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Abstract
Many fundamental results of pluripotential theory on the quaternionic spaceH

n are extended
to the Heisenberg group. We introduce notions of a plurisubharmonic function, the quater-
nionicMonge–Ampère operator, differential operators d0 and d1 and a closed positive current
on the Heisenberg group. The quaternionic Monge–Ampère operator is the coefficient of
(d0d1u)n . We establish the Chern–Levine–Nirenberg type estimate, the existence of quater-
nionic Monge–Ampère measure for a continuous quaternionic plurisubharmonic function
and the minimum principle for the quaternionic Monge–Ampère operator. Unlike the tan-
gential Cauchy–Riemann operator ∂b on the Heisenberg group which behaves badly as
∂b∂b �= −∂b∂b, the quaternionic counterpart d0 and d1 satisfy d0d1 = −d1d0. This is
the main reason that we have a good theory for the quaternionic Monge–Ampère operator
than (∂b∂b)

n .

1 Introduction

The theory of subharmonic functions and potential theory has already been generalized to
Carnot groups in terms of SubLaplacians (cf. e.g. [9,11] and references therein), and the
generalized horizontal Monge–Ampère operator and H -convex functions on the Heisenberg
group have been studied for more than a decade (cf. [7,11–13,15,17,19,22] and references
therein). For the 3-dimensional Heisenberg group, Gutiérrez and Montanari [15] proved that
the Monge–Ampère measure defined by∫

det(HessX (u)) + 12(T u)2 for u ∈ C2(�), (1.1)

can be extended to H -convex functions, where HessX (u) is the symmetric 2 × 2-matrix

HessX (u) :=
(

Xi X j u + X j Xi u

2

)
(1.2)
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and X1, X2, T are standard left invariant vector fields on the 3-dimensional Heisenberg
group. u is called H-convex on a domain � if for any ξ, η ∈ � such that ξ−1η ∈ H0

and ξδr (ξ
−1η) ∈ � for r ∈ [0, 1], the function of one real variable r → u(ξδr (ξ

−1η)) is
convex in [0, 1], where δr is the dilation and H0 indicates the subset of horizontal directions
through the origin. It was generalized to the 5-dimensional Heisenberg group by Garofalo
and Tournier [13], and to k-Hessian measures for k-convex functions on any dimensional
Heisenberg groups by Trudinger and Zhang [22].

In the theory of several complex variables, we have a powerful pluripotential theory about
the complex Monge–Ampère operator (∂∂)n and closed positive currents, where ∂ is the
Cauchy-Riemann operator (cf. e.g. [18]). It is quite interesting to develop its CR version over
the Heisenberg group. A natural CR generalization of the complex Monge–Ampère operator
is (∂b∂b)

n , where ∂b is the tangential Cauchy-Riemann operator. But unlike ∂∂ = −∂∂ , it
behaves badly as

∂b∂b �= −∂b∂b, (1.3)

because of the noncommutativity of horizontal vector fields (cf. Subsection 3.1). So it is very
difficult to investigate the operator (∂b∂b)

n , e.g. its regularity. On the other hand, pluripo-
tential theory has been extended to the quaternionic space H

n (cf. [1–6,10,14,23–28,33] and
references therein). If we equip the (4n +1)-dimensional Heisenberg group a natural quater-
nionic strucuture on its horizontal subspace, we can introduce differential operators d0, d1
and�u = d0d1u in terms of complex horizontal vector fields, as the quaternionic counterpart
of ∂b, ∂b and ∂b∂b. They behave so well that we can extend many fundamental results of
quaternionic pluripotential theory on H

n to the Heisenberg group.
The (4n + 1)-dimensional Heisenberg group H is the vector space R

4n+1 with the mul-
tiplication given by

(x, t) · (y, s) = (x + y, t + s + 2〈x, y〉) , where 〈x, y〉 :=
2n∑

l=1

(x2l−1y2l − x2l y2l−1)

(1.4)

for x, y ∈ R
4n , t, s ∈ R. Here 〈·, ·〉 is the standard symplectic form. We introduce a partial

quaternionic structure on the Heisenberg group simply by identifying the underlying space
of H

n with R
4n . For a fixed q ∈ H

n , consider a 5-dimensional real subspace

Hq := {(qλ, t) ∈ H ; λ ∈ H, t ∈ R}, (1.5)

which is a subgroup. Hq is nonabelian for all q ∈ H
n except for a codimR3 quadratic cone

D. For a point η ∈ H , the left translate of the subgroup Hq by η,

Hη,q := ηHq ,

is a 5-dimensional real hyperplane through η, called a (right) quaternionic Heisenberg line.
A [−∞,∞)-valued upper semicontinuous function on H is said to be plurisubharmonic if
it is L1

loc and is subharmonic (in terms of the SubLaplacian) on each quaternionic Heisenberg
line Hη,q for any η ∈ H , q ∈ H

n\D.
Let X1, . . . X4n be the standard horizontal left invariant vector fields (2.2) on the Heisen-

berg group H . Denote the tangential Cauchy–Fueter operator on H by

Ql := X4l+1 + iX4l+2 + jX4l+3 + kX4l+4,
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The quaternionic Monge–Ampère operator. . . 523

and its conjugate Ql = X4l+1 − iX4l+2 − jX4l+3 − kX4l+4, l = 0, . . . , n − 1. See [32] for
the Cauchy–Fueter operator on other nilpotent groups of step two. Compared to the Cauchy–
Fueter operator on H

n , the tangential Cauchy–Fueter operator Ql is much more complicated
because not only i, j,k are noncommutative, but also Xa’s are. In particular,

Ql Ql = X2
4l+1 + X2

4l+2 + X2
4l+3 + X2

4l+4 − 8i∂t , (1.6)

is not real. But for a real C2 function u, the n × n quaternionic matrix

(
Ql Qmu + 8δlm i∂t u

)

is hyperhermitian, called the horizontal quaternionic Hessian. It is nonnegative if u is
plurisubharmonic. We define the quaternionic Monge–Ampère operator on the Heisenberg
group as

det
(
Ql Qmu + 8δlm i∂t u

)
,

where det is the Moore determinant.
Alesker obtained Chern–Levine–Nirenberg estimate for the quaternionicMonge–Ampère

operator onH
n [4].We extend this estimate to the Heisenberg group, and obtain the following

existence theorem of the quaternionic Monge–Ampère measure for a continuous plurisub-
harmonic function.

Theorem 1.1 Let {u j } be a sequence of C2 plurisubharmonic functions converging to u uni-
formly on compact subsets of a domain � in H . Then u be a continuous plurisubharmonic
function on �. Moreover, det

(
Ql Qmu j + 8δlm i∂t u j

)
is a family of uniformly bounded mea-

sures on each compact subset K of � and weakly converges to a non-negative measure on �.
This measure depends only on u and not on the choice of an approximating sequence {u j }.

It is worth mentioning that compared to the real case (1.2), our quaternionic Monge–Ampère
operator need not to be symmetrized for off-diagonal entries and theMonge–Ampèremeasure
does not have an extra term (T u)2 as in (1.1).

As in [20,27,29,30], motivated by the embedding of quaternionic algebra H into C
2×2 :

x1 + x2i1 + x3i2 + x4i3 	→
(

x1 + ix2 −x3 − ix4
x3 − ix4 x1 − ix2

)
,

we consider complex left invariant vector fields

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Z00′ Z01′
...

...

Zl0′ Zl1′
...

...

Zn0′ Zn1′
...

...

Z(n+l)0′ Z(n+l)1′
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

:=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X1 + iX2 −X3 − iX4
...

...

X4l+1 + iX4l+2 −X4l+3 − iX4l+4
...

...

X3 − iX4 X1 − iX2
...

...

X4l+3 − iX4l+4 X4l+1 − iX4l+2
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (1.7)
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where Xa’s are the standard horizontal left invariant vector fields (2.2) on H . Let ∧p
C
2n

be the complex exterior algebra generated by C
2n , p = 0, . . . , 2n. Denote by {ω0, ω1, . . .,

ω2n−1} the standard basis of C
2n . For a domain � in H , we define differential operators

d0, d1 : C1(�,∧p
C
2n) → C(�,∧p+1

C
2n) by

d0F :=
∑

I

2n−1∑
A=0

Z A0′ f I ωA ∧ ωI , d1F :=
∑

I

2n−1∑
A=0

Z A1′ f I ωA ∧ ωI , (1.8)

for F = ∑
I f I ω

I ∈ C1(�,∧p
C
2n), where ωI := ωi1 ∧ · · · ∧ ωi p for the multi-index

I = (i1, . . . , i p). We call a form F closed if d0F = d1F = 0.
In contrast to the bad behaviour (1.3) of ∂b∂b, we have the following nice identities for d0

and d1:
d0d1 = −d1d0, (1.9)

which is the main reason that we could have a good theory for the quaternionic Monge–
Ampère operator on the Heisenberg group.

Proposition 1.1 1. d2
0 = d2

1 = 0.
2. The identity (1.9) holds.
3. For F ∈ C1(�,∧p

C
2n), G ∈ C1(�,∧q

C
2n), we have

dα(F ∧ G) = dα F ∧ G + (−1)p F ∧ dαG, α = 0, 1.

Weintroduce a second-order differential operator� : C2(�,∧p
C
2n) → C(�,∧p+2

C
2n)

by
�F := d0d1F, (1.10)

which behaves nicely as ∂∂ as in the following proposition.

Proposition 1.2 For u1, . . . , un ∈ C2,

�u1 ∧ �u2 ∧ · · · ∧ �un =d0(d1u1 ∧ �u2 ∧ · · · ∧ �un)=−d1(d0u1 ∧ �u2 ∧ · · · ∧ �un)

= d0d1(u1�u2 ∧ · · · ∧ �un) = �(u1�u2 ∧ · · · ∧ �un).

The quaternionic Monge–Ampère operator can be expressed as the exterior product of �u.

