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Abstract

We study the fourth moment of quadratic Dirichlet L-functions at s = % We show an
asymptotic formula under the generalized Riemann hypothesis, and obtain a precise lower
bound unconditionally. The proofs of these results follow closely arguments of Soundararajan
and Young (J Eur Math Soc 12(5):1097-1116, 2010) and Soundararajan (Ann Math (2)
152(2):447-488, 2000).
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1 Introduction

Let x4 = (4) be a real primitive Dirichlet character modulo d given by the Kronecker
symbol, where d is a fundamental discriminant. The k-th moment of quadratic Dirichlet
L-functions is

S Ll (L1)

0<d<X

where Zb denotes the sum over fundamental discriminants, and k is a positive real num-
ber. One great motivation to study (1.1) comes from Chowla’s conjecture, which states that
L(%, xd4) # 0 for all fundamental discriminants d. The current best result toward this conjec-
ture is Soundararajan’s celebrated work [17] in 2000, where it was proven that L(%, x8qa) 7 0
for at least 87.5% of the odd square-free integers d > 0. The key to the proof is the evaluation
of mollified first and second moments of quadratic Dirichlet L-functions.
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714 Q. Shen

In 2000, using a random matrix model, Keating and Snaith [13] conjectured that for any
positive real number k,

b 1 & k(k+1)
Y LG xa)* ~ CiX(ogX) 7,
ld|<X

(1.2)

where Cj are explicit constants. Various researchers have studied versions of these moments
summed over certain subsets of the fundamental discriminants. For instance, in (1.1) we con-
sider positive fundamental discriminants. However, there are no difficulties in also studying
negative fundamental discriminants. Some articles even consider characters of the form xg;,
where d are odd positive square-free integers. The main reason researchers study these spe-
cial cases, rather than consider all fundamental discriminants, is to focus on the methods and
techniques. It is possible to establish results for all fundamental discriminants, but this would
involve more cases that need to be studied. The conjecture analogous to (1.2) for characters
of the form yg,4, which can be established by using Keating and Snaith’s method [13], was
obtained in Andrade and Keating’s paper [2, Conjecture 2]. For any positive real number k,
it was conjectured that

* K _4ax G+ DYTKE+TD) k)
> L(3. xs4) — \/G(2k+l)r(2k+l)X(logX) T, (1.3)

0<d<X
(d,2)=1

*
where Z denotes the sum over square-free integers, G (z) is the Barnes G-function, and

_ k(k+2)
ag =272 1_[

(p.2)=1

1 kD 1 N—k 1 N—k
(- = (A +a-7 1)
1 . .
I+ 2 14

In this paper, we prove the conjecture in (1.3) for k = 4 assuming the generalized Riemann
hypothesis (GRH).

Theorem 1.1 Assume GRH for L(s, xq) for all fundamental discriminants d. For any ¢ > 0,
we have

* as

Z L(%, X8d)4 = mx(log X)]O +0 (X(log X)9.75+s) )
0<d<X
d,2)=1

The proof of Theorem 1.1 largely follows Soundararajan and Young’s paper [19] in 2010
and Soundararajan’s paper [17] in 2000. In [19], Soundararajan and Young proved an asymp-
totic formula for the second moment of quadratic twists of a modular L-function, obtaining
the leading main term. Experts believed that the methods and techniques in [19] could be
used to evaluate the fourth moment of quadratic Dirichlet L-functions. Motivated by this
expectation, we established Theorem 1.1. In fact, Theorem 1.1 may be viewed as a version of
[19, Theorem 1.2] where f is an Eisenstein series. The main difference between this article
and [19] is that the off-diagonal terms (see just after (3.11) for a precise definition) contribute
to the main term, whereas in [19] they are part of the error term. We use techniques from [17,
Sections 5.2, 5.3] to evaluate the off-diagonal terms and this is main new input. These terms
may be written as a certain multiple complex integral. One of the difficulties in evaluating
this integral is that the integrand has high order poles and this makes the calculation more
intricate. It should be noted that in 2017 Florea [7] has proven an asymptotic formula for
the fourth moment of quadratic Dirichlet L-functions in the function field setting, with extra
lower main terms.
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The fourth moment of quadratic Dirichlet L-functions 715

Similar to [19, Theorem 1.1], we obtain an unconditional lower bound that matches the
conjectured asymptotic formula (1.3). This result was stated without proof by Rudnick and
Soundararajan [15] in 2006.

Theorem 1.2 Unconditionally, we have

* aq

Z L(%v X8d)4 = (W + 0(1)) X(log X)10~
0<d<X
d2j=1

We now introduce more refined conjectures for the moments of quadratic Dirichlet L-
functions and provide a brief history of related results. In 2005, Conrey et al. [4] gave a more
precise conjecture, including all other principal lower order terms,

b
> LGxa) = X Pe (log X) + Ex(X), (1.5)
0<d<X
where k is a positive integer, P, (x) is an explicit polynomial of degree n, and E (X) = oy (X).
For characters of the form xgg, their conjecture may be written as

* A
> LG x50t = X Qi (log X) + B (), (1.6)
0<d<X

d.2)=1
where Q, (x) is another explicit polynomial of degree n, and Ek(X ) = o (X).
In 1981, Jutila[11] established (1.5) fork = 1 with E1(X) = O(X%"'S). In 1985, Goldfeld
and Hoffstein [8] improved this to E1(X) = O(X gﬂ) by using multiple Dirichlet series.
Their work implies the error O (X %""’3) for a smoothed version of the sum in (1.5) when

k = 1. This was later obtained by Young [20] in 2009, using a different technique based on a
recursive method and a study of shifted moments. We remark that Alderson and Rubinstein

[1] conjectured that E1(X) = O(X ate ). In 1981, the second moment was established by
Jutila [11],

ZD L(L, xa)? = G X (log X)* + 0 (X(log X)%+E> .

ldl=X
In 2000, Soundararajan [17] improved this by obtaining the full main term in (1.6), in the
case k = 2, with the power savings ]2"2 (X)=0X gt ). In 2020, Sono [16] improved this
to O(X 3+e ) for a smoothed variant of Ez(X ). In [17] Soundararajan was the first to prove
an asymptotic for the third moment, obtaining Eg (X)=0X fr+e ). In 2003, Diaconu et al.
[5] improved this to E3(X) = O (X%85%#) by using multiple Dirichlet series techniques.
In 2013, Young [21] further improved this to O (X %"'5) for a smoothed version of Eg (X) by
using similar techniques to [20]. Recently, in 2018, Diaconu and Whitehead [6] improved
Young’s result by showing that a smoothed version of E3(X) is of size cX?T + O(X%“), for
some ¢ € R. This verified a conjecture of Diaconu et al. [5] of the presence of a secondary
lower order term. Zhang [22] had previously conditionally established a secondary term of
size X% in 2005.

For the family of quadratic Dirichlet L-functions, moments higher than four have not

been asymptotically evaluated. This seems beyond current techniques. However, there are
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716 Q. Shen

celebrated results on upper and lower bounds of the moments. In 2006, Rudnick and
Soundararajan [15] proved the lower bound
b 1 k k(k+1
D LG xa)* >k X(ogX) 2
O0<d<X

for all even natural number £ > 1. In 2009, Soundararajan [18] proved under GRH that for
all positive real k,
b k(k+1)
> LG xa)t <ie X(logx) "2t (1.7)
0<d<X

In 2013, Harper [9], assuming GRH, improved this to

b 1 & k(k+1)
> LG xa)* <k X(logX) 2.
O0<d<X

The method of this paper is largely based on the arguments and techniques in [17,19].
We use the approximate functional equation for Dirichlet L-functions, and then employ the
Poisson summation formula to separate the summation into diagonal terms, off-diagonal
terms, and error terms. Both diagonal and off-diagonal terms contribute to the main term. To
bound the error terms, by following the argument in [18,19], under GRH, we established an
upper bound for the shifted moments of quadratic Dirichlet L-functions (see Theorem 2.4).

With further effort, one might be able to heuristically obtain all the main terms that are
expected from the conjecture of Conrey et al. in (1.6). However, the computation will be
complicated. It might be simplified by considering a shifted version of the fourth moment,
analogous to the calculation in [20]. Florea considered the function field version of the
fourth moment in [7]. In her work she was able to identify all the main terms as given by a
conjecture of Andrade—Keating [2, Conjecture 5] (the function field analogue of (1.6)). By
using a recursive method, Florea obtained extra lower main terms in this case. It is possible
that her techniques may be employed to obtain additional lower main terms in Theorem 1.1
and we hope to revisit this in future work. However, one would need to apply the approximate
functional equation for the fourth power of the L-function rather than the second power (2.3).
In addition, one would have to eliminate the use of the parameters Uj, U, in (3.3). In our
article, we use the approximate functional equation for the second power of the L-function
as it is necessary to obtain the unconditional lower bound in Theorem 1.2.

