we still think that it might be useful to write up the details.

2 The group G₂

2.1 Roots and Weyl group for G₂

Let G_2 be the split algebraic reductive group of type G_2 (defined over \mathbb{Z}). The group G_2 has two simple roots, the short root α and the long root β . The set of the positive roots is $\Sigma^+ = \{\alpha, \beta, \alpha + \beta, 2\alpha + \beta, 3\alpha + \beta, 3\alpha + 2\beta\}$. Let (,) be the inner product in the root system and \langle , \rangle be the pair defined by $\langle \gamma_1, \gamma_2 \rangle = \frac{2(\gamma_1, \gamma_2)}{(\gamma_2, \gamma_2)}$. For the root space G_2 , we have the relations:

$$\langle \alpha, \beta \rangle = -1, \langle \beta, \alpha \rangle = -3.$$

For a root γ , let s_{γ} be the reflection defined by γ , i.e., $s_{\gamma}(\gamma') = \gamma' - \langle \gamma', \gamma \rangle \gamma$. We have the relation

$$s_{\alpha}(\beta) = 3\alpha + \beta, s_{\beta}(\alpha) = \alpha + \beta.$$

🖉 Springer

The Weyl group $\mathbf{W} = \mathbf{W}(G_2)$ of G_2 has 12 elements, which is explicitly given by

$$\mathbf{W} = \left\{ 1, s_{\alpha}, s_{\beta}, s_{\alpha}s_{\beta}, s_{\beta}s_{\alpha}, s_{\alpha}s_{\beta}s_{\alpha}, s_{\beta}s_{\alpha}s_{\beta}, (s_{\alpha}s_{\beta})^{2}, (s_{\beta}s_{\alpha})^{2}, s_{\beta}(s_{\alpha}s_{\beta})^{2}, s_{\alpha}(s_{\beta}s_{\alpha})^{2}, (s_{\alpha}s_{\beta})^{3} \right\}.$$

For a root γ , let $U_{\gamma} \subset G$ be the root space of γ , and let $\mathbf{x}_{\gamma} : F \to U_{\gamma}$ be a fixed isomorphism which satisfies various Chevalley relations, see Chapter 3 of [14]. Among other things, \mathbf{x}_{γ} satisfies the following commutator relations:

$$[\mathbf{x}_{\alpha}(x), \mathbf{x}_{\beta}(y)] = \mathbf{x}_{\alpha+\beta}(-xy)\mathbf{x}_{2\alpha+\beta}(-x^{2}y)\mathbf{x}_{3\alpha+\beta}(x^{3}y)\mathbf{x}_{3\alpha+2\beta}(-2x^{3}y^{2})$$

$$[\mathbf{x}_{\alpha}(x), \mathbf{x}_{\alpha+\beta}(y)] = \mathbf{x}_{2\alpha+\beta}(-2xy)\mathbf{x}_{3\alpha+\beta}(3x^{2}y)\mathbf{x}_{3\alpha+2\beta}(3xy^{2})$$

$$[\mathbf{x}_{\alpha}(x), \mathbf{x}_{2\alpha+\beta}(y)] = \mathbf{x}_{3\alpha+\beta}(3xy)$$

$$[\mathbf{x}_{\beta}(x), \mathbf{x}_{3\alpha+\beta}(y)] = \mathbf{x}_{3\alpha+2\beta}(xy)$$

$$[\mathbf{x}_{\alpha+\beta}(x), \mathbf{x}_{2\alpha+\beta}(y)] = \mathbf{x}_{3\alpha+2\beta}(3xy).$$
(2.1)

For all the other pairs of positive roots γ_1 , γ_2 , we have $[\mathbf{x}_{\gamma_1}(x), \mathbf{x}_{\gamma_2}(y)] = 1$. Here $[g_1, g_2] = g_1^{-1}g_2^{-1}g_1g_2$ for $g_1, g_2 \in G_2$. For these commutator relationships, see [12]. Following [14], we denote $w_{\gamma}(t) = \mathbf{x}_{\gamma}(t)\mathbf{x}_{-\gamma}(-t^{-1})\mathbf{x}_{\gamma}(t)$ and $w_{\gamma} = w_{\gamma}(1)$. Note that

Following [14], we denote $w_{\gamma}(t) = \mathbf{x}_{\gamma}(t)\mathbf{x}_{-\gamma}(-t^{-1})\mathbf{x}_{\gamma}(t)$ and $w_{\gamma} = w_{\gamma}(1)$. Note that w_{γ} is a representative of s_{γ} . Let $h_{\gamma}(t) = w_{\gamma}(t)w_{\gamma}^{-1}$. Let T be the subgroup of G which consists of elements of the form $h_{\alpha}(t_1)h_{\beta}(t_2), t_1, t_2 \in T$ and U be the subgroup of G_2 generated by U_{γ} for all $\gamma \in \Sigma^+$. Let B = TU, which is a Borel subgroup of G_2 .

For $t_1, t_2 \in \mathbb{G}_m$, denote $h(t_1, t_2) = h_{\alpha}(t_1 t_2) h_{\beta}(t_1^2 t_2)$. From the Chevalley relation $h_{\gamma_1}(t) \mathbf{x}_{\gamma_2}(r) h_{\gamma_1}(t)^{-1} = \mathbf{x}_{\gamma_2}(t^{\langle \gamma_2, \gamma_1 \rangle} r)$ (see [14, Lemma 20, (c)]), we can check the following relations

$$h^{-1}(t_{1}, t_{2})\mathbf{x}_{\alpha}(r)h(t_{1}, t_{2}) = \mathbf{x}_{\alpha}(t_{2}^{-1}r),$$

$$h^{-1}(t_{1}, t_{2})\mathbf{x}_{\beta}(r)h(t_{1}, t_{2}) = \mathbf{x}_{\beta}(t_{1}^{-1}t_{2}r)$$

$$h^{-1}(t_{1}, t_{2})\mathbf{x}_{\alpha+\beta}(r)h(t_{1}, t_{2}) = \mathbf{x}_{\alpha+\beta}(t_{1}^{-1}r),$$

$$h^{-1}(t_{1}, t_{2})\mathbf{x}_{2\alpha+\beta}(r)h(t_{1}, t_{2}) = \mathbf{x}_{2\alpha+\beta}(t_{1}^{-1}t_{2}^{-1}r)$$

$$h^{-1}(t_{1}, t_{2})\mathbf{x}_{3\alpha+\beta}(r)h(t_{1}, t_{2}) = \mathbf{x}_{3\alpha+\beta}(t_{1}^{-1}t_{2}^{-2}r),$$

$$h^{-1}(t_{1}, t_{2})\mathbf{x}_{3\alpha+2\beta}(r)h(t_{1}, t_{2}) = \mathbf{x}_{3\alpha+2\beta}(t_{1}^{-2}t_{2}^{-1}r).$$
(2.2)

Thus the notation h(a, b) agrees with that of [5].

One can also check that

$$w_{\alpha}h(t_1, t_2)w_{\alpha}^{-1} = h(t_1t_2, t_2^{-1}), \quad w_{\beta}h(t_1, t_2)w_{\beta}^{-1} = h(t_2, t_1).$$

2.2 Subgroups

Let *F* be a field and denote $G = G_2(F)$. The group *G* has two proper parabolic subgroups. Let $P = M \ltimes V$ be the parabolic subgroup of *G* such that $U_\beta \subset M \cong GL_2$. Thus the unipotent subgroup *V* is consisting of root spaces of α , $\alpha + \beta$, $2\alpha + \beta$, $3\alpha + \beta$, $3\alpha + 2\beta$, and a typical element of *V* is of the form

$$\mathbf{x}_{\alpha}(r_1)\mathbf{x}_{\alpha+\beta}(r_2)\mathbf{x}_{2\alpha+\beta}(r_3)\mathbf{x}_{3\alpha+\beta}(r_4)\mathbf{x}_{3\alpha+2\beta}(r_5), r_i \in F.$$

To ease the notation, we will write the above element as $[r_1, r_2, r_3, r_4, r_5]$. Denote by *J* the following subgroup of *P*

$$J = \operatorname{SL}_2(F) \ltimes V.$$

Springer

Let V_1 (resp. Z) be the subgroup of V which consists root spaces of $3\alpha + \beta$ and $3\alpha + 2\beta$ (resp. $2\alpha + \beta$, $3\alpha + \beta$ and $3\alpha + 2\beta$). Note that P and hence J normalizes V_1 and Z. We will always view $SL_2(F)$ as a subgroup of G via the inclusion $SL_2(F) \subset M$. Denote by A_{SL_2} , N_{SL_2} and B_{SL_2} the standard torus, the upper triangular unipotent subgroup and the upper triangular Borel subgroup of $SL_2(F)$. Note that the torus element h(a, b) can be identified with

$$\binom{a}{b} \in \operatorname{GL}_2(F) \cong M,$$

and thus $A_{\mathrm{SL}_2} = \{h(a, a^{-1}) | a \in F^{\times}\}$ and $B_{\mathrm{SL}_2} = A_{\mathrm{SL}_2} \ltimes U_{\beta}$.

Let P' = M'V' be the other maximal parabolic subgroup G with U_{α} in the Levi subgroup M'. The Levi M' is isomorphic to $GL_2(F)$, and from relations in (2.2), one can check that one isomorphism $M' \cong GL_2(F)$ can be determined by

$$\mathbf{x}_{\alpha}(r) \mapsto \begin{pmatrix} 1 & r \\ 1 \end{pmatrix},$$
$$h(a, b) \mapsto \begin{pmatrix} ab \\ a \end{pmatrix}.$$

In particular, we see that $h(a, 1) \in T \subset M'$ can be identified with diag(a, a). Let $\delta_{P'}$ be the modulus character of P'. One can check that $\delta_{P'}(m') = |\det(m')|^3$ for $m' \in M'$, where $\det(m')$ can be computed using the above isomorphism $M' \cong GL_2(F)$.

2.3 Weil representation of $\widetilde{SL}_2(\mathbb{A}) \ltimes V(\mathbb{A})$

In this subsection, we assume that F is a global field and A is its ring of adeles. In $SL_2(F)$, we denote $t(a) = diag(a, a^{-1}), a \in F^{\times}$ and

$$n(b) = \begin{pmatrix} 1 & b \\ 1 \end{pmatrix}, b \in F.$$

Denote $w^1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, which represents the unique nontrivial Weyl element of $SL_2(F)$. Under the embedding $SL_2(F) \subset M \subset G$, the element w^1 can be identified with w_β .

Under the embedding $SL_2(F) \subset M \subset G$, the element w can be identified with w_{β} .

