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Abstract

Many fundamental results of pluripotential theory on the quaternionic space H" are extended
to the Heisenberg group. We introduce notions of a plurisubharmonic function, the quater-
nionic Monge—Ampere operator, differential operators dy and d; and a closed positive current
on the Heisenberg group. The quaternionic Monge—Ampere operator is the coefficient of
(dodu)". We establish the Chern—Levine—Nirenberg type estimate, the existence of quater-
nionic Monge—Ampere measure for a continuous quaternionic plurisubharmonic function
and the minimum principle for the quaternionic Monge—Ampere operator. Unlike the tan-
gential Cauchy-Riemann operator 9, on the Heisenberg group which behaves badly as
93y # —0p0dp, the quaternionic counterpart dy and d; satisfy dody = —didp. This is
the main reason that we have a good theory for the quaternionic Monge—Ampere operator
than (9505)".

1 Introduction

The theory of subharmonic functions and potential theory has already been generalized to
Carnot groups in terms of SubLaplacians (cf. e.g. [9,11] and references therein), and the
generalized horizontal Monge—Ampere operator and H-convex functions on the Heisenberg
group have been studied for more than a decade (cf. [7,11-13,15,17,19,22] and references
therein). For the 3-dimensional Heisenberg group, Gutiérrez and Montanari [15] proved that
the Monge—Ampere measure defined by

/det(Hessx(u))—I— 12(Tu)*> for u e CX(RQ), (1.1)

can be extended to H-convex functions, where Hessx (1) is the symmetric 2 x 2-matrix

XinM"i‘XinM) (12)

Hessx(u) := ( 5
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and X, X», T are standard left invariant vector fields on the 3-dimensional Heisenberg
group. u is called H-convex on a domain  if for any £, 7 € € such that £~y € Hy
and €8, (1) € Q for r € [0, 1], the function of one real variable r — u (&3, &) is
convex in [0, 1], where §, is the dilation and H( indicates the subset of horizontal directions
through the origin. It was generalized to the 5-dimensional Heisenberg group by Garofalo
and Tournier [13], and to k-Hessian measures for k-convex functions on any dimensional
Heisenberg groups by Trudinger and Zhang [22].

In the theory of several complex variables, we have a powerful pluripotential theory about
the complex Monge—Ampére operator (99)" and closed positive currents, where 3 is the
Cauchy-Riemann operator (cf. e.g. [18]). It is quite interesting to develop its CR version over
the Heisenberg group. A natural CR generalization of the complex Monge—Ampere operator
is (8,35)", where 9}, is the tangential Cauchy-Riemann operator. But unlike 39 = —d3, it
behaves badly as

pdp # —0p0p, (1.3)

because of the noncommutativity of horizontal vector fields (cf. Subsection 3.1). So it is very
difficult to investigate the operator (9;9;)", e.g. its regularity. On the other hand, pluripo-
tential theory has been extended to the quaternionic space H" (cf. [1-6,10,14,23-28,33] and
references therein). If we equip the (4n + 1)-dimensional Heisenberg group a natural quater-
nionic strucuture on its horizontal subspace, we can introduce differential operators dy, d;
and Au = dodu in terms of complex horizontal vector fields, as the quaternionic counterpart
of 3y, 3, and 3,0;. They behave so well that we can extend many fundamental results of
quaternionic pluripotential theory on H" to the Heisenberg group.

The (4n + 1)-dimensional Heisenberg group . is the vector space R*"*! with the mul-
tiplication given by

2n

(1) (3, 8) = (x+y, 0+ +2(x,y), where (x,y):=) (xy-1yn — xuyn-1)
=1

(1.4)

forx,y € R* ¢, s € R. Here (-, -) is the standard symplectic form. We introduce a partial
quaternionic structure on the Heisenberg group simply by identifying the underlying space
of H" with R*". For a fixed q € H", consider a 5-dimensional real subspace

Hy = {(gh,1) € A1 e H,t € R}, (1.5)

which is a subgroup. .7%; is nonabelian for all ¢ € H" except for a codimgr3 quadratic cone
©. For a point n € JZ, the left translate of the subgroup 7 by 7,

g = Ny,

is a 5-dimensional real hyperplane through n, called a (right) quaternionic Heisenberg line.
A [—o00, 00)-valued upper semicontinuous function on /¢ is said to be plurisubharmonic if
itis LllOC and is subharmonic (in terms of the SubLaplacian) on each quaternionic Heisenberg
line %, , forany n € 2, g € H"\D.

Let X1, ... X4, be the standard horizontal left invariant vector fields (2.2) on the Heisen-
berg group . Denote the tangential Cauchy—Fueter operator on ¢ by

Q1= Xai41 +iXa2 + i Xa3 + kX444,
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and its conjugate Q; = Xaj+1 — iXaj42 — jXa143 —kX4144,1 =0, ...,n — 1. See [32] for
the Cauchy—Fueter operator on other nilpotent groups of step two. Compared to the Cauchy—
Fueter operator on H", the tangential Cauchy—Fueter operator Q; is much more complicated
because not only i, j, k are noncommutative, but also X,’s are. In particular,

a5 2 2 2 2 .
Q101 = Xy + Xy + Xigp3 + Xiypg — 8i0r, (1.6)
is not real. But for a real C? function u, the n x n quaternionic matrix

(Q1Qmu + 8810, u)

is hyperhermitian, called the horizontal quaternionic Hessian. It is nonnegative if u is
plurisubharmonic. We define the quaternionic Monge—Ampére operator on the Heisenberg
group as

det @Qmu + 881mi8tu) s

where det is the Moore determinant.

Alesker obtained Chern—Levine—Nirenberg estimate for the quaternionic Monge—Ampere
operator on H" [4]. We extend this estimate to the Heisenberg group, and obtain the following
existence theorem of the quaternionic Monge—Ampere measure for a continuous plurisub-
harmonic function.

Theorem 1.1 Let {u;} be a sequence of C 2 plurisubharmonic functions converging to u uni-
formly on compact subsets of a domain Q2 in 7. Then u be a continuous plurisubharmonic
function on Q2. Moreover, det (@Qmuj + 881,10, uj) is a family of uniformly bounded mea-
sures on each compact subset K of Q and weakly converges to a non-negative measure on S2.
This measure depends only on u and not on the choice of an approximating sequence {u ;}.

It is worth mentioning that compared to the real case (1.2), our quaternionic Monge—Ampere
operator need not to be symmetrized for off-diagonal entries and the Monge—Ampere measure
does not have an extra term (7'x)? as in (1.1).
As in [20,27,29,30], motivated by the embedding of quaternionic algebra H into %2,
. . . X1 +ixy —x3 —ixg
X1 + x211 + x31p + x413 — . . s
X3 —1X4 X1 —1X2

we consider complex left invariant vector fields

Zow  Zov X +iX» — X3 —iX4

Z;o’ Z;l’ Xar41 —i'—iX4z+2 — X443 - iX4744

Z;O’ Zr:zl’ . X3 —:iX4 Xy —:in ’ (4.7
Z(n;rl)O’ Z(n.+l)l’ X143 - iXgpa Xan - iXq 40
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where X,’s are the standard horizontal left invariant vector fields (2.2) on J#. Let APC2"
be the complex exterior algebra generated by C**, p = 0, ..., 2n. Denote by {0, ®', ...,
a)z"_l} the standard basis of C2". For a domain 2 in %, we define differential operators

do, dy : CH(Q2, APC?) — C(Q, APHIC2Y) by

2n—1 2n—1
doF =) Y Zaofro* no'.  diF:=) Y Zafiotrno', (1.8)
I A=0 I A=0

for F = ), fIa)I e cl(, /\1’(C2”), where w! := @'l A -+ A @'» for the multi-index
I =(y,...,ip). Wecall aform F closed if doF = diF = 0.
In contrast to the bad behaviour (1.3) of 8,3, we have the following nice identities for d
and d;:
dody = —didy, (1.9

which is the main reason that we could have a good theory for the quaternionic Monge—
Ampere operator on the Heisenberg group.

Proposition 1.1 1. d? = d} = 0.
2. The identity (1.9) holds.
3. For F € CY(Q, APC™), G € CH(Q2, AIC?"), we have

dy(FAG)=dyFAG+ (—1D)PF ANdyG, a=0,1.

