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Abstract

We present a Rankin—Selberg integral on the exceptional group G, which represents the
L-function for generic cuspidal representations of §]:2 x GL;. As an application, we show
that certain Fourier—Jacobi type periods on G are non-vanishing.
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1 Introduction

Let F be a global field with the ring of adeles A. We assume that the characteristics of F' is
not 2. We present in this paper a Shimura type integral on the exceptional group G, which
represents the L-function

L(s, T x (x ®1))L(s, 7T ® (x ® wr)),

where 7 is an irreducible genuine cuspidal representation of §I:2 (A), t is an irreducible
generic cuspidal representation of GL, (A) and y is the quadratic character of F*\A* defined
by x(a) =[],(@v, —DF,, where a = (ay), € A* and (, ), is the Hilbert symbol on F,.
To give more details about the integral, we introduce some notations. The group G has
two simple roots and we label the short root by « and the long root by 8. Let P = MV (resp.
P’ = M'V’) be the maximal parabolic subgroup of G, such that the root space of 8 is in
the Levi M (resp. the root space of « is in the Levi M’). The Levi subgroups M and M’ are
isomorphic to GL;. Let J be the subgroup of P which is isomorphic to SL; x V. Let §I:2 (A)
be the metaplectic double cover of SL,(A). There is a Weil representation wy, of §I:2 (A) for
a nontrivial additive character ¥ of F\A. Let §¢, be a corresponding theta series associated
with a function ¢ € S(A). Let t be an irreducible cuspidal automorphic representations of
GLy(A). For f; € Indg,z((ﬁ))(r ® 8%/), we can form an Eisenstein series E(g, fs5) on G2(A).
Let 7 be an irreducible genuine cuspidal automorphic forms of SL,(A). For a cusp form
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@ € 7, we consider the integral

1G.$. f) =f

/ 7(9)95(vg)E(vg, fy)dvdg.
SLo(F)\SL2(A) JV(F)\V(A)

Our main result is the following

Theorem 1.1 The above integral is absolutely convergent for Re(s) > 0 and can be mero-
morphically continued to all s € C. When Re(s) > 0, the integral 1(@, ¢, fy) is Eulerian.
Moreover, at an unramified place v, the local integral represents the L-function

LBs — 1,7y X (xy ® T))L(6s —5/2, 7, ® (v ® wr,))
LBs —1/2,1))L(6s =2, we)L(9s —7/2, 1, @ we,)

This is Theorem 3.1 and Proposition 4.6. We remark that Ginzburg—Rallis—Soudry gave
integral representations for L-functions of generic cuspidal representations of S~p2n x GL,, in
[8] using symplectic groups. It is still interesting to have different integral representations. As
an application of Theorem 1.1, we show that if Wdy, () = x ®t, then a Shimura type period
with respect to 7 and the residue of Eisenstein series on G is non-vanishing, where Wdy
is the Shimura—Waldspurger lift. It is an interesting theme in number theory to investigate
the relations between poles of L-functions and non-vanishing of automorphic periods. There
are many examples of this kind relations. See [5,7,9] for some examples. The non-vanishing
results of automorphic periods have many interesting applications in automorphic forms.
We expect the non-vanishing period in our case would be useful on problems related to the
residue spectrum of G».

There are several known Rankin—Selberg integrals on G, which represents different L-
functions and have many applications, see [4-6] for example. The integral I (g, ¢, fs) can
be viewed as a dual integral of the standard G, L-function integral in [5] in the following
sense. The integral I (@, ¢, f5) is an integral of a triple product of a cusp form on §I:2(A),
a theta series and an Eisenstein series on G (A), while the integral in [5] is an integral of a
triple product of a cusp form on G,(A), a theta series and an Eisenstein series on SLy(A).
The integral in [6] is also in a similar pattern, which is an integral of a triple product of a
cusp form on SL, (A), a theta series and an Eisenstein series on a cover of G (A). The results
presented here were known for D. Ginzburg. But we still think that it might be useful to write
up the details.

2 The group G;
2.1 Roots and Weyl group for G,

Let G, be the split algebraic reductive group of type G, (defined over Z). The group G,
has two simple roots, the short root & and the long root 8. The set of the positive roots is
ST = {a, B, a+ B,2a + B, 3a + B, 3a +28}. Let (, ) be the inner product in the root
system and (, ) be the pair defined by (yi, ) = % For the root space G, we have
the relations:
(O{, ﬂ) = _1! (ﬂ! (X) = -3.

For aroot y, let s, be the reflection defined by y, i.e., s, (y') = ' — (y', ¥)y. We have the
relation

sq(B) =30+ B,sg(a) =a + B.
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The Weyl group W = W(G») of G, has 12 elements, which is explicitly given by
W = {1, Sy SBy SaSB SBSas SuSBSas SBSaSp
(5a5p)?, (5850)%, 58 (5wsp)?, Sa(5850)% (Sasﬁ)3} .
For a root y, let U, C G be the root space of y, and let x, : F — U, be a fixed

isomorphism which satisfies various Chevalley relations, see Chapter 3 of [14]. Among other
things, x,, satisfies the following commutator relations:

[Xe (%), X ()] = Xa-t (= X3) X201 (=X Y)X304 5 (60 Y)X3a 425 (2% %)
[Xe (%), Xt ()] = X4 (—2x)X30+5 (357 Y)X30 125 (3x)7)
(X (X), X204 (V)] = X304 (3xy) (2.1)
[Xg(x), X304+ (V)] = X301+28(xy)
[Xo+8(X)s X20+8 (V)] = X30425(3xY).
For all the other pairs of positive roots y1, y2, we have [x,, (x), X,, (y)] = 1. Here [g1, g2] =
gl_lgz_lglgz for g1, g» € G,. For these commutator relationships, see [12].