Let $\widetilde{SL}_2(\mathbb{A})$ be the metaplectic double cover of $SL_2(\mathbb{A})$. Then we have an exact sequence

$$0 \to \mu_2 \to \widehat{\operatorname{SL}}_2(\mathbb{A}) \to \operatorname{SL}_2(\mathbb{A}) \to 0,$$

where $\mu_2 = \{\pm 1\}.$

We will identify $SL_2(\mathbb{A})$ with the symplectic group of \mathbb{A}^2 with symplectic structure defined by

$$\langle (x_1, y_1), (x_2, y_2) \rangle = -2x_1y_2 + 2x_2y_1.$$

Let $\mathscr{H}(\mathbb{A})$ be the Heisenberg group of the symplectic space $(\mathbb{A}^2, \langle , \rangle)$, i.e., $\mathscr{H}(\mathbb{A}) = \mathbb{A}^3$ with group law

$$(x_1, y_1, z_1)(x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2 - x_1y_2 + y_1x_2).$$

Let $SL_2(\mathbb{A})$ act on $\mathscr{H}(\mathbb{A})$ from the right side by

$$(x_1, y_1, z_1).g = ((x_1, y_1)g, z_1), g \in SL_2(\mathbb{A}),$$

where $(x_1, y_1)g$ is the usual matrix multiplication.

🖄 Springer

We then can form the semi-direct product $SL_2(\mathbb{A}) \ltimes \mathscr{H}(\mathbb{A})$, where the product is defined by

$$(g_1, h_1)(g_2, h_2) = (g_1g_2, (h_1.g_2)h_2), g_i \in SL_2(\mathbb{A}), h_i \in \mathscr{H}(\mathbb{A}), i = 1, 2.$$

Let ψ be a nontrivial additive character of $F \setminus \mathbb{A}$. Then there is a Weil representation ω_{ψ} of $\widetilde{SL}_2(\mathbb{A}) \ltimes \mathscr{H}(\mathbb{A})$. The space of ω_{ψ} is $\mathcal{S}(\mathbb{A})$, the Bruhat–Schwartz functions on \mathbb{A} .

For $\phi \in \mathcal{S}(\mathbb{A})$, we have the well-know formulas:

$$(\omega_{\psi}(n(b))\phi)(x) = \psi(bx^{2})\phi(x), b \in \mathbb{A}$$

$$(\omega_{\psi}((r_{1}, r_{2}, r_{3}))\phi)(x) = \psi(r_{3} - 2xr_{2} - r_{1}r_{2})\phi(x + r_{1}), (r_{1}, r_{2}, r_{3}) \in \mathscr{H}(\mathbb{A}),$$

The above formulas could be found in [11].

Recall that for $r_1, r_2, r_3, r_4, r_5 \in \mathbb{A}$, the notation $[r_1, r_2, r_3, r_4, r_5]$ is an abbreviation of

 $\mathbf{x}_{\alpha}(r_1)\mathbf{x}_{\alpha+\beta}(r_2)\mathbf{x}_{2\alpha+\beta}(r_3)\mathbf{x}_{3\alpha+\beta}(r_4)\mathbf{x}_{3\alpha+2\beta}(r_5) \in V(\mathbb{A}).$

Define a map pr : $V(\mathbb{A}) \to \mathscr{H}(\mathbb{A})$

$$pr([r_1, r_2, r_3, r_4, r_5]) = (r_1, r_2, r_3 - r_1r_2).$$

From the commutator relation (2.1), we can check that pr is a group homomorphism and defines an exact sequence

$$0 \to V_1(\mathbb{A}) \to V(\mathbb{A}) \to \mathscr{H}(\mathbb{A}) \to 0.$$

Recall that V_1 is the subgroup of V which is generated by the root space of $3\alpha + \beta$, $3\alpha + 2\beta$. Note that there is a typo in the formula of the projection map pr in [5, p.316].

For $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(F) \subset M$, we can check that $g^{-1}[r_1, r_2, r_3, 0, 0]g = [r'_1, r'_2, r'_3, r'_4, r'_5],$

where $r'_1 = ar_1 - cr_2, r'_2 = -br_1 + dr_2, r'_3 - r'_1r'_2 = r_3 - r_1r_2.$ Consider the map $\overline{\text{pr}}: J(\mathbb{A}) = \text{SL}_2(\mathbb{A}) \ltimes V(\mathbb{A}) \to \text{SL}_2(\mathbb{A}) \ltimes \mathscr{H}(\mathbb{A}),$

$$(g, v) \mapsto (g^*, \operatorname{pr}(v)), g \in \operatorname{SL}_2(\mathbb{A}), v \in V(\mathbb{A}).$$

where $g^* = \begin{pmatrix} a & -b \\ -c & d \end{pmatrix} = d_1gd_1^{-1}$, where $d_1 = \text{diag}(1, -1) \in \text{GL}_2(F)$. From the above discussion, the map $\overline{\text{pr}}$ is a group homomorphism and its kernel is also $V_1(\mathbb{A})$. We will also view $\overline{\text{pr}}$ as a homomorphism $\widetilde{\text{SL}}_2(\mathbb{A}) \ltimes V(\mathbb{A}) \to \widetilde{\text{SL}}_2(\mathbb{A}) \ltimes \mathscr{H}(\mathbb{A})$.

In the following, we will also view ω_{ψ} as a representation of $\widetilde{SL}_2(\mathbb{A}) \ltimes V(\mathbb{A})$ via the projection map $\overline{\mathrm{pr}}$. For $\phi \in \mathcal{S}(\mathbb{A})$, we form the theta series

$$\widetilde{\theta}_{\phi}(vg) = \sum_{\xi \in F} \omega_{\psi}(vh)\phi(\xi), v \in V(\mathbb{A}), g \in \widetilde{\mathrm{SL}}_{2}(\mathbb{A}).$$

Note that given a genuine cusp form $\tilde{\varphi}$ on $\widetilde{SL}_2(\mathbb{A})$, the product

$$\widetilde{\varphi}(g)\widetilde{\theta}_{\phi}(vg), v \in V(\mathbb{A}), g \in \widetilde{\operatorname{SL}}_2(\mathbb{A})$$

can be viewed as a function on $J(\mathbb{A}) = SL_2(\mathbb{A}) \ltimes V(\mathbb{A})$.

2.4 An Eisenstein series on G₂

In this subsection and in the rest of the paper, every representation appeared is assumed to be irreducible. Let τ be a cuspidal automorphic representation on $GL_2(\mathbb{A})$. We will view τ as a representation of $M'(\mathbb{A})$ via the identification $M' \cong GL_2$. We then consider the induced representation $I(s, \tau) = \operatorname{Ind}_{P'(\mathbb{A})}^{G_2(\mathbb{A})}(\tau \otimes \delta_{P'}^s)$. A section $f_s \in I(s, \tau)$ is a smooth function satisfying

$$f_s(v'm'g) = \delta_{P'}(m')^s f_s(g), \forall v' \in V'(\mathbb{A}), m' \in M'(\mathbb{A}), g \in G_2(\mathbb{A}).$$

For $f_s \in I(s, \tau)$, we consider the Eisenstein series

$$E(g, f_s) = \sum_{\delta \in P'(F) \setminus G_2(F)} f_s(\delta g), g \in G_2(\mathbb{A}).$$

3 A global integral

Let $\tilde{\pi}$ be a genuine cuspidal automorphic representation on $\widetilde{SL}_2(\mathbb{A})$, and τ be a cuspidal automorphic representation of $GL_2(\mathbb{A})$. For $\tilde{\varphi} \in V_{\pi}, \phi \in S(\mathbb{A})$ and $f_s \in I(s, \tau)$, we consider the integral

$$I(\widetilde{\varphi}, \phi, f_s) = \int_{\mathrm{SL}_2(F) \setminus \mathrm{SL}_2(\mathbb{A})} \int_{V(F) \setminus V(\mathbb{A})} \widetilde{\varphi}(g) \widetilde{\theta}_{\phi}(vg) E(vg, f_s) dv dg.$$

Let $\gamma = w_{\beta} w_{\alpha} w_{\beta} w_{\alpha} \in G_2(F).$

Theorem 3.1 The integral $I(\tilde{\varphi}, \phi, f_s)$ is absolutely convergent when $\operatorname{Re}(s) \gg 0$ and can be meromorphically continued to all $s \in \mathbb{C}$. Moreover, when $\operatorname{Re}(s) \gg 0$, we have

$$I(\tilde{\varphi},\phi,f_{s}) = \int_{N_{\mathrm{SL}_{2}}(\mathbb{A})\backslash\mathrm{SL}_{2}(\mathbb{A})} \int_{U_{\alpha+\beta}(\mathbb{A})\backslash V(\mathbb{A})} W_{\widetilde{\varphi}}(g)\omega_{\psi}(vg)\phi(1)W_{f_{s}}(\gamma vg)dvdg,$$

where

$$W_{\widetilde{\varphi}}(g) = \int_{F \setminus \mathbb{A}} \widetilde{\varphi}(\mathbf{x}_{\beta}(r)g)\psi(r)dr,$$

and

$$W_{f_s}(\gamma vg) = \int_{F \setminus \mathbb{A}} f_s(\mathbf{x}_{\alpha}(r)\gamma vg)\psi(-2r)dr$$

Proof The first assertion is standard. We only show that the above integral is Eulerian when $\operatorname{Re}(s) \gg 0$. Unfolding the Eisenstein series, we can get

$$I(\widetilde{\varphi},\phi,f_{s}) = \sum_{\delta \in P'(F) \setminus G_{2}(F)/P(F)} \int_{\mathrm{SL}_{2}^{\delta}(F) \setminus \mathrm{SL}_{2}(\mathbb{A})} \int_{V^{\delta}(F) \setminus V(\mathbb{A})} \widetilde{\varphi}(g) \widetilde{\theta}_{\phi}(vg) f_{s}(\delta vg) dv dg,$$

where $X^{\delta} = \delta^{-1} P' \delta \cap X$ for $X \subset G_2(F)$. We can check that a set of representatives of the double coset $P'(F) \setminus G_2(F) / P(F)$ can be taken as $\{1, w_\beta w_\alpha, \gamma = w_\beta w_\alpha w_\beta w_\alpha\}$. For $\delta = 1, w_\beta w_\alpha$, or $\gamma = w_\beta w_\alpha w_\beta w_\alpha$, denote

$$I_{\delta} = \int_{\mathrm{SL}_{2}^{\delta}(F) \setminus \mathrm{SL}_{2}(\mathbb{A})} \int_{V^{\delta}(F) \setminus V(\mathbb{A})} \widetilde{\varphi}(g) \widetilde{\theta}_{\phi}(vg) f_{s}(\delta vg) dv dg.$$

🖉 Springer

If $\delta = 1$, the above integral I_{δ} has an inner integral

$$\int_{U_{2\alpha+\beta}(F)\setminus U_{2\alpha+\beta}(\mathbb{A})}\widetilde{\theta}_{\phi}(\mathbf{x}_{2\alpha+\beta}(r)vg)f_{s}(\mathbf{x}_{2\alpha+\beta}(r)vg)dr,$$

which is zero because $f_s(\mathbf{x}_{2\alpha+\beta}(r)vg) = f_s(vg)$, $\tilde{\theta}_{\phi}(\mathbf{x}_{2\alpha+\beta}(r)vg) = \psi(r)\tilde{\theta}_{\phi}(vg)$ and $\int_{F\setminus\mathbb{A}} \psi(r)dr = 0$. The last equation follows from the fact that ψ is non-trivial.

