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Abstract
We study cluster algebras arising from cluster tubes.We obtain categorical interpretations for
g-vectors, c-vectors and denominator vectors for cluster algebras of type C with respect to
arbitrary initial seeds. In particular, a denominator theorem has been proved, which enables
us to establish the linearly independence of denominator vectors of cluster variables from
the same cluster for cluster algebras of type ABC. This strengthens the link between cluster
tubes and cluster algebras of type C initiated by Buan, Marsh and Vatne.
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1 Introduction andmain results

1.1 Motivation

At the beginning of this century, Fomin and Zelevinsky [21] invented a new class of algebras
called cluster algebrasmotivated by total positivity in algebraic groups and canonical bases in
quantum groups. Since their introduction, cluster algebras have found application in a diverse
variety of settings which include Poisson geometry, Teichmüller theory, tropical geometry,
algebraic combinatorics and last not least the representation theory of quivers and finite-
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dimensional algebras. See, for example, [24,35] and references therein. Cluster algebras
are commutative algebras endowed with a distinguished set of generators called the cluster
variables. These generators are gathered into overlapping sets of fixed finite cardinality,
called clusters, which are defined recursively from an initial one via an operation called
mutation. A cluster algebra is of finite type if it has only a finite number of clusters. Fomin
and Zelevinsky [22] proved that the cluster algebras of finite type are parametrized by the
finite root systems. In particular, cluster algebras of type A,D,E are skew-symmetric and
the ones of type B,C,F,G are no longer skew-symmetric but only skew-symmetrizable.

It was recognized in [38] that the combinatorics of cluster mutation are closely related to
those of tilting theory in the representation theory of quivers. This discovery was the main
motivation for the invention of cluster categories and the study of more general 2-Calabi–Yau
triangulated categories (cf. [6,36]). In the categorical setting, the cluster tilting objects play the
role of the clusters, and their indecomposable direct summands the one of the cluster variables.
An explicit map from the set of indecomposable factors of cluster tilting objects to the set of
cluster variables was defined by Caldero and Chapoton in [10] for cluster categories and by
Palu [44] for 2-Calabi–Yau triangulated categories with cluster tilting objects. This leads to a
great development for cluster algebras of skew-symmetric type by additive categorifications
given by 2-Calabi–Yau triangulated categories with cluster-tilting objects. However, it is
still an open question that how to construct suitable additive categorification for a general
cluster algebra of skew-symmetrizable type. We refer to [19,30,54] for some progress on
skew-symmetrizable cluster algebras with an acyclic initial seed via categorifications (cf.
also [18]).

In [8], Buan et al. proposed that the cluster categories of tubes (called cluster tubes) are
good candidates for the combinatorics of cluster algebras of type C.1 We remark that the
cluster tubes have no cluster-tilting objects but only maximal rigid objects. Nevertheless,
they proved that there is a bijection between the indecomposable rigid objects of cluster
tubes and the cluster variables of cluster algebras of type C. Moreover, the bijection induces
a bijection between the basic maximal rigid objects and the clusters, which is compatible
with mutations. For a special choice of acyclic initial seed, an analogue of Caldero-Chapoton
formula has been established in [53]. The present paper and its sequel [28] are devoted to
investigating the link between cluster tubes and cluster algebras of type C in a full generality.
Namely, we consider cluster algebra of type C with respect to an arbitrary initial seed. As
shown in [25], the structure of cluster algebras is to a large extent controlled by certain integer
vectors called g-vectors, c-vectors and denominator vectors. In the present paper, we focus
on these integer vectors arising from cluster algebras. We find interpretations of denominator
vectors, g-vectors and c-vectors in terms of representations of algebras arising from cluster
tubes. Using these interpretations, we confirm certain conjectures about denominator vectors
made by Fomin and Zelevinsky in [25].

1.2 Main results

Now we describe the main results of the paper in more detail. Fix a positive integer n. Let
�n+1 be the cyclic quiver with n + 1 vertices. We label the vertex set by {1, 2, . . . , n + 1}
such that the arrows are precisely from vertex i to i + 1 (taken modulo n + 1). Denote
by T := Tn+1 the category of finite-dimensional nilpotent representation over the opposite

1 In fact, Buan et al. [8] have considered the cluster algebra of type B but not of type C. However, the cluster
combinatorics of cluster algebras of type B is the same as that of cluster algebras of type C [23]. Hence here
and after, we may state the result of [8] in cluster algebras of type C.
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Cluster algebras arising from cluster tubes I: integer vectors 1795

quiver�op
n+1. The category T is called a tube of rank n+1. It is a hereditary abelian category.

Each indecomposable object of T is uniquely determined by its socle and its length. For
1 ≤ a ≤ n + 1 and b ∈ Z, we will denote by (a, b) the unique indecomposable object with
socle the simple at vertex a and of quasi-length b. Throughout, we will use the convention
that (a, b) = 0 if b ≤ 0 and when we write equations and inequalities which involve first
coordinates outside the domain 1, . . . , n+1, we will implicitly assume identification modulo
n + 1.

Let Db(T ) be the bounded derived category of T with suspension functor �. Let τ be
the Auslander–Reiten translation of Db(T ), where τ(a, b) = (a − 1, b). The cluster tube of
rank n + 1 is the orbit category C := Cn+1 = Db(T )/τ−1 ◦ �. As indicated in [8], since
T does not have tilting objects, it does not follow directly from Keller’s theorem [34] that
the category C is triangulated. However, C is a thick subcategory of the cluster category of
a hereditary algebra, or as in [4], a subcategory of the category of sheaves over a weighted
projective line. It follows that C is triangulated and the canonical projection π : Db(T ) → C
is a triangle functor. It also follows that C is a Calabi–Yau triangulated category with Calabi–
Yau dimension of 2, since cluster categories of hereditary algebras are. The composition of
the embedding of T into Db(T ) with the canonical projection π yields a bijection between
the indecomposable objects of T and the indecomposable objects of C. We always identify
the objects of T with the ones of C by the bijection. In particular, we may say the length of
an indecomposable object of C.

An object T of C is rigid if Ext1C(T , T ) = 0. It is maximal rigid if it is rigid and Ext1C(X ⊕
T , X⊕T ) = 0 implies that X ∈ add T , where add T denotes the subcategory of C consisting
of objects which are finite direct sum of direct summands of T . Let T = ⊕n

i=1 Ti be a
basic maximal rigid object of C with the endomorphism algebra � = EndC(T ) and mod�

the category of finitely generated right �-modules. To T we associate a quiver QT whose
vertices correspond to the indecomposable direct summands of T and the arrows from the
indecomposable direct summand Ti to Tj is given by the dimension of the space of irreducible
maps rad(Ti , Tj )/rad

2(Ti , Tj ), where rad(−,−) is the radical of the category add T . It is
clear that the quiver QT coincides with the Gabriel quiver of the endomorphism algebra �.
We will study the following classical problem:

• Which representations are determined by their dimension vectors?

Recall that a �-module M is τ -rigid if Hom�(M, τM) = 0, where τ is the Auslander-Reiten
translation of mod�. An indecomposable τ -rigid �-module is locally free in the sense of
[29], and then each indecomposable τ -rigid �-module M admits an integer vector called the
rank vector rank M (cf. Sect. 3.2 for the precise definition). Rank vectors are closely related
to dimension vectors. Our first main result in this paper shows that indecomposable τ -rigid
modules are determined by their rank vectors (cf. Theorem 3.8).

Theorem 1.1 Let C be the cluster tube of rank n+1 and T = ⊕n
i=1 Ti a basic maximal rigid

object of C. Let� = EndC(T ) be the endomorphism algebra of T . Then different indecompos-
able τ -rigid �-modules have different rank vectors. In particular, different indecomposable
τ -rigid �-modules have different dimension vectors.

We then develop some applications to the theory of cluster algebras. We refer to Sect. 2.1
for the required background for cluster algebras. In [25], Fomin and Zelevinsky introduced
a family of combinatorial parametrization of cluster monomials by integer vectors: denom-
inator vectors. The parametrization by denominator vectors was independent of the choice
of the coefficient system. One of the important properties of cluster algebras is the so-called
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Laurent phenomenon [21]: each cluster variable can be expressed as a Laurent polynomial
in the initial cluster variables x1, . . . , xn . As a consequence of the Laurent phenomenon,
for each cluster monomial x , there exists a unique polynomial f (x1, . . . , xn) which is not
divisible by any xi such that

x = f (x1, . . . , xn)

xd11 . . . xdnn
.

The denominator vector of x is defined to be

den(x) = (d1, . . . , dn)
tr ∈ Z

n,

where (d1, . . . , dn)tr is the transpose of (d1, . . . , dn). Inspired by Lusztig’s parameteriza-
tion of canonical bases in quantum groups, Fomin and Zelevinsky proposed the following
denominator conjecture (cf. Conjecture 7.6 of [25]).

Conjecture Different cluster monomials have different denominator vectors. In particular,
the denominator vectors of cluster variables in a cluster form a basis of Q

n.

To our best knowledge, the denominator conjecture is still open widely. It has not yet
been checked for cluster algebras of finite type. The linearly independence of denominator
vectors is only known for certain cluster algebras with respect to acyclic initial seeds. More
precisely, it has been verified byCaldero andKeller [11] for acyclic cluster algebras associated
to quivers (cf. also [47]), by Sherman and Zelevinsky [49] for cluster algebras of rank 2 and
by Fomin and Zelevinsky [25] for cluster algebra of finite type with bipartite initial seeds. In
this paper, we confirm the conjecture as follows (cf. Theorem 4.7, Remarks 4.8 and 4.9).

Theorem 1.2 Let A be a cluster algebra of type An,Bn or Cn and y = {y1, . . . , yn} an
arbitrary cluster of A. Then the denominator vectors den(y1), . . . ,den(yn) are linearly
independent over Q.

As mentioned already, our proof of Theorem 1.2 is based on interpreting denominator
vectors in terms of representations of the endomorphism algebra � corresponding to a basic
maximal rigid object T in the cluster tube C. We now describe this interpretation more
precisely. Recall that an object M is finitely presented by T if there is a triangle T M

1 →
T M
0 → M → �T M

1 with T M
1 , T M

0 ∈ add T . Denote by pr T the subcategory of C consisting
of objects which are finitely presented by T . There is an equivalence

F := HomC(T , ?) : pr T /add�T
∼−→ mod�,

where pr T /add�T is the additive quotient of pr T by morphisms factorizing through
add�T . Moreover, for an indecomposable rigid object M /∈ add�T , F(M) is an inde-
composable τ -rigid A-module (cf. Sect. 2.4).

As in [8], we associate a matrix BT = (bi j ) ∈ Mn(Z) to each basic maximal rigid object
T = ⊕n

i=1 Ti ∈ C (see Sect. 2.3). The matrix BT can also be constructed from the quiver
QT (cf. Lemma 2.12). The main result of [8] shows that the cluster tube C admits a cluster
structure for cluster algebras of type Cn . In particular, BT is a skew-symmetrizable matrix
of type Cn and there is a bijection from the set of indecomposable rigid objects of C to the
set of cluster variables of a cluster algebra of type Cn . As in customary these days, we work
with the n-regular tree Tn whose edges are labeled by the numbers 1, 2, . . . , n, so that the n
edges emanating from each vertex carry different labels. We fix a vertex t0 ∈ Tn . We refer
to a family of independent variables x0 = {x1, . . . , xn} as the initial cluster and BT as the
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exchange matrix at t0. In other words, we refer to (x0, BT ) as the initial seed associated to
the vertex t0 ∈ Tn , so that a cluster pattern is given. Denote by AT (resp. AT ,pr ) the cluster
algebra without coefficients (resp. with principal coefficients) associated with this cluster
pattern (cf. Sect. 2.1 for details).