Following [14], we denote w), (f) = Xx,, (t)x_y(—t’l)xy (t) and wy, = wy, (1). Note that
w, is a representative of s,. Let hy, (f) = w, (t)w; 1 Let T be the subgroup of G which
consists of elements of the form hg(t1)hg(t2),t1,t2 € T and U be the subgroup of G»
generated by Uy, forall y € > T. Let B = TU, which is a Borel subgroup of G,.

For t1,tp € G,,, denote h(t;, ) = he(f tz)hﬂ(tlztz). From the Chevalley relation
hy, ()X, (r)hy, = Xy, (t722Y1)r) (see [14, Lemma 20, (c)]), we can check the following

relations .
h=1 (1, )Xo (MR (11, 1) = Xa (15 7).

h=N (11, )xp(Mh(t, ) = xp(t]  12r)
h=1 (11, 02)Xasp (Mt 2) = Xasp(t]'1),
BN (1, 0)Xoar g (MK, 12) = Xogap (1) 15 1)
h= (11, 02)X3048 (DA (11, 1) = X34 st ' 1577),
h=N (11, 02)X3a428 (N (11, ) = X342 (17285 7).

Thus the notation h(a, b) agrees with that of [5].
One can also check that

2.2)

weh(t, p)wy ' = htin, 12_1), wgh(ty, tz)wgl =h(n, t1).

2.2 Subgroups

Let F be a field and denote G = G2 (F). The group G has two proper parabolic subgroups.
Let P = M x V be the parabolic subgroup of G such that Us C M = GL,. Thus the
unipotent subgroup V is consisting of root spaces of o, &« + 8, 2o + 8, 3 + B, 3o + 2, and
a typical element of V is of the form

Xy (r1)Xg+8(r2)Xoq+(r3)X3e+p (r4)X3¢ 424 (rs), ri € F.

To ease the notation, we will write the above element as [ry, r2, 13, 14, r5]. Denote by J the
following subgroup of P

J =SLy(F) x V.
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310 Q. Zhang

Let Vi (resp. Z) be the subgroup of V which consists root spaces of 3« +  and 3« + 28
(resp. 2 + B, 3o + B and 3o 4+ 28). Note that P and hence J normalizes V| and Z. We will
always view SL,(F) as a subgroup of G via the inclusion SL>(F) C M. Denote by Agy,,
Nsi, and Bgy, the standard torus, the upper triangular unipotent subgroup and the upper
triangular Borel subgroup of SL;,(F'). Note that the torus element % (a, b) can be identified
with

<a b) €GLy(F)= M,

and thus As, = {h(a,a ")|a € F*} and Bs, = AsL, X Us.

Let P’ = M'V’ be the other maximal parabolic subgroup G with U,, in the Levi subgroup
M'’. The Levi M’ is isomorphic to GL;(F), and from relations in (2.2), one can check that
one isomorphism M’ = GL;(F) can be determined by

Xo () > (1 ’>,
1
ab
h(a, b) — < a>'

In particular, we see that h(a, 1) € T C M’ can be identified with diag(a, a). Let §p: be
the modulus character of P’. One can check that § p/(m’) = | det(m’)|? for m’ € M’, where
det(m”) can be computed using the above isomorphism M’ = GL;(F).

2.3 Weil representation of ﬁ.z (A) x V(A)

In this subsection, we assume that F is a global field and A is its ring of adeles. In SL,(F),
we denote ¢(a) = diag(a,a”!),a € F* and

n(b) = <1 l{),beF.

1 . . ..
1 ), which represents the unique nontrivial Weyl element of SL;(F).

Under tfl}; embedding SL,(F) C M C G, the element w! can be identified with w 8-
Let SL;(A) be the metaplectic double cover of SL,(A). Then we have an exact sequence

0 — s — SLa(A) — SLo(A) — 0,

Denote w! = (

where @y = {£1}.
We will identify SL(A) with the symplectic group of A2 with symplectic structure defined
by

(e, y1), (2, y2)) = —2x1y2 + 2x2)1.

Let .#(A) be the Heisenberg group of the symplectic space (A2, (, )),i.e., #(A) = A3
with group law

(x1, y1, 21) (X2, ¥2, 22) = (x1 + X2, y1 + y2, 21 + 22 — X1y2 + y1x2).
Let SL,(A) act on . (A) from the right side by

(x1, y1,21).& = ((x1, y1)g. 21), & € SL2(A),

where (x1, y1)g is the usual matrix multiplication.
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We then can form the semi-direct product SLo (A) x .7 (A), where the product is defined
by

(g1, h1)(g2, ho) = (8182, (h1.82)h2), gi € SLa(A), hj € £ (A),i =1, 2.

Let ¢ be a nontrivial additive character of F \A. Then there is a Weil representation wy, of
SL2 (A) x °(A). The space of wy, is S(A), the Bruhat—Schwartz functions on A.
For ¢ € S(A), we have the well-know formulas:

(@y (D)) (x) = Y (bx?)p(x), b € A
(wy ((r1, 72, 13)P)(x) =V (r3 — 2xr2 — 1112) ¢ (x +11), (11,12, 13) € (D),

The above formulas could be found in [11].
Recall that for ry, rp, r3, r4, r5 € A, the notation [ry, r», r3, r4, rs] is an abbreviation of

Xo (M) Xa+-8 (12) X004+ (13) X304 (14)X30424 (15) € V(A).
Define amap pr : V(A) — 5 (A)
pr([ri, ra, 3, r4,1rs5]) = (ri, 12, r3 — rira).

From the commutator relation (2.1), we can check that pr is a group homomorphism and
defines an exact sequence

00— Vi(A) > V(A) - #(A) — 0.