The outline of this paper is as follows. The proof of Theorems 1.1 and 1.2 proceed
simultaneously. In Sect. 2, we introduce some tools. In Sect. 3, we set up the evaluation of
the fourth moment. We apply the Poisson summation formula to split the fourth moment
into diagonal, off-diagonal, and error terms. We evaluate the diagonal terms and off-diagonal
terms in Sects. 4 and 5, respectively. The error terms are bounded in Sect. 6. The proofs of
Theorem 1.1 and 1.2 are completed in Sect. 7. Finally, we give the proof of Theorem 2.4 in
Sect. 8.

Notation In this paper, we shall use the convention that ¢ > 0 denotes an arbitrary small
constant which may vary in different situations. For two functions f(x) and g(x), we shall
use the notation f(x) = O(g(x)), f(x) < g(x) to mean there exists a constant C such that
| f(x)] < Clg(x)] forall sufficiently large x. If we write f(x) = O, (g(x)) or f(x) <, g(x),
then we mean that the corresponding constants depend on a. Throughout the paper, the big
O may depend on €.
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The fourth moment of quadratic Dirichlet L-functions 717

2 Basic tools

In this section, we introduce several tools that shall be used in this article.

2.1 Approximate functional equation

For & > 0, define

0@ =5 [ wewE D s @.1)
L J(c) N
where
rG+y
(8):=m . (2.2)
e ( rch )

Here, and henceforth, f stands for f H% 1t can be shown (see [17, Lemma 2.1]) that w(§)
is real-valued and smooth on (0, +oo) bounded as & near 0, and decays exponentially as
& — +o00. Define

Ald) = Z f(")XSd(")w (%) ’

where t(n) is the number of divisors of n. It was proved [17, Lemma 2.2] that for odd,
positive, square-free integers d,

L(3. xsa)* = 2A(d). (2.3)
2.2 Poisson summation formula

The following lemma is [19, Lemma 2.2].

Lemma 2.1 Let ® be a smooth function with compact support on the positive real numbers,
and suppose that n is an odd integer. Then

<d,2Z>=1 (%)q)(%) ZZn( >Z< 1)kck(n)<1>( Z)
on=(74(G)'F) B, 0:() e

a (mod n)

where

and
R o
D(y) = / (cosRmxy) + sin(2rxy)) ®(x)dx
—00
is a Fourier-type transform of ®.

The precise values of the Gauss-type sum G (n) have been calculated in [17, Lemma 2.3]
as follows.
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718 Q. Shen

Lemma 2.2 If m and n are relatively prime odd integers, then Gy(mn) = Gr(m)Gy(n).
Moreover, if p% is the largest power of p dividing k (setting o = oo if k = 0), then

0 if B < aisodd,
o (pP) if B < aiseven,
Gk(Pﬁ) ={-r if B=oa+ 1iseven,
kp~ . .
(pT)Pa\/ﬁ if B =o+1isodd,
0 ifB>a+2.

2.3 Smooth function

Let ® be a smooth Schwarz class function that is compactly supported on [%, %], and 0 <
®(¢) < 1 for all ¢. For any integer v > 0, define

5
2 .
D) = max/ |oY) (1)|dt.
0=j=v /1

For any s € C, define
. o0
D(s) := / (1)t dt.
0

Note that dvD(s) is a holomorphic function of s. Integrating by parts v times gives us

% 1 00
= V) (5y;—S+V
*O = 62 e /0 M (1)~ dr.

Hence, for Re(s) < 1, we see that

3[Re(s)|

d(s) <y ——— D). 2.5
®) < (23)

2.4 Some lemmas

The following lemma is the sharpest upper bound up to date for the fourth moment of quadratic
Dirichlet L-functions, due to Heath-Brown [10, Theorem 2].

Lemma 2.3 Suppose o + it is a complex number with c > % Then

b
Y Lo + it )t < X E( 4 e
ld|l<X

Assuming GRH, the bound in Lemma 2.3 can be improved by the following theorem.

Theorem 2.4 Assume GRH for L(s, xq) for all fundamental discriminants d. Let z1, zo € C

with 0 < Re(21), Re(22) < o and [Im(z1)]. |Im(22)| < X. Then

b
D ILG A+ 2 ) PILG + 22, o)l < X (log X)*F
ld|=X

. 6 !
% (1 + min {(log X)7, [Im(z1) — Im(z)|® D
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The fourth moment of quadratic Dirichlet L-functions 719

Theorem 2.4 is similar to [19, Corollary 5.1]. Indeed, the proof of it follows closely
the proof of [19, Corollary 5.1] and the argument in [18, Section 4]. Analogous results to
Theorem 2.4 were obtained by Chandee [3, Theorem 1.1] for the moments of the Riemann
zeta function, and by Munsch [14, Theorem 1.1] for the moments of Dirichlet L-functions
modulo g. The proof of Theorem 2.4 is postponed to Sect. 8.

We remark that Lemma 2.3 is used to bound the error terms in the proof of Theorem 1.2,
while both Lemma 2.3 and Theorem 2.4 are needed to bound the error terms in the proof of
Theorem 1.1.

3 Setup of the problem

Let ® be a smooth function as described in Sect. 2.3. We consider the following smoothed
version of the fourth moment

YL st (4).
d,2)=1

Using the approximate functional equation (2.3), we have

YL st (L) = Y (Asadi8d) @ (L), (3.1)
d,2)=1 d,2)=1
where
AL 8d) = 22 f(”)XSd(”l) (ntﬂ> 3.2)

Let X1 10 < Uj < U; < X be two parameters that will be chosen later. Define
S
SWUILUy) =Y Ay, (3:8d) Ay, (3: 8d)D (%) . (3.3)
d,2)=1

We remark that (3.1) is approximately equal to (3.3) by choosing appropriate values for
U, and U,. This will be explained in Sect. 7.
Combining (3.2) and (3.3), we obtain that

T(n1)T(n2) x84 (n112)
SWU,Upy) =4 h(d,ny,ny), 3.4
(d%: 1an:1 nZX:I vimn

h(x,y,z) = ¢(§)w<%>w<%> (3.5)

Using the M6bius inversion to remove the square-free condition in (3.4) gives

where

Sy, Ur)

—4 Z Zu(a) Z Z T(”l)T(ni)l);Sd(nlnz)h(d a1 )

d,2)=1a2|d ni=1ny=1

—4 Z 1u(a) Z Z Z T(”l)f(”i)l);id(nlnz)h( 24 ny.na)

(a,2)=1 (d,2)=1 (n1,a)=1 (n2,a)=1
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720 Q. Shen

4 Z n Z (@) Z Z Z T(”l)f(”i)l),(fd(nlnﬂh( 24 1. m2)

>Y d,2)=1 1 1
(a2)l (a2)1 d,2)=1 (n1,a)=1 (n2,a)=

=: 51+ $>. (3.6)
In the above, we let S denote the terms with a < Y, where Y is a parameter that satisfies
Y < X. The value of Y will be chosen later. Also, we let S> denote the terms witha > Y.

The terms S| contribute to the main term. We will discuss S; in Sects. 4-6. The terms S»
contribute to the error term by the following lemma.

Lemma 3.1 Unconditionally, we have S, <« X'ey=1. Under GRH, we have S, <
XY 1log* X.

Proof Write d = [b*, where [ is square-free and b is positive. Grouping terms in S5 according
to ¢ = ab, we deduce that

=4y Yu@) Y Y ’(”I)T(”%)lf’(m””h( 2Ly, n2)

(c.2)= 1a>‘)’ (1,2)=1 (n1,0)=1 (n2.0)=1

g
(27”)2 D> D wa )/<;+s>/<;+e> Ui

(c,2)= 1a>Y

x> ( )L(2+ux8z>L(2+vx81) du dv, 3.7

1,2)=1

where for Re(s) > 1, L.(s, x) is given by the Euler product of L(s, x) with omitting all
prime factors of c. The last equation follows by the definition of 2 (x, y, z) in (3.5). Moving

the lines of the integral to Re(u) = Re(v) = o« oz X , the double integral above is bounded by

< (log® X) () / 8@ Y ILG +u sl dul ldv. (B8)

logX TogX 1,2)=1
5X
I= 22

Here we use the inequalities 2ab < a* + b* and ILC(% +u, xs1)| < r(c)lL(% +u, xs1)l-
By Theorem 2.4, we see that for [Im(u)| < CX—Z,

* 1 4 X 11
E IL(; +u, xs)|” < — log'" X. (3.9)
(.2)=1 ¢
1< 3%
=202

Also, by Lemma 2.3, we get that

* X 1+
D UILG Hu xs)lt < (?2) (1 + [Im@u)))'**. (3.10)

1,2)=1

Substituting both (3.9) and (3.10) in (3.8), we can bound (3.8) by

4
« T % 10g1 x.
C
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The fourth moment of quadratic Dirichlet L-functions 721

Together with (3.7), this yields

13 74(6') 13 TS(C) 1 44
S < Xloghx ) 62 d < Xloghx >y 5 < X¥Mogh x.