We introduce a second-order differential operator A : CL(Q, APCHY = C(Q2, APT2C2M)
by
AF :=dyd F, (1.10)

which behaves nicely as 99 as in the following proposition.
Proposition 1.2 Foruy, ..., u, € C?,

Aup AAuy A -+ AN Auy=do(diug AN Dus A -+ AN DAuy)=—di(douy A Duy A -+ A Auy)
=dodi(u1Dus A -+ A Auy) = AuAug A -+ A Auy).

The quaternionic Monge—Ampere operator can be expressed as the exterior product of Au.

Theorem 1.2 For a real szunction u on I, we have

Au A ADu=n! det (QQmu + 88midu) Qap, (1.11)
where
Q=0 A" A" AT e AFLCH (1.12)

Theorem 1.3 (The minimum principle) Let Q2 be a bounded domain with smooth boundary
in 7, and let u and v be continuous plurisubharmonic functions on Q. Assume that (Au)" <
(Av)". Then
min{u — v} = min{u — v}.
i {u — v} nir {u — v}

An immediate corollary of this theorem is that the uniqueness of continuous solution to the
Dirichlet problem for the quaternionic Monge—Ampere equation.

Originally, we define differential operators do and d; and the quaternionic Monge—Ampere
operator on the right quaternionic Heisenberg group. Later we find that these definitions also
work on the Heisenberg group, on which the theory is simplified because its center is only
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1-dimensional while the right quaternionic Heisenberg group has a 3-dimensional center. See
[20,21] for the tangential k-Cauchy—Fueter complexes on the Heisenberg group and the right
quaternionic Heisenberg group.

This paper is arranged as follows. In Sect. 2, we give preliminaries on the Heisenberg
group, the group structure of right quaternionic Heisenberg line .7, the SubLaplacian on
sty and its fundamental solution. After recall fundamental results on subharmonic functions
on a Carnot group, we give basic properties of plurisubharmonic functions on the Heisenberg
group. In Sect. 3, we discuss operators dp, di and nice behavior of brackets [Z 44/, Zpp'], by
which we can prove Proposition 1.1. Then we show that the horizontal quaternionic Hessian
(01O mu + 881,10, u) for a real C 2 function u is hyperhermitian, and prove the expression
of the quaternionic Monge—Ampere operator in Theorem 1.2 by using linear algebra we
developed before in [33]. In Sect. 4, we recall definitions of real forms and positive forms,
and show that Au for a C? plurisubharmonic function u is a closed strongly positive 2-form.
Then we introduce notions of a closed positive current and the “integral” of a positive 2n-
form current, and show that for any plurisubharmonic function u, Au is a closed positive
2-current. In Sect. 5, we give proofs of Chern-Levine-Nirenberg estimate, the existence of
the quaternionic Monge—Ampere measure for a continuous plurisubharmonic function and
the minimum principle.

2 Plurisubharmonic functions over the Heisenberg group
2.1 The Heisenberg group

We have the following conformal transformations on .»#: (1) dilations: §, : (x,t) —>
(rx, 720, r > 0; (2) left translations: Ty 5 @ (x,t) —> (y,s) - (x, 1); (3) rotations:
Ry : (x,t) — (Ux,1t), for U € U(n), where U(n) is the unitary group; (4) the inversion:
R:(x,t) — ( X L ) . Define vector fields:

x|+t * x4 +1)?

d
Xqu(x,t) := Eu((x, t)(ceq, 0)) , (2.1)
c=0

on the Heisenberg group 7, where e, = (...,0,1,0,...) € R* with only the ath entry
nonvanishing, a = 1, 2, ... 4n. It follows from the multiplication law (1.4) that

0 0 0 0
Xoi_1 = — 2x31—, Xop = —— 4+ 2x911— 2.2
21 = g Xl 2= g X1 (2.2)
l=1,---,2n, whose brackets are
[Xo1—1, X21] = 40;, and all other brackets vanish. 2.3)

X is left invariant in the sense that for any (y, 5) € S,
Ty« Xa = Xa, (2.4)

by definition (2.1), which means for fixed (y, s) € 7,

) (2.5)
(y,$)(x.1)

Xq (Ta’s)f)‘(x,t) =Xuf)
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where the pull back function (t(*y 5) i, 1) := f((y,s)(x,1)). On the left hand side above,
X, is the differential operator in (2.2) with coefficients at point (x, ¢), while on the right hand
side, X, is the differential operator with coefficients at point (y, s)(x, 1),

2.2 Right quaternionic Heisenberg lines

For quaternionic numbers ¢, p € H, write
g =x1 +ixy +jx3 +kxq,  p=y +iys+jys +Kkys.

Let p be the column vector in R4 represented by p,i.e. P := (y1, ¥2, ¥3, y4)" , and let q]R be
the 4 x 4 matrix representing the transformation of left multiplying by ¢, i.e.

ap =4q"p. (2.6)
It is direct to check (cf. [31]) that
X] —X2 —X3 —X4
R._ | X2 X1 —Xs4 X3
q" = P 2.7
X4 —X3 X2 X

and
@) =a'e. @ =@M (2.8)

The multiplication law (1.4) of the Heisenberg group can be written as

n—1 4

,s) - (x,0) = y+x,s+t+22 Z Jxjyai+ixary 2.9
1=0 j k=1
with
01 00
-1 0 00
=1 00 o1 (2.10)
00 —-10

The multiplication of the subgroup .77 is given by

n—1
(gh, D@V, 1) = (q(x Ly 423 (@) qu> , @.11)
=0
where
n—1 "N R 4 n—1
(q,Rx) JgfT = 3" Bl BO=Y @) Igf 2.12)
=0 Jk=1 =0

for A = Ay +iko +jrs +Kkig, M = )JL:I- iry +jrs + kA, € H. BYis a4 x 4 skew symmetric
matrix. So if we consider the group 7 as the vector space R’ with the multiplication given

by
4

OO0 ) = [ a+2 0+ +2 ) Blma ], (2.13)
k,j=1
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we have the isomorphism of groups
Ay — Ay, (A1) > (gh o). (2.14)

j%; is different from the 5-dimensional Heisenberg group in general. Note that the subgroup
Sty of A is the same if g is replaced by gqo for 0 # g € H, s
Write iy := 1,1 :=1i, i3 := j and iy := k. Consider left invariant vector fields on J7:

Xju(h, 1) = 4%, (sij, 0)) ,for (1) e . Since
=

4
(i, 0 = Aj 46 14+26 Y Bl |,
k,j=1
we get
9 4 9
Xi=—+2Y Bla—. 2.15
, axj+ k;,qkat (2.15)

Note that for g € H,
R

n—1 n—1
B SRR = (zm)
1=0 [=0

by using (2.8) and i® = —J by (2.7). Then

n—1

Y dia

=0

BY(BY) = A} lsxa. where Ay := , (2.16)

by (2.8) again. If write ¢; = x4741 + ixXa142 + jxa;4+3 + Kx4;+4, we have A; = Slz + S% +
~1 —1
S35, where S1 = 3120 (g + Xy — Xaa — Xarpa)s $2 1= 220000 (<X x4 +
-1
X4142X4143), 83 1= 2" (Xa141X4143 + Xa142%4144), The degenerate locus ® = {q €

H"; A4 = 0} is the intersection of three quadratic hypersurfaces in R* givenby S| = §, =
S3 = 0. Thus J7; is abelian if and only if ¢ € D.