Recall that V is the subgroup of V which is generated by the root space of 3« + 8, 3 + 2.
Note that there is a typo in the formula of the projection map pr in [5, p.316].

For g = (i 2) € SLy(F) C M, we can check that

—1 /S Y Y A
8 [rlsVZarBa()yO]g:[717727737"4,"5]a

where r{ = ary —cry, vy = —bry +dry, 1y —riry =r3 —rir.
Consider the map pr : J(A) = SLy(A) x V(A) — SLo(A) x 7 (A),

(g, v) = (g%, pr(v), g € SLa(A), v € V(A).

where g* = <—ac _db) = dlgd_l, where d; = diag(1l, —1) € GL,(F). From the above

discussion, the map pr is a group homomorphism and its kernel is also Vi (A). We will also
view pr as a homomorphism SLz (A) x V(A) — SLZ(A) X (A)

In the following, we will also view wy, as a representation of SLz(A) X V(A) via the
projection map pr. For ¢ € S(A), we form the theta series

O (vg) = Y wy (W) (&), v € V(A), g € SLa(A).
EeF

Note that given a genuine cusp form ¢ on SL,(A), the product
P(2)05(vg), v € V(A), g € SLa(h)

can be viewed as a function on J(A) = SL,(A) x V(A).
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312 Q. Zhang

2.4 An Eisenstein series on G,

In this subsection and in the rest of the paper, every representation appeared is assumed to
be irreducible. Let t be a cuspidal automorphic representation on GL; (A). We will view
as a representation of M’(A) via the identification M" = GL;. We then consider the induced

representation I (s, 7) = Indgf((ﬁ))(t ® 8%/). A section f; € I(s, T) is a smooth function
satisfying

fsWm'g) =8p (M) f5(g), Vv € VI(A),m € M'(A), g € Ga(A).

For f; € I(s, ), we consider the Eisenstein series

E@ f)= Y.  f8).g€Gah).

8eP'(F)\G2(F)

3 A global integral

Let 7 be a genuine cuspidal automorphic representation on SL,(A), and 7 be a cuspidal
automorphic representation of GLy(A). For ¢ € V;,¢ € S(A) and f; € I(s, ), we
consider the integral

1@ ¢ f) = / / F(8)0s (vg) E(vg. f;)dvdg.
SLo(F)\SLa(A) JV(F)\V(A)
Lety = wgwowgwy € Go(F).

Theorem 3.1 The integral I(@, ¢, fs) is absolutely convergent when Re(s) > 0 and can be
meromorphically continued to all s € C. Moreover, when Re(s) > 0, we have

1.6 fy) = / Wa(g)wy (vg)(DW . (yvg)duds.

Nsi, (A)\SL2(A) /[]a+ﬂ (A\V(A)

where
Wow) = [ e ar,
F\A
and

Wi (yvg) = / Fo ()Y Vg (—2r)dr.
F\A

Proof The first assertion is standard. We only show that the above integral is Eulerian when
Re(s) > 0. Unfolding the Eisenstein series, we can get

1@, ¢, f) = > P()0s(vg) £ (Svg)dvdg.

5P (F)\Ga(F)/ P(F) /SL§<F>\SL2<A) /VS(F)\V(A)

where X® = 87! P’§ N X for X C G,(F). We can check that a set of representatives of

the double coset P'(F)\G,(F)/P(F) can be taken as {1, WEWq, Y = wﬁwawﬁwa} . For
=1, wpwy, Or y = wgwyWpgwy, denote

Is :/ , / P(2)8s(vg) fs (Svg)dudsg.
SL3(F)\SLa(A) J VO(F)\V(A)
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If 6 = 1, the above integral /5 has an inner integral

/ By (X2 (F)08) fo (X215 (P
Ung+8(F)\Uzg+p(A)

which is zero because f;(X2q45(r)vg) = f5(vg), 5,15 (X2q4p(r)vg) = 1//(r)§¢ (vg) and
f F\A Y (r)dr = 0. The last equation follows from the fact that i is non-trivial.
We next consider the term when § = wgw,. We write

05 (v8) = wy (WP O0) + Y wy (vQ)P(E).
EeFX

The contribution of the first term to the integral /s is

/ f F(g)wy (v (0) s (vg)duds.
SL3 (F)\SLa(A) J V3 (F)\V(A)

Note that dxg s c Usatp C V', we have fi(Buxg(r)g) = fi(8xg(—r)vxg(r)g). On
the other hand, we have wy (xg(r)vg)¢(0) = wy (vg)¢(0) . After a changing variable on v,
we can see that the above integral contains an inner integral

/ P(xg(ryvg)dr,
F\A

which is zero since ¢ is cuspidal. Thus the contribution of the term wy, (vg)¢ (0) is zero when
8 = wpw,. The contribution of Zgng wy (V)P (&) is

P(2) Y wye)p (&) fi(Svg)dvdg.

/SL§<F)\SL2<A) /v@(F)\V(A) ferx

We consider the inner integral on Ugyg(F)\Uyyg(A). Note that Uyyg C V and
8Ua+ﬁ5’1 = Ux4p C V', we get fi(8Xy1p(r)vg) = fs(dvg). On the other hand, we
have wy (X1 8(r)vg)@ (&) = Y (—2r&)wy (vg)¢(§). Thus the above integral has an inner
integral

fF D V(2 Eoy (v)pE)dr = Y oy (v2)p (&) /F \Aw—zr@dr =0.