Denote by X? the bijection given in [8] such that �T corresponds to the initial cluster
of the cluster algebra AT . For each non-initial cluster variable x of AT , there is a unique
indecomposable rigid object M /∈ add�T such that XM = x . We obtain a denominator
theorem for the cluster algebra AT (cf. Theorem 4.3).

Theorem 1.3 For each indecomposable rigid object M /∈ add�T , we have

den(XM ) = rank F(M).

Now we turn to the cluster algebraAT ,pr . For cluster algebras with principal coefficients,
two other kinds of integer vectors have played important role in the structure theory: the
g-vectors parametrizing cluster variables and the c-vectors parametrizing the coefficients. It
is interesting to find categorical interpretations of g-vectors and c-vectors for cluster algebras
which admit categorifications. The following result provides an interpretation of c-vectors
of AT ,pr in terms of representations of algebras arising from cluster tubes (cf. Theorem 1.4
and for the interpretation of g-vectors, we refer to Theorem 5.1).

Theorem 1.4 The positive c-vectors of AT ,pr are precisely the rank vectors of indecompos-
able τ -rigid �-modules.

We remark that the analogue statement of Theorem 1.4 has been proved by Nájera Chávez
for acyclic skew-symmetric cluster algebras [41] and skew-symmetric cluster algebras of
finite type [40] (cf. also [26]).

The paper is organized as follows. Section 2 provides the required background from cluster
algebras, τ -tilting theory and cluster tubes. In Sect. 3.1, we establish the exchange compat-
ibility (Theorem 3.5) for the cluster tube C. As applications of the exchange compatibility,
we prove Theorem 1.1 in Sect. 3.2 and the denominator theorem (Theorem 1.3) in Sect. 4.1.
Sect. 4.2 consists of certain consequences of the denominator theorem. Among others, Theo-
rem 1.2 is proved. In Sect. 5, we obtain categorical interpretations for g-vectors and c-vectors
(Theorems 1.4 and 5.1).

Convention

Let K be an algebraically closed field. Denote by D = HomK (−, K ) the duality over K . Fix
a positive integer n, we denote by e1, . . . , en the standard basis of Z

n . For a matrix B, denote
by Btr the transpose of B. For an object M in a category C, denote by |M | the number of
non-isomorphic indecomposable direct summands of M . Denote by addM the subcategory
of C consisting of objects which are finite direct sum of direct summands of M . For an object
M in a triangulated category D, denote by thick(M) the smallest triangulated subcategory
of D containing M which is closed under direct summands.
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2 Preliminaries

2.1 Recollection on cluster algebras

We follow [25]. For an integer x , we use the notation [x]+ = max{x, 0} and sgn(x) ={
x
|x | if x �= 0

0 if x = 0
. A semifield (P,⊕, ◦) is an abelian multiplicative group endowed with a

binary operation of addition⊕which is commutative, associative and distributivewith respect
to the multiplication ◦ in P. Let J be a finite set of labels, the tropical semifield on variables
u j ( j ∈ J ) is the abelian group freely generated by the variables u j , endowed with the
addition ⊕ defined by

∏

j

u
a j
j ⊕

∏

j

u
b j
j =

∏

j

u
min(a j ,b j )

j .

Let m, n be positive integers with m ≥ n and P the tropical semifield on variables
xn+1, . . . , xm . Let QP be the group algebra of P with rational coefficients and F the field
of rational functions in n variables with coefficients in QP. Recall that an n × n integer
matrix B is skew-symmetrizable if there is a diagonal matrix D = diag{d1, . . . , dn} with
positive integers d1, . . . , dn such that DB is skew-symmetric. In this case, we call D the
skew-symmetrizer of B. A seed in F is a pair (B̃, x), where

• B̃ is an m × n integer matrix, whose principal part B, the top n × n submatrix, is
skew-symmetrizable, and

• x = {x1, . . . , xn} is a free generating set of the field F .

We refer to x as the cluster and to B̃ as the exchange matrix of the seed (B̃, x).
For any k = 1, . . . , n, the seed mutation μk(B̃, x) of (B̃, x) in direction k is the seed

(B̃ ′, x′), where

• an integer m × n matrix B̃ ′ = μk(B̃) = (b′
i j ) is given by setting

b′
i j =

{
−bi j if i = k or j = k;
bi j + sgn(bik)[bikbk j ]+ else.

• the cluster x′ is obtained from x by the exchange relation: replacing the element xk with

x ′
k = 1

xk

(
m∏

i=1

x [bik ]+
i +

m∏

i=1

x [−bik ]+
i

)

.

Let Tn be the n-regular tree, whose edges are labeled by the numbers 1, 2, . . . , n, so
that the n edges emanating from each vertex carry different labels. A cluster pattern is the
assignment of a seed (B̃t , xt ) to each vertex t of Tn such that the seeds assigned to vertices
t and t ′ linked by an edge labeled k are obtained from each other by the seed mutation μk .
For a given initial seed (B̃, x), a cluster pattern is uniquely determined by an assignment of
(B̃, x) to a root vertex t0 ∈ Tn .

Fix a cluster pattern determined by assigning the initial seed (B̃, x) to the root vertex t0.
Let (B̃t , xt ) be the seed associated to t ∈ Tn . The clusters associated with (B̃, x) are the
sets xt for each t ∈ Tn . The cluster variables are the elements of the clusters. A cluster
monomial is a monomial in cluster variables all of which belong to the same cluster. The
cluster algebra A(B̃) = A(B̃, x) with coefficients is the ZP-subalgebra of F generated by
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Cluster algebras arising from cluster tubes I: integer vectors 1799

the cluster variables. A cluster algebra is of skew-symmetric type if the principal part of its
initial exchange matrix is skew-symmetric.

Now to any vertex t0 ∈ Tn and any skew-symmetrizable n× n matrix B, we associate the
skew-symmetrizable matrix pattern of format 2n × n such that the initial exchange matrix
B̃ has principal part B and its coefficient part, the bottom n × n submatrix, is the identity
matrix. We refer to this pattern as the principal coefficients pattern and to the associated
cluster algebra A(B̃) as a cluster algebra with principal coefficients. For each t ∈ Tn , let
Ct be the coefficient part of the exchange matrix B̃t . Each column vector of Ct is called a
c-vector of the cluster algebra A(B̃) and Ct is the C-matrix of A(B̃) at vertex t . It has been
conjectured by Fomin–Zelevinsky [25] that each c-vector of A(B̃) is sign-coherent, that is
either all entries non-negative or all entries non-positive. The sign-coherence conjecture has
been established in [31] recently in a full generality. We refer to [20,26,39,45] for a proof
of the sign-coherence conjecture for skew-symmetric cases and [18] for a proof for certain
skew-symmetrizable cluster algebras.

Let x1, . . . , xn be the initial cluster variables of the cluster algebra A(B̃) with principal
coefficients. By the Laurent phenomenon, each cluster variable x j,t of the cluster xt can be
expressed as

X j,t (x1, . . . , x2n) ∈ Z[x±
1 , . . . , x±

n , xn+1, . . . , x2n].
Set deg xi = ei for 1 ≤ i ≤ n and deg xn+ j = −b j for 1 ≤ j ≤ n, where b j

is the j-th column of the principal part of the initial exchange matrix B̃. In particular,
Z[x±

1 , . . . , x±
n , xn+1, . . . , x2n] is a Z

n-graded ring. Fomin and Zelevinsky [25] proved that
each X j,t is homogeneous with respect to the Z

n-grading and defined

deg X j,t = gB̃,t0
j,t = (g1 j , . . . , gnj )

tr ∈ Z
n

to be the g-vector of the cluster variable x j,t . The matrix Gt = (gi j )ni, j=1 is called the

G-matrix of A(B̃) at vertex t ∈ Tn .
Let B = (bi j ) be an n × n skew-symmetrizable matrix. The Cartan counterpart A(B) =

(ci j ) of B is an n × n integer matrix such that cii = 2 for i = 1, . . . , n and ci j = −|bi j | for
i �= j . In particular, A(B) is a generalizedCartanmatrix.We refer to [33] for the classification
of generalized Cartan matrices.

Definition 2.1 The cluster algebra A(B̃) is of type C if there is a vertex t ∈ Tn such that the
Cartan counterpart of the principal part of B̃t is a generalized Cartan matrix of type C.

Cluster algebras of type C have been investigated via different viewpoints. It is well-
known that a cluster determines its seed for a cluster algebra of type C (cf. [22]). The
following proposition summarizes certain results concerning c-vectors and g-vectors for
cluster algebras of type C and we refer to [42] for more results on cluster algebras of finite
type.

Proposition 2.2 Let A(B̃) be a cluster algebra of type C with principal coefficients, where
B̃ ∈ M2n×n(Z). Assume that B̃ has principal part B. Then

(1) Each c-vector of A(B̃) is sign-coherent;
(2) Let cv(A(B̃)) be the set of c-vectors of A(B̃), then | cv(A(B̃))| = 2n2;
(3) For each t ∈ Tn, Gtr

t DCt = D, where D is the skew-symmetrizer of B;
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(4) Let t0
k t1 be two adjacent vertices inTn, and let B̃1 =

(
μk(B)

En

)

. Then for any t ∈ Tn,

the g-vectors gB̃,t0
l,t = (g1, . . . , gn)tr and g

B̃1,t1
l,t = (g′

1, . . . , g
′
n)

tr are related as follows:

g′
j =

{
−gk if j = k;
g j + [b jk]+gk − b jk min(gk, 0) else.

Proof The statements (1) and (4) follow from [18,31]. Part (3) follows from part (1) and
[43]. Part (2) is a result of [42]. ��

2.2 Recollection on �-tilting theory

We follow [1]. Let A be a basic finite dimensional algebra over K andmod A the category of
finitely generated right A-modules. Let proj A be the full subcategory of mod A consisting
of finitely generated projective A-modules. Denote by τ the Auslander-Reiten translation of
mod A. Let S1, . . . , Sn be all the pairwise non-isomorphic simple A-modules and P1, . . . , Pn
the corresponding projective covers respectively.

An A-module M is τ -rigid provided HomA(M, τM) = 0. Let

PM
1

f−→ PM
0 → M → 0

be a minimal projective presentation of M , then M is τ -rigid if and only if HomA( f , M) is
surjective. A τ -rigid pair is a pair of A-modules (M, P) with M ∈ mod A and P ∈ proj A,
such that M is τ -rigid and HomA(P, M) = 0. A basic τ -rigid pair (M, P) is a support
τ -tilting pair if |M | + |P| = |A| = n. In this case, M is a support τ -tilting A-module and
P is uniquely determined by M . In particular, if |M | = |A|, then M is a τ -tilting A-module.
We also call a τ -rigid pair indecomposable if |M | + |P| = 1. It was shown in [1] that each
basic τ -rigid pair can be completed to a support τ -tilting pair. On the other hand, for a basic
support τ -tilting pair (M, P), M is a τ -tilting A/〈eP 〉-module, where eP is the idempotent
of A associated to P .