Theorem 1.2 For a real C2 function u on H , we have

�u ∧ · · · ∧ �u = n! det (Ql Qmu + 8δlm i∂t u
)
�2n, (1.11)

where
�2n := ω0 ∧ ωn · · · ∧ ωn−1 ∧ ω2n−1 ∈ ∧2n

R+C
2n . (1.12)

Theorem 1.3 (The minimum principle) Let � be a bounded domain with smooth boundary
in H , and let u and v be continuous plurisubharmonic functions on �. Assume that (�u)n ≤
(�v)n . Then

min
�

{u − v} = min
∂�

{u − v}.

An immediate corollary of this theorem is that the uniqueness of continuous solution to the
Dirichlet problem for the quaternionic Monge–Ampère equation.

Originally, we define differential operators d0 and d1 and the quaternionicMonge–Ampère
operator on the right quaternionic Heisenberg group. Later we find that these definitions also
work on the Heisenberg group, on which the theory is simplified because its center is only

123
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1-dimensional while the right quaternionic Heisenberg group has a 3-dimensional center. See
[20,21] for the tangential k-Cauchy–Fueter complexes on the Heisenberg group and the right
quaternionic Heisenberg group.

This paper is arranged as follows. In Sect. 2, we give preliminaries on the Heisenberg
group, the group structure of right quaternionic Heisenberg line Hq , the SubLaplacian on
Hq and its fundamental solution. After recall fundamental results on subharmonic functions
on a Carnot group, we give basic properties of plurisubharmonic functions on the Heisenberg
group. In Sect. 3, we discuss operators d0, d1 and nice behavior of brackets [Z AA′ , Z B B′ ], by
which we can prove Proposition 1.1. Then we show that the horizontal quaternionic Hessian
(Ql Qmu + 8δlm i∂t u) for a real C2 function u is hyperhermitian, and prove the expression
of the quaternionic Monge–Ampère operator in Theorem 1.2 by using linear algebra we
developed before in [33]. In Sect. 4, we recall definitions of real forms and positive forms,
and show that �u for a C2 plurisubharmonic function u is a closed strongly positive 2-form.
Then we introduce notions of a closed positive current and the “integral” of a positive 2n-
form current, and show that for any plurisubharmonic function u, �u is a closed positive
2-current. In Sect. 5, we give proofs of Chern-Levine-Nirenberg estimate, the existence of
the quaternionic Monge–Ampère measure for a continuous plurisubharmonic function and
the minimum principle.

2 Plurisubharmonic functions over the Heisenberg group

2.1 The Heisenberg group

We have the following conformal transformations on H : (1) dilations: δr : (x, t) −→
(r x, r2t), r > 0; (2) left translations: τ(y,s) : (x, t) −→ (y, s) · (x, t); (3) rotations:
RU : (x, t) −→ (U x, t), for U ∈ U(n), where U(n) is the unitary group; (4) the inversion:

R : (x, t) −→
(

x
|x |2+it ,

t
|x |4+|t |2

)
. Define vector fields:

Xau(x, t) := d

dς
u((x, t)(ςea, 0))

∣∣∣∣
ς=0

, (2.1)

on the Heisenberg group H , where ea = (. . . , 0, 1, 0, . . .) ∈ R
4n with only the ath entry

nonvanishing, a = 1, 2, . . . 4n. It follows from the multiplication law (1.4) that

X2l−1 := ∂

∂x2l−1
− 2x2l

∂

∂t
, X2l := ∂

∂x2l
+ 2x2l−1

∂

∂t
(2.2)

l = 1, · · · , 2n, whose brackets are

[X2l−1, X2l ] = 4∂t , and all other brackets vanish. (2.3)

Xa is left invariant in the sense that for any (y, s) ∈ H ,

τ(y,s)∗ Xa = Xa, (2.4)

by definition (2.1), which means for fixed (y, s) ∈ H ,

Xa

(
τ ∗
(y,s) f

)∣∣∣
(x,t)

= (Xa f )

∣∣∣∣
(y,s)(x,t)

, (2.5)
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526 W. Wang

where the pull back function (τ ∗
(y,s) f )(x, t) := f ((y, s)(x, t)). On the left hand side above,

Xa is the differential operator in (2.2) with coefficients at point (x, t), while on the right hand
side, Xa is the differential operator with coefficients at point (y, s)(x, t),

2.2 Right quaternionic Heisenberg lines

For quaternionic numbers q, p ∈ H, write

q = x1 + ix2 + jx3 + kx4, p = y1 + iy2 + jy3 + ky4.

Let p̂ be the column vector in R
4 represented by p, i.e. p̂ := (y1, y2, y3, y4)t , and let qR be

the 4 × 4 matrix representing the transformation of left multiplying by q , i.e.

q̂p = qR p̂. (2.6)

It is direct to check (cf. [31]) that

qR :=

⎛
⎜⎜⎝

x1 −x2 −x3 −x4
x2 x1 −x4 x3
x3 x4 x1 −x2
x4 −x3 x2 x1

⎞
⎟⎟⎠ , (2.7)

and
(q1q2)

R = qR

1 qR

2 , (q)R = (qR)t . (2.8)

The multiplication law (1.4) of the Heisenberg group can be written as

(y, s) · (x, t) =
⎛
⎝y + x, s + t + 2

n−1∑
l=0

4∑
j,k=1

Jk j y4l+k x4l+ j

⎞
⎠ (2.9)

with

J =

⎛
⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠ . (2.10)

The multiplication of the subgroup Hq is given by

(qλ, t)(qλ′, t ′) =
(

q(λ + λ′), t + t ′ + 2
n−1∑
l=0

(
q̂lλ

)t
J q̂lλ′

)
, (2.11)

where
n−1∑
l=0

(
qR

l λ̂
)t

JqR

l λ̂′ =
4∑

j,k=1

Bq
k jλkλ

′
j , Bq :=

n−1∑
l=0

(ql
R)t JqR

l (2.12)

for λ = λ1 + iλ2 + jλ3 +kλ4, λ
′ = λ′

1 + iλ′
2 + jλ′

3 +kλ′
4 ∈ H. Bq is a 4×4 skew symmetric

matrix. So if we consider the group H̃q as the vector space R
5 with the multiplication given

by

(λ, t)(λ′, t ′) =
⎛
⎝λ + λ′, t + t ′ + 2

4∑
k, j=1

Bq
k jλkλ

′
j

⎞
⎠ , (2.13)
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we have the isomorphism of groups

ιq : H̃q −→ Hq , (λ, t) 	→ (qλ, t). (2.14)

H̃q is different from the 5-dimensional Heisenberg group in general. Note that the subgroup
Hq of H is the same if q is replaced by qq0 for 0 �= q0 ∈ H,

Write i1 := 1, i2 := i, i3 := j and i4 := k. Consider left invariant vector fields on H̃q :

X̃ j u(λ, t) := du
dς

((λ, t)(ς i j , 0))
∣∣∣
ς=0

for (λ, t) ∈ H̃q . Since

(λ, t)(ς i j , 0) =
⎛
⎝· · · , λ j + ς, · · · , t + 2ς

4∑
k, j=1

Bq
k jλk

⎞
⎠ ,

we get

X̃ j = ∂

∂λ j
+ 2

4∑
k=1

Bq
k jλk

∂

∂t
. (2.15)

Define the SubLaplacian on the right quaternionic Heisenberg line H̃q as

�̃q :=
4∑

j=1

X̃ j
2
.

Note that for q ∈ H,

Bq =
n−1∑
l=0

ql
R JqR

l = −
(

n−1∑
l=0

ql iql

)R

by using (2.8) and iR = −J by (2.7). Then

Bq(Bq)t = 2
q I4×4, where q :=

∣∣∣∣∣
n−1∑
l=0

ql iql

∣∣∣∣∣ , (2.16)

by (2.8) again. If write ql = x4l+1 + ix4l+2 + jx4l+3 + kx4l+4, we have 2
q := S2

1 + S2
2 +

S2
3 , where S1 := ∑n−1

l=0 (x24l+1 + x24l+2 − x24l+3 − x24l+4), S2 := 2
∑n−1

l=0 (−x4l+1x4l+4 +
x4l+2x4l+3), S3 := 2

∑n−1
l=0 (x4l+1x4l+3 + x4l+2x4l+4), The degenerate locus D := {q ∈

H
n;q = 0} is the intersection of three quadratic hypersurfaces in R

4n given by S1 = S2 =
S3 = 0. Thus Hq is abelian if and only if q ∈ D.

Proposition 2.1 For q ∈ H
n\D, the fundamental solution of �̃q on H̃q is

�q(λ, t) = − Cq

ρq(λ, t)
, i.e. �̃q�q = δ0, (2.17)

where

ρq(λ, t) = 2
q |λ|4 + t2, C−1

q :=
∫
H̃ q

322
q |λ|2

(ρq(λ, t) + 1)3
dλdt .

Proof Note that for ε > 0, we have

4∑
j=1

X̃ j
2 −1

ρq + ε
= �4

j=1 X̃ j
2
ρq

(ρq + ε)2
− 2

�4
j=1(X̃ jρq)2

(ρq + ε)3
. (2.18)
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It follows from the expression (2.15) of X̃ j that

X̃ jρq = 42
q |λ|2λ j + 4

4∑
k=1

Bq
k jλk t,

and

4∑
j=1

X̃ j
2
ρq = 4

4∑
j=1

2
q |λ|2 + 8

4∑
j=1

2
qλ2j + 8

4∑
j=1

(
4∑

k=1

Bq
k jλk

)2

= 242
q |λ|2 + 8

〈
Bq(Bq)tλ, λ

〉 = 322
q |λ|2, (2.19)

by skew symmetry of Bq and using (2.16). On the other hand, we have

4∑
j=1

(X̃ jρq)2 = 164
q |λ|4|λ|2 + 162

q |λ|2t2 = 162
q |λ|2ρq(λ, t) (2.20)

by
∑4

j,k=1 Bq
k jλkλ j = 0. Substituting (2.19)–(2.20) into (2.18) to get

4∑
j=1

X̃ j
2 −1

ρq + ε
= 322

q
|λ|2ε

(ρq + ε)3
.