E€Fx EcFX

Thus when § = wgwy, the corresponding term is zero. Thus we get

1,6, £ =/

/ 5(9)8 (v) f; (yvg)duds.
SL% (F)O\SLy(A) JVY (F)\V(A)

We have SLg = Bs, and V¥ = U, g. We decompose 5¢ as

05 (0g) = wy WNPO0) + Y wy WP (E) = wy (v2)PO) + Y wyt(@vg)p(1).

geF~ aeFx
Recall that #(a) = diag(a, a—1). Since )/U,gy_] C Usg+p C V', we have
fs(rvxp(r)g) = fs(yxp(=r)vxg(r)g).
On the other hand we have wy, (vxg(r)g)9(0) = wy (Xg(—r)vxg(r)g)¢(0). Thus after a
changing variable on v, we can get that the contribution of wy (vg)¢(0) to I(@, ¢, f) has
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an inner integral

/ P(xg(r)g)dr,
F\A
which is zero by the cuspidality of ¢. Thus we get

1G. 6. f) =f

/ F(2) Y wyt@vg)p(1) fi(yvg)dvdg.
BsL, (F)\SL2(A) JUg+p(F)\V(A)

acF*

Collapsing the summation with the integration, we then get

1(67 ¢a fA)

- / / 5@y W) (1) f; (yvg)dvdg
NsL, (F)\SL2 (&) JUap(F)\V (A)

_ / / / s (N wy (vxs(ND (1) f; (yvxs (P g)drdudg.
NsL, (M\SL2(A) JUg4p(F\V(A) J F\A

Note that we have wy (vxg(r)g)d(1) = wy(xXg(r)xg(—r)vxg(r)g)¢d(l) = ¥(r)
wy (Xg(=r)vxg(r)g)¢(1). On the other hand, we have )/x,g(r))/_1 C Usg4+p C V'. Thus
fs(yvxg(r)g) = fs(yxpg(—r)vxg(r)g). After a changing of variable on v, we get

16,10 = [

/ Wz(g)wy (vg)p (1) f5(yvg)dudg,
NsiL, (AN\SL2(8) J Ug g (FI\V (A)

where
W5(g) :/ o(xp(r)g)¥(r)dr.
F\A

We can further decompose the above integral as

I(a, 0, fs) = / /
Nsi, (M\SL2(A) JUg+p(M\V(A)

/F\A W5 (8)wy (Xa+5(r)vg)p (1) fs (¥ Xa4p(r)vg)drdvdg.

Note that wy (Xa+g(r)vg)P (1) = Y (=2r)wy(vg)¢(l) and fi(yXatp(r)vg) = f;
(Xq (r)yvg) since yXy1p (r)y_] = Xy (). We then get

(g, ¢, f5) = / / Wz () wy (vg)p (W, (yvg)dudg,
NsLy (M\SL2(A) J Ua+g(AM\V (A)
where
Wy, (yvg) =/ fsXa (N)yvg) ¥ (=2r)dr.
F\A
This concludes the proof. O
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4 Unramified calculation

In this section, let F' be a p-adic field with p # 2. Let o be the ring of integers of F, and
let p be a uniformizer of o by abuse of notation. Let g be the cardinality of the residue field

o/(p).

4.1 Local Weil representations

Let ¢ be an additive character of F and let y (1) be the Weil index and let ;LV, (a) = y(]/'f’a)

Let wy be the Weil representation of SLz(F ) X V on S(F) via the projection SL2(F )XV —
SL2(F ) X . For ¢ € S(F), we have the well-know formulas:

(wy (wH$)(x) = ¥y (Y)p(x),
(wy (n(B)P)(x) = Y (bx")p(x), b € F
(wy (t@)$)(x) = la|'*py (@)p(ax),a € F*
(wy ((r1,72,73))P)(x) = ¥ (r3 — 2xr2 —r112) P(x +11), (r1,712,73) € H(F).

where ¢3(x) =/ r @ (¥ (2xy)dy is the Fourier transform of ¢ with respect to 1. Note
that under the embedding SL,(F) — G2(F), we have wl = wg, n(b) = xg(b) and
t(a) = h(a,a™").

4.2 Unramified calculation

In this subsection, we compute the local integral in last section. The strategy is similar to the
unramified calculation in [6].

Let 7 be an unramified genuine representation of éiz (F) with Satake parameter a, and let
T be an unramified irreducible representation of GL; (F') with Satake parameters by, b,. Let
W e W(r, ) with W(]) = 1. Let vg € V; be an unramified vector and A € Homy (Vz, ¥)
such that A(vg) = 1. Let f; : G — V; be the unramified section in I (s, 7) with f;(e) = vo.
Let

Wy, : Gy x GLo(F) — C

be the function Wy, (g, a) = A(z(a) fs(g)). We will write Wy, (g) for Wy, (g, 1) in the fol-
lowing. By assumption and Shintani formula, we have

Wy, (h(p*, p')) = g D) (x (diag(p* !, p*))vo)
_ q73s(2k+l)W (diag(pkﬂ’ pk))

_ | geen (blbz)k e G By, if1 > 0,
0, ifl <O.

4.1)

Let ¢ € S(F) be the characteristic function of 0. We need to compute the integral

107, Wy ) = / / W (9w (vg)d (W, (yvg)duds.
N\SL2(F) JUg+p\V
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In the flollowing, we fix the Haar measure such that vol(dr, 0) = 1. Thus vol(d*r, 0*) =
1 _quing; the Iwasawa decomposition SL; (F) = N2 (F)A2(F)SL,(0), we have
1(W, Wy, ¢)
= /FX /F4 W (t(@)wy ([r1. 0, r3]t (@) (D)W,
(y(r1,0,r3, 14, r5)t(a))|a|_2dr1dr3dr4dr5dxa
= /FX /F4 W (t(a))wy (t(@)[r1, 0, 13D ()W,
(yt(a)(r1, 0,13, 4, r5))|a|_3dr1dr3dr4dr5dxa
It W(t(a)) # 0, then |a| < 1. On the other hand, we have
oy (t@lr1, 0, 3D (1) = uy @lal ¢ (r3)¢ (@ + r1).
If¢p(a+r1) #0anda € o, then r; € 0. Thus the domain for a and | in the above integral
is {a € F*No,r €o}. Note that y1(a) = h(l,a)y = h(l, a)wpwewpwgy. Thus, if we
conjugate wy X, (1) to the right side, we can get

h(1,a)y[r1,0,73,r4,75] = h(l, a)wgwaweXetpa(—13)Xg(—r4 — 3r173)X30428(r5) We X (71).