The support τ -tilting A-modules have close relation with 2-term silting objects in the
perfect derived category per A of A. Denote by � the suspension functor of per A. Recall
that an object Q ∈ per A is presilting if Homper A(Q, �i Q) = 0 for all i > 0. A presilting
object Q ∈ per A is silting if moreover thick(Q) = per A. Each basic silting object has
exactly |A| indecomposable direct summands and gives rise to a Z-basis of the Grothendieck
group G0(per A). A silting object Q is 2-term silting with respect to A if there is a triangle
in per A

PQ
1 → PQ

0 → Q → �PQ
1 with PQ

1 , PQ
0 ∈ proj A.

Let sτ -tilt A be the set of isomorphism classes of support τ -tilting A-modules and 2-silt A the
set of isomorphism classes of 2-term silting objects of per A. In [1], Adachi et al. established
the following bijection.

Theorem 2.3 There is a bijection between sτ -tilt A and 2-silt A given by

M ∈ sτ -tilt A �→ (PM
1 ⊕ P

( f ,0)−−−→ PM
0 ) ∈ 2-silt A,

where PM
1

f−→ PM
0 → M → 0 is a minimal projective presentation of M and (M, P) is the

support τ -tilting pair determined by M.
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Let M be a τ -rigid A-module and PM
1 → PM

0 → M → 0 a minimal projective presen-
tation of M . The index of M is defined to be

ind(M) = [PM
0 ] − [PM

1 ] ∈ G0(per A),

where [X ] stands for the image of X in theGrothendieck groupG0(per A). The g-vector g(M)

of M is the coordinate vector of ind(M) with respect to the canonical basis [P1], . . . , [Pn]
of G0(per A). It is known that different τ -rigid modules have different g-vectors (cf. [1,17]).
We may extend the definition of g-vectors to any τ -rigid pair (M, P) by setting g(M, P) =
g(M) − g(P) ∈ Z

n .
For a given basic support τ -tilting pair (M, P) with decomposition of indecomposable τ -

rigid pairs, say (M, P) = X1⊕· · ·⊕Xn , theG-matrix ofM with respect to the decomposition
is defined as

GM (A) = (g(X1), . . . , g(Xn)),

which is invertible over Z (cf. [1]). The C-matrix CM (A) associated to M with respect to the
decomposition is the inverse of the transpose of the G-matrix GM (A), and its column vectors
are called c-vectors of A associated to M (cf. [26]). This notion is closely related to the
c-vectors of cluster algebras provided that A is a cluster-tilted algebra. We also remark that
the c-vectors associated to M do not depend on the decomposition of the support τ -tilting
pair (M, P).

Let Db(mod A) be the bounded derived category of mod A and G0(Db(mod A)) the
Grothendieck group of Db(mod A). Note that, as A is finite dimensional, we have per A ⊆
Db(mod A). The Euler bilinear form 〈−,−〉 : G0(per A)×G0(Db(mod A)) → K given by

〈[P], [X ]〉 =
∑

i∈Z
(−1)i dimK HomDb(mod A)(P, �i X),

is non-degenerate, where P ∈ per A and X ∈ Db(mod A). For each basic support τ -
tilting module M , let QM = ⊕n

i=1 Q
M
i be the corresponding 2-term silting object in

per A which gives rise to a basis [QM
1 ], . . . , [QM

n ] of G0(per A). Let [QM
1 ]∗, . . . , [QM

n ]∗ ∈
G0(Db(mod A)) be the basis dual to [QM

1 ], . . . , [QM
n ] with respect to the Euler bilinear

form 〈−,−〉. Then the c-vectors associated to M coincide with the coordinate vectors
of the dual basis [QM

1 ]∗, . . . , [QM
n ]∗ with respect to the canonical basis [S1], . . . , [Sn] of

G0(Db(mod A)) given by simple A-modules.
Recall that a non-zero integer vector is positive if all of its entries are nonnegative. Each

c-vector of A is sign-coherent and each positive c-vector is the dimension vector of an inde-
composable A-module. We have the following criterion of positive c-vectors (cf. Proposition
3.3 of [26]).

Proposition 2.4 A vector c ∈ Z
n is a positive c-vector for a finite dimensional K -algebra A

if and only if there is a 2-term silting object Q ∈ per A and an indecomposable A-module
M such that

HomDb(mod A)(Q, �i M) =
{
K i = 0;
0 otherwise.

In this case, c = dim M.

For a τ -tilting A-moduleM = ⊕n
i=1 Mi with decomposition of indecomposablemodules,

we define

DM (A) := (dim M1, . . . , dim Mn) ∈ Mn(Z)
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and call DM (A) theD-matrix of M with respect to the decomposition M = ⊕n
i=1 Mi . Recall

that we also have a G-matrix GM (A) associated to M with respect to the decomposition
M = ⊕n

i=1 Mi . The following result gives a relation between GM (A) and DM (A) for a
τ -tilting A-module M (cf. Proposition 5.3 of [1]).

Lemma 2.5 Let A be a finite dimensional K -algebra and M = ⊕n
i=1 Mi a τ -tilting A-

module. Then

GM (A)trDM (A) = C(EndA(M)),

where C(EndA(M)) is the Cartan matrix of the endomorphism algebra EndA(M).

Proof Let PMi
1 → PMi

0 → Mi → 0 be a minimal projective presentation of Mi . Then
M = ⊕n

i=1 Mi is a τ -tilting module implies that for any 1 ≤ i, j ≤ n, we have a short exact
sequence

0 → HomA(Mi , Mj ) → HomA(PMi
0 , Mj ) → HomA(PMi

1 , Mj ) → 0.

Now the result follows from the fact that the (i, j)-entry of C(EndA(M)) is
dimK HomA(Mi , Mj ). ��

2.3 Cluster tubes

We follow [8]. Fix a non-negative integer n. Let T be a tube of rank n + 1 and C the
associated cluster tube of rank n + 1. The Auslander-Reiten translation τ of Db(T ) induces
the Auslander-Reiten translation of C, which we will still denote it by τ . Note that, as C is
a 2-Calabi–Yau triangulated category, we have τ = �. Let X and Y be indecomposable
objects of T . Recall that we have identified the objects of T with the ones of C. By definition
of C and the fact that T is hereditary, we have

HomC(X , Y ) = HomDb(T )(X , Y ) ⊕ HomDb(T )(X , τ−1 ◦ �Y ).

Following [8], morphisms in HomDb(T )(X , Y ) are called T -maps from X to Y and mor-
phisms in HomDb(T )(X , τ−1 ◦ �Y ) are called D-maps from X to Y . Each morphism from
X to Y in C can be written as the sum of a T -map with a D-map. It is also well-known that
the composition of two T -maps is also a T -map, the composition of a T -map with a D-map
is a D-map, and the composition of two D-maps is zero, and no T -map can factor through a
D-map (cf. [7]).

The following lemma is useful (cf. Lemma 2.1 of [8]).
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Fig. 1 For an indecomposable X = (a, b), the Hom-hammock is illustrated by the full lines

Lemma 2.6 Let X , Y be indecomposable objects of T , we have

HomC(X , Y ) ∼= HomT (X , Y ) ⊕ D HomT (Y , τ 2X).

An obvious consequence is that the existence of a non-zero D-map from X to Y is equiv-
alent to the existence of a non-zero T -map from Y to τ 2X .

For each indecomposable object X = (a, b) ∈ T , the infinite sequence of irreducible
maps

R(a,b) = (a, b) → (a, b + 1) → · · · → (a, b + j) → · · ·
is called a ray starting in X and the infinite sequence of irreducible maps

C(a,b) = · · · → (a − j, b + j) → · · · → (a − 1, b + 1) → (a, b)

is called a coray ending in X . We also denote by

R(a,b) = {(a, b + j) | j ≥ 0} and C(a,b) = {(a − j, b + j) | j ≥ 0}.
For each indecomposable object X ∈ T with length l(X) ≤ n, thewingWX determined by

X is the set of indecomposables whose position in the AR-quiver is in the triangle with X on
top. We also denote them by X� the support of HomT (X ,−) in T . Namely, X� consists of
indecomposable objectsY of T such thatHomT (X , Y ) �= 0. Dually, wemay define �X to be
the support ofHomT (−, X) in T . As in [8], theHom-hammock of an indecomposable object
X is the support of HomC(X ,−). By Lemma 2.6, we clearly know that an indecomposable
object Y ∈ C satisfies that HomC(X , Y ) �= 0 if and only if Y ∈ X� ∪ �τ 2X (cf. Fig. 1).

Recall that a rigid object T ∈ C is called a cluster-tilting object if HomC(T , �Y ) = 0
implies that Y ∈ add T . It was proved in [8] that the cluster tube C has no cluster-tilting
objects but only maximal rigid objects. Moreover, the following description of maximal rigid
objects was given.

Lemma 2.7

(1) An indecomposable object M in C is rigid if and only if it has length l(M) ≤ n;
(2) Every basic maximal rigid object in C has exactly n indecomposable direct summands;
(3) Each basic maximal rigid object has exactly one indecomposable direct summand with

length n;
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(4) There is a bijection between the set of maximal rigid objects in C and the set

{tilting modules of K �An} × {1, 2, . . . , n + 1},
where �An is a linearly oriented quiver with the Dynkin diagram An as its underlying
graph.

Remark 2.8 If n = 0, the zero object is the unique maximal rigid object in C1. If n = 1, there
are precisely two basic maximal rigid objects in C2, i.e. (1, 1) and (1, 2).

The following result is a direct consequence of Lemma 2.6 and the Hom-hammock.

Lemma 2.9

(1) Let M, N be two indecomposable rigid objects with l(N ) = n. We have

dimK HomC(N , M) =
{
2 if M /∈ WτN ;
0 if M ∈ WτN .

(2) Let X be an indecomposable rigid object. For any indecomposable rigid object Y ∈
Wτ−1X , we have HomC(Y , X) = 0.

The following lemma collects certain results on morphisms related to indecomposable
rigid objects.

Lemma 2.10 Let X be an indecomposable rigid object in C.

(i) For each indecomposable object Y ∈ X�, we have HomT (X , Y ) ∼= K.
(ii) For each indecomposable object Z ∈ �X, we have HomT (Z , X) ∼= K.
(iii) Let Y , Z be indecomposable rigid objects such that Y , Z ∈ X� and Y ∈ Z�. Let

f : Z → Y be a non-zero T -map, then each T -map from X to Y factors through f .
(iv) Let Y , Z be indecomposable rigid objects such that X , Z ∈ τ−2Y� and Z ∈ X�. Let

g : Z → Y be a non-zero D-map, then each D-map from X to Y factors through g.

Proof The statements (i), (ii) and (iii) can be read directly from the AR-quiver of T . For (iv),
we first note that Z ∈ τ−2Y� implies that

D HomDb(T )(Z , τ−1 ◦ �Y ) ∼= HomT (τ−2Y , Z) ∼= K

by (i). Hence there exist non-zero D-maps from Z to Y . By Z ∈ X� and X ∈ τ−2Y�, we
deduce that X ∈ τ−2Y� ∩ �Z . Let h : X → Z be a non-zero T -map. Applying (iii), we
conclude that h induces an isomorphism of vector spaces

HomT (τ−2Y , h) : HomT (τ−2Y , X)
∼−→ HomT (τ−2Y , Z).

On the other hand, we have the following commutative diagram

HomT (τ−2Y , X)

∼=

HomT (τ−2Y ,h)
HomT (τ−2Y , Z)

∼=

D HomDb(T )(X , τ−1 ◦ �Y )
D HomDb(T )

(h,τ−1◦�Y )

D HomDb(T )(Z , τ−1 ◦ �Y ).
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In particular, h also induces an isomorphism

HomDb(T )(h, τ−1 ◦ �Y ) : HomDb(T )(Z , τ−1 ◦ �Y )
∼−→ HomDb(T )(X , τ−1 ◦ �Y ).