We next consider the term when $\delta = w_{\beta} w_{\alpha}$. We write

$$\widetilde{\theta}_{\phi}(vg) = \omega_{\psi}(vg)\phi(0) + \sum_{\xi \in F^{\times}} \omega_{\psi}(vg)\phi(\xi).$$

The contribution of the first term to the integral I_{δ} is

$$\int_{\mathrm{SL}_2^{\delta}(F)\backslash \mathrm{SL}_2(\mathbb{A})} \int_{V^{\delta}(F)\backslash V(\mathbb{A})} \widetilde{\varphi}(g) \omega_{\psi}(vg) \phi(0) f_s(\delta vg) dv dg.$$

Note that $\delta \mathbf{x}_{\beta}(r)\delta^{-1} \subset U_{2\alpha+\beta} \subset V'$, we have $f_s(\delta v \mathbf{x}_{\beta}(r)g) = f_s(\delta \mathbf{x}_{\beta}(-r)v \mathbf{x}_{\beta}(r)g)$. On the other hand, we have $\omega_{\psi}(\mathbf{x}_{\beta}(r)vg)\phi(0) = \omega_{\psi}(vg)\phi(0)$. After a changing variable on v, we can see that the above integral contains an inner integral

$$\int_{F\setminus\mathbb{A}}\widetilde{\varphi}(\mathbf{x}_{\beta}(r)vg)dr,$$

which is zero since $\tilde{\varphi}$ is cuspidal. Thus the contribution of the term $\omega_{\psi}(vg)\phi(0)$ is zero when $\delta = w_{\beta}w_{\alpha}$. The contribution of $\sum_{\xi \in F^{\times}} \omega_{\psi}(vg)\phi(\xi)$ is

$$\int_{\mathrm{SL}_2^{\delta}(F)\backslash \mathrm{SL}_2(\mathbb{A})} \int_{V^{\delta}(F)\backslash V(\mathbb{A})} \widetilde{\varphi}(g) \sum_{\xi \in F^{\times}} \omega_{\psi}(vg) \phi(\xi) f_s(\delta vg) dv dg.$$

We consider the inner integral on $U_{\alpha+\beta}(F)\setminus U_{\alpha+\beta}(\mathbb{A})$. Note that $U_{\alpha+\beta} \subset V$ and $\delta U_{\alpha+\beta}\delta^{-1} = U_{2\alpha+\beta} \subset V'$, we get $f_s(\delta \mathbf{x}_{\alpha+\beta}(r)vg) = f_s(\delta vg)$. On the other hand, we have $\omega_{\psi}(\mathbf{x}_{\alpha+\beta}(r)vg)\phi(\xi) = \psi(-2r\xi)\omega_{\psi}(vg)\phi(\xi)$. Thus the above integral has an inner integral

$$\int_{F \setminus \mathbb{A}} \sum_{\xi \in F^{\times}} \psi(-2r\xi) \omega_{\psi}(vg) \phi(\xi) dr = \sum_{\xi \in F^{\times}} \omega_{\psi}(vg) \phi(\xi) \int_{F \setminus \mathbb{A}} \psi(-2r\xi) dr = 0.$$

Thus when $\delta = w_{\beta} w_{\alpha}$, the corresponding term is zero. Thus we get

$$I(\widetilde{\varphi},\phi,f_s) = \int_{\mathrm{SL}_2^{\gamma}(F) \setminus \mathrm{SL}_2(\mathbb{A})} \int_{V^{\gamma}(F) \setminus V(\mathbb{A})} \widetilde{\varphi}(g) \widetilde{\theta}_{\phi}(vg) f_s(\gamma vg) dv dg.$$

We have $SL_2^{\gamma} = B_{SL_2}$ and $V^{\gamma} = U_{\alpha+\beta}$. We decompose $\tilde{\theta}_{\phi}$ as

$$\widetilde{\theta}_{\phi}(vg) = \omega_{\psi}(vg)\phi(0) + \sum_{\xi \in F^{\times}} \omega_{\psi}(vg)\phi(\xi) = \omega_{\psi}(vg)\phi(0) + \sum_{a \in F^{\times}} \omega_{\psi}(t(a)vg)\phi(1).$$

Recall that $t(a) = \text{diag}(a, a^{-1})$. Since $\gamma U_{\beta} \gamma^{-1} \subset U_{3\alpha+\beta} \subset V'$, we have

$$f_s(\gamma v \mathbf{x}_\beta(r)g) = f_s(\gamma \mathbf{x}_\beta(-r)v \mathbf{x}_\beta(r)g).$$

On the other hand we have $\omega_{\psi}(v\mathbf{x}_{\beta}(r)g)\phi(0) = \omega_{\psi}(\mathbf{x}_{\beta}(-r)v\mathbf{x}_{\beta}(r)g)\phi(0)$. Thus after a changing variable on v, we can get that the contribution of $\omega_{\psi}(vg)\phi(0)$ to $I(\tilde{\varphi}, \phi, f_s)$ has

an inner integral

$$\int_{F\setminus\mathbb{A}}\widetilde{\varphi}(\mathbf{x}_{\beta}(r)g)dr$$

which is zero by the cuspidality of $\tilde{\varphi}$. Thus we get

$$I(\widetilde{\varphi},\phi,f_s) = \int_{B_{\mathrm{SL}_2}(F)\backslash \mathrm{SL}_2(\mathbb{A})} \int_{U_{\alpha+\beta}(F)\backslash V(\mathbb{A})} \widetilde{\varphi}(g) \sum_{a\in F^{\times}} \omega_{\psi}(t(a)vg)\phi(1)f_s(\gamma vg)dvdg.$$

Collapsing the summation with the integration, we then get

$$\begin{split} I(\widetilde{\varphi}, \phi, f_s) \\ &= \int_{N_{\mathrm{SL}_2}(F) \setminus \mathrm{SL}_2(\mathbb{A})} \int_{U_{\alpha+\beta}(F) \setminus V(\mathbb{A})} \widetilde{\varphi}(g) \omega_{\psi}(vg) \phi(1) f_s(\gamma vg) dv dg \\ &= \int_{N_{\mathrm{SL}_2}(\mathbb{A}) \setminus \mathrm{SL}_2(\mathbb{A})} \int_{U_{\alpha+\beta}(F) \setminus V(\mathbb{A})} \int_{F \setminus \mathbb{A}} \widetilde{\varphi}(\mathbf{x}_{\beta}(r)g) \omega_{\psi}(v\mathbf{x}_{\beta}(r)g) \phi(1) f_s(\gamma v\mathbf{x}_{\beta}(r)g) dr dv dg. \end{split}$$

Note that we have $\omega_{\psi}(v\mathbf{x}_{\beta}(r)g)\phi(1) = \omega_{\psi}(\mathbf{x}_{\beta}(r)\mathbf{x}_{\beta}(-r)v\mathbf{x}_{\beta}(r)g)\phi(1) = \psi(r)$ $\omega_{\psi}(\mathbf{x}_{\beta}(-r)v\mathbf{x}_{\beta}(r)g)\phi(1)$. On the other hand, we have $\gamma\mathbf{x}_{\beta}(r)\gamma^{-1} \subset U_{3\alpha+\beta} \subset V'$. Thus $f_s(\gamma v\mathbf{x}_{\beta}(r)g) = f_s(\gamma \mathbf{x}_{\beta}(-r)v\mathbf{x}_{\beta}(r)g)$. After a changing of variable on v, we get

$$I(\widetilde{\varphi},\phi,f_s) = \int_{N_{\mathrm{SL}_2}(\mathbb{A})\backslash \mathrm{SL}_2(\mathbb{A})} \int_{U_{\alpha+\beta}(F)\backslash V(\mathbb{A})} W_{\widetilde{\varphi}}(g) \omega_{\psi}(vg) \phi(1) f_s(\gamma vg) dv dg,$$

where

$$W_{\widetilde{\varphi}}(g) = \int_{F \setminus \mathbb{A}} \widetilde{\varphi}(\mathbf{x}_{\beta}(r)g)\psi(r)dr.$$

We can further decompose the above integral as

$$I(\widetilde{\varphi}, \phi, f_{s}) = \int_{N_{\mathrm{SL}_{2}}(\mathbb{A}) \setminus \mathrm{SL}_{2}(\mathbb{A})} \int_{U_{\alpha+\beta}(\mathbb{A}) \setminus V(\mathbb{A})} \int_{F \setminus \mathbb{A}} W_{\widetilde{\varphi}}(g) \omega_{\psi}(\mathbf{x}_{\alpha+\beta}(r)vg) \phi(1) f_{s}(\gamma \mathbf{x}_{\alpha+\beta}(r)vg) dr dv dg$$

Note that $\omega_{\psi}(\mathbf{x}_{\alpha+\beta}(r)vg)\phi(1) = \psi(-2r)\omega_{\psi}(vg)\phi(1)$ and $f_s(\gamma \mathbf{x}_{\alpha+\beta}(r)vg) = f_s(\mathbf{x}_{\alpha}(r)\gamma vg)$ since $\gamma \mathbf{x}_{\alpha+\beta}(r)\gamma^{-1} = \mathbf{x}_{\alpha}(r)$. We then get

$$I(\widetilde{\varphi},\phi,f_s) = \int_{N_{\mathrm{SL}_2}(\mathbb{A})\backslash\mathrm{SL}_2(\mathbb{A})} \int_{U_{\alpha+\beta}(\mathbb{A})\backslash V(\mathbb{A})} W_{\widetilde{\varphi}}(g) \omega_{\psi}(vg)\phi(1) W_{f_s}(\gamma vg) dv dg,$$

where

$$W_{f_s}(\gamma vg) = \int_{F \setminus \mathbb{A}} f_s(\mathbf{x}_{\alpha}(r)\gamma vg)\psi(-2r)dr.$$

This concludes the proof.