Since wyX,(r1) € K for r; € o, by changing of variables, we get

I(W. Wy, )

- W (t(@))lal =1y (@)

la|<1

~f3 Wy (h(1, Q) wpwoweXa+p(r3)Xp (r4)X3a428 (rs )W (—r3)dradradrsd™a
F

=Y WGy (P (),

n>0

where
J(n) = f3 Wi (h(1, p"YwpweWpXatps(r3)Xg(r4)X3a+2p (rs)) W (—r3)dradradrs.
F

By dividing the domain of r3 into two parts, we can write J (n) = Ji(n) + J(n), where

Ji(n) :/ /2 Wr (h(1, pP"YwpwewpXesps(r3)Xp (ra)X3a42p (rs)) Y (—r3)dradradrs
|r3|<1JF

= /2 Wi (h(1, p"YwpwewpXg(r4)X3a424(r5))dradrs,
F
and

Jo(n) = / f2 Wi (h(1, p")wpwowpsXy 46 (r3)Xp (ra)X3a42p (5 (—73)dr3dradrs.
|r3|>1JF
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Lemma4.1 Set

I1(n) = /F Wy (h(1, p")wpxg(r))dr.

Then
—3s+1/2)n
I(n) = qblj I:(qu—l - bg“)
F—g X

(I =01 X)(1 = baX)’
B = b3 = I X + DX b X (b1b2X)" = b2 X (12 X))

where X = q_(35_3/2).

Proof We have

I1(n) :/Ffo(h(l,p")wﬁXﬁ(r))dr

= Wy (h(1, p"Ywpxp(r))dr

[rl=<1

+ Wfs (h(l, p")wﬂxﬂ(r))dr

[ri>1

= Wy, (h(1, p") + Wy, (h(1, p")wpxp(r))dr.

Ir|>1
To deal with the integral when |r| > 1, we consider the following Iwasawa decomposition
of wgxg(r):
wpxg (r) = xg(—r Hh(=r1, —r)x_p(r7 ).
Since Xx_g (r~1) is in the maximal compact subgroup for |r| > 1, we have
Wy, (h(1, pywpxp(r)) = W, (h(1, pyxg(=r~Dh(=r~", =) = Wy, (h(1, pRG~" 1)),

where we used Ug C V'. For |r| > 1, we can write r = p~"u for some m > l and u € 0*.
We then have dr = ¢™du. Note that vol(0*) = 1 — ¢~ !. Thus we have

1) = Wy (h(L, p") + (1= g~ )q" Wy (h(p™, p"~").
m>1
Note that h(p™, 1) +— diag(p™, p™) under the isomorphism M’ = GL,. Thus we have
Wi, (h(p™, Dh(L, p"™™) = ¢~ "0 (p)" W, (h(L, p"~").
Thus we get
1) = Wy (h(L p) + 3 (1 =g~ Ha "o V"o (p)" W, (h(1 p"™").
m>1

By (4.1), we have

q73s(nfm)f(n7m)/2

Wy, (h(1, p"")) = { W

’

@ By it > m,
ifn < m.
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Thus for n > 1, we have

q—(3s+1/2)n | . n 1 ) 1 1
Hn) = T = [ BT =57 + ) (=g hg ™oy — b |

m=1

Thus result can be computed using the geometric summation formula. One can check that
the given formula also satisfies 7(0) = 1. m}

Lemma 4.2 We have
1— q76s+1b1b2

N = T 2,

I(n).
Proof To compute J;(n), we break up the domain of integration in r4 and get
Ji(n) = / / W (h(1, p"YwpwewpXg(ra)X3q4+24(r5))dradrs
F Jlry|<1

—l—// Wy, (h(1, p")wpwewpXp (r4)X3a424(rs))dradrs
F Jrg|>1

= Ji1(n) + Jiz(n),

where
Jii(n) :/ / Wy (h(1, p")wgwewpXg(r4)X3q+28(rs))dradrs
F Jra|<1
= f f Wy, (h(1, pYwpwewpXse 25 (rs)wy wy  wewpxg (ra))dradrs
F Jlrgl<1
2/ Wy (h(L, p")wpxg(rs))drs
F
=1(n),
and
J12(n) =// Wy (h(1, p")wpwewpsXp (r4)X3a42p(r5))dradrs
F Jlrg|>1
:/ / Wy, (h(LPn)wﬁwawﬁx3a+2ﬁ("5)wlglw;lwawﬁxﬁ(”4))d’”4d"5
F Jrg|>1
:// Wfs(h(l,p")wﬂXﬂ(r5)wawﬁXﬁ(r4))dr4dr5.
F Jirgl=1
We have the Iwasawa decomposition of wgxg(rs):

wpxp(ra) = Xg(—ry Yh(=ry ', —r)x_g(r; ).