Now the result follows from the fact that

dimK HomDb(T )(Z , τ−1 ◦ �Y ) = 1 = dimK HomDb(T )(X , τ−1 ◦ �Y ).

��

For a given basic maximal rigid object T = T ⊕ Tk in C with an indecomposable direct
summand Tk , the mutation μk(T ) of T at Tk is a basic maximal rigid object obtained by
replacing Tk by another indecomposable object T ∗

k . The objects T
∗
k and Tk are related by the

following exchange triangles

T ∗
k

f−→ UTk ,T \Tk
g−→ Tk → �T ∗

k and Tk
f ′

−→ U ′
Tk ,T \Tk

g′
−→ T ∗

k → �Tk,

where f and f ′ are minimal left add T -approximations and g and g′ are minimal right
add T -approximations. In this case, T is called an almost complete maximal rigid object and
(Tk, T ∗

k ) is an exchange pair of C.
By using Lemma 2.7 (4) and the classification of tilting modules for a quiver of type An

with linear orientation, Zhou and Zhu [53] obtained the following description of the exchange
triangles in C.

Lemma 2.11 Given two basic maximal rigid objects Tk ⊕ T and T ∗
k ⊕ T in C such that both

Tk and T ∗
k are indecomposable. Then dimK Ext1C(Tk, T ∗

k ) = 1 or 2. Moreover,

(1) if dimK Ext1C(Tk, T ∗
k ) = 2, then Tk and T ∗

k are of length n. Denote by Tk = (a, n) and
T ∗
k = (a + h, n) respectively with 1 ≤ a ≤ n + 1, 1 ≤ h ≤ n, then the exchange

triangles are of the following forms:

(a, n) → (a + h, n − h) ⊕ (a + h, n − h) → (a + h, n) → �(a, n)

(a + h, n) → (a, h − 1) ⊕ (a, h − 1) → (a, n) → �(a + h, n);
(2) if dimK Ext1C(Tk, T ∗

k ) = 1, then l(Tk) < n and l(T ∗
k ) < n. Denote by Tk = (a, b), then

T ∗
k = (a + h, b− h + i), where 1 ≤ a ≤ n + 1, 1 ≤ b < n, 1 ≤ h ≤ b, 1 ≤ i ≤ n − b,

and the exchange triangles are of the following forms:

(a, b) → (a, b + i) ⊕ (a + h, b − h) → (a + h, b − h + i) → �(a, b)

(a + h, b − h + i) → (a + b + 1, i − 1) ⊕ (a, h − 1) → (a, b) → �(a + h, b − h + i).

For each basic maximal rigid object T = ⊕n
i=1 Ti , we define a matrix BT = (bi j ) ∈

Mn(Z) as follows

bi j = αUTj ,T \Tj Ti − αU ′
Tj ,T \Tj

Ti ,

where αY X denotes the multiplicity of X as a direct summand of Y . Recall that we have the
Gabriel quiver QT of the endomorphism algebra EndC(T ). The following result suggests
another construction of the skew-symmetrizable matrix BT , which is an easy consequence
of the definitions of BT and QT .
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Lemma 2.12 Let T = ⊕n
i=1 Ti be a basic maximal rigid object of C with l(T1) = n and QT

its associated quiver. Let BT = (bi j ) ∈ Mn(Z) be the skew-symmetrizable matrix associated
to T . Then for i �= j , we have

bi j =
{

|{arrows Ti → Tj }| − |{arrows Tj → Ti }| j �= 1;
2|{arrows Ti → T1}| − 2|{arrows T1 → Ti }| j = 1.

It was proved in [8] that BT is a skew-symmetrizable matrix and when an indecomposable
summand of amaximal rigid object is exchanged, the change in thematrix is given by Fomin–
Zelevinsky’s mutation of matrices, i.e. μk(BT ) = Bμk (T ) for any basic maximal rigid object
T . Moreover, the following result was proved (cf. Theorem 3.5 of [8]).

Theorem 2.13 Let T be a basic maximal rigid object of C andAT := A(BT ) the associated
cluster algebra of type Cn. There is a bijection X? between the indecomposable rigid objects
of C and the cluster variables of AT . The bijection induces a bijection between the basic
maximal rigid objects of C and the clusters of AT such that �T corresponds to the initial
cluster of AT . Moreover, the bijection is compatible with mutations.

2.4 Algebras arising from cluster tubes

Let T be a basic maximal rigid object of the rank n + 1 cluster tube C. Recall that pr T is
the full subcategory of C consisting of objects which are finitely presented by T . A general
result of [52] implies that the rigid objects of C belong to pr T .

Denote by � := EndC(T ) the endomorphism algebra of T and mod� the category of
finitely generated right �-modules. Recall that the functor

F := HomC(T ,−) : C → mod�

induces an equivalence of categories

F : pr T /add�T
∼−→ mod�,

where pr T /add�T is the additive quotient of pr T by morphisms factorizing through
add�T . Moreover, the restriction of the functor F to the subcategory add T yields an
equivalence between add T and the category of finitely generated projective �-modules. The
following bijection between the set of basic maximal rigid objects of C and the set of basic
support τ -tilting modules of � has been established in [16,37]. Namely,

Theorem 2.14 The functor F yields a bijection between the basic maximal rigid objects of
C and the basic support τ -tilting �-modules.

Under the identification of mod� with pr T /add�T , we deduce that there are exactly
n2 indecomposable τ -rigid �-modules by Lemma 2.7 (1). Namely, the indecomposable τ -
rigid �-modules are precisely F(X) = HomC(T , X) for indecomposable object X ∈ C with
l(X) ≤ n and X /∈ add�T .

Lemma 2.15 Let T be a basic maximal rigid object in C and � = EndC(T ). For any inde-
composable object X /∈ add�T with l(X) = n, we have

dimK Hom�(F(X), F(X)) = 2.
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Proof By definition, we have

HomC(X , X) = HomDb(T )(X , X) ⊕ HomDb(T )(X , τ−1�X).

In particular, dimK HomC(X , X) = 2. Recall that we have an equivalence F : pr T /�T →
mod�. Since X is indecomposable and X /∈ add�T , the identity morphism 1X ∈
HomT (X , X) does not factor through �T . Hence it suffices to show that each nonzero mor-
phism f ∈ HomDb(T )(X , τ−1�X) does not factor through �T . Otherwise, there exist mor-
phisms g1 ∈ HomDb(T )(X , �T ), f1 ∈ HomDb(T )(�T , τ−1�X), g2 ∈ HomDb(T )(X , τT )

and f2 ∈ HomDb(T )(τT , τ−1�X) such that f = f1 ◦g1+ f2 ◦g2. We claim that fi ◦gi = 0
for i = 1, 2. Indeed, for i = 1, we consider the following commutative diagram

HomDb(T )(X , �T )

�

HomDb(T )
(X , f1)

HomDb(T )(X , τ−1�X)

�

D HomDb(T )(T , τ X)
D HomDb(T )

(�−1 f1,τ X)

D HomDb(T )(τ
−1X , τ X).

To show that f1 ◦ g1 = 0, it suffices to show HomDb(T )(�
−1 f1, τ X) = 0 and the later

one follows from the fact that the image of any nonzero morphism h ∈ HomT (τ−1X , τ X)

is a simple object of T . Similarly, one can show that f2 ◦ g2 = 0, which contradicts the
assumption that f is nonzero. ��

Let Q = (Q0, Q1) be a finite quiver with vertex set Q0 and arrow set Q1. For an arrow
α : i → j ∈ Q1, s(α) = i is the source of α and t(α) = j is the target of α. An oriented
cycle of Q of lengthm is a path c = αmαm−1 · · · α1 such that t(αi ) = s(αi+1) for 1 ≤ i < m
and s(α1) = t(αm), where α1, . . . , αm ∈ Q1.

Let Qn be the set of quivers with n vertices satisfying the following conditions:

(a) All non-trivial minimal cycles of length at least 2 in the underlying graph are oriented
and of length 3;

(b) Any vertex has at most four neighbors;
(c) If a vertex has four neighbors, then two of its adjacent arrows belong to one 3-cycle,

and the other two belong to another 3-cycle;
(d) If a vertex has three neighbors, then two of its adjacent arrows belong to one 3-cycle,

and the third one does not belong to any 3-cycle;
(e) There is a unique loop ρ at a vertex t which has one neighbor, or has two neighbors and

its traversed by a 3-cycle.

The following result shows that the endomorphism algebra EndC(T ) of a basic maximal rigid
object T in C is determined by its underlying quiver QT , which is due to [50] (cf. also [51]).

Theorem 2.16 An algebra is the endomorphism algebra of a basic maximal rigid object in
the cluster tube C if and only if it is isomorphic to K Q/I for some Q ∈ Qn, where I is the
ideal generated by the square of the unique loop ρ and all paths of length 2 in a 3-cycle.

Remark 2.17 An algebra is a cluster-tilted algebra of type An if and only if it is isomorphic
to K Q/J for some quiver with n vertices satisfying (a) − (d) and J is the ideal generated
by all paths of length 2 in a 3-cycle (cf. [5]).

In particular, Theorem 2.16 implies that the endomorphism algebra of a basic maximal
rigid object in C is a gentle algebra. We refer to [3] for the definition of gentle algebras.
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Let Q be a finite quiver and I an admissible ideal of Q such that K Q/I is a gentle algebra.
An oriented cycle c = αm · · · α2α1 of Q is of full relations if αi+1αi ∈ I for i = 1, . . . ,m−1
and α1αm ∈ I . The following has been proved by Holm [32].

Lemma 2.18 The Cartan matrix of a gentle algebra K Q/I is degenerate if and only if K Q/I
admits at least one oriented cycle of even length with full relations.

In particular, the Cartan matrix of the endomorphism algebra of a basic maximal rigid
object in the cluster tube C is non-degenerate by Theorem 2.16 and Lemma 2.18. Note that
the global dimension of the endomorphism algebra of a maximal rigid object in C is always
infinite.

3 Rank vectors andmutations

3.1 Exchange compatibility

The aim of this subsection is to show that each indecomposable rigid object in the cluster
tube C is exchange compatible. We begin with some definitions introduced in [7].

Let T be an almost complete basic maximal rigid object in C and (X , X∗) the associated
exchange pair. In particular, T ⊕ X and T ⊕ X∗ are basic maximal rigid objects in C with
the following exchange triangles

X∗ f−→ B
g−→ X −→ �X∗ and X

f ′
−→ B ′ g′

−→ X∗ −→ �X ,

where B, B ′ ∈ add T . An indecomposable rigid object M ∈ C is compatible with the
exchange pair (X , X∗), if either X ∼= �M , X∗ ∼= �M, or, if neither of these holds,

dimK HomC(M, X) + dimK HomC(M, X∗) = max{dimK HomC(M, B), dimK HomC(M, B′)}.
If M is compatible with every exchange pair (X , X∗) in C, then M is called exchange
compatible.

By the 2-Calabi–Yau property of C, it is not hard to see that an indecomposable rigid
object M of C is compatible with the exchange pair (X , X∗) if and only if either X ∼= �M ,
X∗ ∼= �M, or, if neither of these holds,

dimK HomC(X , �2M) + dimK HomC(X∗, �2M)

= max{dimK HomC(B, �2M), dimK HomC(B ′, �2M)}.
Since � is an autoequivalence of C, it is clear that (�2X , �2X∗) is an exchange pair if and
only if (X , X∗) is an exchange pair. Consequently, we obtain the following (cf. [2]).