Then
∫

ϕ�̃b(
−1

ρq+ε
) → C−1

q ϕ(0, 0) for ϕ ∈ C∞
0 (H̃q) by recaling and letting ε → 0+. We

get the result. ��

2.3 Subharmonic functions on Carnot groups

A Carnot group G of step r ≥ 1 is a simply connected nilpotent Lie group whose Lie algebra
g is stratified, i.e. g = g1 ⊕ · · · ⊕ gr and [g1, g j ] = g j+1. Let Y1, · · · , Yp are smooth left
invariant vector fields on a Carnot group G and homogeneous of degree one with respect to
the dilation group of G, such that {Y1, · · · , Yp} is a basis of g1. There exists a homogeneous
norm ‖ · ‖ on a Carnot group G [9] such that

�(ξ, η) := − CQ

‖ξ−1η‖Q−2 , (2.21)

for some Q > 0 is a fundamental solution for the SubLaplacian �G given by �G =∑p
j=1 Y 2

j , (the fundamental solution used in [9] is different from the usual one (2.21) by
a minus sign).�G is not elliptic except for G abelian. But it is hypoelliptic since vector fields
{Y1, · · · , Yp} satisfy Hörmander’s hypoellipticity condition.

We denote by D(ξ, r) the ball of center ξ and radius r , i.e.

D(ξ, r) = {η ∈ G|‖ξ−1η‖ < r}. (2.22)

Recall the representation formulae [9] for any smooth function u on G:

u(ξ) = MG

r (u)(ξ) − Nr (�Gu)(ξ) = MG

r (u)(ξ) − Nr (�Gu)(ξ), (2.23)
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for every ξ ∈ � and r > 0 such that D(ξ, r) ⊂ �, where

MG

r (u)(ξ) := m Q

r Q

∫
D(ξ,r)

K (ξ−1η)u(η)dV (η),

NG

r (u)(ξ) := nQ

r Q

∫ r

0
ρQ−1dρ

∫
D(ξ,ρ)

(
1

‖ξ−1η‖Q−2 − 1

ρQ−2

)
u(η)dV (η),

(2.24)

and

MG

r (u)(ξ) :=
∫

∂ D(ξ,r)

K (ξ−1η)u(η)d S(η),

N G

r (u)(ξ) := CQ

∫
D(ξ,r)

(
1

‖ξ−1η‖Q−2 − 1

ρQ−2

)
u(η)dV (η), (2.25)

for some positive constants m Q, nQ , and

K = |∇Gd|2, K = |∇G�|2
|∇�| . (2.26)

Here ∇G the vector valued differential operator (Y1, . . . , Yp) and ∇ is the usual gradient,
d(ξ) = ‖ξ‖, dV is the volume element and d S is the surface measure on ∂ D(ξ, r). Integrals
MG

r (u) and MG
r (u) are related by the coarea formula.

A function u on a domain � ⊂ �G is called harmonic if �Gu = 0 in the sense of
distributions. Then a harmonic function u in an open set � satisfies the mean-value formula

u(ξ) = MG

r (u)(ξ) = MG

r (u)(ξ),

by (2.23). For an open set � ⊂ G, we say that an upper semicontinuous function function
u : � → [−∞,∞) is �G-subharmonic if for every ξ ∈ � there exists rξ > 0 such that

u(ξ) ≤ MG

r (u)(ξ) for r < rξ . (2.27)

Proposition 2.2 (The maximum principle for the SubLaplacian [9]) If � ⊆ G is a bounded
open set, for every u ∈ C2(�) satisfying �Gu ≥ 0 in � and limsupξ→ηu(ξ) ≤ 0 for any
η ∈ ∂�, we have u ≤ 0 in �.

Theorem 2.1 (Theorem 4.3 in [9]) Let � be an open set in G and u : � → [−∞,+∞) be
an upper semicontinuous function. Then, the following statements are equivalent:

(i) u is subharmonic;
(ii) u ∈ L1

loc(�), u(ξ) = limr→0+MG
r (u)(ξ) for every ξ ∈ � and �Gu ≥ 0 in � in the

sense of distributions.

When G is the Heisenberg group H in (1.4), the SubLaplacian is

�b =
4n∑

a=1

X2
a,

where Xa’s are given by (2.2). It is not elliptic, but is subelliptic. It is known that the funda-
mental solution of �b is −CQ‖ · ‖−Q+2 for some constant CQ > 0 as in Proposition 2.1,
with the norm given by

‖(x, t)‖ := (|x |4 + t2)
1
4 .
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The invariant Haar measure on H is the usual Lebesgue measure dxdt on R
4n+3.

K (x, t) = |∇G�|2
|∇�| (x, t) = 2CQ(Q − 2)

‖(x, t)‖Q−2

|x |2√
4|x |6 + t2

, (2.28)

in the mean-value formula, where Q := 4n +2, the homogeneous dimension of the (4n +1)-
dimensional Heisenberg group H .

When G is the group H̃q in (2.13), the SubLaplacian is �̃b. Because of the fundamental
solution of �̃b given in Proposition 2.1, its norm is given by

‖(λ, t)‖q := (2
q |λ|4 + t2)

1
4 .

The invariant Haar measure on H̃q is the usual Lebesgue measure dλdt on R
5. Its homoge-

neous dimension is 6, and the mean-value formulae becomes

M
q
r (u)(η) : =

∫
∂ Dq (0,r)

|∇q�q |2
|∇�q | (λ′, t ′)ι∗η,qu(λ′, t ′)d S(λ′, t ′),

Mq
r (u)(η) : = mq

r6

∫
Dq (0,r)

Kq(λ′, t ′)ι∗η,qu(λ′, t ′)dV (λ′, t ′), (2.29)

where Dq(0, r) is the ball of radius r and centered at the origin in H̃q in terms of the norm
‖ · ‖q , mq is the constant in the representation formula (2.24) for the group H̃q , and

Kq(λ, t) =
4∑

j=1

(
X̃ jρ

1
4

q

)2

= 2
q |λ|2

‖(λ, t)‖2q
,

by (2.20), which is homogeneous of degree 0.

2.4 Plurisubharmonic functions on the Heisenberg group

Although Hη,q is not a subgroup, by the embedding

ιη,q : H̃q → Hη,q , (λ, t) 	→ η(qλ, t), (2.30)

we say that u is subharmonic function on Hη,q if ι∗η,qu is �̃q -subharmonic on H̃q . Thus, a
[−∞,∞)-valued upper semicontinuous function u on a domain� ⊂ H is plurisubharmonic
if u is L1

loc(�) and ι∗η,qu is �̃q -subharmonic on ι∗η,q�∩ H̃q for any q ∈ H
n\D and η ∈ H n .

Denote by P SH(�) the class of all plurisubharmonic functions on �.
Recall that the convolution of two functions u and v over H is defined as

u ∗ v(x, t) =
∫
H

u(y, s)v((y, s)−1(x, t))dyds.

Then
Y (u ∗ v) = u ∗ Yv (2.31)

for any left invariant vector field Y by (2.5), and

u ∗ v(x, t) =
∫
H

u((x, t)(y, s)−1)v(y, s)dyds.

by taking transformation (y, s)−1(x, t) → (y, s) for fixed (x, t), whose Jacobian can be
easily checked to be identity. By the non-commutativity

(x, t)(y, s)−1 �= (y, s)−1(x, t) (2.32)
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in general, we have u ∗ v �= v ∗ u, and

∂ D(ξ, r) = {η ∈ G|‖ξ−1η‖ = r} �= {η ∈ G|‖ηξ−1‖ = r}.
Consider the standard regularization given by the convolution χε ∗ u with

χε(ξ) := 1

εQ
χ
(
δ 1

ε
(ξ)

)
, (2.33)

where 0 ≤ χ ∈ C∞
0 (D(0, 1)),

∫
H χ(ξ)dV (ξ) = 1. Then χε ∗ u subharmonic if u is (cf.

Proposition 2.3 (6)), but we do not know whether χε ∗ u is decreasing as ε decreasing to 0,
which we could not prove as in the Euclidean case, because of the non-commutativity.

Remark 2.1 (1) It is a consequence of Theorem 2.1 that a function is in L1
loc(�) if it is �b-

subharmonic on � ⊂ H . But since Hq is different in general for different q ∈ H
n\D,

we do not know wether a P SH(�) function is �b-subharmonic on �. So we require it
as a condition in the definition.

(2) In the characterization of subharmonicity in Theorem 2.1 there is an additional condition
u(ξ) = limr→0+MG

r (u)(ξ). We know that MG
r (u)(ξ) is increasing in r if �Gu ≥ 0.

The following basic properties of PSH functions also hold on the Heisenberg group.

Proposition 2.3 Assume that � is a bounded domain in H . Then we have that

(1) If u, v ∈ P SH(�), then au + bv ∈ P SH(�), for positive constants a, b;
(2) If u, v ∈ P SH(�), then max{u, v} ∈ P SH(�);
(3) If {uα} is a family of locally uniformly bounded functions in P SH(�), then the upper

semicontinuous regularization (supα uα)∗ is a PSH function;
(4) If {un} is a sequence of functions in P SH(�) such that un is decreasing to u ∈ L1

loc(�),
then u ∈ P SH(�);

(5) If u ∈ P SH(�) and γ : R → R is convex and nondecreasing, then γ ◦ u ∈ P SH(�);
(6) If u ∈ P SH(�), then the regularization χε ∗ u(ξ) is also PSH on �′ ⊂ H , where �′

is subdomain such that �′ D(0, ε) ⊂ �. Moreover, if u is also continuous, then χε ∗ u
converges to u uniformly on any compact subset.

(7) If ω � �, u ∈ P SH(�), v ∈ P SH(ω), and lim supξ→η v(ξ) ≤ u(η) for all η ∈ ∂ω,
then the function defined by

φ =
{

u, on �\ω,

max{u, v}, on ω,

is PSH on �.