Proposition 2.1 For g € H"\D, the fundamental solution ofg; on ,%’%; is

C —
T, 1)=——2— ie. AT, =23, 2.17)
! pg (ks 1) e

where

32A2|)?
pg Gty = A 0% )t = /~ —————d)dt.
7y (og (1) +1)

Proof Note that for ¢ > 0, we have

4 v2 v
=2 —1 E?:lxj Pq Eﬁzl(xqu)z
ij = 5 = - (2.18)
Pgt ¢ (pg +¢) (pg +€)
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It follows from the expression (2.15) of )f(j that

4
Xjpg =4AJ AP +4Y Bl
k=1

and
4 , 4 4 4 /4 2
D XiTpg =4 AIDPH8Y AT +8Y (ZBZjAk>
j=1 j=1 Jj=1 j=1 M=l

= 24A7 |11 + 8(BY(BY) %, A) = 32A7 A%, (2.19)

by skew symmetry of B4 and using (2.16). On the other hand, we have

4
D (Xjpg)* = 16AJIA AP + 16AZ A = 16A7 AP0y (A, 1) (2.20)
j=1

by Y} k=i Bf;AxAj = 0. Substituting (2.19)~(2.20) into (2.18) to get
4

SR L a2 e
= ! Pg T € q(ﬂq+5)3

Then fq)z,,(qus) — Cq’lga(O, 0) for ¢ € C§° (3’2};) by recaling and letting ¢ — 0+. We

get the result. O

2.3 Subharmonic functions on Carnot groups

A Carnot group G of step r > 1 is a simply connected nilpotent Lie group whose Lie algebra
g is stratified, i.e. g = g1 ® --- @ g, and [g1, g;] = gj+1. Let Yy, ---, Y, are smooth left
invariant vector fields on a Carnot group G and homogeneous of degree one with respect to
the dilation group of G, such that {Y7, - -- , Y, } is a basis of gi. There exists a homogeneous
norm || - || on a Carnot group G [9] such that

Co
1§y 92"

for some Q > 0 is a fundamental solution for the SubLaplacian Ag given by Ag =

fz | sz, (the fundamental solution used in [9] is different from the usual one (2.21) by
aminus sign). Ag is not elliptic except for G abelian. But it is hypoelliptic since vector fields
{Y1,---,Y,} satisfy Hormander’s hypoellipticity condition.

We denote by D(&, r) the ball of center & and radius r, i.e.

L& ) = — 2.21)

D, r) = {n € Gllg " nll <r). (2.22)
Recall the representation formulae [9] for any smooth function u on G:

() = MEW)(E) — Ny (Acuw)(§) = 45 W) (E) — A (Acu)(E), (2.23)
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for every £ € Q2 and r > 0 such that D(&, r) C 2, where

m _
ME@E) =~ [ KE  mudV .
pEn (2.24)
NEw© =2 [ o0 lap [ ( L] >u(n)dV(n)
' r¢ Jo peE.p \NETIIC2  p@—2 '
and
ME ) (E) = / HE umdS ),
daD(E,r)
A Cu)E) = C / ( : 1 ) (mdV(n) (2.25)
. u = - u(n n), .
' © Joen \IE"Ty122 ~ p0-2
for some positive constants m g, ng, and
VeI |?
K = |Ved, = Vel (2.26)
V|
Here Vg the vector valued differential operator (Y1, ...,Y,) and V is the usual gradient,

d(&) = ||€|l, dV is the volume element and d S is the surface measure on d D(&, r). Integrals
Mﬁc’ (u) and .///,G (u) are related by the coarea formula.

A function u on a domain Q C Ag is called harmonic if Agu = 0 in the sense of
distributions. Then a harmonic function u in an open set €2 satisfies the mean-value formula

u(®) = AL w)(E) = ME (u)(€),

by (2.23). For an open set 2 C G, we say that an upper semicontinuous function function
u: Q— [—o0, 00) is Ag-subharmonic if for every & € Q there exists r¢ > 0 such that

u(@) < MEu)(E) for r<re. (2.27)

Proposition 2.2 (The maximum principle for the SubLaplacian [9]) If 2 € G is a bounded
open set, for every u € C?(Q) satisfying Agu > 0 in Q and limsupg . u(§) < 0 for any
n € 9092, we haveu < 0 in Q.

Theorem 2.1 (Theorem 4.3 in [9]) Let Q2 be an open set in G and u : Q — [—00, +00) be
an upper semicontinuous function. Then, the following statements are equivalent:

(1) u is subharmonic;
() u e L (Q), uE) = limr_>0+M;G’(u)($) for every & € Q and Agu > 0 in Q in the

loc
sense of distributions.

When G is the Heisenberg group .»# in (1.4), the SubLaplacian is

4n
Ap = Z X2,
a=1

where X, ’s are given by (2.2). It is not elliptic, but is subelliptic. It is known that the funda-
mental solution of A, is —Cgp] - [~€+2 for some constant Cp > 0 as in Proposition 2.1,
with the norm given by

1Ge, O = (x[* + 124
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The invariant Haar measure on # is the usual Lebesgue measure dxdt on R¥+3,

IVGflz(x 1 = 200(0-2) IxI?
VO T @ 0122 A e+ 2
in the mean-value formula, where Q := 4n + 2, the homogeneous dimension of the (4n + 1)-
dimensional Heisenberg group 72"

When G is the group jf in (2.13), the SubLaplacian is Aj. Because of the fundamental
solution of Ay, given in Pr0p0s1t10n 2.1, its norm is given by

J(x,1) = (2.28)

. 20,14 2,1
A Dllg == (AGIAT +17)3.

The invariant Haar measure on 7 is the usual Lebesgue measure dAdt on R>. Its homoge-
neous dimension is 6, and the mean-value formulae becomes

|V Tyl ,
A () () - = / ;F" W, u HdSQ! 1),
Dy 0.r) | |
ME () - = 2L Ko/ 0 u( 1)dv (1), (2.29)
r® Jp,,r) ’

where Dy (0, r) is the ball of radius r and centered at the origin in jf in terms of the norm
| - Il4> mgq is the constant in the representation formula (2.24) for the group Jﬁ,, and

Yo N2 AP
Kq(x,r)=2<xqu> =1,
= 1 012

by (2.20), which is homogeneous of degree 0.

2.4 Plurisubharmonic functions on the Heisenberg group

Although 77;, , is not a subgroup, by the embedding
g Hq = Higs Ou1) > 1(gh ), (2.30)

we say that u is subharmonic function on ¢, 4 if L,] g is &1 subharmonic on ;{” Thus, a
[—o0, oo) valued upper semicontinuous function u onadomain 2 C s plurzsubharmomc
if uis LIOC(Q) andL gl is A -subharmonic on L 82N ,%” forany ¢ € H"\® and € 52".
Denote by PSH (Q) the class of all plur1subharm0nlc functlons on 2.

Recall that the convolution of two functions u and v over /7 is defined as

u*xv(x,t) = / u(y, s)v((y, s)_l(x, t))dyds.
H

Then
Y(uxv)=ux*xYv (2.31)

for any left invariant vector field Y by (2.5), and

u*xv(x,t)= / u((x, )(y, s)_l)v(y, s)dyds.
H

by taking transformation (y, )M, 1) = (y,s) for fixed (x, r), whose Jacobian can be
easily checked to be identity. By the non-commutativity

x0T # () ) (2.32)
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in general, we have u % v # v x u, and

IDE, 1) ={neGllE il =r} # (neGling "l =r).

Consider the standard regularization given by the convolution x, * u with

xe® = —5x (51®). (2.33)

where 0 < x € C3°(D(0, 1)), fyf x(&)dV (E) = 1. Then x, * u subharmonic if u is (cf.
Proposition 2.3 (6)), but we do not know whether . * u is decreasing as ¢ decreasing to 0,
which we could not prove as in the Euclidean case, because of the non-commutativity.

Remark 2.1 (1) Itis a consequence of Theorem 2.1 that a function is in L}OC(Q) ifitis Ap-
subharmonic on 2 C 7. But since 7 is different in general for different ¢ € H"\D,
we do not know wether a P.S H (2) function is Ap-subharmonic on 2. So we require it
as a condition in the definition.

(2) Inthe characterization of subharmonicity in Theorem 2.1 there is an additional condition
u(€) = lim,— 0+ M (u)(£). We know that M (u) () is increasing in r if Agu > 0.

The following basic properties of PSH functions also hold on the Heisenberg group.

Proposition 2.3 Assume that Q2 is a bounded domain in €. Then we have that

(1) Ifu,v e PSH(R), then au + bv € PSH (), for positive constants a, b;

2) Ifu,v e PSH(R), then max{u, v} € PSH(Q);

(3) If {uy} is a family of locally uniformly bounded functions in PSH (2), then the upper
semicontinuous regularization (sup, uy)* is a PSH function;

(4) If{un} is a sequence of functions in P S H (2) such that u,, is decreasing tou € LIIOC(Q),
thenu € PSH(2);

(5) Ifu e PSH(R) and y : R — R is convex and nondecreasing, then y ou € PSH (R2);

(6) Ifu € PSH(S), then the regularization x. * u(§) is also PSH on Q' C 3, where Q'
is subdomain such that ' D(0, &) C Q. Moreover, if u is also continuous, then xg * u
converges to u uniformly on any compact subset.