Since Xx_g (r4_1) is in the maximal compact subgroup for |r4| > 1, we then get
Tia(n) = / f Wi, (h(1, p"Ywpxp (rs)waXg(—ry Dh(ry ', ra))dradrs
F Jrq|>1

:// W (h(1, p"Yh(ry ", Dwpxg(ry 'rs))dradrs
FJlrg)>1
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:/ / lral Wy, (h(1, pP"Y(ry b, Dwgxg(rs))dradrs

F Jrq|>1

=Y (=g g™ / Wy, (h(p™, Dh(1, p"ywpXp(rs))drs,
m>1 F

where in the second equality, we conjugated Xg(—r, l)h(r4_ 1, r4) to the left, and in the third
equality, we wrote 74 = p~"uform > 1,u € 0™ anduseddry = q"du, vol(0*) =1 —q~
Note that £(p™, 1) is in the center of M’, and thus

Wy (h(p™, 1)g) = g~ " w: (p)" W, (g),

we get
T =0—=g"" Y g %" w (p)" f Wy, (h(L, p"ywpxp(rs))drs.
m>1 r
Thus we get
Jin) = 1) + Y (1 =g~ Hg O 2™ b1bo)" [(n).
m>1
A simple calculation gives the formula of Jj (n). O

We next consider the term
Jr(n) = / /2 Wy (h(1, p")wgwewgXa+p(r3)Xp (r4)X3q428 (rs)) W (—r3)dradradrs.
Ir3l>1JF

For |r3] > 1, we can write r3 € p~"u withm > 1, u € 0. We then have,
Jr(n)
= / D 4" Wy (h(L p" Y wpwawpXa s (p " 0)Xp (r4)Xaa12p 15))W (= p " w)dudradrs.
F

m>1

Write Xq45(p~"u) = h(u, u’l)xaﬂg (p””)h(u’l, u), and by conjugation and changing of
variables, we get

Jo(n)
= /2 quwﬁ (™", pPYwpwewpXe+p(p~™)Xp (r4) X302 (rs)) ¥ (— p~"u)dudradrs,
F

m>1

where we used A (u, u~1) is in the maximal compact subgroup of G, (F). Since R, 1)
maps to the center of M’ and |w, (1)| = 1, we have

Wy, (hw™", pPYywgwawsXa+s(p~")Xp (r4)Xsa-+25(r5))
= Wy, (1, p Y wpwowpXe+(p~")Xg (r4)X30424 (r5)).
Thus we get
Ja(n)
= fF2 D g Wi (h(1, P wpwawpXep(p " )Xp(ra)Xaa 125 (rs)) W (—p " u)dudradrs.

m>1
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Since
1—¢g~ ', ifk>0,

/ W(pku)du = —qil, ifk=—1,
o 0, ifk < -2,

we get Jo(n) = —R(n), where

R(n) = /2 Wy, (h(1, P")wﬁwawﬂxaw(l?_])X/s(r4)X3a+2ﬂ(r5))dr4dr5-
F

To evaluate R(n), we split the domain of r4, and write R(n) = R(n) + R2(n), where

Ry (n) :/ / Wy, (h(1, p"YwpwewpXe+p(p~Xp (ra)X3a+25(rs))dradrs,
[r4]<1JF

= / Wy, (h(1, pP"YwpwawpsXatp(p~Xaat2p(rs))drs,
F
and

Ra(n) =/ / ny(h(LPn)wﬁwawﬁ"a-&-ﬁ(P_I)X/S(r4)x3a+2ﬁ("5))dr4d”5-
|ra|>1 JF

We now compute R;(n). We conjugate wqwgXe+8 (p~ 1 to the right and then get

Ri(n) = /F Wy, (h(1, P wpXp (rs)wewpXe+s(p~1))drs
=/FWffs(h(l»Pn)wﬁxﬂ(VS)waXa(_P_l))d”S
Next, we use the Iwasawa decomposition of wgXg ( p_1 ):
WaXa(—p ") = Xa(Ph(p~", PX_a(~p)
to get
R = [ W0, o usxs s o™y
Next, we use the commutator relation

Xg(r5)Xq (p) = Xq+(prs)uxq(p)xp(rs),
where u is in the root space of 2« + 8, 3 + B, 3 + 28. Then we get

Ri(m) = /F Wi (h(1, p"Ywg%ass(prs)uxa(p)xs(rs)h(p~", p2))drs.

Note that wguxy (r)wg(l) € V’/,and h(1, PwXeyp(prs)(h(l, p")w,g)_1 = xa(—p”+1r5),

and Wy (x4 (r)g) = ¥ (2r)Wy, (g), we get

Rin) = /F Wy (h(1, pywpxs(rs)h(p=", pPPIY(—2p" rs)drs

= /F Wy, (h(p?, DR, p" Hwgxg(p rs) v (=2p" rs)drs
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=q " Bw(p?) / Wy, (h(1, p" " MYwpxg (rs) ¥ (—2p" rs)drs,
F

where the last equality comes from a changing of variable on r5 and the fact that (p2, 1) >
diag(p?, p?) under the isomorphism M’ = GL,. We next break up the integral on r5 and get

Ri(n) = ¢ "> B (pH) Wy (h(1, p"~ 1) Y (=2p" " *rs)drs

Irs|<1

+q7 5 P (p?) Wy, (h(1, p""DYwpxg (rs) ¥ (—2p" rs)drs.

|rs|>1

Using the Iwasawa decomposition of wgxg(rs), we have

Ri(n) = ¢ "* B (p?)

(Wf.y(h(lapn_l)) . 11/f(—2pn_2r5)drs
rs|<
+ Z Wfs(h(p"’,p”’m"))q"’/ w(—2p””'2u)du>.
m=1 0x

Lemma4.3 We have Ri(n) =0ifn <1, and
Ri(n) = ¢~ * o (p)?I(n — 1) — g~ DT 20 (p)r
forn > 2.

Proof Note that [, _, Y (p*r)ydr = 0ifk < 0 and Jri<1 Y (p*rydr = 1if k > 0. Moreover,
we have

1—g7!, ifk>0,

/ v(pfuydu = § —¢g~',  ifk=—1,
0 0, ifk < —2.