Proof (1)–(3) follows from definition trivially.
(4) It holds since for any fixed q ∈ H

n\D, η ∈ � and small r > 0,

u(η) = lim
n→∞ un(η) ≤ lim

n→∞
mq

r6

∫
Dq (0,r)

Kq(λ, t)ι∗η,qun(λ, t)dV (λ, t)

= mq

r6

∫
Dq (0,r)

Kq(λ, t)ι∗η,q u(λ, t)dV (λ, t) = Mq
r (u)(η)

by the monotone convergence theorem.
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(5) It holds since

Mq
r (γ ◦ u)(η) = mq

r6

∫
Dq (0,r)

Kq (λ, t)γ (ι∗η,q u(λ, t))dV (λ, t)

≥ γ

(
mq

r6

∫
Dq (0,r)

Kq(λ, t)ι∗η,q u(λ, t)dV (λ, t)

)
≥ γ

(
ι∗η,q u(0)

)
= (γ ◦ u)(η)

by Jensen’s inequality for nondecreasing convex function γ , since mq

r6
Kq(λ, t) is nonnegative

and its integral over Dq(0, r) is 1. The latter fact follows from the mean value formula for
the harmonic function ≡ 1.

(6) For fixed q ∈ H
n\D and η ∈ �, χε ∗ u is PSH since it is smooth and

Mq
r (χε ∗ u)(η) = mq

r6

∫
Dq (0,r)

Kq(λ, t)ι∗η,q(χε ∗ u)(λ, t)dV (λ, t)

= mq

r6

∫
Dq (0,r)

Kq(λ, t)dV (λ, t)
∫
H

χε(y, s)u
(
(y, s)−1η(qλ, t)

)
dyds

=
∫
H

χε(y, s)Mq
r

(
ι∗
(y,s)−1η,qu

)
(0)dyds

≥
∫
H

χε(y, s)u
(
(y, s)−1η

)
dyds = χε ∗ u(η), (2.34)

by Fubini’s theorem and subharmonicity of u on the open subset�∩H(y,s)−1η,q . The uniform
convergence is trivial.

(7) φ is obviously in L1
loc(�), and is PSH on ω̊ by (2). For η ∈ ∂ω,

Mq
r (φ)(η) ≥ Mq

r (u)(η) ≥ u(η) = φ(η)

for small r > 0. ��
Remark 2.2 Our notion of plurisubharmonic functions is different from that introduced by
Harvey and Lawson [16] for calibrated geometries, i.e. an upper semicontinuous function u
satisfies �u ≥ 0 on each calibrated submanifold in R

N , where � is the Laplacian associated
to the induced Riemannian metric on the calibrated submanifold. In our definition we require
�qu ≥ 0 for SubLaplacian �q , which is subelliptic, on each 5-dimensional real hyperplane
Hη,q for q ∈ H

n\D.

3 Differential operators d0, d1,� and the quaternionic Monge–Ampère
operator on the Heisenberg group

3.1 Differential operators d0 and d1

Denote W j := X2 j−1 + iX2 j , W j := X2 j−1 − iX2 j , j = 1, . . . 2n. Then

[W j , W k] = 8δ jk i∂t

and all other brackets vanish by (2.2). Let {. . . , θ j , θ j , . . . , θ} be the basis dual to
{. . . , W j , W j , . . . , ∂t }. The tangential Cauchy-Riemann operator is defined as ∂bu =∑2n

j=1 W j u θ j for a function u and

∂b

(∑
u J K θ J ∧ θ K

)
=

∑
∂bu J K ∧ θ J ∧ θ K (3.1)
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where θ J = θ j1 ∧ · · · ∧ θ jl , θ K = θk1 ∧ · · · ∧ θkm for multi-indices J = ( j1, . . . , jl),
K = (k1, . . . , km). Similarly, ∂bu = ∑2n

j=1 W j u θ j for a function u and is extended to forms
as in (3.1). Then

∂b∂bu =
2n∑

j,k=1

Wk W j u θk ∧ θ j ,

∂b∂bu =
2n∑

j,k=1

W j Wku θ j ∧ θk = −
2n∑

j,k=1

Wk W j uθk ∧ θ j + 8i∂t u
2n∑

k=1

θk ∧ θk .

Thus ∂b∂b �= −∂b∂b.
By the definition of the operator � in (1.10), we have

�F = 1

2

∑
A,B,I

(Z A0′ Z B1′ − Z B0′ Z A1′) f I ωA ∧ ωB ∧ ωI , (3.2)

for F = ∑
I f I ωI . Now for a function u ∈ C2 we define

�ABu := 1

2
(Z A0′ Z B1′u − Z B0′ Z A1′u). (3.3)

2�AB is the determinant of (2 × 2)-submatrix of Ath and Bth rows in (1.7). Note that
Z B0′ Z A1′u in the above definition could not be replaced by Z A1′ Z B0′u in general because of
noncommutativity. Then we can write

�u =
2n−1∑

A,B=0

�ABu ωA ∧ ωB . (3.4)

When u1 = . . . = un = u, �u1 ∧ · · · ∧ �un coincides with (�u)n := ∧n�u.
The following nice behavior of brackets plays a key role in the proof of properties of

d0, d1.

Proposition 3.1 (1) For fixed A′ = 0′ or 1′, we have [Z AA′ , Z B A′ ] = 0 for any A, B =
0, . . . 2n − 1, i.e. each column {Z0A′ , . . . , Z(2n−1)A′ } in (1.7) spans an abelian subal-
gebra.

(2) If |A − B| �= 0, n, we have
[Z A0′ , Z B1′ ] = 0, (3.5)

and
[Zl0′ , Z(n+l)1′ ] = [Z(n+l)0′ , Zl1′ ] = −8i∂t , (3.6)

for l = 0, , . . . n − 1, and

2�l(n+l) = X2
4l+1 + X2

4l+2 + X2
4l+3 + X2

4l+4. (3.7)

Proof Noting that by (1.7), Z AA′ and Z B B′ for |A − B| �= 0 or n are linear combinations of
X2l+ j ’s, j = 1, 2, with different l, and so their bracket vanishes by (2.3). Thus (1) and (3.5)
hold. (3.6) follows from brackets in (2.3) and the expression of Z AA′ ’s in (1.7). (3.7) holds
by

2�l(n+l) = (X4l+1 + iX4l+2)(X4l+1 − iX4l+2) + (X4l+3 − iX4l+4)(X4l+3 + iX4l+4)

= X2
4l+1 + X2

4l+2 + X2
4l+3 + X2

4l+4 − i[X4l+1, X4l+2] + i[X4l+3, X4l+4]
and using (2.3). ��
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Proof of Proposition 1.1 (1) For any F = ∑
I f I ω

I , note that we have Z A0′ Z B0′ f I =
Z B0′ Z A0′ f I by Proposition 3.1 (1). So we have

d2
0 F =

∑
I

2n−1∑
A,B=0

Z A0′ Z B0′ f I ωA ∧ ωB ∧ ωI = 0,

by ωA ∧ ωB = −ωB ∧ ωA. It is similar for d2
1 = 0.

(2) For any F = ∑
I f I ω

I , we have

d0d1F =
∑

I

∑
A,B

Z A0′ Z B1′ f I ω
A ∧ ωB ∧ ωI =

∑
I

∑
|A−B|�=0,n

Z A0′ Z B1′ f I ω
A ∧ ωB ∧ ωI

+
∑

I

n−1∑
l=0

(
Zl0′ Z(n+l)1′ − Z(n+l)0′ Zl1′

)
f I ω

l ∧ ωn+l ∧ ωI

= −
∑

I

∑
|A−B|�=0,n

Z B1′ Z A0′ f I ω
B ∧ ωA ∧ ωI

−
∑

I

n−1∑
l=0

(Zl1′ Z(n+l)0′ − Z(n+l)1′ Zl0′ ) f I ω
l ∧ ωn+l ∧ ωI

= −
∑

A,B,I

Z A1′ Z B0′ f I ω
A ∧ ωB ∧ ωI = −d1d0F,

by using commutators (3.5)–(3.6) in Proposition 3.1 in the third identity.
(3) Write G = ∑

J gJ ωJ . We have

dα(F ∧ G) =
∑

A,I ,J

[Z Aα′ ( f I )gJ + f I Z Aα′ (gJ )] ωA ∧ ωI ∧ ωJ

=
∑
A,I

Z Aα′ ( f I ) ωA ∧ ωI ∧
∑

J

gJ ωJ + (−1)p
∑
A,I

f I ω
I ∧

∑
J

Z Aα′ (gJ )ωA ∧ ωJ

= dα F ∧ G + (−1)p F ∧ dαG.

by ωA ∧ ωI = (−1)pωI ∧ ωA. ��
Corollary 3.1 For u1, . . . , un ∈ C3, �u1 ∧ · · · ∧ �uk is closed, k = 1, . . . , n,.

Proof By Proposition 1.1 (3), we have

dα(�u1 ∧ · · · ∧ �uk) =
k∑

j=1

�u1 ∧ · · · ∧ dα(�u j ) ∧ · · · ∧ �uk,

for α = 0, 1. Note that d0� = d2
0d1 = 0 and d1� = −d2

1d0 = 0 by using Proposition 1.1
(1)–(2). It follows that dα(�u1 ∧ · · · ∧ �uk) = 0. ��
Proof of Proposition 1.2 It follows from Corollary 3.1 that

d0(�u2 ∧ · · · ∧ �un) = d1(�u2 ∧ · · · ∧ �un) = 0.

By Proposition 1.1 (3),

dα(u1�u2 ∧ · · · ∧ �un) = dαu1 ∧ �u2 ∧ · · · ∧ �un + u1dα(�u2 ∧ · · · ∧ �un)

= dαu1 ∧ �u2 ∧ · · · ∧ �un .
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So we have

�(u1�u2 ∧ · · · ∧ �un) = d0d1(u1�u2 ∧ · · · ∧ �un) = d0(d1u1 ∧ �u2 ∧ · · · ∧ �un)

= d0d1u1 ∧ �u2 ∧ · · · ∧ �un − d1u1 ∧ d0(�u2 ∧ · · · ∧ �un)

= �u1 ∧ �u2 ∧ · · · ∧ �un .