) IfweQue PSH(RQ), v e PSH(w), and lirnsupsﬁn v(€) < u(n) foralln € dw,
then the function defined by

6= {u, on Q\w,

max{u, v}, on w,

is PSH on Q.

Proof (1)—(3) follows from definition trivially.
(4) It holds since for any fixed ¢ € H"\®, n €  and small r > 0,

m
u(n) = lim u,(n) < lim —£ Ky O, 1) a0, AV (., 1)
n—oo n—oo r Dq(O,r) ’
g

: Ky O 06 qu s DAV Gy 1) = MY () (1)
> JD,(0,r) ’

by the monotone convergence theorem.
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(5) It holds since

q _ Mg *
My (y ou)(n) = p; Ky, 1)y (1, qu(h, 1)dV (A, 1)

D, (0.r)
m
>y (rg /D © )Kq()" D g, DAV @, t)> =7 (L;"’u(o)) = romm
q N

by Jensen’s inequality for nondecreasing convex function y, since % K, (A, t) isnonnegative
and its integral over D, (0, r) is 1. The latter fact follows from the mean value formula for
the harmonic function = 1.
(6) For fixed ¢ € H"\® and n € Q, x. * u is PSH since it is smooth and
q g *
My (xe xw)(n) = — Kq, 0y o (Xe x w) (A, )AV (R, 1)
r® Jp, 0. b
my -1
=M KyGu0dV ) [ oo (009 (i) dyds
> Jpg0,r) A

/;g) xe(y. s)M/ (tjy,s)’]n,qu) O)dyds

> /f xe (v, $)u (v, $)"'n) dyds = xe * u(n), (2.34)

by Fubini’s theorem and subharmonicity of u on the open subset 2N . The uniform

convergence is trivial.
(7) ¢ is obviously in L]IOC(Q), and is PSH on @ by (2). For n € dw,

M (@) () = MP @) () = u(n) = ¢ (n)

for small r > 0. O

v.9)"ln.g

Remark 2.2 Our notion of plurisubharmonic functions is different from that introduced by
Harvey and Lawson [16] for calibrated geometries, i.e. an upper semicontinuous function u
satisfies Au > 0 on each calibrated submanifold in RY , where A is the Laplacian associated
to the induced Riemannian metric on the calibrated submanifold. In our definition we require
Agu > 0 for SubLaplacian A, which is subelliptic, on each 5-dimensional real hyperplane
I, q for g € H'\D.

3 Differential operators dy, dq, A and the quaternionic Monge-Ampére
operator on the Heisenberg group
3.1 Differential operators dp and d,

Denote Wj = Xpj_1 +iXoj, Wj:= X5, 1 —iXyj, j =1,...2n. Then
[W;, Wil = 88 i,

and all other brackets vanish by (2.2). Let {...,67, 0",...,0} be the basis dual to

{..., Wj, Wj, ..., 0;}. The tangential Cauchy-Riemann operator is defined as pu =
Ziil W ;u 6/ for a function u and
3 (Yo uyx6’ A0F) =3 Bpu s n 67 A6 3.1
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where 87 = 671 A+ A0, 0K = 651 A ... A 6% for multi-indices J = (ji,.... ji),
K = (ki, ..., kp).Similarly, opu = Z?”:] Wju 6/ for a function u and is extended to forms
asin (3.1). Then
2n _
popu = Z Wiju 0k A 0/,
jk=1
2n _ 2n _ 2n _
Dpopu = Y W Weuo/ A0F == " WiW,ut* A07 + 8iduy 0% A6,
jik=1 jik=1 k=1

Thus 8,9 #* —3p0p.
By the definition of the operator A in (1.10), we have

1
AF=3 > (ZavZpr — ZgyZav) f1 ot AP Ao, (32
AB,I

for F =Y, f1 »'. Now for a function u € C? we define

1
Appu = E(ZAO’ZB]/M — ZpyZaru). (3.3)

2A4p is the determinant of (2 x 2)-submatrix of Ath and Bth rows in (1.7). Note that
Zpy Z o u in the above definition could not be replaced by Z 41 Z g« in general because of
noncommutativity. Then we can write

2n—1
Au = Z Aapu 0 A @B 3.4
A,B=0
Whenu; =...=u, =u, Auj A --- A Auy, coincides with (Au)" := A" Au.

The following nice behavior of brackets plays a key role in the proof of properties of
do, d,.

Proposition 3.1 (1) For fixed A’ = 0’ or 1, we have [Zsp, Zga']l = O for any A, B =

0,...2n — 1, i.e. each column {Zoy, ..., Zon—1ya'} in (1.7) spans an abelian subal-
gebra.
(2) If|A — B| # 0, n, we have
[Zay,Zp1] =0, (3.5)
and
[Zis Znvyv] = [Z sy s Zi17] = —8idy, (3.6)
forl=0,,...n—1, and
2 2 2 2
200+ = X1 + X0 + X3 + Xl (3.7

Proof Noting that by (1.7), Za4’ and Zgp' for |A — B| # 0 or n are linear combinations of
Xoryj’s, j = 1,2, with different /, and so their bracket vanishes by (2.3). Thus (1) and (3.5)
hold. (3.6) follows from brackets in (2.3) and the expression of Z44/’s in (1.7). (3.7) holds
by
20 et = (Xai41 +1Xg12) (Xap41 — iXg42) + (Xai43 — 1Xg7404) (Xay43 +1X4144)
= Xz%1+1 —+ Xf,+2 + X1211+3 + X§1+4 —i[Xy11, X2l +i[ X443, Xar44]

and using (2.3). ]
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Proof of Proposition 1.1 (1) For any F = Y, fiw!, note that we have ZayZpy fi =
Zpo Z Ay f1 by Proposition 3.1 (1). So we have

2n—1
dgF = Z Z ZavZpo f1 a)A /\a)B /\a)l =0,
I A,B=0
by w? A w8 = —wP A . 1t is similar for d12 =0.

(2) Forany F = Y, fiw', we have

d()d]F:ZZZAOfZBl/fla)A/\a)B/\a)I= Z Z ZA()/ZBI/f]a)A/\a)B/\a)I

I AB I |A=B|#0,n
n—1
+ D (210 Zosyr = Zasoo Ziv) fro' Ao Ao
1 1=0
:—Z Z ZBI/ZAo/fIa)B/\a)A/\a)]
I |A—B|#0,n

n—1
=YD @ Zar = Zarnr Zio) frof Ao Ao
I =0

=— Z ZAI/ZBOIflwA AwP Aol = —didyF,
A,B,1

by using commutators (3.5)—(3.6) in Proposition 3.1 in the third identity.
(3) Write G =) gy’ . We have

do(F A G) = Y [Zaw(f1)81 + f1Zaw (@N] 0" A0 Ao’

AL
= Zaw(fD 0" A" AY g0 + (=D Y frof A Zaw (g0t A !
Al J Al J
=dyF AG+ (—1D)PF ANdyG.
by oA Aol = (=D)Po! A wh. O
Corollary 3.1 Foruy,...,u, € C3, Aup A+ A Aug isclosed k=1,...,n,

Proof By Proposition 1.1 (3), we have
k
doy(Auy A -+ AN Aug) = ZAm Ao Ndg (D) A= A Dug,

j=1
for & = 0, 1. Note that dyA = d2dy = 0 and d1 A = —d}dy = 0 by using Proposition 1.1
(1)—(2). It follows that dy, (Auy A -+ A Aug) = 0. O
Proof of Proposition 1.2 1t follows from Corollary 3.1 that

do(Auy A -+ AN Auy) =di(Auy A -+ - AN Auy) = 0.