Thus we get Ry(n) = 0 forn < 1. For n > 2, we have
Ri(n) =q~ P (p?)

n—2
| (Wf: (L p" D)+ Y (=g Hg" Wy (h(p™, p" ")

m=1

—g 7" T WD 1) = g7 2 o (p)

n—1
| (Wf‘v (L p" ™) + Y2 (1= g7 Wy, (h(p™ p" ")

m=1

—" WL (p" D, 1)) = 1B
wr (PP (n—1) — g BB ()2 Wy (h(p" 7, 1),

where in the last equation, we used the formula in the computation of I (r). Since h(p™~!, 1)
is in the center of M’, we have Wy, (h(p™ 1, 1) = q_és("_l)wt (p)*~'. The result follows.
O
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We next consider
Ry (n) 2/ / W, (h(1, p"YwgwawpXatp(p~ )Xp(ra)Xaa25(rs))dradrs.
Iral>1JF

Conjugating wg to the right side and using the Iwasawa decomposition of wgxg(r4), we can
get

Ra(n) = /F / | lfo(h(l,p")w,swaxa(p*l)xMﬂ(rs)X,a(r;‘)h(r;‘,m))dmdrs.
r4|>

From the commutator relation, we have
Xa (P~ % (ry ) = X5y )Xa (P~ )Xo p(p~ry Dut,
for some u in the group generated by roots subgroups of @ + S, 3« + B, 3o + 2. Like in

the computation of R (n), we have

Ry(n) = /F /| . W, (h(1, P YwpwaXa (P~ VX304 p(rs)h(ry ' ra)) Y
(=2p"2r; Ddradrs
= /F /| . Wi, (h(1, pMh(ry ' Dwpxp(rsry Dwaxe (p~ ry N (—=2p" 2 Y
dradrs

= /F/I - [ra| Wy, (h(1, pn)h(r;l, l)wﬂxﬂ(r))lﬁ(—2p"_2r;1)dr4dr
rql>

= I(n) sl = ey (=2p"2ry Ddrs
lra|>1

o0
=1 Y ¢ " (p)" / Y (=2p" " uydu.
0><

m=1

Lemma 4.4 We have

—65+2
1000 (p) (=g + (1= g~ H L2095 )  n =0,
Ry(n) = Y 1=~ 2w (p)

101 — g~ e, n=1

Proof If n > 1, then [ . Y(p" " 2u)du = (1 — g~ ') for m > 1. Thus, we have

Ro(n) = 1(n) Y g wy (p)" (1 —q™")
m=1
g % o (p)

=1(n)(1 —q_l)m-

Ifn = 0,then [ . ¥ (p" ™" 2u)du = (1—q~") form > 2,and [, ¥ (p" " 2u)du = —q~!
for m = 1. Thus, we have

Ry(0) = 1(0)(—=q "¢ % P (p) + (1 =g~ > g a (p)™)

m=2
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q_6s+2wr (p)
1— q_GH_zwr (p) .

The completes the proof of the lemma. O

= 1(0)g "o (p) (—q—‘ +(1—q™h

Combining the above results, we get the following

Lemma4.5 We have

6o 1— —65+3 .
—1(0)g 6S+1wf(pﬁ)%, n=0,
_ g4 ed(p) _
R(n) = 1(11)2(1 . q )21—4_6"+2wr(p)’ o . 1 n=1,
g B (p)?Iin—1)—q~ j"j 20 (p)" T
—6s+
()1 =g~ 1L e n=>2,
and
J(n) = Jy(n) — R(n)
1 + Y, n=0
=1 1), n=1,
In)—q 'Y I(n — 1)+ ¢ "Y"" n > 2.
where Y = ¢~ % 2w, (p)

By the main result of [1], we have
_ py(pMgT"
P

W(t(pn)) = <(l _ X(p)qfl/Zafl)aiH»l — (- X(p)qfl/Za)af(lH»l))’

where x (p) = (p, p)r = (p, —1) . Note that the notation y (a) in [1] is our M¢(a)_1. Note
that py (p" )y (p") = (p", p")F = x(p)". Thus

" x (p)"

W Wy, ¢)=) —

n>0
(0= x g 2aha™*! = (1 = x(p)g™Pwa™ ") J@m),
Plugging the formula J (n) into the above equation, we can get that
(W, Wy, $)
(I =big7 " X)(1 = bag ' X)(1 — bibag ™' X*)(1 — bibag ™' X*)(1 — bib3q~ ' X7)
B (1 — x(p)a='bibag='2X?)(1 — x(p)abibrg~'/>X?)
1
[T (1 = x(P)a='big='2X) [T~ (1 — x(p)abig="/X)
_LGBs—1, T X (xQT))L(6s —5/2,7 R (x @ wr))
T LBs—1/2,71)L(6s —2,w:)L(9s —7/2, T Q w;)

Here

1
(I —ax(p)bibag=*)((1 —a~' x(p)bibag~*))
is the L function of 77 twisted by the character ¥ ® w,, and

1
[Tio, (= x(p)a='big=) TT;— (1 — x(p)abig™)

L(s, 7T ® (x @ wr)) =

L(s, T x (x ®71)) =
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is the Rankin—Selberg L-function of 7 twisted by x ® t. We record the above calculation in
the following

Proposition 4.6 Let W e W(7, W) be the normalized unramified Whittaker function, f; be
the normalized unramified section in 1 (s, v) and ¢ € S(F) is the characteristic function of
0, we have

LBs —1,T x (x ®T))L(6s —5/2,7 ® (x @ wr))

L(3s —1/2,7)L(6s —2, w;)L(9s —7/2, T @ w;)

I(W, Wy, ¢) =

5 Some local theory

In this section, let F' be a local field, which can be archimedean or non-archimedean. If F is
non-archimedean, let o be the ring of integers of F, p be a uniformizer of o and ¢ = o/(p).
Let 7 be an irreducible genuine generic representation of §I:2 (F), T be an irreducible generic
representation of GL, (F'). Let ¢ be a nontrivial additive character of F.