��

3.2 The quaternionic Monge–Ampère operator on the Heisenberg groups

A quaternionic (n × n)-matrix (M jk) is called hyperhermitian if M jk = Mk j .

Proposition 3.2 (Claim 1.1.4, 1.1.7 in [1]) For a hyperhermitian (n × n)-matrix M, there
exists a unitary matrix U such that U∗MU is diagonal and real.

Proposition 3.3 (Theorem 1.1.9 in [1])

(1) The Moore determinant of any complex hermitian matrix considered as a quaternionic
hyperhermitian matrix is equal to its usual determinant.

(2) For any quaternionic hyperhermitian (n × n)-matrix M and any quaternionic (n × n)-
matrix C

det(C∗MC) = det(A) det(C∗C).

Proposition 3.4 For a real C2 function u, the horizontal quaternionic Hessian (Ql Qmu +
8δlm i∂t u) is hyperhermitian.

Proof It follows from definition (1.7) of Z AA′ ’s that

jZ(n+m)0′ = −Zm1′ j, jZ(n+m)1′ = Zm0′ j (3.8)

and so

Ql Qm = (X4l+1 + iX4l+2 + jX4l+3 + kX4l+4) (X4m+1 − iX4m+2 − jX4m+3 − kX4m+4)

= (Zl0′ − Zl1′ j)
(
Z(n+m)1′ − jZ(n+m)0′

)
= (

Zl0′ Z(n+m)1′ − Zl1′ Z(n+m)0′
) + (Zl0′ Zm1′ − Zl1′ Zm0′) j.

(3.9)
When l = m, it follows that

Ql Qlu = 2�l(n+l)u − [Zl1′ , Z(n+l)0′ ]u + [Zl0′ , Zl1′ ]uj = 2�l(n+l)u − 8i∂t u (3.10)

by using (3.5)–(3.6). Thus Ql Qlu + 8i∂t u is real by (3.7). If l �= m, we have

Ql Qmu = (
Zl0′ Z(n+m)1′ − Z(n+m)0′ Zl1′

)
u + (Zl0′ Zm1′ − Zm0Zl1′) uj

= 2
(�l(n+m)u + �lmuj

)
,

(3.11)

by using commutators

[Zl1′ , Z(n+m)0′ ] = 0 and [Zm0′ , Zl1′ ] = 0, for l �= m, (3.12)

by Proposition 3.1.
To see the horizontal quaternionic Hessian to be hyperhermitian, note that for l �= m

Ql Qmu = 2
(�l(n+m)u − j�lmu

)
, (3.13)
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and

�l(n+m)u = Zl0′ Z(n+m)1′u − Z(n+m)0′ Zl1′u = Z(n+l)1′ Zm0′u − Zm1′ Z(n+l)0′u

= Zm0′ Z(n+l)1′u − Z(n+l)0′ Zm1′u = �m(n+l)u
(3.14)

by the conjugate of Z AA′ ’s in (1.7) and (3.12). Similarly, for any l, m, we have

�lmu = (Zl0′ Zm1′ − Zm0′ Zl1′)u = (−Z(n+l)1′ Z(n+m)0′ + Z(n+m)1′ Z(n+l)0′)u, (3.15)

and so
j�lmu = (Zl0′ Zm1′ − Zm0′ Zl1′)u j = −�mlu j (3.16)

by using (3.8) and (3.12). Now substitute (3.14) and (3.16) into (3.13) to get

Ql Qmu = 2
(�m(n+l)u + �mluj

) = Qm Qlu

for l �= m. This together with the reality of Ql Qlu + 8i∂t u implies that the quaternionic
Hessian (Ql Qmu + 8δlm i∂t u) is hyperhermitian. ��

As in [33], denote by MF(p, m) the space of F-valued (p × m)-matrices, where F =
R, C, H. For a quaternionic p ×m-matrixM, writeM = a +bj for some complex matrices
a, b ∈ MC(p, m). Then we define the τ(M) as the complex (2p × 2m)-matrix

τ(M) :=
(

a −b
b a

)
, (3.17)

Recall that for skew symmetric matrices Mα = (Mα;AB) ∈ MC(2n, 2n), α = 1, . . . , n, such
that 2-forms ωα = ∑

i, j Mα;ABωA ∧ ωB are real, define

ω1 ∧ · · · ∧ ωn = �n(M1, . . . , Mn)�2n, (3.18)

Consider the homogeneous polynomial det(λ1M1 + . . . + λnMn) in real variables
λ1, . . . , λn of degree n. The coefficient of the monomial λ1 . . . λn divided by n! is called the
mixed discriminant of the matrices M1, . . . ,Mn , and it is denoted by det(M1, . . . ,Mn).
In particular, when M1 = . . . = Mn = M, det(M1, . . . ,Mn) = det(M).

Theorem 3.1 (Theorem1.2 in [33])For hyperhermitian matricesM1, . . . ,Mn ∈ MH(n, n),
we have

2nn! det (M1, . . . ,Mn) = �n (τ (M1)J, . . . , τ (Mn)J) , (3.19)

where

J =
(

0 In

−In 0

)
. (3.20)

Proof of Theorem 1.2 The proof is similar to that of Theorem 1.3 in [33] except that Z AA′ ’s
are noncommutative. (3.10)–(3.11) implies that the quaternionic Hessian can be written as(

Ql Qmu + 8δlm i∂t u
) = a + bj,

with n × n complex matrices

a = 2
(�l(n+m)u

)
, b = 2 (�lmu) .

Thus

τ
(
Ql Qmu + 8δlm i∂t u

)
J =

(
a −b
b a

)
J =

(
b a

−a b

)

= 2

( �lmu �l(n+m)u
−�l(n+m)u �lmu

)
,

(3.21)
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Note that �ll u = �(n+l)(n+l)u = 0 by definition. For l �= m,

�l(n+m) = Zm0′ Z(n+l)1′ − Z(n+l)0′ Zm1′ = −�(n+l)m

by (3.14), while for l = m we also have

�l(n+l)u = Z(n+l)1′ Zl0′u − Zl1′ Z(n+l)0′u = Zl0′ Z(n+l)1′u − Z(n+l)0′ Zl1′u = −�(n+l)l u,

(3.22)
by using Proposition 3.1 (2). Moreover,

�lmu = �(n+l)(n+m)u,

which follows from (3.15). Therefore we have

τ
(
Ql Qmu + 8δlm i∂t u

)
J = 2(�ABu). (3.23)

Then the result follows fromapplyingTheorem3.1 tomatricesM j =2
(
Ql Qmu j +8δlm i∂t u j

)
.

��

4 Closed positive currents on the quaternionic Heisenberg group

4.1 Positive 2k-forms

Now let us recall definitions of real forms and positive 2k-forms (cf. [4,27,33] and references
therein). Let {ω0, ω1, . . . , ω2n−1} be the standard basis of C

2n and

βn :=
n−1∑
l=0

ωl ∧ ωn+l . (4.1)

Then βn
n = ∧nβn = n! �2n, where �2n is given by (1.12). For A ∈ GLH(n), define the

induced C-linear transformation of A on C
2n as A.ωp = τ(A).ωp with

M .ωp =
2n−1∑
j=0

M jpω
j , (4.2)

for M ∈ MC(2n, 2n), and define the induced C-linear transformation of A on ∧2k
C
2n as

A.(ω0 ∧ ω1 ∧ · · · ∧ ω2k−1) = A.ω0 ∧ A.ω1 ∧ . . . ∧ A.ω2k−1.

Therefore for A ∈ UH(n), A.βn = βn,. Consequently A.(∧nβn) = ∧nβn , i.e., A.�2n =
�2n .

j defines a real linear map

ρ(j) : C
2n → C

2n, ρ(j)(zωk) = zJ.ωk, (4.3)

which is not C-linear, where J is given by (3.20). Also the right multiplying of i:
(q1, . . . , qn) 	→ (q1i, . . . , qn i) induces

ρ(i) : C
2n → C

2n, ρ(i)(zωk) = ziωk .

Thus ρ defines GLH(1)-action on C
2n . The actions of GLH(1) and GLH(n) on C

2n

are commutative, and equip C
2n a structure of GLH(n)GLH(1)-module. This is because

(M N ).ωp = M .(N .ωp) by definition and ρ(j)ρ(i) = −ρ(i)ρ(j). This action extends to
∧2k

C
2n naturally.
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The real action (4.3) of ρ(j) on C
2n naturally induces an action on ∧2k

C
2n . An element

ϕ of ∧2k
C
2n is called real if ρ(j)ϕ = ϕ. Denote by ∧2k

R
C
2n the subspace of all real elements

in ∧2k
C
2n . These forms are counterparts of (k, k)−forms in complex analysis.