Lemma 3.1 Let M be an indecomposable rigid object of C, then M is compatible with an
exchange pair (�2X , �2X∗) if and only if the following holds whenever�X � M � �X∗ :

dimK HomC(X , M) + dimK HomC(X∗, M) = max{dimK HomC(B, M), dimK HomC(B′, M)}.

The following lemma gives a sufficient condition on compatibility.
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Lemma 3.2 Let (X , X∗) be an exchange pair of C with exchange triangles

X∗ f−→ B
g−→ X −→ �X∗ and X

f ′
−→ B ′ g′

−→ X∗ −→ �X .

Let M be an indecomposable rigid object in C. If each morphism from M ⊕�M to X factors
through g or each morphism from M ⊕ �M to X∗ factors through g′, then M is compatible
with (X , X∗).

Proof Let us assume that eachmorphism fromM⊕�M to X factors through g. Applying the

functor HomC(M,−) to the triangle X∗ f−→ B
g−→ X −→ �X∗ yields a long exact sequence

· · ·HomC(M, �−1B)
HomC(M,�−1g)−−−−−−−−−→ HomC(M, �−1X) −→ HomC(M, X∗)

HomC(M, f )−−−−−−−→ HomC(M, B)
HomC(M,g)−−−−−−−→ HomC(M, X) −→ HomC(M, �X∗) · · · .

By the assumption, we clearly know that both HomC(M, g) and HomC(M, �−1g) are sur-
jective. In particular, dimK HomC(M, X) + dimK HomC(M, X∗) = dimK HomC(M, B).
Hence M is compatible with the exchange pair (X , X∗). Similarly one can prove the other
case. ��
Proposition 3.3 Suppose that X = (a, n), 1 ≤ a ≤ n and (X , X∗) is an exchange pair of C.
Then any indecomposable rigid object M in C is compatible with (X , X∗).

Proof According to Lemma 2.11, we may assume that X∗ = (a+h, n) for some 1 ≤ h ≤ n.
Moreover, the exchange triangles are of the following forms

(a, n) → (a + h, n − h) ⊕ (a + h, n − h)
( f1, f2)−−−−→ (a + h, n) → �(a, n)

(a + h, n) → (a, h − 1) ⊕ (a, h − 1)
(g1,g2)−−−−→ (a, n) → �(a + h, n).

Without loss of generality, we may assume that f1 and g1 (resp. f2 and g2) are non-zero
T -maps (resp. D-maps).

By definition, if M ∼= �−1X = (a + 1, n) or M ∼= �−1X∗ = (a + h + 1, n), then
M is compatible with the exchange pair (X , X∗). For the remaining case, by Lemma 3.2, it
suffices to prove the following claim:

Claim either each morphism from M ⊕ �M to X∗ factors through ( f1, f2) : (a + h, n −
h) ⊕ (a + h, n − h) −→ (a + h, n) or each morphism from M ⊕ �M to X factors through
(g1, g2) : (a, h − 1) ⊕ (a, h − 1) −→ (a, n).

For an indecomposable rigid object M which is not isomorphic to (a+ 1, n) nor (a+ h+
1, n), M belongs to one of the following 7 subsets: W(a+h+1,n−1), �(a + h − 1, 1) ∩ (a +
h+2, n−1)�, �(a+h, 1)∩ (a+h+2, n)�, �(a+h, n−h)\ �(a+h, 1), �(a+h, n−
h+1)∩ (a+2, n−1)�, �(a+h, n−h+2)∩ (a+2, n), (a+h, n)�\(a+h, n−h+2)�.
We separate the remaining part into 7 cases (cf. Fig. 2).

Case 1: M ∈ W(a+h+1,n−1). It is clear that M and �M belong toWX∗ and X∗ = �−1(a +
h − 1, n). By Lemma 2.9 (2), we know that HomC(M ⊕ �M, (a + h − 1, n)) = 0,
which implies that

0 = HomC(M ⊕ �M, (a + h − 1, n)) = HomC(M ⊕ �M, �(a + h, n)).

Applying the functor HomC(M ⊕ �M,−) to the triangle

(a + h, n) → (a, h − 1) ⊕ (a, h − 1)
(g1,g2)−−−−→ (a, n) → �(a + h, n),
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Fig. 2 An illustration of the 7 subsets of indecomposable rigid objects M with different colors

we conclude that each morphism from M ⊕ �M to (a, n) factors through (g1, g2).
Case 2: M ∈ �(a+h−1, 1)∩(a+h+2, n−1)�. By theHom-hammock, it is not hard to see

thatHomC(M⊕�M, (a+h, n)) = 0.Consequently, eachmorphism fromM⊕�M
to (a+h, n) factors through ( f1, f2) : (a+h, n−h)⊕(a+h, n−h) −→ (a+h, n).

Case 3: M ∈ �(a + h, 1) ∩ (a + h + 2, n)�. It is clear that HomC(�M, (a + h, n)) = 0
in this case. It remains to show that each morphism from M to (a + h, n) factors
through ( f1, f2) : (a + h, a − h) ⊕ (a + h, a − h) −→ (a + h, n). Clearly we have
(a+h, n−h) ∈ M�∩ �(a+h, n). According toLemma2.10 (iii), eachT -map from
M to (a+h, n) factors through f1 : (a+h, n−h) −→ (a+h, n). ByLemma2.10 (iv),
eachD-map from M to (a+h, n) factors through f2 : (a+h, n−h) −→ (a+h, n).
Thus each morphism from M to (a + h, n) factors through ( f1, f2).

Case 4: M ∈ �(a + h, n − h)\ �(a + h, 1). It follows from Lemma 2.10 (iii) and (iv)
that each morphism from M to (a + h, n) factors through ( f1, f2). Note that �M
belongs to either �(a + h, n − h)\ �(a + h, 1) or �(a + h, 1) ∩ (a + h + 2, n)�.
Thus the aforementioned proof applied and we conclude that each morphism from
�M to (a + h, n) also factors through ( f1, f2).

Case 5: M ∈ �(a + h, n − h + 1) ∩ (a + 2, n − 1)�. The claim follows from the fact that
HomC(M ⊕ �M, (a, n)) = 0 indicated by Lemma 2.9 (2).

Case 6: M ∈ �(a+h, n−h+2)∩(a+2, n)�. According to Lemma 2.10 (iii) and (iv), we
know that each morphism from M to (a, n) factors through (g1, g2). Then again the
claim follows from the fact that HomC(�M, (a, n)) = 0 indicated by Lemma 2.9
(2).

Case 7: M ∈ (a + h, n)�\(a + h, n − h + 2)�. The claim follows from Lemma 2.10 (iii)
and (iv).

��
Proposition 3.4 Suppose that X = (a, b) with b < n, and (X , X∗) is an exchange pair. Then
any indecomposable rigid object M in C is compatible with (X , X∗).

Proof By Lemma 2.11, we may assume that X∗ = (a + h, b − h + i) and the exchange
triangles are of the following forms:

(a, b) → (a, b + i) ⊕ (a + h, b − h)
( f1, f2)−−−−→ (a + h, b − h + i) → �(a, b)

(a + h, b − h + i) → (a + b + 1, i − 1) ⊕ (a, h − 1)
(g1,g2)−−−−→ (a, b) → �(a + h, b − h + i),

where 1 ≤ a ≤ n + 1, 1 ≤ b < n, 1 ≤ h ≤ b, 1 ≤ i ≤ n − b. Without loss of generality, we
may assume that f1, f2, g2 are T -maps and g1 is aD-map. The result is clear for M ∼= �−1X
orM ∼= �−1X∗. In the following, we assume that M � �−1X andM � �−1X∗. According
to Lemma 3.2, it suffices to show that either each non-zero morphism from M ⊕ �M to X∗
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Fig. 3 An illustration of the 4 subsets of indecomposable rigid objects M with different colors, where B1 =
(a, b + i), B2 = (a + h, b − h),C1 = (a, h − 1),C2 = (a + b + 1, i − 1)

factors through ( f1, f2) : (a, b + i) ⊕ (a + h, b − h) −→ X∗ or each non-zero morphism
from M ⊕ �M to X factors through (g1, g2) : (a + b + 1, i − 1) ⊕ (a, h − 1) −→ (a, b).

Let us first consider thatM /∈ (�−1X)�∩ �(�−1X∗). Let f : M → X∗ be a non-zero T -
map. Consequently,M ∈ �X∗. It is not hard to see that either B1 := (a, b+i) ∈ M�∩ �X∗
or B2 := (a + h, b − h) ∈ M� ∩ �X∗. By Lemma 2.10 (iii), we deduce that f factors
through ( f1, f2) : (a, b + i) ⊕ (a + h, b − h) −→ X∗. Now assume that g : M → X∗ is a
non-zero D-map, then M ∈ (�−2X∗)�. Note that (�−2X∗)� ⊂ (�−2B1)

�. In particular
by Lemma 2.10 (i)(iii), the morphism f1 yields an isomorphism of vector spaces

HomD6(T )(�
−2 f1, M) : HomD6(T )(�

−2X∗, M)
∼−→ HomD6(T )(�

−2B1, M)

By the AR-duality, we have an isomorphism

HomD6(T )(M, τ−1 ◦ � f1) : HomD6(T )(M, τ−1 ◦ �B1)
∼−→ HomD6(T )(M, τ−1 ◦ �X∗),

which implies that g factors through ( f1, f2) : (a, b+i)⊕(a+h, b−h) −→ X∗. In particular,
we have proved that each non-zero morphism from M to X∗ factors through the morphism
( f1, f2) for M /∈ (�−1X)� ∩ �(�−1X∗). On the other hand, for an indecomposable rigid
object M /∈ (�−1X�) ∩ �(�−1X∗), we have either �M /∈ (�−1X)� ∩ �(�−1X∗)
or �M ∈ ((�−1B1)

� ∩� (�−1X∗)) ∪ ((�−1B2)
� ∩� (�−1X∗)) =: S. If �M /∈

(�−1X)� ∩ �(�−1X∗), then the above discussion implies that each non-zero morphism
from �M to X∗ factors through the morphism ( f1, f2). If �M ∈ S, it is easy to see that
HomC(�M, X∗) = 0 by the Hom-hammock. Hence we conclude that M is compatible with
the exchange pair (X , X∗) whenever M /∈ (�−1X)� ∩ �(�−1X∗).

It remains to consider the situation M ∈ (�−1X)� ∩ �(�−1X∗) and we will divide the
proof into 4 cases (cf. Fig. 3).

Case 1: M ∈ (a+1, b+1)� ∩ �(a+1, b+ i−1) or (a+2, b−1)� ∩ �(a+h+1, b−h).
Since b+ i ≤ n, it is not hard to see that HomC(M ⊕ �M, X) = 0. Consequently,
M is compatible with (X , X∗) in this case.

Case 2: M ∈ (�−2X)� ∩ �(a + h, b − h + i + 1). Again by b + i ≤ n, we deduce
that HomT (M, X) = 0. On the other hand, we have M ∈ (a + 2, h − 1)�. By
Lemma 2.10 (i)(iii) and the AR-duality, the morphism g2 also induces an isomor-
phism

HomDb(T )(M, g2) : HomDb(T )(M, τ−1 ◦ �(a, h − 1))
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1812 C. Fu et al.

∼−→ HomDb(T )(M, τ−1 ◦ �X).