(c,2)=1 a>Y c>Y
alc

This completes the proof of the conditional part of the lemma. The unconditional part follows
similarly by substituting (3.10) in (3.8). ]

Now we consider S;. Using the Poisson summation formula (see Lemma 2.1) for the sum
over d in Sj, we obtain that

p(@) k T(n1)t(n2) Gr(niny)
S =2X Z - Z(_l) Z Z
(HZSYI “ ke (n1,2a)=1 (n2,2a)=1 \/m ninz
a,2)=

o
x/ h(xX,nl,nz)(cos—l—sin)(

—0o0

2wkxX ) G.11)

2nnaa?

Let S1(k = 0) denote the sum above over k = 0, which are called diagonal terms. Let
S1(k # 0) denote the sum over k 7~ 0. Write S;(k # 0) = S1(k = ) + S1(k # 1), where
S1(k = ) denotes the terms with square k, and S (k # [J) denotes the remaining terms. We
call S| (k = ) off-diagonal terms. We will discuss S;(k = 0), S1(k = 0O), and S| (k # 0)
in Sects. 4-6, respectively.

4 Evaluation of S1(k = 0)

In this section, we shall extract one main term of S| from Sj(k = 0). The argument here is
similar to [19, Section 3.2].

It follows from the definition of G (n) in (2.4) that Go(n) = ¢ (n) ifn = O, and Go(n) = 0
otherwise. By this fact and (3.11), we see that

o0
Sitk=0)=2X Z (a) Z (n1)t(n2) ¢(niny) BXot md
a<y a? (n179.20)=1 m niny .

(a,2)=1 niny=0

_ox Z T(ny)t(n2) ¢(ninz) Z M(;l) h(xX 21, m2)dox.
(n113.2)=1 N2AUY) ninp a<y a —

nina=0 (a,2n\n2)=1

4.1)

Observe that

@) : 1
> EE-STI(1-5) wour.
a<Y plnina

(a,2n1ny)=1
Inserting this into (4.1), combined with
¢ (ninz) 1\ P
P T (1) =TT 5

ny +
plnina plniny p
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722 Q. Shen

we obtain that
o0

16X T(n1)t(n2) P /
Sitk=0) = — h(xX,ny,np)dx
! : s (manZ:):l VI l_[ PtlJo ( n

plnina
niny=0
X t(np)t(ng) [
to|l= Y —— |h(xX,ni,n)ldx | . 4.2)
Y(n1n2,2)=] vty - J—cc
niny=

Now we simplify the error term above. Recall that w (&) is bounded as & near 0 and decreases
exponentially as & — +oo0. It follows that

o0
Y 0T [ X mld
(g 2= \/m —00

niny=0
—100 —100
T(ny))t(n n n
< Z (1)(2)(1+71> <]+U72>
mm.2)=1 VM2 1 2
ninpy=0
< log'! Xx. (4.3)

The last inequality follows by separating the sum into two parts corresponding to whether
ny, ny < UU;. Combining (4.2) and (4.3), we have

16X t(ny)t(ng) p o
Si1tk=0)= — / h(xX,ny,ny)dx
w? (nlruZZ:)=l vim Il Pt 1) o

plnina
ninp=0
+ 0 (xy 'log' X).
Recall h(x, y, z) from (3.5) and w (&) from (2.1). We have

16X [ I
Sik=0)=—5 [ ®@)dx / / 808 gy
7 Jooo mJoy

(2mi)? uv

Tny)tn
% Z (1 1) (1 2) l_[ 14 du dv
7+u §+U p +1
(mn2,2)=1 ny  n, plniny
niny=0

+ 0 (xy 'log' X). (4.4)

Lemma4.1 For Re(x), Re(B) > %, we have

Yy TR T P cowicepiia+ B i@ . @S)
nYn +1

(n1n2»2)51 172 plnina

niny=

where Z1(a, B) is defined by
Zi@, ) =[] 21 (@ B).
p

1\° 1\’ 1y
Z12(a, B) = <1_4T,> <1_473) <1_W> ’

Here
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The fourth moment of quadratic Dirichlet L-functions 723

and for p 12,

) 1 1 1\
Z1 (. B) == (1 - F) (1 _ pTﬁ) (1 _ W)

1 1 1 1
XN+ —4+—+ 2+ 5757 — ——
|: + pa+ﬂ + p2ot + pQ,B + p2a+2ﬁ p +1

3 3 4 1 1 3 2 2 1
x I’ + I’ + petB  pha T pAB T plat2p + p2a+4p + pRat2B T pAatap ) |

Furthermore, Z1(a, B) is analytic and uniformly bounded in the region Re(«), Re(f8) >
% +e.
Proof We have

7(n1)7(n2) P . r(m)r(nz)
Dl | e U o] POy o

1
mma=t M, PN 2 “nh
niny=0

Note that

Z Z T(nl)r(n2) (1+p%)(1+p%ﬁ) N 4 1 ~
S A== 2 P ) - )

r=1 niny=p?r ”1”2

Thus,

Z T(n1)t(n2) 1—[ p
B

mm=t M i, P

niny=0

1 1 [1+ 4 L
- 121 12 +8 " p2a T 28 2a+2p
(p72):1 (1 20() (1 plﬁ) le pOt p pOl
1 (3 3 4 1 1 3
p+1 p

Tﬁ+pa+ﬂ pla piB plotdp

2 2 1
+ pRatap + pla+2p - pha+ip :

Then (4.5) follows by comparing Euler factors on both sides. The remaining part of the
lemma follows directly from the definition of Z; («, B). ]

It follows from (4.4) and Lemma 4.1 that
16X
Sy (k = 0) = c1>( )dx / / 8UIEW) e (1 4 oy
JT — (27‘[!)2 1 J) uv

><§(1+2U) {(l—i—u—i—v)
XZi(3+u. t+v)dudv+ 0 (XY log! X). (4.6)
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724 Q. Shen

The double integral in (4.6) can be written as

1 utuy
72/ / 3 3 45(14,1)) du dv,
Qri)= Jay Jay uvCu)?2v)>(u + v)

where

Eu,v) == g)g(W)e (1 +2u)* Qu)¢c (1 +20)* 2v)*¢(1 4+ u + v)* (u + v)*
le(% +u, % + v).

Clearly, £ is analytic for Re(u), Re(v) > —% + €.
Now move the lines of the integral above to Re(u) = Re(v) = 1—10 without encountering

any poles. Next move the line of the integral over v to Re(v) = —%. We may encounter two
poles of order at most 4 at both v = 0 and v = —u. Thus,
1 / / uyuy £, v) du d
: u,v) du dv
Qri)? Joby Jdy uvQu)®2v)3(u + v)*
! Res + R Uit Eu,v) [du+ 0 Ul ;s
= — es es v -
2mi Sy =6 T v=u) [uv@u3 @)+ ot r
4.7
The integral of the residue at v = —u in (4.7) will contribute to an error term. In fact, we
have
Utud
Res Eu,
s, [uv(zu)3(2u)3(u o ”)}
1 0 [ uiuy £ )]
== — —— =&,
3! 93 v=—u uv(2u)3(2v)3
vruy
=1 [g(u, —u) (13 1og® Uy + 1242 1og> Uy + 60u log Us + 120)
u
+ 0D, —u) (3u’ log® Up + 24u* In Uy + 60u)
+ €OV, —u) (3 log U + 120%) + €9, —uyi® ],
G.)) . ditig
where £Y/(u, v) := EPEPS] (u, v). It follows that
1 ultuy 11
— Res — Eu,v) |du < UPU, " log® X. 4.8
27 () v=—u [MU(ZM)3(2v)3(u T o) (u v)] uLUmv, g (4.8)

It remains to consider the integral of the residue at v = 0 in (4.7). Note that

[ Uity
uwv2u)3(2v)3(u + v)4

Ii(u) := Ivi_eg

E(u, v)]

Ul 3 3 2 2
- m[5(u, 0)(u3 log® U — 1242 log? Us + 60u log Us — 120)

+ 0D, 0)(3u’ log? Us — 24u> log Uy + 60u)
+ €09 (u, 0)3u log Uy — 124%) + £, 00’ ]

@ Springer



The fourth moment of quadratic Dirichlet L-functions 725

Moving the line of the integral below from Re(u) = 11—0 to Re(u) = —% with encountering
a pole at u = 0, we see that