A right H-linear map g : H
k → H

m induces a C-linear map τ(g) : C
2k → C

2m . If we
write g = (g jl)m×k with g jl ∈ H, then τ(g) is the complex (2m × 2k)-matrix given by
(3.17). The induced C-linear pulling back transformation of g∗ : C

2m → C
2k is defined as:

g∗ω̃p = τ(g)t .ωp =
2k−1∑
j=0

τ(g)pjω
j , p = 0, . . . , 2m − 1, (4.4)

where {ω̃0, . . . , ω̃2m−1} is the standard basis ofC2m and {ω0, . . . , ω2k−1} is the standard basis
of C

2k . It induces a C-linear pulling back transformation on ∧2k
C
2m given by g∗(α ∧ β) =

g∗α ∧ g∗β inductively.
An element ω ∈ ∧2k

R
C
2n is said to be elementary strongly positive if there exist linearly

independent right H-linear mappings η j : H
n → H , j = 1, . . . , k, such that

ω = η∗
1ω̃

0 ∧ η∗
1ω̃

1 ∧ · · · ∧ η∗
k ω̃0 ∧ η∗

k ω̃1,

where {ω̃0, ω̃1} is a basis of C
2 and η∗

j : C
2 → C

2n is the induced C-linear pulling back

transformation of η j . The definition in the case k = 0 is obvious: ∧0
R

C
2n = R and the

positive elements are the usual ones. For k = n, dimC ∧2n
C
2n = 1, �2n defined by (1.12) is

an element of ∧2n
R

C
2n (ρ(j)βn = βn) and spans it. An element η ∈ ∧2n

R
C
2n is called positive

if η = κ �2n for some non-negative number κ . By definition, ω ∈ ∧2k
R

C
2n is elementary

strongly positive if and only if

ω = M.(ω0 ∧ ωn ∧ · · · ∧ ωk−1 ∧ ωn+k−1) (4.5)

for some quaternionic matrix M ∈ MH(n, k) of rank k.
An elementω ∈ ∧2k

R
C
2n is called strongly positive if it belongs to the convex coneSP2k

C
2n

in ∧2k
R

C
2n generated by elementary strongly positive 2k-elements; that is, ω = ∑m

l=1 λlξl

for some non-negative numbers λ1, . . . , λm and some elementary strongly positive elements
ξ1, . . . , ξm . An 2k-element ω is said to be positive if for any strongly positive element
η ∈ SP2n−2k

C
2n , ω ∧ η is positive. We will denote the set of all positive 2k-elements

by ∧2k
R+C

2n . Any 2k element is a C-linear combination of strongly positive 2k elements by

Proposition 5.2 in [4], i.e. spanC{ϕ; ϕ ∈ ∧2k
R+C

2n} = spanC{ϕ; ϕ ∈ SP2k
C
2n} = ∧2k

C
2n .

By definition, βn is a strongly positive 2-form, and βn
n = ∧nβn = n! �2n is a positive

2n-form.
For a domain � in H , let D p

0 (�) = C0(�,∧p
C
2n) and D p(�) = C∞

0 (�,∧p
C
2n).

An element of the latter one is called a test p-form. An element η ∈ D2k
0 (�) is called a

positive 2k-form (respectively, strongly positive 2k-form) if for any q ∈ �, η(q) is a positive
(respectively, strongly positive) element.

Theorem 1.1 in [33] and its proof implies the following result.

Proposition 4.1 For a hyperhermitian n×n-matrix M = (M jk), there exists a quaternionic
unitary matrix E ∈ UH(n) such that E∗ME = diag(ν0, . . . , νn−1). Then the 2-form

ω =
2n−1∑

A,B=0

MAB ωA ∧ ωB , (4.6)
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with M = τ(M)J, can be normalized as

ω = 2
n−1∑
l=0

νl ω̃
l ∧ ω̃l+n (4.7)

with ω̃A = E∗.ωA. In particular, ω is strongly positive if and only if M is nonnegative.

Proposition 4.2 For any C1 real function u, d0u ∧d1u is elementary strongly positive if grad
u �= 0.

Proof Let p := (p1, . . . , pn) ∈ H
n with pl = X4l+1u + iX4l+2u + jX4l+3u + kX4l+4u.

Then as (3.9), we have
pl pm = �̃l(n+m) + �̃lmj, (4.8)

where
�̃AB := Z A0′u Z B1′u − Z B1′u Z A0′u.

Denote n × n quaternionic matrix M̃ := (pl pm). Then M̃ = a + bj with n × n complex
matrices a = (�̃l(n+m)u), b = (�̃lmu). Thus

τ
(M̃)

J =
(

a −b
b a

)
J =

(
b a

−a b

)
=

(
�̃lm �̃l(n+m)

−�̃l(n+m) �̃lm

)
= (�̃AB), (4.9)

since we can easily check

�̃l(n+m) = −�̃(n+l)m, �̃lm = �̃(n+l)(n+m).

Since M has eigenvalues |p|2, 0, . . . , 0, we see that

d0u ∧ d1u =
2n−1∑

A,B=0

Z A0′u Z B1′u ωA ∧ ωB =
2n−1∑

A,B=0

�̃AB ωA ∧ ωB .

is elementary strongly positive by Proposition 4.1. ��

See [28, Proposition 3.3] for this proposition for H
n with a different proof.

4.2 The closed strongly positive 2-form given by a smooth PSH

Proposition 4.3 For u ∈ C2(�), u is PSH if and only if the hyperhermitian matrix (Ql Qmu−
8δlm i∂t u) is nonnegative.

The tangential mapping ιη,q∗ maps horizontal left invariant vector fields on H̃q to that on the
quaternionic Heisenberg line Hη,q . In particular, we have

Proposition 4.4 For q ∈ H
n\D,

ιη,q∗ X̃ j =
n−1∑
l=0

4∑
k=1

(
ql

R

)
jk

X4l+k (4.10)
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Proof Since ιη,q = τη ◦ ιq and X j ’s are invariant under τη, it sufficient to prove (4.10) for
η = 0. For fixed j = 1, 2, 3, 4 and l = 1, . . . , n, note that

q̂l i j = qR

l

⎛
⎜⎜⎝

...

1
...

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

(
qR

l

)
1 j

...(
qR

l

)
4 j

⎞
⎟⎟⎠ .

by (2.6). Thus for q = (q1, . . . , qn) ∈ H
n and ς ∈ R, if we write ιq(λ, t) = (qλ, t) = (x, t),

we get

ιq{(λ, t)(ς i j , 0)} =
(

q(λ + ς i j ), t + 2ς
4∑

k=1

Bq
k jλk

)

=
⎛
⎝. . . , x4l+i + ς

(
qR

l

)
i j

, . . . , t + 2ς
n−1∑
l=0

4∑
k,i=1

Jki x4l+k(q
R

l )i j

⎞
⎠ ,

by the multiplication (2.13) of the group H̃q and Bq in (2.12). So

(
ιq∗ X̃ j f

)
(x, t) = d

dς

∣∣∣∣
ς=0

f
(
ιq{(λ, t)(ς i j , 0)}

)

=
n−1∑
l=0

4∑
i=1

(
qR

l

)
i j

∂ f

∂x4l+i
+ 2

n−1∑
l=0

4∑
k,i=1

Jki x4l+k

(
qR

l

)
i j

∂ f

∂t

=
n−1∑
l=0

4∑
i=1

(
ql

R

)
j i

X4l+i f (x, t)

by (2.8). ��

Proof of Proposition 4.3 Denote Q̃ := X̃1 + iX̃2 + jX̃3 + k X̃4. Then we have

ιη,q∗ Q̃ =
4∑

j=1

ιη,q∗ X̃ j i j =
n−1∑
l=0

4∑
j,k=1

(
ql

R

)
jk

X4l+k i j =
n−1∑
l=0

ql Ql (4.11)

by Proposition 4.4, (2.6) and definition of qR in (2.7), and ιη,q∗ Q̃ = ∑n−1
l=0 Qlql by taking

conjugate. Therefore for real u, we have

ιη,q∗
(
X̃2
1 + X̃2

2 + X̃2
3 + X̃2

4

)
u = Re

(
ιη,q∗ Q̃ · ιη,q∗ Q̃u

)
= Re

⎛
⎝ n−1∑

l,m=0

ql · Ql Qmu · qm

⎞
⎠ .

(4.12)
On the other hand, we have

n−1∑
l,m=0

ql
(
Ql Qmu + 8δlm i∂t u

)
qm =

(
n−1∑
l=0

ql Ql

)(
n−1∑
m=0

Qmqm

)
u + 8

n−1∑
l=0

ql iql∂t u.
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Since the horizontal quaternionic Hessian (Ql Qmu +8δlm i∂t u) is hyperhermitian by Propo-
sition 3.4, we see that the above quadratic form is real for any q . Note that pip ∈ ImH for
any 0 �= p ∈ H. Therefore, we get

n−1∑
l,m=0

ql
(
Ql Qmu + 8δlm i∂t u

)
qm = Re

⎛
⎝ n−1∑

l,m=0

ql · Ql Qmu · qm

⎞
⎠ = (ιη,q∗�̃q)u

(4.13)
for q ∈ H

n\D by (4.12).
Now if u is PSH, then �̃q(ι∗η,qu) is nonnegative by applying Theorem 2.1 to the group

H̃q for q ∈ H
n\D. Consequently, (4.13) holds for any q ∈ H

n by continuity, i.e. the
hyperhermitianmatrix (Ql Qmu+8δlm i∂t u) is nonnegative. Conversely, if the hyperhermitian
matrix is nonnegative, we get u is is subharmonic on each quaternionic Heisenberg lineHη,q

for any q ∈ H
n\D and η ∈ H n by applying Theorem 2.1 again. ��

Corollary 4.1 For u ∈ P SH ∩ C2(�), �u is a closed strongly positive 2-form.

Proof It follows from applying Proposition 4.1 to nonnegative M = (Ql Qmu − 8δlm i∂t u)

and using (3.23). ��
Corollary 4.2 A C2 function u is pluriharmonic if and only if �u = 0.

Proof u is pluriharmonic means that �̃q ι∗η,qu = 0 on the quaternionic Heisenberg line H̃q

for any η ∈ H and q ∈ H
n\D. It holds if and only if∑

l,m

ql(Ql Qmu + 8δlm i∂t u)qm = 0

for any q ∈ H
n by (4.13), i.e. (Ql Qmu + 8δlm i∂t u) = 0, which equivalent to �u = 0 by

(3.23). ��
Recall that the tangential 1-Cauchy–Fueter operator on a domain � in the Heisenberg

group H is D : C1(�, C
2) → C0(�, C

2n) [20] given by

(D f )A =
∑

A′=0′,1′
Z A′

A f A′ , A = 0, . . . , 2n − 1,

where Z0′
A = Z A1′ and Z1′

A = −Z A0′ . AC
2-valued function f = ( f0′ , f1′) = ( f1+ i f2, f3+

i f4) is called 1-CF if D f = 0.

Proposition 4.5 Each real component of a 1-CF function f : H n → C
2 is pluriharmonic.