By Proposition 1.1 (3),

doy(uiAus A -+ ANAuy) =dguuy AAupg A+ AAuy +urdyg(Auy A -+ A Auy)
=dgui AN DNup A -+ A Auy,.
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So we have
AuiAug A -+ A Auy) = dodi (w1 Aug A -+ A Auy) = do(diuy A Duy A -+ A Auy)
=dodiuy AN Auy A AN Auy —diuy Ado(Auy A -+ A Auy,)
= Aui ANAuy A -+ N Auy,.

3.2 The quaternionic Monge-Ampére operator on the Heisenberg groups
A quaternionic (n x n)-matrix (M ji) is called hyperhermitian if M jix = My;.

Proposition 3.2 (Claim 1.1.4, 1.1.7 in [1]) For a hyperhermitian (n x n)-matrix M, there
exists a unitary matrix U such that U* MU is diagonal and real.

Proposition 3.3 (Theorem 1.1.9 in [1])

(1) The Moore determinant of any complex hermitian matrix considered as a quaternionic
hyperhermitian matrix is equal to its usual determinant.
(2) For any quaternionic hyperhermitian (n X n)-matrix M and any quaternionic (n X n)-
matrix C
det(C* MC) = det(A) det(C*C).

Proposition 3.4 For a real C? function u, the horizontal quaternionic Hessian (Q; Qnu +
881midsu) is hyperhermitian.

Proof 1t follows from definition (1.7) of Z 44/ s that
jZ(n+m)0’ = _Zml’jv jZ(n+m)1’ = ZmO’j (3-8)
and so

010m = (Xai+1 + X432 + X143 + KXa144) Xams1 — iXams2 — iXam+3 — KXam4)
= (Ziv — Zud) (Zogmyv — I Zngmyor)
= (Zi Zismyv — Ziv Zinsmyo) + (Zit Zimtr — Ziv Znoy) §.-
3.9)
When ! = m, it follows that
Q1Quu =20 1manyu — [ Z1vs Zrno 1+ [Ziy, Zin luj = 20 (ntyu — 8idu (3.10)
by using (3.5)—~(3.6). Thus Q; Q;u + 8id,u is real by (3.7). If | # m, we have

010mut = (Zi0 Zinsmyt = Zntmyo Ziv) u + (Ziy Zv — Zmo Ziy) uj

. (3.11)
=2 (Al(n+m)u + Almu.]) )
by using commutators
[Zi Zimo] =0 and  [Zpo. Zip] =0,  for [#m,  (3.12)

by Proposition 3.1.
To see the horizontal quaternionic Hessian to be hyperhermitian, note that for [ # m

010mu =2 (Bigramytt — jDimit) (3.13)
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and

Ajntmy = Zi0 Zrmy 1 — Zrm)o Zivk = Zwiyt Zmo ¥ — Zint? Z 10’4
(3.14)
= Zno Zn+)1t — Znr)0 L' = LDp(niit

by the conjugate of Z44/’s in (1.7) and (3.12). Similarly, for any /, m, we have

Ayt = (21 Zinv — Zino Zi1)ut = (= Z 51 Zatm)o' + Znamyt Znanodu, — (3.15)

and so
JAmu = (Z1g Zpny — Znoy Ziy)uj = — Lyt j (3.16)

by using (3.8) and (3.12). Now substitute (3.14) and (3.16) into (3.13) to get

@Qmu =2 (Am(n—H)u + Aml’/‘j) = EQ!M

forl # m.’ This together with the reality of 0;0u + 8id,u implies that the quaternionic
Hessian (Q; Qu + 88;,10;u) is hyperhermitian. O

As in [33], denote by Mp(p, m) the space of F-valued (p x m)-matrices, where F =
R, C, H. For a quaternionic p x m-matrix M, write M = a + bj for some complex matrices
a,b € Mc(p, m). Then we define the T (M) as the complex (2p x 2m)-matrix

a—b
(M) = (E E)’ (3.17)
Recall that for skew symmetric matrices My = (My.ap) € Mc(2n,2n),a =1, ..., n,such
that 2-forms w, = Zi’/ MQ;ABa)A A w?B are real, define

WA Aoy =D, (My, ..., M), (3.18)
Consider the homogeneous polynomial det(A;M; + ... 4+ X, M,) in real variables
A1, ..., Ay of degree n. The coefficient of the monomial 1 ... A, divided by n! is called the
mixed discriminant of the matrices My, ..., M,, and it is denoted by det(M, ..., M,).

In particular, when M| = ... = M, = M, det(My, ..., M,) = det(M).

Theorem 3.1 (Theorem 1.2 in [33]) For hyperhermitian matrices My, ..., M,, € My (n, n),
we have

2"nldet (My, ..., My) =2, TMDI, ..., Tt (M), (3.19)

0 I,
I= (—In o)' (3.20)

Proof of Theorem 1.2 The proof is similar to that of Theorem 1.3 in [33] except that Z4/’s
are noncommutative. (3.10)—(3.11) implies that the quaternionic Hessian can be written as

(Q1Qmu + 88,id;u) = a + bj,

where

with n x n complex matrices

a=2 (A[(,H_m)u) s b=2(Apu).

a —b b a
b a)J_<—a E)
( Ajpu Al(n+m)"t>
—Digmyt  Dynu )7

Thus

(3.21)

2
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Note that Ayu = A4y (nt#t = 0 by definition. For [ # m,

DNintm) = Zm0 Zn+)1 — ZnD)0' Zm1! = —Dthym

by (3.14), while for / = m we also have

Aj+iyt = L1 Ziow — Ziv Lot = 21 Ly 1 — Lo Ziv = — A,

(3.22)
by using Proposition 3.1 (2). Moreover,
Dimlt = Bty (nm) U
which follows from (3.15). Therefore we have
T (Q1Qmut + 881midyu) J = 2(Aspu). (3.23)

Then the result follows from applying Theorem 3.1 to matrices M ; =2 (@Q mU j+887,10u ) .
O

4 Closed positive currents on the quaternionic Heisenberg group
4.1 Positive 2k-forms

Now let us recall definitions of real forms and positive 2k-forms (cf. [4,27,33] and references

therein). Let {a)O, ol .., a)Q"‘l} be the standard basis of C?" and
n—1
Bui=> o Aot .1)
1=0

Then B = A"B, = n! Qo,, where 2y, is given by (1.12). For A € GLy(n), define the
induced C-linear transformation of A on C*" as A.w? = 7(A).wP with
2n—1
Mol =" Mo (4.2)
j=0
for M € Mc(2n, 2n), and define the induced C-linear transformation of A on A2¥C2" as

A.(a)o Ao A A a)2k_l) = A A A" AL A AP

Therefore for A € Uy(n), A.B, = Bn,. Consequently A.(A"B,) = A"'B,, ie., A.Qoy =
QZn-
Jj defines a real linear map

p(G):C = € p()(zef) = 2Lk, 43)
which is not C-linear, where J is given by (3.20). Also the right multiplying of i:
q1,--->qn) — (q1i, ..., g,i) induces

P :C*" = C™",  p(i)ze) = ziok.

Thus p defines GL(1)-action on C2". The actions of GLy(1) and GLy(n) on C2"
are commutative, and equip C2 a structure of G Ly (n)G Ly(1)-module. This is because
(MN).w? = M.(N.wP) by definition and p(j)p(i) = —p(i)p(j). This action extends to
AZKC?" naturally.
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The real action (4.3) of p(j) on C?" naturally induces an action on A?*C?". An element
@ of AKC2" is called real if p(j)¢ = ¢. Denote by /\]%k C?" the subspace of all real elements
in A2KC?", These forms are counterparts of (k, k)—forms in complex analysis.

A right H-linear map g : H¥* — H™ induces a C-linear map t(g) : C* — C¥".If we
write ¢ = (gj)mxk With g;; € H, then 7(g) is the complex (2m x 2k)-matrix given by
(3.17). The induced C-linear pulling back transformation of g* : C*" — C2K is defined as:

2k—1
gl =1(g) wf =Y t(@pe’. p=0,....2m—1, (4.4)
j=0
where {50, ..., @m-l }is the standard basis of C?™ and {a)o, ., 2kl }is the standard basis

of C?*. It induces a C-linear pulling back transformation on A2*C?" given by g*(a A 8) =
g*a A g* B inductively.