Deringer

4 Unramified calculation

In this section, let *F* be a *p*-adic field with $p \neq 2$. Let \mathfrak{o} be the ring of integers of *F*, and let *p* be a uniformizer of \mathfrak{o} by abuse of notation. Let *q* be the cardinality of the residue field $\mathfrak{o}/(p)$.

4.1 Local Weil representations

Let ψ be an additive character of F and let $\gamma(\psi)$ be the Weil index and let $\mu_{\psi}(a) = \frac{\gamma(\psi)}{\gamma(\psi_a)}$. Let ω_{ψ} be the Weil representation of $\widetilde{SL}_2(F) \ltimes V$ on $\mathcal{S}(F)$ via the projection $\widetilde{SL}_2(F) \ltimes V \to \widetilde{SL}_2(F) \ltimes \mathscr{H}$. For $\phi \in \mathcal{S}(F)$, we have the well-know formulas:

$$\begin{aligned} (\omega_{\psi}(w^{1})\phi)(x) &= \gamma(\psi)\hat{\phi}(x), \\ (\omega_{\psi}(n(b))\phi)(x) &= \psi(bx^{2})\phi(x), b \in F \\ (\omega_{\psi}(t(a))\phi)(x) &= |a|^{1/2}\mu_{\psi}(a)\phi(ax), a \in F^{\times} \\ (\omega_{\psi}((r_{1}, r_{2}, r_{3}))\phi)(x) &= \psi(r_{3} - 2xr_{2} - r_{1}r_{2})\phi(x + r_{1}), (r_{1}, r_{2}, r_{3}) \in \mathscr{H}(F). \end{aligned}$$

where $\hat{\phi}(x) = \int_F \phi(y)\psi(2xy)dy$ is the Fourier transform of ϕ with respect to ψ . Note that under the embedding $SL_2(F) \hookrightarrow G_2(F)$, we have $w^1 = w_\beta, n(b) = \mathbf{x}_\beta(b)$ and $t(a) = h(a, a^{-1})$.

4.2 Unramified calculation

In this subsection, we compute the local integral in last section. The strategy is similar to the unramified calculation in [6].

Let $\tilde{\pi}$ be an unramified genuine representation of $\widetilde{SL}_2(F)$ with Satake parameter a, and let τ be an unramified irreducible representation of $\operatorname{GL}_2(F)$ with Satake parameters b_1, b_2 . Let $\tilde{W} \in \mathcal{W}(\tilde{\pi}, \psi)$ with $\tilde{W}(1) = 1$. Let $v_0 \in V_{\tau}$ be an unramified vector and $\lambda \in \operatorname{Hom}_N(V_{\tau}, \psi)$ such that $\lambda(v_0) = 1$. Let $f_s : G_2 \to V_{\tau}$ be the unramified section in $I(s, \tau)$ with $f_s(e) = v_0$. Let

$$W_{f_s}: G_2 \times \mathrm{GL}_2(F) \to \mathbb{C}$$

be the function $W_{f_s}(g, a) = \lambda(\tau(a) f_s(g))$. We will write $W_{f_s}(g)$ for $W_{f_s}(g, 1)$ in the following. By assumption and Shintani formula, we have

$$\begin{split} W_{f_s}(h(p^k, p^l)) &= q^{-3s(2k+l)} \lambda(\tau(\operatorname{diag}(p^{k+l}, p^k))v_0) \\ &= q^{-3s(2k+l)} W_{v_0}(\operatorname{diag}(p^{k+l}, p^k)) \\ &= \begin{cases} q^{-3s(2k+l)} \frac{(b_1 b_2)^k q^{-l/2}}{b_1 - b_2} (b_1^{l+1} - b_2^{l+1}), & \text{if } l \ge 0, \\ 0, & \text{if } l < 0. \end{cases} \end{split}$$
(4.1)

Let $\phi \in S(F)$ be the characteristic function of \mathfrak{o} . We need to compute the integral

$$I(\widetilde{W}, W_{f_s}, \phi) = \int_{N_2 \setminus \mathrm{SL}_2(F)} \int_{U_{\alpha+\beta} \setminus V} \widetilde{W}(g) \omega_{\psi}(vg) \phi(1) W_{f_s}(\gamma vg) dv dg.$$

In the following, we fix the Haar measure such that $vol(dr, \mathfrak{o}) = 1$. Thus $vol(d^*r, \mathfrak{o}^{\times}) = 1 - q^{-1}$.

Using the Iwasawa decomposition $SL_2(F) = N_2(F)A_2(F)SL_2(\mathfrak{o})$, we have

$$I(W, W_{f_s}, \phi)$$

$$= \int_{F^{\times}} \int_{F^4} \widetilde{W}(t(a)) \omega_{\psi}([r_1, 0, r_3]t(a)) \phi(1) W_{f_s}$$

$$(\gamma(r_1, 0, r_3, r_4, r_5)t(a)) |a|^{-2} dr_1 dr_3 dr_4 dr_5 d^{\times} a$$

$$= \int_{F^{\times}} \int_{F^4} \widetilde{W}(t(a)) \omega_{\psi}(t(a)[r_1, 0, r_3]) \phi(1) W_{f_s}$$

$$(\gamma t(a)(r_1, 0, r_3, r_4, r_5)) |a|^{-3} dr_1 dr_3 dr_4 dr_5 d^{\times} a$$

If $\widetilde{W}(t(a)) \neq 0$, then $|a| \leq 1$. On the other hand, we have

$$\omega_{\psi}(t(a)[r_1, 0, r_3])\phi(1) = \mu_{\psi}(a)|a|^{1/2}\psi(r_3)\phi(a+r_1).$$

If $\phi(a + r_1) \neq 0$ and $a \in \mathfrak{o}$, then $r_1 \in \mathfrak{o}$. Thus the domain for a and r_1 in the above integral is $\{a \in F^{\times} \cap \mathfrak{o}, r_1 \in \mathfrak{o}\}$. Note that $\gamma t(a) = h(1, a)\gamma = h(1, a)w_{\beta}w_{\alpha}w_{\beta}w_{\alpha}$. Thus, if we conjugate $w_{\alpha}\mathbf{x}_{\alpha}(r_1)$ to the right side, we can get

$$h(1, a)\gamma[r_1, 0, r_3, r_4, r_5] = h(1, a)w_\beta w_\alpha w_\beta \mathbf{x}_{\alpha+\beta}(-r_3)\mathbf{x}_\beta(-r_4 - 3r_1r_3)\mathbf{x}_{3\alpha+2\beta}(r_5)w_\alpha \mathbf{x}_\alpha(r_1)$$

Since $w_{\alpha} \mathbf{x}_{\alpha}(r_1) \in K$ for $r_1 \in \mathfrak{o}$, by changing of variables, we get

$$\begin{split} &I(\widetilde{W}, W_{f_s}, \phi) \\ = \int_{|a| \le 1} \widetilde{W}(t(a)) |a|^{-5/2} \mu_{\psi}(a) \\ &\cdot \int_{F^3} W_{f_s}(h(1, a) w_{\beta} w_{\alpha} w_{\beta} \mathbf{x}_{\alpha+\beta}(r_3) \mathbf{x}_{\beta}(r_4) \mathbf{x}_{3\alpha+2\beta}(r_5)) \psi(-r_3) dr_3 dr_4 dr_5 d^* a \\ &= \sum_{n \ge 0} \widetilde{W}(t(p^n)) q^{5n/2} \mu_{\psi}(p^n) J(n), \end{split}$$

where

$$J(n) = \int_{F^3} W_{f_s}(h(1, p^n) w_\beta w_\alpha w_\beta \mathbf{x}_{\alpha+\beta}(r_3) \mathbf{x}_\beta(r_4) \mathbf{x}_{3\alpha+2\beta}(r_5)) \psi(-r_3) dr_3 dr_4 dr_5.$$

By dividing the domain of r_3 into two parts, we can write $J(n) = J_1(n) + J_2(n)$, where

$$J_1(n) = \int_{|r_3| \le 1} \int_{F^2} W_{f_s}(h(1, p^n) w_\beta w_\alpha w_\beta \mathbf{x}_{\alpha+\beta}(r_3) \mathbf{x}_{\beta}(r_4) \mathbf{x}_{3\alpha+2\beta}(r_5)) \psi(-r_3) dr_3 dr_4 dr_5$$
$$= \int_{F^2} W_{f_s}(h(1, p^n) w_\beta w_\alpha w_\beta \mathbf{x}_{\beta}(r_4) \mathbf{x}_{3\alpha+2\beta}(r_5)) dr_4 dr_5,$$

and

$$J_2(n) = \int_{|r_3|>1} \int_{F^2} W_{f_s}(h(1, p^n) w_\beta w_\alpha w_\beta \mathbf{x}_{\alpha+\beta}(r_3) \mathbf{x}_{\beta}(r_4) \mathbf{x}_{3\alpha+2\beta}(r_5)) \psi(-r_3) dr_3 dr_4 dr_5.$$

Lemma 4.1 Set

$$I(n) = \int_F W_{f_s}(h(1, p^n) w_\beta \mathbf{x}_\beta(r)) dr.$$

Then

$$I(n) = \frac{q^{-(3s+1/2)n}}{b_1 - b_2} \left[(b_1^{n+1} - b_2^{n+1}) + (1 - q^{-1}) \frac{b_1 b_2 X}{(1 - b_1 X)(1 - b_2 X)}, (b_1^n - b_2^n - b_1^{n+1} X + b_2^{n+1} X + b_1 X (b_1 b_2 X)^n - b_2 X (b_1 b_2 X)^n) \right],$$

where $X = q^{-(3s-3/2)}$.