Proof Note that
∑

A′=0′,1′ Z A′
A f A′ = 0 is equivalent to

∑
A
∑

A′=0′,1′ Z A′
A f A′ωA = 0, which

can be written as
d1 f0′ − d0 f1′ = 0.

Apply d0 on both sides to get d0d1 f0′ = 0 since d2
0 = 0. Similarly, we get d0d1 f1′ = 0.

Writing f0′ = f1 + i f2 for some real functions f1 and f2, we have

� f1 + i� f2 = 0.

Note that for a real valued function u, �u is a real 2-form by (3.23) and Proposition 4.1, i.e.
ρ(j)�u = �u. We get

� f1 − i� f2 = 0.

Thus � f1 = 0 = � f2. Similarly, we have � f3 = 0 = � f4. ��
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See Corollary 2.1 in [31] for this Proposition on the quaternionic space H
n . Since 1-regular

functions are abundant, so are pluriharmonic functions on the Heisenberg group.

4.3 Closed positive currents

An element of the dual space (D2n−p(�))′ is called a p-current. A 2k-current T is said to
be positive if we have T (η) ≥ 0 for any strongly positive form η ∈ D2n−2k(�). Although a
2n-form is not an authentic differential form and we cannot integrate it, we can define∫

�

F :=
∫

�

f dV , (4.14)

if we write F = f �2n ∈ L1(�,∧2n
C
2n), where dV is the Lebesgue measure. In general,

for a 2n-current F = μ �2n with the coefficient to be a measure μ, define∫
�

F :=
∫

�

μ. (4.15)

Now for the p-current F , we define a (p + 1)-current dα F as

(dα F)(η) := −F(dαη), α = 0, 1, (4.16)

for any test (2n − p − 1)-form η. We say a current F is closed if d0F = d1F = 0.
An element of the dual space (D2n−p

0 (�))′ are called a p-current of order zero. Obviously,
a 2n-current is just a distribution on�, whereas a 2n-current of order zero is a Radonmeasure
on �. Let ψ be a p-form whose coefficients are locally integrable in �. One can associate
with ψ the p-current Tψ defined by

Tψ(ϕ) =
∫

�

ψ ∧ ϕ, for any ϕ ∈ D2n−p(�).

If T is a 2k-current on �, ψ is a 2l-form on � with coefficients in C∞(�), and k + l ≤ n,
then the formula

(T ∧ ψ)(ϕ) = T (ψ ∧ ϕ) for ϕ ∈ D2n−2k−2l(�) (4.17)

defines a (2k + 2l)-current. In particular, if ψ is a smooth function, ψT (ϕ) = T (ψϕ).
A2k-currentT is said to bepositive ifwehaveT (η) ≥ 0 for anyη ∈ C∞

0 (�, S P2n−2k
C
2n).

Namely, T is positive if for any η ∈ C∞
0 (�, S P2n−2k

C
2n), T ∧η = μ �2n for some positive

distribution μ (and hence a measure).
Let I = (i1, . . . , i2k) be a multi-index such that 1 ≤ i1 < . . . < i2k ≤ n. Denote

by Î = (l1, . . . , l2n−2k) the increasing complements to I in the set {0, 1, . . . , 2n − 1}, i.e.,
{i1, . . . , i2k}∪{l1, . . . , l2n−2k} = {0, 1, . . . , 2n−1}. For a 2k-current T in� andmulti-index
I , define distributions TI by TI ( f ) := εI T ( f ω Î ) for f ∈ C∞

0 (�), where εI = ±1 is so
chosen that

εI ω
I ∧ ω Î = �2n . (4.18)

If T is a current of order 0, the distributions TI are Radon measures and

T (ϕ) =
∑

I

εI TI (ϕ Î ), (4.19)

for ϕ = ∑
Î ϕ Î ω

Î ∈ D2n−2k(�), where I and Î are increasing. Namely,

T =
∑

I

TI ω
I , (4.20)

123



The quaternionic Monge–Ampère operator. . . 543

where the summation is taken over increasing multi-indices of length 2k, holds in the sense
that if we write T ∧ ϕ = μ �2n for some Radon measure μ, then we have

T (ϕ) =
∫

�

μ =
∫

�

T ∧ ϕ. (4.21)

Proposition 4.6 Any positive 2k-current T on � has measure coefficients (i.e. is of order
zero), and we can write T = ∑

I TI ω
I for some complex Radon measures TI , where the

summation is taken over all increasing multi-indices I .

Proof By Proposition 5.4 in [4], we can find {ϕL } ⊆ S P2n−2k
C
2n such that any η ∈

∧2n−2k
C
2n is a C-linear combination of ϕL , i.e., η = ∑

λLϕL for some λL ∈ C. Let
{ϕ̃L } be a basis of ∧2k

C
2n which is dual to {ϕL }. Then T = ∑

TL ϕ̃L with distributional
coefficients TL as (4.20). If ψ is a nonnegative test function, ψϕL ∈ C∞

0 (�, S P2n−2k
C
2n).

Then TL(ψ) = T (ψϕL) ≥ 0 by definition. It follows that TL is a positive distribution, and
so is a nonnegative measure. ��

The following Proposition is obvious and will be used frequently.

Proposition 4.7 (1) (linearity) For 2n-currents T1 and T2 with (Radon) measure coefficients,
we have ∫

�

αT1 + βT2 = α

∫
�

T1 + β

∫
�

T2.

(2) If T1 ≤ T2 as positive 2n-currents (i.e. μ1 ≤ μ2 if we write Tj = μ j�2n, j = 1, 2), then∫
�

T1 ≤ ∫
�

T2.

Lemma 4.1 (Stokes-type formula) Let � be a bounded domain with smooth boundary and
defining function ρ (i.e. ρ = 0 on ∂� and ρ < 0 in �) such that |gradρ| = 1. Assume that
T = ∑

A TAω Â is a smooth (2n −1)-form in �, where ω Â = ωA��2n. Then for h ∈ C1(�),
we have ∫

�

hdαT = −
∫

�

dαh ∧ T +
2n−1∑
A=0

∫
∂�

hTA Z Aα′ρ d S, (4.22)

where d S denotes the surface measure of ∂�. In particular, if h = 0 on ∂�, we have∫
�

hdαT = −
∫

�

dαh ∧ T , α = 0, 1, (4.23)

Proof Note that

dα(hT ) =
∑
B,A

Z Bα′(hTA)ωB ∧ ω Â =
∑

A

Z Aα′(hTA)�2n .

Then ∫
�

dα(hT ) =
∫

�

∑
A

Z Aα′(hTA)dV =
∫

∂�

∑
A

hTA Z Aα′ρ d S,

by definition (4.14) and integration by part,∫
�

X j f dV =
∫

∂�

f X jρ d S, (4.24)

for j = 1, . . . 4n. (4.24) holds because the coefficient of ∂t is independent of t . (4.22) follows
from the above formula and dα(hT ) = dαh ∧ T + hdαT . ��
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Now let us show that dα F in the generalized sense (4.16), coincides with the original
definition when F is a smooth 2k-form. Let η be arbitrary (2n −2k −1)-test form compactly
supported in �. It follows from Lemma 4.1 that

∫
�

dα(F ∧ η) = 0. By Proposition 1.1 (3),
dα(F ∧ η) = dα F ∧ η + F ∧ dαη. We have

−
∫

�

F ∧ dαη =
∫

�

dα F ∧ η, i .e., (dα F)(η) = −F(dαη). (4.25)

We also define �F in the generalized sense, i.e., for each test (2n − 2k − 2)-form η,

(�F)(η) := F(�η). (4.26)

As a corollary, �F in the generalized sense coincides with the original definition when
F is a smooth 2k-form: ∫

�F ∧ η =
∫

F ∧ �η.

Corollary 4.3 For u ∈ P SH(�), �u is a closed positive 2-current.

Proof If u is smooth, �u is a closed strongly positive 2-form by Corollary 4.1. When u is
not smooth, consider regularization uε = χε ∗ u as in Proposition 2.3 (6). It suffices to show
that coefficients�ABuε → �ABu in the sense of weak convergence of distributions. For any
ϕ ∈ C∞

0 (�), ∫
�ABuε · ϕ =

∫
uε · �ABϕ →

∫
u · �ABϕ = (�ABu)(ϕ)

as ε → 0, by using integration by part (4.24) and the standard fact that χε ∗u → u in L1
loc(�)

if u ∈ L1
loc(�) [19]. It follows that the currents �uε converge to �u, and so the current �u

is positive. For any test form η,

(dα�u)(η) = −�u(dαη) = − lim
ε→0

�uε(dαη) = lim
ε→0

(dα�uε)(η) = 0,

α = 0, 1, where the last identity follows from Corollary 3.1. Here uε is smooth, and dα�uε

coincides with its usual definition. ��

5 The quaternionic Monge–Ampèremeasure over the Heisenberg
group

For positive (2n−2p)-form T and an arbitrary compact subset K , define‖T ‖K := ∫
K T ∧β

p
n ,

where βn is given by (4.1). In particular, if T is a positive 2n-current, ‖T ‖K coincides with∫
K T defined by (4.15). Let ‖ · ‖ be a norm on ∧2k

C
2n .

Lemma 5.1 (Lemma 3.3 in [27])For η ∈ ∧2k
R

C
2n with ‖η‖ ≤ 1, βk

n ±εη is a positive 2k-form
for some sufficiently small ε > 0.