1
Pt L (w)du
2mi (%)

_ 1
=Res () + OV, 0 Jog? X)
u=

£0,0) 0 . o -
= U0 (6610 1y 4 510g” Uy log Us — 910g® Uy log? Us + 6log” Uy log U
Tlela1go (108 Ui +5log” Ulog Uz —9log” Uy log™ U + 6log” Ut log” 1)
_1
+0 (log® X)+ 0 (U1 0 Jog? X) : (4.9)

Combining (4.6)—(4.9), we obtain that

16X - £(0,0) 10 9 8 2
Sik=0) = —P() ————— (-1 Uy + 5log” Uy log Uz — 9log® U log” U
1( ) =—720) 11612160( og " Uy +Slog” Uy log U og” Ui log” U>

+61log’ U; log® Us)

+0 (Xlog’ X + XY 'log" X). (4.10)

where ®(s) is defined in (5.3).
Now we compute £ (0, 0) above. Clearly, £(0, 0) = Z; (4, 1). By the definition of Z; (u, v)
in Lemma 4.1, it follows that

1 1\° 6 1 1 0 5 4 1
1 1y _ - e o Y e -~ =
21221 =5m [1 (1 p) [1+p+p2 p+1( TREtR p“)]
(p.2)=I
1 (1—5° 7 3 1
=g I S (gt e ) .
(p2)=1 v

On the other hand, recalling the definition of a4 from (1.4), we have

I a=Hrfa+ H*+a-557
a4=ﬁl_[ 1+l B +;
(p.2)=1 P
i (=" 1
T ol2 1 YR EERY!
22 o Ty U+ -5
(=) o) (-3
wlo(— - 2 N
2 JP 2 JP P p
| (1—1)6 7 3 6 4 1
=53 7"1(1+7—7+7—7+75). 4.12)
ot 15 p p° p p* p

Comparing (4.11) with (4.12), we conclude Z; (%, %) = 4ay, which implies £(0, 0) = 4ay4.
Together with (4.10), it follows that
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Lemma 4.2 We have

Si(k = 0)
()X

T 026.34.5.7. 72

+0 (Xlog” X + XY ' log'! X).

(— log10 Ui +5 log9 UilogU; — 9log8 Uj log2 Us + 610g7 Ui log3 Uz)

5 Evaluation of S1(k = [0)

In this section, we compute another part of the main term of S; which arises from Sy (k = [J).
Many of the techniques used here are from Sections 5.2, 5.3 of [17].
Recall from (3.11) that

Si(k £ 0) = 2X Z Ma(g) Z(_l)k Z Z t(n1)t(n2) Gr(niny)

a<v k20 (1 20)=1 (. 2a)=1 V1712 ninz
(a,2)=1
o 2mkx X
x/ h(xX,ny, ny)(cos— sin) (7)(2) dx. 6D
oo 2ninya

To proceed, we need the following lemma.

Lemma 5.1 Let f(x) be a smooth function on R~ . Suppose f decays rapidly as x — oo,
and ™ (x) converges as x — 07 for everyn € Z>o. Then we have

/mfujmﬂﬁmwdeAL; ‘ﬂl—QFQWm(§EQEE)QnUD”dL62)
0 2mi &) 2
where f is the Mellin transform of f defined by
f(s) = /Oo Fox " dx. (5.3)
0

In addition, the Eq. (5.2) is also valid when cos is replaced by sin .
Proof See [19, Section 3.3]. O

Taking f(x) = h(xX, n1, np) in Lemma 5.1, we have

o0 2mkx X
/ h(xX,ny, ny)(cos + sin) (%)
oo 2n1nja
x-1 ~ 2\ %
=" [ (1= sin1 )5 (cos + sgn(kysim) (27 ) (’“”2“ ) ds,
2mi (%) 2 7T|k|

where
- (o)
h(l —s;n1,n7) :/ h(x,ny,n2)x dx.
0

Recall from (3.5) the definition of & (x, y, z). The above contour integral is

1 a?\’ 1 Uluyx—s
=3 )| ) TG, bgwg) ——=—= ds du dv,
Qri)’ Je) Je Je Lq n|{~°n} uv
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The fourth moment of quadratic Dirichlet L-functions 727

where
T (s, k) = (1 — 5)(cos + sgn(k) sin) (%) 5.

Move the lines of the triple integral to Re(s) = % +¢,Re(u) = Re(v) = % + 2¢, and change
the variables u’ = u — s, v/ = v — 5. We obtain that

2wkx X )

o0
/ h(xX,nl,nz)(cos—l—sin)( 5

—00

1 a2\
= Jo Jo fyo T (i) 700t 90+

1 Utuyttxes
X Uu_,v
niny (u+s)(v+s)
Substituting this in (5.1), we get that

2ninya

ds du dv.

Si(k #0)
PL() ok /‘ / / ( )
=2X ag}:} Z( 1) (27_”)3 © ( 1e) Xl T(s, k)gu+ s)g(v + )
(a,2)=1

Uyt Uyt xS
w1 -2 =
(u+s)(v—+s)

Yy T G, 6

+u +v nin
(n1.20)=1 (n3,2a)= lnf 1122 172

Lemma 5.2 Write 4k = klk%, where k1 is a fundamental discriminant (possibly ki = 1),
and ky is a positive integer. In the region Re(«), Re(f) > %, we have

T(n))t(n2) Gr(niny)
E E 5 =L+, xi,)° L + B, x))* Za(er, B a, k).
n¥n ninz
(n1,2a)=1 (n2,2a)=1 1772

(5.5)
Here Z> (o, B, a, k) is defined as follows:

Zy(a, B.a. k) = | Za.ple. B a. k),
P

where

2
Za (@, Bra, k) = ( Xky (p)) (1 B Xkllil;)> if pl2a.
pite p?

and

2 o¢] o0
. Xk. (p) Xk (P) T(p")T(p"?)
Zz,p(a,ﬂ,a,k) = ( p2 o ) ( p2+ﬂ Z: Zz n|0t+n2/3
Gr(p"*m)
X W lfpra

In addition, Z)(a, B, a, k) is analytic in the region Re(«), Re(B) > 0, and we have
Zy(a. B.a. k) < @1 (k] log'® X (5.6)

in the region Re(«), Re(8) > where the implied constant is absolute.

1
log X °
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728 Q. Shen

Proof The formula (5.5) follows from the joint multiplicativity of G (n1n,) with variables
ny and ny. In fact,

Z Z T(”l)T(”lz) Gr(niny)
1.20)=1 (n, 2a) | ”1”2 ninz
T(p")T(p"?) G (p" ")
1_[ Z Z n|a+n2f5 p111+n2 :

(p,2a)=1n1=0n,=0

Then we obtain (5.5) by comparing Euler factors on both sides.
For p t 2ak, by Lemma 2.2, we know that

2
_ qu(P) Xk (p) 2, (P) | 2x:, (P)
Zz,p(a,ﬂ,a,k)_( p2 a) (1 p£+ﬂ) <1+ p%+°‘ + p%+ﬂ ) (5.7)

This shows that Z>(«, B, a, k) is analytic in the region Re(«), Re(8) > 0.
It remains to prove the upper bound of Z» (e, B, a, k). It follows from (5.7) that for p 1 2ak,

3 3 4 1
l_[ Zopla, poa k) = l_[ (1 T plt2a T pIe2p T plvatp +0 <p3/2>)

(p.2ak)=1 (p,2ak)=1
< log'’ x.