Lemma5.1 Let W € W(F, V), fs € I(s,7),¢ € S(F), then the integral (W, Wy,, ¢)

converges absolutely for Re(s) large and has a meromorphic continuation to the whole
)

s-plane. Moreover, if F is a p-adic field, then I(W, Wy, @) is a rational function in q .

The proof is similar to [5, Lemma 4.2—4.7] and [6, Lemma 3.10, Lemma 3.3]. We omit the
details.

Lemmaé.Z Let so € C. Then there exists W e W@, ¥), fs, € I(s0,7), ¢ € S(F) such
that I (W, Wf\.0,¢) # 0.

Proof The proof is similar to the proof of [5, Lemma 4.4,4.7], [6, Proposition 3.4]. We omit
the details. ]

6 Nonvanishing of certain periods on G;
6.1 Poles of Eisenstein series on G>

Let 7 be a cuspidal unitary representation of GLy(A) = M’'(A). Let K be a maximal compact
subgroup gf G2(A). Given a K N GL,(A)-finite cusp form f in t, we can extend f to a
function f : G2(A) — Casin [13, §2]. We then define

P78 = F(g)8p (m'y 312,

for g = vV'm'k with v' € V'(A),m" € M'(A),k € K. Then ® 7, is well-defined and
O] 7s € 1 (% + % 7). Then we can consider the Eisenstein series

Es.f.9)= Y, ®7r(re.
P/(F)\Ga(F)

Proposition 6.1 The Eisenstein series E (s, f, g) has a pole on the half plane Re(s) > 0 if
and only if s = %, w; = 1 and L(%, ) #0.

For a proof of the above proposition, see [16, §1] or [10, §5]. If w; = 1 and L(%, ) #0,
denote by R(%, 7) the space generated by the residues of Eisenstein series E (s, f, g) defined
as above. Note that an element R € R(%, 7) is an automorphic form on G (A).
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6.2 On the Shimura-Waldspurger lift

Let 7 be a genuine cuspidal automorphic representation of ﬁ,z(A). Let Wdy () be the
Shimura—Waldspurger lift of 7. Then Wdy, (77) is a cuspidal representation of PGL2(A). A
cuspidal automorphic representation 7 is in the image of Wdy, if and only if L(%, 7) # 0.
Moreover, the correspondence 7T +— Wdy, () respects the Rankin-Selberg L-functions. For
these assertions, see [15] or [2].

6.3 A period on G;

Theorem 6.2 Let T be a genuine cuspidal automorphic representation of ST@(A) and T
be a unitary cuspidal automorphic representation of GLa(A). Assume that w; = 1 and
L(%, t) # 0. In particular, T can be viewed as a cuspidal automorphic representation of
PGL,(A). If Wdy () = x ® t, then there exists € Vz, ¢ € S(A), R € S(%, T) such that
the period

P(o, 5¢, R) = /

/ ()7, (vg) R(vg)dvdg
SLy (F)\SL2(A) JV(F)\V(A)

is non-vanishing.

Proof For ¢ € V;,¢ € S(A) and a good section ® Fos as in Sect. 6.1, by Theorem 3.1 and
Proposition 4.6, we have

1(&5,¢>,f,s>=/

/ P()0s(v9) E(vg. 7 )dvdg
SL2 (F)O\SL2(A) JV(F)\V(A)

/ / W(g)oy (v9)p(DWo . (yug)dudg
NspL, (A\SL2(A) J Ug1p(A\V (A)

L5+ 3,7 x (x®D)LSQ2s + 3,7 ® (X ® wy))
LS(s+1,1)L5Q2s +1,w)L5Bs + 1,7 @ we)

:Is-

Here S is a finite set of places of F such that for v ¢ S, m,, 7, are unramified, and I is the
product of the local zeta integrals over all places v € S and LS denotes the partial L-function
which is the product of all local L-function as the place v runs over v ¢ S. Note that T = ¢V
since w; = 1. Suppose that Wdy (7) = x ® 1 = x ® t¥, then L5(s + 1/2, & x (x ® 1))
has a pole at s = 1/2. Note that at s = % LS(2s + 1/2,7 ® (x ® w)) is holomorphic and
nonzero, while LS(s + 1, 7)L5(2s + 1, w;)L5(3s + 1, T ® w;) is holomorphic. Moreover,
I can be chosen to be nonzero. Thus we get that I(¢@, ¢, f, s) has a pole at s = 1/2, which
means that there exists a residue R(g) of E (s, f g) such that

P(@, 04, R) = f

/ 7()8p (vg) R(vg)duvdg # 0.
SL2(F)\SLa(A) JV(F)\V(A)

This completes the proof. O

Remark 6.3 For an Lz-automorphic form n € L2(G»(F )\G2(A)), one can form the period

153, () = / / 7B (wh)y(vhg)dvdh.
SLy (F)\SL2(A) JV(F)\V(A)
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Theorem 6.2 says thatif n € S (%, 7), then under the condition Wdy, (7) = x ® 7, the period
3.5, is non-vanishing for certain ¢ and ¢. For general n, one can ask under what conditions
5.9, is not identically zero as @ varies in 7 and ¢ € S(A). In the classical group case, this
is the global Gan—Gross—Prasad conjecture for Fourier—Jacobi case, see [3]. It is natural to
ask if it is possible to extend the GGP-conjecture to the G,-case.
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