An element w € /\%Rk C?" is said to be elementary strongly positive if there exist linearly
independent right H-linear mappings n; : H" — H, j =1, ..., k, such that

o= Agie' A AnER° A,

where {@°, @'} is a basis of C? and UM C? — C?" is the induced C-linear pulling back
transformation of n;. The definition in the case k = 0 is obvious: A?RCQ" = R and the
positive elements are the usual ones. For k = n, dimc A2 C2 = 1, Qy, defined by (1.12) is
an element of /\HZ{ C?* (p(j)Bn = B,) and spans it. An element n € /\HZQ” C?" is called positive
if n = k 9, for some non-negative number «. By definition, @ € AIZR"(CZ” is elementary
strongly positive if and only if

o=M@ A A AT AT 4.5)

for some quaternionic matrix M € My(n, k) of rank k.

Anelementw € /\ﬁk(cz" is called strongly positive if it belongs to the convex cone Spkg2n
in /\%Rk(Cz” generated by elementary strongly positive 2k-elements; that is, w = Y /L, A&
for some non-negative numbers A1, ..., A, and some elementary strongly positive elements
&1,...,&y. An 2k-element w is said to be positive if for any strongly positive element
n € SPY"2KC? @ A 1 is positive. We will denote the set of all positive 2k-elements
by /\%Rk+ C?". Any 2k element is a C-linear combination of strongly positive 2k elements by
Proposition 5.2 in [4], i.e. spanc{¢p; ¢ € /\%@]‘_F(Cz"} = spanc{p; ¢ € SPC?) = A%C?".
By definition, B, is a strongly positive 2-form, and B} = A"B, = n! Qy, is a positive
2n-form.

For a domain Q in 7, let D (Q) = Co(Q, APC?) and DP(Q) = CC(Q, APC™M).
An element of the latter one is called a test p-form. An element n € D(z)k(Q) is called a
positive 2k-form (respectively, strongly positive 2k-form) if for any g € €2, n(q) is a positive
(respectively, strongly positive) element.

Theorem 1.1 in [33] and its proof implies the following result.

Proposition 4.1 For a hyperhermitian n x n-matrix M = (M i), there exists a quaternionic
unitary matrix £ € Ug(n) such that E¥* ME = diag(vo, ..., vy—1). Then the 2-form

2n—1
w = Z MABwA A B, 4.6)
A,B=0
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with M = t(M)J, can be normalized as

n—1

0=2Y vat A& 4.7)
=0

with @4 = £*.wA. In particular, w is strongly positive if and only if M is nonnegative.

Proposition 4.2 For any C' real function u, dou A dyu is elementary strongly positive if grad

u#0.

Proof Let p := (p1,..., pn) € H" with p; = Xgr1u + iXarpou + jXa1+3u + KXgy14u.
Then as (3.9), we have _ _
Epm = Al(ner) + Almj7 (48)

where
AAB = ZA()IMZBI/M — ZBI/MZA()/I,{.

Denote n x n quaternionic matrix M = (Prpm)- Then M=a+ bj with n x n complex
matrices a = (Ajgymyt), b = (Apuu). Thus

~\._[(a —b _ b a\ Zlmzl('w_~
f(M)J_<B a)J—(_a b)‘(—&mm Zlm>_(AAB>, 4.9)

since we can easily check

A1(n+m) = _A(n-&-l)mv Ay = A(n+l)(n+m)~
Since M has eigenvalues |p|2, 0,...,0, we see that
2n—1 2n—1
dou A diu = Z ZAO/uZBl/uwA/\a)B= Z AABG)A/\Q)B.
A,B=0 A,B=0
is elementary strongly positive by Proposition 4.1. O

See [28, Proposition 3.3] for this proposition for H" with a different proof.

4.2 The closed strongly positive 2-form given by a smooth PSH

Proposition 4.3 Foru € C%(2), u is PSH if and only if the hyperhermitian matrix (Q; Qmu —
881mi0:u) is nonnegative.

The tangential mapping ¢, 4« maps horizontal left invariant vector fields on j’i;’; to that on the
quaternionic Heisenberg line 77 . In particular, we have

Proposition 4.4 For g € H"\D,

n—1

e X3 =203 (@), Xarss (4.10)

=0 k=1
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Proof Since 1, ; = 7, o 14 and X;’s are invariant under t,, it sufficient to prove (4.10) for
n=0.Forfixed j =1,2,3,4and/ =1, ..., n, note that

: (‘IIR)U
aij=q | 1|= :
: (qu)étj

by (2.6). Thus forg = (g1, ...,q,) € H" and ¢ € R, if we write 1, (A, 1) = (gX, 1) = (x, 1),
we get

4
gf{x, (i, 0} = (6]()» +ij), 1+ 2¢ ZBZ/')\I‘)

k=1

n— 4
= ...,X41+i+§(611R)ij,--.,t+2§2 D Tixari (@i |

1=0 k,i=1

by the multiplication (2.13) of the group j%”; and B? in (2.12). So

(tgs X7 f) (2, 1) = £ (gl D) (sij, 0)})

0

ds
.

2

=0
—1

n
I

MA

n—1

(), 5242 Y dos o), 2

1=0 k,i=1

-
Il
-

§

Il
-M‘*

(6]1 )ji Xag4i f (x, 1)

N
I

=}
Il

-

by (2.8). O

Proof of Proposition 4.3 Denote 5 = )71 + i)?z + j)?; + kﬂ. Then we have

4 n—1 4 n—1
IREDIICTIED DD (@ )jk Xapidj =Y q01 (411
j=1 1=0 j,k=1 1=0

by Proposition 4.4, (2.6) and definition of g% in (2.7), and Ly, g% @ = Z;’:_ol 0Q1q; by taking
conjugate. Therefore for real u, we have

n—1
e (K2 + 33+ X34 %) = Re (1,040 - 1,00 Ou) =Re | Y 71+ 01Ot
1,m=0
(4.12)
On the other hand, we have

n—1 n—1 n—1 n—1
> G (QrQmut + 881midhue) g = (ch@) (Z qum> u+8Y qigidu.
m=0 =0

1,m=0 =0
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Since the horizontal quaternionic Hessian (Q; Q,,u + 88;,,9;1) is hyperhermitian by Propo-
sition 3.4, we see that the above quadratic form is real for any g. Note that pip € Im H for
any 0 # p € H. Therefore, we get

n—1 n—1

Z qi (@Qmu + 8almiatu) qm = Re Z qr - EQmu qm | = (tn,q*gg)u
1,m=0 1,m=0
(4.13)
forg € H"\D by (4.12).
Now if u is PSH, then A4 (1), ,u) is nonnegative by applying Theorem 2.1 to the group

%’Z for ¢ € H"\®. Consequently, (4.13) holds for any ¢ € H" by continuity, i.e. the
hyperhermitian matrix (01 Omu~+88,id;u) is nonnegative. Conversely, if the hyperhermitian
matrix is nonnegative, we get u is is subharmonic on each quaternionic Heisenberg line .7 4
for any ¢ € H"\® and € " by applying Theorem 2.1 again. O

Corollary 4.1 Foru € PSH N C?(RQ), Au is a closed strongly positive 2-form.

Proof 1t follows from applying Proposition 4.1 to nonnegative M = (Q; Qu — 88/,,1u)
and using (3.23). ]

Corollary 4.2 A C? function u is pluriharmonic if and only if Au = 0.

Proof u is pluriharmonic means that A\;L*, u = 0 on the quaternionic Heisenberg line j%
for any n € ## and ¢ € H"\®. It holds if and only if

> 71 (01Qmtt + 881mids ) gm = 0
l,m

for any ¢ € H" by (4.13), i.e. (Q; Qmu + 88;,,i9,u) = 0, which equivalent to Au = 0 by
(3.23). O

Recall that the tangential 1-Cauchy—Fueter operator on a domain 2 in the Heisenberg
group .7 is 7 : C1(Q, C?) — CY(Q, C?") [20] given by
@Pa= Y. Zifu. A=0...21—1,
A'=0',1
where Zgl = Zy and Z}q/ = —Zo. A C?-valued function f = (fy, fi1) = (fi+ifs, 5+
ifs)iscalled 1-CFif 2f = 0.
Proposition 4.5 Each real component of a 1-CF function f : A" — C? is pluriharmonic.