For p|2a, we get that

4
l_[ Zz,])(a» IBsas k) = 1_[ (l + \/15> < f4(a).

pl2a pl2a

For p t 2a, plk, using the trivial bound G (p") < p", we obtain that

4
[l zy@Bab= [] (Hi) > (n1 + D2+ 1) < t8(k]).

plk,pta plk,pf2a ﬁ 0<nj+na<ord, (k)+1

By the above three bounds, we have obtained (5.6). ]

By (5.4) and Lemma 5.2, it follows that

e ] ”
Si(k #0) = (2n )3 Z > (=1 . (%H)I‘(S)J(s,k)a

k#0 (&)

(a 2) 1
Uit uytx—s

x g(u+s)g(v +S)m

1
x Wm o, )P LA+ v, ) Za(3 +u, L+ v a, k) ds dudv. (5.8)

Note that when moving the lines of integration of the variables u, v to the left, then we may
encounter poles only when k = [ (then k; = 1). Thus, we break the sum in (5.8) into two
parts depending on whether k = [.
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Write
Sl(k = D)
3 2: MW)E:(I%/ / / T(5)T (s, k)a* g(u + 5)g(v + 5)
(2711) = ORIORIEED
(a 2) 1 k=0

Uu+vUv+vX—s 1
x—A—2 = rA4+wc(1+v)?Zt +u, L +v,a k) dsdudv
(M+S)(U+S) |k|5§ 2(3 i) ,a, B

and
Si1(k # D)

(2m)3 Z M(a) Z( l)k/ /

k20,0 ®

[, o606 5w )
(3 +€)

(a 2) 1

Uu+vUv+vX—a 1
L2 O L 4w ) L4 v, ) Zo(E +u, L v, a k) ds du dv
. w+s)w+s) |k l ' 202 '
(5.9)

We will give an upper bound for S (k # [J) in the next section. In the rest of this section,
we focus on S (k = UJ) and obtain a main term. By the change of variables (replace k by
kz), we get that

Si(k =00
02X (a) 2s
= i)} ; Z( ¥ /;8) /(8) /(éJrs)F(s)J(s, Da~g(u+s)gv+s)
(a.2)=1

Uit uytx— 1

2 25 1 1 2
mk%{(l +u) (1 +v)"Zr(5 +u, 53 +v,a,k%) ds du dv.(5.10)

Lemma 5.3 In the region Re(er), Re(B) > 0, Re(y) > %,

k
Z( V7o B k) = Q1 — ey Zs(a. B, . 0). (5.11)

2
k=1 k<
Here Z3(a, B, v, a) is defined by

Zy(@, B, y, a) =t Qa4+ 202 ¢ 2B +29)* [ [ Z3.p(@. B. v, @),
)4

where for p|2a,

1\ Y 1) 1)
Z3,p(asﬂ7 Vsa) =11~ 1 1—17 <I_T+2y> <1—W> s
pf""a p7+ﬂ P V4

(5.12)
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and for p 1 2a,

ZS,p(OQ B.v,a)

2 2
=11 ! 1 ! 1 ! 1 71 1 71
S\ pite i BT A2 N
1 1) I 1 4
+; <1 - p2a+2y> (1 - p2,3+2y> + <1 - ;) pa+ﬁ+2y
1 1 1 1 1
+2 I_Ty Tt + 5 + . (5.13)
p p2+a p2+ﬁ p2+ a+p+2y p2+a+2ﬂ+2y

Moreover,

(1) Z3(a, B, y, a) is analytic and uniformly bounded in the region Re(), Re(B) > % + e,
Re(y) > 2e.

) Zg(a ,3 y,a) is analytlc and Z3(a, B, y,a) K 10g14 X in the region Re(x), Re(B) >
2 + logX’ Re(y) > 10 < - The implied constant is absolute.

Proof We first compute the left-hand side of (5.11) without (— 1)¥. Note that

kzkzlyzz(a,ﬁ,a,kz)=kzk2y [z B.a. k% ]‘[Z%by“p)
=1

p b=0
(5.14)
We remark here that Z, (e, 8, a, 1) may not be 1. If p|2a, we have
2 2
o 2b
Z , B, a, 1 1 1
Z 2,p(a /ngya p ): 1 <]_ 1 ) <1_1) ) (5.15)
b=0 P 1 — pTV pf""a p§+/3

If p 1 2a, we have

2 2
i Zople poap®) (1 L]
pr prte pith

b=0
Xi 1 3 t(p")T(p™) PP 3 T(p")T(p™) (P )
2b T T T2 T
b:()p Y oo pnlcx nay B pnl no oo pnla na B pnl no
ny+ny=2b+1 ny1+ny<2b
ni+ny even
(5.16)
Note that
i 1 3 t(p")e(p™) PPy
2by nja+nap ni+n
b=0 P ny,na=>0 I3 : I3 e
ny+ny=2b+1

1 1 2 1 2 1
_ Ly ) n (1 n )} ,
pnyr% a- phlim)z(l _ p2ﬁ1+2y )2 [paw < p2B+2y pb+y plat2y
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and
o0
Z 1 Z T(p")T(p") ¢ (p"H"?) _ 1
2by priatnzp pratne T L
b=0 n1.1m220 Y
ni+ny<2b
ni—+np even

1 ( 1> 1
X|—4+(1-—
|:P (1- 2ot+2y) (r— W)z

1 | 4
X ((1 + p2a+2y> <1 + p2ﬁ+2y> + pa+ﬂ+2y>] :

Inserting them into (5.16), combined with (5.14), (5.15), we obtain that

oo

1
Yy Ll Boa k) = L2y) 2@, By, @). (5.17)
k=1

Now we prove (5.11). Itis clear that G4 (n) = Gy (n) forany odd n, so Z>(«, B8, a, 4k?) =
Zr(o, B, a, k?). Thus,

D 1 & 1
Z(kzy) Zs(a, B, a, kz)——zkzyzz(a B.a, 4/<2)—Zk2 Zo(, B, a, k?)
k=1 k=1 k odd

oo
_ 1
=@ =DY o 2@ Bra k),
k=1

Together with (5.17), this yields (5.11).
The first property of Z3(«, B, y, a) comes directly from 1ts definition. Now we prove the
second property. We know that for Re(«), Re(8) > + log <> Re(y) > log <>

8
Z3(a, B.y.a) < (log* X) [ ] (1+ 1 ! 1 )

+ 1
pl2a p Tog X

4 1 14
><|| 1+ — + P +O<—2) <L log™ X,
p logX p log X p

p2a

as desired. ]

It follows from (5.10) and Lemma 5.3 that

Si(k =00
B 2X /,L(Cl)/ / / r D2 UM—H‘U;‘H'X_X
=Gy 2 I I R PR T
(a,2)=1
x¢(1L+uw)?e(1+v)? Q7% = )¢ (2s)Z3(5 +u, § +v,5,a) ds du dv.

Note that Z3(% + u, % + v, s) is analytic in the region Re(u), Re(v) > ¢, Re(s) > 2¢
by (1) of Lemma 5.3, so we move the lines of the integral above to Re(u) = Re(v) = 1,
Re(s) = % without encountering any poles. (The only possible pole lies in £(2s) at s = %,
but is cancelled by the simple zero arising from 2'=2° — 1.) Hence,
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S1(k=0)
02X u(a)
T Q2ni)?

u+st+sX—s
a<Y

2s
/1) /1)/10)F(Y)J(V Da”~ g(u+s)g(v+s )7( PRy
(a,2)=1

x¢(L+u)?¢(1+v)2 Q7> = D¢ @29)Z3(2 +u, L +v,5,a) ds du dv. (5.18)

Note that we may extend the sum over a to infinity with an error term

2X ”(")/ / / F($)7Gs. Da® g(u + 5)g(v 4 5) oL 02 X
@mi)? wJo Ja) s W+ )+

u+st+sX7s

02) 1
x C(1L+u)?¢(1+ 022" = 1)¢(25)Z3(3 +u, 3 + v, 5.a) ds du dv.

Move the lines of the integral above to Re(u) = Re(v) = @, Re(s) = oé + Without
encountering any poles. Then by (2) of Lemma 5.3, this is bounded by

1
< XlogzOX Z 5

__4
a>y a loeX
/;

(a,2)=1
[( /( (14 2sDIT (5. DI [FETCES + D20 4 12| (ds| [dul [dv]
< X(log? x)y~! / (1+ [2sDIT®)[1D(1 — 5)| | (cos + sin) (5) | |ds]
(ioex)

logX) lng
< XY (log?! X)ds).

]ogX)

The last inequality is due to (2.5) and the fact |T"(s)(cos +sin) (%) | < |s IRe(Y) 2. Together
with (5.18), it implies that

Sk =10)
_ X M(a)/ // r D2 uittuytix s
(27”.)%( 2)=1 mJm I (176 De g(u+s)g(v+s)( +5)(v +s)

x (14 u)? 1+ )22 — 1);‘(2s)Z3(% +u, % +v,s,a)ds dudv
+0 (XY '(log® X)®(s)) . (5.19)

Let K1 (o, B, v; p), Ka(a, B, y; p) denote the expressions of (5.12) and (5.13), respec-
tively. We have the following lemma.

Lemma 5.4 In the region Re(«), Re(B) > %, 0 <Re(y) < %,

3 u( ) £Qa+2y)3c 2B +2y)3¢(a + B+ 2)*

-z ,a) = Zy(, B, y),
3@, B, y,a) = (Qta+20% 1 p+2r) a(a, B, y)

(a,2)=1
(5.20)
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where

Zi(@, B.y) = Ki(e. B.v:2)
T (1- sz—Wm — o) (1 = ey )
(1= )21 - )?

P p? +oz+2y p? +ﬂ+2y

1
x ]_[ (Kz(oz B.vip) — — Ki, B, y; p))

(p.2)=1

Moreover, Z4(c, ,3 y) is analytic and uniformly bounded in the region Re(x), Re(8) >

3 - SRe(y) <.