Proof We have

$$\begin{split} I(n) &= \int_{F} W_{f_{s}}(h(1, p^{n})w_{\beta}\mathbf{x}_{\beta}(r))dr \\ &= \int_{|r| \leq 1} W_{f_{s}}(h(1, p^{n})w_{\beta}\mathbf{x}_{\beta}(r))dr \\ &+ \int_{|r| > 1} W_{f_{s}}(h(1, p^{n})w_{\beta}\mathbf{x}_{\beta}(r))dr \\ &= W_{f_{s}}(h(1, p^{n})) + \int_{|r| > 1} W_{f_{s}}(h(1, p^{n})w_{\beta}\mathbf{x}_{\beta}(r))dr. \end{split}$$

To deal with the integral when |r| > 1, we consider the following Iwasawa decomposition of $w_{\beta} \mathbf{x}_{\beta}(r)$:

$$w_{\beta}\mathbf{x}_{\beta}(r) = \mathbf{x}_{\beta}(-r^{-1})h(-r^{-1},-r)\mathbf{x}_{-\beta}(r^{-1}).$$

Since $\mathbf{x}_{-\beta}(r^{-1})$ is in the maximal compact subgroup for |r| > 1, we have

$$W_{f_s}(h(1, p^n)w_{\beta}\mathbf{x}_{\beta}(r)) = W_{f_s}(h(1, p^n)\mathbf{x}_{\beta}(-r^{-1})h(-r^{-1}, -r)) = W_{f_s}(h(1, p^n)h(r^{-1}, r)),$$

where we used $U_{\beta} \subset V'$. For |r| > 1, we can write $r = p^{-m}u$ for some $m \ge 1$ and $u \in \mathfrak{o}^{\times}$. We then have $dr = q^m du$. Note that $vol(\mathfrak{o}^{\times}) = 1 - q^{-1}$. Thus we have

$$I(n) = W_{f_s}(h(1, p^n)) + \sum_{m \ge 1} (1 - q^{-1}) q^m W_{f_s}(h(p^m, p^{n-m})).$$

Note that $h(p^m, 1) \mapsto \text{diag}(p^m, p^m)$ under the isomorphism $M' \cong \text{GL}_2$. Thus we have

$$W_{f_s}(h(p^m, 1)h(1, p^{n-m})) = q^{-6sm} \omega_\tau(p)^m W_{f_s}(h(1, p^{n-m})).$$

Thus we get

$$I(n) = W_{f_s}(h(1, p^n)) + \sum_{m \ge 1} (1 - q^{-1}) q^{(-6s+1)m} \omega_{\tau}(p)^m W_{f_s}(h(1, p^{n-m})).$$

By (4.1), we have

$$W_{f_s}(h(1, p^{n-m})) = \begin{cases} \frac{q^{-3s(n-m)-(n-m)/2}}{b_1 - b_2} (b_1^{n-m+1} - b_2^{n-m+1}), & \text{if } n \ge m, \\ 0, & \text{if } n < m. \end{cases}$$

Thus for $n \ge 1$, we have

$$I(n) = \frac{q^{-(3s+1/2)n}}{b_1 - b_2} \left((b_1^{n+1} - b_2^{n+1}) + \sum_{m=1}^n (1 - q^{-1})q^{-(3s-3/2)m} (b_1^{n+1}b_2^m - b_2^{n+1}b_1^m) \right).$$

Thus result can be computed using the geometric summation formula. One can check that the given formula also satisfies I(0) = 1.

Lemma 4.2 We have

$$J_1(n) = \frac{1 - q^{-6s+1}b_1b_2}{1 - q^{-6s+2}b_1b_2}I(n).$$

Proof To compute $J_1(n)$, we break up the domain of integration in r_4 and get

$$J_{1}(n) = \int_{F} \int_{|r_{4}| \leq 1} W_{f_{s}}(h(1, p^{n})w_{\beta}w_{\alpha}w_{\beta}\mathbf{x}_{\beta}(r_{4})\mathbf{x}_{3\alpha+2\beta}(r_{5}))dr_{4}dr_{5}$$
$$+ \int_{F} \int_{|r_{4}| > 1} W_{f_{s}}(h(1, p^{n})w_{\beta}w_{\alpha}w_{\beta}\mathbf{x}_{\beta}(r_{4})\mathbf{x}_{3\alpha+2\beta}(r_{5}))dr_{4}dr_{5}$$
$$:= J_{11}(n) + J_{12}(n),$$

where

$$\begin{split} J_{11}(n) &= \int_F \int_{|r_4| \le 1} W_{f_s}(h(1, p^n) w_\beta w_\alpha w_\beta \mathbf{x}_\beta(r_4) \mathbf{x}_{3\alpha+2\beta}(r_5)) dr_4 dr_5 \\ &= \int_F \int_{|r_4| \le 1} W_{f_s}(h(1, p^n) w_\beta w_\alpha w_\beta \mathbf{x}_{3\alpha+2\beta}(r_5) w_\beta^{-1} w_\alpha^{-1} w_\alpha w_\beta \mathbf{x}_\beta(r_4)) dr_4 dr_5 \\ &= \int_F W_{f_s}(h(1, p^n) w_\beta \mathbf{x}_\beta(r_5)) dr_5 \\ &= I(n), \end{split}$$

and

$$J_{12}(n) = \int_{F} \int_{|r_4|>1} W_{f_s}(h(1, p^n) w_\beta w_\alpha w_\beta \mathbf{x}_\beta(r_4) \mathbf{x}_{3\alpha+2\beta}(r_5)) dr_4 dr_5$$

$$= \int_{F} \int_{|r_4|>1} W_{f_s}(h(1, p^n) w_\beta w_\alpha w_\beta \mathbf{x}_{3\alpha+2\beta}(r_5) w_\beta^{-1} w_\alpha^{-1} w_\alpha w_\beta \mathbf{x}_\beta(r_4)) dr_4 dr_5$$

$$= \int_{F} \int_{|r_4|>1} W_{f_s}(h(1, p^n) w_\beta \mathbf{x}_\beta(r_5) w_\alpha w_\beta \mathbf{x}_\beta(r_4)) dr_4 dr_5.$$

We have the Iwasawa decomposition of $w_{\beta} \mathbf{x}_{\beta}(r_4)$:

$$w_{\beta}\mathbf{x}_{\beta}(r_4) = \mathbf{x}_{\beta}(-r_4^{-1})h(-r_4^{-1}, -r_4)\mathbf{x}_{-\beta}(r_4^{-1}).$$

Since $\mathbf{x}_{-\beta}(r_4^{-1})$ is in the maximal compact subgroup for $|r_4| > 1$, we then get

$$J_{12}(n) = \int_{F} \int_{|r_{4}|>1} W_{f_{s}}(h(1, p^{n})w_{\beta}\mathbf{x}_{\beta}(r_{5})w_{\alpha}\mathbf{x}_{\beta}(-r_{4}^{-1})h(r_{4}^{-1}, r_{4}))dr_{4}dr_{5}$$
$$= \int_{F} \int_{|r_{4}|>1} W_{f_{s}}(h(1, p^{n})h(r_{4}^{-1}, 1)w_{\beta}\mathbf{x}_{\beta}(r_{4}^{-1}r_{5}))dr_{4}dr_{5}$$

$$= \int_{F} \int_{|r_{4}|>1} |r_{4}| W_{f_{s}}(h(1, p^{n})h(r_{4}^{-1}, 1)w_{\beta}\mathbf{x}_{\beta}(r_{5}))dr_{4}dr_{5}$$

$$= \sum_{m\geq 1} (1-q^{-1})q^{2m} \int_{F} W_{f_{s}}(h(p^{m}, 1)h(1, p^{n})w_{\beta}\mathbf{x}_{\beta}(r_{5}))dr_{5},$$

where in the second equality, we conjugated $\mathbf{x}_{\beta}(-r_4^{-1})h(r_4^{-1}, r_4)$ to the left, and in the third equality, we wrote $r_4 = p^{-m}u$ for $m \ge 1, u \in \mathfrak{o}^{\times}$ and used $dr_4 = q^m du$, $\operatorname{vol}(\mathfrak{o}^{\times}) = 1 - q^{-1}$. Note that $h(p^m, 1)$ is in the center of M', and thus

$$W_{f_s}(h(p^m, 1)g) = q^{-6sm}\omega_{\tau}(p)^m W_{f_s}(g),$$

we get

$$J_{12}(n) = (1 - q^{-1}) \sum_{m \ge 1} q^{-6sm + 2m} \omega_{\tau}(p)^m \int_F W_{f_s}(h(1, p^n) w_{\beta} \mathbf{x}_{\beta}(r_5)) dr_5.$$

Thus we get

$$J_1(n) = I(n) + \sum_{m \ge 1} (1 - q^{-1})q^{(-6s+2)m} (b_1 b_2)^m I(n).$$

A simple calculation gives the formula of $J_1(n)$.

We next consider the term

$$J_2(n) = \int_{|r_3|>1} \int_{F^2} W_{f_s}(h(1, p^n) w_\beta w_\alpha w_\beta \mathbf{x}_{\alpha+\beta}(r_3) \mathbf{x}_{\beta}(r_4) \mathbf{x}_{3\alpha+2\beta}(r_5)) \psi(-r_3) dr_3 dr_4 dr_5.$$

For $|r_3| > 1$, we can write $r_3 \in p^{-m}u$ with $m \ge 1, u \in \mathfrak{o}^{\times}$. We then have,

$$J_{2}(n) = \int_{F^{2}} \sum_{m\geq 1} q^{m} W_{f_{s}}(h(1, p^{n}) w_{\beta} w_{\alpha} w_{\beta} \mathbf{x}_{\alpha+\beta}(p^{-m}u) \mathbf{x}_{\beta}(r_{4}) \mathbf{x}_{3\alpha+2\beta}(r_{5})) \psi(-p^{-m}u) du dr_{4} dr_{5}.$$

Write $\mathbf{x}_{\alpha+\beta}(p^{-m}u) = h(u, u^{-1})\mathbf{x}_{\alpha+\beta}(p^{-m})h(u^{-1}, u)$, and by conjugation and changing of variables, we get

$$J_2(n) = \int_{F^2} \sum_{m\geq 1} q^m W_{f_s}(h(u^{-1}, p^n) w_\beta w_\alpha w_\beta \mathbf{x}_{\alpha+\beta}(p^{-m}) \mathbf{x}_\beta(r_4) \mathbf{x}_{3\alpha+2\beta}(r_5)) \psi(-p^{-m}u) du dr_4 dr_5,$$

where we used $h(u, u^{-1})$ is in the maximal compact subgroup of $G_2(F)$. Since $h(u^{-1}, 1)$ maps to the center of M' and $|\omega_{\tau}(u)| = 1$, we have

$$W_{f_s}(h(u^{-1}, p^n)w_\beta w_\alpha w_\beta \mathbf{x}_{\alpha+\beta}(p^{-m})\mathbf{x}_\beta(r_4)\mathbf{x}_{3\alpha+2\beta}(r_5))$$

= $W_{f_s}(1, p^n)w_\beta w_\alpha w_\beta \mathbf{x}_{\alpha+\beta}(p^{-m})\mathbf{x}_\beta(r_4)\mathbf{x}_{3\alpha+2\beta}(r_5)).$