Consequently, each D-map from M to X factors through (g1, g2). Note that �M
either is isomorphic to �−1X or belongs to (a + 1, b+ 1)� ∩ �(a + 1, b+ i − 1),
(a + 2, b− 1)� ∩ �(a + h + 1, b− h) or (�−2X)� ∩ �(a + h, b− h + i + 1). If
�M ∼= �−1X , thenHomC(�M, X) = 0. Therefore eachmorphism fromM⊕�M
to X factors through (g1, g2) in this situation. If �M belongs to one of the three
sets (a + 1, b+ 1)� ∩ �(a + 1, b+ i − 1), (a + 2, b− 1)� ∩ �(a + h + 1, b− h)

and (�−2X)� ∩ �(a + h, b − h + i + 1), then by the aforementioned proof we
know that each morphism from �M to X also factors through (g1, g2). Hence M
is compatible with (X , X∗).

Case 3: M ∈ (a + h + 1, b − h + 1)� ∩ �(a + h + 1, b − h + i − 1). It is clear that
HomT (M, X) = 0. We also have M ∈ (�−2X)� ∩ �(a + b + 1, i − 1). Now by
Lemma 2.10 (iv), eachD-map fromM to X factors through g1 : (a+b+1, i−1) →
X . On the other hand, the object �M either belongs to (a + 2, b − 1)� ∩ �(a +
h + 1, b− h) or (�−2X)� ∩ �(a + h, b− h + i + 1). Thus by the proof of Case 1
and Case 2, we deduce that each morphism from�M to X factors through (g1, g2).

Case 4: M ∼= �−1(a, b+ i). By b < n, one can easily show that HomC(M ⊕�M, X) = 0.

This completes the proof. ��
Combining Proposition 3.3 with 3.4, we have proved the following result.

Theorem 3.5 Each indecomposable rigid object in C is exchange compatible.

3.2 Rank vectors of indecomposable �-rigid modules

Let T = T ⊕ Tk be a basic maximal rigid object of C with indecomposable direct summand
Tk . Let T ′ = T ⊕T ∗

k be the mutation of T at the indecomposable direct summand Tk . Denote
by � = EndC(T ) and �′ = EndC(T ′) the endomorphism algebras of T and T ′ respectively.
The following lemma is a reformulation of Proposition 4.5 of [27].

Lemma 3.6 If different indecomposable τ -rigid�′-modules have different dimension vectors,
then different indecomposable τ -rigid �-modules have different dimension vectors.

Proof Let Tk
f−→ B

g−→ T ∗
k → �TK and T ∗

k
f ′

−→ B ′ g′
−→ Tk → �T ∗

k be the exchange triangles
associated to the exchange pair (Tk, T ∗

k ). Suppose that there are twonon-isomorphic indecom-
posable rigid objects M, N ∈ C\add�T such that dimHomC(T , M) = dimHomC(T , N ).
We claim that M � �T ∗

k and N � �T ∗
k . Otherwise, assume that M ∼= �T ∗

k . According to
Lemma 2.11, we conclude that

◦ HomC(T , M) is the simple �-module with dimension vector ek provided l(Tk) < n;
◦ HomC(T , M) is the indecomposable �-module with dimension vector 2ek provided
l(Tk) = n.

In either case, we have HomC(T , N ) ∼= HomC(T , M) as �-modules, a contradiction.
Since M, N /∈ add�T and M, N are exchange compatible by Theorem 3.5, we have

dimK HomC(Tk , M) + dimK HomC(T ∗
k , M) = max{dimK HomC(B, M), dimK HomC(B ′, M)}

and

123



Cluster algebras arising from cluster tubes I: integer vectors 1813

dimK HomC(Tk , N ) + dimK HomC(T ∗
k , N ) = max{dimK HomC(B, N ), dimK HomC(B ′, N )}

by Lemma 3.1. Note that B, B ′ ∈ add T and dimHomC(T , M) = dimHomC(T , N ), we
deduce that

dimK HomC(B, M) = dimK HomC(B, N ) and dimK HomC(B ′, M) = dimK HomC(B ′, N ).

Consequently, dimK HomC(T ∗
k , M) = dimK HomC(T ∗

k , N ), which implies that
dimHomC(T ′, M) = dimHomC(T ′, N ), a contradiction. Therefore different indecompos-
able τ -rigid �-modules have different dimension vectors. ��

Let T = ⊕n
i=1 Ti be a basic maximal rigid object in C and � = EndC(T ) the endomor-

phism algebra of T . Let QT be the Gabriel quiver of � with vertex set Q0 = {1, 2, . . . , n}.
Denote by f1, . . . , fn the primitive idempotents of � associated to the vertices. Following
[29], an �-module M is locally free if for each fi , M fi is free as a right fi� fi -module. For
a locally free �-module M , let r(M fi ) be the rank of M fi as a free fi� fi -module. We call
rank M := (r(M f1), . . . , r(M fn))tr ∈ Z

n the rank vector of M . Recall that QT admits a
unique vertex, say 1, such that there is a unique loop attached to the vertex 1. In this case, ifM is
a locally free�-module with dim M = (m1, . . . ,mn)

tr, then rank M = (m1
2 ,m2, . . . ,mn)

tr.

Lemma 3.7 Each indecomposable τ -rigid �-module is locally free.

Proof Let T1 be the unique indecomposable direct summand of T with length l(T1) = n
and P1 be the projective �-module corresponding to T1. It follows from Theorem 2.16
and the construction of string modules [9] of � that an indecomposable �-module M is
locally free if and only if dimK Hom�(P1, M) = 0 or 2. Let X /∈ add�T be the inde-
composable rigid object with l(X) ≤ n corresponding to M , i.e. M = FX , where F is the
equivalence pr T /add�T

∼−→ mod�. Then in light of Lemma 2.9, dimK Hom�(P1, M) =
dimK HomC(T1, X) = 0 or 2. ��

We now prove that indecomposable τ -rigid �-modules are determined by their rank vec-
tors.

Theorem 3.8 Let T be a basicmaximal rigid object ofC and� = EndC(T ) the endomorphism
algebra of T . Then different indecomposable τ -rigid �-modules have different rank vectors.

Proof It suffices to prove that different indecomposable τ -rigid �-modules have different
dimension vectors. Let T1 be the unique indecomposable direct summand of T with length
l(T1) = n. Without loss of generality, we may assume that T1 = (1, n). Denote by T ′ =
(1, 1) ⊕ (1, 2) ⊕ · · · ⊕ (1, n). It is clear that T ′ is also a basic maximal rigid object of C.
Moreover, T can be obtained from T ′ by a sequence of mutations (cf. Lemma 3.3 of [51]).
According to Theorem 1.3 of [29], we know that different indecomposable τ -rigid EndC(T ′)-
modules have different dimension vectors. Applying Lemma 3.6 repeatedly, we conclude that
different indecomposable τ -rigid �-modules have different dimension vectors. ��
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4 The denominator theorem and its applications

4.1 The denominator theorem

Let T = ⊕n
i=1 Ti be a basic maximal rigid object of C with l(T1) = n and AT = A(BT )

the associated cluster algebra of type Cn . Recall that we have a bijection X? between the
indecomposable rigid objects of C and the cluster variables of AT by Theorem 2.13 such
that �T corresponds to the initial cluster of AT . In particular, X�Ti = xi for i = 1, . . . , n.
Let � = EndC(T ) be the endomorphism algebra of T . Recall that pr T is the subcategory
of C consisting of objects which are finitely presented by T . The functor F := HomC(T , ?)
yields an equivalence

F : pr T /add�T → mod�

which maps a rigid object of C to a locally free �-module. The aim of this section is to
prove that for each indecomposable rigid object M /∈ add�T , the denominator vector of
the cluster variable XM is the rank vector of the locally free �-module F(M).

For an object M ∈ pr T , we define a monomial tM := ∏n
i=1 x

di (M)
i , where

di (M) =
{

dimK HomC(Ti ,M)
2 i = 1;

dimK HomC(Ti , M) else.

Let f (x1, . . . , xn) be a polynomial in variables x1, . . . , xn with integer coefficients.
We say that f (x1, . . . , xn) satisfies the positive condition if f (εi ) > 0 where εi :=
(1, . . . , 1, 0, 1, . . . 1) ∈ Z

n(with a 0 in the i-th position) for i = 1, . . . , n.
LetM be an indecomposable rigid object of C. Following [7], the cluster variableXM has a

T -denominator if XM =
{

f (x1,...,xn)
tM

M /∈ add�T

xi M ∼= �Ti
, where f (x1, . . . , xn) is a polynomial

satisfying the positive condition. In this case, by the positive condition, we clearly know that
the polynomial f (x1, . . . , xn) is not divisible by xi for each i = 1, . . . , n. In particular, the
denominator vector den(XM ) coincides with the rank vector rankF(M).

Lemma 4.1 Let (M, M∗) be an exchange pair with exchange triangles

M → B → M∗ → �M and M∗ → B ′ → M → �M∗.

Let N be an indecomposable rigid object of C and suppose that either M ∼= τN or M∗ ∼= τN.
Then we have

dimK HomC(N , M) + dimK HomC(N , M∗)

=
{
max{dimK HomC(N , B), dimK HomC(N , B ′)} + 1 l(N ) < n;
max{dimK HomC(N , B), dimK HomC(N , B ′)} + 2 l(N ) = n.

Proof Assume that M∗ ∼= τN (the other case is similar) and we can rewrite the exchange
triangles as

M → B → τN → �M and τN → B ′ → M → �N .

Note that HomC(N , M∗) = 0, we have

dimK HomC(N , M) + dimK HomC(N , M∗) = dimK HomC(N , M) = dimK DExt1C(M, τN ).
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By Lemma 2.11, we know that dimK Ext1C(M, M∗) =
{
1 l(M) < n;
2 l(M) = n.

. Consequently,

dimK HomC(N , M) + dimK HomC(N , M∗) =
{
1 l(N ) < n;
2 l(N ) = n.

On the other hand,

HomC(N , B ′) ∼= HomC(M∗, τ B ′) ∼= DExt1C(B ′, M∗) = 0,

for the reason that B ′ ⊕ M∗ is a direct summand of a maximal rigid object. Similarly
HomC(N , B) = 0 and we are done. ��

The following lemma is an analogue of Proposition 3.1 of [7].

Lemma 4.2 Let M = M ⊕ Mk be a basic maximal rigid object of C with an indecomposable
direct summand Mk. Let μMk (M) = M ⊕ M∗

k be the mutation of M at Mk. If for each
indecomposable direct summand N of M, the cluster variable XN has a T -denominator,
then the cluster variable XM∗

k
also has a T -denominator.

Proof Let us rewrite M = ⊕n
i=1 Mi , where M1, . . . , Mn are indecomposable objects. By

the assumption, for each indecomposable direct summand Mi such that M /∈ �T , we have

XMi = fMi
tMi

, where fMi is a polynomial in x1, . . . , xn satisfying the positive condition. We

also set f�Tj = 1 for 1 ≤ j ≤ n. For an object N with decomposition N = N1 ⊕ · · · ⊕ Ns

of indecomposable direct summands, we set

XN = XN1XN2 · · · XNs .

Moreover, if N ∈ addM , we also write

fN = fN1 fN2 · · · fNs .

Let M∗
k → B → Mk → �M∗

k and Mk → B ′ → M∗
k → �Mk be the exchange triangles

associated to the exchange pair (Mk, M∗
k ). In particular, B, B ′ ∈ addM . We may rewrite

B = B0 ⊕ B1 and B ′ = B ′
0 ⊕ B ′

1 such that B1, B ′
1 ∈ add�T and B0, B ′

0 do not have
indecomposable direct summands in add�T . Consequently, tB = tB0 and tB′ = tB′

0
.