Proof We have

Y A9 seprva

(a,2)=1

={Qa+2y)°cB+2y)* Y sl ki@ B.vip [] K@ B.vip)

(a,2)=1 P\Za pia
= ¢Qa +2y)%¢2B +2y)*Ki(e, B, v; 2)

1
x ]_[ (Kg(aﬁyp) pi= Kl(aﬁyp))

M(a)

(p.2)=1
This implies the Eq. (5.20). The later part of the lemma can be proved directly by the definition
of Za(a, B, ). O

It follows from (5.19) and Lemma 5.4 that

Stk =1)
u+vUv+vX s

1-2s _ _
(2711)3 /1) /1) (m)j(s h@ DE@s)gu +5)g(v +5) (u+s)(v+s)

C(s)c(142u +25)3¢c(1 + 20+ 25)3¢(1 +u + v+ 25)*
(1 4+ u+25)20(1 + v+ 25)2

x 21+ u)e(1+v)

x Zs( +u, s +v,s)ds dudv+ 0 (XY~ log? X)) . (5.21)
where Z4(2 +u, + v s) is analytic and uniformly bounded in the region Re(«), Re(v) >
_8’ T6 < Re(s) < 7.

Move the lines of the triple integral above to Re(#) = Re(v) = Re(s) = ﬁ without
encountering any poles. Then move the line of the integral over v to Re(v) = —% + @.
There is a pole of order at most 2 at v = 0, and a pole of order at most 4 at v = —s, so the

triple integral in (5.21) is
(2711)2 /( /(.

where I>(u, s), I3(u, s) are the residues of the integrand in (5.21) at v = 0 and v = —s,
respectively.

11
L. s)+ I3(u. s) du ds + O <U15° U, ™ X~ 10 (log? X)<I>(5)> :

100) 100)

(5.22)
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The double integral of I3(u, s) in (5.22) is bounded. To see this, note that

I3(u, v)
_ 125 _ U X7 ¢+ w)’T()e(1+2u +25)° 1 ﬁ
=J(@, D2 De2s)g(u + s) P AT 5 |,
g+ Uy C(1+ 0201+ 20+ 2530 + 93¢+ u + v +29)*Z4 (3 +u, 5 +v,s)
C(14+v+25)2 :

Moving the line of the following integral in terms of u# from Re(u) = ﬁ to Re(u)

gives
(2711)2 /(

Now we handle the double integral of I5(u, s) in (5.22). Write the integrand in (5.21) in
the form of

_ 1
 logX

.
/ Iy(u, s) du ds < U™ X =10 (log> X)dys). (5.23)
(s

100) 100

Uit oy x— 1 (u 4 25)%(v + 25)?
(u+5)(+5) u2v? sQu + 25)32v + 25)3(u + v + 25)*

F(u,v,s).

Clearly, F(u, v, s) is analytic in the region Re(u +2s), Re(v +2s) > 0, Re(u), Re(v) > —%
and —i < Re(s) < l . We have
U{‘+‘U2X s
16(u + 25)3 (u + s)*s%u?
X [.7—"(14, 0, s)(uslogUs + 252 logUp; — 10s — 3u) + FOLO G 0, 5)(us + 2s2)] .

L(u,s) =

Move the line of the double integral below from Re(u) = 11W to Re(u) =
There is one possible pole at u = 0. Hence,

(2711)2 _/;

Note that

1 1
~Tto0 T TogX "

1 e
/ D, s) duds = 5— Res (12 (u, 5)) ds + O <U21°0x—ﬁ log® X) .
(

100) 100) (l) -

(5.24)

S S -5
a1
+F100(0,0,5)(s? log Uy — 55) + FO19(0, 0, 5)(s* log Uy — 5s) + F11:90, 0, s)sz>.

Reg bL(u,s) = <}'(0 0, s)(s log Uy log Uy — Sslog Uy — Sslog Uz + 26)
u=

We see that the expression in the brackets above is analytic for — 7z < Re(s) < l . Then we
move the line of the integral below to Re(s) = — ﬁ with only a p0s51ble pole at s =0, and
get that

1

— Res (Ir(u, s)) ds
2mi (ﬁ) u=0

_FO20 s CUBU 1000 1) tog 1) og? )

|
64 J1+ja+j3+ja=10 RVRAVERR
J1:J2.J3,J4=0
1 _ 1
+0 (U1 LI T X 180 log? X -+ log’ X) , (5.25)
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where
26 if j =0,
) =530g Uy +10gUy) ifj =1,
B =1 2109 U, 1og U if j =2, (5.26)
0 if j > 3.

Next we compute F (0, 0, 0) above. Note that 7(0,0,0) = J(0, 1)g(0)?Z4(3, 5,0) =
—1®(1)Z4(4, 1, 0). Recalling the definition of Z4(«, B, y) from Lemma 5.4, we have

Z4(3. 1.0
1 1 1 2 1 1 1 11
=K1(§,§,0;2)1_[ - H K2(§,§,0§19)—7K1(§,§,0;p)
P P7 (p=1 p
1 1\’ 7 3 6 4 1
— k102 (1—7> <1+7_7+7_7+i>
47 (12_[_ p p p* pP pt P
p.2)=1
6
1 ) 7 3 6 4 1
Ki(z.2,0:2 1_[ (+*‘7+*3—7+*5)
T 400) (P21 I+ p p* p ptop
_32614
==
The last equality is due to (4.12). Thus,
16d(1
F0,0,0) = — 020
T

Combining (5.21) with (5.22)—(5.25), and the identity above, it follows that

Lemma5.5 We have

Sik = D)
ay® ()X (—D2BGjs) : ;
=D W(logﬂ U1 (log” Us)(log” X)

J1++j3+ja=10
L [
+X - 0(log” X + U™ X~ (log" X)®(s) + U U, ™ X1 (log? X) s

+7 7 (log” X)®s)).

6 Upper bounds for S (k # )

In this section, we shall prove the following upper bounds for S;(k 7 [J). The techniques
applied here are from [17, Section 5.4] and the last part of [19, Section 3].

Lemma 6.1 Unconditionally, we have

11
Sitk #0) < Ulz U22 YX°Ds).
Under GRH, we have

1
Si(k #0) < ULUZY (log X)2 ds).
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Proof Tt follows from (5.9) that

Si(k # L)

<X > LZ

a<y k1 #£0,1k=1
(a,2)=1

Uit ugt x—s
(u~+s)(v+s)

S

/ / / C ()7 (s, ka® gu + $)g(v + )
(e) J(e) (+8)

|k1k2|gL(1+u X)L+ v, X2 Zo(3 +u, 5+ v, a,ki1k3) ds du dv|.

6.1)

Separate the sum over ki to the sum over |k;| < T := U, U,Y%2X ! and that over k1] > T.
Clearly, X% < T < X3 since Xl% <U; <U; <Xand1 <Y < X. For the first category,
we move the lines of the integral to Re(u) = Re(v) = —% + m, Re(s) = %, while for

the second category, we move the lines to Re(#) = Re(v) = —% + m, Re(s) = %
By (5.6), the terms in the first category are bounded by

10 @)
<<X4U U log™ X E / /
—3+mex) /it

)/(2 |T (s, kDT ()8 (u + 5)g (v + 5)|

a<Y 2 logX TogX I
(a,2)=1
b °(lk
Xy il D201 4w, )1 1ds] Idul v, (6.2)
arer Wald
Note that
b 8( k1)) ¥ (lki )
> La+u i< S S LA+ u, )t (6.3)
ki |<T 1K 12! <T2! <[k | <2!+! e

By (6.3) and Lemma 2.3, it follows that

3(lk
S D L ) < TEE + ImG . (64)
ki [<T 1k

This bound can be improved under GRH. In fact, we split the left-hand side of (6.4) into

b T (Ikll) b T (|k1|)
IL(L+u, xi)|* = E IL(+ u, )l
ki |<T |1|4 1 |1|4
[k1|<X5
o T8(lki])
E 1L+ u, ).

1 |k |4
X5 <lky|<T

By Theorem 2.4, we have for [Im(u)| < X%,

b °(lk
> il DL 4 u, 2l < X log!! X

1 Ik 1|4
[k1|<X5
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Later in (8.10) of Sect. 8, under GRH, it will be proved that for — 2 <Re(u) < % +
and |[Im(n)| < X,

1
log X

’ 8 37
S UILA A+ u. )P < X(log )7,
[ki|<X

Using dyadic blocks and Cauchy-Schwarz inequality, combined with the above bound, we

can deduce that for [Im(u)| < X% s

> 8<|k1|)
> L+ u, )l < THlog?" X.