Thus we get

$$J_{2}(n) = \int_{F^{2}} \sum_{m \ge 1} q^{m} W_{f_{s}}(h(1, p^{n}) w_{\beta} w_{\alpha} w_{\beta} \mathbf{x}_{\alpha+\beta}(p^{-m}) \mathbf{x}_{\beta}(r_{4}) \mathbf{x}_{3\alpha+2\beta}(r_{5})) \psi(-p^{-m}u) du dr_{4} dr_{5}.$$

Since

$$\int_{\mathfrak{o}^{\times}} \psi(p^k u) du = \begin{cases} 1 - q^{-1}, & \text{if } k \ge 0, \\ -q^{-1}, & \text{if } k = -1, \\ 0, & \text{if } k \le -2, \end{cases}$$

we get $J_2(n) = -R(n)$, where

$$R(n) = \int_{F^2} W_{f_s}(h(1, p^n) w_\beta w_\alpha w_\beta \mathbf{x}_{\alpha+\beta}(p^{-1}) \mathbf{x}_\beta(r_4) \mathbf{x}_{3\alpha+2\beta}(r_5)) dr_4 dr_5.$$

To evaluate R(n), we split the domain of r_4 , and write $R(n) = R_1(n) + R_2(n)$, where

$$R_1(n) = \int_{|r_4| \le 1} \int_F W_{f_s}(h(1, p^n) w_\beta w_\alpha w_\beta \mathbf{x}_{\alpha+\beta}(p^{-1}) \mathbf{x}_\beta(r_4) \mathbf{x}_{3\alpha+2\beta}(r_5)) dr_4 dr_5,$$

=
$$\int_F W_{f_s}(h(1, p^n) w_\beta w_\alpha w_\beta \mathbf{x}_{\alpha+\beta}(p^{-1}) \mathbf{x}_{3\alpha+2\beta}(r_5)) dr_5,$$

and

$$R_2(n) = \int_{|r_4|>1} \int_F W_{f_s}(h(1, p^n) w_\beta w_\alpha w_\beta \mathbf{x}_{\alpha+\beta}(p^{-1}) \mathbf{x}_\beta(r_4) \mathbf{x}_{3\alpha+2\beta}(r_5)) dr_4 dr_5.$$

We now compute $R_1(n)$. We conjugate $w_{\alpha}w_{\beta}\mathbf{x}_{\alpha+\beta}(p^{-1})$ to the right and then get

$$R_1(n) = \int_F W_{f_s}(h(1, p^n) w_\beta \mathbf{x}_\beta(r_5) w_\alpha w_\beta \mathbf{x}_{\alpha+\beta}(p^{-1})) dr_5$$
$$= \int_F W_{f_s}(h(1, p^n) w_\beta \mathbf{x}_\beta(r_5) w_\alpha \mathbf{x}_\alpha(-p^{-1})) dr_5$$

Next, we use the Iwasawa decomposition of $w_{\alpha} \mathbf{x}_{\alpha}(p^{-1})$:

$$w_{\alpha}\mathbf{x}_{\alpha}(-p^{-1}) = \mathbf{x}_{\alpha}(p)h(p^{-1}, p^2)\mathbf{x}_{-\alpha}(-p)$$

to get

$$R_1(n) = \int_F W_{f_s}(h(1, p^n) w_\beta \mathbf{x}_\beta(r_5) \mathbf{x}_\alpha(p) h(p^{-1}, p^2)) dr_5.$$

Next, we use the commutator relation

$$\mathbf{x}_{\beta}(r_5)\mathbf{x}_{\alpha}(p) = \mathbf{x}_{\alpha+\beta}(pr_5)u\mathbf{x}_{\alpha}(p)\mathbf{x}_{\beta}(r_5),$$

where *u* is in the root space of $2\alpha + \beta$, $3\alpha + \beta$, $3\alpha + 2\beta$. Then we get

$$R_1(n) = \int_F W_{f_s}(h(1, p^n) w_\beta \mathbf{x}_{\alpha+\beta}(pr_5) u \mathbf{x}_\alpha(p) \mathbf{x}_\beta(r_5) h(p^{-1}, p^2)) dr_5.$$

Note that $w_{\beta}u\mathbf{x}_{\alpha}(r)w_{\beta}(1) \in V'$, and $h(1, p^n)w_{\beta}\mathbf{x}_{\alpha+\beta}(pr_5)(h(1, p^n)w_{\beta})^{-1} = \mathbf{x}_{\alpha}(-p^{n+1}r_5)$, and $W_{f_s}(\mathbf{x}_{\alpha}(r)g) = \psi(2r)W_{f_s}(g)$, we get

$$R_{1}(n) = \int_{F} W_{f_{s}}(h(1, p^{n})w_{\beta}\mathbf{x}_{\beta}(r_{5})h(p^{-1}, p^{2}))\psi(-2p^{n+1}r_{5})dr_{5}$$
$$= \int_{F} W_{f_{s}}(h(p^{2}, 1)h(1, p^{n-1})w_{\beta}\mathbf{x}_{\beta}(p^{3}r_{5}))\psi(-2p^{n+1}r_{5})dr_{5}$$

$$=q^{-12s+3}\omega_{\tau}(p^2)\int_F W_{f_s}(h(1,p^{n-1})w_{\beta}\mathbf{x}_{\beta}(r_5))\psi(-2p^{n-2}r_5)dr_5,$$

where the last equality comes from a changing of variable on r_5 and the fact that $h(p^2, 1) \mapsto \text{diag}(p^2, p^2)$ under the isomorphism $M' \cong \text{GL}_2$. We next break up the integral on r_5 and get

$$R_{1}(n) = q^{-12s+3}\omega_{\tau}(p^{2})W_{f_{s}}(h(1, p^{n-1}))\int_{|r_{5}| \le 1}\psi(-2p^{n-2}r_{5})dr_{5}$$
$$+ q^{-12s+3}\omega_{\tau}(p^{2})\int_{|r_{5}| > 1}W_{f_{s}}(h(1, p^{n-1})w_{\beta}\mathbf{x}_{\beta}(r_{5}))\psi(-2p^{n-2}r_{5})dr_{5}.$$

Using the Iwasawa decomposition of $w_{\beta} \mathbf{x}_{\beta}(r_5)$, we have

$$R_{1}(n) = q^{-12s+3}\omega_{\tau}(p^{2})$$

$$\left(W_{f_{s}}(h(1, p^{n-1}))\int_{|r_{5}|\leq 1}\psi(-2p^{n-2}r_{5})dr_{5} + \sum_{m=1}^{\infty}W_{f_{s}}(h(p^{m}, p^{n-m-1}))q^{m}\int_{\mathfrak{o}^{\times}}\psi(-2p^{n-m-2}u)du\right).$$

Lemma 4.3 We have $R_1(n) = 0$ if $n \le 1$, and

$$R_1(n) = q^{-12s+3}\omega_\tau(p)^2 I(n-1) - q^{-6s(n+1)+n+2}\omega_\tau(p)^{n+1},$$

for $n \geq 2$.

Proof Note that $\int_{|r| \le 1} \psi(p^k r) dr = 0$ if k < 0 and $\int_{|r| \le 1} \psi(p^k r) dr = 1$ if $k \ge 0$. Moreover, we have

$$\int_{\mathfrak{o}^{\times}} \psi(p^k u) du = \begin{cases} 1 - q^{-1}, & \text{if } k \ge 0, \\ -q^{-1}, & \text{if } k = -1, \\ 0, & \text{if } k \le -2. \end{cases}$$

Thus we get $R_1(n) = 0$ for $n \le 1$. For $n \ge 2$, we have

$$\begin{split} R_1(n) &= q^{-12s+3}\omega_\tau(p^2) \\ &\cdot \left(W_{f_s}(h(1,\,p^{n-1})) + \sum_{m=1}^{n-2} (1-q^{-1})q^m W_{f_s}(h(p^m,\,p^{n-m-1})) \\ &- q^{-1}q^{n-1} W_{f_s}(h(p^{(n-1)},\,1)) \right) = q^{-12s+3}\omega_\tau(p^2) \\ &\cdot \left(W_{f_s}(h(1,\,p^{n-1})) + \sum_{m=1}^{n-1} (1-q^{-1})q^m W_{f_s}(h(p^m,\,p^{n-m-1})) \\ &- q^{n-1} W_{f_s}(h(p^{(n-1)},\,1)) \right) = q^{-12s+3} \\ &\omega_\tau(p)^2 I(n-1) - q^{-12s+3+n-1}\omega_\tau(p)^2 W_{f_s}(h(p^{n-1},\,1)), \end{split}$$

where in the last equation, we used the formula in the computation of I(n). Since $h(p^{n-1}, 1)$ is in the center of M', we have $W_{f_s}(h(p^{n-1}, 1)) = q^{-6s(n-1)}\omega_{\tau}(p)^{n-1}$. The result follows.

We next consider

$$R_2(n) = \int_{|r_4|>1} \int_F W_{f_s}(h(1, p^n) w_\beta w_\alpha w_\beta \mathbf{x}_{\alpha+\beta}(p^{-1}) \mathbf{x}_\beta(r_4) \mathbf{x}_{3\alpha+2\beta}(r_5)) dr_4 dr_5.$$

Conjugating w_{β} to the right side and using the Iwasawa decomposition of $w_{\beta} \mathbf{x}_{\beta}(r_4)$, we can get

$$R_2(n) = \int_F \int_{|r_4|>1} W_{f_s}(h(1, p^n) w_\beta w_\alpha \mathbf{x}_\alpha(p^{-1}) \mathbf{x}_{3\alpha+\beta}(r_5) \mathbf{x}_\beta(r_4^{-1}) h(r_4^{-1}, r_4)) dr_4 dr_5.$$