By definition of the skew-symmetrizable matrix BM and the exchange relation in the
cluster algebra AT , we have

XMkXM∗
k

= XB + XB′ .

If M∗
k

∼= �Ti for some i , then we have XM∗
k

= xi by Theorem 2.13. We separate the
remaining proof into two cases.
Case 1: Neither Mk nor M∗

k belongs to add�T . By the assumption, we have

XB = fBXB1

tB0
and XB′ = fB′XB′

1

tB′
0

.

Set m = lcm(tB0 ,tB′
0
)

tB0
and m′ = lcm(tB0 ,tB′

0
)

tB′
0

, where lcm(tB0 , tB′
0
) is the least common multiple

of tB0 and tB′
0
. Using the exchange relation, we have

XM∗
k

= fBXB1/tB0 + fB′XB′
1
/tB′

0

fMk/tMk

= ( fBmXB1 + fB′m′
XB′

1
)/ fMk

lcm(tB , t ′B)/tMk

.
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ByTheorem 3.5, each indecomposable direct summand Ti of T is compatible with (Mk, M∗
k ).

Therefore

tMk tM∗
k

= x
dimK HomC (T1,Mk )

2 + dimK HomC (T1,M∗
k )

2
1

n∏

i=2

x
dimK HomC(Ti ,M)+dimK HomC(Ti ,M∗

k )

i

= x
max

{
dimK HomC (T1,B)

2 ,
dimK HomC (T1,B′)

2

}

1

n∏

i=2

x
max{dimK HomC(Ti ,B),dimK HomC(Ti ,M∗

k )}
i

= lcm(tB , t ′B).

Consequently,

XM∗
k

= ( fBmXB1 + fB′m′
XB′

1
)/ fMk

tM∗
k

.

Since B and B ′ have no common factors, we know that XB1 and XB′
1
are coprime. Suppose

that m and XB′
1
have a common factor xi . By definition of m, there is a direct summand

X of B ′
0 such that HomC(Ti , X) �= 0. On the other hand, �Ti is a direct summand of

B ′
1. Consequently, X and �Ti are direct summands of the basic maximal rigid object M .

However,

HomC(X , �2Ti ) ∼= D HomC(Ti , X) �= 0,

which is a contradiction. Hence m and XB′
1
are coprime. Similarly, m′ and XB1 are also

coprime. It follows that mXB1 and m
′
XB′

1
are coprime.

By the Laurent phenomenon of cluster variables, we deduce that
fBmXB1+ fB′m′

XB′
1

fMk
is a

Laurent polynomial in variables x1, . . . , xn . It remains to show that
fBmXB1+ fB′m′

XB′
1

fMk
is a

polynomial satisfying the positive condition. For each εi , it follows from the assumption
that fB(εi ) > 0 and fB′(εi ) > 0. On the other hand, we clearly have (mXB1)(εi ) ≥ 0
and (m′

XB′
1
)(εi ) ≥ 0. Since mXB1 and m′

XB′
1
are coprime, these two numbers can not be

simultaneously zero. Therefore

( fBmXB1 + fB′m′
XB′

1
)(εi ) > 0 for i = 1, . . . , n.

Note that the polynomial fMk also satisfies the positive condition and we have

fBmXB1 + fB′m′
XB′

1

fMk

(εi ) > 0 for i = 1, . . . , n.

In particular,
fBmXB1+ fB′m′

XB′
1

fMk
is defined for each εi , which implies that

fBmXB1+ fB′m′
XB′

1
fMk

is a polynomial in x1, . . . , xn and hence satisfies the positive condition.
Case 2: Suppose that Mk ∼= �Tl for some l. It is not hard to see that M∗

k /∈ add�T . By
definition, we have tMk = 1. According to Lemma 4.1, we have

dimK HomC(Tl , Mk) + dimK HomC(Tl , M
∗
k )

=
{
max{dimK HomC(Tl , B), dimK HomC(Tl , B ′)} + 1 l �= 1;
max{dimK HomC(Tl , B), dimK HomC(Tl , B ′)} + 2 l = 1.
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On the other hand, for each j �= l, Tj is compatible with the exchange pair (Mk, M∗
k ) by

Theorem 3.5. Therefore, for j �= l, we also obtain

dimK HomC(Tj , Mk) + dimK HomC(Tj , M
∗
k ) = max{dimK HomC(Tj , B), dimK HomC(Tj , B

′)}.
Putting all of these together, we have

tM∗
k

= tMk tM∗
k

= x
dimK HomC (T1,Mk )

2
1

n∏

i=2

xdimK HomC(Ti ,Mk )
i x

dimK HomC (T1,M∗
k )

2
1

n∏

i=2

x
dimK HomC(Ti ,M∗

k )

i

=

⎧
⎪⎪⎨

⎪⎪⎩

x1x
max

{
dimK HomC (T1,B)

2 ,
dimK HomC (T1,B′)

2

}

1

∏n
i=2 x

max{dimK HomC(Ti ,B),dimK HomC(Ti ,B′)}
i l = 1

xl x
max

{
dimK HomC (T1,B)

2 ,
dimK HomC (T1,B′)

2

}

1

∏n
i=2 x

max{dimK HomC(Ti ,B),dimK HomC(Ti ,B′)}
i l �= 1

= xl lcm(tB , tB′ ).

Note that XMk = xl . By the exchange relation, we have

XM∗
k

=
fBXB1
tB0

+ fB′XB′
tB′

0

xl
= fBmXB1 + fB′m′

XB′
1

tM∗
k

,

where m = lcm(tB0 ,tB′
0
)

tB0
and m′ = lcm(tB0 ,tB′

0
)

tB′
0

. Now similar to the Case 1, one can show that

fBmXB1 + fB′m′
XB′

1
is a polynomial satisfying the positive condition and we are done. ��

Now we are in a position to state the main result of this subsection.

Theorem 4.3 Every cluster variable of AT has a T -denominator. In particular, for each
indecomposable rigid object M /∈ add�T , we have

den(XM ) = rankF(M).

Proof Recall that �T corresponds to the initial cluster under the bijection X? and each
indecomposable direct summand �Ti of �T has a T -denominator. On the other hand, each
indecomposable rigid object M is a direct summand of a basic maximal rigid object T ′.
Moreover, T ′ can be obtained from �T by a finite sequence of mutations. Now the result
follows from Lemma 4.2. ��

As a direct consequence of the denominator theorem and Theorem 3.8, we obtain the
following.

Corollary 4.4 Let A be a cluster algebra of type C. Different cluster variables of A have
different denominator vectors with respect to any given cluster.

4.2 Application to conjectures on denominator vectors

In this subsection, we derive certain consequences of the denominator theorem. As a first
application, we prove that Conjecture 7.4 of [25] holds true for cluster algebras of type C.
Namely,
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Theorem 4.5 LetA be a cluster algebra of type Cn with an initial cluster x0 = {x1, . . . , xn}.
Let x be a non-initial cluster variable with denominator vector den(x) = (d1, . . . , dn)tr ∈
Z
n. Then

(1) All components di are non negative;
(2) We have di = 0 if and only if there is a cluster containing both x and xi ;
(3) Each component di depends only on the cluster variables x and xi .

Proof Let C be the cluster tube of rank n + 1. Without loss of generality, we may assume
that A = AT , where T = ⊕n

i=1 Ti is a basic maximal rigid object of C with l(T1) = n.
Recall that there is bijection X? between the cluster variables ofAT and the indecomposable
rigid objects of C by Theorem 2.13. Moreover, the initial cluster variable xi corresponds
to the indecomposable rigid object �Ti under the bijection. Denote by � = EndC(T ) the
endomorphism algebra of T . LetM be an indecomposable rigid object of C such thatXM = x .
Note that x is non-initial, we have M /∈ add�T . By Theorem 4.3, we have den(x) =
rankF(M), which implies the statement (1). Furthermore,

di =
{

dimK HomC(T1,M)
2 i = 1;

dimK HomC(Ti , M) else.

and we conclude that di depends only on �Ti and M . Consequently, di depends only on the
cluster variables x and xi .

For the second statement, we first assume that there is a component di = 0. Then
(F(M), F(Ti )) is a τ -rigid pair of the endomorphism algebra �. Each τ -rigid pair can be
completed to a support τ -tilting pair [1]. In other words, there exists a rigid object N such
that N ⊕ M ⊕ �Ti is a basic maximal rigid object of C by Theorem 2.14. Now applying the
bijection X?, we deduce that there is a cluster containing x and xi . Conversely, assume that
there is a cluster containing x and xi . Then there is a basic maximal rigid object N such that
M and �Ti belong to add N . Consequently, the component

di =
{

dimK Hom�(F(T1),F(M))
2 = dimK HomC(T1,M)

2 = dimK Ext1C(�T1,M)

2 = 0 i = 1;
dimK Hom�(F(Ti ), F(M)) = dimK HomC(Ti , M) = dimK Ext1C(�Ti , M) = 0 else.

��
Remark 4.6 We remark that the statement (1) of Theorem 4.5 has been known for any cluster
algebras of finite type (cf. [12,15]) and has been recently verified for skew-symmetric type in
[13]. We also remark here that this conjecture has been proved for any skew-symmetrizable
cluster algebra by using different methods in the arXiv paper [14] after the current paper was
posted on the arXiv.

The second application is to prove that the denominator vectors of cluster variables in a
cluster form a basis of Q

n .

Theorem 4.7 LetA be a cluster algebra of typeCn with initial cluster x0. For any cluster y =
{y1, . . . , yn} of A, the denominator vectors den(y1), . . . ,den(yn) are linearly independent
over Q.

Proof We may assume that A = AT for some basic maximal rigid object T ∈ C and the
initial cluster x0 corresponds to the basic maximal rigid object �T under the bijection X?.
Denote by � = EndC(T ) the endomorphism algebra of T .
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Note that for an initial cluster variable xi , we have den(xi ) = −ei ∈ Z
n . Without loss of

generality, wemay assume that y1, . . . , yr are precisely the non-initial cluster variables in the
cluster y. According to Theorem 4.5 (2), for each i = 1, . . . , r , the last n − r components of
den(yi )vanish.Letdenr (yi )be the vector formedby thefirst r entries ofden(yi ). It suffices to
show that denr (y1), . . . ,denr (yr ) are linearly independent overQ. Set M = M1⊕· · ·⊕Mr ,
whereM1, . . . , Mr are indecomposable rigid objects inC such thatXMi = yi for i = 1, . . . , r .
Denote by M ⊕ �TM the basic maximal rigid object corresponding to the cluster y. Recall
that we have an equivalence F : pr T /add�T → mod�. By Theorem 2.14, we deduce
that F(M) is a τ -tilting module over A := �/〈eM 〉, where eM is the idempotent of �

corresponding to the direct summand TM . By Theorem 2.16, we know that A is a gentle
algebra.

According to Theorem 4.3, we have denr (yi ) = rankF(Mi ) for i = 1, . . . , r , where
rankF(Mi ) is the rank vector of F(Mi ) as an A-module. Let GF(M)(A)tr be the transpose of
G-matrix of F(M) and DF(M)(A) the D-matrix of F(M). Applying Lemma 2.5, we obtain

GF(M)(A)trDF(M)(A) = C(EndA(F(M))).