1 |k1|4
X5 <fly|<T
Thus for [Im(u)| < X5,
b k
all D201 4w el < THI0g? X, 6.5)
arer ki

Recall the definition of 7'. Substituting both (6 4) and (6.5)in (6.2), we have proved the contri-
bution of the terms in the first category is < U U2 Y(log X )2 Ds). Slmllarly, we candeduce
that the contribution of the terms in the second category is also < U h U2 Y(log X )2 D 5.

The conditional part of the lemma is proved now. The unconditional part can be proved
similarly by substituting (6.4) in (6.2). ]

7 Proof of main theorems

In this section, we complete the proof of Theorems 1.1 and 1.2. The argument is similar to
[19, Section 5].

7.1 Proof of Theorem 1.1

Recall the definition of S(U;, U) from (3.3). Write U = .Take Uy = Uy = U and

. G
(log )2
[ S §
Y=X2U U, ".
Using these values, we can simplify Lemmas 3.1, 4.2, 5.5 and 6.1. In the following, we
give the detail of the simplification for Lemma 5.5. The summation in Lemma 5.5 is

(=D B(ja)

o (log! U)(log” U) (log” X). (7.1)
o J1ti2tjaljal

Jititj3tja=1

We consider the case j4 = 0, and other cases can be done similarly. Assume j4 = 0in (7.1).
Then by (5.26), we have

—1D3BO . . .
E %(IOgJI U)(log”? U)(log” X)
jititis=to S

-1
=20y %(log/1 U)(log” U)(log” X)
jitits=to T2
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=26(log"’x) Y (=" + 0 (log’** X)

117! 72!
ji+iri=i0 2

6
= Toi log'’ X + 0 (log?** X).

The second last equality is due to log/ U = log/ X + O(log/~!'*¢ X) for j > 0. The last
equality is obtained by

A 10
o EDE LA e =

=10 Jilialjsl 10! dx10) 10!

Similarly, we can compute other cases in (7.1). Combining all cases we can show (7.1) is

(26 10 1

= - —4 )1 g X + 0 (log”** X) = log'’ X + O (log’** X).

1
o 9 8! 24.34.52.7

Using this fact, Lemma 5.5 can be simplified to

asd(1)
25.34.52.7.x72
Now by (3.3), (3.6), combined with Lemmas 3.1, 4.2, 5.5 and 6.1, we can obtain that

Sik=0)=— Xlog'" X + 0 (X10g”™ X + X (log™° X)d(s)) .

SWL U = Y |audisd)]’ @ (4)
d,2)=1
as®(1)

= m o aX log'’ X + 0 (X 1og?™ X + X(log™* X)®@s)) . (7.2)

Define By (3:8d) = L(3. x34)*> — Au(5: 8d). We claim that
37 Bu(d: 8P ® (4) < Xlog® e X. (1.3)
d,2)=1
In fact, we have
1 (8d)* — U*
By (ks = — / eOLE + 5, x50? S =Yg
©

Since " is entire, we move the line of the integral to Re(s) = 0. By the bound

| (Sd) -

(8d) —U
S

| < log( 4y 1 € R, we get that
1 8d < 1, 2
By (3:8d) < log T IgGOIIL(5 +it, xga)| dt.
—00
This implies that the left-hand side of (7.3) is

(log > / / lg(it)llg(in)| Z IL(Y +it1, xsa)PIL(§ + it2, xsa) P @ ($)dydty.

(d.2)=1
(7.4)

Split the integral according to whether |#{], |2| < X. If |#1], |t2| < X, then use Theorem 2.4.
Otherwise, use Lemma 2.3. This will establish (7.3).
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Note that

YL st (£) = D (Au(hi8d) + By (s 8d))%@ (£)
d,2)=1 d,2)=1
= Y avGisae (4) + Y Buhisa)’ e (4)
d.2)=1 d,2)=1
+2 5" Auhi8d)By(hi )@ ().
(d,2)=1

Using the Cauchy—Schwarz inequality on the third term, combined with (7.2) and (7.3), we
obtain that

*
> LG xsa) ()
(d,2)=1
as (1) _
= 5o s Xlog" X +0 (X 10g® 75+ X + X(log™> X)d><5)> . (1.5)
In the following we remove the function dD(%) in the above summation. Choose @ such
that & (1) = 1forallz € (1+Z7",2—27"), ®(r) = Oforallz ¢ (1,2),and V() <, Z"
for all v > 0. This implies that ®,) <, Z", and that ®(1) = ®(0) =1+ O(Z_l). Then
by (7.5), we get that
S L st ed)

d,2)=1

= S X10g" X + 0 (X(og"* )Z7" + X10g>"** X + X(log ™ )Z°)
. . . . 71"

Take Z = log X. We have

* *
o LGoasdt= Y LG xsa) e(%)
X<d<2X (d,2)=1
d,2)=1

= da 10 9.75+
= o Xlog" X + 0 (Xlog? P X)) (7.6)
Similarly, we can choose ®(¢) in (7.5) such that () = 1 forall ¢ € [1, 2], ®(¢t) = O for
allr ¢ 1—2z7',2+4 2z, and @ (1) «, Z" forall v > 0. Taking Z = log X, we can
deduce that
* *
S Lot < Y LG st o)
X<d<2X d,2)=1
(d.2)=1

= S X1og " X+ 0 (Xl P X). (77)
. . . . 7T

Combining (7.6) and (7.7), we obtain that

ol 4 _ a4 10 9.75+
D LG’ = g Xl X+ 0 (Xlog? X)),
X<d=<2X
d,2)=1

Applying the above with X = 5, X = 7, ..., we have proved Theorem 1.1.
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7.2 Proof of Theorem 1.2

Write U = X'~*. By the Cauchy—Schwarz inequality, we obtain that

* 2
(X o AUGBDLG. 50 (4))

> LG s e (%) =2 2 — (7.8)
d,2)=1 Z @.2)=1 (Au(z,84)" @ (%)
Let A% and B denote the numerator and denominator of the right-hand side in (7.8), respec-
tively.

We first handle B.By (3.3) and (3.6), combined with Lemmas 3.1, 4.2, 5.5 and 6.1, taking

Y = X2U14U24andU1 U, = U, we get that

as (1 — 8+0( 2))
26.33. 52 7 -

where the implied constant in 0 (&?) is absolute.
For A, we have

* o N ) Tm2) xsa(nin2)
A=4)"3"% hi(d.ny.n).
d,2)=1n1=1ny=1 «/m

hi(x,y,2) = (%) 1) (%)w (;—Z) .

Note that the difference between A and B lies in the difference between h(x, y, z) and

B=SU, U= d()X1og"" X + 0 (X1og’ X + Xds)) ,

where

hi(x,y, z). By slightly modifying the argument for computing B, taking Y = Xz U’%X’%,
we can deduce that
(1 - e+ 0(82)) 0
a=" 56 355 7. d(HX1og"" X + 0 (Xlog’ X + Xds)) ,

where the implied constant in 0(82) is absolute.

Choose @ such that ®(t) = 1 forallz € 1+ 2~1,2—2Z~1), () =0forallt ¢ (1,2),
and @) (1) «, Z" forall v > 0. Take Z = log X. Combining (7.8) with the estimates for
A and B, we have

* as
D LG st = (14 06)) se—g—5 5 X log'" X.
260.33.52.7. 1
(d,2)=1
X<d<2X
Having summed this with X = 7, X = %, ..., we obtain Theorem 1.2.

8 Proof of Theorem 2.4
In this section, we shall prove Theorem 2.4. The proof here closely follows [19, Section 6].
Let x € R with x > 10, and z € C. Define

loglogx |z] < (logx)~!,
L(z,x) = | —loglz| (logx)™" < |z] < 1,
0 |z] > 1.
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Let z1, 2o € C. We define

1
M(z1, 22, %) == 5 (L(z1, %) + L(z2, %)),
and

V(z1, 22, X)
1
=3 (L£Q2z1, x) + L(2z2, x) + L(2Re(z1), x) + L(2Re(22), x)
+2L(z1 + 22, x) +2L(z1 + 22, X)) .
Remark 8.1 We see that the definition of M(z1, z2, x) is different from that in [19, Section 6]
by a factor —1, while V(z1, z2, x) is the same. The difference is due to the different symmetry
types of families of L-functions (see Katz—Sarnak [12]). The family of quadratic Dirichlet

L-functions is symplectic, whereas the family of quadratic twists of a modular L-function in
[19] is orthogonal. For further explanation, we refer readers to [19, p. 1111] and [18, p. 991].

Proposition 8.2 Assume GRH for L(s, xq) for all fundamental discriminants d. Let X be

large. Let 71,70 € C with 0 < Re(z1), Re(zp) < @ and |Im(z1)|, [Im(z2)| < X. Let

N(V; z1, 22, X) denote the number of fundamental discriminants |d| < X such that
log |L(% + 21, xa)L(3 + 22, xa)| = V + M(z1, 22, X).