Proof Note that Y~ ,_q |/ Zﬁ/fAr = Oisequivalentto ) 4, > 4o v Zﬁ/fA/a)A = 0, which
can be written as
difo —dofir =0.

Apply dp on both sides to get dod; foy = 0 since dg = 0. Similarly, we get dod; fir = O.
Writing fiy = f1 + if> for some real functions f1 and f>, we have

Afi+iAf, =0.

Note that for a real valued function u, Au is a real 2-form by (3.23) and Proposition 4.1, i.e.
p(PDAu = Au. We get
Afi —iAf, =0.

Thus A fi = 0 = A f>. Similarly, we have A f3 =0 = A f3. O
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See Corollary 2.1 in [31] for this Proposition on the quaternionic space H". Since 1-regular
functions are abundant, so are pluriharmonic functions on the Heisenberg group.

4.3 Closed positive currents

An element of the dual space (D?'=P(Q)) is called a p-current. A 2k-current T is said to
be positive if we have T (17) > 0 for any strongly positive form n € D?*~2%(). Although a
2n-form is not an authentic differential form and we cannot integrate it, we can define

/F::/ fav, (4.14)
Q Q

if we write F = f Qo € LY(Q, AZ'C?), where dV is the Lebesgue measure. In general,
for a 2n-current F' = o 25, with the coefficient to be a measure u, define

fF:=fu. (4.15)
Q Q

Now for the p-current F, we define a (p + 1)-current dy F' as
(do F)() :== —F(danm), a=0,1, (4.16)

for any test (2n — p — 1)-form 5. We say a current F is closed if do F = d1 F = 0.

An element of the dual space (Dgnfp ()’ are called a p-current of order zero. Obviously,
a2n-current is just a distribution on 2, whereas a 2n-current of order zero is a Radon measure
on Q. Let ¥ be a p-form whose coefficients are locally integrable in €2. One can associate
with  the p-current T, defined by

Ty (¢) =/ Y Ag, forany ¢ e D P(Q).
Q

If T is a 2k-current on €2, v is a 2/-form on Q with coefficients in C*°(2), and k +1 < n,
then the formula

(TAYQ) =TW Ap) for ¢ e D" H2(Q) 4.17)

defines a (2k + 2[)-current. In particular, if ¥ is a smooth function, 7T (¢) = T (¥ ¢).

A2k-current T is said to be positive if wehave T'(n) > Oforany n € C;°(S2, S pn—2kg2ny,
Namely, T is positive if for any n € C°(L2, SP¥=2kC2), T Ay = p Qa, for some positive
distribution p (and hence a measure).

Let I = (iy,...,i2) be a multi-index such that 1 < i; < ... < iy < n. Denote
by I = (1, ..., la—2x) the increasing complements to I in the set {0, 1,...,2n — 1}, i.e.,
{it, ..., iUy, ..., Ion—2} =1{0,1,...,2n —Al}.Fora2k—currentT in 2 and multi-index

I, define distributions 77 by T;(f) := ;T (fo') for f € C5°(R2), where e; = £1 is so

chosen that

10l Aw! = Q. (4.18)

If T is a current of order O, the distributions 77 are Radon measures and

T(p) =Y eiTi(ep), (4.19)
1

for ¢ = Zﬂpfwi € D~2k(Q), where I and T are increasing. Namely,

T = Z Tio', (4.20)
1
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where the summation is taken over increasing multi-indices of length 2k, holds in the sense
that if we write T A ¢ = u Qp, for some Radon measure ., then we have

T((p)=/ u=/ T A o. 4.21)
Q Q

Proposition 4.6 Any positive 2k-current T on Q2 has measure coefficients (i.e. is of order
zero), and we can write T =), Tiw! for some complex Radon measures T;, where the
summation is taken over all increasing multi-indices 1.

Proof By Proposition 5.4 in [4], we can find {¢r} C SP21=2kC2n gych that any n €
A21=2kC2n §g g C-linear combination of oL, i.e, n = Y Argr for some A; € C. Let
{@1} be a basis of AZXC?" which is dual to {¢z}. Then T = _ T;@; with distributional
coefficients Ty as (4.20). If v is a nonnegative test function, ¢y € C°(2, S prn—2kC2ny,
Then Tr () = T (Y¢r) > 0 by definition. It follows that 77, is a positive distribution, and
S0 is a nonnegative measure. O

The following Proposition is obvious and will be used frequently.

Proposition 4.7 (1) (linearity) For 2n-currents Ty and T, with (Radon) measure coefficients,

we have
/aT1+ﬂT2:a/T1+ﬂ/T2.
Q Q Q

(2) If Ty < T, as positive 2n-currents (i.e. ity < pp if wewrite Tj = 11 jQ0,, j = 1,2), then
JoTh = o T

Lemma 4.1 (Stokes-type formula) Let Q2 be a bounded domain with smooth boundary and
defining function p (i.e. p = 0on Q2 and p < 0 in Q) such that |gradp| = 1. Assume that
T=%, Taw? is a smooth (2n — 1)-form in Q, where ot = a)AJ Q2. Then for h € cl(Q),

we have
2n—1

/ hdy, T = —/ deh AT + / hTAZ s p dS, (4.22)
Q Q “oo Joe
where dS denotes the surface measure of 9Q2. In particular, if h = 0 on 92, we have
/ hdaT:—/dah/\T, a=0,1, (4.23)
Q Q

Proof Note that

do(hT) =) | Zpar (hTA)® A" = | Zpor (hTp) Q.
B,A A

[ty = [ S zawthtoav = [ Y htazasp ds,
Q Q A Q2 A

by definition (4.14) and integration by part,

Then

/Xjde:/ fX;pdSs, (4.24)
Q Q

for j =1, ...4n.(4.24) holds because the coefficient of 9; is independent of ¢. (4.22) follows
from the above formula and dy, (hT) = dyh AT + hd,T. O
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Now let us show that dy F' in the generalized sense (4.16), coincides with the original
definition when F is a smooth 2k-form. Let n be arbitrary (2n — 2k — 1)-test form compactly
supported in 2. It follows from Lemma 4.1 that fQ dy(F A n) = 0. By Proposition 1.1 (3),
dy(F AN) =dyF A1+ F Adyn. We have

—f F/\danz/daFAr], ie., (dyF)(n) = —F(dyn). (4.25)
Q Q

We also define AF in the generalized sense, i.e., for each test (2n — 2k — 2)-form 7,
(AF)() == F(An). (4.26)

As a corollary, AF in the generalized sense coincides with the original definition when

F is a smooth 2k-form:
/AFAn:/FAAn.

Corollary 4.3 Foru € PSH (), Au is a closed positive 2-current.

Proof If u is smooth, Au is a closed strongly positive 2-form by Corollary 4.1. When u is
not smooth, consider regularization u, = x. * u as in Proposition 2.3 (6). It suffices to show
that coefficients A gpu, — A4pu in the sense of weak convergence of distributions. For any
¢ € C°(Q2),

/AABMs o= /us “DABY —> /M ~Dapyp = (Aapu)(p)
as e — 0, by using integration by part (4.24) and the standard fact that x, *u — u in LIIOC(Q)

ifu e Llloc(Q) [19]. It follows that the currents Au, converge to Au, and so the current Au
is positive. For any test form 7,

(Ao L10) () = =Bt (don) = = lim A (d) = lim (d Ases) () = O,

a = 0, 1, where the last identity follows from Corollary 3.1. Here u, is smooth, and dy, Au,
coincides with its usual definition. m]

5 The quaternionic Monge-Ampére measure over the Heisenberg
group

For positive (2n—2p)-form T and an arbitrary compact subset K, define | T || x := fK TABY,
where , is given by (4.1). In particular, if T is a positive 2n-current, | T || ¢ coincides with
[x T defined by (4.15). Let || - || be a norm on A%*C?".

Lemma5.1 (Lemma3.3in[27]) Forn € AXC?" with |n|| < 1, BX £en is a positive 2k-form
Sfor some sufficiently small ¢ > Q.