From the commutator relation, we have

$$\mathbf{x}_{\alpha}(p^{-1})\mathbf{x}_{\beta}(r_{4}^{-1}) = \mathbf{x}_{\beta}(r_{4}^{-1})\mathbf{x}_{\alpha}(p^{-1})\mathbf{x}_{2\alpha+\beta}(p^{-2}r_{4}^{-1})u,$$

for some *u* in the group generated by roots subgroups of $\alpha + \beta$, $3\alpha + \beta$, $3\alpha + 2\beta$. Like in the computation of $R_1(n)$, we have

$$\begin{split} R_{2}(n) &= \int_{F} \int_{|r_{4}|>1} W_{f_{s}}(h(1, p^{n})w_{\beta}w_{\alpha}\mathbf{x}_{\alpha}(p^{-1})\mathbf{x}_{3\alpha+\beta}(r_{5})h(r_{4}^{-1}, r_{4}))\psi \\ &(-2p^{n-2}r_{4}^{-1})dr_{4}dr_{5} \\ &= \int_{F} \int_{|r_{4}|>1} W_{f_{s}}(h(1, p^{n})h(r_{4}^{-1}, 1)w_{\beta}\mathbf{x}_{\beta}(r_{5}r_{4}^{-1})w_{\alpha}\mathbf{x}_{\alpha}(p^{-1}r_{4}^{-1}))\psi(-2p^{n-2}r_{4}^{-1}) \\ &dr_{4}dr_{5} \\ &= \int_{F} \int_{|r_{4}|>1} |r_{4}|W_{f_{s}}(h(1, p^{n})h(r_{4}^{-1}, 1)w_{\beta}\mathbf{x}_{\beta}(r))\psi(-2p^{n-2}r_{4}^{-1})dr_{4}dr \\ &= I(n) \int_{|r_{4}|>1} |r_{4}|^{-6s+1}\omega_{\tau}(r_{4}^{-1})\psi(-2p^{n-2}r_{4}^{-1})dr_{4} \\ &= I(n) \sum_{m=1}^{\infty} q^{(-6s+2)m}\omega_{\tau}(p)^{m} \int_{\mathfrak{o}^{\times}} \psi(-2p^{m+n-2}u)du. \end{split}$$

Lemma 4.4 We have

$$R_2(n) = \begin{cases} I(0)q^{-6s+2}\omega_\tau(p)\left(-q^{-1} + (1-q^{-1})\frac{q^{-6s+2}\omega_\tau(p)}{1-q^{-6s+2}\omega_\tau(p)}\right), & n = 0, \\ I(n)(1-q^{-1})\frac{q^{-6s+2}\omega_\tau(p)}{1-q^{-6s+2}\omega_\tau(p)}, & n \ge 1 \end{cases}$$

Proof If $n \ge 1$, then $\int_{\mathfrak{o}^{\times}} \psi(p^{m+n-2}u) du = (1-q^{-1})$ for $m \ge 1$. Thus, we have

$$R_2(n) = I(n) \sum_{m=1}^{\infty} q^{(-6s+2)m} \omega_{\tau}(p)^m (1-q^{-1})$$
$$= I(n)(1-q^{-1}) \frac{q^{-6s+2}\omega_{\tau}(p)}{1-q^{-6s+2}\omega_{\tau}(p)}.$$

If n = 0, then $\int_{\mathfrak{o}^{\times}} \psi(p^{m+n-2}u) du = (1-q^{-1})$ for $m \ge 2$, and $\int_{\mathfrak{o}^{\times}} \psi(p^{m+n-2}u) du = -q^{-1}$ for m = 1. Thus, we have

$$R_2(0) = I(0)(-q^{-1}q^{-6s+2}\omega_\tau(p) + (1-q^{-1})\sum_{m=2}^{\infty} q^{(-6s+2)m}\omega_\tau(p)^m)$$

$$= I(0)q^{-6s+2}\omega_{\tau}(p)\left(-q^{-1} + (1-q^{-1})\frac{q^{-6s+2}\omega_{\tau}(p)}{1-q^{-6s+2}\omega_{\tau}(p)}\right).$$

The completes the proof of the lemma.

Combining the above results, we get the following

Lemma 4.5 We have

$$R(n) = \begin{cases} -I(0)q^{-6s+1}\omega_{\tau}(p)\frac{1-q^{-6s+3}\omega_{\tau}(p)}{1-q^{-6s+2}\omega_{\tau}(p)}, & n = 0, \\ I(1)(1-q^{-1})\frac{q^{-6s+2}\omega_{\tau}(p)}{1-q^{-6s+2}\omega_{\tau}(p)}, & n = 1, \\ q^{-12s+3}\omega_{\tau}(p)^{2}I(n-1) - q^{-6s(n+1)+n+2}\omega_{\tau}(p)^{n+1} \\ +I(n)(1-q^{-1})\frac{q^{-6s+2}\omega_{\tau}(p)}{1-q^{-6s+2}\omega_{\tau}(p)}, & n \ge 2, \end{cases}$$

and

$$J(n) = J_1(n) - R(n)$$

=
$$\begin{cases} 1+Y, & n=0\\ I(1), & n=1,\\ I(n) - q^{-1}Y^2I(n-1) + q^{-n}Y^{n+1}, & n \ge 2. \end{cases}$$

where $Y = q^{-6s+2}\omega_{\tau}(p)$

By the main result of [1], we have

$$\widetilde{W}(t(p^n)) = \frac{\mu_{\psi}(p^n)q^{-n}}{a - a^{-1}} \left((1 - \chi(p)q^{-1/2}a^{-1})a^{n+1} - (1 - \chi(p)q^{-1/2}a)a^{-(n+1)} \right),$$

where $\chi(p) = (p, p)_F = (p, -1)_F$. Note that the notation $\gamma(a)$ in [1] is our $\mu_{\psi}(a)^{-1}$. Note that $\mu_{\psi}(p^{n})\mu_{\psi}(p^{n}) = (p^{n}, p^{n})_{F} = \chi(p)^{n}$. Thus

$$I(\widetilde{W}, W_{f_s}, \phi) = \sum_{n \ge 0} \frac{q^{3n/2} \chi(p)^n}{a - a^{-1}} \left((1 - \chi(p)q^{-1/2}a^{-1})a^{n+1} - (1 - \chi(p)q^{-1/2}a)a^{-(n+1)} \right) J(n)$$

Plugging the formula J(n) into the above equation, we can get that

$$\begin{split} I(\tilde{W}, W_f, \phi) \\ &= \frac{(1 - b_1 q^{-1} X)(1 - b_2 q^{-1} X)(1 - b_1 b_2 q^{-1} X^2)(1 - b_1^2 b_2 q^{-1} X^3)(1 - b_1 b_2^2 q^{-1} X^3)}{(1 - \chi(p) a^{-1} b_1 b_2 q^{-1/2} X^2)(1 - \chi(p) a b_1 b_2 q^{-1/2} X^2)} \\ &\cdot \frac{1}{\prod_{i=1}^2 (1 - \chi(p) a^{-1} b_i q^{-1/2} X) \prod_{i=1}^2 (1 - \chi(p) a b_i q^{-1/2} X)} \\ &= \frac{L(3s - 1, \tilde{\pi} \times (\chi \otimes \tau)) L(6s - 5/2, \tilde{\pi} \otimes (\chi \otimes \omega_{\tau}))}{L(3s - 1/2, \tau) L(6s - 2, \omega_{\tau}) L(9s - 7/2, \tau \otimes \omega_{\tau})}. \end{split}$$

E

~ .

$$L(s, \tilde{\pi} \otimes (\chi \otimes \omega_{\tau})) = \frac{1}{(1 - a\chi(p)b_1b_2q^{-s})((1 - a^{-1}\chi(p)b_1b_2q^{-s}))}$$

is the *L* function of $\widetilde{\pi}$ twisted by the character $\chi \otimes \omega_{\tau}$, and

$$L(s, \tilde{\pi} \times (\chi \otimes \tau)) = \frac{1}{\prod_{i=1}^{2} (1 - \chi(p)a^{-1}b_iq^{-s}) \prod_{i=1}^{2} (1 - \chi(p)ab_iq^{-s})}$$

Deringer

is the Rankin–Selberg *L*-function of $\tilde{\pi}$ twisted by $\chi \otimes \tau$. We record the above calculation in the following

Proposition 4.6 Let $\widetilde{W} \in W(\widetilde{\pi}, \psi)$ be the normalized unramified Whittaker function, f_s be the normalized unramified section in $I(s, \tau)$ and $\phi \in S(F)$ is the characteristic function of \mathfrak{o} , we have

$$I(\widetilde{W}, W_{f_s}, \phi) = \frac{L(3s-1, \widetilde{\pi} \times (\chi \otimes \tau))L(6s-5/2, \widetilde{\pi} \otimes (\chi \otimes \omega_{\tau}))}{L(3s-1/2, \tau)L(6s-2, \omega_{\tau})L(9s-7/2, \tau \otimes \omega_{\tau})}.$$

5 Some local theory

In this section, let *F* be a local field, which can be archimedean or non-archimedean. If *F* is non-archimedean, let \mathfrak{o} be the ring of integers of *F*, *p* be a uniformizer of \mathfrak{o} and $q = \mathfrak{o}/(p)$. Let $\tilde{\pi}$ be an irreducible genuine generic representation of $\widetilde{SL}_2(F)$, τ be an irreducible generic representation of $GL_2(F)$. Let ψ be a nontrivial additive character of *F*.

Lemma 5.1 Let $\widetilde{W} \in \mathcal{W}(\widetilde{\pi}, \psi)$, $f_s \in I(s, \tau)$, $\phi \in \mathcal{S}(F)$, then the integral $I(\widetilde{W}, W_{f_s}, \phi)$ converges absolutely for Re(s) large and has a meromorphic continuation to the whole *s*-plane. Moreover, if *F* is a *p*-adic field, then $I(\widetilde{W}, W_{f_s}, \phi)$ is a rational function in q^{-s} .

The proof is similar to [5, Lemma 4.2–4.7] and [6, Lemma 3.10, Lemma 3.3]. We omit the details.

Lemma 5.2 Let $s_0 \in \mathbb{C}$. Then there exists $\widetilde{W} \in \mathcal{W}(\widetilde{\pi}, \psi), f_{s_0} \in I(s_0, \tau), \phi \in \mathcal{S}(F)$ such that $I(\widetilde{W}, W_{f_{s_0}}, \phi) \neq 0$.

Proof The proof is similar to the proof of [5, Lemma 4.4,4.7], [6, Proposition 3.4]. We omit the details.

6 Nonvanishing of certain periods on G₂

6.1 Poles of Eisenstein series on G₂

Let τ be a cuspidal unitary representation of $\operatorname{GL}_2(\mathbb{A}) \cong M'(\mathbb{A})$. Let K be a maximal compact subgroup of $G_2(\mathbb{A})$. Given a $K \cap \operatorname{GL}_2(\mathbb{A})$ -finite cusp form f in τ , we can extend f to a function $\tilde{f} : G_2(\mathbb{A}) \to \mathbb{C}$ as in [13, §2]. We then define

$$\Phi_{\widetilde{f},s}(g) = \widetilde{f}(g)\delta_{P'}(m')^{s/3+1/2},$$

for g = v'm'k with $v' \in V'(\mathbb{A}), m' \in M'(\mathbb{A}), k \in K$. Then $\Phi_{\tilde{f},s}$ is well-defined and $\Phi_{\tilde{f},s} \in I(\frac{s}{3} + \frac{1}{2}, \tau)$. Then we can consider the Eisenstein series

$$E(s, \widetilde{f}, g) = \sum_{P'(F) \setminus G_2(F)} \Phi_{\widetilde{f}, s}(\gamma g).$$

Proposition 6.1 The Eisenstein series $E(s, \tilde{f}, g)$ has a pole on the half plane $\operatorname{Re}(s) > 0$ if and only if $s = \frac{1}{2}$, $\omega_{\tau} = 1$ and $L(\frac{1}{2}, \tau) \neq 0$.