Proposition 5.1 (Chern–Levine–Nirenberg type estimate) Let � be a domain in H n. Let K
and L be compact subsets of � such that L is contained in the interior of K . Then there exists
a constant C depending only on K , L such that for any u1, . . . uk ∈ P SH(�) ∩ C2(�), we
have

‖�u1 ∧ · · · ∧ �uk‖L ≤ C
k∏

i=1

‖ui‖C0(K ). (5.1)
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Proof By Corollary 4.1, �u1 ∧ · · · ∧ �uk is already closed and strongly positive. Since L is
compact, there is a covering of L by a family of balls D′

j � D j ⊆ K . Let χ ≥ 0 be a smooth

function equals to 1 on D′
j with support in D j . For a closed smooth (2n − 2p)-form T , we

have ∫
�

χ�u1 ∧ · · · ∧ �u p ∧ T = −
∫

�

d0χ ∧ d1u1 ∧ �u2 ∧ · · · ∧ �u p ∧ T

= −
∫

�

u1d1d0χ ∧ �u2 ∧ · · · ∧ �u p ∧ T

=
∫

�

u1�χ ∧ �u2 ∧ · · · ∧ �u p ∧ T

(5.2)

by using Stokes-type formula (4.23) and Proposition 1.2. Then

‖�u1 ∧ · · · ∧ �uk‖L∩D′
j
=
∫

L∩D′
j

�u1 ∧ · · · ∧ �uk ∧ βn−k
n ≤

∫
D j

χ�u1 ∧ · · · ∧ �uk ∧ βn−k
n

=
∫

D j

u1�χ ∧ �u2 ∧ · · · ∧ �uk ∧ βn−k
n

≤1

ε
‖u1‖L∞(K )‖�χ‖

∫
D j

�u2 ∧ · · · ∧ �uk ∧ βn−k+1
n ,

by using (5.2) and Lemma 5.1. The result follows by repeating this procedure. ��

Proof of Theorem 1.1 It is sufficient to prove for any compactly supported continuous function
χ , the sequence

∫
�

χ(�u j )
n is a Cauchy sequence. We can assume χ ∈ C∞

0 (�). Note the
following identity

(�v)n − (�u)n =
n∑

p=1

{
(�v)p ∧ (�u)n−p − (�v)p−1 ∧ (�u)n−p+1}

=
n∑

p=1

(�v)p−1 ∧ � (v − u) ∧ (�u)n−p.

(5.3)

Then we have

∣∣∣∣
∫

�

χ(�u j )
n −

∫
�

χ(�uk)
n
∣∣∣∣ ≤

n∑
p=1

∣∣∣∣
∫

K
χ�u j ∧ · · · ∧ � (

u j − uk
) ∧ �uk ∧ · · · ∧ �uk

∣∣∣∣

=
n∑

p=1

∣∣∣∣
∫

K

(
u j − uk

)�u j ∧ · · · ∧ �χ ∧ �uk ∧ · · · ∧ �uk

∣∣∣∣

≤‖�χ‖
ε

∥∥u j − uk
∥∥∞

n∑
p=1

∫
K

�u j ∧ · · · ∧ βn ∧ �uk ∧ · · · ∧ �uk ≤ C
∥∥u j − uk

∥∥∞ .

as in the proof of Proposition 5.1, where C depends on the uniform upper bound of
∥∥u j

∥∥∞.
��

Proposition 5.2 Let u, v ∈ C(�) be plurisubharmonic functions. Then (�(u + v))n ≥
(�u)n + (�v)n .
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Proof For smooth PSH uε = χε ∗ u, we have

(�(uε + vε))
n = (�uε)

n + (�vε)
n +

n−1∑
j=1

C j
n (�uε)

j ∧ (�vε)
n− j ≥ (�uε)

n + (�vε)
n .

The result follows by taking limit ε → 0 and using the convergence of the quaternionic
Monge–Ampère measure in Theorem 1.1. ��

We need the following proposition to prove the minimum principle.

Proposition 5.3 Let � be a bounded domain with smooth boundary in H , and let u, v ∈
C2(�) be plurisubharmonic functions on �. If u = v on ∂� and u ≥ v in �, then∫

�

(�u)n ≤
∫

�

(�v)n . (5.4)

Proof We have
∫

�

(�v)n −
∫

�

(�u)n =
n∑

p=1

∫
�

d0
{
d1 (v − u) ∧ (�v)p−1 ∧ (�u)n−p}

=
n∑

p=1

2n−1∑
A=0

∫
∂�

T p
A · Z A0′ρ · d S

(5.5)

by using (5.3) and Stokes-type formula (4.22), if we write

d1 (v − u) ∧ (�v)p−1 ∧ (�u)n−p =:
∑

A

T p
A ω Â,

where ρ is a defining function of � with |gradρ| = 1, and ω Â = ωA��2n . Note that we have

2n−1∑
A=0

T p
A · Z A0′ρ(ξ) · �2n = d0ρ(ξ) ∧ d1 (v − u) ∧ (�v)p−1 ∧ (�u)n−p. (5.6)

Since u = v on ∂� and u ≥ v in �, for a point ξ ∈ ∂� with grad(v − u)(ξ) �= 0 , we can
write v−u = hρ in a neighborhood of ξ for some positive smooth function h. Consequently,
we have grad(v−u)(ξ) = h(ξ)gradρ, and so Z A1′(v−u)(ξ) = h(ξ)Z A1′ρ(ξ) on ∂�. Thus,

d0ρ(ξ) ∧ d1 (v − u) (ξ) = h(ξ)d0ρ(ξ) ∧ d1ρ(ξ),

which is strongly positive by Proposition 4.2.Moreover, both�v and�u are strongly positive
for C2 plurisubharmonic functions u and v on � by Proposition 4.1. We find that the right
hand of (5.6) is a positive 2n-form, and so the integrant in the right hand of (5.5) on ∂� is
nonnegative if grad(v − u)(ξ) �= 0, while if grad(v − u)(ξ) = 0, the integrant at ξ in (5.5)
vanishes. Therefore the difference in (5.5) is nonnegative. ��

The proof of theminimum principle is similar to the complex case [8] and the quaternionic
case [1], but we need somemodifications because we do not knowwhether the regularization
χε ∗ u of a PSH function u on the the Heisenberg group is decreasing as ε → 0+.

Proof of Theorem 1.3 Without loss of generality, we may assume min∂�{u − v} = 0.
Suppose that there exists a point (x0, t0) ∈ � such that u(x0, t0) < v(x0, t0). Denote
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η0 = 1
2 [v(x0, t0) − u(x0, t0)]. Then for each 0 < η < η0, the set G(η) := {(x, t) ∈

�; u(x, t)+η < v(x, t)} is a non-empt, open, relatively compact subset of �. Now consider

G(η, δ) := {(x, t) ∈ �; u(x, t) + η < v(x, t) + δ|x − x0|2}.
There exists an increasing function δ(η) such that G(η, δ) for 0 < δ < δ(η) is a non-
empt, open, relatively compact subset of �. On the other hand, there exists small α(η, δ)

such that for 0 < α < α(η, δ), we have {ξ ∈ �; dist(ξ, ∂�) > α} =: �α ⊃ G(η, δ) for
0 < δ < δ(η/2), where dist(ξ, ζ ) = ‖ξ−1ζ‖.

We hope to apply Proposition 5.3 to G(η, δ) to get a contradict, but its boundary may
not be smooth. We need to regularize them. Recall that uε → u and vε → v uniformly as
ε → 0+ on any compact subset of �. Define

G(η, δ, ε) := {(x, t) ∈ �; u(x, t) + η < vε(x, t) + δ|x − x0|2},
which satisfies G(η, δ, ε) ⊂ G(3η/4, δ) ⊂ G(η/2, δ) if 0 < ε < α(η, δ) is sufficiently
small, since |v(x, t) − vε(x, t)| ≤ η/4 for (x, t) ∈ G(η/2, δ). Now choose τ so small that

G(η, δ, ε, τ ) := {(x, t) ∈ �; uτ (x, t) + η < vε(x, t) + δ|x − x0|2}
is a non-empt, open, relatively compact subset of �. At last we can choose positive numbers
η1 < η2, δ0, ε0, τ0 such that for any η ∈ [η1, η2], 0 < ε < ε0, 0 < τ < τ0, G(η, δ0, ε, τ ) is
a non-empt, open, relatively compact subset of �.

For fixed ε, τ , by Sard’s theorem, almost all values of the C∞ function vε(x, t) + δ0|x −
x0|2 − uτ (x, t) are regular, i.e. G(η, δ0, ε, τ ) has smooth boundary for almost all η. Conse-
quently, we can take sequence of numbers τk → 0 and εk → 0 such that G(η, δ0, εk, τk) has
a smooth boundary for each k and almost all η ∈ [η1, η2]. Now apply Proposition 5.3 to the
domain G(η, δ0, εk, τk) to get

∫
(�uτk )

n ≥
∫

(�(vε + δ0|x − x0|2))n ≥
∫

(�vεk )
n + δn

0

∫
(�|x − x0|2)n

=
∫

(�vεk )
n + 4nn!δn

0vol(G(η, δ0, εk, τk))

(5.7)

by using Proposition 5.2 (2), where integrals are taken over G(η, δ0, εk, τk), and

(�|x − x0|2)n =
(

n−1∑
l=0

�l(n+l)|x − x0|2ωl ∧ ωn+l

)n

= 4nn!�2n,

by the expression of �l(n+l) in (3.7). Since (�u)n ≤ (�v)n and η → (�v)n(G(η, δ0)) is
decreasing in η, we can choose a continuous point η such that G(η, δ0, εk, τk) has a smooth
boundary. For any η1 < η′ < η < η′′ < η2, G(η′, δ0) ⊃ G(η, δ0, εk, τk) ⊃ G(η′′, δ0) for
large k. So we have

∫
G(η′,δ0)

(�uτk )
n ≥

∫
G(η′′,δ0)

(�vεk )
n + (4δ0)

nn!vol(G(η′′, δ0)) (5.8)

by (5.7). Thus,

(�u)n(G(η′, δ0)) ≥ (�v)n(G(η′′, δ0)) + (4δ0)
nn!vol(G(η′′, δ0)),

by convergence of quaternionicMonge–Ampèremeasures byTheorem1.1.At the continuous
point η, we have
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(�v)n(G(η, δ0)) ≥ (�v)n(G(η, δ0)) + (4δ0)
nn!vol(G(η′′, δ0)).

This is a contradict since G(η′′, δ0) is a nonempt open subset of � for η′′ close to η. ��
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