Proposition 5.1 (Chern—Levine—Nirenberg type estimate) Let Q2 be a domain in 7". Let K
and L be compact subsets of Q2 such that L is contained in the interior of K. Then there exists
a constant C depending only on K , L such that for any u, ...ux € PSH(Q) N C3(R), we

have
k

18w A=A Buglly < €[ lluillcogk- (5.1)

i=1
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Proof By Corollary 4.1, Auj A - - - A Auy is already closed and strongly positive. Since L is
compact, there is a covering of L by a family of balls D} € Dj C K.Let x > 0be asmooth

function equals to 1 on F; with support in D ;. For a closed smooth (2n — 2p)-form T, we
have

/XAulA--~/\Aup/\T=—/do)(/\dlul/\Auz/\---/\Aup/\T
Q Q

:—/ urdidox NDuy A ANAup AT 5.2)
Q
:/ule/\Auz/\---/\Aup/\T

Q

by using Stokes-type formula (4.23) and Proposition 1.2. Then
||Au1/\v-~/\Auk||Lmﬁ:/ _Aup A A Dug ABE 5/ XAuUp A - A Aug A B
J LmD} D;
=/ ule/\Auz/\-n/\Auk/\ﬂ,'fk
Dj

1
fg”Ml“LOO(K)”AX”/ Auz/\.../\Auk/\’B:llkarl’
Dj
by using (5.2) and Lemma 5.1. The result follows by repeating this procedure. O

Proof of Theorem 1.1 Ttis sufficient to prove for any compactly supported continuous function
X, the sequence fQ x(Auj)" is a Cauchy sequence. We can assume x € C°(£2). Note the
following identity

(A)" = (D) =Y {(Av)? A (Au)"P = (&) A (Auy" P

=l (5.3)

=Y (AP AA @ =u) A (Bu)" P
p=1

Then we have

‘/ x(Buj))" —/X(Auk)"
Q Q
_P:l

SIIAXII i
&

n

>

p=1

/XAujA---/\A(uj—uk)/\Auk/\~-~/\Auk

K

n
jfukHOOZ/KAuj/\~-~/\ﬂn/\Auk/\-~-/\Auk§C||uj7ukHOO.
p=1

as in the proof of Proposition 5.1, where C depends on the uniform upper bound of “ uj H o
O

Proposition5.2 Let u,v € C(Q) be plurisubharmonic functions. Then (A(u + v))" >
(Auw)" 4 (Av)".
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Proof For smooth PSH u, = y. * u, we have

n—1
(D +ve))" = (Bue)" + (Do) + Y Cil(Due) A (Ave)" ™ = (Due)" + (Dve)".
j=1
The result follows by taking limit ¢ — 0 and using the convergence of the quaternionic

Monge—Ampere measure in Theorem 1.1. O

We need the following proposition to prove the minimum principle.

Propﬁosition 5.3 Let Q2 be a bounded domain with smooth boundary in 5, and let u,v €
C%(Q) be plurisubharmonic functions on . If u = v on dQ and u > v in K, then

/(Au)” Sf(Av)". 54
Q Q

Proof We have

/(Av)” —/(Au)” :Z/ do {dy (v —u) A (20)P7N A (2u)" P
Q Q YR
- (5.5)

n 2n—1

:ZZ/;QT:-ZAO/,O-dS

p=1 A=0

by using (5.3) and Stokes-type formula (4.22), if we write

di (v —u) A (AV)PTEA (D) = Z T: a)X,
A

where p is a defining function of € with |gradp| = 1, and wx = w? ]y, Note that we have

2n—1

DT Zaop(®) - Q0 = dop@) Adi (v =) A BV A LWL (56)
A=0

Since u = v on 02 and u > v in L, for a point £ € I with grad(v — u)(&) # 0, we can
write v —u = hp in a neighborhood of & for some positive smooth function . Consequently,
we have grad(v —u)(§) = h(§)gradp,andso Z (v —u)(§) = h(§)Z A1 p(§) on 0L2. Thus,

dop (&) Ndy (v —u) (§) = h(§)dop(§) Ndip(§),

which is strongly positive by Proposition 4.2. Moreover, both Av and Au are strongly positive
for C? plurisubharmonic functions « and v on € by Proposition 4.1. We find that the right
hand of (5.6) is a positive 2n-form, and so the integrant in the right hand of (5.5) on 92 is
nonnegative if grad(v — u)(§) # 0, while if grad(v — u) (&) = 0, the integrant at £ in (5.5)
vanishes. Therefore the difference in (5.5) is nonnegative. ]

The proof of the minimum principle is similar to the complex case [8] and the quaternionic
case [1], but we need some modifications because we do not know whether the regularization
Xe * u of a PSH function u on the the Heisenberg group is decreasing as ¢ — 0+.

Proof of Theorem 1.3 Without loss of generality, we may assume mingo{u — v} = O.
Suppose that there exists a point (xg, fo) € 2 such that u(xg, fp) < v(xo,fp). Denote
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no = %[v(xo,to) — u(xp, t0)]. Then for each 0 < n < o, the set G() := {(x,1) €
Q; u(x,t)+n < v(x,t)}is anon-empt, open, relatively compact subset of 2. Now consider

Gn,d8) :={(x,t) € Qulx,t)+n <v(x,t)+|x —x0|2}.

There exists an increasing function §(n) such that G(n,§) for 0 < § < &(n) is a non-
empt, open, relatively compact subset of 2. On the other hand, there exists small a (1, §)
such that for 0 < a < «a(n, §), we have {§ € Q;dist(&, 0Q2) > a} =: Q4 D G(n, ) for
0 < & < 8(n/2), where dist(£, ¢) = || ¢||.

We hope to apply Proposition 5.3 to G(n, §) to get a contradict, but its boundary may
not be smooth. We need to regularize them. Recall that u, — u and v, — v uniformly as
& — 04 on any compact subset of 2. Define

G(n,8,6) :={(x,1) € Qux,1)+n < ve(x, 1)+ 8|x — xo|%},

which satisfies G(n,8,¢) C G(3n/4,8) C G(n/2,8) if 0 < ¢ < w(n, d) is sufficiently
small, since |v(x, t) — ve(x, 1)| < n/4 for (x,t) € G(n/2,5). Now choose t so small that

G(n,8,e,7):={(x,1) € Qu(x,t)+n <ve(x,t)+8|x —x0|2}

is a non-empt, open, relatively compact subset of 2. At last we can choose positive numbers
n1 < 12, 60, €0, To such that for any n € [n1,1n2],0 < ¢ < &0,0 < 7 < 19, G(n, 80, &, T) 1S
a non-empt, open, relatively compact subset of €2.

For fixed ¢, 7, by Sard’s theorem, almost all values of the C* function v, (x, 1) + §o|x —
x0|2 — u(x, t) are regular, i.e. G(n, 8o, €, T) has smooth boundary for almost all 7. Conse-
quently, we can take sequence of numbers 7z — 0 and ¢ — 0 such that G(n, &, €k, Tx) has
a smooth boundary for each k and almost all € [, n2]. Now apply Proposition 5.3 to the
domain G (), 8¢, €k, Tx) to get

/ (Aug)" > / (A(ve + Solx — x0[H)" > / (Ave)" + 88 / (Alx — xo/*)"
5.7
= /(Avsk)" +4"n155vol (G (n, 8o, &k, Tk))

by using Proposition 5.2 (2), where integrals are taken over G(n, &, €k, Tx), and
n—1 n
(Alx = xo)" = (Z At lx = xolPe’ A w"“) = 4"n!Qy,,

1=0

by the expression of A4y in (3.7). Since (Au)" < (Av)" and n — (Av)"(G(n, dp)) is
decreasing in 1, we can choose a continuous point 1 such that G (», 8o, &k, Tx) has a smooth
boundary. For any n; < ' <n < n” < m, G(0/',8) D G, o, &k, ) D G(”, 8y) for
large k. So we have

/ (Dug)" > / (Ave)" + (480)"ntvol (G (0", 80)) (5.8)
G(n'.0) G(n".d0)

by (5.7). Thus,
(L) (G, 80)) = (Av)"(G(", 80)) + (480)"nvol (G (0", 8p)),

by convergence of quaternionic Monge—Ampere measures by Theorem 1.1. At the continuous
point n, we have
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(L)"(G(n, 80)) = (L)' (G(1, 80)) + (480)"nlvol (G (0", 8)).

This is a contradict since G (5", 89) is a nonempt open subset of Q for n” close to 7. O
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