Then for 104/loglog X <V <V(z1, 22, X), we have

NV X)X v 1 25
5215 22, eXp\ — - 5
‘e P 2V(z1, 22, X) logloglog X

N(Vizi, 22, X) < X v (1 ekl )2
2215 22, exXp | — - 5
A P 2V(z1, 22, X) V(z1, 22, X) loglog log X

forV(z1,z2, X) <V < 1]—61)(11, 22, X) logloglog X, we have

finally, for %V(z] , 22, X)logloglog X < V, we have

1
N(V, 21,32, X) < XeXp <—leog V) .

Proof 1t is helpful to keep in mind that loglog X + O(1) < V(z1,z2,x) < 4loglog X.
By slightly modifying the proof of the main proposition in [18], we obtain that for any
2<x<X,

log |L(X +zi, xa)l

< Re

o
T + (14 M)t 4
2zn=x n? e T ogn log x log x

3 AW log(%) 1

1
O( ) i=12,
log x

where A9 = 0.56. .. is the unique real number satisfying e %0 = Ag. It follows that

log |L(3 + 21, xa)IIL(3 + 22, xa)
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X

! log(7) log X 1
<Re Z %(W’“ ) — 20 421+ a0 2= 4 0 ( ) .
=GR log x log x log x
p=xtp
=1
8.1)
The terms with / > 3 in the above sum contribute O(1). Using the fact > ld % <
logloglogd, we get that
2 log(=5)
Re Xd(l’z_j) (p—2z| + p—2zz) 1 r
prsx 2P1+@ 08*
1 > 5., log()
=Re| Y ———(p % +p ) —L— | + O(logloglog X). (8.2)
1+ log x
p<Jx 2p e
By RH, we can deduce that
1-2z4 1-222

Yy

2
=25 "1, T O (Vy(logXy)?).  (83)

D (T4 p ) logp =
pP=y

The above sum also has a trivial bound < y. Combining (8.2) with these two bounds, by
partial summation, we have
1 log(-%)

Z ————(pF + p ¥ —L = M(z1, 22, x) + O(logloglog X).
1+ log x
p<yx 2p ler

Inserting above estimates into (8.1), by M(z1, 22, x) < M(z1, 22, X), we obtain that

log |[L(3 + z1, x)IIL(3 + 22, xa)|

d — —
<Re| Y 2P (pz (P +p7)
2<p<x pf Togx

4log X
log x

X
log(;)
logx

+M(z1,22, X) +

+ O(logloglog X). (8.4)

For brevity, put V := V(z1, 22, X). Set

%Vlog loglog X 10/loglogX <V <V,
A= 5y logloglog X V<V§11—6V10g10g10gX,
8 V> I]—GVlogloglogX.

By taking x = log X in (8.4) and bounding the sum over p in (8.4) trivially, we know that

) _ 5log X Slog X
N(V;z1,22,X) =0for V > Toglog X ° Thus, we can assume V < Toglog X *

From now on, we set x = X4/V and z = x1/108102X et §, be the sum in (8.4) truncated
to p < z, and S, be the sum over z < p < x. It follows from (8.4) that

%
log |IL(3 + 21, X)IIL(3 + 22, xa)| < S1 4 S2+ M(z1. 22, X) + -
Note that if d satisfies log |L(% +z1, Xd)llL(% + 22, xa)| = V + M(z1, z2, X), then either
SszX or S =V =v(1-9).

A
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Write
meas(X; S1) ;= #{|d| < X : d is a fundamental discriminant, 1 > V},

meas(X; §») := #{|d| < X : d is a fundamental discriminant, S» > +}.

For any m < % — 1, by [19, Lemma 6.3], we have

m
b 2m)! 4
Z 15217 < X( . ( Z ) < X (3mlogloglog X)™.

1om
m!
ld|<X 7<p<x

By choosing m = L%J — 1, we get that

\%4
meas(X; S2) < Xexp (—a log V) . (8.5)

1 log X —loglog X

We next estimate meas(X; S1). For any m < 2 Togz
obtain that

, by [19, Lemma 6.3], we

2m)! 2\"
T

ld|<x p=z P

where

Re(p™™1 + p~22) log(%)
20 :

pPer log x

a(p) =

By using (8.3) and the partial summation, we can show that

> la@)f _ 1 > Lo 4 07T 4 p72 4 p B = V(a1 22, X) + Ollogloglog X).
s P ! pVX P

Together with (8.6), this yields

(2m)!

meas(X; S1) < le—zm o

m
2 O (logloglog X
(V + O(logloglog X))" <<X(m,v+ (0‘%20?3 og )) .
e
i

. V2 (log log X)?
Taking m = | 55| when V < %,

V]2 logloglog X
meas(X; 1) < X exp oy I+0 “loglog X

and taking m = |10V | otherwise, we obtain that

))) + Xexp(—VlogV). (8.7)

Using the estimates (8.5) and (8.7), we can establish Proposition 8.2. This completes the
proof. O

For convenience, in the following we show a rough form of Proposition 8.2. Let k € R~
be fixed. For 10/loglog X < V < 4kV(z1, z2, X), we have

V2
N(V;z1,22, X) < X(lo X)°W ex (—7>7 8.8
(Viz1,22, X) (log X) P e (8.8)
and for V > 4kV(z1, 22, X), we have
N(V:z1, 22, X) < X(log X)°V exp(—4k V). (8.9)
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Observe that

b o]
Z IL(3 + 21, xa) L (3 + 22, xa)[* = —/ exp(kV 4+ kM(z1, 22, X)dN (V; 21, 22, X)
ld|<X o

o0
= k/ exp(kV + kM(z1, 22, X)N(V; z1, 22, X)d V.

—00

Inserting the rough bounds (8.8) and (8.9) into the integral above, we can deduce that

Theorem 8.3 Assume GRH for L(s, x4) for all fundamental discriminants d. Let X be large.

Let z1, 2o € C with 0 < Re(z1), Re(z2) < @ and |Im(z1)|, [Im(z2)| < X. Then for any

positive real number k and any ¢ > 0, we have

b k2
D ILG + 21 x) LG+ 220 xa)|F <ie X (log X)F exp (kM(m,zz, X)+ SV, o, X)) :
ldl<X

In the rest of this section, we complete the proof of Theorem 2.4.

Proof of Theorem 2.4 By Theorem 8.3 and the fact that £(z, x) < loglogx forz € C, x > 10,
we can trivially get that
b 2
D LG+ 21 x) FILG + 220 xa)[F e X (log X)2HEFe (8.10)
ld|<X
Now we assume [Im(z;) — Im(z2)| > @. Write 11 = Im(z1) and #, = Im(z3).
Ift1to > 0, then |t — 1| < |1 + 12| < max(2|t1], 2|t2]), say |t1 + t2]| < 2]|t1]. Note that
L(y, X) is a decreasing function for y > 0. Thus, we have

L(z1, X), LQ2z1, X), L(z1 +22, X), L(z1 +72, X) < L(|t1 — 12, X) + O(1)
< max(0, —log|t; — 2]) + O(1).

This together with
L(z2, X), L(2z2, X), L(2Re(z1), X), L(2Re(z2), X) < loglog X
implies
2M(z1, 22, X) +2V(z1, 22, X) < 4loglog X + max{0, —6log|t; — 12|} + O(1). (8.11)

On the other hand, if #17 < 0, then |t — | = |t1| + |2] < max{|2#1], |2t2]}, say
[t1 — 2] < |2t2|. It implies that |f;| < [f2]| and that £(2t2, X) < L(|ti — 2], X). Note
[t1 — 2| = 2|01 + |11 + 12], s0 |11 — 12| < max{4|t1], 2|t; + 12|} In fact, if |1} — 12| > 4|11],
then 2|t1| + |t1 + 2| > 4|t1|, which implies |#1]| < %|t1 + to|. It means |t; — | = 2|11 +
[t1 + 2] < 2]t1 + 12]. Without loss of generality, we can say |t — f2]| < 4|t1]. It follows that
L(z1, X), L2z1, X) < L(t1 — ]|, X) + O(1). Now we have

L(z1, X), LQ2z1, X), L(z2, X), L2z2, X), L(z1 + 72, X) < L(|t1 — 2], X) + O(1)

< max(0, —log|f; — na]) + O(1).
This combined with

L(2Re(z1), X), L(2Re(z2), X), L(z1 + 22, X) < loglog X

also implies (8.11).
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By inserting (8.11) into Theorem 8.3, we can show for [Im(z;) — Im(z2)| > @,

b 1
D LG+ 2 xa) PILG + 220 xa) P < X (log X)*Fe (1 + m) . (812
ld|<X

By combining (8.12) and (8.10) with k = 2, we have proved Theorem 2.4. O
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