Note that F(M) is a τ -tilting A-module, which implies that Ext1A(F(M), F(M)) = 0. Apply-
ing Corollary 1.2 of [48], we deduce that EndA(F(M)) is also a gentle algebra. On the other
hand, it is not hard to see that

EndA(F(M)) = End�(F(M)) ∼= EndC(M)/(�T ) ∼= EndC(M ⊕ �TM )/(�T ),

where (�T ) is the ideal generated by morphisms factoring through the objects in add�T .
Namely, EndA(F(M)) is a quotient of the endomorphism algebra of the basic maximal rigid
object M ⊕ �TM of C. According to Theorem 2.16 and Remark 2.17, we conclude that
EndA(F(M)) is a gentle algebra without oriented cycles of even length with full relations.
Consequnetly, the Cartan matrix C(EndA(F(M))) of EndA(F(M)) is non-degenerate by
Lemma 2.18. Recall that the G-matrix GF(M)(A) is invertible over Z. Therefore, the D-
matrix DF(M)(A) is non-degenerate and we conclude that rankF(M1), . . . , rankF(Mr ) are
linearly independent over Q. This finishes the proof. ��
Remark 4.8 Note that the denominator theorem was also established for cluster algebras
of type A in [7,12]. On the other hand, every cluster-tilted algebra of type A is a gentle
algebra whose quiver is described in Remark 2.17. It is clear that the above proof implies the
corresponding statement for cluster algebras of type A.

Remark 4.9 In [46], Reading and Stella established a D-matrix duality for denominator vec-
tors of cluster algebras of finite type. In particular, for an arbitrary cluster y = {y1, . . . , yn}
of a cluster algebra of type Bn , the set of denominator vectors {den(y1), . . . ,den(yn)} coin-
cides with the set of denominator vectors of cluster variables in a cluster for a cluster algebra
of type Cn . Therefore we also obtain the linear independence for the denominator vectors for
cluster algebras of type B.

5 Categorical interpretations for g- and c-vectors

Let C be the cluster tube of rank n+1 and T = ⊕n
i=1 Ti a basicmaximal rigid object of C with

l(T1) = n. Let BT be the skew-symmetrizable matrix associated to T and AT ,pr the cluster
algebra with principal coefficients associated to the matrix BT . By Theorem 2.13, there is a
bijection between indecomposable rigid objects of C and the cluster variables of AT ,pr . The
aim of this section is to give a categorical interpretation for g-vectors and c-vectors ofAT ,pr .
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5.1 g-vector as index

Recall that pr T is the full subcategory of C consisting of objects which are finitely presented
by T . Moreover, each indecomposable rigid object belongs to pr T . Let G0(add T ) be the
split Grothendieck group of add T . For each X ∈ pr T , we have a triangle

T X
1 → T X

0 → X → �T X
1

with T X
1 , T X

0 ∈ add T . The index indT (X) of X with respect to T is defined to be

indT (X) := [T X
0 ] − [T X

1 ] ∈ G0(add T ),

where [∗] stands for the image of the object ∗ in the Grothendieck group G0(add T ). We
define the g-vector gT (X) = (g1, . . . , gn)tr of X with respect to T as the coordinate vector
of indT (X) with respect to the standard basis [T1], . . . , [Tn] of G0(add T ).

Let� = EndC(T ) be the endomorphism algebra of T . Recall that we have an equivalence

F : pr T /add�T → mod�

and the functor F induces a bijection between the basic maximal rigid objects of C and the
basic support τ -tilting �-modules (cf. Theorem 2.14). The g-vector of a rigid object in C has
close relation to the g-vector of a τ -rigid �-module. Indeed, for an indecomposable rigid
object X /∈ add�T , F(X) is an indecomposable τ -rigid �-module and one can show that
gT (X) coincides with the g-vector g(F(X)) of the τ -rigid �-module F(X). Following [17],
one can show that different rigid objects have different indices and g-vectors. Moreover, if
T ′ is another basic maximal rigid object of C, then the indices of the direct summands of T ′
with respect to T form a basis of G0(add T ).

Now fix a vertex t0 ∈ Tn . We associate to t0 the 2n × n matrix B̃T =
(
BT

En

)

to get

the cluster algebra with principal coefficients AT ,pr := A(B̃T ). To each vertex t ∈ Tn , we
associate a basic maximal rigid object Tt = ⊕n

i=1 Tt,i such that Tt0 = T and Tt ′ = μk(Tt )
whenever t k t ′ is an edge of Tn . Let

T ∗
t,k → UTt,k ,Tt\Tt,k → Tt,k → �T ∗

t,k and Tt,k → U ′
Tt,k ,Tt\Tt,k → T ∗

t,k → �Tt,k

be the exchange triangles associated to Tt,k and T ∗
t,k . Following [17], we define two linear

maps φ±
t,t ′ : G0(add Tt ) → G0(add Tt ′) which both send each [N ] for an indecomposable

object N belonging to both add Tt and add Tt ′ to itself and such that

φ+
t,t ′([Tt,k]) = [UTt,k ,Tt\Tt,k ] − [T ∗

t,k] and φ−
t,t ′([Tt,k]) = [U ′

Tt,k ,Tt\Tt,k ] − [T ∗
t,k].

The following result is due to Dehy and Keller [17].

Theorem 5.1

(1) For any rigid object X in C, we have

indTt ′ (X) =
{

φ+
t,t ′(indTt (X)) if [indTt (X) : Tt,k] ≥ 0;

φ−
t,t ′(indTt (X)) if [indTt (X) : Tt,k] ≤ 0,

where [indTt (X) : Tt,k] is the coefficient of [Tt,k] in indTt (X) with respect to the basis
[Tt,1], . . . , [Tt,n].

(2) For each vertex t ∈ Tn and 1 ≤ l ≤ n, we have gB̃T ,t0
l,t = gT (Tt,l).
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Proof The same proof of Sections 3 and 4 in [17] applied. We sketch a proof for the second
statement to emphasize why the indices categorify the g-vectors of cluster algebra of type C
but not of type B. It suffices to prove that the g-vectors gT (Tt,l) satisfy the same recurrence
formula as in Proposition 2.2 (4). Let t1 k t2 be two vertices of Tn and

T ∗
t1,k → UTt1,k ,Tt1\Tt1,k → Tt1,k → �T ∗

t1,k and Tt1,k → U ′
Tt1,k ,Tt1\Tt1,k

→ T ∗
t1,k → �Tt1,k

the exchange triangles associated to Tt1,k . Denote by BTt1
= (bt1i j ) the matrix associated to

Tt1 . Let gTt1 (Tt,l) = (g1, . . . , gn)tr and gTt2 (Tt,l) = (g′
1, . . . , g

′
n)

tr be the g-vectors of Tt,l
with respect to Tt1 and Tt2 respectively. We have to show that

g′
j =

{
−gk if j = k;
g j + [bt1jk]+gk − bt1jk min(gk, 0) else.

Recall that gi = [indTt1 (Tt,l) : Tt1,k]. Assume that gk ≥ 0. By the first statement, we have

indTt2 (Tt,l) = φ+
t1,t2(g1[Tt1,1] + · · · + gn[Tt1,n])

=
∑

j �=k

g j [Tt1, j ] + gkφ
+
t1,t2(Tt1,k)

=
∑

j �=k

g j [Tt1, j ] + gk([UTt1,k ,Tt1\Tt1,k ] − [T ∗
t1,k]).

Note that T ∗
t1,k

= Tt2,k andUTt1,k ,Tt1\Tt1,k dose not admit T ∗
t1,k

as a direct summand, we deduce
that g′

k = −gk . Now for j �= k, by the definition of the matrix BTt1
, we have

bt1jk = αUTt1,k ,Tt1 \Tt1,k
Tt1, j − αU ′

Tt1,k ,Tt1 \Tt1,k
Tt1, j .

In particular, we have

[UTt1,k ,Tt1\Tt1,k : Tt1, j ] =
{
bt1jk if bt1jk ≥ 0;
0 otherwise.

It follows that g′
j = g j + gk[bt1jk]+ for j �= k. Similarly, if gk ≤ 0, one can show that

g′
j =

{
−gk if j = k;
g j + gk[−bt1jk]+ if j �= k.

This completes the proof. ��

5.2 c-vector as rank vector

Let cv(AT ,pr ) be the set of c-vectors ofAT ,pr and cv+(AT ,pr ) the set of positive c-vectors,
then

cv(AT ,pr ) = cv+(AT ,pr ) ∪ −cv+(AT ,pr ).

The following result interprets positive c-vectors as rank vectors of indecomposable τ -rigid
modules.
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Theorem 5.2 Let T = ⊕n
i=1 Ti be a basicmaximal rigid object in C and� the endomorphism

algebra of T . We have

cv+(AT ,pr ) = {rank M | M is an indecomposable τ -rigid �-module}.
Proof As before, the cluster pattern for the cluster algebra AT ,pr is given by assigning the
initial exchange matrix B̃T to the root vertex t0. In particular, for each vertex t ∈ Tn , we
have the G-matrix Gt and the C-matrix Ct for the cluster algebra AT ,pr . To each vertex
t ∈ Tn , we also associate a basic maximal rigid object Tt = ⊕n

i=1 Tt,i such that Tt0 = T and
Tt ′ = μk(Tt ) whenever t k t ′ is an edge of Tn . Note that for each t ∈ Tn , HomC(T , Tt ) is
a support τ -tilting �-module. We denote by Gt (�) and Ct (�) the corresponding G-matrix
and C-matrix associated to the support τ -tilting �-module HomC(T , Tt ) with respect to
the decomposition induced by Tt . Now Theorem 5.1 implies that for any t ∈ Tn , we have
Gt = Gt (�). Hence by Proposition 2.2 (3), we have

Ct = D−1Ct (�)D,

where D ∈ Mn(Z) is the skew-symmetrizer of B̃T .
Now assume that l(T1) = n. In other words, D = diag{2, 1, . . . , 1}. Let M be an inde-

composable τ -rigid �-module with

dim M = (m1,m2, . . . ,mn)
tr,

we then have

rank M =
(m1

2
,m2, . . . ,mn

)tr
.

By Proposition 2.2 (2) and Theorem 3.8, it suffices to show that for each indecomposable
τ -rigid �-module M , the rank vector rank M is a positive c-vector of the cluster algebra
AT ,pr .

Let M̃ be the indecomposable preimage of M in pr T . We may choose a maximal rigid
object in C, say Tt ′ := M̃ ⊕ Ñ , such that HomC(Ñ , M̃) = 0. Note that HomC(T , M̃ ⊕ Ñ ) is
a support τ -tilting �-module. Let QM be the corresponding 2-term silting object in per�. If
l(M̃) < n, then dim M is a c-vector of � by Proposition 2.4. Recall that by Lemma 2.7 (3),
in the following exchange triangle of a basic maximal rigid object X = X1 ⊕ · · · ⊕ Xn

Xk → Y → X∗
k → �Xk,

the indecomposable object Xk has length n if and only if X∗
k has length n. Consequently,

if l(M̃) < n, then dim M is not the first column of Ct ′(�). By Ct ′ = D−1Ct ′(�)D, we
deduce that rank M is a column vector of Ct ′ and hence a positive c-vector of AT ,pr . Now
if l(M̃) = n, by Lemma 2.15, we have

HomDb(mod�)(QM , �i M) =
{
K ⊕ K , i = 0;
0, else.

In other words, 1
2dim M is a c-vector of �. Moreover, 1

2dim M is the first column vector of
Ct ′(�). Again the equalityCt ′ = D−1Ct ′(�)D implies that rank M is the first column vector
of Ct ′ and hence a positive c-vector of AT ,pr . This finishes the proof. ��
Acknowledgements We are very grateful to the anonymous referee for significant comments and corrections
they proposed.
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