For a proof of the above proposition, see [16, §1] or [10, §5]. If $\omega_{\tau} = 1$ and $L(\frac{1}{2}, \tau) \neq 0$, denote by $\mathcal{R}(\frac{1}{2}, \tau)$ the space generated by the residues of Eisenstein series $E(s, \tilde{f}, g)$ defined as above. Note that an element $R \in \mathcal{R}(\frac{1}{2}, \tau)$ is an automorphic form on $G_2(\mathbb{A})$.

6.2 On the Shimura–Waldspurger lift

Let $\tilde{\pi}$ be a genuine cuspidal automorphic representation of $\widetilde{SL}_2(\mathbb{A})$. Let $Wd_{\psi}(\tilde{\pi})$ be the Shimura–Waldspurger lift of $\tilde{\pi}$. Then $Wd_{\psi}(\tilde{\pi})$ is a cuspidal representation of PGL₂(\mathbb{A}). A cuspidal automorphic representation τ is in the image of Wd_{ψ} if and only if $L(\frac{1}{2}, \tau) \neq 0$. Moreover, the correspondence $\tilde{\pi} \mapsto Wd_{\psi}(\tilde{\pi})$ respects the Rankin-Selberg *L*-functions. For these assertions, see [15] or [2].

6.3 A period on G₂

Theorem 6.2 Let $\tilde{\pi}$ be a genuine cuspidal automorphic representation of $\widetilde{SL}_2(\mathbb{A})$ and τ be a unitary cuspidal automorphic representation of $\operatorname{GL}_2(\mathbb{A})$. Assume that $\omega_{\tau} = 1$ and $L(\frac{1}{2}, \tau) \neq 0$. In particular, τ can be viewed as a cuspidal automorphic representation of $\operatorname{PGL}_2(\mathbb{A})$. If $Wd_{\psi}(\tilde{\pi}) = \chi \otimes \tau$, then there exists $\tilde{\varphi} \in V_{\tilde{\pi}}$, $\phi \in \mathcal{S}(\mathbb{A})$, $R \in \mathcal{S}(\frac{1}{2}, \tau)$ such that the period

$$\mathcal{P}(\widetilde{\varphi},\widetilde{\theta}_{\phi},R) = \int_{\mathrm{SL}_2(F) \setminus \mathrm{SL}_2(\mathbb{A})} \int_{V(F) \setminus V(\mathbb{A})} \widetilde{\varphi}(g) \widetilde{\theta}_{\phi}(vg) R(vg) dv dg$$

is non-vanishing.

Proof For $\widetilde{\varphi} \in V_{\pi}$, $\phi \in S(\mathbb{A})$ and a good section $\Phi_{\widetilde{f},s}$ as in Sect. 6.1, by Theorem 3.1 and Proposition 4.6, we have

$$\begin{split} I(\widetilde{\varphi}, \phi, \widetilde{f}, s) &= \int_{\mathrm{SL}_2(F) \setminus \mathrm{SL}_2(\mathbb{A})} \int_{V(F) \setminus V(\mathbb{A})} \widetilde{\varphi}(g) \widetilde{\theta}_{\phi}(vg) E(vg, \Phi_{\widetilde{f}, s}) dv dg \\ &= \int_{N_{\mathrm{SL}_2}(\mathbb{A}) \setminus \mathrm{SL}_2(\mathbb{A})} \int_{U_{\alpha+\beta}(\mathbb{A}) \setminus V(\mathbb{A})} W_{\widetilde{\varphi}}(g) \omega_{\psi}(vg) \phi(1) W_{\Phi_{\widetilde{f}, s}}(\gamma vg) dv dg \\ &= I_S \cdot \frac{L^S(s + \frac{1}{2}, \widetilde{\pi} \times (\chi \otimes \tau)) L^S(2s + \frac{1}{2}, \widetilde{\pi} \otimes (\chi \otimes \omega_{\tau}))}{L^S(s + 1, \tau) L^S(2s + 1, \omega_{\tau}) L^S(3s + 1, \tau \otimes \omega_{\tau})}. \end{split}$$

Here *S* is a finite set of places of *F* such that for $v \notin S$, π_v , τ_v are unramified, and I_S is the product of the local zeta integrals over all places $v \in S$ and L^S denotes the partial *L*-function which is the product of all local *L*-function as the place *v* runs over $v \notin S$. Note that $\tau \cong \tau^{\vee}$ since $\omega_{\tau} = 1$. Suppose that $Wd_{\psi}(\tilde{\pi}) = \chi \otimes \tau = \chi \otimes \tau^{\vee}$, then $L^S(s + 1/2, \tilde{\pi} \times (\chi \otimes \tau))$ has a pole at s = 1/2. Note that at $s = \frac{1}{2}$, $L^S(2s + 1/2, \tilde{\pi} \otimes (\chi \otimes \omega_{\tau}))$ is holomorphic and nonzero, while $L^S(s + 1, \tau)L^S(2s + 1, \omega_{\tau})L^S(3s + 1, \tau \otimes \omega_{\tau})$ is holomorphic. Moreover, I_S can be chosen to be nonzero. Thus we get that $I(\tilde{\varphi}, \phi, \tilde{f}, s)$ has a pole at s = 1/2, which means that there exists a residue R(g) of $E(s, \tilde{f}, g)$ such that

$$\mathcal{P}(\widetilde{\varphi},\theta_{\phi},R) = \int_{\mathrm{SL}_2(F)\backslash \mathrm{SL}_2(\mathbb{A})} \int_{V(F)\backslash V(\mathbb{A})} \widetilde{\varphi}(g) \widetilde{\theta}_{\phi}(vg) R(vg) dv dg \neq 0.$$

This completes the proof.

Remark 6.3 For an L^2 -automorphic form $\eta \in L^2(G_2(F) \setminus G_2(\mathbb{A}))$, one can form the period

$$\eta_{\widetilde{\phi},\widetilde{\theta}_{\phi}}(g) = \int_{\mathrm{SL}_{2}(F) \setminus \mathrm{SL}_{2}(\mathbb{A})} \int_{V(F) \setminus V(\mathbb{A})} \widetilde{\varphi}(h) \widetilde{\theta}_{\phi}(vh) \eta(vhg) dv dh.$$

Theorem 6.2 says that if $\eta \in S(\frac{1}{2}, \tau)$, then under the condition $Wd_{\psi}(\tilde{\pi}) = \chi \otimes \tau$, the period $\eta_{\tilde{\varphi},\tilde{\theta}_{\phi}}$ is non-vanishing for certain $\tilde{\varphi}$ and ϕ . For general η , one can ask under what conditions $\eta_{\tilde{\varphi},\tilde{\theta}_{\phi}}$ is not identically zero as $\tilde{\varphi}$ varies in $\tilde{\pi}$ and $\phi \in S(\mathbb{A})$. In the classical group case, this is the global Gan–Gross–Prasad conjecture for Fourier–Jacobi case, see [3]. It is natural to ask if it is possible to extend the GGP-conjecture to the G_2 -case.

Acknowledgements I would like to thank D. Ginzburg for helpful communications and pointing out the reference [6]. The debt of this paper to Ginzburg's papers [5,6] should be evident for the readers. I also would like to thank Joseph Hundley and Baiying Liu for useful discussions. I appreciate Jim Cogdell and Clifton Cunningham for encouragement and support. I also would like to thank the anonymous referee for his/her careful reading and useful suggestions. This work is supported by a fellowship from Pacific Institute for Mathematical Sciences (PIMS) and NSFC Grant 11801577.

References

- 1. Bump, D., Friedberg, S., Hoffstein, J.: *p*-adic Whittaker functions on metaplectic groups. Duke Math. J. **63**, 379–397 (1991)
- 2. Gan, W.T.: The Shimura Correspondence, À la Waldspurger, preprint
- Gan, W.T., Gross, B.H., Prasad, D.: Symplectic local root numbers, central critical L-values, and restriction problems in the representation theory of classical groups (English, with English and French summaries). Astł'erisque 346, 1–10 (2012)
- Ginzburg, D.: A Rankin–Selberg integral for the adjoint representation of GL₃. Invent. Math. 105(3), 571–588 (1991)
- 5. Ginzburg, D.: On the standard *L*-function for G_2 . Duke Math. J. **69**, 315–333 (1993)
- 6. Ginzburg, D.: On the symmetric fourth power L-function of GL₂. Isr. J. Math. 92, 157–184 (1995)
- Ginzburg, D., Rallis, S., Soudry, D.: Periods, poles of L-functions and symplectic-orthogonal theta lifts. J. Reine Angew. Math. 487, 85–114 (1997)
- Gingzburg, D., Rallis, S., Soudry, D.: L-Functions for symplectic groups. Bull. Soc. Math. Fr. 126, 181– 244 (1998)
- Jacquet, H., Shalika, J.: Exterior square L-functions, in "Automorphic forms, Shimura varieties, and Lfunctions, Vol. II" (Ann Arbor, MI, 1988), 143–226, Perspect. Math., 11, Academic Press, Boston, MA (1990)
- 10. Kim, H.: The residue spectrum of G₂. Can. J. Math. 48(6), 1245–1272 (1996)
- Kudla, S.: Notes on the local theta correspondence, preprint. http://www.math.toronto.edu/skudla/castle. pdf
- Ree, R.: A family of simple groups associated with the simple Lie algebra of type G₂. Am. J. Math. 83, 432–462 (1961)
- 13. Shahidi, F.: Functional equations satisfied by certain L-functions. Compos. Math. 37, 171-208 (1978)
- 14. Steiberg, R.: Lectures on Chevalley Groups. Yale University Press, New Haven (1967)
- 15. Waldspurger, J.P.: Correspondance de Shimura. J. Math. Pures Appl. 59(1), 1-132 (1980)
- 16. Zampera, S.: The residue spectrum of the group of type G₂. J. Math. Pures. Appl. 76, 805–835 (1997)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.